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Abstract. Multiple-test procedures are increasingly important as technology in-
creases scientists’ ability to make large numbers of multiple measurements, as they
do in genome scans. Multiple-test procedures were originally defined to input a
vector of input p-values and an uncorrected critical p-value, interpreted as a fami-
lywise error rate or a false discovery rate, and to output a corrected critical p-value
and a discovery set, defined as the subset of input p-values that are at or below the
corrected critical p-value. A range of multiple-test procedures is implemented us-
ing the smileplot package in Stata (Newson and the ALSPAC Study Team 2003,
Stata Journal 3: 109–132; 2010, Stata Journal 10: 691–692). The qqvalue com-
mand uses an alternative formulation of multiple-test procedures, which is also
used by the R function p.adjust. qqvalue inputs a variable of p-values and out-
puts a variable of q-values that are equal in each observation to the minimum
familywise error rate or false discovery rate that would result in the inclusion of
the corresponding p-value in the discovery set if the specified multiple-test pro-
cedure was applied to the full set of input p-values. Formulas and examples are
presented.

Keywords: st0209, qqvalue, smileplot, multproc, p.adjust, R, multiple-test proce-
dure, data mining, familywise error rate, false discovery rate, Bonferroni, Šidák,
Holm, Holland, Copenhaver, Hochberg, Simes, Benjamini, Yekutieli

1 Introduction

Multiple-test procedures are one of the key themes in twenty-first-century biostatistics
so far because technology gives scientists the power to measure unprecedented numbers
of comparisons in genome scans, epigenome scans, and metabolome scans. A multiple-
test procedure takes the following as input: a vector of p-values that corresponds to
multiple comparisons testing multiple null hypotheses, and an uncorrected critical p-
value, which is usually interpreted either as a maximum permissible familywise error
rate (FWER) or as a maximum permissible false discovery rate (FDR). The multiple-test
procedure outputs a corrected critical p-value that is used to define a discovery set as
the subset of input p-values at or below the corrected critical p-value. A number of
multiple-test procedures have been implemented in Stata using the smileplot package
(Newson and the ALSPAC Study Team 2003, 2010).

c© 2010 StataCorp LP st0209
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Frequentist multiple-test procedures are a generalization of the concept of confidence
regions beyond scalar and even vector parameters to a set-valued parameter, namely, the
set of null hypotheses that are true. If the input uncorrected critical p-value α ∈ (0, 1)
is an FWER, then we can be 100(1 − α)% confident that all the null hypotheses in the
discovery set are false. If the input uncorrected critical p-value α = β × γ is an FDR,
then we can be 100(1 − β)% confident that over 100(1 − γ)% of the null hypotheses in
the discovery set are false. Of course, the discovery set may be empty, in which case
100% of the null hypotheses in it are false.

Conventionally, a multiple-test procedure has been implemented by writing a pro-
gram that inputs a vector of p-values and an uncorrected critical p-value and outputs a
corrected critical p-value and a discovery set. The multproc command of the smileplot
package introduced by Newson and the ALSPAC Study Team (2003) does just that.

The R function p.adjust (Smyth and the R Core Team 2010) uses an alternative
way of implementing multiple-test procedures. This function inputs a vector of p-values
and a specified multiple-test procedure. It outputs a new vector of q-values (parallel to
the input vector), sometimes known as adjusted p-values. For each input p-value, the
corresponding q-value is the lowest input uncorrected critical p-value (FWER or FDR)
that would cause the input p-value to be included in the discovery set if the specified
multiple-test procedure was applied to the full vector of p-values. This q-value may
be one if there is no FWER or no FDR less than one for which the corresponding null
hypothesis would be rejected.

The Stata qqvalue package is modeled broadly on the R function p.adjust; it gen-
erates q-values for an input variable of p-values and a specified multiple-test procedure.
The name qqvalue originally stood for “quasi–q-value”, which was my initial choice
of terminology and was intended to prevent confusion between the vector of adjusted
p-values output by p.adjust and the scalar corrected critical p-value output by the
multproc command of smileplot. The term q-value was originally introduced as an
empirical Bayesian concept by Storey (2003), who aimed to control the positive FDR by
estimating from the vector of input p-values the prior probability that a null hypoth-
esis is true. The q-values calculated by p.adjust and qqvalue, by contrast, are the
nearest frequentist equivalent of Storey’s q-values. They are minimum FWERs or FDRs
for rejection of individual input p-values, just as Storey’s original q-values are minimum
positive FDRs for rejection of individual input p-values. In view of this difference, I
originally added the prefix “quasi–”, but was advised by Gordon Smyth (the author of
p.adjust) that the prefix was not really necessary because it is now common to use
the term q-value for the values computed by p.adjust. I therefore now conform to
this usage but use the term “frequentist q-value” when making a distinction from the
original Bayesian q-value.

The remainder of this article documents and details the qqvalue package. Section 2
documents the command itself. Section 3 presents and details the methods and formulas
used. Section 4 gives some examples of the use of qqvalue in practice.
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2 The qqvalue command

2.1 Syntax

qqvalue varname
[
if
] [

in
] [

, method(method) bestof(#) qvalue(newvar)

npvalue(newvar) rank(newvar) svalue(newvar) rvalue(newvar) float

fast
]

where method is one of
bonferroni | sidak | holm | holland | hochberg | simes | yekutieli

by varlist: can be used with qqvalue; see [D] by. If by varlist: is used, then all
generated variables are calculated using the specified multiple-test procedure within
each by-group defined by the variables in the varlist .

2.2 Description

qqvalue is similar to the R package p.adjust. It inputs a single variable, assumed to
contain p-values calculated for multiple comparisons, in a dataset with one observation
per comparison. It outputs a new variable—calculated by inverting a multiple-test
procedure specified by the user—containing the q-values corresponding to these p-values.
Each q-value represents, for each corresponding p-value, the minimum uncorrected p-
value threshold for which that p-value would be in the discovery set, assuming that
the specified multiple-test procedure was used on the same set of input p-values to
generate a corrected p-value threshold. These minimum uncorrected p-value thresholds
may represent FWERs or FDRs, depending on the procedure used. qqvalue’s options
may be used to output other variables that contain the various intermediate results
used in calculating the q-values. The multiple-test procedures available for qqvalue

are a subset of those available using the multproc command of the smileplot package
(Newson and the ALSPAC Study Team 2010).

2.3 Options

method(method) specifies the multiple-test procedure method to be used for calculating
the q-values from the input p-values. The method may be bonferroni, sidak, holm,
holland, hochberg, simes, or yekutieli. These method names specify that the
q-values will be calculated from the input p-values by inverting the multiple-test
procedure specified by the method() option of the same name for the multproc

command of the smileplot package (Newson and the ALSPAC Study Team 2010).
The default is method(bonferroni).

bestof(#) specifies an integer. If the bestof() option is specified and # is greater
than the number of input p-values, then the q-values are calculated assuming that
the input p-values are a subset (usually the smallest number of input p-values) of
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a superset of p-values. If the method() option specifies a one-step method (such as
bonferroni or sidak), then the q-values do not depend on the other p-values in the
superset, but only on the number of p-values in the superset. If the method() option
specifies a step-down method (such as holm or holland), then it is assumed that all
the other p-values in the superset are greater than the largest of the input p-values.
If the method() option specifies a step-up method (such as hochberg, simes, or
yekutieli), then it is assumed that all the other p-values in the superset are equal
to one, which implies that the q-values will be conservative and will define an upper
bound to the respective q-values that would have been calculated if we knew the
other p-values in the superset. If bestof() is unspecified (or nonpositive), then the
input p-values are assumed to be the full set of p-values calculated. The bestof()

option is useful if the input p-values are known (or suspected) to be the smallest
of a greater set of p-values that we do not know. This often happens if the input
p-values are from a genome scan reported in the literature.

qvalue(newvar) specifies the name of a new output variable containing the q-values
calculated from the input p-values. The new output variable is generated using the
multiple-test procedure specified by the method() option.

npvalue(newvar) specifies the name of a new output variable to be generated. It con-
tains in each observation the total number of p-values in the sample of observations
specified by the if and in qualifiers or in the by-group containing that observation
if the by: prefix is specified.

rank(newvar) is the name of a new variable to be generated. It contains in each
observation the rank of the corresponding p-value from the lowest to the highest.
Tied p-values are ranked according to their position in the input dataset. If the by:

prefix is specified, then the ranks are defined within the by-group.

svalue(newvar) specifies the name of a new output variable to be generated, which
contains the s-values calculated from the input p-values. The s-values are an in-
termediate result; they are calculated in the course of calculating the q-values and
are used mainly for validation. They are calculated from the input p-values by
inverting the formulas used for the rank-specific critical p-value thresholds, which
are calculated by the multproc command of the smileplot package. These rank-
specific p-value thresholds are returned in the generated variable specified by the
critical() option of multproc. The s-values may be greater than one.

rvalue(newvar) specifies the name of a new output variable to be generated, which
contains the r-values calculated from the input p-values. The r-values are an in-
termediate result; they are calculated in the course of calculating the q-values and
are used mainly for validation. They are calculated from the s-values by truncating
the s-values to a maximum of one. The q-values are calculated from the r-values
using a procedure that is dependent on the multiple-test procedure specified by the
method() option. If the multiple-test procedure is a one-step procedure (such as
bonferroni or sidak), then the q-values are equal to the corresponding r-values.
If the multiple-test procedure is a step-down procedure (such as holm or holland),
then the q-value for each p-value is equal to the cumulative maximum of all the
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r-values corresponding to p-values of rank equal to or less than that p-value. If
the multiple-test procedure is a step-up procedure (such as hochberg, simes, or
yekutieli), then the q-value for each p-value is equal to the cumulative minimum
of all the r-values corresponding to p-values of rank equal to or greater than that
p-value.

float specifies that the output variables specified by the qvalue(), rvalue(), and
svalue() options be created as variables of type float. If float is absent, then
these variables are created as variables of type double. Whether or not float is
specified, all generated variables are stored to the lowest precision possible without
loss of information.

fast is an option for programmers. It specifies that qqvalue will not take any action
to restore the original data in the event of failure or if the user presses Break.

3 Methods and formulas

The methods used are a development of those used by the multproc command of
the smileplot package, which is documented in Newson and the ALSPAC Study Team
(2003, 2010). I will therefore use a notation that is as consistent as possible with that
source. I will use uppercase and lowercase symbols to denote different quantities and
to reduce confusion in readers who refer both to that article and to this article.

We assume that there is a sequence of m distinct parameters θ1, . . . , θm, estimated

using estimates θ̂1, . . . , θ̂m and having the values θ
(0)
1 , . . . , θ

(0)
m under their respective null

hypotheses. Typically, θ
(0)
i is zero for difference parameters such as median differences

or is one for ratio parameters such as median ratios. We denote by P1, . . . , Pm the
observed p-values for testing the m null hypotheses. Each Pi has the property that if
0 ≤ α ≤ 1, then

Pr
(

Pi ≤ α
∣∣ θi = θ

(0)
i

)
≤ α

We denote by R1, . . . , Rm the ranks (in ascending order) of P1, . . . , Pm and denote by
Q1, . . . , Qm the p-values in ascending order so that for each i, QRi

= Pi. (The Qi are
not the q-values, which we will define in due course.)

The methods used by the multproc command of the smileplot package aim to
define a credible (or acceptable) subset of indices C ⊆ (1, . . . ,m) such that the null

hypotheses (θi = θ
(0)
i : i ∈ C) are acceptable and the complementary set of null hy-

potheses (θi = θ
(0)
i : i /∈ C) are rejected. This is done by defining an uncorrected

p-value threshold, punc; calculating a corrected p-value threshold, pcor, from punc and
Q1, . . . , Qm; and defining the acceptable subset C to be the subset of indices i such
that Pi > pcor. The methods used by qqvalue, by contrast, are derived by inverting
the methods used by multproc because they start from an individual input p-value and
derive the minimum uncorrected p-value threshold, which if used would have made the
corrected p-value threshold at least as large as the individual input p-value.
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The multiple-test procedures used by qqvalue and selected using the method() op-
tion are a subset of those used by multproc. They are listed in table 1 and classified in
three ways: the form of the algorithm used (one-step, step-down, or step-up), the inter-
pretation of the uncorrected overall critical p-value (FWER or FDR), and the correlation
assumed between the Pi (independence, nonnegative, or arbitrary).

Table 1. Multiple-test procedures specified by the method() option of qqvalue

method() Step type FWER/FDR Correlation assumed

bonferroni one-step FWER arbitrary
sidak one-step FWER nonnegative
holm step-down FWER arbitrary
holland step-down FWER nonnegative
hochberg step-up FWER independence
simes step-up FDR nonnegative
yekutieli step-up FDR arbitrary

3.1 Formulas for one-step, step-down, and step-up methods

The formulas used by multproc are given in Newson and the ALSPAC Study Team (2003,
section 3.1). Each of the methods of multproc works by specifying a nondecreasing
sequence of individual critical p-values c1, . . . , cm, which correspond to the ordered input
p-values Q1, . . . , Qm. The formulas used by each method for deriving these thresholds
ci as functions of punc, i, and m are listed in that subsection.

Once these ci are specified, each multproc method selects an overall corrected critical
p-value, pcor, from the ci in one of three ways, namely, one-step, step-down, or step-up.
In the one-step case, the ci are all equal to a common value, pcor, defined in a way that
is not dependent on i. In the step-down case, pcor is set to the minimum ci such that
Qi > ci if such a ci exists or to the maximum critical p-value cm otherwise. In the
step-up case, pcor is set to the maximum ci such that Qi ≤ ci if such a ci exists or to
the minimum critical p-value c1 otherwise.

The q-values computed by qqvalue are derived by inverting the formulas of
multproc. The technique can be summarized in the phrase “sorted p-values generate
s-values generate r-values generate q-values”. For each given method, this technique is
executed in three steps:

1. Invert the formula used for calculating ci as a function of punc to give a formula
for calculating punc as a function of ci. If we substitute the sorted p-value Qi for
ci in this formula, then the result will be denoted si. si will be expressed on an
uncorrected p-value scale but may be one or greater if no FWER or FDR less than
one will generate a threshold ci ≥ Qi.
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2. Define ri = min(si, 1) as the minimum uncorrected critical p-value that generates
a threshold that Qi can pass below. If we are willing to live with a FWER or FDR

of 1, at which 100% of discoveries may be false, then any p-value may be included
in the discovery set.

3. Define the set of q-values qi from the set of r-values ri, using a formula that
depends on whether the procedure is one-step, step-down, or step-up. For a one-
step procedure, this formula is

qi = ri (1)

For a step-down procedure, it is

qi = max(rj : j ≤ i) (2)

For a step-up procedure, it is

qi = min(rj : j ≥ i) (3)

For each i, qi will then be the q-value corresponding to the sorted p-value Qi.
Therefore, for each i, the q-value corresponding to Pi will be qRi

.

The formulas for deriving the si from the Qi are derived by inverting a subset of
those in Newson and the ALSPAC Study Team (2003, section 3.1). They are given as
follows, together with references for the original multiple-test procedures:

One-step methods

1. bonferroni

si = mQi

2. sidak (Šidák 1967)
si = 1 − (1 − Qi)

m

Step-down methods

1. holm (Holm 1979)
si = (m − i + 1)Qi

2. holland (Holland and Copenhaver 1987)

si = 1 − (1 − Qi)
m−i+1

Step-up methods

1. hochberg (Hochberg 1988)

si = (m − i + 1)Qi

The si are the same as those for the step-down Holm method.
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2. simes (Simes [1986]; Benjamini and Hochberg [1995]; Benjamini and Yekutieli
[2001, first method])

si =
m

i
Qi

3. yekutieli (Benjamini and Yekutieli [2001, second method])

si =
m

i
Qi

m∑

j=1

j−1

All these expressions for si are increasing in Qi and increasing in m and nonincreasing
(or constant in the case of one-step procedures) in i. The corresponding expressions for
ri = min(si, 1) will therefore be nondecreasing in Qi and in m, and will be nonincreasing
in i.

3.2 Incomplete sets of input p-values

We have assumed so far that the variable input to qqplot contains the full set of p-values
from a project. In practice, this may not be the case. Scientists who report genome
scans frequently give only a short list of those associations with the lowest k < m p-
values and do not report the rest (and so do scientists in other fields, who are less likely
to admit it). Readers are then left with the problem of how much confidence to have in
their “discoveries”.

Fortunately, reports of genome scans usually contain an indication of how many
associations were really measured. (Unfortunately, this is usually not the case in many
other fields.) This can be helpful, given the formulas of the previous subsection. Formu-
las (1), (2), and (3) imply that for each sorted p-value, Qi, the corresponding q-value,
qi, depends only on Qi in the case of one-step procedures, depends on p-values equal
to or less than Qi in the case of step-down procedures, and depends on p-values equal
to or greater than Qi in the case of step-up procedures. This statement implies that
q-values can be computed for any subset of p-values in the case of one-step procedures
or for the lowest k p-values in the case of step-down procedures without knowing the
other p-values. In the case of step-up procedures (which are usually more powerful),
life is less simple. However, even in this case, (3) implies that we can still compute
conservative estimates of the q-values for the lowest k p-values, which are guaranteed
to be upper bounds for the corresponding true q-values, by assuming (conservatively)
that all the other p-values in the full set are equal to one.

The bestof() option of qqvalue allows us to compute conservative q-values for an
input variable containing a subset of k p-values by supplying the number m of p-values
present in the full set. These conservative q-values will be correct for any subset of
k p-values in the case of one-step procedures, correct for the lowest k p-values in the
case of step-down procedures, and conservative for the lowest k p-values in the case of
step-up procedures. We therefore may be able to show that we can be confident in a
list of the highlights of a genome scan as long as we know how large the genome scan
was.
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3.3 q-values versus discovery sets

A long list of multiple-test procedures was implemented in Stata using the smileplot

package of Newson and the ALSPAC Study Team (2003, 2010). This package imple-
mented the procedures by generating scalar corrected critical p-values and corresponding
discovery set indicator variables. Since then, R users, and now also Stata users, have
gained the option of using some of the same procedures to generate q-values. What are
the advantages of the two policies?

Multiple-test procedures were originally developed and justified in terms of discov-
ery sets. This is especially the case with multiple-test procedures that control the FDR,
such as those of Benjamini and Yekutieli (2001), which are implemented using the op-
tions method(simes) and method(yekutieli) of smileplot and qqvalue. The Simes
procedure, in particular, has the advantageous property that the power to detect an
effect of a given size does not necessarily tend to zero as the number of comparisons
tends to infinity, in contrast to the case with most other multiple-test procedures (see
Genovese and Wasserman [2002]). Discovery sets that are defined to control the FDR

also have two very useful multiplicative properties:

• If we control the FDR at α = β × γ, then we can be 100(1 − β)% confident that
over 100(1− γ)% of the discovery set will correspond to false null hypotheses (see
Newson and the ALSPAC Study Team [2003]).

• If we carry out a preliminary study to find a candidate discovery set (control-
ling the FDR at β) and then carry out a follow-up study on an independent
set of subjects (containing only comparisons from that candidate discovery set
and controlling the FDR at γ), then the “overall” FDR of the process generating
the follow-up discovery set, prior to the preliminary study, is α = β × γ (see
Benjamini and Yekutieli [2005]).

The first of these results specifies a trade-off between how confident we can be
and how much we can be confident about. The second of these results specifies a
similar trade-off between how conservative we need to be in the preliminary study
and how conservative we need to be in the follow-up study. Both of these results are
entirely evidence-based and objectivist-frequentist, and they are derived without using
any authority-based subjectivist claims of having prior knowledge.

In view of these properties of discovery sets, my first impulse was to adopt a standard
practice of defining a nested list of three discovery sets that correspond to FDRs of 0.25,
0.05, and 0.01; then to identify these discovery sets by adding one, two, or three stars
to the p-value in the table of results; then to add three footnotes to the table, with
one, two, and three stars, respectively; and finally to indicate the corrected p-value
thresholds under the respective FDRs.

However, the list of FDRs adopted by our research group might not be the same as
the lists of FDRs adopted by other research groups, and readers might prefer to have a
common analog scale of significance for results from all research groups. Moreover, the
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second result seems to assume (implausibly) that scientists conform rigorously and in-
flexibly to a study plan to the point of defining FDR thresholds prior to the preliminary
study and canceling the follow-up study if the discovery set from the preliminary study
is empty. Furthermore, if we have an output variable of q-values, then we can define as
many discovery sets as we like by selecting observations with q-values at or below our
chosen FDRs. For these reasons, I would currently argue that q-values represent an ad-
vance on nested discovery sets and that qqvalue should probably supersede smileplot

for most purposes.

It should be stressed that the field of multiple-test procedures is currently in a state
of rapid development and that there is not necessarily a consensus on the subject, even
among statisticians.

4 Examples

qqvalue, like smileplot, requires an input dataset with one observation per parameter
and also requires data on p-values (and possibly other attributes) for the parameters.
In Stata, such datasets are typically created using the official Stata statsby command
(see [D] statsby) or, alternatively, using the parmest package of Newson (2003). In our
examples, we will assume that such a dataset (or resultsset) has been created and that
it contains a variable containing the input p-values.

4.1 Epigenetic assay data in the ALSPAC study

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a multipurpose
birth cohort study based at Bristol University, England. The study involves over 14,000
pregnancies in the Avon area of England in the early 1990s, the children from which have
been followed through childhood. For further information, refer to the study website at
http://www.alspac.bris.ac.uk.

A nested pilot study in ALSPAC subjected the cord blood DNA of 174 subjects (69
girls and 105 boys) to methylation assays. DNA methylation levels (as percentages)
were measured at 1,505 methylation sites in the human genome. A methylation site is
a position in the genome where a single DNA base can be either methylated (typically
implying that a gene is switched off) or unmethylated (typically implying that a gene is
switched on). The science of gene switching, including methylation, is known as epige-
netics. Each of the 1,505 methylation assays performed on cord blood samples measured
the percent of all copies of the appropriate methylation site that were methylated. The
methylation data were considered to be useful at 1,495 of these sites.

The methylation levels at these 1,495 sites were distributed non-normally in ways
that varied greatly from site to site, being positively skewed at some sites, negatively
skewed at other sites, bimodal at others, and semidiscrete at others, with a vast majority
of zeros (indicating no methylation) and a small minority of positive values (indicating
some methylation). There did not seem to be a unified model whose parameters we
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might fit to the data at all sites. I therefore decided to use the methods of Newson
(2006b) and Newson (2006a) to generate confidence intervals and p-values for Somers’ D
and unequal-variance confidence intervals for Theil–Sen median slopes and Hodges–
Lehmann median differences. These methods are all implemented using the somersd

package (Newson 2006a,b).

As a preliminary analysis, I compared methylation levels at each of the 1,495 sites,
between the 105 boys and the 69 girls. I used Somers’ D and the Hodges–Lehmann
median difference, which have distinct confidence intervals sharing a common p-value.
Both of these parameters were restricted to comparisons within laboratory batches to
remove the influence of batch effects. The estimates, confidence intervals, and p-values
were stored in an output dataset (or resultsset) with one observation per methylation
site.

q-values for the Simes procedure were then computed using the following Stata code:

. qqvalue p, method(simes) qvalue(qq)

. format qq %8.2g

. summarize p qq, detail

P-value

Percentiles Smallest
1% 7.41e-11 3.43e-15
5% .0017592 6.52e-14

10% .0732356 2.87e-13 Obs 1495
25% .3035019 4.59e-13 Sum of Wgt. 1495

50% .579294 Mean .5381529
Largest Std. Dev. .304321

75% .7946141 1
90% .9225728 1 Variance .0926113
95% .966077 1 Skewness -.310372
99% .9948297 1 Kurtosis 1.889998

q-value by method(simes)

Percentiles Smallest
1% 7.15e-09 5.13e-12
5% .035067 4.87e-11

10% .7131457 1.43e-10 Obs 1495
25% 1 1.72e-10 Sum of Wgt. 1495

50% 1 Mean .9052502
Largest Std. Dev. .2553094

75% 1 1
90% 1 1 Variance .0651829
95% 1 1 Skewness -2.859704
99% 1 1 Kurtosis 9.78171

Most of the q-values are as high as 1, but some are tiny, which implies that the
corresponding p-values would still be in the Simes discovery set even if the FDR was
controlled very stringently.

I then plotted the q-values against the position of the corresponding methylation site
in the human genome. The human genome has 22 nonsex chromosomes, numbered from
1 to 22, and 2 sex chromosomes, denoted X and Y. Each chromosome has a very long
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linear DNA sequence, and each methylation site has a position (or coordinate) on its
chromosome. I therefore defined, for each methylation site on each of the chromosomes
1–22 and X, a relative position on a scale from 0 (for the first methylation site on the
chromosome) to 100 (for the last methylation site on the chromosome). (There were no
methylation sites on the Y chromosome.)

The integer variable denoting the chromosome for each methylation site had the
variable name chromosome, and the continuous variable denoting the methylation site’s
relative position had the variable name mrelpos. To make the plot, we use the com-
mands regaxis and logaxis, which are components of the regaxis package.1 The
regaxis package is very useful in defining axis scales and tick positions, especially for
variables such as p-values and q-values that are plotted on a log scale. The Stata code
for making the plot is as follows:

. regaxis mrelpos, include(0 100) cycle(25) lticks(xlabs)

. logaxis qq, base(10) include(1) lrange(yrange) lticks(ylabs)
> maxticks(12)

. scatter qq mrelpos, msize(2)
> by(chrom, compact row(4) total)
> xlabel(`xlabs´, labsize(4) angle(270))
> yaxis(1 2)
> yscale(reverse log range(`yrange´)) ylab(`ylabs´, labsize(4) angle(0))
> ylabel(0.05, axis(2) labsize(4) angle(0))
> yline(0.05, lpattern(shortdash))
> plotregion(marg(2 2 0.5 0))

1. The regaxis package can be downloaded from Statistical Software Components at
http://econpapers.repec.org/scripts/search/search.asp?ft=regaxis.
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Figure 1. q-values for boy–girl methylation differences at 1,495 sites

The result of this code is given in figure 1, which shows one panel for each of the
23 chromosomes plus one for all methylation sites on all chromosomes. The horizontal
axis gives the relative position of the methylation site, and the vertical axis gives the
corresponding q-value on a reverse log scale. We see that even allowing for multiple
comparisons, there is a large number of statistically significant boy–girl differences in
methylation, and that most (but not all) of these are on the X chromosome. This finding
does not surprise epigeneticists because a girl has two X chromosomes per cell, of which
one is inactivated by methylation, whereas a boy has only one X chromosome per cell,
which is not inactivated.

As a comparison, we also used the multproc command of the smileplot package of
Newson and the ALSPAC Study Team (2003, 2010) to define a Simes corrected critical p-
value corresponding to an FDR of 0.05. We plotted the p-values of the methylation sites
against their positions in the genome, with vertical-axis reference lines at the uncorrected
and corrected critical p-values. The result is given as figure 2, which has vertical-axis
reference lines at the uncorrected critical p-value of 0.05 and at the corrected critical
p-value of 0.00254181. The message of the two figures is qualitatively similar. However,
figure 1 is arguably more informative because there you can see at a glance the discovery
set under any FDR, rather than the discovery set only at the FDR of 0.05.



R. B. Newson 581

.05

.0025

.05

.0025

.05

.0025

.05

.0025

1.0e−16
1.0e−14
1.0e−12
1.0e−10
1.0e−08
1.0e−06

.0001
.01

1

1.0e−16
1.0e−14
1.0e−12
1.0e−10
1.0e−08
1.0e−06

.0001
.01

1

1.0e−16
1.0e−14
1.0e−12
1.0e−10
1.0e−08
1.0e−06

.0001
.01

1

1.0e−16
1.0e−14
1.0e−12
1.0e−10
1.0e−08
1.0e−06

.0001
.01

1 0 2
5

5
0

7
5

1
0

0
0 2

5

5
0

7
5

1
0

0
0 2

5

5
0

7
5

1
0

0
0 2

5

5
0

7
5

1
0

0
0 2

5

5
0

7
5

1
0

0
0 2

5

5
0

7
5

1
0

0

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 X Total

P
−

v
a

lu
e

Relative position of methylation site on chromosome
Graphs by Chromosome of methylation site

Figure 2. p-values for boy–girl methylation differences at 1,495 sites

4.2 Polymorphisms associated with autism spectrum disorders

In Wang et al. (2009), several research groups combined their genome scan data on
the association of autism spectrum disorders with a total of 486,864 single-nucleotide
polymorphisms (SNPs). The highlight of their results was a subset of associations (with
the lowest p-values) between autism spectrum disorders and six SNPs in the 5p14.1
region of chromosome 5. This region lies between two genes that encode the amino acid
sequences of cadherin molecules, which seem to play a role in cell–cell adhesion during
the formation of connections between neurons in the developing brain. The authors
gave the p-values for these six most significant SNPs.

These p-values were entered into a Stata dataset with one observation for each of
the six SNPs and the following variables: snp (the name of the SNP), position (position
of the SNP on chromosome 5), alleles (the DNA bases of the more and less frequent
alleles of the SNP), and pcomb (the p-value for the association, which was determined
using combined data from all scans).

We use pcomb as the input variable for qqvalue, and we output three q-value vari-
ables that were generated using the option bestof(486864) and the method() options
simes, yekutieli, and bonferroni, respectively. The Stata code and its output are as
follows:
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. qqvalue pcomb, method(simes) bestof(486864) qv(qqcomb1)

. qqvalue pcomb, method(yekutieli) bestof(486864) qv(qqcomb2)

. qqvalue pcomb, method(bonferroni) bestof(486864) qv(qqcomb3)

. format qqcomb1 qqcomb2 qqcomb3 %8.2g

. list, noobs

snp position alleles pcomb qqcomb1 qqcomb2 qqcomb3

rs4307059 26003460 C/T 2.10e-10 .0001 .0014 .0001
rs7704909 25934678 C/T 9.90e-10 .00018 .0024 .00048

rs12518194 25987318 G/A 1.10e-09 .00018 .0024 .00054
rs4327572 26008578 T/C 2.70e-09 .00033 .0045 .0013
rs1896731 25934776 C/T 4.80e-08 .0047 .064 .023

rs10038113 25938100 C/T 7.40e-08 .006 .082 .036

We see that, although these six SNPs are the most significant of 486,864 investigated,
their association with autistic spectrum disorders is still at least suggestive, even if we
use the yekutieli or bonferroni methods, whose q-values are in the variables qqcomb2
and qqcomb3, respectively. The associations are even more impressive if we use the more
powerful simes method, whose q-values are in the variable qqcomb1.
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