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Abstract. Nonnormal data arise often in practice, prompting the development
of flexible distributions for modeling such situations. In this article, we describe
two multivariate distributions, the skew-normal and the skew-t, which can be
used to model skewed and heavy-tailed continuous data. We then discuss some
inferential issues that can arise when fitting these distributions to real data. We
also consider the use of these distributions in a regression setting for more flexible
parametric modeling of the conditional distribution given other predictors. We
present commands for fitting univariate and multivariate skew-normal and skew-t
regressions in Stata (skewnreg, skewtreg, mskewnreg, and mskewtreg) as well as
some postestimation features (predict and skewrplot). We also demonstrate the
use of the commands for the analysis of the famous Australian Institute of Sport
data and U.S. precipitation data.

Keywords: st0207, skewnreg, skewtreg, mskewnreg, mskewtreg, skewrplot, predict,
distribution, heavy tails, nonnormal, precipitation, regression, skewness, skew-
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1 Introduction

Nonnormal data arise often in practice. One common way of dealing with nonnormal
data is to find a suitable transformation that makes the data more normal-like and to ap-
ply standard normal-based methods to the transformed data. Finding a suitable trans-
formation can be difficult with multivariate data. Also, for the ease of interpretation, it
is often preferable to work with data in the original scale. These difficulties motivated
a search for more-flexible parametric families of distributions to model nonnormal data.
A number of approaches are available for univariate outcomes. For noncontinuous data,
such as binary data or count data, binomial or Poisson distributions can be used. More
generally, generalized linear models can be used to accommodate a range of distribu-
tions within an exponential family. However, the choices for multivariate outcomes are
rather limited.

Our focus in this article is on continuous nonnormal data. Because real data often
deviate from normality in the tails or exhibit asymmetry in the distribution, there has
been a growing interest in distributions with additional parameters regulating asym-
metry and tails directly. For example, for heavy-tailed data, the Student’s t distri-
bution is often considered. Traditionally, lognormal or gamma distributions are used
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508 Fitting skewed regressions

to model positive skewed data. To accommodate asymmetry for data spanning a real
line, one can consider skew-normal and skew-t distributions, which are skewed versions
of the respective normal and Student’s t distributions. One of the appealing features
of these distributions is that they have tractable multivariate versions that allow us
to model multivariate outcomes. More generally, the family of skew-elliptical distribu-
tions proposed by Branco and Dey (2001) allows for asymmetry in a class of elliptically
symmetric distributions.

The simplest representative of the skew-elliptical family, as defined by Azzalini
(1985), is the skew-normal distribution. Compared with the normal distribution, in ad-
dition to location and scale parameters, the skew-normal distribution has a shape param-
eter regulating the asymmetry of the distribution. Another commonly used representa-
tive is the skew-t distribution (Azzalini and Capitanio 2003), which extends the normal
distribution to allow for both asymmetry and heavier tails with two additional param-
eters, a shape parameter and a degrees-of-freedom parameter. These extra parameters
allow us to capture the features of the data more adequately. Azzalini and Dalla Valle
(1996), Azzalini and Capitanio (1999), Branco and Dey (2001), and Azzalini and Cap-
itanio (2003) study multivariate analogs of these distributions.

What makes these distributions appealing for use in practice is that they are sim-
ple extensions of their more commonly used counterparts, the normal and Student’s t
distributions, and that they share some properties. For example, the distribution of
the quadratic forms of skew-normal and skew-t random vectors does not depend on the
shape parameter (and is chi-squared for the skew-normal model, as it is for the normal
model). This property is useful for evaluating model fit. These distributions are closed
under linear transformations, and multivariate versions are closed under marginalization
(but not conditioning). Similarly to the normal and Student’s t distributions, the skew-
normal and skew-t distributions can also be adapted to handle positive data by consid-
ering their log versions (Azzalini, dal Cappello, and Kotz 2002; Marchenko and Genton
2010).

A more detailed description of these and other skewed distributions can be found in
the book edited by Genton (2004) and in the review by Azzalini (2005).

The structure of our article is the following: We start with a motivating example
in section 2. In section 3, we proceed to describe the skewed distributions and, more
generally, skewed regressions in more detail. We present commands for fitting the skewed
models in section 4. In section 5, we provide more examples of using skew-normal and
skew-t models in the analysis of the Australian Institute of Sport data, commonly used
in the literature about skewed distributions.

2 Motivating example

We consider the Australian Institute of Sport dataset (Cook and Weisberg 1994), which
is repeatedly used in the literature about skewed distributions. The ais.dta dataset
contains 202 observations (100 females and 102 males) that record 13 biological charac-
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teristics of Australian athletes. In our examples, we use only a subset of these charac-
teristics.

. use ais
(Biological measures from athletes at the Australian Institute of Sport)

. describe lbm bmi weight height fe female

storage display value
variable name type format label variable label

lbm double %9.0g Lean body mass (kg)
bmi double %9.0g Body mass index (kg/m^2)
weight double %9.0g Weight (kg)
height double %9.0g Height (m)
fe int %9.0g Plasma ferritin concentration (ng/ml)
female byte %9.0g gender Gender

Suppose we are interested in modeling plasma ferritin concentration recorded in
the fe variable. From figure 1, we can see that the distribution of plasma ferritin
concentration is skewed to the right compared with the normal distribution.

. histogram fe, normal
(bin=14, start=8, width=16.142857)
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Figure 1. Histogram of plasma ferritin concentration overlaid with normal density

As mentioned in the introduction, for a univariate outcome we can choose from
several options. We can use a transformation-based approach and model the fe variable
in the log metric, for example. If we prefer to work with the original scale, we can use
one of the univariate distributions that accommodate asymmetry. Here we demonstrate
the use of the skew-normal and skew-t distributions for modeling fe.

We first fit the skew-normal distribution to plasma ferritin concentration fe using
the new skewnreg command. For later comparison with the skew-t fit, we specify the
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dpmetric option to report results in the direct parameterization, which will be explained
in section 3.3:

. skewnreg fe, dpmetric

initial: log likelihood = -1033.6914
rescale: log likelihood = -1033.6914
rescale eq: log likelihood = -1033.6914
Iteration 0: log likelihood = -1033.6914
Iteration 1: log likelihood = -1032.6839
Iteration 2: log likelihood = -1030.9463
Iteration 3: log likelihood = -1030.9116
Iteration 4: log likelihood = -1030.9115

Skew-normal regression Number of obs = 202
Wald chi2(0) = .

Log likelihood = -1030.9115 Prob > chi2 = .

fe Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 20.24412 2.491879 8.12 0.000 15.36012 25.12811

alpha 9.142567 2.56432 4.116592 14.16854

omega 73.84035 4.141059 66.15418 82.41954

LR test vs normal regression: chi2(1) = 70.17 Prob > chi2 = 0.0000

As mentioned in the introduction, compared with the symmetric normal distribution,
the skew-normal distribution has an additional shape parameter. Labeled as alpha

in the output, it regulates the asymmetry of the distribution. For positive values of
the shape parameter, the distribution is skewed to the right; for negative values, the
distribution is skewed to the left; and the distribution is symmetric (normal) when the
shape parameter is zero. From the output, we can see that alpha is estimated to be 9.14
with a 95% confidence interval of [4.12, 14.17], which is evidence that the distribution
of fe exhibits skewness to the right.

We can visually check how well the skew-normal distribution fits the data by using
the new postestimation command, skewrplot:

. skewrplot, fitted
(bin=14, start=8, width=16.142857)

We specified the fitted option to plot the skew-normal density estimate [evaluated at
the above maximum likelihood estimates (MLEs) of the model parameters] of the fitted
values against the histogram of fe. From figure 2, we can see that the skew-normal
density estimate closely follows the nonparametric density estimate and that it demon-
strates better fit of the skew-normal distribution to fe than the normal distribution in
figure 1.
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Figure 2. Histogram and skew-normal density estimate of plasma ferritin concentration

We can also fit the skew-t distribution to fe by using the skewtreg command:

. skewtreg fe

initial: log likelihood = -1428.9045
rescale: log likelihood = -1411.4498
rescale eq: log likelihood = -1041.7301
Iteration 0: log likelihood = -1041.7301
Iteration 1: log likelihood = -1035.0139
Iteration 2: log likelihood = -1030.6871
Iteration 3: log likelihood = -1029.457
Iteration 4: log likelihood = -1029.1935
Iteration 5: log likelihood = -1029.186
Iteration 6: log likelihood = -1029.186

Skew-t regression Number of obs = 202
Wald chi2(0) = .

Log likelihood = -1029.186 Prob > chi2 = .

fe Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 22.2901 2.830001 7.88 0.000 16.7434 27.8368

alpha 7.244468 2.270883 3.19 0.001 2.793619 11.69532

omega 62.12069 7.079737 49.68519 77.66861

df 7.440234 4.405123 2.331404 23.7441

LR test vs normal regression: chibar2(1_2) = 73.62 Prob >= chibar2 = 0.0000

In addition to the shape parameter, the skew-t distribution introduces a degrees-of-
freedom parameter. Labeled as df in the output, this parameter regulates the heaviness
of the tails of the distribution. The smaller the degrees of freedom, the “heavier” the
tails of the distribution. (For instance, one degree of freedom yields a skew-Cauchy
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distribution of Arnold and Beaver [2000].) As the degrees of freedom becomes large,
the skew-t distribution reduces to the skew-normal distribution or the normal distri-
bution, when in addition the shape parameter is zero. From the output, we can see
that the degrees of freedom is estimated to be 7.44 with a 95% confidence interval of
[2.33, 23.74], which provides evidence for heavier-than-normal tails of the distribution of
fe. The estimate of the shape parameter alpha is 7.24 with a 95% confidence interval
[2.79, 11.70], which again confirms the existence of positive skewness in the distribution
of fe.

As we did before, we can plot the density estimate of fitted values from the skew-t
distribution estimated above against the nonparametric density estimate. The plot is
shown in figure 3:

. skewrplot, fitted
(bin=14, start=8, width=16.142857)
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Figure 3. Histogram and skew-t density estimate of plasma ferritin concentration

From the graph, we can see that the skew-t distribution seems to fit the fe values better
than the skew-normal distribution. We could also use probability–probability (P–P) or
quantile–quantile (Q–Q) plots, as we demonstrate later, to more easily compare model
fits.

Let us now describe the skew-normal and skew-t models in more detail.
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3 The skew-normal and skew-t models

3.1 Definition and some properties

The density of the univariate skew-normal distribution, SN(ξ, ω2, α), is

fSN(x; ξ, ω2, α) = 2ω−1φ(z)Φ(αz), x ∈ R (1)

where z = ω−1(x − ξ), ξ ∈ R is a location parameter, ω > 0 is a scale parameter, φ(·)
is the density of a univariate standard normal distribution, and Φ(·) is the cumulative
distribution function of the standard normal distribution. The additional multiplier
2Φ(αz) is a skewness factor, and it is controlled by a shape parameter α ∈ R. When
α > 0, the distribution is skewed to the right; when α < 0, the distribution is skewed
to the left; and when α = 0, the skew-normal distribution (1) reduces to the normal
distribution.

The univariate skew-t distribution, ST(ξ, ω2, α, ν), is defined in a similar manner by
introducing a multiplier to the Student’s t density, which is a heavier-tailed distribution
than the normal distribution:

fST(x; ξ, ω2, α, ν) = 2ω−1t(z; ν)T
{

αz
√

(ν + 1)/(ν + z2); ν + 1
}

, x ∈ R (2)

where t(z; ν) is the density of a univariate standard Student’s t distribution with degrees
of freedom ν, and T (·; ν +1) is the cumulative distribution function of a univariate stan-
dard Student’s t distribution with ν +1 degrees of freedom. Here again, ξ ∈ R regulates
the location of the distribution, ω > 0 regulates the scale of the distribution, the shape
parameter α ∈ R regulates asymmetry of the distribution, and the degrees-of-freedom
parameter ν > 0 regulates the tails of the distribution. When α = 0, the density (2)
reduces to the Student’s t density; and when α = 0 and the degrees of freedom be-
comes very large (ν tends to ∞), the skew-t density reduces to the normal density. By
introducing an extra parameter for regulating the tails, the skew-t distribution accom-
modates outlying observations and, thus, can be viewed as a more robust model than
the skew-normal model; see Azzalini and Genton (2008) for details.

As mentioned in the introduction, one of the useful properties of the skew-normal
and skew-t distributions is that their quadratic forms do not depend on the shape
parameter. In the univariate case, if X ∼ SN(ξ, ω2, α), then (X − ξ)2/ω2 ∼ χ2

1. If
X ∼ ST(ξ, ω2, α, ν), then (X − ξ)2/ω2 ∼ F1,ν . These properties provide a way of
evaluating model fit using Q–Q or P–P plots.

Multivariate analogs of the skew-normal and skew-t distributions are constructed in
a similar manner for the corresponding multivariate normal and multivariate Student’s
t distributions. The density of the multivariate skew-normal distribution, SNd(ξ,Ω,α),
is

fSNd
(x; Θ) = 2φd(x; ξ,Ω)Φ(α′z), x ∈ R

d (3)

where Θ = (ξ,Ω,α), z = Ω
−1/2
diag (x − ξ) ∈ R

d, φd(x; ξ,Ω) is the density of a d-variate
normal distribution with location ξ and covariance matrix Ω, and Ωdiag is the d × d



514 Fitting skewed regressions

diagonal matrix containing the diagonal elements of Ω. Similarly to the univariate case,
when all d components of α are zero, the multivariate skew-normal density (3) reduces
to the multivariate normal density φd(·).

The density of the multivariate skew-t distribution, STd(ξ,Ω,α, ν), is

fSTd
(x; Θ) = 2 td(x; ξ,Ω, ν)T

{
α′z

(
ν + d

ν + Qξ,Ω
x

)1/2

; ν + d

}
, x ∈ R

d (4)

where Θ = (ξ,Ω,α, ν), z = Ω
−1/2
diag (x − ξ), Qξ,Ω

x
= (x − ξ)′Ω−1(x − ξ), td(x; ξ,Ω, ν) =

Γ{(ν + d)/2}(1 + Qξ,Ω
x

/ν)−(ν+d)/2/{|Ω|1/2(νπ)d/2Γ(ν/2)} is the density of a d-variate
Student’s t distribution with ν degrees of freedom, and T (·; ν +d) is the cumulative dis-
tribution function of a univariate Student’s t distribution with ν +d degrees of freedom.
When all d components of α are zero, the multivariate skew-t density (4) reduces to
the multivariate Student’s t density td(·) and to the multivariate normal density φd(·)
when in addition ν tends to ∞.

Similarly to the univariate case, if X ∼ SNd(ξ,Ω,α), then the Mahalanobis measure
(X − ξ)′Ω−1(X − ξ) ∼ χ2

d. If X ∼ STd(ξ,Ω,α, ν), then 1
d (X − ξ)′Ω−1(X − ξ) ∼ Fd,ν .

3.2 Regression models

Consider a sample Y = (y1, y2, . . . , yn)′ of n observations. In linear regression,

yi = β0 + β1x1i + · · · + βpxpi + ǫi, i = 1, . . . , n (5)

where x1i, . . . , xpi define covariate values, β0, . . . , βp are the unknown regression coeffi-
cients, and ǫi is an error term. In normal linear regression, the errors are assumed to be

normally distributed, ǫi
iid∼ Normal(0, σ2). The skew-normal regression is a linear regres-

sion (5) with errors from the skew-normal distribution, ǫi
iid∼ SN(0, ω2, α). Similarly, the

skew-t regression is defined by (5) with ǫi
iid∼ ST(0, ω2, α, ν). Equivalently, the sample Y

is assumed to follow the skew-normal distribution, yi
iid∼ SN(ξi, ω

2, α), or the skew-t dis-

tribution, yi
iid∼ ST(ξi, ω

2, α, ν), respectively, where ξi = β0+β1x1i+· · ·+βpxpi. However,
because the mean µ of a skewed random variate is not the same as the location param-
eter ξ, E(ǫi) 6= 0 (unless α = 0) unlike the normal linear regression. The mean E(ǫi) =√

2/πωδ for the skew-normal regression and E(ǫi) = ωδ
√

ν/πΓ{(ν−1)/2}/Γ(ν/2) when

ν > 1 for the skew-t regression, where δ = α/
√

1 + α2. Then E(yi) = ξ + E(ǫi).

Under the multivariate regression setting, Y becomes an n × d data matrix, β

becomes a p × d matrix of unknown coefficients, and the errors follow the multi-
variate skew-normal distribution, SNd(0,Ω,α), or the multivariate skew-t distribution,
STd(0,Ω,α, ν), respectively.

The method of maximum likelihood is used to obtain estimates of regression coef-
ficients β and other model parameters, Ω, α, and ν. Two issues arise with likelihood
inference for the skew-normal and skew-t models: 1) the existence of a stationary point
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at α = 0 of the profile log-likelihood function for the skew-normal model; and 2) un-
bound MLEs. We discuss each issue in more detail below.

The existence of a stationary point at α = 0 for the skew-normal model leads to
the singularity of the Fisher information matrix of the profile log likelihood for the
shape parameter α (Azzalini 1985; Azzalini and Genton 2008). This violates standard
assumptions underlying the asymptotic properties of the maximum likelihood estima-
tors and, consequently, leads to slower convergence and possibly a bimodal limiting
distribution of the estimates (Arellano-Valle and Azzalini 2008). All model parameters
ξ, Ω, and α are identifiable, so the issue is really due to the chosen parameterization.
To alleviate this issue, Azzalini (1985) suggested an alternative centered parameteriza-
tion for the univariate skew-normal model under which the sampling distributions of
the new parameters are closer to the normal distribution. Arellano-Valle and Azzalini
(2008) extended this parameterization to the multivariate case. We will discuss the
centered parameterization in more detail in section 3.3. This unfortunate property
seems to vanish in the case of the skew-t distribution, unless the degrees of freedom are
large enough that the skew-t distribution essentially becomes the skew-normal distri-
bution; see Azzalini and Capitanio (2003) and Azzalini and Genton (2008) for details.
More generally, the issue of the singularity of multivariate skew-symmetric models was
investigated by Ley and Paindaveine (2010) and Hallin and Ley (forthcoming).

Both the skew-normal and skew-t models suffer from the problem of unboundedness
of the MLEs for the shape and degrees-of-freedom parameters; that is, the maximum
likelihood estimator can be infinite with positive probability for the finite true value
of the parameter. For example, in the cases of the univariate standard skew-normal
distribution and the univariate standard skew-t distribution with fixed degrees of free-
dom, when all observations are positive (or negative)—which can happen with positive
probability—the likelihood function is monotone increasing, and thus, an infinite esti-
mate of the shape parameter is encountered. In other more general cases, such as un-
known degrees of freedom and the multivariate case, the conditions under which the log
likelihood is unbound are more complicated and thus more difficult to describe. Sartori
(2006) and Azzalini and Genton (2008) presented ways of dealing with the unbound
estimates. Sartori (2006) proposed a bias correction to the MLEs. Azzalini and Genton
(2008) suggested a deviance-based approach according to which the unbound MLEs of
(α, ν) are replaced by the smallest values (α0, ν0) such that the likelihood-ratio test
of H0 : (α, ν) = (α0, ν0) is not rejected at a fixed level, say, 0.1. Within a Bayesian
framework, Liseo and Loperfido (2006) showed that the estimate of the posterior mode
of the shape parameter is finite for the skew-normal model under the Jeffreys prior;
and Bayes and Branco (2007) considered an alternative noninformative uniform prior
for the shape parameter.

The centered parameterization is available for skewnreg and mskewnreg to alleviate
the singularity issue. The issue of unbound parameter estimates is not yet addressed in
the presented commands. This issue is likely to arise when the distribution of the data
(or residuals within the regression framework) is close to a half-normal distribution.
If this issue occurs, one solution is to determine the iteration number after which the
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changes in the likelihood become very small and then to refit the model using the
prespecified number of iterations in the iterate(#) option.

3.3 Centered parameterization

Here we briefly describe the centered parameterization for the univariate skew-normal
distribution as proposed by Azzalini (1985), and we outline the points made in Arellano-
Valle and Azzalini (2008), where more details and the extension to the multivariate case
can be found.

Let Y be distributed as SN(ξ, ω2, α). Consider the following decomposition of Y :

Y = ξ + ωZ = µ + σ(Y − µz)/σz

where µz = E(Z) =
√

2/πδ, σ2
z = Var(Z) = 1 − 2δ2/π, and δ = α/

√
1 + α2. Then

µ = E(Y ) = ξ+ωµz and σ2 = Var(Y ) = ω2(1−µ2
z). Let γ = (4−π) sign(α) (µz/σ2

z)3/2
denote the skewness index of Y . (The skewness index γ is not the classical sample
moment-based measure of skewness but is specific to this family of distributions.) Then,
mean, standard deviation, and skewness index, (µ, σ, γ), form the centered parameteri-
zation. They are referred to as the centered parameters (CP) because they are obtained
by centering Y . The set of parameters (ξ, ω, α) are referred to as the direct param-
eters (DP). It is worth noting that unlike the range of α, the range of γ is restricted
to approximately (−0.9953, 0.9953). More generally in the multivariate setting, unlike
the DPs (ξ,Ω,α), the CPs (µ,Σ,γ) cannot be chosen freely and are subject to certain
constraints; see Arellano-Valle and Azzalini (2008) for details. Of course, both sets of
parameters require the scale matrices to be positive definite.

In the regression setting, the CP metric affects only the estimate of the intercept
and not the coefficients. Specifically, βCP

0 = β0 +
√

2/πωδ, βCP
i = βi, i = 1, . . . , p.

Consequently, ǫCP
i = ǫi −

√
2/πωδ and so the residuals in the CP metric have a mean

of zero, E(ǫCP
i ) = 0, i = 1, . . . , n. In what follows, when referring to residuals we will

always assume the residuals are in the DP metric.

The use of CP is advantageous from both inferential and interpretation standpoints.
The sampling distributions of the MLEs of CP are closer to quadratic forms, and the
profile log likelihood for γ does not have a stationary point at γ = 0. Although the
shape parameter α can be used as a guide to whether the normal model is sufficient
for analysis, it is easier to infer the actual magnitude of the departure from normality
based on the skewness index γ. Also, in the multivariate case, components of a skewness
vector γ represent the skewness indexes of the marginal distributions whereas individual
components of α, in general, cannot be used to infer the direction or the magnitude of
the asymmetry in marginal distributions. Marginal skewness indexes are complicated
functions of individual components of α. However, zero components of α do imply zero
marginal skewness indexes or, in other words, symmetric marginal distributions. DP is
useful for direct interpretation in the original model.

From the above formulas, we can see that a one-to-one correspondence exists between
CP and DP, provided CP is within its admissible range. So after obtaining estimates in
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the CP metric, one can use the formulas above and the delta method to obtain respective
estimates and their standard errors in the DP metric, and vice versa.

The centered parameterization is implemented in skewnreg and mskewnreg. At
the time of publication of this article, the centered parameterization for the skew-t
distribution is yet to appear in the literature (Arellano-Valle and Azzalini 2009) and
thus is not implemented in skewtreg and mskewtreg.

4 A suite of commands for fitting skewed regressions

4.1 Syntax

Skewed regression models

Univariate skew-normal regression

skewnreg depvar
[
indepvars

] [
if
] [

in
] [

weight
] [

, constraints(constraints)

collinear vce(vcetype) level(#) dpmetric estmetric nocnsreport

coeflegend postdp display options maximize options
]

Univariate skew-t regression

skewtreg depvar
[
indepvars

] [
if
] [

in
] [

weight
] [

, df(#)

constraints(constraints) collinear vce(vcetype) level(#) estmetric

nocnsreport coeflegend postdp display options maximize options
]

Multivariate skew-normal regression

mskewnreg depvars
[
= indepvars

] [
if
] [

in
] [

weight
] [

,

constraints(constraints) collinear vce(vcetype) level(#) dpmetric

estmetric noshowomega nocnsreport coeflegend postdp postcp

display options maximize options
]

(Continued on next page)
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Multivariate skew-t regression

mskewtreg depvars
[
= indepvars

] [
if
] [

in
] [

weight
] [

, df(#)

constraints(constraints) collinear vce(vcetype) level(#) estmetric

noshowomega nocnsreport coeflegend postdp display options

maximize options
]

indepvars may contain factor variables; see [U] Factor variables.
fweights are allowed; see [U] weight.

Postestimation features

Predictions

predict
[
type

]
newvar

[
if
] [

in
] [

, xb residuals score stdp

equation(eqno)
]

Residual density plot over histogram (default with skewnreg and skewtreg)

skewrplot
[
, histogram fitted normal normopts(norm options)

lineopts(line options) histopts(hist options) addplot(plot) twoway options
]

Residual density plot with kernel-density estimate (skewnreg and skewtreg only)

skewrplot, kdensity
[
fitted normal normopts(norm options)

lineopts(line options) kdenopts(kden options) addplot(plot) twoway options
]

Residual-versus-fitted plot (skewnreg and skewtreg only)

skewrplot, rvf
[
addplot(plot) scatter options twoway options

]

Probability–probability plot

skewrplot, pp
[
normal normopts(norm options) overlay addplot(plot)

pp options graph options
]
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Quantile–quantile plot (default with mskewnreg and mskewtreg)

skewrplot, qq
[
normal normopts(norm options) addplot(plot) qq options

graph options
]

4.2 Description

The skewnreg and skewtreg commands fit skew-normal and skew-t regression mod-
els to univariate data. The mskewnreg and mskewtreg commands fit skew-normal and
skew-t regression models to multivariate data. skewnreg and mskewnreg support both
the CP metric (the default) and the DP metric (with the dpmetric option), whereas
skewtreg and mskewtreg support only the DP metric. Regardless of the display met-
ric, optimization is performed in the estimation metric specific to each command; see
each command’s help file for details. In the skew-t regression, the degrees-of-freedom
parameter can optionally be set to a fixed value with the df() option.

The postestimation features include predictions and residual diagnostics plots. The
predict command can be used after any of the four estimation commands to obtain
linear predictions and their standard errors, residual estimates, and the score estimates.
The equation() option can be used with multivariate regressions to obtain equation-
specific predictions. The first equation is assumed by default.

The skewrplot command can be used after any of the four estimation commands
to obtain a number of residual diagnostic plots. The default after univariate regres-
sions is a residual density plot, where the skew-normal (or skew-t) density estimate of
residuals, evaluated at MLEs from the previously fit model, is plotted together with a
nonparametric residual density estimate—a histogram. Alternatively, if kdensity is
used, a residual density plot is displayed together with a nonparametric kernel-density
estimate of residuals instead of the histogram. In the absence of predictors, the fitted

option can be used to plot density estimates of the fitted values instead of residuals.
In addition, a normal density estimate can be added to the graph as a reference by
specifying the normal option. The residual-versus-fitted plot can be obtained with the
rvf option. The P–P and Q–Q plots are available after univariate or multivariate re-
gressions. The Q–Q plot of residuals is the default after multivariate regressions. It can
also be requested with the qq option. The P–P plot of residuals can be obtained with
the pp option. If normal is used in combination with pp (or qq), a P–P (or Q–Q) plot
of residuals from a normal regression fit is produced as a separate plot.

4.3 Options

Common estimation options

constraints(constraints) specifies the linear constraints to be applied during estima-
tion. The default is to perform unconstrained estimation. See [R] estimation

options for details.
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collinear specifies that the estimation command not omit collinear variables. See
[R] estimation options for details.

vce(vcetype) specifies the type of standard error reported, which includes types that are
derived from asymptotic theory, that are robust to some kinds of misspecification,
that allow for intragroup correlation, and that use bootstrap or jackknife methods;
see [R] vce option.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level. This option may be specified either
at estimation or upon replay.

estmetric displays results in the estimation metric. The estimation metric used is spe-
cific to each estimation command. This option may be specified either at estimation
or upon replay.

nocnsreport specifies that no constraints be reported. The default is to display user-
specified constraints above the coefficient table.

coeflegend specifies that the legend of the coefficients and how to specify them in
an expression be displayed rather than the coefficient table. This option may be
specified either at estimation or upon replay.

postdp stores DP estimates and their variance–covariance estimator (VCE) in e(b) and
e(V), respectively.

display options: noomitted, vsquish, noemptycells, baselevels, allbaselevels; see
[R] estimation options. These options may be specified either at estimation or
upon replay.

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log,

trace, gradient, showstep, hessian, showtolerance, tolerance(#),
ltolerance(#), nrtolerance(#), nonrtolerance; see [R] maximize. Also,
init(ml init args) can be specified; see [R] ml.

Other options for skewnreg

dpmetric specifies that the results be displayed in the DP metric instead of the default
CP metric. This option may be specified either at estimation or upon replay.

Other options for mskewnreg

dpmetric specifies that the results be displayed in the DP metric instead of the default
CP metric. This option may be specified either at estimation or upon replay.

noshowomega specifies that the display of the covariance (or scale) matrix be suppressed.

postcp stores CP estimates and their VCE in e(b) and e(V), respectively, instead of the
estimation parameters.
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Other options for skewtreg

df(#) specifies that the degrees-of-freedom parameter be fixed at # during estimation.
This is equivalent to constrained estimation using the constraints() option when
the degrees-of-freedom parameter is set to #.

Other options for mskewtreg

df(#) specifies that the degrees-of-freedom parameter be fixed at # during estimation.
This is equivalent to constrained estimation using the constraints() option when
the degrees-of-freedom parameter is set to #.

noshowomega specifies that the display of the covariance (or scale) matrix be suppressed.

Options for predict

xb, the default, calculates the linear prediction.

residuals calculates the residuals.

score calculates the first derivative of the log likelihood with respect to xjβ.

stdp calculates the standard error of the linear prediction.

equation(eqno) is allowed only when you have previously fit mskewnreg or mskewtreg.
It specifies the equation to which you are referring. equation() is filled in with one
eqno for the xb, stdp, and residuals options. equation(#1) means the calculation
is to be made for the first equation; equation(#2) means the second; and so on.
You could also refer to the equations by their names. equation(lbm) would refer
to the equation named lbm, and equation(bmi) would refer to the equation named
bmi. If you do not specify equation(), results are the same as if you specified
equation(#1).

Options for skewrplot

histogram, the default after skewnreg and skewtreg, requests that the histogram of
residuals be plotted together with a residual density estimate from a skewnreg

or skewtreg fit. This option is not allowed with skewrplot after mskewnreg or
mskewtreg.

kdensity requests that the kernel-density estimate of residuals be plotted together with
a residual density estimate from a skewnreg or skewtreg fit instead of the histogram.
This option is not allowed with skewrplot after mskewnreg or mskewtreg.

rvf requests that the residual-versus-fitted plot be produced. This option is not allowed
with skewrplot after mskewnreg or mskewtreg.

pp requests that probability–probability plots of the observed residuals versus the resid-
uals obtained from the fitted parametric model be produced.
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qq, the default after mskewnreg and mskewtreg, requests that quantile–quantile plots
of the observed residuals versus the residuals obtained from the fitted parametric
model be produced.

fitted requests that the density of fitted values be plotted instead of the density of
residuals from a skewnreg or skewtreg fit. This option is allowed only in combina-
tion with histogram or kdensity.

normal requests that a corresponding normal plot be produced for comparison. If
histogram is used, normal specifies that the histogram be overlaid with an appro-
priately scaled normal density. The normal will have the same mean and standard
deviation as the data. If kdensity is used, normal requests that a normal density
be overlaid on the density estimate of residuals from a skewed regression fit. If pp
or qq is used, normal requests that an additional, separate chi-squared probability
plot or chi-squared quantile plot of squared standardized residuals from a normal
regression fit be produced. This option can be used in combination with overlay

to overlay P–P plots on one graph. This option is not allowed in combination with
rvf.

normopts(norm options) specifies details about the look of normal plots produced when
normal is specified. If histogram or kdensity is used, norm options affect rendition
of the normal curve, such as the color and style of line used, and can be any of the
options documented in [G] graph twoway line. If pp (or qq) is used, norm options

affect the look of the chi-squared probability (or quantile) plot and can be any of
the options documented for quantile in [R] diagnostic plots.

overlay specifies that the normal plot be overlaid with the main plot in one graph.
This option requires normal and is not allowed in combination with qq. This option
is implied with histogram and kdensity.

lineopts(line options) affect rendition of the curve from the skew fit. Aspects such as
the color and style of line used are affected and can be specified using any of the
options documented in [G] graph twoway line.

histopts(hist options) are any of the options other than discrete, fraction,
frequency, percent, horizontal, and all Density plots options documented in
[R] histogram.

kdenopts(kden options) are any of the options documented in [R] kdensity.

addplot(plot) provides a way to add other plots to the generated graph; see
[G] addplot option.

scatter options are any of the options documented in [G] graph twoway scatter.

pp options are any of the options of quantile documented in [R] diagnostic plots.

qq options are any of the options of quantile documented in [R] diagnostic plots.

twoway options are any of the options other than by() documented in
[G] twoway options.
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graph options specify the overall look of a graph. If normal is used without overlay,
graph options are any of the options documented in [G] graph combine. Otherwise,
graph options are any of the twoway options above.

5 Numerical examples

5.1 Univariate analysis of Australian Institute of Sport data

Our motivating example demonstrated the use of skewnreg and skewtreg for modeling
the distribution of plasma ferritin concentration from the Australian Institute of Sport
data. We can also use these commands within the regression framework to accommodate
departures from normality of the conditional distribution of the outcome of interest
controlling for other covariates.

For the purpose of illustration, consider the conditional distribution of lean body
mass, lbm, given the weight and height of an athlete. Linearity of lean body mass
with respect to weight and height was established by previous analysis of these data
(for example, Cook and Weisberg [1994]), so we consider a simple linear regression for
modeling the conditional distribution of lbm. To obtain more meaningful estimates
of main effects, we use recentered versions of covariates, weight c and height c, in
our regression analysis. Also, to adjust for likely differences in the relationship due
to gender, we interact weight c and height c with female. (Alternatively, we could
have fit separate regressions for males and females to also allow the variability in the
measurements to differ across gender.)

. use ais, clear
(Biological measures from athletes at the Australian Institute of Sport)

. summarize weight, meanonly

. generate weight_c = weight - r(mean)

. summarize height, meanonly

. generate height_c = height - r(mean)

We first fit a normal linear regression and examine the distribution of the residu-
als from its fit. It is worth noting that weight and height measurements are highly
correlated.

(Continued on next page)
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. regress lbm i.female##c.(weight_c height_c)

Source SS df MS Number of obs = 202
F( 5, 196) = 1087.52

Model 33142.2236 5 6628.44472 Prob > F = 0.0000
Residual 1194.61754 196 6.09498744 R-squared = 0.9652

Adj R-squared = 0.9643
Total 34336.8411 201 170.830055 Root MSE = 2.4688

lbm Coef. Std. Err. t P>|t| [95% Conf. Interval]

1.female -9.014547 .4304858 -20.94 0.000 -9.863526 -8.165568
weight_c .7101775 .0265595 26.74 0.000 .6577985 .7625566
height_c 14.83978 4.169091 3.56 0.000 6.617744 23.06182

female#
c.weight_c

1 -.1765309 .041757 -4.23 0.000 -.2588816 -.0941802

female#
c.height_c

1 -5.442548 5.965791 -0.91 0.363 -17.20793 6.322834

_cons 68.51799 .3006605 227.89 0.000 67.92504 69.11093

. predict resid, residuals

. kdensity resid, normal
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Figure 4. Normal residuals density estimate

Figure 4 demonstrates a slight (longer left tail) skewness in the distribution of resid-
uals compared with the assumed underlying normal distribution. More directly, we can
use a Q–Q plot to compare the distribution of residuals with the normal distribution,
as shown in figure 5:
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. qnorm resid
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Figure 5. Normal Q–Q plot of residuals

The Q–Q plot confirms the existence of negative skewness in the distribution of
residuals from the linear regression fit.

We store estimation results from regress for later comparison with skewed models:

. estimates store reg

To capture asymmetry in the data, we now fit the skew-normal regression:

. skewnreg lbm i.female##c.(weight_c height_c), nolog

Skew-normal regression Number of obs = 202
Wald chi2(5) = 6773.01

Log likelihood = -457.54665 Prob > chi2 = 0.0000

lbm Coef. Std. Err. z P>|z| [95% Conf. Interval]

1.female -8.225366 .4431113 -18.56 0.000 -9.093848 -7.356883
weight_c .7737271 .0306772 25.22 0.000 .7136009 .8338533
height_c 9.91473 4.072276 2.43 0.015 1.933216 17.89624

female#
c.weight_c

1 -.1959762 .0382144 -5.13 0.000 -.2708751 -.1210774

female#
c.height_c

1 -3.118911 5.621625 -0.55 0.579 -14.13709 7.899271

_cons 68.05071 .3032845 224.38 0.000 67.45629 68.64514

gamma -.6191484 .1192347 -5.19 0.000 -.8528442 -.3854526

sigma 2.416606 .1314719 2.172189 2.688526

LR test vs normal regression: chi2(1) = 17.18 Prob > chi2 = 0.0000
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By default, skewnreg estimates and displays model parameters other than the standard
deviation sigma in the CP metric, as discussed in section 3.3. The standard deviation is
estimated in the log metric. From the output, we can see that both weight and height
are strong predictors of lean body mass measurements, and their relationship differs
between males and females. The estimated skewness index, labeled as gamma in the
output, is −0.62, which suggests that the conditional distribution of lbm adjusted for
weight and height is skewed to the left. According to the reported test of H0: γ = 0 with
the test statistic of −5.19, we have strong evidence of asymmetry in the distribution
of lbm, and thus the skew-normal regression may be more appropriate for the analysis
than the normal regression. The likelihood-ratio test for the skew-normal regression
versus the normal linear regression, which is reported at the bottom of the table, also
favors the skew-normal model.

We can redisplay results in the DP metric by using the dpmetric option:

. skewnreg, dpmetric

Skew-normal regression Number of obs = 202
Wald chi2(5) = 6773.01

Log likelihood = -457.54665 Prob > chi2 = 0.0000

lbm Coef. Std. Err. z P>|z| [95% Conf. Interval]

1.female -8.225366 .4431113 -18.56 0.000 -9.093848 -7.356883
weight_c .7737271 .0306772 25.22 0.000 .7136009 .8338533
height_c 9.91473 4.072276 2.43 0.015 1.933216 17.89624

female#
c.weight_c

1 -.1959762 .0382144 -5.13 0.000 -.2708751 -.1210774

female#
c.height_c

1 -3.118911 5.621625 -0.55 0.579 -14.13709 7.899271

_cons 70.78126 .2882586 245.55 0.000 70.21628 71.34624

alpha -2.718978 .6434226 -3.980063 -1.457893

omega 3.646351 .273574 3.147716 4.223975

LR test vs normal regression: chi2(1) = 17.18 Prob > chi2 = 0.0000

Notice that all regression coefficients remain the same: the transformation from the CP

to the DP metric changes only the intercept. The estimate of the shape parameter alpha
is −2.72 with a 95% confidence interval of [−3.98,−1.46]. The confidence interval does
not include 0, corresponding to the normal regression, which agrees with our earlier
findings. Also note that the scale parameter omega is now reported instead of the
standard deviation sigma.

Similarly to figure 4, we can use the skewrplot command to plot the residual density
estimate obtained nonparametrically against that from the skew-normal distribution
evaluated at the MLEs of the model parameters, as shown in figure 6:
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. skewrplot, kdensity
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Figure 6. Skew-normal residuals density estimate

Figure 6 demonstrates an improved fit to the distribution of residuals.

Alternatively, we can obtain a Q–Q or P–P plot by using the respective options. For
example,

. skewrplot, qq
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Figure 7. Q–Q plot for the skew-normal model
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produces the Q–Q plot of quantiles of the scaled squared residuals from the fitted skew-
normal model against the quantiles of the chi-squared distribution with 1 degree of
freedom, as shown in figure 7.

According to the Q–Q plot, the skew-normal model fits the data reasonably well,
with the exception of several outlying observations in the right tail. See Dalla Valle
(2007) for a formal test of the skew-normality in a population.

Next we store estimation results from the skew-normal regression for later compar-
ison with other models. We store results in the DP metric by using the postdp option
on replay:

. skewnreg, postdp

. estimates store skewn_dp

To accommodate heavier tails in addition to skewness, we fit the skew-t model:

. skewtreg lbm i.female##c.(weight_c height_c), nolog

Skew-t regression Number of obs = 202
Wald chi2(5) = 7955.92

Log likelihood = -450.12502 Prob > chi2 = 0.0000

lbm Coef. Std. Err. z P>|z| [95% Conf. Interval]

1.female -8.184854 .3913878 -20.91 0.000 -8.95196 -7.417748
weight_c .7583558 .0300931 25.20 0.000 .6993743 .8173372
height_c 12.03037 3.83344 3.14 0.002 4.516964 19.54377

female#
c.weight_c

1 -.1677404 .0375606 -4.47 0.000 -.2413579 -.0941229

female#
c.height_c

1 -6.352142 5.232898 -1.21 0.225 -16.60843 3.904149

_cons 70.14246 .3307072 212.10 0.000 69.49429 70.79063

alpha -1.760172 .6463594 -2.72 0.006 -3.027013 -.493331

omega 2.318537 .3619959 1.70732 3.148569

df 3.658399 1.128259 1.998842 6.695817

LR test vs normal regression: chibar2(1_2) = 32.02 Prob >= chibar2 = 0.0000

As mentioned in section 3.3, the centered parameterization for the skew-t model is
still under development and has not yet appeared in the literature. Thus the skewtreg

command reports results only in the DP metric. Compared with the output of DPs from
skewnreg, the skewtreg command reports an additional estimate of the degrees of
freedom. The estimate of the degrees of freedom is 3.66 with a 95% confidence interval
of [2.00, 6.70], which implies heavier-than-normal tails for the conditional distribution
of lbm. The estimate of the shape parameter alpha is −1.76 with a 95% confidence
interval of [−3.03,−0.49]. Again the reported likelihood-ratio test rejects the hypothesis
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of normality. The reported test of H0 : α = 0, ν = ∞ requires a boundary correction
because the degrees-of-freedom parameter is tested at its boundary value. As such, the
distribution of the likelihood-ratio test statistic is a 50:50 percent mixture of chi-squared
distributions with 1 and 2 degrees of freedom, labeled as chibar2(1 2) in the output;
see, for example, Gutierrez, Carter, and Drukker (2001) and DiCiccio and Monti (2009)
for more details.

We can also perform the likelihood-ratio test of the skew-t model versus the skew-
normal model (H0 : ν = ∞) by using the lrtest command. Because skewnreg and
skewtreg are two different estimation commands, we need to specify the force option
to obtain results. Although using this option is generally not recommended, it is safe
in our case because we know that the skew-normal model is nested within the skew-t
model.

. lrtest skewn ., force

Likelihood-ratio test LR chi2(1) = 14.84
(Assumption: skewn nested in .) Prob > chi2 = 0.0001

The likelihood-ratio test favors the skew-t model over the skew-normal model. The
results from this test should be interpreted with caution because it does not automat-
ically account for the fact that the degrees of freedom ν are tested at the boundary
value ν = ∞. The distribution of the likelihood-ratio test statistic in this case is a 50:50
percent mixture of a degenerate distribution at 0 and a chi-squared distribution with 1
degree of freedom. As such, the corrected p-value is half the uncorrected p-value and is
0.000058 in this example:

. display r(p)/2

.00005841

We can also compare the two fits visually using, for example, a Q–Q plot. We use
skewrplot, qq to obtain the Q–Q plot of residuals after skewtreg:

(Continued on next page)
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. skewrplot, qq
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Figure 8. Q–Q plot for the skew-t model

According to figures 7 and 8, the skew-t model fits the lbm regression better than
the skew-normal model.

Alternatively, we can use information criteria to compare the two models:

. estimates stats skewn .

Model Obs ll(null) ll(model) df AIC BIC

skewn 202 . -457.5467 8 931.0933 957.5595
. 202 . -450.125 9 918.25 948.0244

Note: N=Obs used in calculating BIC; see [R] BIC note

Both Akaike’s information criterion and Schwarz’s Bayesian information criterion
are smaller for the skew-t model, which suggests that it is preferable to the skew-normal
model.

We can also compare results from all three regressions, including the normal regres-
sion, side-by-side by using estimates table.

Because there is no CP parameterization for the skew-t regression, we can compare
results only in the DP metric. Although skewtreg displays results in the DP metric, the
results are saved in the estimation metric. To save results in the DP metric, we use the
postdp option:

. skewtreg, postdp

. estimates store skewt_dp
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We now combine all three estimation results in one table by using estimates table.

. estimates table reg skewn_dp skewt_dp, equation(1) star(0.05 0.01 0.005) b(%9.3f)

Variable reg skewn_dp skewt_dp

#1
female

1 -9.015*** -8.225*** -8.185***

weight_c 0.710*** 0.774*** 0.758***
height_c 14.840*** 9.915* 12.030***

female#
c.weight_c

1 -0.177*** -0.196*** -0.168***

female#
c.height_c

1 -5.443 -3.119 -6.352

_cons 68.518*** 70.781*** 70.142***

alpha
_cons -2.719*** -1.760**

omega
_cons 3.646*** 2.319***

df
_cons 3.658***

legend: * p<.05; ** p<.01; *** p<.005

According to the three regression models, both weight and height are strong predic-
tors of lean body mass measurements. Despite the differences in coefficient estimates,
all models lead to similar inferential conclusions. The estimates of the shape parameter
alpha suggest the presence of negative skewness in the conditional distribution of lbm
given weight and height. Because tests against zero are not appropriate for the scale
and degrees-of-freedom parameters, the significance levels, reported automatically by
estimates table for these parameters, should be ignored.

5.2 Multivariate analysis of Australian Institute of Sport data

Suppose we are interested in the distribution of lbm and bmi, the body mass index. In
figure 9, the scatterplot of the lbm and bmi values suggests that the two variables are
related and thus should be analyzed jointly.
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. use ais
(Biological measures from athletes at the Australian Institute of Sport)

. scatter lbm bmi
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Figure 9. Scatter plot of lbm and bmi

The scatterplot also suggests that the joint distribution of lbm and bmi is somewhat
asymmetric, and so we fit the bivariate skew-normal distribution to lbm and bmi using
mskewnreg:

. mskewnreg lbm bmi, nolog

Multivariate skew-normal regression Number of obs = 202
Wald chi2(0) = .

Log likelihood = -1213.2609 Prob > chi2 = .

Coef. Std. Err. z P>|z| [95% Conf. Interval]

lbm
_cons 64.92238 .9165846 70.83 0.000 63.12591 66.71886

bmi
_cons 22.99999 .1964848 117.06 0.000 22.61489 23.3851

gamma
1 .0061345 .0095526 0.64 0.521 -.0125882 .0248572
2 .4534053 .0936021 4.84 0.000 .2699486 .636862

Sigma
1 1 169.679 16.86076 139.6514 206.163
1 2 26.31228 3.150039 20.13832 32.48624
2 2 7.910783 .8210286 6.454709 9.695323

LR test vs MVN regression: chi2(2) = 37.55 Prob > chi2 = 0.0000
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By default, mskewnreg reports results in the CP metric. The estimate of the skewness
parameter for lbm is close to zero, and according to the z-test (p = 0.521), the hypothesis
of H0: γ1 = 0 cannot be rejected. For bmi, however, there is strong evidence that the
skewness parameter is different from zero. The joint test of H0 : γ1 = 0, γ2 = 0 (see
below) and the reported likelihood-ratio test strongly reject the hypothesis of bivariate
normality for lbm and bmi.

. mskewnreg, postcp

. test [gamma1]_cons [gamma2]_cons

( 1) [gamma1]_cons = 0
( 2) [gamma2]_cons = 0

chi2( 2) = 52.18
Prob > chi2 = 0.0000

To test CPs with mskewnreg, we first need to post CP estimates and their VCE to
e(b) and e(V) using the postcp option. By default, mskewnreg saves parameters and
their VCE in the estimation metric, which is described in Azzalini and Capitanio (2003)
for the multivariate skew-t distribution.

We can also obtain the results in the DP metric by using the dpmetric option:

. mskewnreg lbm bmi, dpmetric nolog

Multivariate skew-normal regression Number of obs = 202
Wald chi2(0) = .

Log likelihood = -1213.2609 Prob > chi2 = .

Coef. Std. Err. z P>|z| [95% Conf. Interval]

lbm
_cons 61.76118 1.86054 33.20 0.000 58.11459 65.40777

bmi
_cons 20.13548 .2921862 68.91 0.000 19.56281 20.70816

alpha
1 -2.30218 .5772141 -3.99 0.000 -3.433499 -1.170861
2 5.515335 1.301097 4.24 0.000 2.965232 8.065439

Omega
1 1 179.6722 21.30181 142.4174 226.6725
1 2 35.36759 7.52879 20.61143 50.12375
2 2 16.11622 2.299581 12.18449 21.31664

LR test vs MVN regression: chi2(2) = 37.55 Prob > chi2 = 0.0000

Notice that the estimate of α1 corresponding to the shape parameter of lbm in the DP

metric is very far from zero compared with the skewness index reported earlier. As
mentioned in section 3.3, the individual shape parameters are poor estimates of the
magnitude of the asymmetry. Although their zero values provide evidence that the
multivariate normal model may be adequate, the opposite is not necessarily true, as we
witnessed in this example.
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We can compare the fit against the normal model by using, for example, a Q–Q plot:

. skewrplot, qq normal
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Figure 10. Q–Q plot for bivariate skew-normal and normal model

Figure 10 shows that the bivariate skew-normal model fits the data better than the
bivariate normal model.
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We can also fit the bivariate skew-t model:

. mskewtreg lbm bmi, nolog

Multivariate skew-t regression Number of obs = 202
Wald chi2(0) = .

Log likelihood = -1213.1074 Prob > chi2 = .

Coef. Std. Err. z P>|z| [95% Conf. Interval]

lbm
_cons 61.9651 1.926496 32.16 0.000 58.18923 65.74096

bmi
_cons 20.19786 .3165282 63.81 0.000 19.57748 20.81825

alpha
1 -2.234864 .5836011 -3.83 0.000 -3.378702 -1.091027
2 5.242386 1.355911 3.87 0.000 2.58485 7.899922

Omega
1 1 171.7734 24.33629 130.1249 226.7521
1 2 32.63323 8.5462 15.88298 49.38347
2 2 14.8864 3.046903 9.967092 22.23366

df 51.00171 95.45806 1.301432 1998.702

LR test vs MVN regression: chibar2(2_3) = 37.86 Prob >= chibar2 = 0.0000

The estimated degrees of freedom are large, which suggests that the skew-normal model
is sufficient for modeling lbm and bmi.

We can also adjust the location for gender by including female as a regressor:

. mskewnreg lbm bmi = female, nolog

Multivariate skew-normal regression Number of obs = 202
Wald chi2(1) = 314.13

Log likelihood = -1105.0246 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

lbm
female -20.36519 1.149042 -17.72 0.000 -22.61728 -18.11311
_cons 75.0455 .8219865 91.30 0.000 73.43443 76.65656

bmi
female -2.267239 .3202246 -7.08 0.000 -2.894868 -1.639611
_cons 24.13093 .2413993 99.96 0.000 23.65779 24.60406

gamma
1 .1037418 .0543517 1.91 0.056 -.0027856 .2102692
2 .6843178 .0915305 7.48 0.000 .5049213 .8637143

Sigma
1 1 71.51098 7.115973 58.83973 86.91101
1 2 16.63504 2.002173 12.71085 20.55923
2 2 6.954864 .7538472 5.623747 8.601051

LR test vs MVN regression: chi2(2) = 35.63 Prob > chi2 = 0.0000
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We could also fit separate regressions for males and females to allow all parameters
of the joint distribution to vary across gender.

5.3 Log-skew-normal and log-skew-t distributions for modeling pos-
itive data

The lognormal and log-t distributions are often used to model data such as precipi-
tation data or income data that have a positive support. These distributions imply
that the distribution of the data in the log metric is symmetric. This assumption may
be too restrictive in some applications. For example, here we investigate how rea-
sonable this assumption is in the analysis of the monthly U.S. national precipitation
data, following Marchenko and Genton (2010). The data are publicly available from
the National Climatic Data Center, the largest archive of weather data, and include
monthly precipitation measured in inches for the period of 1895–2007 (113 observations
per month). The national values could be viewed as weighted averages of station data.
More specifically, national values are obtained from the regional values weighted by
area. The regional values for each of the nine U.S. climatic regions are computed from
the statewide values (which are obtained from the divisional values weighted by area)
weighted by area. The divisional monthly precipitation data are obtained as monthly
equally weighted averages of values reported by all stations within a climatic division.

To fit the log-skew-normal model to the precipitation data, we follow the standard
procedure and fit the skew-normal model, described previously, to the log of the pre-
cipitation. For example, we generate the new variable lnprecip to contain the log
of the precipitation and fit the skew-normal distribution to the January (month==1)
log-precipitation measurements over 113 years:

. use precip07_national
(Precipitation (inches), national U.S. data)

. generate lnprecip = ln(precip)

. skewnreg lnprecip if month==1, nolog

Skew-normal regression Number of obs = 113
Wald chi2(0) = .

Log likelihood = .71065091 Prob > chi2 = .

lnprecip Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons .7651154 .0228328 33.51 0.000 .7203639 .8098669

gamma -.3321967 .1894122 -1.75 0.079 -.7034378 .0390445

sigma .2428148 .0168615 .2119171 .2782174

LR test vs normal regression: chi2(1) = 2.96 Prob > chi2 = 0.0853

The skewness index is not significantly different from zero at a 5% level, so the assump-
tion of normality seems reasonable for January log precipitation.

More generally, we can obtain skewness indexes for all months. Below we use the
statsby command to collect the estimates of skewness indexes and their respective
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standard errors from skewnreg over months and plot them along with their associated
95% confidence intervals (also see Cox [2010] for more examples of statsby):

. statsby gamma=_b[gamma:_cons] se_gamma=_se[gamma:_cons], by(month) clear:
> skewnreg lnprecip
(running skewnreg on estimation sample)

command: skewnreg lnprecip
gamma: _b[gamma:_cons]

se_gamma: _se[gamma:_cons]
by: month

Statsby groups
1 2 3 4 5

............

. generate lb = gamma-1.96*se_gamma

. generate ub = gamma+1.96*se_gamma

. twoway (line gamma month, sort) (rcap ub lb month, sort), yline(0) xtitle("")
> ytitle("Skewness index") legend(off) xlabel(1(1)12, valuelabel angle(45))
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Figure 11. Skewness indexes over months with 95% confidence intervals

From figure 11, we can see that the assumption of the symmetry of the distribution
of the log-precipitation is questionable for some months (for example, September, and
October). We can see that the distribution of the log precipitation is negatively skewed
for summer and fall months and becomes more symmetric in early spring. Similarly,
we can investigate the trend in the tails of the distribution over months by plotting the
estimated degrees of freedom from skewtreg.

6 Conclusion

In this article, we described two flexible parametric models, the skew-normal and skew-t
models, which can be used for the analysis of nonnormal data. We presented a suite
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of commands for fitting these models in Stata to univariate and multivariate data. We
also provided postestimation features for obtaining linear predictions and for graphically
evaluating the goodness-of-fit of the skewed distributions to the data. We demonstrated
how to use the commands for univariate and multivariate analyses of the well-known
Australian Institute of Sport data. We also showed how to use the developed commands
to analyze data with positive support on the example of U.S. precipitation data.
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