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Abstract. Spatial dependence exists whenever the expected utility of one unit of
analysis is affected by the decisions or behavior made by other units of analysis.
Spatial dependence is ubiquitous in social relations and interactions. Yet, there
are surprisingly few social science studies accounting for spatial dependence. This
holds true for settings in which researchers use monadic data, where the unit of
analysis is the individual unit, agent, or actor, and even more true for dyadic data
settings, where the unit of analysis is the pair or dyad representing an interaction
or a relation between two individual units, agents, or actors. Dyadic data offer
more complex ways of modeling spatial-effect variables than do monadic data. The
commands described in this article facilitate spatial analysis by providing an easy
tool for generating, with one command line, spatial-effect variables for monadic
contagion as well as for all possible forms of contagion in dyadic data.

Keywords: st0210, spspc, spundir, spmon, spdir, spagg, spatial dependence, spatial
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1 Introduction

Do you avoid taking the car during rush hours? If so, you understand the concept of
spatial dependence, which in this case means that your choice of a means of transport
or the choice of your time of travel is partly a function of other individuals’ choices.

c© 2010 StataCorp LP st0210



586 Making spatial analysis operational

More generally, spatial dependence exists whenever the expected utility of one unit of
analysis is influenced by the choices of other units of analysis.

Spatial dependence is also of interest to biologists and other natural scientists, but
it is for social scientists that its study and analysis is of greatest importance. To state
that the social sciences are characterized by interdependence between the various units
of analysis and thus by spatial dependence is almost a tautology. Social science is
the study of social relations and interactions, so situations in which units are entirely
unaffected by what other units do are likely to be rare.

Yet given the nature of its field of study, only a surprisingly small minority of social
science research either actively seeks to analyze spatial dependence or at least to control
for its effect. Part of the reason is, of course, that spatial econometrics is still a fairly
young subdiscipline (properly starting only with Anselin’s [1988] monograph from some
twenty years ago) and that it takes time for new methods and advice on specification
issues to penetrate mainstream social science research. Another reason is that many
applied researchers may find it difficult, particularly for dyadic data, to create the
spatial-effect variables required for modeling spatial dependence. It is here that the
commands described in this article facilitate spatial analysis by providing an easy tool
for the generation of spatial-effect variables in both monadic and dyadic data.

We start in section 2 by briefly discussing the importance of spatial dependence
for the social sciences and contrasting this with the relatively minor role that relevant
studies play in published research. In section 3, we provide an overview of the three
types of spatial dependence and the appropriate models for analyzing them—namely,
spatial lag (spatial autoregressive) models, spatial-x models, and spatial-error models.
Whatever the model, spatial-effect variables need to be created.

The modeling options open to researchers in specifying spatial-effect variables differ
greatly between monadic and dyadic data. Spatial effects in monadic data (that is, where
the unit of analysis is a single unit, actor, or agent) are discussed in section 4. In monadic
data, spatial dependence always emanates from other units. A more detailed discussion
is given in section 5 for the more complex specification of spatial-effect variables in dyadic
data (that is, where the unit of analysis is a dyad or pair representing an interaction or
a relation between two units, actors, or agents). Here spatial dependence can emanate
from all other dyads, but also from merely one part of other dyads and from either
their aggregate behavior relating to all dyads or their specific behavior relating to only
the dyad under observation. There are thus many more modeling options available in
dyadic data.

In section 6, we describe a technique for generating spatial-effect variables for dyadic
data. It allows researchers to work from a standard dyadic dataset, obliterating the need
to construct a 4-adic dataset that would connect dyads with dyads. Section 7 provides
detailed information on the Stata commands that generate the various spatial-effect
variables in monadic and dyadic data.
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2 Spatial dependence in the social sciences

Spatial dependence is a common, albeit often neglected part of social interaction. From
a theoretical perspective, spatial dependence can result from coercion, competition,
externalities, learning, or emulation (Simmons and Elkins 2004; Elkins and Simmons
2005; Franzese and Hays 2010). Units of analysis—call them agents—change their
behavior because others pressurize them (Levi-Faur 2005), because they need to find
a competitive advantage (Basinger and Hallerberg 2004), because the strategies car-
ried out by other agents affect the payoffs they generate from their own behavior
(Genschel and Plümper 1997; Simmons and Elkins 2004; Franzese and Hays 2006;
Plümper and Troeger 2008), because agents learn that other strategies proved to be
more successful (Mooney 2001; Meseguer 2005), or because they want to mimic the be-
havior of others (Weyland 2005). As a consequence, all social science studies in which
agents’ strategies are partly dependent on the strategies chosen by other agents need to
account for spatial dependence.

Existing analyses of spatial dependence are usually motivated by studying one or
more of the mechanisms mentioned above that cause dependence among agents. It is
important to note, however, that spatial dependence is also likely to exist when re-
searchers do not have a direct theoretical interest in analyzing it. Not controlling for
existing spatial effects causes omitted variable bias just as it is caused by the exclusion
of any other variable that is correlated with at least one regressor and the dependent
variable (Franzese and Hays 2010). Empirical analyses in the social sciences should
therefore control for spatial dependence almost as frequently as social scientists nowa-
days control for temporal dependence—that is, for the impact that the prior behavior
of a unit of analysis has on its present behavior.

Surprisingly, however, the number of articles referenced in the Social Sciences Cita-
tion Index with either the term “spatial analysis” or “spatial dependence” in the title
is very small, albeit slightly increasing over time; see figure 1.

(Continued on next page)
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Figure 1. The number of articles in Social Sciences Citation Index journals with “spatial
analysis” (light gray) or “spatial dependence” (dark gray) in the title in the years 1990–
2009

Naturally, there will be many studies that study spatial dependence but do not in-
clude either “spatial analysis” or “spatial dependence” in the title. On the other hand,
there will be some studies containing either term in the title without actually analyzing
or modeling spatial dependence as further defined below. For example, there will be
some studies dealing merely with the detection of spatial association and correlation
in the data with the help of Moran’s I statistic or similar. Such measurement error
notwithstanding, the general picture certainly holds true: As yet, spatial analyses are
still confined to a small minority of studies. In addition, these spatial analyses are
concentrated in only a handful of areas of the social sciences: demography,1 health sci-
ence2 (especially epidemiology3), and geographic information system–based research4

in geography. We also find a few articles in political science5, political economy,6 eco-
nomics,7 and geography.8 Spatial analyses may have become more common over the
last years, but given the underlying logic of social science, it seems fair to say that they
are not yet common enough. The commands presented here facilitate the generation
of spatial-effect variables, thus rendering it easier for researchers to study or at least
control for spatial dependence.

1. See, for example, Schmertmann, Potter, and Cavenaghi 2008; Chi and Zhu 2008; and Crews and
Peralvo 2008.

2. For example, Crighton et al. 2007, and Kandala and Ghilagaber 2006.
3. For example, Atanaka-Santos, Souza-Santos, and Czeresnia 2007.
4. For example, Alix-Garcia 2007, and Gray and Shadbegian 2007.
5. For example, Neumayer and Plümper 2010a.
6. For example, Plümper, Troeger, and Winner 2009; Hays 2009; and Garrett, Wagner, and Wheelock

2005.
7. For example, Kosfeld and Dreger 2006, and Rice, Venables, and Patacchini 2006.
8. For example, Perkins and Neumayer 2010, and Perkins and Neumayer forthcoming.
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3 Types of spatial dependence

One can distinguish three types of spatial dependence that call for three types of spatial
models. In the first type of spatial dependence, the dependent variable in other units
of analysis exerts an influence on the dependent variable in the unit under observation.
For example, active labor-market policies in other countries (negatively) influence active
labor-market policies in the country under observation because such policies generate
positive externalities not captured by the country implementing the policy (Franzese and
Hays 2006). The estimation model required to deal with this effect is commonly called
a spatial lag model (Franzese and Hays 2007) or a spatial autoregressive model (Anselin
1988). In such models, the spatial-effect variable consists of the weighted values of the
dependent variable in other units—that is, on the spatially lagged dependent variable.
In scalar notation, the spatial lag model or spatial autoregressive model is formally
specified in its simplest form and for monadic data as follows:

yit = α + ρ
∑

k

wiktykt + βXit + ǫit (1)

where i, k = 1, 2, . . . , N denotes the (monadic) unit of observation; t = 1, 2, . . . , T
is time; Xit is a set of explanatory variables that may include the temporally lagged
dependent variable, unit fixed effects, and period-specific time dummies; and ǫit is an
independent and identically distributed error term. The spatial autoregression param-
eter ρ gives the impact of the spatial-effect variable, the spatial lag

∑
k

wiktykt, on the

dependent variable yit. The spatial lag itself is the product of two elements. The first
element, an N × N × T block-diagonal spatial weighting matrix, measures the relative
connectivity between N number of units i and N number of units k in T number of
time periods in the off-diagonal cells of the matrix.9 The second element is an N × T
matrix of the value of the dependent variable.10

In the second, rarely analyzed type of spatial dependence, some independent variable
of other units affects the dependent variable in the unit under observation. For example,
support of terrorist groups by other countries can affect the foreign policy (for example,
military spending, alliance formation, and so on) of the country under observation.
We call the estimation model required to analyze this type of dependence a spatial-x
model. In such models, the spatial-effect variable consists of the (weighted) values of
one or more independent explanatory variables in all other units:

yit = α + ρ
∑

k

wiktxkt + βXit + ǫit

Finally, there is a third type of spatial dependence, in which the error processes
are systematically correlated across units of observation. To some extent, this type of
dependence will simply be the consequence of failing to adequately model one or both

9. The diagonal of the matrix has values of zero because i = k and units cannot spatially depend on
themselves.

10. The spatial lag could also be temporally lagged.
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of the other types of dependence: If, say, the dependent variable of other units affects
the dependent variable of the unit under observation and this fact is not accounted for,
then the error processes will be systematically correlated across units of observation. In
fact, researchers will sometimes relegate spatial dependence to the error term for the
sake of convenience, despite knowing that the correlated errors are the result of failing
to model spatial dependence in the dependent or independent variables. However, there
are also factors that can genuinely lead to this third type of spatial dependence. For
example, Galton (1889) famously argued that common behavioral patterns across tribes
and societies may well be the result of common descent, not of emulation or learning,
which would suggest that the spatial correlation in the residuals is best modeled via a
spatial-error model.

Spatial-error models account for spatial dependence in the error term, which con-
sists of at least two parts: one is an independent and identically distributed spatially
uncorrelated component ǫit, and the other is a spatial component ρ

∑
k

wiktukt. The

model to be fit is thus

yit = α + βXit + ǫit + ρ
∑

k

wiktukt

Not controlling for correlated errors violates the Gauss–Markov assumptions and
thus leads to spatial heteroskedasticity. As a consequence, estimates are inconsistent.

The models of spatial dependence can also be combined. Combining the spatial lag
model or spatial autoregressive model with the spatial-x model leads to what Anselin
(1988, 111) and LeSage and Pace (2009, 32) call a spatial Durbin model. Combining
the spatial lag model or spatial autoregressive model with the spatial-error model leads
to what Anselin (1988, 36) calls a mixed-regressive spatial autoregressive model with a
spatial autoregressive disturbance.

When fitting spatial lag models or spatial autoregressive models, researchers have
to deal with an obvious endogeneity problem: When units k affect unit i, the odds
are that unit i also affects units k; thus yk → yi → yk → · · · , where the arrows
represent an influence.11 In spatial-x models, endogeneity may also occur if there is
feedback from the dependent variable on the spatially lagged independent variable. In
this case, xj → yi → xi → yj → xj → · · · . Franzese and Hays (2007) show that fitting
such models with simple ordinary least squares, what they call spatial-ordinary least
squares, does not suffer much from simultaneity bias if the strength of interdependence,
ρ, remains modest. In all other cases, researchers need to appropriately account for the
endogeneity in the variance–covariance matrix. They can do so by either instrumenting
the endogenous spatial-effect variable, which Kelejian and Prucha (1998) and Franzese
and Hays (2007) call spatial two-stage least squares (2SLS), or by using spatial maximum-
likelihood (spatial ML) models. Maximum likelihood models and appropriate software

11. Endogeneity will be absent only if units exclusively depend on other units on which they do not
exert an effect in turn, but this constellation is likely to represent the exception rather than the
rule. Endogeneity is thus likely to be present in the vast majority of spatial lag models.



E. Neumayer and T. Plümper 591

exist now for an increasing number of estimators (see, for example, Ward and Gleditsch
[2008, appendix A] and LeSage and Pace [2009]).

4 Spatial-effect variables in monadic data

In all three variants of spatial analyses, researchers need to create a spatial-effect vari-
able that consists of the weighted values of the dependent, independent, or error-term
variable of other units of observation. Before we come to describe the commands that
generate such variables, we first need to explain the multiple forms of modeling this
spatial-effect variable. From now on, we will focus on spatial lag models or spatial
autoregressive models, because these are very popular in applied research. Everything
we say carries over to spatial-x models and spatial-error models, as well. We start with
monadic data, discussing the more complex case of spatial effects in dyadic data in more
detail in the next section.

In monadic data, spatial dependence always emanates from all other units, weighted
by the connectivity variable. The spatial weighting matrix represents the degree to
which unit i is connected to units k, if at all. It can be a dichotomous variable such as
geographical contiguity between two units, or it can measure a nonspatial relationship
such as trade or investment links (Beck, Gleditsch, and Beardsley 2006). Theory should
decide which is the appropriate variable and how exactly it is defined and operational-
ized. For example, contiguity can be defined in different ways, and trade flows can enter
in levels, in logged form, or in other functional forms.

The variable used for the weighting matrix can be undirected as in the case of con-
tiguity or directed as in the case of, say, exports. With directed connectivity variables,
researchers must choose whether the weighting matrix measures connectivity from unit
i to units k as in (1) above or measures connectivity from units k to unit i as in the
following specification:

yit = α + ρ
∑

k

wkitykt + βXit + ǫit (2)

For, say, exports as the connectivity variable, the weighting matrix in (1) measures
exports from i to k, whereas in (2) it measures exports from k to i. Which weighting
matrix is appropriate will depend on the specific research context and must also be
justified on theoretical grounds.

The weighting matrix is often row-standardized, which means that each cell of
the matrix is divided by the row-sum of cells. For example, if the nonstandardized
weighting matrix consists of absolute foreign direct investment flows, then the row-
standardized weighting matrix consists of shares of foreign direct investment flows.
Plümper and Neumayer (2010) argue that researchers must always consider whether
row-standardization of the weighting matrix is appropriate for their research design be-
cause it changes the substantive meaning of the connectivity variable. One should there-
fore justify one’s decision on theoretical grounds rather than take row-standardization
as the unquestioned norm.
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5 Spatial-effect variables in dyadic data

In monadic data, spatial dependence weighted by the connectivity variable always em-
anates from all other units. As discussed above, the only freedoms researchers have lie
in the choice of a connectivity variable and its functional form (for example, in levels
or in logged form); whether to row-standardize the weighting matrix; and, in case the
connectivity variable is directed, the decision whether connectivity should be directed
from unit i to units k or the reverse.

In contrast, a dyadic estimation dataset offers more freedoms with respect to the
channels through which spatial dependence can be modeled, leading to different types
of contagion, and with respect to the specification of the weighting matrix. Most impor-
tantly, with dyadic data one can distinguish directed and undirected dyads. In directed
dyads, the interaction between two dyad members ij initiates with i and is directed
toward j. In the directed dyad ij, unit i is called the source, while unit j is called the
target of the interaction. It is different from the directed dyad ji where, in contrast,
unit j is the source and unit i is the target.

In contrast, in undirected dyadic data, whilst one can distinguish unit i from unit j,
it is either not possible to distinguish between the dyad ij and the dyad ji or researchers
do not want to make such a distinction. For example, if the dependent variable measures
the presence or absence of militarized conflict between country i and country j, then it
may not be clear which country started the conflict or this question may be irrelevant
because researchers may merely be interested in whether a conflict exists, not who
initiated it. As a consequence, the dependent variables of dyads ij and ji are identical
in undirected dyadic data.12

Undirected dyadic datasets are most similar to the monadic setting, because spa-
tial dependence always emanates from other dyads. With directed dyadic data, spatial
dependence can also emanate from other dyads, but there are more options to be dis-
cussed further below. When spatial dependence comes from other dyads, the only choice
is whether one wishes to allow dyads that either unit i or unit j form with other units to
also exert an influence on the spatial effect variable. For example, a spatial lag model or
a spatial autoregressive model of what Neumayer and Plümper (2010b) name inclusive
dyad contagion will be specified as follows:

yij = α + ρ
∑

km 6=ij

ωpqykm + · · · + ǫij (3)

with “· · · ” representing other explanatory variables. For ease of exposition, (3) as-
sumes a time-invariant research setting, but a time dimension can be easily added to all
variables. Consider military alliances between two countries as an example. Whether
country i and country j form an alliance may partly depend on what other alliances

12. Both directed and undirected dyadic data settings are no less likely to be subject to spatial depen-
dence than monadic data settings. What one unit does in relation to another unit with which it
forms a dyad will often influence as well as be influenced by the relations of other dyads. Yet in
Neumayer and Plümper (2010b), we could identify only three prior studies analyzing spatial effects
in a dyadic data setting.
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exist between countries in the world, including those that either country i or country j
have concluded with countries besides each other. Which other dyads are relevant for
the spatial effect—and if so, to what extent—will be specified by the weighting matrix,
with

ωpq ∈ {wik, wki, wjm, wmj , wik+jm, wki+mj , wik×jm, wki×mj}

as eight possible specifications of the (potentially directed) weighting matrix.13 In
words, the weighting matrix can either link (source) units i and k (wik, wki) or (target)
units j and m (wjm, wmj) or the sum (wik+jm, wki+mj) or the product (wik×jm, wki×mj)
of the two units.14

In contrast, a spatial lag model or a spatial autoregressive model of exclusive dyad
contagion disallows all dyads that contain either unit i or unit j from exerting an
influence on the spatial-effect variable and is modeled as

yij = α + ρ
∑

k 6=i,j

m 6=i,j

ωpqykm + · · · + ǫij

with the same set of options available for the weighting matrix. On the decision whether
to form an alliance between countries i and j, this specification would exclude alliances
that countries i and j have with other countries.

As alluded to already, directed dyadic datasets offer more modeling flexibility than
just dyadic contagion. The reason is that in such datasets, it is possible to distinguish
the source i of a dyadic interaction from its target j. This opens the possibility that
spatial dependence only derives from other sources or from other targets, instead of
from all other dyads. Moreover, contagion may stem from either the aggregate behavior
of other sources or targets or from their specific behavior with respect to the dyad ij
under observation.

What Neumayer and Plümper (2010b) coin aggregate source contagion consists of
spatial dependence coming from the aggregate behavior of other sources k—that is, from
their relationship with any target m, not just the specific target j under observation:

yij = α + ρ
∑

k 6=i

∑

m

ωpqykm + · · · + ǫij

Our previous example of military alliances could be a directed dyadic relationship if
it were possible to distinguish the source (initiator) from the target (recipient) of the
interaction, but it is perhaps more likely to be an undirected dyadic relationship. We
therefore switch to international terrorism as an example, where the dyadic relationship

13. The list is not exhaustive, and links can be combined with each other (see Neumayer and Plümper
[2010b]). Even if the variable that is to be spatially lagged is an undirected dyadic variable, the
weighting matrix can still be a directed dyadic variable.

14. For undirected dyad contagion, in which it is not possible to distinguish sources from targets,
simply read this sentence, omitting the words source and target. Taking the sum of two weighting
matrices implies that they are substitutes for each other (the lack of one link can be compensated
by the presence of the other), whereas taking the product implies that they are complements.
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between perpetrator and victim is more clearly directed. With aggregate source con-
tagion, the likelihood that terrorists from country i attack victims from country j may
partly depend on the aggregate overall propensity of terrorists from other countries k
to attack victims from any other country m.

If, instead, only the relationship of other sources k with the specific target j matters
for spatial dependence, then the situation calls for modeling specific source contagion:

yij = α + ρ
∑

k 6=i

ωpqykj + · · · + ǫij

With specific source contagion, the aggregate overall propensity of terrorists from other
countries k no longer matters for whether terrorists from country i are more likely to
attack victims from country j. Instead, only the propensity of terrorists from other
countries k to attack victims from this specific country j matters.15 In both aggregate
and specific source contagion, the basic set of link functions is ωpq ∈ {wik, wki}; that
is, the weighting matrix links source units i and k with each other, either from i to k
or from k to i, if it is a directed variable.16

The two forms of target contagion function very similarly, only this time it is the
aggregate or specific behavior of other targets m from which the spatial effect emanates.
For aggregate target contagion, in which the aggregate behavior of other targets m with
any source k (not just the specific source i under observation) matters,

yij = α + ρ
∑

k

∑

m 6=j

ωpqykm + · · · + ǫij (4)

For the example of international terrorism, the propensity of terrorists from country i
to attack victims from country j may partly depend on how much terrorism victims
from other countries m experience, independently of who the terrorists are.

Specific target contagion, in which only interactions of other targets m with the
specific source i matter, is modeled as

yit = α + ρ
∑

m 6=j

ωpqyim + · · · + ǫij (5)

Here the propensity of terrorists from country i to attack victims from country j partly
depends on how much terrorism terrorists from this country i inflict on victims from
other countries m. In both forms of target contagion, the set of basic link functions
comprises ωpq ∈ {wjm, wmj}; that is, the weighting matrix links target units j and m
with each other, either from j to m or from m to j, if it is a directed variable.

15. For example, Neumayer and Plümper (2010a) use the civilizational affiliation of countries of (po-
tential) terrorists as a connectivity variable to test whether there is evidence for international
terrorism spreading along civilizational lines in the form of specific source contagion, as predicted
by Huntington (1996).

16. As with dyadic contagion, further link functions are possible. The same applies to the forms of
target contagion of (4) and (5).
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6 Parsing through a virtual 4-adic dataset

In principle, because the weighting matrix is of one dimension above the dimension of
the estimation dataset, one needs a dataset of one dimension higher than the estimation
dataset to generate the spatial-effect variable. So, for example, to create a spatial-effect
variable for a monadic dataset of dimension N × T , one needs a dataset connecting
monadic units with each other—that is, a dyadic dataset of dimension N ×N × T . To
generate a spatial-effect variable for dyadic data, one would normally need a so-called
4-adic dataset of dimension (Ni ×Nj)× (Ni ×Nj)×T —that is, a dataset that connects
dyads with dyads. Table 1 displays a very simple directed 4-adic dataset for the case of
Ni, Nj = 3 with i, j, k,m ∈ {1, 2, 3} and T = 1; that is, the dataset is time-invariant.

Table 1. The parsing technique and matching of spatial-effect variable components for
specific source contagion and wik as connectivity

Relevant
dyads for
spatially Relevant
lagged dyads for

i j k m variable connectivity
1 1 1 1

x

x
x

x

1 1 1 2
1 1 1 3
1 1 2 1
1 1 2 2
1 1 2 3
1 1 3 1
1 1 3 2
1 1 3 3
1 2 1 1

x

x

x

x

1 2 1 2
1 2 1 3
1 2 2 1
1 2 2 2
1 2 2 3
1 2 3 1
1 2 3 2
1 2 3 3



596 Making spatial analysis operational

1 3 1 1

x

x

x

x

1 3 1 2
1 3 1 3
1 3 2 1
1 3 2 2
1 3 2 3
1 3 3 1
1 3 3 2
1 3 3 3
2 1 1 1

x

x

x

x

2 1 1 2
2 1 1 3
2 1 2 1
2 1 2 2
2 1 2 3
2 1 3 1
2 1 3 2
2 1 3 3
2 2 1 1

x

x

x

x

2 2 1 2
2 2 1 3
2 2 2 1
2 2 2 2
2 2 2 3
2 2 3 1
2 2 3 2
2 2 3 3
2 3 1 1

x

x

x

x

2 3 1 2
2 3 1 3
2 3 2 1
2 3 2 2
2 3 2 3
2 3 3 1
2 3 3 2
2 3 3 3
3 1 1 1

x

x

x

x

3 1 1 2
3 1 1 3
3 1 2 1
3 1 2 2
3 1 2 3
3 1 3 1
3 1 3 2
3 1 3 3
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3 2 1 1

x

x

x

x

3 2 1 2
3 2 1 3
3 2 2 1
3 2 2 2
3 2 2 3
3 2 3 1
3 2 3 2
3 2 3 3
3 3 1 1

x

x

x

x

3 3 1 2
3 3 1 3
3 3 2 1
3 3 2 2
3 3 2 3
3 3 3 1
3 3 3 2
3 3 3 3

Note: Arrows indicate which observations from
the two separate spatial-effect variable
components are merged with each other.

The dataset shown in table 1 is very small, but in many actual research contexts
with i and j of medium to large size and multiple time periods, such a 4-adic dataset will
be far too large for the memory of standard personal computers (PCs). The commands
discussed in this article circumvent this problem by parsing through a virtual 4-adic
dataset. Thus, rather than generating an actual full sized 4-adic dataset of dimension
(Ni×Nj)×(Ni×Nj)×T , the commands exploit the fact that for any one specific dyad ij,
say, dyad 1–1 in table 1, the dyadic dataset of dimension Ni×Nj×T highlighted in a light
gray color contains both the full set of dyads from which spatial dependence can possibly
derive and the full set of dyads that are potentially relevant for the weighting matrix.
The commands therefore loop through the full set of dyads, and for any one specific
dyad ij, they save in temporary files the dyads km that are relevant for whichever type
of contagion is created, as well as another set of dyads km that are relevant for the
weighting matrix that is dependent on the type of connectivity chosen. Table 1 shows
which dyads km are relevant for the example of specific source contagion and wik as the
chosen connectivity. For the ij dyad of 1–1, the km dyads of 2–1 and 3–1 are relevant
for the spatially lagged variable because with specific source contagion it is dyads of the
other sources 2 and 3 with the specific target 1 that matter. The km dyads of 1–2 and
1–3 are relevant for measuring connectivity from source 1 to source 2 and from source
1 to source 3.

Once all the necessary components for creating the spatial-effect variable have been
saved in temporary files, the commands then combine all the components with each
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other by merging the relevant dyads for the spatially lagged variable with the relevant
dyads for the connectivity variable to create the spatial-effect variable. The arrows
in table 1 show which dyads of the variable that is to be spatially lagged are merged
with which dyads of the variable representing connectivity. Finally, unless the nomerge

option is specified, the resulting spatial-effect variable is created and saved in the current
working directory, as well as merged into the original dyadic dataset.

This parsing technique has two main advantages. The one already mentioned is
that it makes generating spatial-effect variables possible without having to create a
large 4-adic dataset. The second advantage is that users need not worry about creating
a connectivity variable that links sources or targets with each other or with additive or
multiplicative combinations of the two, depending on the type of connectivity required.
By looping through each possible dyad ij and saving only the dyads km in temporary
files that are relevant for the specific connectivity variable chosen by the user, all that is
required is a connectivity variable that links unit i to unit j. The commands virtually
transform this connectivity variable to generate the actual weighting matrix chosen by
the user according to the link options available.

Unfortunately, this parsing technique also comes with two disadvantages. First,
depending on the size of the dyadic dataset, it can take from seconds to several minutes,
hours, or even days to generate the spatial-effect variable on standard PCs. As a general
rule, the commands that generate aggregate source or target contagion are fast,17 the
commands that generate specific source or target contagion are considerably slower, and
the ones that generate undirected or directed dyad contagion are the slowest. However,
creating an actual 4-adic dataset is unlikely to represent a superior alternative to the
parsing technique. When its size is moderate enough that it could be handled by
standard PC memory size, the commands employing the parsing technique also work
relatively fast. Processing the commands is time-consuming only when creating an
actual 4-adic dataset is difficult or impossible.

The second disadvantage of the parsing technique is that because no actual 4-adic
weighting matrix is constructed, researchers cannot apply spatial ML methods because
doing so would require using the 4-adic weighting matrix. Instead, researchers need to
rely on the instrumental-variable technique of spatial-2SLS (Kelejian and Prucha 1998;
Franzese and Hays 2007) to account for the simultaneity bias introduced by the spatial-
effect variable. Of course, the commands were written specifically for cases in which the
4-adic weighting matrix is simply too large to be handled by standard PCs. In samples
for which the 4-adic weighting matrix is not too large, spatial ML can be used—but in
such situations researchers do not need the commands described here anyway because
they can simply create the spatial-effect variables by hand if they can construct the
entire actual 4-adic weighting matrix.

Sparse matrix modeling represents another alternative that is potentially superior
to the parsing technique in some contexts (Ward and Gleditsch 2008). However, this
technique makes sense only where a large share of zeros (or some other specific con-

17. The same is true for the command that generates spatial effects for monadic data, but spmon does
not rely on the parsing technique, anyway.



E. Neumayer and T. Plümper 599

stant number) is in the weighting matrix, as is typically the case for using contiguity
or similar as the connectivity variable. If the share of zeros is small—for example
when researchers weight by distance, exports, or some other continuous connectivity
variable—sparse matrix modeling does not provide any advantage. We contend that
connectivity variables with no zeros or a small share of zeros will become much more
popular in the future because theories will often predict spatial dependence working via
more complicated links than simple dichotomous weights such as contiguity.

7 Commands for generating spatial-effect variables

7.1 Syntax

Monadic contagion

spmon lagvar
[
if
] [

in
]
, i(varname) k(varname) weightvar(varname)

[
reverse W std options

]

Undirected dyad contagion

spundir lagvar
[
if
] [

in
]
, i(varname) j(varname) weightvar(varname)

link(link fcn)
[
exclusive std options

]

Directed dyad contagion

spdir lagvar
[
if
] [

in
]
, source(varname) target(varname)

weightvar(varname) link(link fcn)
[
exclusive std options

]

Aggregate source or target contagion

spagg lagvar
[
if
] [

in
]
, source(varname) target(varname)

weightvar(varname) form(source | target)
[
reverse W std options

]

Specific source or target contagion

spspc lagvar
[
if
] [

in
]
, source(varname) target(varname)

weightvar(varname) form(source | target)
[
reverse W std options

]

For std options, see the Standard options subsection in section 7.2.

(Continued on next page)
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7.2 Description of commands and options

Because for dyadic datasets the parsing technique described in section 6 obliterates
the need for a 4-adic dataset, both spmon, which generates spatial-effect variables for
monadic data, and the set of commands that generate spatial-effect variables for dyadic
data (spagg, spspc, spdir, and spundir) all merely require a dyadic dataset. This
dataset must contain at least four variables.

First, the dataset must contain the variable to be spatially lagged (lagvar), the name
of which is stated right after each command. For spmon, this variable must be the same
for all dyads of a specific unit k with various combinations of unit i (for any given time
period), whereas for spagg, spspc, spdir, and spundir, this variable will typically
differ from dyad to dyad. For example, in spatial lag (spatial autoregressive) models,
this variable will simply be the dependent variable of other dyads.

Second, the dataset must contain a variable identifying unit i, which is stated in
i(varname) in spmon and spundir and in source(varname) in the commands that
generate spatial-effect variables for directed dyadic data. The difference is purely nota-
tional. All that matters is that the variable listed in i(varname) or source(varname)

identifies unit i. It can be a numeric or string variable.

The third variable must identify a second unit, which is stated in k(varname) for
spmon, in j(varname) for spundir, and in target(varname) for the commands for
directed dyadic data. Again the difference is purely notational. What matters is that
this numeric or string variable identifies unit k or unit j and that together ik or ij
uniquely identify a specific dyad.

The fourth and final variable that a dataset must contain for the commands de-
scribed here to work is the weighting or connectivity variable, which is always listed in
weightvar(varname). It connects unit i with units k in case of spmon and unit i with
units j in case of the commands that generate spatial-effect variables in dyadic data.
This variable will typically be different for each dyad of a specific unit i with various
combinations of units k (j). Also it may or may not be directed. If the spatial-effect
variable is to be time-variant, then one additionally needs a fifth (optional) variable in
the dataset that identifies time; see time(varname) in the Standard options subsection
of section 7.2.

For spagg and spspc, one must also specify whether the spatial effect arises from
sources or targets in other directed dyads. Use form(source) if the spatial effect stems
from other sources, or form(target) if the spatial effect derives from other targets.

The commands spmon, spagg, and spspc each allow only two basic link functions
such that, for simplicity, the function linking unit i to units k is the default option
for spmon and for the source contagion forms of spagg and spspc, while the function
linking unit j to units m is the default option for the target contagion forms of spagg and
spspc. In each of these cases, specifying the reverse W option reverses the direction of
the connectivity variable such that the weighting matrix represents connectivity from,
respectively, units k to unit i and to connectivity from units m to unit j, instead.
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Naturally, this option makes sense only if the connectivity variable is in fact a directed
variable. Otherwise, both the default and the reverse W option will lead to the same
generated spatial-effect variable.

Both spundir and spdir can create spatial-effect variables with a variety of specified
connectivities, such that the required link(link fcn) option prompts users to choose one
of eight possible link functions: ik, ki, jm, mj, ik+jm, ki+mj, ik*jm, or ki*mj. The
ik link function requests that the virtually transformed weighting variable listed in
weightvar(varname) is to represent connectivity from unit i to other units k. The
ki link function requests connectivity from other units k to unit i, instead. The jm

link function requests connectivity from unit j to other units m. The mj link function
requests connectivity from other units m to unit j, instead. The ik+jm link function
requests that the virtually transformed weighting variable represents the sum of connec-
tivities invoked by ik and jm. The ki+mj link function does the same, but for the sum
of connectivities invoked by ki and mj. The ik*jm option requests that the virtually
transformed weighting variable represent the product of connectivities invoked by ik

and jm. The ki*mj option does the same, but for the product of connectivities invoked
by ki and mj.

Both spundir and spdir can also create either inclusive dyad contagion (the default
option) or exclusive dyad contagion, to be requested by invoking the exclusive option.

Standard options

std options can be any of the following:

time(varname) contains the numeric time variable

sename(name) names the created spatial-effect variable

labelname(label) names the label given to the spatial-effect variable

filename(filename) names the file to which the spatial-effect variable is saved

norowst specifies that the spatial-effect variable not be
row-standardized

nomerge specifies no automatic merge of spatial-effect variable into
the original dataset

All commands allow restricting the relevant sample with if and in conditions. As
mentioned already, there is an optional time-variable identifier, time(varname), which
is needed if the spatial-effect variable is to be time-variant. All commands also al-
low users to name the created spatial-effect variable by specifying the sename(name)

option, to give the created spatial-effect variable a specific label by specifying the
labelname(label) option, and to save a dataset containing the generated spatial-effect
variable in the current directory under the name specified in the filename(filename) op-
tion. Without these options, the generated spatial-effect variable and files are given pre-
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defined names.18 Each command allows deviating from generating a row-standardized
spatial-effect variable (the default option) by specifying the norowst option. Each com-
mand will normally automatically merge the generated spatial-effect variable into the
original dataset used for generating it, but this can be prevented by specifying the
nomerge option. This option is particularly relevant if one uses two separate datasets—
one for the creation of the spatial-effect variable and another one that is the actual
estimation dataset into which the spatial-effect variable created from the other dataset
then needs to be merged by hand. The automatic merge default option is most suitable
when the dataset used for the creation of the spatial-effect variable is also the estimation
dataset. For the analysis of spatial dependence in monadic data, users must always have
two datasets because the estimation dataset is monadic, whereas the dataset used for
the creation of the spatial-effect variable must be dyadic.19

7.3 A note on the format of the dyadic dataset required for spundir

Often, undirected dyadic datasets are organized such that if dyad ij is contained in the
dataset, then dyad ji is excluded, and vice versa. The reason is that one of the dyads
contains redundant information given that the value of the dependent variable for ij
equals that of ji. If the dataset is in this nonsymmetric format, then it must be the case
that the dataset contains only those dyads for which i is numerically smaller or equal to
j and excludes all dyads for which i is larger than j, which follows common practice.20

Thus, for example, if i and j both run from 1 to 4, then the dataset would contain
the dyads 1–1, 1–2, 1–3, 1–4, 2–2, 2–3, 2–4, 3–3, 3–4, and 4–4, but it would exclude
dyads 2–1, 3–1, 3–2, 4–1, 4–2, and 4–3. (Dyads 1–1, 2–2, 3–3, and 4–4 may also be
excluded if a dyadic relationship of a unit with itself is impossible, which depends on
the research context, namely, the type of relationship studied.)

It is, however, possible and often convenient for users that an undirected dyadic
dataset is organized such that it contains both dyad ij and dyad ji, despite the fact
that the value of the dependent variable for these two dyads must be the same. For
spundir to work, it does not matter whether the dataset is kept in the nonsymmetric
or symmetric format. Users must, however, organize their data in symmetric format if
the weighting variable is to be directed, because a directed, dyadic weighting variable
requires a fully symmetric dyadic dataset.

8 Conclusion

Spatial dependence is a common phenomenon in social relations. Social science re-
search is therefore particularly in need of modeling or at least controlling for spatial

18. Consult the help files for each command for information on these default names.
19. For spmon, if the spatial-effect variable is merged into the original dyadic dataset used for the

creation of the variable, then it will have the same value for all units of i in any given time period.
20. If i and j are string variables, then this condition requires that the dataset contain only those dyads

for which i is alphabetically prior or equal to j and excludes all dyads for which i is alphabetically
subsequent to j.
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dependence. The rapid improvements in both computing power and spatial estimation
techniques as well as mounting advice on specification issues are bound to make more
scholars interested in spatial analysis (Anselin 1988; Beck, Gleditsch, and Beardsley
2006; Darmofal 2006; Franzese and Hays 2007, 2010; Ward and Gleditsch 2008; Neu-
mayer and Plümper 2010b; Plümper and Neumayer 2010). The purpose of the com-
mands described here is to render such analysis easier by allowing users the generation
of all types of spatial-effect variables with one command line, and in the case of dyadic
data, allowing users to do so without the need for constructing a large 4-adic dataset.

9 References
Alix-Garcia, J. 2007. A spatial analysis of common property deforestation. Journal of

Environmental Economics and Management 53: 141–157.

Anselin, L. 1988. Spatial Econometrics: Methods and Models. Dordrecht: Kluwer
Academic Publishers.

Atanaka-Santos, M., R. Souza-Santos, and D. Czeresnia. 2007. Spatial analysis for
stratification of priority malaria control areas, Mato Grosso State, Brazil. Cadernos
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