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Abstract. We present a new Stata program, vselect, that helps users perform
variable selection after performing a linear regression. Options for stepwise meth-
ods such as forward selection and backward elimination are provided. The user may
specify Mallows’s Cp, Akaike’s information criterion, Akaike’s corrected informa-
tion criterion, Bayesian information criterion, or R2 adjusted as the information
criterion for the selection. When the user specifies the best subset option, the
leaps-and-bounds algorithm (Furnival and Wilson, Technometrics 16: 499–511) is
used to determine the best subsets of each predictor size. All the previously men-
tioned information criteria are reported for each of these subsets. We also provide
options for doing variable selection only on certain predictors (as in [R] nestreg)
and support for weighted linear regression. All options are demonstrated on real
datasets with varying numbers of predictors.
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1 Theory/motivation

Redundant predictors in a linear regression yield a decrease in the residual sum of
squares (RSS) and less-biased predictions at the cost of an increased variance in predic-
tions.

In settings where there are a small number of predictors, the partial F test can be
used to determine whether certain groups of predictors should be included in the model.
We divide the predictors into two groups. One group, the base group, will be included
in our model. The other group, the suspected group, may or may not be included
within the model—we are not yet sure. We call the regression model containing all
predictors in both groups, base and suspected, the full (FULL) model. The regression
model containing only the base predictors is called the reduced (RED) model.

The partial F test has a test statistic

F =
RSSRED−RSSFULL

dfRED−dfFULL

RSSFULL

dfFULL

Under the null hypothesis that the RED model is true (all the predictor coefficients
for the suspected group are zero), F has an F (dfRED − dfFULL,dfFULL) distribution.
Acceptance of the null hypothesis leads us to use the RED model as our regression model.
Rejection of the null hypothesis indicates that we should not ignore the predictors in
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the suspected group (at least one of the predictor coefficients is not zero). We can then
reperform the test using subsets of the suspected group to determine which predictors to
include in the model. The partial F test may be easily performed in Stata via nestreg

(see [R] nestreg).

In this article, we are concerned with those cases in which there are a large number
of predictors. When the suspected predictor list grows large, it is not feasible to use the
partial F test method to determine the final regression model. A variety of algorithms
have been created to deal with this situation. These variable selection algorithms take
the specification of the FULL model and output an optimal RED model. The command
presented here, vselect, performs the stepwise selection algorithms forward selection
and backward elimination as well as the best subsets leaps-and-bounds algorithm.

The output of these algorithms and the partial F test is not very meaningful unless
FULL is a valid regression model. A regression model is valid if the assumptions for
performing its significance tests are met. They can be accessed using residual plots,
scale-location plots, etc. Details can be found in Sheather (2009).

We must also note that inference on the models produced by these algorithms is
not equivalent to the inference on the same models that the users find independently
without consulting the algorithms. Each step of a variable selection algorithm will fit
one or more models and then make an inference on the next step using information from
these models. So in addition to inferences made using the final model, many preliminary
inferences are made during variable selection.

This will affect the significance levels of the final model. The situation is similar to
performing multiple comparisons on the factor means after an analysis of variance tells
you there is a significant effect. Each of these comparisons should be evaluated at a
different significance level than that of the original factor effect.

Cross-validation methods can be used to handle this multiple inference difficulty.
These methods generally perform variable selection on subsets of the data and then use
an average measure of the results on these subsets to find the final model. They may
also split the data into two parts, performing variable selection on one part (train) and
using the other (test) for evaluating the resulting model. Details of this method and
a general discussion of the multiple inference problem in variable selection are given in
Sheather (2009). The variable selection methods that we use here may be applied under
certain cross-validation techniques.

The definition of optimal is not uniformly agreed upon. The optimal model is one
that optimizes one or more information criteria. There are multiple information criteria
and multiple guidelines for the number and type of information criteria that should be
met.

(Continued on next page)



652 Variable selection

1.1 Information criteria

An information criterion is a function of a regression model’s explanatory power and
complexity. The model’s explanatory power (goodness of fit) increases the criterion in
the desirable direction, while the complexity of the model counterbalances the explana-
tory power and moves the criterion in the undesirable direction.

We have singled out five relevant criteria for evaluating linear regression models:
Mallows’s Cp, R2

ADJ (adjusted), Akaike’s information criterion (AIC), Akaike’s cor-
rected information criterion (AICc), and Bayesian information criterion (BIC). We use
the definitions of these criteria given in Sheather (2009) and Izenman (2008). Our
definitions for BIC and AIC correspond with those given in estat (see [R] estat).

The R2 adjusted information criterion is an improvement to the R2 measure of a
model’s explanatory power. We abbreviate the RSSRED notation to simply RSS. The
SST notation refers to the total sum of squares.

R2 = 1 − RSS

SST

A penalty for unnecessary predictors is introduced by a multiplication by (n−1)/(n−
k − 1) where n is the sample size and k is the number of predictors in the model.

R2
ADJ = 1 − n − 1

n − k − 1

RSS

SST

As R2
ADJ increases, the model becomes more desirable.

The next information criterion, AIC (Akaike 1974), works in the opposite way: as
the criterion decreases, the model becomes more desirable. The explanatory power of
the model is measured by the maximized log likelihood of the predictor coefficients
(assuming a normal model) and error variance. The complexity penalization comes
from an addition of the number of predictors.

AIC = 2
{
− log L

(
β̂0, β̂1, . . . , β̂p, σ̂

2 |Y
)

+ k + 2
}

After we formulate the regression model in terms of a normal distribution likelihood,
we obtain

AIC = n log
RSS

n
+ 2k + n + n log (2π)

Hurvich and Tsai (1989) developed a bias-corrected version of AIC, called AICc. AICc
is preferred when the sample size is small or the number of predictors is large relative
to sample size. Using our simplified version of AIC,

AICc = AIC +
2(k + 2)(k + 3)

n − (k + 2) − 1
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Let p = k + 1. As in the previous section, we use RSSFULL to refer to the RSS under
the model containing all predictors. Suppose we have m possible predictors, excluding
the intercept. In Izenman (2008), the information criterion Cp, or Mallows’s Cp, is
defined by

Cp = (n − m − 1)
RSS

RSSFULL
− (n − 2p)

According to the Cp criterion, good models have Cp ≈ p. The full model will always
satisfy this criterion. Further, as noted in Hocking (1976), models with small values
of Mallows’s Cp may be preferred, as well. The Mallows’s Cp criterion was originally
developed in Mallows (1973).

Our final information criterion, BIC, was proposed by Schwarz (1978). Raftery (1995)
provides another development and motivation for the criterion. BIC is similar to AIC,
but it adjusts the penalty term for complexity based on the sample size.

BIC = −2 log L
(
β̂0, β̂1, . . . , β̂p, σ̂

2 |Y
)

+ (k + 2) log n

This reduces to

BIC = n log
RSS

n
+ k log n + n + n log (2π)

There is controversy over what should be called the best information criterion. Ac-
cording to Sheather (2009), choosing a model based solely on R2

ADJ generally leads to
overfitting (having too many predictors). There is also debate over whether AIC or AICc
should be used in preference to BIC. A comparison of page 46 of Simonoff (2003) with
page 208 of Hastie, Tibshirani, and Friedman (2001) demonstrates this. Mallows’s Cp

suffers from similar controversies. Inference using Cp will be asymptotically equivalent
to AIC, but both will share different properties than BIC (Izenman 2008).

For each predictor size k, the best model under each of the information criterions
for that predictor size k is the model that minimizes RSS. All other terms are constant
for the same predictor size. So at each predictor size, we can find the best model of that
size by minimizing the RSS. This remarkable result can greatly simplify the variable
selection process.

Now that we have defined the relevant information criteria, we will present the
variable selection algorithms implemented in vselect that use the criteria. We begin
with stepwise selection algorithms.

1.2 Stepwise selection

We present two stepwise selection algorithms, forward selection and backward elimina-
tion. These algorithms work with only one information criterion, which may be any
of the ones defined previously except Mallows’s Cp. Technically, Mallows’s Cp could
be used in stepwise selection, but the decision on which predictors to keep or add to
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the model would be more difficult. All the other criteria measures have an intrinsic
ordering among their values. The smallest AIC is best, the larger R2

ADJ is preferable,
etc. Mallows’s Cp suggests a good model when it is close to the number of predictors
and the intercept of the model it measures, but as mentioned in Hocking (1976), small
values of Mallows’s Cp can yield good models as well. Our stepwise selection algorithms
make an automated decision on whether to keep a variable in the model or add a vari-
able to the model. Ideally, this would be based on a simple ranking of the possible
models based on an information criterion. If we use both suggestions for interpretation
of Mallows’s Cp, the algorithm cannot make the decision based on a simple ranking of
models. Given this, we will not use Mallows’s Cp in stepwise selection. It will still be
used in the leaps-and-bounds variable selection, however.

Forward selection is an iterative procedure. Our initial model is composed of only
the intercept term. At every iteration, we add to the model the predictor that will yield
the most optimal information criterion value when it is included in the model. If there
is no predictor that favorably changes the information criterion from its value in the
previous iteration, the algorithm terminates with the model from the previous iteration.

Backward elimination is also an iterative procedure. In this case, the initial model
is composed of all the predictors. At every iteration, we remove from the model the
predictor that will yield the largest improvement in the information criterion value
when it is removed from the model. If there is no predictor whose removal will favorably
change the information criterion value from that of the previous iteration, the algorithm
terminates with the model from the previous iteration.

Both stepwise selection algorithms examine at most m(m + 1)/2 of the 2m possible
models. When the predictors are highly correlated, the results of stepwise selection and
all subsets selection methods can differ dramatically. The algorithms are intuitive and
simple to understand. In many cases, they end up with the best model as well.

For a more dependable algorithm, we turn to the leaps-and-bounds algorithm of
Furnival and Wilson (1974).

1.3 Leaps and bounds

The leaps-and-bounds algorithm actually gives p different models. Each of the models
contains a different number of predictors and is the most optimal model among models
having the same number of predictors. The vselect command provides the five in-
formation criteria for each of the models produced by leaps and bounds. The optimal
model is the one model with these qualities: the smallest value of AIC, AICc, and BIC;
the largest value of R2

ADJ; and a value of Mallows’s Cp that is close to the number
of predictors in the models +1 or the smallest among the other Mallows’s Cp values.
These guidelines help avoid the controversy of which information criterion is the best.

Sometimes there is no single model that optimizes all the criteria. We will see
an example of this in the next section. There are no fixed guidelines for this situation.
Generally, we can narrow the choices down to a few models that are close in optimization.
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Then we make an arbitrary choice among them. All the models in our final group are
close together in fit, so we do not lose or gain much explanatory power by choosing one
over another.

As explained in Furnival and Wilson (1974), the leaps-and-bounds algorithm orga-
nizes all the possible models into tree structures and scans through them, skipping (or
leaping) over those that are definitely not optimal. The original description of the algo-
rithm is done with large amounts of Fortran code. Ni and Huo (2005) provide an easier
description of the original algorithm.

Each node in the tree corresponds to two sets of predictors. The predictor lists are
created based on an automatic ordering of all the predictors by their t test statistic
value in the original regression. When the algorithm examines a node, it compares the
regressions of each pair of predictor lists with the optimal regressions of each predictor
size that have already been conducted. Depending on the results, all or some of the
descendants of that node can be skipped by the algorithm. The initial ordering of the
predictors and their smart placement in sets within the nodes ensure that the algorithm
completes after finding the optimal predictor lists and examining only a fraction of all
possible regressions.

Space constraints do not allow us to provide a fuller description of the algorithm
than we already have. We can say that it gives us the best models for each predictor
quantity and that it does so by only examining a manageable fraction of all the possible
models.

1.4 Extensions: Nested models and weighting

Our discussion so far has focused on ordinary least-squares regression models, where
variable selection should be performed on all the model predictors. Lawless and Singhal
(1978) provides an extension of the leaps-and-bound algorithm to nonnormal models.
Rather than using the RSS to compare models, they use the log likelihood L (β). An
essential condition for our use of the RSS in variable selection is that for a set of predictors
A contained in predictor set B, RSS(B) ≤ RSS(A). In many situations, L (B) ≤ L (A),
but it is not always true.

Variable selection in weighted linear regressions and in linear regressions where we
perform selection on only certain of the predictors will fit into the Lawless and Singhal
(1978) theoretical framework and will satisfy the desired likelihood inequality. Weighted
linear regression is of tremendous practical use. The form of nested variable selection
in which some predictors are fixed is very appealing as well. Through organization or
legal policy, analysts may be forced to fix certain predictors as being in their model,
but they would still desire to optimize the model with the free predictors to which they
have access.

(Continued on next page)
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vselect implements variable selection for weighted linear regression and variable
selection where some predictors are fixed. Further implementation of the Lawless and
Singhal (1978) methods is under development.

The information criteria will change for weighted linear regression models. Earlier,
we simplified the log likelihood of the model in terms of the RSS. Now we will deal with
the weighted RSS. Simple derivation will show that our previously presented information
criteria formulas are accurate under weighted regression when we substitute weighted
RSS for RSS.

We have now explained all the theory behind vselect.

2 The vselect command

2.1 Syntax

The syntax for the vselect command is

vselect depvar indepvars
[
if
] [

in
] [

weight
] [

, fix(varlist) best backward

forward r2adj aic aicc bic
]

2.2 Options

fix(varlist) fixes these predictors in every regression.

best gives the best model for each quantity of predictors.

backward selects a model by backward elimination.

forward selects a model by forward selection.

r2adj uses R2 adjusted information criterion in stepwise selection.

aic uses AIC in stepwise selection.

aicc uses AICc in stepwise selection.

bic uses BIC in stepwise selection.

3 Examples

vselect is very straightforward in use. We will first use bridge.dta from Sheather
(2009) (also Tryfos [1998]). Then we will test vselect on two datasets highlighted in
Ni and Huo (2005): the diabetes data (Efron et al. 2004) and the famous housing data
(Frank and Asuncion 2010). Finally, we will work with a weighted regression from a
Stata example dataset that provides state-level information from the 1980 U.S. Census.
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3.1 Bridge example

bridge.dta can be analyzed using least-squares regression. As Sheather (2009) sug-
gests, we will work with logs of the original predictors.

. use bridge

. foreach var of varlist time-spans {
2. quietly replace `var´ = ln(`var´)
3. }

. regress time darea-spans

Source SS df MS Number of obs = 45
F( 5, 39) = 27.05

Model 13.3303983 5 2.66607966 Prob > F = 0.0000
Residual 3.84360283 39 .098553919 R-squared = 0.7762

Adj R-squared = 0.7475
Total 17.1740011 44 .390318208 Root MSE = .31393

time Coef. Std. Err. t P>|t| [95% Conf. Interval]

darea -.0456443 .1267496 -0.36 0.721 -.3020196 .2107309
ccost .1960863 .1444465 1.36 0.182 -.0960843 .488257
dwgs .8587948 .2236177 3.84 0.000 .4064852 1.311104

length -.0384353 .1548674 -0.25 0.805 -.3516842 .2748135
spans .23119 .1406819 1.64 0.108 -.0533659 .515746
_cons 2.2859 .6192558 3.69 0.001 1.033337 3.538463

. estat vif

Variable VIF 1/VIF

ccost 8.48 0.117876
length 8.01 0.124779
darea 7.16 0.139575
spans 3.88 0.257838
dwgs 3.41 0.293350

Mean VIF 6.19

Analysis of the residuals and other checks will reveal that the model is valid. As we
see, it does have serious multicollinearity problems. All but two of the variance inflation
factors exceed 5. Removing redundant predictors should solve this problem.

(Continued on next page)
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Forward selection

First, we will try to use forward selection based on AIC.

. vselect time-spans, forward aic
FORWARD variable selection
Information Criteria: AIC

Stage 0 reg time : AIC 86.35751

AIC 47.19052 : add darea
AIC 37.60067 : add ccost
AIC 32.80693 : add dwgs
AIC 49.00033 : add length
AIC 56.43028 : add spans

Stage 1 reg time dwgs : AIC 32.80693

AIC 30.30586 : add darea
AIC 26.61563 : add ccost
AIC 28.33827 : add length
AIC 25.33412 : add spans

Stage 2 reg time dwgs spans : AIC 25.33412

AIC 27.12765 : add darea
AIC 25.2924 : add ccost
AIC 27.14563 : add length

Stage 3 reg time dwgs spans ccost : AIC 25.2924

AIC 27.06413 : add darea
AIC 27.1425 : add length

Final Model

Source SS df MS Number of obs = 45
F( 3, 41) = 46.99

Model 13.3047499 3 4.43491664 Prob > F = 0.0000
Residual 3.86925122 41 .094371981 R-squared = 0.7747

Adj R-squared = 0.7582
Total 17.1740011 44 .390318208 Root MSE = .3072

time Coef. Std. Err. t P>|t| [95% Conf. Interval]

dwgs .8355863 .2135074 3.91 0.000 .4043994 1.266773
spans .1962899 .1107299 1.77 0.084 -.0273336 .4199134
ccost .148275 .1074829 1.38 0.175 -.0687911 .365341
_cons 2.331693 .3576636 6.52 0.000 1.609377 3.05401

We begin with no predictors, with an AIC of 86.35751 for the intercept in stage 0.
Addition of dwgs will change the AIC of the model to 32.80693, a more optimal value
than the other possibilities of single-predictor addition and the null model. So we add
dwgs to the model and move to the next stage. When we add spans to the model that
predicts time with dwgs, we get an AIC of 25.33412.
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So we enter stage 2 with the model predicting time by dwgs and spans. This model
yields an AIC of 25.33412. If we add darea to this model, we obtain an AIC of 27.12765.
Addition of length would cause the AIC to rise to 27.14563. Adding either of these
would not improve the fit of the model. The addition of the other remaining potential
predictor, ccost, yields an AIC of 25.2924. This is a very slight gain in terms of AIC,
but it is a gain.

In stage 3, we have added ccost to the model, so the AIC is now 25.2924. We now
predict spans based on dwgs, spans, ccost, and the intercept. Addition of darea to
this model raises the AIC to 27.06413. Addition of length to this model raises the AIC

to 27.1425. Adding any more predictors causes an increase in AIC, so we terminate the
forward selection algorithm with the final model predicting spans with dwgs, spans,
and ccost.

Now we will compare this result with forward selection using BIC as an information
criterion.

. vselect time-spans, forward bic
FORWARD variable selection
Information Criteria: BIC

Stage 0 reg time : BIC 88.16417

BIC 50.80385 : add darea
BIC 41.21399 : add ccost
BIC 36.42026 : add dwgs
BIC 52.61365 : add length
BIC 60.04361 : add spans

Stage 1 reg time dwgs : BIC 36.42026

BIC 35.72585 : add darea
BIC 32.03562 : add ccost
BIC 33.75826 : add length
BIC 30.75411 : add spans

Stage 2 reg time dwgs spans : BIC 30.75411

BIC 34.3543 : add darea
BIC 32.51905 : add ccost
BIC 34.37228 : add length

Final Model

Source SS df MS Number of obs = 45
F( 2, 42) = 68.08

Model 13.1251524 2 6.56257622 Prob > F = 0.0000
Residual 4.0488487 42 .096401159 R-squared = 0.7642

Adj R-squared = 0.7530
Total 17.1740011 44 .390318208 Root MSE = .31049

time Coef. Std. Err. t P>|t| [95% Conf. Interval]

dwgs 1.041632 .1541992 6.76 0.000 .7304454 1.352819
spans .2853049 .0909484 3.14 0.003 .1017636 .4688462
_cons 2.661732 .2687132 9.91 0.000 2.119447 3.204017



660 Variable selection

This method suggests the two-predictor model that predicts spans with dwgs and
spans.

Backward elimination

Backward elimination based on AIC yields the same model as forward selection. It takes
one fewer iteration.

. vselect time-spans, backward aic
BACKWARD variable selection
Information Criteria: AIC

Stage 0 reg time darea ccost dwgs length spans : AIC 28.99311

AIC 27.1425 : remove darea
AIC 29.07072 : remove ccost
AIC 41.42757 : remove dwgs
AIC 27.06413 : remove length
AIC 30.00605 : remove spans

Stage 1 reg time darea ccost dwgs spans : AIC 27.06413

AIC 25.2924 : remove darea
AIC 27.12765 : remove ccost
AIC 39.44412 : remove dwgs
AIC 28.60344 : remove spans

Stage 2 reg time ccost dwgs spans : AIC 25.2924

AIC 25.33412 : remove ccost
AIC 37.57602 : remove dwgs
AIC 26.61563 : remove spans

Final Model

Source SS df MS Number of obs = 45
F( 3, 41) = 46.99

Model 13.3047499 3 4.43491664 Prob > F = 0.0000
Residual 3.86925122 41 .094371981 R-squared = 0.7747

Adj R-squared = 0.7582
Total 17.1740011 44 .390318208 Root MSE = .3072

time Coef. Std. Err. t P>|t| [95% Conf. Interval]

ccost .148275 .1074829 1.38 0.175 -.0687911 .365341
dwgs .8355863 .2135074 3.91 0.000 .4043994 1.266773
spans .1962899 .1107299 1.77 0.084 -.0273336 .4199134
_cons 2.331693 .3576636 6.52 0.000 1.609377 3.05401

In the initial stage, we have the full model with all predictors and an AIC of 28.99311.
Removal of length will yield the most optimal AIC.

At stage 1, we have removed length and our model now has an AIC of 27.06413. If
we remove darea, we will have reached the final model for forward selection under AIC.
Removal of the other predictors will yield less optimal models. At stage 2, removal of
any of the predictors will yield worse models in terms of AIC.
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Best subsets

The leaps-and-bounds algorithm finds the same forward selection and backward elim-
ination models that we previously discussed. To reach the result, the algorithm needs
to perform only 5 out of all 32 possible regressions.

. vselect time-spans, best
Response : time
Fixed Predictors :
Selected Predictors: dwgs spans ccost darea length

Actual Regressions 5
Possible Regressions 32

Optimal Models Highlighted:

# Preds R2ADJ C AIC AICC BIC
1 .70224 9.708371 32.80693 161.0968 36.42026
2 .7530191 2.082574 25.33412 154.0386 30.75411
3 .7582178 2.260247 25.2924 154.5353 32.51905
4 .7534273 4.061594 27.06413 156.9791 36.09744
5 .7475037 6 28.99311 159.7246 39.83309

Selected Predictors

1 : dwgs
2 : dwgs spans
3 : dwgs spans ccost
4 : dwgs spans ccost darea
5 : dwgs spans ccost darea length

The optimal R2
ADJ value, 0.7582178, is obtained by the three-variable model with

predictors dwgs, spans, and ccost. This is the same model obtained by forward selec-
tion and backward elimination under AIC. This model also optimizes AIC, with an AIC

of 25.2924.

The most optimal model under BIC and AICc is the predictor model using dwgs

and spans. This is the same model found by forward selection under BIC. We find
that Mallows’s Cp suggests the five-predictor model when we choose the best model as
having a Cp value close to the predictor size +1. Otherwise, when picking the smallest
Mallows’s Cp model, we would choose the two-predictor model that BIC and AICc chose.

This is one of the occasions when there is no completely clear, best final model.
We can narrow our decision down to the two mentioned models. We might investigate
whether AICc is more appropriate than AIC in this situation. Recall that picking the
model with the highest R2

ADJ generally leads to overfitting (Sheather 2009). Regardless,
there is little difference between the values of AIC and R2

ADJ for the two- and three-
predictor models. We will arbitrarily pick the two-predictor model that estimates time
by dwgs and spans as our final model. This selection yields no high variance inflation
factors.

(Continued on next page)
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. estat vif

Variable VIF 1/VIF

dwgs 1.66 0.603451
spans 1.66 0.603451

Mean VIF 1.66

3.2 Diabetes and housing data

For brevity, we will omit stepwise model selection and focus solely on a best subsets
selection method in each of the following datasets. We will document that our imple-
mentation of the leaps-and-bounds algorithm obtains the same models as Ni and Huo
(2005). We will also demonstrate how few models (relative to all possible models) the
leaps-and-bounds algorithm needs to fit before finding the optimal models.

diabetes.dta (Efron et al. 2004) contains information on 442 diabetes patients.
They are measured on 10 baseline predictor variables and one measure of disease pro-
gression. The predictors include age, sex, body mass index (bmi), blood pressure (bp),
and six serum measurements (s1–s6). The progression variable, prog, is our models’
response and was recorded a year after the 10 baseline predictors.

Evaluation of the residual plots and other diagnostics does show that the full model
is valid. As we see in the variance inflation factors, though, there are serious multi-
collinearity problems.

. use diabetes, clear

. regress prog age-s6

Source SS df MS Number of obs = 442
F( 10, 431) = 46.27

Model 1357023.32 10 135702.332 Prob > F = 0.0000
Residual 1263985.8 431 2932.68168 R-squared = 0.5177

Adj R-squared = 0.5066
Total 2621009.12 441 5943.33135 Root MSE = 54.154

prog Coef. Std. Err. t P>|t| [95% Conf. Interval]

age -.0363613 .2170414 -0.17 0.867 -.4629526 .3902301
sex -22.85965 5.835821 -3.92 0.000 -34.32986 -11.38944
bmi 5.602962 .7171055 7.81 0.000 4.193503 7.012421
bp 1.116808 .2252382 4.96 0.000 .6741061 1.55951
s1 -1.089996 .5733318 -1.90 0.058 -2.21687 .0368782
s2 .7464501 .5308344 1.41 0.160 -.296896 1.789796
s3 .3720042 .7824638 0.48 0.635 -1.165915 1.909924
s4 6.533831 5.958638 1.10 0.273 -5.177772 18.24543
s5 68.48312 15.66972 4.37 0.000 37.68454 99.28169
s6 .2801171 .273314 1.02 0.306 -.257077 .8173111

_cons -334.5671 67.45462 -4.96 0.000 -467.148 -201.9862
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. estat vif

Variable VIF 1/VIF

s1 59.20 0.016891
s2 39.19 0.025515
s3 15.40 0.064926
s5 10.08 0.099246
s4 8.89 0.112473
bmi 1.51 0.662499
s6 1.48 0.673572
bp 1.46 0.685200
sex 1.28 0.782429
age 1.22 0.821486

Mean VIF 13.97

When we invoke vselect on the data, we find that we only needed to run 29 of
a possible 1,024 regressions. Our model choices match those of Ni and Huo (2005).
The choices of best model predictor sizes were five for BIC, six for AIC and AICc, and
eight for R2

ADJ. Mallows’s Cp chooses the 11-predictor model when we choose the best
model as having a Cp value close to the predictor size +1. If we go with the smallest
Mallows’s Cp value, then we choose the six-predictor model. The six-predictor model
seems like a prudent choice, given all of this and the closeness of the optimal BIC and
R2

ADJ values to their values under six predictors.

. vselect prog age-s6, best
Response : prog
Fixed Predictors :
Selected Predictors: bmi bp s5 sex s1 s2 s4 s6 s3 age

Actual Regressions 29
Possible Regressions 1024

Optimal Models Highlighted:

# Preds R2ADJ C AIC AICC BIC
1 .3424327 148.3513 4912.038 6166.435 4920.221
2 .4570228 47.07119 4828.398 6082.832 4840.672
3 .4765213 30.66302 4813.226 6067.705 4829.591
4 .487366 21.99793 4804.963 6059.498 4825.419
5 .5029966 9.147958 4792.264 6046.863 4816.811
6 .5081925 5.560187 4788.603 6043.278 4817.243
7 .5084884 6.303253 4789.32 6044.079 4822.051
8 .5085553 7.248507 4790.241 6045.093 4827.062
9 .5076694 9.028067 4792.015 6046.97 4832.928

10 .5065593 11 4793.986 6049.055 4838.99

Selected Predictors

1 : bmi
2 : bmi s5
3 : bmi bp s5
4 : bmi bp s5 s1
5 : bmi bp s5 sex s3
6 : bmi bp s5 sex s1 s2
7 : bmi bp s5 sex s1 s2 s4
8 : bmi bp s5 sex s1 s2 s4 s6
9 : bmi bp s5 sex s1 s2 s4 s6 s3
10 : bmi bp s5 sex s1 s2 s4 s6 s3 age
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Using the six-predictor model, we still find some high variance inflation factors be-
tween the first and second serum variables. They are far lower in magnitude than they
are under the full model:

. estat vif

Variable VIF 1/VIF

s1 8.81 0.113561
s2 7.37 0.135750
s5 2.20 0.454745
bmi 1.47 0.678813
bp 1.34 0.743677
sex 1.23 0.815832

Mean VIF 3.74

If we are concerned about this multicollinearity, we can try the five-predictor model
that BIC chose:

. estat vif

Variable VIF 1/VIF

s5 1.46 0.684663
s3 1.46 0.685455
bmi 1.44 0.692867
bp 1.35 0.742260
sex 1.24 0.807833

Mean VIF 1.39

housing.dta contains real estate data for 506 Boston residences. You can obtain
the dataset at http://archive.ics.uci.edu/ml/datasets/Housing. Many authors have an-
alyzed this dataset (Frank and Asuncion 2010), and we will compare our analysis results
with Ni and Huo (2005). Thirteen predictors are used to predict the median value of the
home. Using vselect on the data, we obtain the same models as Ni and Huo (2005).
We performed 71 regressions to obtain the optimal models, which is a small fraction of
the total possible number of models that could be fit.
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. use housing

. vselect y v1-v13, best
Response : y
Fixed Predictors :
Selected Predictors: v13 v6 v8 v11 v5 v9 v12 v2 v1 v10 v4 v3 v7

Actual Regressions 71
Possible Regressions 8192

Optimal Models Highlighted:

# Preds R2ADJ C AIC AICC BIC
1 .5432418 362.7529 3286.975 4722.989 3295.428
2 .6371245 185.6474 3171.542 4607.588 3184.222
3 .6767036 111.6489 3114.097 4550.183 3131.003
4 .6878351 91.48526 3097.359 4533.493 3118.492
5 .7051702 59.75364 3069.439 4505.629 3094.798
6 .7123567 47.17537 3057.939 4494.195 3087.525
7 .718256 37.05889 3048.438 4484.767 3082.251
8 .7222072 30.62398 3042.275 4478.685 3080.314
9 .7252743 25.86591 3037.638 4474.138 3079.903

10 .7299149 18.20493 3029.997 4466.595 3076.488
11 .7348058 10.11455 3021.726 4458.432 3072.445
12 .7343282 12.00275 3023.611 4460.433 3078.556
13 .7337897 14 3025.609 4462.554 3084.78

Selected Predictors

1 : v13
2 : v13 v6
3 : v13 v6 v11
4 : v13 v6 v8 v11
5 : v13 v6 v8 v11 v5
6 : v13 v6 v8 v11 v5 v4
7 : v13 v6 v8 v11 v5 v12 v4
8 : v13 v6 v8 v11 v5 v12 v2 v4
9 : v13 v6 v8 v11 v5 v9 v12 v1 v4
10 : v13 v6 v8 v11 v5 v9 v12 v2 v1 v10
11 : v13 v6 v8 v11 v5 v9 v12 v2 v1 v10 v4
12 : v13 v6 v8 v11 v5 v9 v12 v2 v1 v10 v4 v3
13 : v13 v6 v8 v11 v5 v9 v12 v2 v1 v10 v4 v3 v7

3.3 Census 1980 Stata dataset

Now we will show how to use the weighting and fixed options for vselect by using
census13.dta, which can be obtained by typing webuse census13 in Stata or from
http://www.stata-press.com/data/r11/census13.dta. This dataset contains one obser-
vation per state and records various summary demographic information for the state’s
population. We wish to predict birthrate brate with the median age, medage; squared
median age, medage2; divorce rate, dvcrate; marriage rate, mrgrate; and geographic
region of the state. We standardize median age to prevent obvious multicollinearity
between its linear and quadratic term, yielding the transformed variables tmedage and
tmedage2. The 1980 population of the state, pop, is used as an analytic weight.

(Continued on next page)
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. webuse census13
(1980 Census data by state)

. describe region

storage display value
variable name type format label variable label

region int %-8.0g cenreg Census region

. label list cenreg
cenreg:

1 NE
2 N Cntrl
3 South
4 West

. generate ne = region == 1

. generate n = region == 2

. generate s = region == 3

. generate w = region == 4

. summarize medage

Variable Obs Mean Std. Dev. Min Max

medage 50 29.54 1.693445 24.2 34.7

. generate tmedage = (medage-r(mean))/r(sd)

. generate tmedage2 = tmedage^2

Invoking vselect on the data, we find that AIC and AICc both select the five-
predictor model. BIC differs in that it chooses to exclude the North Central region of
the U.S. as a predictor and so chooses a four-predictor model. R2

ADJ chose to include the
marriage rate as a predictor, yielding a six-predictor model. Mallows’s Cp advocates
the seven-predictor model when we choose a model with Cp close to the number of
predictors +1. Otherwise, when choosing the smallest Cp value, we will choose the five-
predictor model. The level of difference for each criterion from the AIC-chosen predictor
size to its own chosen size is minimal. So we choose the five-predictor model. Further
investigation will show that this is a valid model. Its variance inflation factors are not
problematic, either.
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. vselect brate tmedage tmedage2 mrgrate dvcrate n s w [aweight=pop], best
Response : brate
Fixed Predictors :
Selected Predictors: tmedage tmedage2 n w dvcrate mrgrate s

Actual Regressions 11
Possible Regressions 128

Optimal Models Highlighted:

# Preds R2ADJ C AIC AICC BIC
1 .6731149 65.51087 397.97 540.3855 401.794
2 .7937451 24.89423 375.8925 518.6752 381.6285
3 .8412783 9.88896 363.7191 506.9766 371.3672
4 .8557213 6.141906 359.8499 503.6973 369.41
5 .8623259 5.051247 358.3834 502.9439 369.8555
6 .8625235 6.012409 359.1621 504.5681 372.5463
7 .8592919 8 361.1473 507.5412 376.4435

Selected Predictors

1 : tmedage
2 : tmedage tmedage2
3 : tmedage tmedage2 w
4 : tmedage tmedage2 w dvcrate
5 : tmedage tmedage2 n w dvcrate
6 : tmedage tmedage2 n w dvcrate mrgrate
7 : tmedage tmedage2 n w dvcrate mrgrate s

Now suppose that we were forced to include marriage rate as a predictor. We remove
it from the predictor list and put it in the fix() option.

. vselect brate tmedage tmedage2 dvcrate n s w [aweight=pop], best fix(mrgrate)
Response : brate
Fixed Predictors : mrgrate
Selected Predictors: tmedage tmedage2 n w dvcrate s

Actual Regressions 10
Possible Regressions 64

Optimal Models Highlighted:

# Preds R2ADJ C AIC AICC BIC
1 .670209 66.15834 399.3598 542.1425 405.0959
2 .7915307 26.15233 377.3511 520.6086 384.9992
3 .8385064 11.64741 365.4859 509.3332 375.046
4 .8565161 6.867985 360.4501 505.0106 371.9222
5 .8625235 6.012409 359.1621 504.5681 372.5463
6 .8592919 8 361.1473 507.5412 376.4435

Selected Predictors

1 : tmedage
2 : tmedage tmedage2
3 : tmedage tmedage2 w
4 : tmedage tmedage2 w dvcrate
5 : tmedage tmedage2 n w dvcrate
6 : tmedage tmedage2 n w dvcrate s

Here the optimal model on R2
ADJ and AIC and AICc is the five-predictor model.

This is actually a six-predictor model because we have already fixed mrgrate as being
in the model.
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. regress brate mrgrate tmedage tmedage2 n w dvcrate [aweight=pop]
(sum of wgt is 2.2591e+08)

Source SS df MS Number of obs = 50
F( 6, 43) = 52.24

Model 21242.2364 6 3540.37274 Prob > F = 0.0000
Residual 2914.3087 43 67.774621 R-squared = 0.8794

Adj R-squared = 0.8625
Total 24156.5451 49 492.990717 Root MSE = 8.2325

brate Coef. Std. Err. t P>|t| [95% Conf. Interval]

mrgrate -134.7134 130.6446 -1.03 0.308 -398.1833 128.7566
tmedage -21.11739 1.569742 -13.45 0.000 -24.28307 -17.9517

tmedage2 4.217915 .7312436 5.77 0.000 2.743222 5.692609
n 5.03472 2.944985 1.71 0.095 -.9044078 10.97385
w 11.92932 3.405185 3.50 0.001 5.062111 18.79653

dvcrate 1886.619 735.5317 2.56 0.014 403.2778 3369.96
_cons 146.665 4.676581 31.36 0.000 137.2338 156.0962

4 Conclusion

We explored both the theory and practice of variable selection in linear regression.
Using real datasets, we have demonstrated the use of each flavor of variable selection:
forward selection, backward elimination, and best subset selection. Variable selection
on weighted linear regression and fixed predictor models was also demonstrated.

The vselect command was fully defined as a method for performing linear regression
variable selection in Stata. Its use on each of the three algorithms and contexts of
variable selection was demonstrated using a variety of datasets.
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