

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

UNITED STATES DEPARTMENT OF AGRICULTURE WASHINGTON, D. C.

PROPERTIES OF WESTERN LARCH AND THEIR RELATION TO USES OF THE WOOD

By R. P. A. Jominson, hhamer, Forest Produc/s Laboratory, and ai, I. Bradner. in Charge, office of Forest Prodnctr, Region 1, Branch of Resparoh, Forest Service ${ }^{*}$

Contents

Intraduction
The hareli-fir mixtare
Cheracter mad ratige of tho western jared Jorest:

Occurrence

Character.
size of stanti.
Cut and stupply
Merchumbising practices
Distribution
Eerenatage of cut going iato various litionber flems
Descriptive proferties of western larch
Gencrat dirseription of tho wobl.
1 Teartwood content of himber
Growth rings.
Sammer-wood contend
Figute.
Elow to distinguish western hareh from onther woods.

Grain mutaviure
Mechrinical and plistical propertibs.
Weight and specilic gravits
Beading stremgth.
Compressive strength (endwise)
Hardness
Capacity to withistand shoctis boujil J1ess).
Stilitess.
Sensoming

Ability to sthy ill flace
ensu of machiming abd workjur

Nnil-holding capmeity
Splitting.
Glulng characteristics
Painting and foishing elaracterlistion.

I'age

Mechanical and yhysieal properilies-Con, Rusishane to deeay, weathering, duct insects.
Irenction t

Permerability by licuids.
Tetsdermey to impart odor or favor
Temdeney to leach or exufe extractives
Chemital propertles.
Fire resistanice
Chtarnethristic defeets of wisiern lareh ------
Natheral defoets.
Scasoring cefeets
Afonafiaturing detecos
Gralts athl their characiofistas
Grates yirdd and proctuetion.
Heartwood content.
witth of rings.
Gorke descrijthoms
select grades.
cominnar studes.

Working stresses for dituension and tifibur..
Vies or wishury larch
Finildiut metarial
f'ommon boards and ship-laph
Dimensinn -
Sitrtedtiral tinnthers.................................
Intiorior irlm.
Finooring
Exterior frim:
Industrial users

Poles.
1rling

Tago

318
42
42
42
42
4
4
43
4
44
46
47
47
50
50
. 11
. 5
5
8
$\frac{82}{83}$
60
60
6
7
$\%$
7
5
为
※
8
8
01

INTRODUCTION

Western larch ${ }^{3}$ while well known in the "Inland Empine" " is not so well known in other sections of the United States. It is a comparatively new species in the lumber yards of New Fngland, the

[^0]Mississippi Valley, and the Rocky Monntain region, where most of the cut leaving the "Inland Empire" is now marketed. The wood has a combination of properties that adapts it to a wide variety of uses. Until the properties of western larch are better known the marketing $0^{\text {: }}$ the wood will be handicappest, especiatly in mew fiekts. The purpose of this bulletin is to present the available datil on the properties and characteristics of western laveh for the assistince of users in determining the suitability of the species for specific uses.

Determination of the suitability of a wood for any purpose can not, however, be based on properties alone. Such things as grade, size, and dryness must also be considered. For example, a species selected on the basis of the properties alone may be sold on the local market in substandard sizes or insufliciently dried, and the advantages inherent in the ciear wool of the species may under such conditions disappear or be reversed.
It would appear, therefore, that to determine the suitability of western larch for any use information on the characteristies of the lumber, as well as on the properties of the clear wood, should be presented. To a limited extent such data are presented in this bulletin. It is not practical, however, to present complete and final data on all the characteristics of lumber, for they differ with time and place and are subject to change. The inherent properties, on the other hand, do not change with time and phace. A comparison based on the properties of clear wood is, therefore, as good in Spokane, Wash., as it is in Baltimore, Mil., and, except for slight changes that may result from more complete data, will be as grook 10 years hence as it is to-day. This is not true of comparisons of grades, manufacturing defects, moisture content, sizes, and other similar factors. They are constantly changing, and will differ with localities. Thus, the lumber of a species that is commonly sold wet at present may be marketed thorourhly dry next year, or it may commonly be marketed wet along the \langle tlantic and Facific coasts and dry in the Middle West.
For most uses any one of a number of species of wood may be used with equal satisfaction provided provision is made to compensate for differences in properties. Such compensating provisions may be made by the use of preservatives or other treatment. choice of sizes, or variations in design. Preservative treatments tend to equaljze decay resistance, choire of sizes can be mate to compensate for differences in strength, and design can be nseed to compensate for many of the differences in properties. The detemination of the most suitable species, therefore, consists largely of determining the cost of the lumber and constraction phas the cost of the mecessary compensational measures for the species available. Where compensating measures are not used it is necessary to balance the total cost in place against the service and dearee of satisfaction that can be obtained with different kinds of wool.

THE LARCH-FIR MXTURE

Western larch is associated with Donglas fir ("Inland Empire" type $)^{n}$ both in the forest and in the homber markets. The stand of

[^1]each species within the botanical range of western larch is about equal. (Fig. 1.) In individual stands, however, the proportion varies from one extreme to another. It is the general practice to mix the two woods and sell them as a single product under the commercial name larch-fir. The average annual lumber cut from 1919 to 1928, inclusive, shows the larch-fir mixture to be in round numbers 60 per

cent western larch and 40 per cent Douglas fir. The average proportion of western larch and Douglas fir ("Inland Empire" type) found in the different grades is given on page 49 .

There are advantages and disadvantages in the mixing of species. The advantages lie in the savings in sorting, handing, and storage costs which accrue to the manufacturer. The disadvantages result from differences in properties. such as strength, color, and hardness, which are objectionable in some uses. In the common and dimension grades the advantages outweigh the disadvantages with the
manufacturer. Unless a decided preference develops for one of the woods in these grades, there is little chance of a change in the commercial practice of mixing the species. In the select gracles there has developed at decided objection to the diference in the properties of the two species in the larch-if mixtare, especimily color, percentage of sapwood, and hardness. The preference is tor the western larch. Some manufacturers are meeting these objections by separating the species in the select grades. The continuation and extension of the practice of separating the species in select grades is necessary if western larch is to hold the reputation it has obtained in a number of uses.

The practice of mixing western larch with Douglas fir ("Irland Empire" type) makes it desirable to present the data in such form that the suitability of a misture of the two species for any use may be determined. To accomphish this, western larch is taken as the basis of all comparisous of species. Data for Douglas fir ("Inland Emprie " type) are also presented and compared with data on western larch. From the two sets of figures it will not be difficult to er aluate any mixture of larch-fir that may be encountered.

Character and range of the western larcf forest occurrence

Western larch grows chiefly in the drainage of the upper Columbia River. Its natural range extends from southern Dritish Columbia to the western slopes of the Continental Divide of northern Montana and to the eastern slopes of the Cascale Mountains of Oregin (24). (Fig. 1.) It grows on mountain slopes, stream bottoms, valleys, and flats, preferring north aml west exposures and elevations between 2,000 and 7,000 feet.

Western larch reaches its best development in northeastern Washington, northern Idaho, and north western Montana, where it often occurs in pure open forests. in valleys, and on slopes. (Fig. 2.) It is. however, usually associated with other species. In northern Idaho trees of the largest size are found at the lower clevations in mixture with westem white pine, western hembek, Engelmann spruce, and lowhand white fir. Somewhat higher up it becomes an important part of the Donglas fir ("Inland Empire" type) forests, where it is associater with lodpepole pine, lowland white fir, alpine fir, and Engelmann spruce. The western lareh-Douglas fir type occupies an intermediate position betweat the western yellow pine and subalpine types in northwestern Montana. The distribution of western larch has been inereased by fires, and natural reproduction on buens is cither in pure stands or in mixture with Douglas fir and Ioxgepole pine. The species is farored by burns because it refuires a large amount of light and its seedlings can not obtain sufficient light to survive under the parent stand. Cutting and burning remove the advantage which the more tolerant associated species have in the forest.

CHARACTER

The western larch is one of the largest trees native to the region in which it grows. (Fig. 3.) It develops a straight, tall stem, occasionally attaining a leight of 200 feet and a diameter breast high of 5 feet (10). The average height at maturity is 175 feet; the aver-
age diameter brast high is 90 inches. The tress avorate from five to six logs per tree. The aprage dear learth of the stem rarits from one and one-had logs in castom Washmgton to there logs on the better white pine sites in Ifabo. Somds per aere sange trom

 the protuction of it bixh precentige of cloat lumber
about 2.000 feet, board measume in the western yellow pian type of
 fir type of western Montama. Six to fitten loge from an areate stand will prothee a thotsemd board foot of hamber. 'Tho anemge
 high percentage of select grates.

Western larch does not grow well in the shade. As a result the trees prune themselves of lower branches at an carly age. The fire resistance of the western harch tree. which is due to the preat thickness of its bark, is higher than that of any of the other Rocky Mrmonain

conifers. This characteristic makes western larch a very suitable tree to reserve for seed so as to insure the stand against fire.

Western larch trees favorably located begin to bear seat at the age of 50 to 60 years and continue to bear good crops at intervals of five or six years. The germination of seed is prompt. The seedlings originate almost entirely from trees or stands left after cutting
or aiter burns, and germination and seedling growth take place generally on burned mineral soil or scorched duff surfaces.
Western larch trees are subject to the attack of a number of wooddestroying fungi, the most common of which is the chalky quinine fungus, Fomes laricia. The fungus causes a very destructive heart rot commonly known as brown truok rot. Shake is a rather common and characteristic defect of the tree. It is confined, however, largely to the butt log. Consequently much of the shaky material is left in the woods as a result of the common practice of "long butting." Shake, rot, and other defects may cause a cull as high as 15 per cent in mature and overmature stands. The average run of large logs delivered at the mill in 1924 was 3.7 per cent defective.

Fightas 4.-Comparison of tha prosent stand of western
 "stmates (i) revised for ent and growth fa Januaty 1_{+}1030. Other common fammes ol tho nowve spucies ure given in the appendis.

SIZE OF STAND
The total stand of western linch in the Cnited States and Canada was estimated in 1923 for the United States Senate Select Commit. tee on Reforestation (1) to be approximately $27,000,000,000$ fect, board measure. Thirteen per cent of the western larch is located in the Camadian Province of British Colmbia. The great majority, approximately $23,500,000,000$ feet, is within the Trited States. Of this $23,500,000000$. 45 per cent is found in westem Montant, 27 per cent in worthern Idaho, 18 per cent in eastern Oregon, 8 per cent in eastem Washington, and the remaining 2 per cent is fonm in Idaho south of the Salmon River. The stand of Douglas fir in Idaho and Montana was estimated in 1923 to be approximately $30,000,000,000$
feet, board measure, making a total of $53,500,000,000$ teet of larch-fir in the United States.

Western larch mukes up about 1 per cent of the total saw timber in the United States. The present stand of western larch is exceeded in volume by 3 hardwoods and by 10 softroods. (Fig. 4.) An analysis of the timber resources of the "Inland Errpire" shows that. the stand of western larch is exceeded only by western yellow pine and Douglas fir ("Inland Empire" type). (Fig. 5.)

Figura \bar{T}-Comparison of the stamd of westran harch with that of ofher species in tha "Inlfind Dmazar." Other comaon hames of tha above species are given in the aprendix

On the score of accessibility, westery harch compares favorably with any of the otiar commereial speries within the "Inland Empire" region. The western larch and larch-Hir types of western Montana are in a laree degree readily areessible at this time. Where larch is associaterd with the western white pine and western yellow pine, transportation facilities are contmally improving as extensions are made to reach the pines. With the development of a greater demand for western lareh at prices that will recurn a reasonable profit, a constant and adequate supply will be furtheoming.

CUT AND SUPPLY
The ammal cut of western larch for 1929 was estimated to be $335,000,000$ feet, board measure, log scalc. This estimate inchudes the cut of westem lareh in the form of all products, reduced to board measure and is given on a log-scate basis to afford an easy comparison with stand figures. Of the total cut, 80 per cent is taken out in the form of saw logs; 7 per cent as hewed thes; $\frac{2}{}$ per cent as round, hewed, or split, mine timbers; I per cent as posts, poles, and piling; and 10 per cent as cordwood. Montana furnishes approximately 39 per cent of the yearly cat, whik Idaho. British Cohmbia, Washington, and Orearon contribite $28,15,13$, and 5 per cent respectively. In as much as lach and Donghas fir are commonly sold in mixture the corresponding production of Donglas fir is of interest. Within the larch-producing region it is roughly extimated that the ammal

 at the appendix
cit of Douglas fir in 1929 amomed to 300.0 OH 000 feet hog seale. This means a yearly lareh-fir cut ot 030, (H0 000 feot, beard measure. A comparison of the larch-fir lumber cat with the cat of the other principal lumber-producing species of the "Intand Empire" is shown in Figure 6.

There was a general increase in the production of western lawh lumber from 1905 to 1920 . (Fig. 7.) Atter the economie depression in 1921 the cut tended to stabilize around one-quarter of a bilfion board feet. It shows no tendency at present to shift materially from that figure. The cut of the species from 1906 to 1929 is chown by years in Figure 7.

The cut of western larch in 1928 was about 1 per cent of the total softwood hmmer cut of the Truited States. In Idaho and Montana, where in 192880 per cent of the western barch humber was cut, it com-
stituted $141 / 2$ per cent of the total lamber cut in those States. The remaining 20 per cent of the western larch cut came from Washington and Oregon. The 5 -year average (1925 to 1929) cut, by States, was als follows:

Figuan $7,-$ Yearly Iumber gut of western larch, $1005-1929$

MERCHANDISIME PRACTICES

DISTRIBUTION

The practice of using western larch as a filler in less-than-carload lots has been an important aid in enabling the species to enter new markets. Western larch first entered many of the eastern lumber yards, especiatly those in New England, as a filler in less-than-carload orders of western white and western yellow pine. The species found favor with many users, with the result that at present over one-fourth of the select grades of western larch are marketed in New England and in States along the Atlantic coast.
Sales of larch-fir direct to the consumer consist largely of ties and other railroad material, mine timbers, and some box and crating stock. At mills located within the larger centers of population, plant retail departments dispose of considerable larch-fir direct to the
user. Such local sales have resulted from the desire to have local consumption absorb the woods that have a low mill run value and are, therefore, less able to stand the freight charges to distant markets.
The bulk of the larch-fir yard lumber is used in the Mississippi Valley. The builk of planks and timbers and miscellaneous items is used in the "Inland Empire." The distribution of the larch-fir cut to various consuming regions is shown in Cable 1, which is based on the distribution of the cut produced by members of the Western Pine Manufacturers' Association. A general irlea of the distribution of some of the more important products of larch-fir may be obtained from Table 2, which is an analysis of the distribution of the different larch-fir products shipped during a 12 -month period by one mill. A surprisingly large percentage of the larch-fir cut is sold direct to the retailer, especially west of the Mississippi River.

Tanne 1.-Distribufion of larch-fir tumber
[Rased on 1924 shipments of members of the Westimn Pinc Mannifneturers' Association]

Grode	"1mant	Rocky Monirtains ${ }^{2}$	Mississip19 ${ }^{ \pm}$ Yalley, west ${ }^{3}$	Mississippi Vnlles, enst ;	Athantle const ${ }^{3}$
Selects..	Per cent	$\operatorname{Perccmi}$	Per cenl	Per cent	Per cent 27
Nos. 1 and 2, common.	11	9	41	34	5
No. 3, commoli........	10	5	\%	24	2
Nos. 1 and 5 , common.	10	2	, 18	28	2
Thich, common....	31	10	2	55^{1}	l
Dimension....-	21	10	44	25	
PIanks and timbers.	59	II	21	8	I
Misecilancous . .	tis	8	$2 f$	3	l
Battens ant moding.	2		12	3	
Lath: 5-yeur avernge.	8	j	40	35	12

I Idabor Nontana, Oregon, Washiugton.
7 Codorado, Wyoming, lah, New Atexieo, Sevada.

${ }^{4}$ Illinois, Mjehigan, Wisconsin, Ohio, Imfiganh, nend Southery Siates.
Pennsylvanin, Delaware, New derses, New Lork, Araryland, District of Coltumbia, and other Fastern States.

Table 2.-Distibution of larch-fir products by regions
[Based on shipments from 1 mill [ar 1924]

Region to which shimped	Produets					
	Furticalgroita flooring	Surfantad, 2 sides and crater. ппйलेи! Utarintig	Cagling is parti- tion	1rop siding aud rustip shligrlapl	Car sitl- ing ami linims	Boards, sflumre cdged
"Injand Empire"	Per conf. 12	Per cent ${ }^{26}$	Per cent	Por cent	Pircent	$I^{2} \mathrm{Cr}$ cemi
Rocky Mountains......				(1)	--3i0	11
Nississippi Valley, west...		23	15	2.4		46
Atlantic coast....... .-	11	38	48	213		17
T'tala.	1(\%)	100	100	IU0	100	100

[^2]PERCENTAGE OF CUT GOXNG INTO VARIOUS \quad LUMBER FTEMS
More larch-fir goes into dimension, ties, and timbers than into all other items combined. About one-third of the total cat goes into No. 1 dimension, over a third of which is 2 by 4 inches in size.

Tabie 3 gives in detail the larch-fir shipments reported to the Western Pine Manufacturers' Association by association mills during 1928.

Wable 3.-Detaits of larch-fir shimments oy members of Wesiom Piue . Kantfucturers' Association, 192 S

Table 3.-Detaids of tureh-fir shimments by members of western Pine Mumafreturers' Asweiation, fiss-C'ontinued

DESCRIPTIVE PROPERTIES OF WESTERN LARCH

GENERAL DESCRIPTION OF THE wOOD

The wood of western larch closely resembles that of Doughas fir (coast type). Described in standard terms (16), the wood is moderately heayy, strong, moderately hard, moderately high in shock resistimce, stiff, and has a moderately high shrinkage. It is moderately decay resistant, slightly resinons, has no distinctive odor or taste, and has alternate bands of hard wnd soft wool. These clatracteristics are all relative and can be applied equally well to the coast type of Douglas fir, except that Doughas fir is resinous and very stiff. The paint-holding characteristics of the two species are likewise very similar.

Western larch, however, has a monber of distinctive characteristics. The heartwood is a dark reddish brown, and the sapwood a light straw color and very narow ($/ 2$). The annual rings in western latech are exeeptionally narrow and uniform in width. This characteristic is sufficiently pronounced to produce a distinctive figure which the lumber trade describes as "wire grained." The wood is exceptionally slow in giving up and taking on moisture. Its slowness in giving up moisture has resulted in much of the wood being marketed before it was properly seasoned, although if exposed long enough to uniform conditions western larch will eventaally reach about the same moisture content as will other woods. On the other hand, once properly seasoned. its slowness in picking up moisture is a distinct advantage. A much more cletailed description of these and other properties and characteristics of species follows.

HEARTWOOD CONTENT OF LUMBER

The heartwood content of western larch is high because the sapwood is usually only from one-half to three-fouths of an inch thick and consequently is largely cut of with the slab. A study made by the Forest Products Laboratory on westem larch boards 8 inches wide showed the sapwood to occupy less than $\check{5}$ per cent of the areal
of the best face. From 60 to 70 per cent of the boards studied, depending on the grade, contained no sapwood. A somewhat higher percentage of sapwood was found in narrower boards, and a somewhat smaller percentage in wider boards.
The Douglas fir ("Inland Empire" type) has a wider sapwood ring than western larch. Generally the sapwood ring in a Douglas fir \log is over 1 inch wide (12). On an average supwood occupied about 12 per cent of the best face of the Douglas fir" ("Inland Empire" type) Lumber studied. Over 90 per cent of the Douglas fir ("Inland Empire" type) boards contained two-thirds or more of heartwood. The amount of heartwood in the larch-fir mixture, though containing less heartwood than western larch, compares favorably with most commercial species.

GROWTH RINGS

Western larch is one of the slowest growing commercial softwoods; consequently, the anmal rings are very narrow and uniform in width. Studies by the Forest Products Laboratory show that 1 -inch western larch lumber averaged 25 rings to the inch, Douglas fir ("Inland Empire" type) averaged 18, Doughas fir (coast type) 13, wirgin commercial longleaf pine 20 , and mixed virgin and secondgrowth commercial shortleaf pine 8 rings per inch, Ninety-two per cent of the western larch pieces studied had over 18 rings per inch. In thicker stock the average nunber of rings may be slightly less than for 1 -inch lumber, but the difference is not great, for the annual growth is naxrow and uniform from close to the pith to the bark. The ring growth of the "Inland Empire" type of Douglas fir" is wider and less uniform than that of western larch.

SUMMERWOOD CONTENT

Western larch has pronounced alternate bands of hard summerwood and softer spring wood. The summer wood is darker in color than the spring wood and contrasts sharply with it. The summerwood bands of western larch are narrow and contrast with the spring wood much like those in the commercial type of Douglas fir known as old-growth yellow fir. The summer wood in southern yellow pine is wider, more easily measured, and contrasts more pronouncedly with spring wood than that of western larch. The summer wood of eastern and western hemlock and white fir does not contrast so sharply with spring wood as that of westem larch. The high percentage of summer wood in western larch is largely responsible for the weight, strength, and hardness of the wood.

FIGURE
The figure of western larch is pronounced. It is similar to that in Douglas frr, is not so pronounced as that in the southern pines, but is more pronounced than that of western hemlock and white fir. The narrow and uniform width of the growth rings has a marked influence on the figure, tending to soften the contrast resulting from the differences between the summer wood and spring wood. The characteristic figures of edge-grained and flat-grained material are shown in Plate 1.

HOW TO DISTINGUISH WESTERN LARCH FROM OTHER WOODS
The wood of western larch is comparatively easy to distinguish from the wood of all species except Douglas fir (all types), tamarack, southern cypress, and the soathern yellow pine. Even the wood of these species can usually be distinguished from that of western larch by the unaided eye. Structural characteristies visible under the microscope make it possible to positively distinguish western larch from all species except tamarack (12). The distinguishing s'aracteristics of western larch are the reddish-brown color of the heartwood, the narrow and evenly spaced annual rings, the contrast between summer wood and spring wood, narrow sapwood ring, the yellowish-white color of the sapwood, and the lack of pronounced odor or taste.

Donglas fir (all types) is the wood with which western larch is most likely to be confused. Confusion may occur not only because the two woods are very similar in appearance but also becanse western larch is sold in mixture with Donglas fir ("Inland Empire" type) and finds its way into many of the same markets and uses as Douglas fir (const type). The easiest and most general method of distinguishing western larch from Douglas fir (all types) is by the difference in the color of the heartwood. Western larch heartwood has a marked brownish color in contrast with the reddish or yellowish color of Douglas fir. In addition western larch has a narrower sapwood ring, and as a result the lumber contains less sapwood. The ammal rings of both species are relatively narrow and eomparatively miform in width. The rings in western harch, however. are more minform in width and narrower than those of Douglas fir; this is especially true of the "Infand Empire " type of Douglas firs. The knots in western larch are generally smalles, tighter, and sounder than those of Douglas fir. Douglas fir has a distinct odor when freshly ent, while western larch is olorless. Lumber graders often ase the greater weight of western larch as an aid in distinguishing it from the Douglas fir ("Inland Empire" type). None of these characteristic differences, however, is as reliable a basis for distinguishing the wood as is the structural difference visible under a microscope.

The wood oft tamarack can not, with our present knowledge, be pontively distinguished from that of western lareh. Tamarack Iumber in bulk, however, can asually be roughly distinguished from that of western larch by its wider and less nutitorm growth rings and more pronouned summer wood. Fortunately it is not often necessery to distinguish between these species, for they go into different markets and uses, and there is small chance of the lumber being mixed. In addition, the cat of tamarack is small, and it is commonly distribated in mixture with other woods, especially eastern hemlock. The mixture is easily distinguished from the larch-fir mixture.

The color of western larch sufficiently resembles that of southern cypress to cause occasional confusion. The wood of southern cypress, however, can be distingushed from that of western larch by the rancid odor, by the less uniform width of growth rings, and the wider sapwood of the southern cypress. In addition, the summer wood of southern cypress is usually less pronounced and does
not contrast so sharply with the spring wood. With a good magnifying thass western larch can be positively distinguished from sonthern cypress by the resin ducts which are present in western lateh but not in cypress. Necessity for distinguishing between the species occurs when the two species go, as they occasionally do, into the same uses in the same markets. The confusion of the woors results from the use of names such as mountain cypress for western larch, as well as from sipidarity of color and general appearance of some select-grade material.

Westem larch and the hard pines differ sufficiently in appearance so that only occasionally are specimens of one species likely to be mistaken for those of the other. The principal conse of confusion is the presence in both of promounced altemate bands of hard and soft woor, combined with a general brownish color. The summerwood bands of wostern lareh, however. are narrower and less pronounced than those of hard pines, and the brown of the beartwood is reddish in western lareh and yellowish or orange brown in the hard pines. The wood of the hard pines is readily distinguished from western laveh by the more resinous chatacter, wider anmal rings, more pronomed summer wook, and widen sapwook of the hard pines.

The comparisons just made of the wood of vestern Iarch with that of other species are intended as an aid in identifying westem lareh lumber in the bnlk. The positive identification of individual specimens is more diffacult. It quite ofter requires the use of the microscope which will reveal structural differences not visible to the maided eye.' (Pl. 巳.)

GRAIN AND TEXTURE

Western larch has been dest-ribed as a" wite-gtain " wood because of its amfommy namow bands or hard and noft wood. (Pl, 1. A.) Western larch is aho known as an "ntright-mraned" wood; that is, the wood is comparatively free from sipinal ramin and entirely free from interlocking grain, The anomit of coss grain in western hame depends to some extent upon the taper of the logs and the methods employed in manafacturing, for cross grain is produed in sowing as well as in growth. The taper in westem, laceh loge is usially less than 1 inch in 10 feet of Jength (\bar{x}); consequentio the amount of cross grain developed in sawing is smadl. Cross grain is objectionable bectuse of its injurions effect on strengeth (3.3) and its tendency to cause warping.

In texture the wood of western lateh is composed of prononnced altemate bands of summer wood and mpring wood. The wood cells jut the spring wood are larger and mach thinner walled than in the summer wook. (Pl. 2.) As a result the smmmer woot is much harder, heavier and dirker than the aring wool. The contmat between summer wood and spring wood is not so pronounced as in southem yellow pine or in Donirias fir (all types), but is more pronounced than in the hemlocks, spruces, and true firs. The alternate bands of western barch are marrower and more miform in width than in any of the species mentioned. The characteristically marow bands

[^3]

Tech. BuI, 285, U. S. Depl. of Agriculture

N:75.9F M17516F

of western larch reduce the tendency to deflect nails that is sometimes encountered in species with wide and pronounced summerwood banls.

MECHANICAL AND PHYSICAL PROPERTIES

Wood users generally evaluate a species in terms of other species. Tough like ash, strong like oak, cuts like white pinf, are typieal examples. Since this is the common and familiar method of judging the value of species, a comparison of the properties of western lareh with those of other well-known woods is male in this publication. Western harch is represented as 100 points in order that comparisons may be mate with other species by a glanee at the table or figures, As previously pointed out. stald comparisons are of the average inherent properties of the clear wood and hold only when other thingrs such ats defects, moisture content, size, and the like, are equal.
Average values alone are not always ablepuate for the selection of species, for individual pieces may rary wilely from the aremage. Knowlecter of the probable extent of the variation from the average is therefore often of value. There is about a 5 or-50 chance that any individual piece of western larel selected at madom will not vary from the areage more than the perentage shown in the bottom line of figures in Table 4 ($7: 5$). In other woms. in any shipment about half of the material will not vary from the average more than the percentage shown. For example the probeble variaton in bend-
 extimated, therefore that the bending strength of ouc-half of the pieress of western lawh will fall between is and 102.
The strengeth ralues for western lareh are hased on approximately 2000 tests. The test speciment wat ohtained from three localities seattereal throushout the range of the speries in tha Tnited states. Additional tests of western lareh would probably not change the areage valuse more than 3.1 gee cent in slock resistance amb 1.3 per cent in specilic gravity. Change in other properties would fall bectreen these two axtrennes. The probable change in the other species as a resell of alditional texts will in no case cxeced a per cent in toughness rat el 1 per cent in specific gravity. In many of the species where from two to three times as many cests have been made as in western lard the probalin changes in the average value would be cren smaller than in western lareh (la).
In addition to the testing dome at the Forest Prexhects Laboratory considerable testing of westem lared has bean dome by the Camadian Forest Products Laboratory ($13,3,3$).

Yalues in Table 4. with the exceptions of the white oaks and eastern sproce are for a single botanical speries. The figures for commercial white onk are the arerage of six species that are madeeted muder the name white oak. These six specice of oak are so clasely related that they can not be distingrished from one another by an examination of the word alome. Red sprue and white spowe are also closely related species. very similar in their properties, and are not spparated cominereially. They are sold under the commercial name sf eastern spruce.

Table 4-h - verage mechanical and physical properties of the clear wood of western larch compared with olher species ${ }^{1}$

[^4]
WEIGHT AND SPECIFIC GRAVITY

Western larch is a heavy softwood. In an air-dry condition (12 per cent moisture content) it weighs on an average 36 pounds per cubic foot. (Fig. 8.) Green, it will arerage 48 pounds per cubic foot. The weirht of air-dry material raries with the density, regional climatic conditions, and size of the stock. In the North Central States the average moisture content of thoroughly air-dry western lave is about 12 per cent, and the average weight of thoroughly airdry yard stock will therefore be 36 ponnts per cubie foot. Becanse of variations in density, however, the average weight of the air-dry stock may rary from abont 33 to 39 pounds per cubic foot. In a hot, dey climate, like that of the Southwest. the weight of thoroughly air-dry yard stock may drop as low as 32 pounds per cubic foot in a piece of low density because of the low moisture content common to

 with oflar sperem. Tlic grean weight may buty widely from the arornges shown

that region. In a humid climate, on the other hand, the weight may rin as ligh as 41 pounds per cabic foot in pieces of high density. Seasoned structural timbers average about a pound heavier per cubic foot than yard stock because they do not come to so low a moisture content as does yard lumber. Green western larch varies over a much wider range in moisture content than air-ntry stock hecause of the large variations of the moisture in the living tree. Green westem larch will sellom drop below 3 pounds per cubie foot but may occusionally go as high as th pounds per cubie foot.

A comparison of the weights per cubic foot of green and air-dry western larch and those of other speries is shown in Figure 8. The weight of thoroughly air-dry western larch is between that of southern yellow pine. which is slightly heavier, and that of Douglas fir (coast type). which is slighty lighter. Douglas fir of the "Inland Empire" type is about 5 pounds to the cubic foot lighter than western larch. The practice of mixing western larch and Douglas fir of the "Inland Empire" type reduces the weight of the common grades of the larel-fir mixture from 2 to 4 pounds per cubic foot, depending on the percentage of Douglas fir present. The weight
 ture. In the select grades the weight of the species in mixture will seldom be more than a pound lighter than western lareh because of the small percentage of the select grades obtained from Douglis fir ("Inland Empire "type). The weight of the lardh-fir misture in a green condition is materially lower than tio weight of green western larch, especially in the common grades.

The specifie gravity is another and useftel measure of the weight of western lateh. When oven dry, western lablh has am average specific gravity of 0.48 ; that is. a conher foot of westem land at practically zero moistare content weighs 0.4 of the weitht of a cubic foot of water at 39.2 : F. The specifie gravity is the efore a measure of the amount of wood sulstance, and asife from actual tests is the best indicator of the strength as well ats of a mumber of other properties of woon.

A survey was mate by the Forest Products Laboratory of the range in specific gravity of western larch. Nine hundred and tev-enty-two samples were selected at random from shimments of western lareh as they left the milis. The samples were collected at three mills and included material of the select and common grades and of a number of difterent mill products. The resolt of the survey is illustrated in Figure 9, which shows how a humber pild of weetem larch would look if id were sorted and piled in aremolance with its specific gravity. A month curve is drawn through each of the tiess. This curve is a variability curve. Similar variability curves are oned thronghout this halletin to show the range in properties of wesiern lardi. The value of surla a curve is that it gives a better idea of the general rim of the species than can be obtained from average values alone. For example. Figure 9 shows that 1 per cent, or one piece in a handred, of the western tarell has a specific erasity of only 0.34 , or 60 per cent of the average specific gravity, and 1 per cent of the pieces have a specific graty of 0.5 . which is about 29) per ent higher than the areage specifie irmvit:. Also, the lightcot pieces have only about one-haft the specific gravity of the hoviest. The carves at the end of the lars in subserpuent figures mas be considered as representing the chat viow of piles of lumber sorted in accorlanew with the property under consideration. just as in Figure 9.

A rough rempral comparion of the properties of western lareh with those of other species can be nade quiekly by comparing their: specifie gravities. Figure 10 is a comparison of the average and range in specific gravity of western larch and six well-known species. The data on which the comparison is based was obtainel from specimens selected at random from material as it left the mills. The average ralues and the range in ralues diffur slightiy from the data in Table 4 beciuse of differences in method of welection and text. For exnmple, the areage specific gravity of western bath is shown as 0.48 in Table t. based on selected samples from selected trees. and 0.5 in Figures 9 and 10. based on tandom selection of material ats it went on the market.

BENDING STRENGTH

The dear wood of western larch has a high lending strength. bending strength is a measure of the load-enrying capacity of clear wood when used as a beam. The bending strength of western larch

Figune 10 - - verage specife gravity and range in specife gravity of western larch compareta with othet species of wood ; based upm 4 labdom selection from slding. fibisit, conamon bourds. dimessjon, fooring, chig-lan, anct oher tems of lumber ns shipued from the milis, Average shown by the end of the morizotatal bat ant ranga by the carve. One-hatif of nly material of at spertas of womk fell withat the ramge shown by the blank space betwees the erosshatched areas: 49 per and in the bange shown by the erosshatching, 20 ger cont nbove tho nverage, and 20
 5 par cent below, fedl outside the range showa by thr curve
averages about the same as that of Douglas fir (const type) but is not quite so high as that of southern yellow pine. It averages higher than that of southern cypress, tamarack, or Douglas fir of the "Inland Empire" type. The bending strength of larch-fir mixture in the common grades is therefore lower than that for western larch. The select grades contain only a small percentage of Douglas fir or contain only western lurch.

Figere 11.-Ayerake and range in bmiding strength of elar wowl of western lateh at conpared with that of nther sbaciet of wond. whe compartsion shown hers is fur char lumber. The efrect of defects, diference in dressed
 verse the reative values as chartel. Western larch taken as 100 points. Averge th shan by the chat of the horizuntat hatr nat ratige by the curve. One-hant of all minitrint of n spectes of wow will call within the range shown by the blank space betwem the urosshateched arens $; 40$ per cent in the rang slown by the crosshatehing iot per ent nhove the nverage
 σ per cent below, will fill outsite the rillge shown by the eurve

A direct comparison of the bending strength of westen larch with other species is made in Table 4 and Figure 11. The comparison is of value in judging the suitability of species for uses requiring comparatively small, clear pieces, such as ladder steps, automobile decking, cross arms, wagon tongues, and automobile body parts.
Bending strength is one of several properties required in structural timbers for mines, bridges, and factories. Such structural material contains defects, and the bending strength of individual pieces is dependent more on the size, number, and location of the defects than on the strength of the clear wood. The suitability of western larch for structural purposes is therefore best determined from the working stresses (p. 58), which are based on comparable grades and which take intu consideration the influence of the defects permitted by basic requirements of American Iumber standards for structural material (28).

COMPRESSIVE STRENGTH (ENDWISE)

Western larch ranks high among our native softwoods in tho compressive strength (endwise) of its clear wood. Compressive strength end wise is a measure of the load-carrying capacity as a post or short column; that is, one whose length does not exceed 11 times its least dimension. The compressive strength of western larch averages lower than that of longleaf pine and about the same as that of Douglas fir (coast type) and loblolly pine, and higher than that of

 wood of western lareh as compared wita thett of tather suedies oi wood.

 Ome-half of all morerind of a species al wood will hall within the dange
 range shown by the crosshatehfor, 20 jer cent athore the atverate and 20
 1ent below, will fall outsitie the range showli by the eurve
southern cypress, the hemlocks, or the spruces. Douglas fir ("Inland Empire " type) averages thont 13 per cent lower than western larch, and larch-fir mixture therefore has a lower compressive strength.

Compressive strength (endwise) is one of the most important properties recuired in mine props, porch columns, and posts that support girders of bins of buildings. In columns whose length is in excess of 11 times the least dimension, compressive strength (endwise) becones less important and stiffness more important. A comparison of compressive strength (endwise) of western larch with other species is made in Table 4 and Figure 12. The comparison is directly applicable to small, clear pieces used as posts. A comparison of large-sized structural posts containing defects is best made on the basis of the working stresses given on page 58.

HARDNESS

Western larch does not mar, dent, or scratch readily. It is a hard softwood. Of our important commercial softwoods, only the sonthern yellow pines are harder than western larch. Douglas fir (all types) is softer, and the soft pines have only about half the hardness of western larch. (Fig. 13.) Westem larch is, however, not nearly so hard as the denser hardwoods, such as the onks, beeches, maples. and yellow birch. The larch-fir mixtare of the common grades will average lower in hardness than western larch, for Douglas fir ("Inland Empire " type) is 9 per cent softer. The average hardness of the mixture will not vary greatly in the select grades from that of

Pregre 13-Average and range in hatiness of elma wood of westera lareh as compard with that of othur spectes of woot. Comparison is alp-
 prin larch taken as 100 points. Average is shows by the pad of the borizontal bar tand raufe by the curve. Ous-hate of all the material of a species of wood will fall within the ranse thown by the blank spate brtween the erosshatehed ureas; 40 pri cent in the ratite shown by the erosshatching, 00 pre eent aloove the nvernge, and 20 per cent brlow the averige; while 10 per cent, $\overline{1}$ per cent aloye and $\overline{5}$ per cent below, will fall outsife the range slown by the emve
western larch. The small difference in the average havdness of the larch-fir mixture and western larch is not, however, a true measure of the resistance of the two to wear. Even a small percentage of the softer Douglas fir in a larch-fir mixture results in meven wear. Western lareh by itself is therefore preferable to a lareh-fir mixture for surfaces that are to be subjected to heary wear.

There is a pronounced difference in the hardness of the summer: wood and spring wood of western harch. The summer wood is the dark portion of the annual-growth layer and is much denser, heavier. and harder than the lighter-colored spring wood. Western larch has very narrow but distinct layers of hard and soft wood. The alternate bands of hard and soft wood in the southern pines and in that type of Dunglas fir known commercially as red fir me much wider than in western larch. The wood of the white pines is more uniform in hard-
ness than western larch in that they have no pronounced layers of hard and soft wood. Variations of hardness within the anmualgrowth rings should be considered as well as the average numerical hardness in making comparisons. Alternate bands of hard and soft wood tend to cause uneven wear and to deflect nails. In this respect, westem larch is between Douglas fir and the hemlucks.

The hardness of western larch, other things being equal, makes it more resistant to wearing, crushing. or mashing than the softer softwoods. On the other hand, its hardness makes it more difficult to cut, shape, and nuil, but makes it finish smoother and polish better than the softer soltwoods.

CAPACITY TO WITHSTAND SHOCKS (TOUGHNESS)

Toughness or shock resistance is not the most important property in most of the uses into which western lath goes. Where very tough woods are required the heavier hardwoods, such as the hickories, ashes, and oaks, generally are usell because they are so much higher in shock resistance than the best of the softwoods as to practically eliminate the latter. In a number of uses into which westem larch goes, toughness is desired along with other more important properties. For example, strength in bending amd compression (endwise) are the most important properties required in mine timbers. Toughness is desired because, other things boing equal, the tougher the wood the more warning it pives of failure. Likewise, toughness is a desired property in other structural material. It is also important in such uses as ladder rails, wagon tongues, and auto-mobile-body parts, for which softwood species are largely supplied.

Western larch has the same average toughness as Douglas fir (coast type). It is not so tough as sonthern yellow pine or tamarack but is tougher than southern cypress. eastern spruce, or Douglas fir ("Tnland Empire" type). The lower toughness of the Doughas fir ("Inland Empire" type) results in the average toughness of the clear wood in the common grades of the larch-fir mixture being less than that of western lareh. Detailed comparisons of the average and range of toughess of western larch with other softwoods are made in Figure 14.

STIFFNESS

Western larch is a stiff wood. It bends or deffects less under loads than tamarack, southern cypress, the hemlocks, or the spruces. Ib is not, however, so stiff as Douglas fir of either the "Inland Empire" or coast types, nor is it so stiff as the southern yellow pines. The difference in stiffness between western larch and the Douglas fir of the "Inland Empire" type is so small that the stiffness of the hr" infir mixture will not differ materially from that of western larch. The average and range of stiffuess in clear wood of western lath are compared with that of other species in Figure 15. The comparisons hold almost as well for lumber as they do for clenr wood, for defects have little influence upon the stiffness. The comparisons are, therefore, upplicable to all grades.
Stiffness is an important requirement for many uses. It is the most important requirement in joists and studding for dwellings. Stiffiness largely determines the load-carying capacity of long col-

LONGLEAF PINE

LOBLOLLY P/WE

TAMARACK

WESTERN EARCH
DOUGLAS FIP (COAST TYPA)

SOUTHERA GYPRESS

HESTERA HEMLOCK
OOUGLAS FIR(INLAND EMPIAEETYPS)

EASTLRN SPRUCE
EASTERN HEAHOCN

OOUG6AS FIR (GOGXY MOUNTAIH TYIFE)
WESTEAN YELEOH PINE

Figunt 14.-Average and range in simod resistance of clens woak of western Iarch as compared with that of other spectes of wood. The comparison atown is for clear lumber, Westevu lazeh taken as 100 points. Avernge is shown by the end of the horizontal bar and range by the curve. One-half of all material of a species of wood will fill within the range shown by the blank space between crosshateled areas; 40 per cent in the range shown by the erossoatehing, 20 per cent above the average and 20 per cent below the ayerage; while 10 per cent 5 per cent noove and $\overline{5}$ per cent below, will fall outside the ramag silown by the curve

LONGLEAF PINE
oOUGLAS fir (COAST TVPG)
COBLOLCT PATE

WESTERN LARCH
TAMABACK
WFSTERN HEMLOCK
DOUGLAS INE (fOCNY MOUNTAIN IYPE)
SOLTTHERN GYPRE5S

EASTERN JPRUCE

EASTEAN HEMLOCN

YFSTERN YELLOW RING

 bat is applicable to lamber almost as woll, froviderd the claesget size atat

 of the horizontal bar and minge by the curve. Onc-hing of alf maferial of a spreics of wood whil fall withln the range slonvis by the bunk sinkee between <rtashatehed areas; 40 pur cont in the mang ghown by the crosshatohime

 by the curve
umns; that is, columns which fail by bending rather than by erushing. Side rails of ladders and fontboards of bleachers are examples of other uses in which stiffness is an important requirement.

SEASONING

The satisfactory use of western larch is predicated upon proper seasoning of the wood. No single factor has operated more to discredit the real merits of western larch than has poor and inadequate seasoning.

Western larch is free from such serions drying difficulties as staining, collapse, or honevcombing. The comparatively slow rate at which the species dries and the tendency of material 10 inches and wider to cup, check, and split are the principal difficulties in drying western larch. The slow drying rate of the wood often results in western lazch being marketed before it is thoroughly dried. The tendency of wide widnas to check or split daring air sentoming has resulted in manufacturers cutting three-fourths of the select grades into widthe 4 inches and under and abont thre-fourths of the common grades into thickness 2 inches and over. About one-balf of the common grades are 6 inches or less in width and practically none are wider than 12 inches. Sieh cutting practice has reduced trouble from cupping, checking, and splitting, but the real solution is to be found in proper kiln drying.

All sizes and grades of western larel can be satisfactorily kilmdriecl. Boards 1 inch thick and 10 to 23 indes in width, green from the saw, were kitn-dried at the Forest Problucts Labomery to a moisture content of 6 per cent in serea days with the drying schedule shown in Table 5 . Higher kiln temprontures than these in Table 5 will shorten the drying time even more. Such increased temperatures, however, require sreater care if expessive casehardening is to be prevented. Schednles for kiln-hring western harch in thicknesses manging from I to 3 inches are arailable in publications of the Forest Products Laboratory (25).

$\begin{aligned} & \text { Tinte } \\ & \text { in } \\ & \text { kiln } \end{aligned}$	Relative hamis!ity	'Temperature of sir	Combition of hamer
fionirn	Pecrent	${ }^{\circ} \mathrm{F}$.	
0	100	1619	
3	4	165	Dryimg begitas.
24	± 0	165	Frese water ey momating.
48 72	80	(6)	Th.
72 $\$ 9$	90	165	Do.
¢ 92	10.	189	Fituersataration meine reached.
134	45	165	Dryink amal shrinkate.
120	47 40 40		\} Panger ef chsehardoninj and checking.
148	30	105	

The best results can be obtained by kiln-drying western larch and Douglas fir in separate charges since western Iarch requires a longer schedule than Douglas fir in the select larch-fir grades. Separate drying, moreover, results in increased kiln output because of the faster drying of Douglas fir. Drying in separate charges is also
accomplished with less degrade because each species can be treaten according to its drying requirements.

All western larch products intended for use where they must stay in place well shonh be kiln-dried to insure satisfactory service. The relatively large shrinkage of the wood makes it necessary to dry as near as practical to the moisture condition t^{2} e wood will have in use. Interior finish in heaterl buildings in the Yortl Central States, for example, will average about 7 per cent moisture content or lower. In unheated buildings interior finish will seldom average above 12 per cent. An average moisture content of 8 to 10 per cent is therefore required to reduce shrinkage to a minimum. Such low mois-ture-content valnes am not ordinarily be obtained in the "Indand Empire " by air seasoning.

Abont one-fourth of the westem larch lamber proxluced is now kiln-dried. Within the locality that produces the bulk of the westeru larch lnmber dry kilns are now the exeption rather than tho rule. Anong the manufacturers that are equipped to kiln-dry the bulk of their daily cut. for prokluce partically 15 per cent of the total cut of western larih lumber. There is now, however, a very decided tendency within the "Intam Empire" to increase kila capacity.
Western larel recuires a much longer time to thoroughly air seitson than most softwoods. (Fig. 16.) Moisture determinations made on stock after 34 months air seasoning in the "Intand Empire" showed ralues too high to be satisfactory for wood going into interior and dry locations. The moisture content of several humfer sampleselected at random from winter shipments of western larch that had been in the pards 19 to 34 nouths hat approximately one-third more mosture than the average of several thousand specimens similarly selected from 10 of the leading softwood species. Similar determinations on summer shipments showed the aremure mosture content of western lareh decidedly higher than that of the other softwooks studied. Tine in the sensoning pile can mote therefore be relied upon by either proflucer or consumer for a satisfactory indication of the adecuacy of seasoning.

The slow drying characteristios of western lared and the tendency of wide material to cup. eheck, and split present a perplexing problem in air seasoning. Clecking, splitting. and warping are due to aneven shrinkare, and all may be rellucel by methods of piling. Shating the ends of the stock will tecrease the end checking and splitting. Warping can be reluced by piling methods that hold stock firmly in place and in aligment during drying. Surface checking can also be prevented by slowing down the drying rate. The siow drying characteristics of the western larch, however, make it problematical whether methods of piling to reduec degrade. whieh slow up drying, are commercially feasible. Where air drying mast of necessity be practiced the moisture content should be frequently observed to be sure that the materin? is dry enongh for use and the seasoning should be studied to determine the piling methods that will give a satisfactory drying rate and still prevent excessive dorrade.

The benefits from grod seasoning are operating to improve the seasoning of western larch. The advantage of reduced shipping weights, especially with a wood as heavy as western larch, and the
adrantages of decreasing degrade are evident and appeal directly to manafactures. To the the omsumer man and another indirect but more powerful appeal by an insistent demand for thorodghy setsoned wool. The comsumer shombly make this demand to protect himsely from unsatisfactory service from wool otherwise athirably athated to his use. The improved seasoning which will result from surb a demand will benefit the somsumer, the producer, and the mereries.

SHIRINKAGE

Western lateh shrinks more in drying from a green to an oven-dry condition than to any of the prineipal sort woors but hess than many of the hearier, conmercially impotant harhoods. The a werare shrinkage of tamarak the smathern yellow pines, and eastern spare is only wightly less than that of wextern lareh. The difference in shrinkage betwen the forgroing speries and wesern lareh is not important for most practical purposes. There is a significant ditference, howeyer. bet ween the shrinkige of western hate and Donglas fir (all typer:). sombern cypress. the henkerks and the sott pines.

The lareh-fir mixtme shrinks less than western lareh bectuse t'e shmakge of Donglas fir ("Inland Eapire" type) is onty 87 per cont of that of western laredh. In the eommon grathe the shriakage of farch-fir will averare about :3 per cent of that of western larh; in the selert grades about ger cont since 90 per cent of the selects ate wextem lareh.

A comparison of the average and range of shrinkage of western larch with that of several other softwoods is shown in Figure 17. The comparison is based on the total shrinkage from a green to an oven-dry condition measured on specimens 1 inch thick, 4 inches wide, and 1 inch along the grain, which is a stanclard size used with all species in order to obtain comparable values. The comparatively large shrinkage of western larch is not primarily the cause of trouble resulting from changes in dimensions because several species with higher shrinkage than larch are used for exacting purposes with satisfactory results. Where change in dimension is of sufficient size to cause trouble it is usually the result of inadequate seasoning or

Figcte 17.-Average ind range in the total sitinkage from a ment to an oveu-firy condition of small, eleat pleces of western litrers ns emmprirgd with that of other giveners of woorl. Westersi gareh taken us 100 moints. Averuge is shown by the end of the lorizontal bar and ratur lay thas curva. Ome-half of all material of a species of waod will fait wiltill the mage tllown ly blathk spare buwern arosstatelera arias ; 40 per cent in the range shown by

 por rent bidow, will fall sutside the range showis by the eurre
of storage conditions. When the wood dries in place the changes in dimension are, of counse, relatively large and may result in unsatisfactory service. Such changes eanse the shrinkage of wostern larch to appear larger as compured to other woods than it is. On tho other hand, when the wool is used dry the slowness with which it picks up moisture reduces the tendency to change dimension and makes the relative shrinkage appear smaller than it is. The shrinkage of western larch, although relatively high, does not prevent the use of western lareh for flooring, interior trim, and other purposes where only small changes in dimension are permissible.

Under most conditions differences in the shrinkage of western larch and other species are not so important as the moisture condition of the wood at time of use. For example, the shankage of northern white pine is about two-thireds that of western larch, but western larch shrinks over twice as much in drying from 18 to 6 per
cent as it does in drying from 12 to 6 per cent moisture. Shrinkage troubles with western larch, as with other species of wood, can be largely controlled by proper seasoning, but it follows that proper seasoning is more important with high-shrinkage woods than with small-shrinkage woods.

The average shrinkage to be expected in western larch lumber between any given moisture conditions can be obtained from Figure 18. For example, to determine the areate change in dimension of 1 by 4 inch, ed dege-grained, western larch flooring between 6 and 12 per cent moisture, which are the approximate winter and summer moisture-eguilibrium conditions of flooring in heated buildings in New England and the Lake States, a line through 6 per cent moisture meets the edge grain or suldial shrinkage curve at 3 per cent. A similar line through 12 per cent mects the edre-gratin curve at 2 per cent. The difference between the two ralues is i per cent. One per cent of 3 B/s inches (actual width of nominal \pm inch floming) is abont one-twenty-eighth of an inch. A simitar determination for flatgrained flooring shows at change in dimension of about one-fifteentla of an inch. The curves of Figure is are based on measurements made on short sections of boards selected from a commercial run of lumber (19). The shrinkage in the width of flat-wann western Larel lumber from a green to oven-dry condition is about 7 per cent of the original green width. The shrinkage in width of etge, or vertical-grained, western litech lumber is 4 per cent of the green width. Most of the shrinkage in westurn lateh takes phace below 28 per cent moisture. The small amount of shrinkage (about onehalf of 1 per cent) that takes place above 28 per cent moisture comtent is of little practical importance. Some shimkage dous oram in lumber at high mosisturecontent rahues (40 per cent); it is very small, however, only a small fraction of 1 per cent, and is clue to the drying of the ontside fibers while the interior of the piece is still in the green condition.

ability to stay in place

Ability to stay in place is a desirable property in all lumber. It depends on a combination of the shrinkages and the tendency of the wood to warp. Shrinkage is a measure of the change in dimension. Warping is the tendency of wood to change in shape. From the log to the finished product warping and change in dimension are it source of loss and trouble.

In so far as shrinkage is concerned, previous comparisons have shown that western larch changes in climension more than most of the softwoods, but not so mach as the denser or heavier hatwoods. The change in dimension of thoroughly seasoned western lareh is not sufficient to cause complaint in such uses as interior trime and finished flowing, but would be objectionable in such uses as patterns.

No numerical evaluation can be male of warping tembencies, either for comparison of species or for determination of amomes. The tendency of western larech to warp, however, can be judged to some extent by its past behavior and geveral reputation. The species hats given some tronble in seasoning from cupping. mpecially in boards of widthe in excess of 10 inches ($p .27$). Because of its straight grain, little trouble has been experienced with western lareh from
warping of the twisting type. Once properly seasoned, western larch stays in place, well. The dry wood has a reputation among retailnes of "yarding" well; that is, it is easy to pile. stays straight in the pile, and the degracle in storage is small. Its reputation among users for staying in place is good with those who use it for framing. subfloors, sheathing, and other rourh usages. indicating that the wood will not work out of place sufficiently to be objectionable in such uses.

FigCle 18.--Shrinkige of fint and edire prainfi western
 form of 1 -inch hantils cat fram eonathereind ran of
 this chart of tha amount of elomme for dimpersion that will lako place with ehathes in the mojiture content of thin wand

EASE OF MACHINING AND WOREING
Smooth surfaces are pasy to oltain with western larch. but the offort or power reguired is relatively high for a soltwood. The smoothness of the surface is probably due to the hardness density, and uniform narrow ammalgrowth rine of wood. The hardness and the alternate bands of hard and soft wood are responsible for
the amount of power and effort required to work the wood. The smoothness of the dressed surfaces is quite noticeable in the piling or handling of the lumber. The boards slide on one another more readily than boards of the other western softwoods. A tendency of quarter-salwed stock to sliver on edge or for edges to feather is atso noticeable in handling. The altermate bands of hard and soft wood are laredy responsible for this tendence. In oreasiomal shipments the feathering of edges of quarter-sawed stock has beell sulficient to be objectionable. When feathering is snfticiontly pronomeed to bo objectionable it is probably the renllt of working the wood while it is still wet. Dull knives or poor machining may also be responsible for feathering.

In ease of working and machining, westurn larch is hetween Douglas fir (all types) and longleal pine. The Doughas fir (all types) is softer and easier: to cut, saw, mad shape Thit doess not dress so smoothly. Longleaf pine and shotleal pine are harder and require more offort to cut, saw, and shape, while loblolly pine requires about the same. The narme and mifmom width of growth rings of westerob lareh have a farmble infiene on its workabily: reducing the adrerse influene of attermate bands of harel and woft wood. Ifs hardness increnses the tendency of knots on break or crack in planing. This is evident in the lower grates. where broken knots are more prevalent than in the Donglas fir ("Inlame Fupire" trpe). On the other hamb. fhe elear whed of western lared dresese to a smother surface and breaks back less in wowsulting than Donglas fir, that is, the sawed surface are deaner wat and the etpen of ends less wivery. The hembocks, true firs, and sures aw all caier to chat than western larch, but the edgers and surferes are no so groxl.

The moisture content has a prondmed mifuence on the ease with which a wood works. Wet or green wool ants and saws easicer than dry wood but does mot finish io so stmoth a surface. Wood has a tendenery to fuze when phaned be fore it is thoromply dry. The grain also may rise or lossen. The tembeney to fuzz. however. is not so pronomed in westem lareh as in softer wooks. But the tendency of the grain to rise or loosen is greater than in bore uniformly textored woonts.
When saws or planes stick in working westem lath the sticking is caused by galaction mather than by resin. Gabactan is a watersolnble extractive which occasionaily exules on the surface of westem lateh. Galactan has a loss pronnunced effect on workability than the revin in sud wools as Donglas fir (all types) and the sonth(ern yellow pines. Wiater is neol to eliminate trouble from galatan ghestas kerosene is used with resinons worls. Gabactan seldom canses trouble at the plamer but dows at times pum the saws. Troulde from this source oceuts principally with green wook.

NAIL-HOLDING CAPACITY

One of the desirable properties of western lareh is its high mailholding power. Not onty does the wood hold nats well when they are first driven into it, but it retains its mail-holding power well under varying moisture conditions. All woods lose heavily in nail-holding
power when the nails are driven into wet wood that later dries. Some species retain only about 10 per cent of their original nail-holding power under such severe conditions. It is, therefore, poor practice to nail into wet western larch or any species when the wood will later dry in use.

Western larch ranks near the top of the softwood erroup in mailholding power (17). (Fig. 19.) It is between longrieat and loblolly pine in nail-holding power and is higher than Douglas fir (coast type), the hemlocks, soft pines, or the spruces. It is ligher. for example, than red gam, a hardwood used extensively in antomobite bodies, where nail and sorew holding properties are important reguirements. There are no data available on the mail-holdiner power of the "Inland Emppire" type of Donglas fir: therefore a comparison can not be made between western larch and latch-fir mixture. Judg-

 oher from dry+ clear wood of westarn lareh is compmern with that ot oller sperefes of wood. Western lareh is laken its 100 points
ing from the specific gravity of the two species, howerer, it appears probable that the nail-holding power of Doughas fir ("Indand Empire" type) is between 10 and 1.5 per cent lower than that of western larch.

The foregoing comparisons and those shown in Figure 19 are based on pulling tests of 7 -penny coment-roated nails Iriven into flatgrained and edge-gramed faces. Other tests indicate that the comparisons will hold for other sizes and types of nails.

Data on only a small number of species are arailable for comparison with western larch for retention of mal-holrling power us the wood dries out. The comparison of retention of nail-holding power is compliented by the influener of time. Tests mate on the resistance to withdrawal of nails driven into erreen wool and pulled after the wood had thoronghly aidedial showed western lardi retained its nail-holding power well.

The high nail-holding power and high retention of holding power in drying of western larel are a desirathe combination of properties, espectally in such uses as in boxes and crates. which change from damp to heated storage. in freight cars, which are subjected to a wide range of climatic conditions, and in automobile bodies, which are alternated between heated garages and direct exposure to the elements.

SPLITTING

The prevention of splitting in seasoning, nailing, and handing western lareh refuires special attention. In air seasoning. splitting is partly controlled by mandiacturing narrow wilths in preference to wide ones; in kiln-irying, hy the hase of special drying sehedness

Figene 20 - Rebults of fests on the inherent splitting resistance of clear wool of

 splittlog in milings
(p .2 Z) ; and in mailing, by the use of blant or smaller mails than are used with lightere softer, and more uniform textured wooks. The tendency of western darh to split in sensoning and handling is due to the low inkerent resistince of the wool to splitting combined with its comparatively high shrinkage. The high hardness of the wood combined with its low inherent splitting resistance is responsible for fhe tendency of western lard to split in mailing.

Western larch is easy to split with welge or ax. (Fig. 20.) The inherent resistance to splitting of western larch is aboat the same as that of spruce and the white pines. and is lower than that of Douglas fir (all types) and southern yellow pine. Douglas fir ("Inland Empire "type) has a high inherent resistance to splitting; consequently, the average splitting resistance of the larch-fir mixture in the common grades is ahout the same as that of the southern yellow pines and is higher than that of Douglas fir (coast type). In the select grades, where the pereentage of Donglas fir" ("Intand Ens-
pire " type) is small, the average splitting resistance is about the same as that of Douglas fir (coast type). The forcgoing comparisons are based on wood free from shakes, season checks, or other detects.

Western tarch does not split in nailing so much as would be expected from a study of its hardness and inherent splitting resistance. This was shown by a recent stody at the Forent $l^{\text {P }}$ roxlucts Laboratory in which a farere number of nals were driven inter a small number of specimens selected to represent the range in sperific gravity and ring growth to be found in westem lareh and five other softwoods. The percentage of splits in western lareh was shightly less than in Doughas fir (coast type) or in westron hembek, but slightly greater than in sonthern yoblow pine, sonthern egpess, or white fir, and se veral times greater than that in morthem white pine. Wide-ringed materm spit more umber the mails than narow-ringed materiak, which aceonted to some extent for the faromble showing made by western laveh. Edge-graned material split loos than flat-grained material or material in which the grain was intermediate between flat and edge. The heary specimens of a species eplit more than the hight ones of the same speries. These are fartors which shouk be consitered in comparing the sphitting resistance of western hareh with other speries. The comparisons, howerer, should all be comsidered as tentative until a more compehensive stady can be mate of the tembercy of wools to aplit in mainge.

GLIING CHARACTERISTICS

Glued joints as strong as the wook in shear and tension perpendicular to arain can readity be mate with westam lareh. Such joints can be produced with both dat-qramed and edge-aratined material by the use of the whethles of Table o with regetable amimat. on cescminghes. The chavacteristio fallares of western larch ghen with weretable ghe awe shown in llate 3. The photorraph, which is also trpical of taihures with amimal and rasem gines. shows how the wook tore apart while the gine held, imbeating that satisfactory joints weme obtamed.

Kind of glue	I'ropiar. tion af ghan to water by trpitat	Gilue spread	'romprosutame of the wormi	Tressure	Clased uscentily time ${ }^{3}$
Antmal 4.			${ }^{\circ} \mathrm{H} \cdot 0$		$\begin{aligned} \text { Whater } \\ 1 y_{3} \end{aligned}$
		近			
		70.7	40	125-135	$\stackrel{2}{7}$
		Tise	90	13-17n	\cdots
		\%080	50-60	${ }_{1519} 1818$	10
Cascin ${ }^{\text {S }}$.-	3:2	号-	70.6	1.10.900	$5 \cdot$
Segetable:	$10: 318$	60.70	T0 59	$1(0) 160$	$0-20$
Segctabie ${ }^{\text {- }}$	1:27:	70-60	3080	100.150	1 -2.

[^5]
∞

The animal-glue schedules of Table 6 are recommended (26) for use with the sapwood of eastern red cedar, sotuthern yellow pine, and western yellow pine, as well ats western larch. More restrictive schedules are recommended for the heartwood of castern red cedar, heartwood of southern cypress, and many of the hardwoods.

The average strength of glued joints made at the Forest Products Laboratory with westem laceh was high for a softwood. Joints made with vegetable or animal glue in accordance with the schedules of Table 6 averaged over 1,600 pounds per square inch; with cascin glue, over 1,800 pounds per square inch. Under extremely adverse conditions, animal glue joints averaged over 1,200 pounds jer square inch.

PAINTING AND FINISHING CHARACTERISTICS

Western larch exposed to the weather should be painted at relatively frequent intervals. In this respect western lareh is classed with Douglas fir (const type) and southern yellow pine. These three woods, largely because of their high density combined with their distinct alternate bands of hard and soft wood, do not hold paint so long as the lighter and more uniform textured softwoods. The paint on western larch fails by faking from the summer-wood bands. (Pl. 4.) Repainting, however, is generally advisable before flaking takes place in order to protect the wood from checking and to preyent cupping. The white pines, cedars, southern cypress, and redwood hold paint the longest of any of the woods studied at the Forest Products Laboratory. The spruces, true firs, hemlocks, and western yellow pines were between this group and westem larch.

The Forest Products Laboratory is studying the painting characteristics of 17 native softwoods, including westorn larch. The study has been in progress for seven years and is conducted on panels exposied on test fences at widely scattered points throughout the United States. The test panels include flat-crained and edge-grained material and both white-Inad and lead-ginc paint are used. Details of the work and the conclusion drawn from the study are available at the laboratory (6).

The species comparisons just made are based on the behavior of paint on clear wood. A special study of knotty western larch showed that paint did not discolor around knots and that knots held paint well, there being no early flaking of paint from knots. (Pl. 5, A.) Shellac or other knot sealers are therefore unnecessary and should not be applied over the knots in western lareh. The indications from this study are that paint on knotty western latch will maintain a better general appearance than on woods with high resin content.

Ordinarily western larch that is freely exposed to the weather should be repainted at intervals of about three years. The time, however, varies greatly with exposure, climatic conditions, with edgegrained and fat-grained material, and with quality and type of patint. If surfaces facing sonth are shaded by trees or buildings, repainting may not be needed oftener than once in four or five years. On the other hand, under adverse climatic conditions, where at times there is much sunshine. little rain, and periods of low humidity, it may be necessary to renew conting oftener than every three years.
Prepared paints containing a moderate proportion of zinc oxide can be used to better advantage on western larch than they can on
heary softwoods that contain more resin, because resins seem to affect adversely the durability of paints containing zinc oxide.
Edge-grained material reguires repainting less often than hatgrained material. (Pi. 4.) While this is true of practically all softwoods, the difference is much more pronounced in western larch than in lighter and more uniform textured woods. On an average the paint coatings lasted about half again as long on edge-grained larch as they did on flat grained in the tests at Madison, Wis. Again, the time varies widely with climate, location, and type and quality of paint. Where flat-grained boards are used, especially ont of doors, they should be placed with the sapwood side rather than the heartwood side exposed to the weather. This will largely prevent the development of loose and raised grain.

The durability of paint on western larch can be increased at least one year by applying one coat of exterior aluminum paint (\%) to bare wood before painting with ordinary house paint. Such a coating, consisting of one coat of aluminum primer and two coats of white or light-colored paint, costs about the same as a standard 3 -coat job but lasts longer because flaking of the coating from the summer wood is retarded. When the added durability is considered, the cost of the coating with aluminum primer and two top coats of ordinary paint is usually less than the cost of a 2 -coat paint job, even if skillfully applied. With paint of a dark color one coat over aluminum primer is sufficient.
The results of the painting study are not directly applicable to interior conditions. The painting of interior woodwork is primarily for apparance or sanitation rather than for protection of the wood. Normally, checking of wood or flaking of paints from summer-wond bands does not occur on interior trim. Repainting time for interior trim is therefore normally the result of the soiling of the paint by dust, soot, grease, or the like. The hazard from such causes varies witl the use, as does also the amount of soiling or marring which can take place before repainting is necessary. Generally, lighter and more uniform-textured woods are preferred to western larch for smooth-paint and enamel finishes. Where western larch is used it is generally given a natural or stain finish, although it will take and hold paint and enamel finishes. (Fig. 21.)
Beautiful effects can be obtained on western larch with spirit stains or matural finishes. (Fig. 22.) On the other ham, fuming is not recommended for use on western larch, for fuming has little effect on the wool. Three-coat finishes consisting of one cont of penetrating stain, one coat of white shellac, and one coat of interior vamish were applied to western larch specimens, a number of commercial shades of oak stains being ased. Brown and dark mahoyany primers with one coat of interior varnish and no shelace were also tried. The wool took all stains well, and the figure of the flat-grained material was bronght ont in greater relief. Light. bright tones were obtained with natural finishes ronsisting of one cont of silex filler lightly sanded, plus one cont of interior vamish rabberd with very fine steel wool, plus a second coat of vamish which when dry was rubbed with punice stone and rubbing oil. This finish may be waxed if desired.

Two other types of fimishes which grave grood results in tests at the Forest Products Laboratory and which are applicable to either the natural or stained wood are: (1) One coat of white shellac, rubbed with fine steel wool and finished with two coats of prepared wax; (9) one coat of shellac followed by two coats of interior vatnish, each coat except the last being lightly rubbed with steel wool.

A very high polish can be obtained with finish (2) by rubbing the final varrish coat with pumice stone and oil and polishing with an agent composed of 2 parts of white shellac and 1 . part ratw finsered oil. Finish (2) may also be polished by rubbing with punice stone and oil and polishing with prepared was. These matermas properly applied present a pleasing end durable finish.

RESISTANCE TO DECAY, WEATHERING, AND INSECTS

The heartwood of westem larch is moderately decay resistant. It is used satisfactorily without preservative treatment where the decay hazard is not high. Like other woods, however, the life of western lareh is doubled or tripled by a good preservative treatment. Not only is the heartwood of western Invech moderately decay rosistant, but the decay resistance of heartwool is largely rotained in the lumber becanse of the small amount of sapwood it contains. The sapwood of all species rots readily under conditions favorable to decay. The decay resistance of any lumber is, therefore, dependent not only on the resistance of the heart wood, but on the percentage of sapworit present. In judging the suitability of western larch humber for uses requiring tecaly resistance, consideration should, theretore, be given to the fart that repars mad mantenane may be sualler with whetern larch hamber than will hamer of speries wit! mene derayresistand heartwod hut a higher percentage of sapworl. (Fig. e3.)

Figufe 22.-Westerin lareh sitarway aud mand striju showing emett vitaimabla will Jatural and stain flaishes

Numerical comparisons of the decay resistance of western lareh with other species are not satisfactory: Such compurisons based on service records can not be exact for remowal for deray is anway a matter of judgment. In addition, life in service raries widely with locality and use.

A general comparison based on sepvice recomb where avalable, supplemented by general experience, indicates that the heartwood of Westem larch is very similar in decay resistance to that of Douglas fir (all types), sonthern yellow pine and tamarack. Western lireh is chased as lower in deeny resistance than the heareword of the

cedars, chestmut, and senthem eypress, bat higher than the hemberks and spruces. 'flo average life to be expected of untreated western farch ander comditions faromble to deray an indieated by servere rerords on untreated crossties in the " Fuland Empire," was a little ower sewn yeats. Douglas fir ("Inland Empire" type) installed in the same track had practically the same average dife. Western bath treated with sine choride had an arerage life of th years.
All works weather when expowel to the elemants. Weathering in westem larch, especially if the woxl is exposed before thoronghty seasoned, takes phace in a comparatively short time. Copainted western lacels pancls showed some therking three weoks alter exposure. At the end of four yeam the weathering in the western
 or southem yellow pine and considerably more promomed than in
the cedars and southern cyprens. The differene between speries is mach more pronotaced in flat-grained than in edge-grained materiat. The weathering of western larch can be prevented by thoroughy seasoning the wood before exposing it to the weather and by protecing it with paint. The paint should be applied as soon after exposure as possible, and a good paint conting should be muintained.

All native species are susceptible to the attack of termites, or white ants, but some are more resistant than others. The prevention of damage from termites is best accomplished by preservative treatment and special care in construction (22), not by selection of rexistant species.

REACTION TO PRESERVATIVE TREATMENT

Wood-preserving plants report that from a treating standpoint there are two types of western larch. One type treats very much Hike coast-type Douglas fir, the other like the Rocky Mountain type of Douglas fir. The western lavch with treating characteristics fike the Rocky Mountain type of Douglas fir is reported to come from higher altitudes and to have wider growth rings and to be more dilficult to treat than the western darch from lower altitudes, which has the characteristic narrow growth rings of uniform width. Good penetration in crossties is obtained with the narrow-ringed type of western larch when the ties are incised.

Very little experimental work has been done on the preservative treatment of western larch. Most of the information available has been obtained from a study of the experiences of commereial treating plants with the species. Commercial plants are treating a lare number of western larch crossties.

heat-ingulation proverties

No tests are available on the heat conductivity of western larch. Tests made on other species indicate that the heat conductivity of wood is proportional to its specific gravity ($3,21,30$). Westem larch would, therefore, be expected to conduct heat somewhat better than Douglas fir (coast type), but not quite so well as southem yellow pine.

Differences in the heat conductivity of species are, however. of small practical significance in most uses of lumber. The heating requirements of buidings are dependent more on tightness of construction and methot and amome of insulation weed than on the species (20). Wextem lareh and other species all have high insuhating properties as compared with most other structural materials.

PERMEABILJTY BY LJQUIDS

Liquids penetrate westem larch with difficulty. This fact is shown by the difficulty encountered in forcing preservative; into the wood. While the impermeability of the wood is a handicap to preservative treatment, it is a distinct asset in some uses. such as tight cooperage, silos, and tanks. The wood is very similar to I)onglas fir (coast type) in this respect. Liquids penctrate western lareh less readily than western yellow pine but more readily than Douglas fir ("Inland Empire "type).

TENDENCY TO IMPART ODOR OR FLAVOR

The wood of western larch is slighty resinons, falming between the spruces and Doughas fir in this respect. Western lateh. however, is without distinctive oder or flavor. In so far as is known. western larch does not impart odor or flavor to fooct or liguids and normally can be used for boxes, barrels, and tanks without danger of contaminating the contents.

TENDENCY TO LEACH DR EXUDF EXTRACTIVES

Although western larch is stighty resinoms, it hats only a small tendency to exade resin. In this respect westem lard is betweon the spraces and Doughs fir. Western lareh does however, cxade at water-sohuble fum known at gratactan, which is sometimes mitaken for pitch. Galactan exulations are confinel lavely to material from butt logs; consequently, muell of the material rich in gatactan is left in the wools because the butt logs are often too heave to float or are too shaky to be cut into profitable lumber.
The wood of western lareh has wo tamin or water-soluble material that will feach out and stain paint or phaster.

CHEXIICAL PROPEXTIES

The principal chemical difference betwed western lawh and the other softwoods is in the mature of the extractives the wook contains. The basic chemical composition of the woed itself is rery similar to that of other species of softwoot. The wood is peculitir chemionly in that it contains galartan, a water-sobuble gath. (yatlactan can be hydrolyzed into galactose, and can be oxidized inte mucic acid. Galactose. which is a sugar, has no commercial walue at present. The very small amounts, a few pounds, now ased by abiversities and chemical laboratories are obtained from milk sugar. Mucic acid obtained from galactan has been used commercially in place of tartaric and phosphoric acid in the manfacture of baking powder.
The galactan in western larch makes the wood suitable ats raw material for the production of ethyl alcolol. Higher yielde of ethyl alcohol are obtained with western lareh than with oder softwoods becanse both wood and galactan can be hydrolyzed to sugar that can be fermented for the production of alcohol. The species. however, has not been used conmercially for this purpose. principally because practically all ethy aleohol is obtaned commereally from raw materials other than wool.

FIRE RESISTANCE

Western lareh, like all other species. will ignite and burn at temperatures prevalent under fire conditions in structures. The diference in the ignition temperature of western larch and other sjpecies is small as compared to the difference in irnition point of antreated wood and wood which has received an effective fire-refackant treatment. Differences within species with reference to oil. density, and resin are as significunt fiom a fire-resistance standpoint as differences between species. When fire resistance is required in untreated
wood it should be selected for high density and low oil and resin content. High fire resistance, however, is best obtained by giving the wood a fire-retardant treatment.

CHARACTERISTIC DEFECTS* OF WESTERN LAARCH

Natural, seasoning, and machining defects are found in western larch as in all other woods. Natural defects are developed in the growing tree. Their occurrence can be controlled only by selection of trees and grading and selection of logs and lumber. They, therefore, show up in lumber as a permanent characteristic of the wood. Seasoning and machining defects, on the other hand, are developed in the lumber, not in the tree, and are therefore subject to control. Improved machinery. methods. and practices may change the size, character, or number of such defects and may even climinate some of them. Although the frequency with which there seasoning and machining defects occur is. in some cases, influenced by the properties or characteristics of the wookl, they can not be said to be truly characteristic of any species. In the following discussion such defects should only be considered as indicative of what may be expected under current practice.

The frequency with which the more important defects ocenr in western larch is shown in Table 7 . which is based on a study of the defects in 14 of the principal commercial softwools made at a number of representative mills. The occurrence of detects is shown separately for the selet and common grades and for the mill rum.

Defects ${ }^{\text {J }}$	Frecuenes of necurreber in-			Defects ${ }^{\text {1 }}$	Frequeney of occurrence in-		
	Select spandes	$\left\lvert\, \begin{gathered} \text { Commans } \\ \text { Erates } \end{gathered}\right.$	com		Futect grades	Comatmal yraties	$\underset{\tau u n}{\text { Log }}$
	Per ecm	P'er cent	Per rent		Per cent	Pct cent	Per cent
Check.	Fif ${ }^{5}$			Shake	9.2	4.2	5.1
Torn graio	19.4	19.8	19.6	Pitefr streak	2.5	+2.9	5.8
Splut.	S. 8	24.8	15.6	Stain.	1.9	1.7	1.
Pinneture...e	15.5	6.5	10.7	crypped gmin	3.3	. 3	1

${ }_{2}^{1}$ Bused on 1.435 specimens 1 by \sin inches in size, studied by the Forest Products Laboratory.
z The defects are defned in Amencou lumber standards fís.

NATURAL DEFECTS

Kvors

Knots in western larch. as in other speries. are the most numerous and most important of the defects. They are characteristically small. and most of them are eneased. Knot holes and decayed and loose knots are fewer in western larel than in most softwoods, but lonot chusters are more frequent. (PI. 5, B.)
The knots in western larch averaged smaller in size than in any other important commercial softwool studied. The average size

[^6]of knot in the mill rum of western lateh was less than one-half inch in diameter. On an average there were about $121 / 2$ knots in each 1 by 8 inch by 12 foot boird. Most of the lenots were black, but only about 1 in 50 was loose or rotten. The small size of the knots was especially erident in the connmon grades. where the knots arerged only one-half inch in diameter. The knots in the larehfir misture were about the same size as those in western lareh. but there were more of them. Southern yellow pine knots, on an arerage, were about twice as large as those in western lareh. but there were only abont one-hime as many. In Douglas fir (coast type) the knots were somewhat larger than in western larch. and there were nbomt half as many. The smahl size and high guality of the knots in wentern lareh make the common grades of the species suitable for a large varicty of uses.

SILAたた

Shake orenrs in western larel hamber with thont the same frequency that it does in northern white pine. redwoed, and shortleaf pine. The practice of long butting is laterely responsible for the small amount of shake found in Tmaker. Sis and one-half per cent of the western darch boards stadied contained shake. In the select grades three-tourtho or more of the shake was fine " or small. ${ }^{10}$ On the other hant. orer half of the thake in No. 3 common was through."

The larch-fir mixume had less shake than western lareh becanse tha Dourlas fir ("Inhand Empier " type) contained shake in only the per cent of the boards studied.

PICCII JOCKFTS

The piteh pockets in the western bareh studied were smaller and loss numerons than in other rembens wools. On an areage about 1 western hard board in 10 had a small ${ }^{\text {be }}$ or metlimu ${ }^{\text {a }}$ pitch porket.
 type) averaged about one pitch pocket to every thard. while the hard pines areraged a pitel pookent to abont wery 3 or 412 boards, depentine on the species. The tran firs, hembocks, and southera
 type) had a pitch porked in about ereery sixth hoard. The havehfir mixture therefore had more pited porkets than westem lareh but not so many as Douglas fir (erost type) or the hared pines.

rition

Pitch ocerus in western lareh with alont the same freghency that it does in Douglas fir (coast type). The piness at a group, contain more piteh. In the western lareh studiect about 1 board in every 20 containerk pitch. Piteh accured more freguently in the select

[^7]than in common grades．Where pitch occurred it was principally of the light ${ }^{14}$ or mediom ${ }^{15}$ rather than of the heary ${ }^{15}$ or massed ${ }^{17}$ variety．Only about 1 western harch board in each 150 contained heavy or massed pitch，and these were bonds in the To． 3 Common grade．The larch－fir mixture eontaned more pitelt than did the western larch．The difterence．however．was mall．for only ithout 1 Donglas fir（＂Inland Empire＂type）berard in 1＂）eontained piteh．

JRTG［L＊TRI：ねにな

Very few pitch strealis are fomm in wostern dard，fewer in fact than in any of the softwoods that are stibject to piteh．The results of a survey hy the Forest Produts Laboritory show about I western lasch bourd in 40 contained a pitch streak and that about wo－thirds of the pitch streaks were small．ts Piteh streaks oceured about twice as frequently in Donglas fir（＂Inland Empire＂type）ats in western larch．Other resinoms woods．depending on species，eon－ tamed from three to seven times as many pitch streaks as west－ ern larch．

HEXAY
Western lareh lunker has relatively little decay．Out of 1.435 western larch boards studied only abonit 1 in 35 showed decay．All of the decay was of the incipient ：＂variety，except in No． 3 （＇ommon where about one－third of the decay was adranced． 0 About twice as much decay was fonnd in the Donglas fir（＂Inland Enpire＂ type）lumber as in western lareh lumber．This was true alsu of the hard pines．western hemlock．and white fir．Western yellow pine was the only important commercial soltwool whose lumber，as shipped from the mill，showed less decay than western lareh．The small amount of decay found in western larch lumber is indicative of the sound，rigorous matme of the timber．

SEASONING DEFECTS

Western larch has a high peremtage of cherke and splits and a low percentage of stain．The prevaldace of these deferts is a reflec－ tion of the high shrinkage，low－rplitting resistance，and narrow rap－ wood ring of the species．The extent of these defects is determined partly by seasonime practices and is．thenefore，subject to control． They nevertheless indicate a matural tendency of the species and the necessity for exercising special care in seasoning．

CいECK

Checks are the most presalent of the seaseming defecto．Over hatf of the western lareh boards examined showed cherds．The pereent－ age was higher than that shown by any of the other softwooks

[^8]stuhed. Doughas fir ("Inland Empire" type) showed about threefourths as mach cherking as western lateh, while Douglas fir (coast tye) and southem yellow pine showed only abote on-thite as mok.
 camenoxt in trequency.

Silaige

Splitting is a common defect in wostem larch. The same properties that are responsible for the prevalence of checking are also rexponsible for the prealemee of splitting. About one in every five western larch boards examined was sphit. Except in No. 3 Common the split: were all shor ${ }^{2 \prime}$ or medum 2 . The larch-fir mixture showed slightly less splitting than westem larch. With one exception the other species studied showed less splitting than westem larch. Donglas fir (const type) wowed about two-fifthe as much and western white pine abont the same anome of splitting.

sras

The stain in wextern larch is practionly negligible. The small amount (about 1 piece in 60) that does occur is of light ${ }^{2}$ variety. Douglas fir ("Inlam Empire" type) showed abont twice as much stain as the western lardi. Redwood and eastern hembok showed abont the same amomat. and all other species stadied showed conwiterably more.

MANEFACTURING DEFECTS

The oce urente of mann faturing defects is only shightly influenced by species properties or characteristies. Comparison of the cerarrence of manfacturing defects in western lared with those in other species is therefore, not warrantel.

Torn grain oceurs more frequenty in western tarch than any other manafacturing defect. It is nsmally the result of a tearing or chipping of gain on one side of a knot. Since knots are more numerous in westem larch than in most softwools. the amonat of torn grain is greater.

Skips, burns, punctures, and seant boards ocenr in all grades but are relatively unimportant as compared with the natural and seusoning defects. The frequency with which they occur under present manfacturing pactice is shown in the discussion of the grades. These defects refled the care used in mamoneturing rather than the species characteristies.

GRADES AND THEIR CHARACTERISTICS

Rules applying to the classifieation, mand facture and grading of western lare are publisted by the Western Pine Manufacturems Lsworiation (,). The grate mames and the brod dirisions into grates shown in the ofticial rules are in arcord with the American lamber stamdarls (2S). The sizes of the rough and dressed lumber also follow closely the American homber standards. Yariations from

[^9]these standards are indicated in the grading rule books and are in all cases either slightly thicker or wider than the standards. According to the grading rules of the Western Pine Manufacturers' Association, Doughas fir ("Inland Empire" type) is considered of similar character and quality to western larch and is permitted in all grades of western larch.
The grading rules of the Western Pine Manufacturers' Association deseribe the grades by listing a number of typical examples ander definitions that give the gelmeral characteristics of the grade. Written rules, however, have their limitations and can not cover all the possible types and variations to be found in the lumber of any grate. The examples given in the rule books do not, therefore, include all of the different types of boards to be foum in a grade.

The description of grades given in this bubletin includes not only the limitations shown in the association rule book but also a detailed record of the defects found in the grade as marketed. This record presents the percentage of boards in which earh defect was found. Since association grading moses are changed slighty from time to time, grade descriytions can not be considered mechangeable. Likewise the data on ibefeets found in the grates are sabject to change as a result of changes in prate descriptions. improved seasoning athe dressing practice, and the collection of adhitional hata.

GRaDE YIELD AND PRODUCTLON

The standard aroding rules of the Wewern Pime Manutiaturers' Association list the following grades of larch-fir imber: Selects-
 timbers-Nos. 1. 2. 3.

The propertion of each arade produed by the present-day methods of manufacturing western lareh and Doughas fir ("I mand Empive "trjes is presented in Table s. The grate-production parcontages, which are given separately for western lated and Dourdas fir, were obtained by mems of detailes mill-seate studies. The larch-fin gatade prodicion figures given in the last colume of the table are based on average shipments of the Western Pion Manafactares' Association during a b-year perion which induded the year the mill-seale studies were made. These figures check closely with the areage obtaneal from the milt-seale study. They differ, however, from the firmess shown in Table 9 which were obtained at a later fate and which show a decided inerense in the percentage of selects proolnced. The perrentage of prades produred differs considerably. of comese among mills the in part to the manfacturing policy. the market ant for, and the spality of the log ran.

The Westem Pime Manfacturers' Assuciation's grade-production figures hased on a 5 -year average (1924 to 1928 . inclusive) ate shown in Table 9. It may be noted that a mumber of the separate grades as classified momer the standard grading rules are combined in actual practice. In the select grades the recomnized grades of C and Better and D Select are somefimes marketed as D and Better. Mill-scale studies show that this grade is about two-thirds D Select and onethird C and Better Select. In the common orades of lareh-fir lumber the general practice is to market No. 1 and $\mathrm{No}, 2$ Common torether or to sell all the better grades of remmon as No. 3 Common and bet-

M12 138 F

 Lontrd from entering the frate
ter. Mill-scale studies show that No. 2 Common and Better is practically a straight No. 2 grade with only an occasional No. 1 Common board. No. 3 and Better, however, is about one-half No. 3 Common and one-half Better. Thable 9 shows also that certain classes of material have been separated from the regular recognized grade and sold as separate items. The marketing of timbers and planks as as separate class of matcrial under the dimension group of grades is an example of this practice.

Tabie 8.-Percentaffe of westorn harch and Doughes fir in laref-fir miature

1 Based on a Forest Service min-scate study.
${ }^{2}$ Based on percentage figares in columins 7 and s mad on a mistare of foo per cent hrect and 40 per eent Douglas Ar , which is the averase ratio of the 1) year cut from 1919 to 1922.
 (1920-1924).
X.ase 9.—Western tareh grade production ${ }^{2}$
(Basis $\mathbf{5} 51,202$, (find bonrd feet)

Grade	Percent	Perceul	Crade	Pur cent	Per cent
No. 1 Dimmsior	35.6		No. 1 and 2 Commub.	4.7	
No. 2 Dimension-	5.4		No. 3 and Breter Common.-		
No. 3 Dimension	2.6	[10.3	No. 3 Commoli.	11.8	30.5
Tlies.--------	1.1		No. 4 Commmin.	8.5	.
Timbers and phenk	4.6 7.4		Short Common-	1.0	
D and Better Select	. 8		Eelect Common.	. 9	
D Sclect--......	2.2	10.9	Miscellangous---............	4.0	9.6
Boveled siding					
bort selicers					

[^10]The combined grades of larch-fir give the consumer a high ratue. Western Pine Manufacturers' Association price fighres, aperaged over a 3 -year period, 1926 to 1928 , inchasive, show that 1) and Better grade sells for about $\$ 1.22$ per thousand board feet less than it would if it were sold as two separate grades. The consumer, however, often can not or does not use the C and Better material in the combined grade to the best advantage. The practice of combining grades, therefore, tends to cause the consumer to use better grades than he requires, which is poor utilization. Manufacturers will eventually recognize that the combining of grades is not necessary in order to sell western harch and that they are losing money by it. The D and Better and No. 1 tn 3 Common and Better combinations now so common on the market will, therefore, probably gradually be withdrawn.

HEARTWGOD CONTENT

Table 10 shows the heartwood content of each grade of western larch by classes. Very little western lareh of any grade had less than three-fourths heartwood.

Tabse 10.-Hearlwood contem of wrisery barch boarmis

Feartwond	Per cent of total number of beards of grade-			
	Cam Better	D Select	No. 2 umd Better	$\begin{aligned} & \text { No. } 3 \\ & \text { Comation } \end{aligned}$
Per cent of eross suction:				
(5)-84.	1	0.4	1.0	0.4
65-74	1.6	. 8	1.0	1.3
75-84.	5.2	4.8	7.2	+1. 3
$85-90$	32.4	33.8	23.2	23.8
100	31.8	60.0	6.1 .1	6 6. 7
Total	100.0	100.0	1 HC .0	107.0
A verage hartwood.	04.8	95.1	94.3	63. 5
Basis-	269	477	209	f敉

WIDTH OF RINGS

Table 11 shows the width of rings in each grade of western larch by classes.

Tader 11.-Width of ring in wesstry tarch bourds

GRADE DESCRIPTIONS

SELECT GRADES

The select grades for western larch listed in the grading rules of the Western Pine Manufacturers' Association inelude C and Better and D. Lumber of these grades has, as a whole, a good appearance and is suitable for both natural and paint finishes. Items, such as ceiling, flooring, partition, wainscoting, molding, window and door casings, window and door frames, and finish, are manufactured from these grades.

Mill-scale studies indicate (Table 8) that only about $121 / 2$ per cent of D and Jetter larel is actually produced. This is a rather low production in view of the fact that western harch is capable of prolucing a higher percentage of material in the select grades than any other tree species in the "Infand Empire" region. Well-intormed lumbermen estimate that the usial run of western larch logs shoud yield 27 per cent of the D and Better prodact. One Canadian mill, which produces over $25,000,000$ feet of western larch anmally; reports a 30 per cent production of the select grades.

There are two reasons for the present small production of western lareh select grades. The excelfent quatities of the western lareh select grades for flooring, ceiling, and interior finish have not been generally recognized, and the relatively small price spread between grades has led to the conclusion, as a rule without any definite basis, that it does not pay to ase refined methods with western larch. Ordimaxily the log is sawed to get ont the C and Better product, and at sone mills the I Selects, which naturally develop in cutting surh a high-guality log, are saved. However, at a good many plants select stock of the 1 grade is mixed with the common grades and sold as No. 3 and Better or No. 2 and Better. Much of the D protuct of the log now goes into low-class prolucts, such as dimension, timbers, and ties. Such practices keep down the mill-run walue of the species and also greatly hinder the producer who is attempting to cut and market the maximm amount of the select grades. If one can buy a grade of No. 3 Common and Better and obtain a good percentage of I) grade or parchase dimension of the D grade at a price slightly over that for the common dinension, it becomes diffeult to market the grate of D Select, particularly at at reasonable price. Such manufacturing and selling evils are now common practice in the western larch trade and decrease the profits obtainable from this woot.
The silling of western harch and Donglas fir ("Inland Empire" (ype) lumber in mixture as a single protuct, harch-fir, hats a very de(ided effect mon the selling value and marketing of the western larth select grades. The Western Pine Manufacturers Association reports show (Table 8) the 5 -year average yield of harch-fir select. to be about 7.5 per cent. This compares closely with the grade production figure of 76 per cent for the two species, which was obtained by intensive mill-scale studies. The mill-scale data in Table 8 give very positive proof that the larch-fir select grade problem is primarily a western larch problem. Of the D and Better larch-fir pruduced, about 90 per cent is western larch. while the C and Better grade is made up of almost 97 per cent western larch. The Douglas fir, particularly the sapwood, is different in color from the western harel
and mars the uniformity of appearance which is so important in fooring and finish where natural tinishes are employed. Difference in hardness of species is also objectionable in these items. A few of the more progressive manafacturers are exchuding all Doughas fir from the C and Better grade. Although there is but little western larch sapwood, it would be well to exclude it from the C and Better grade.
(Pl. 6.)
In D Select grade for interior uses where a natural finish is customary, it wonld also be a decided trade advantage if all sapwood were excluded. Such a practice shonld be entirely fasible, since sapwood could wo into D Select products for outside uses where paint conceals the contrasting color of the western lareh heartwood and sapwood. A straight dun of larch selects should, moreover, command a higher price than one which includes some fir.

C AND BETTER SELECT

According to the standard grading rules of the Western Pine Manufacturers' Association, (and Better barch consists of C and all the better prodnets of the log. The arade permits only a Iimited amount of small defects or blemishes. Small knots, limited is number and well seattered orer the piece, are permitted in practically all of the items mamufactured. In the absenee of such kimts or where the lenots are repy few in number, such defects as slighty raisel or torn grain, smald season fle ke, and rery small pitch poekets are permitted. A serions combination of the above cefects will not be allowed in any one piece nor any defeet that will destroy the high quality and appenance of the erade.

The defects in the grade ax marketed by five mills in 1909 are shown in Table 12. The defects were of such a size and character that they did not detract greatly from the apearanee or utility of the boards.
 (radr: ${ }^{1}$

Fint of defuect	F're liuency of acturrence	Gietural charieter
Cheek..	I'er remt	Three-fuarths are end chectis, remainder small.
Knots	35	A verage abont dre-fourth inch in dianeter. Italf black, all tight. Knots
Functura.	Ifin	cmall. Dade lig peavies, pike poles, ete,
pitch pockets...	17	Tuathirds tery shmith, Fes medhumt None darge.
Torn grnin. . . --	\%	Slight.
	1 \therefore \therefore	All Jight.
Wrase . .		
Skip	1	
Split	3	Relatively umimpurtant. Gcent in onty ocensional iburds.
Bark jopket. . .	2	
Stain	2	
tornholes	1	

[^11]Common reqional practice is to cut for Cand Beter western laveh at the head saw. Of the total amount of select material cut from the average westera larch log, 36 per cent is of C and Better grade.

A considerable portion of the stock of this grade is mamufactured into flooring, ceiling, partition, siding, wainseoting, molding, and finish.

D Select grade includes all stock between C and Better and the common grades and will armit quite serious defects, if at the same time the piece retains a goot tppearance. (PI. 7.) The D grate of western larch provides an excellent stock for paint finishes, but includes as well an fair percentage for interior uses where a matural finish is customary. In this grade one cut is aliowed in pieces 12 feet or longer if the resultant waste does not exceed 4 inches, provided the piece is otherwise better than average. Fine season checks over the entire face or several latyer season checks are admitted in the D Select grade, as well as numerous small knots, pitch pockets, raised and torn grain or other defects common to western larch and Douglas fir that do not give a course or common appearance to the piece.

The defects in the grade as marketed in 1928 are shown in Table 13.
Table 1:3.-Charucter and ocrurrener of defeets in wretern lareh D setect grude ${ }^{1}$

Practically all defects occur more frequently and in worse form in the D Select grade than in the C and Better grade. Knots and checks are about twice as frequent and are larger in D solect than in the C and Better yrade. In addition the D Select grade differs from the C grade in that it contains boncls with a serious defect which requires cutting.

In cutting for C and Better western larch at the head saw, some D Select naturally develops. This stock may or may not be ntilized in the select grades. Entirely too large a proportion of the D Select grade is now put into dimension, timbers, and ties. Mill-seale studies show that approximately 64 per cent of the select material produced from the average run of harch logs is of the D Select grade.

COMMON GRADES

The standard grading rubes of the Westem Pine Manufacturers Association provide that westem lareh common prades shall coury the same appearance, grade for grade, in the general measurement of defects as western yellow (Pondosi) pine. The rules theretore, include speciffations for No. 1, Na. 2. No. 3, No. 4, and No. 3 (ommmon boards. The characteristics of westem larch conmon grades as distinguished fron the select grades ane a genemal coatseness of appenrance caused by vorions defects in a greater or less degree uccording to grade. The numerous detects and blemishes that common western larch lumber may contan preclude its use for finishing purposes. Common lumber of western lach is suibable for general utility and construction purposes.

The following grades of common western larch lumber are available on the matket: Select Common, No. 1 and 9 Common, No. 3 and Better ('ommon, No. 3 (ommon, No. 4 Common, and No. 5 Common.

Dotaglas fir ("Inland Empire" type) is permitted in all grates of western hard. The Doughs fir ("Inland Empire "type), which is generally of poorer quality than the westem lareb, produces considerably more stock of the grades of common lmber and dimension. Milf-scale stulies (Table 8) show that Doughas fir protuces 30 por cent of its lumber in the common gractes. as compared with 26 per cent for western larch. Lareh-fir common hmber, however, contains about the same amount of ach species.

Mill studies have shown (Table 8) that only one two-thoterndths or one-twentieth of 1 per cent of the wastern farch cut falls into the grade of No. 1 Common. No. 1 Common western larch is ustally conbined with No. 2 Common and sode as No. 1 and 2 Common. This grade is suitable for shelving, cornice, fine bam board amb all uses where best quality and appearance of common lumber are requirecl.

No. 1 Common western larch boards and strips include all comd. tight-knotted stock with the size of the knot the detemining factor of the grade. Knots, light pitch. season checks, and samill pitch pockets are admissible in So. 1 Common made if the to not affect the general utility of the piece in which they ocenr. So small is the percentage of Xo. 1 Common probuce in western larch that no study was made of the characteristic befecte of the species in this: grade.
20. 2 comsom

Eleven per cent of the cht of the average westera harch log fall: into the arade of No. 2 Common. This grate ammage approximately 42 per cent of the total cut of common western harch hamber. In practice No. 2 Common western lareh is sold in mixture with No. 1 Common and ordinarily makes up the bulk (99 per cent) of the grade. (Pl. 8.)

No. 2 Common western harch is subject to the same inspection as No. 1 Common excent that courser and harger fnots not necessarily sound, or their equivalent, form the basis of inspection. Some of the most common types of knots admissible in this grade are large
knots, branch knots, ebecked knots atod thome not firmory in the piece. Other defects permitted in the grade are seation dedes, heart shake, piteh, and pitch porkets. No surions centbination of the above defects is andinsible in any one piece.

No. 1 ind No. 2 Common were combined in the study of the chatacteristic defects. The slefects shown by these combined grades sold ats No. 2 and Better are shown in Table 14.
 wheren larh '

kind of defert		Chemernl eltaracter
Knots-.-	Per cent 91	cant I inch or less in diameter. sbout nothethed are intergrown. Loose knots ocelur in about I board in fi.
Chneks ${ }^{\text {Splits.. }}$	man_{1}	
Pitch pookers	to	Four-ifthe very sinati. Remminder mmal or medimm. Nobe large.
Torn krait.	5	C'nimpertant fin determininer grade.
Surin: ${ }^{\text {S }}$	3	Do.
Skip.-- -	9	One-hair smath. I fomirat in dy cimmatus through shuke.
Princhare	3	Stralt.
Wane ${ }^{\text {Pideh sireaks }}$	4	
Pith streaks Wormindes	4	simall and scatterad.
lemy	i	liarr. Relatively tinitmortant.

No. 2 Common grade differs from the select arades prineipally in size and number of natumal defects. Natural defects, excepi: wane and pitch defects, are larger and more numerous in No. 2_{2} Common than in the select grader. Manufacturing defects are about as frequent in the No. 2 Common grade as in the select grades. Punctures are less frequent in No. 2 Common than in the select grades because the boards foming the grade come from nearer the pith of the tree. Seasoning defects are somewhat more frequent and injurious in No. 2 (ommon than in the I) select grade.
No. 2 Common and Better is of a character that fits it for doors. flowing, partition, molding, siding, sheathing, subflooring, and ronfing.

So, ib (ximans
The erade of No. 3 Common western lath comprises mueh of the lower produet of the log. Althangh the appeatance of a part of the stock is coarse, it is a good eromeral utility grade having a wide variety of ases. (Pla.) No. S. Commom mikes up approximately 47 per cent of all the common lumber cat from the average western lareh log. Seventy per cent of the No. \& Common western larch produced is sold separately maler that prade name. The remainder is sold in combination wifh No. 1 and No. 2 Common ats No. 3 and Better Common.

Some of the defects permitted in the No. 3 Common grade are large, loose, or unsound knots, large spike knots, occasional knot holes, season checks, skips and roller splits, some red rot, and con-
siderable heart shake. A serious combination of the above defects is not admissible in any one piece. The defects found in the grade as marketed are shown in Table 15.

All matural defects. except virions pitch defects. are more frequent in the Nu. 3 (Common than in No. 2 Common. The size of defects in No. 3 Common does mot differ greatly from that of No. 2 and Better, but defects are generally of lower quality. Manufacturing defects. except torn grain, orcar with abont the same frefuency in No. 3 Common as in No. 2 and Better. Of the seasoning dedectes, chedeng is alout the same in No. 3 Commen in in No. 2 and leetter. but the splits are more than twice as common and are larger in the No. 3 Common.

No. 3 Common western larch iss used extensively as siding, flooring. partition, sheathing, subflooring, roofing, concrete forns, scaffolding, plaster gromds, and boxes.

$$
\text { No. } 1 \text { ANO Not. fronson }
$$

The defects conmon to No. 4 Common grade are much the same as those found in No. 3 Common, but exist in more serious combination or to a greater degree. (Pl. 10.) Approximately 10 per cent of the total cut of western larch common falle within the No. 4 Common grade.
No. 5 Common is the lowest recognized grade and admits all defects known in lamber. provided the piece is strong enough to hold together when carefully handled. Fighly defective western latreh or Donglas fir. ("Inland Empire" typre) trees are seldom eat in the woorls; consequently not many greatly slefective logs ever reach the mill. The cut of No. 5 Common larch-fir is less than 1 per cent

*1: ?

[^12]

of the total common lumber of these species produced. No study was made of the defects in No. 4 or No. 5 Common western larch, as the value of these grades and the type of uses to which they are put are such that a detailed study of their defects is not warranted.

DIMENSION AND TIMBER GRADES

The dimension and timber grades from a guantitative standpoint are the most important grades applicable to the larell-fir mixture. Sixty-one per cent of the cut of the average western lareh log goes into dimension, timbers, and ties. Sawerd railroad ties make up approximately 6 per cent of the total western larch cut for the dimension and timber grades. Western larch and Douglas fir are considered excellent material for construction and heavy-duty stock. and it is for this reason that such a high percentage of the eut goes into the dimension grades. The fact that No. 1 larch-fir dimonsion has a selling value alnost equal to that of the rery best gracles of common lumber is another reatson for its large production. At present a grood percentage of the product of the log that should be in the \mathbf{D} grade is pat into climension. timber, and ties.

Three grades of dimension and timber are recognized under the standard grading rules of the Western Pine Manufacturers' Association: mamely, No. 1, No. 2, and No. 3 Dimension and No. 1 and No. 2 Tjmbers. Sales of ties and timbers amb planks are often mate separately.
'The dimension and timber grades ion not specifieally limit defects injurious to the strength; conseruenty the strength of material in these mrades depends almost entirely apon the judquent of the graders, which raries considembly. Timbers of the foregoing Erades, therefore show suth a wide range of stremeth that it is impracticable to aswimn safe working stresses to the grades; however, the Western Pine Manufactures' Association have recently propared structural grades for Douglas fir and western lated that do limit the detects. These new grates conform to the baste recuitesments for structural material of the American lumber stambards and, although not commonty carried in stock by mills, may he had on specinl order.

No. I HMENSION AND FIMOHAS

A mill-seale study showed that ge per cont of the lareh-fir dimension and timbers probleed is of the No. 1 qrade. The specifieations of the No. 1 grate are therefore the most important of dimension and timber graters.

The rules of the Westem Pine Manntiacturers Association sperity That No. 1 Dimension amd Timbers must be of at good soumd character but witl admit of defects that do not innair the strengeth of the piper. On the basis of a 2 by t inch piece wane on edare is admiswate one-half inch deep for half of the length, or a proportionate amomet for a shorter distance on both elges. In any cases. one side ant two edures shoukl allow a grood nailing surface. "Small dimensonn must be moderately straight. and larger dimension must be玉nore sor h rew wormholes are admassable."

The strength of material of the grade will vary widely both becaus of mixture of species and because there are no specific limi-
tations of defects injurious to strength. It can be used to advantage where the user has widely varying strength requirements and can sort the material into strength classes. Such a sorting or regrading can be made with the aid of the basie provisions of the Americam lumber standards for structural material (28).
No. 1 Dimension can not be recommended for uses where uniformy high strength is essential because of uncertainty as to strength of the weaker pieces. The working stresses recommended for western larch on page 60 are only applicable when the material has been regraded to neet the American lumber standards basic provisions for select and common grades.

NO. 2 JIMENSION AND THMAEREM

Less than 4 per cent of the dianension and timbers produced from the average western larch log is of the So. 2 Dimension grade. Ender the rules of the Western Pine Manufacturers' Association material of this spade will "admit of large, consse knots, not necessarily sound, considerable wane, also shake, wormholes, dozy streaks, crooked pieces or other defects whicla weaken or impair the pieces to such an extent as to render it mifit for No. 1 qrade. A serious combination of these defects is not admissible in any one piece."

The decay streaks and unsound knots adnussible in the grade may reduce the strength to less than half that of clear woocl. Thimbers and dimensions of this grade are therefore not suitable for use where great strength is desired. They are used for temporary structures and where stiffness rather than bending strength is desired. Even in such structures the pieces containing decaly should be sorted out and used where strength is relatively unimportant.

So. : HIMENSION AND TIMHERS
Only about one-quarter of 1 per cenc of the western larch dimension and timbers produced are of the No. 3 yrade. The rules of the Western Pine Nanufacturers Association "admit a great deal of rot and all the imperfections allowed in No. 1 and No. 2 , but in a much more pronounced form," The grade is suitable for use only where strength requirements are of practically no importance or where the material is cut to short lengths and the more injurious defects eliminated.

WORKING STRESSES FOR DIMENSION AND TIMBER

Working stresses are assigned strength values used to determine the safc load-carrying capacity of timbers or the size and number of timbers necessary to sately carry a given load. They are intended primarily for use in design of structures and are therefore a basic limitation imposed by building codes or other engineering specifications.

The working stresses shown in Table 10 were obtained by adjusting the strength of the clear woold to meet conditions which exist in serviee ($/ 8$). Such adjustment is mate to take care of the reduction in strugth due to the lanots amb other defects permitted by the grade specifications. the orchrreme of pieres below the average strength, the lower strengeth shown by wood subjected to long-time loads from that shown by test specimens which are loaded only a
few minutes, and the weakening effect of certain speries chatacteristies. In addition the working stressess in 'able 16 provide for a factor of safety (37) to talie care of aceidental overloads up to one and one-half times the design load. The adjustment for the injurious effect of defects of necessity limits the application of working stresses to a specific grade of a species except in the case of modulus of elasticity and compression perpendicular to the grain, which are not seriously affected by defects. Values for these two properties are therefore applicable to all grades.

A comparison of western lared with other species based on the working stresses will differ from a comparison based on the strengtl of clear wood. This is due primarily to the fact that the strength values for clear wook are an average obtained from tests, whereas working stresses are based on engineering judgment, which takes into consideration not only the strength of the clear wood but also species characteristics, characteristic defects, results of tests on structural sizes, and all other available clata.
The working stresses for western larch are conservative; that is, they are lower than would appear necessary for the strength shown by the clear woul. The compratively low values assigned to some of the properties for western larch in Table 16 are due to results obtained in tests of structural timbers $(9, I)$).
The working stresses of table 16 are applicuble only to timbers graded in accordance with the basic requirements of Anterican lumber standards for structural material (2S). The dimension and timber grades of western lareh previonsly discussed do not meet these requirements. It is possible, however, to use the working stresses recommended in Table 16 with timbers purthased on special orders provided the specifications emboly the basic principles for structural material of Americm lumber standards (2%). American lumber standards provide structural-grade examples which make it easy to prepare such specifications. The application of the working stresses to dimensions or to stock timber of the Western Pine Manuturers' Association grades (.32) requires regrading. Such a regrading is not difficult to areomplish with the aid of structural-grade examples ($2 S$) and will result in all but a small percentage of timber falling into one of two grades. Timbers fallingr ontside these grades can be used where prat strength is not essential.

The working stresses recomnmended for western lateh can not be safely used in all cases with the lardh-fir misture. The stiffness of western dirch and Donglas fir ("Inland Empire" type) is practically the same, amo the modums of elasticity values in the last eolumu of Table 10 can be sately n sed with the farch-fir misture. Likewise, the working stresses for western larch under the headiag, Fiber Stress in Bending, can be used for the lath-fir mixture because of the conservative nature of fiber stress in bending values for western larch. Working stresses for western larch in borizontal shear and compression parailed and perpendicular to the grain are not applicable to the lareh-fir mixture. The values recommended for Doughs fir (Rocky Mountain type) rather than those for western larch must be used with larch-fir. The difference in the values recommended for western larch and Douglas fir (Rocky Diomentain type) in compression and shear is sufficiently large to justify a separation of the species in most cases.

Tabxe 16.-Working stresses, in pounds per square inch, fer select and common grades of timber conforming to the American lumber standards basic provisions for structwal material
(As recommended by the Forests Products Laboratory)

Hemlock, Wester	1,30	1,040	980	830	1,100	880	800	680	9001	720	300	225	200	75	60	900	720	900	720	800	6401	1,400,000
Hickory (true and pecan)	1,900	1,520	1,330	1,180	1,500	1,200	1,070	910.	1,200	960	800	400	350	140	112	1,500	1,200	1,200	960	1,000	800	1,800,000
Larch, western.	1,200	960	980	830	1,100	880	800	680	900	720	325	225	200	100	80	1, 100	880	1,000	800	800	640	1,300,000
Maple, sugar and blac	1,500	1,200	1,150	980	1, 300	1, 040	890	760	1,000	800	500	375	300	125	100	1, 200	960	1,100	880	900	720	1,600, 000
Maple, red and silver	1,000	800	800	680	900	720	620	530	700	560	350	250	200	100	80	800	640	700	560	600	480	1,100,000
Oak, commercial red and white.	1,400	1,120	1,070	910	1, 200	960	890	760	1,000	800	$5(2)$	375	300	12.	100	1,000	800	900	720	800	640	1,500, 900
Pine, southern yellow ${ }^{5}$		1,200		. 983		1,040		750		800	${ }^{(8)}$	(${ }^{\text {c }}$	(6)		88		$8 \checkmark^{8}$		800		680	1,600,000
Pine, southern yellow (dense) ${ }^{\text {a }}$	1,750	1,400	1.349	1. 147	1,517	1,213	1,037	882	1,167	933	370	262	233	128	103	1,283	1,027	1,167	933	992	703	1,600,000
Pine, northern white, western white, western yellow, and sugar	900	720	710	600	800	640	670	570	750	600	250	150	125	85	68	750	600	750	10	650	520	
Pine, Norway	1, 100	880	890	760	1,000	8 C 3	710	600	800	640	300	175	150	85	68	800	640	800	640	7 CO	560	1,200,000
Poplar, yel	1,000.	800	800	680	900	720	710	000	800	640	250	150	125	80	64	800	640	700	560	600	480	1,100,000
Redwood	1,200	900	890	760	1,000	800	710	000	$\left.8{ }^{\circ}\right)^{4}$	$(640$	250	150	125	70	56	1,000	800	900	720	750	600	1, 200, 000
Spruce, red, white, and Sitka	1,100	880	800	650	900	720	710	600	800	640	250	150	125	85	68	- 800	640	750	600	650	520	1, 200, 000
Spruce, Engelmann	, 750	600	580	490	650	520	440	370	500	400	175	140	100	70	56	600	480	550	440	450	360	800, 000
Sycamore.	1,100	880	800	680	900	720	710	600	800	640	300	200	150	80	64	800	640	750	600	65)	520	1,200,000
Tamarack (eastern)	1,200	960	980	830	1,100	880	800	690	900	720	300	225	200	95		1,000	800	900	720	800	640	1,300,000

1 American lumber standards: Basic provisions for American lumber standards grades are publishod in Simplified Practice Recommendation 16 (28); specifications for grades conforming to American lumber standards are published in the 1027 standards of the American Society for Testing Materials, and in American lailway Engineering Association Bulletin 284 (2).

Stress in tension: The working stresses recommended for fiber stress in bending may be safely used for tension purallel to grain.
${ }^{3}$ Joint details: The shearing stresses for joint detbils may be taken for any grades as so per cent, greater than the horizontal shear values for the solect grade. as given for computing average deflection of beams. When it is desired to prevent sag in beams values one-half those given should be used. In figuring safeloads for long columns s onethird those given should be used (28).
the exact numerical relations among working stresses for grades involving rate of growth and density requirements the values for b Working strase for the common grado type) and for southern yellow pine have bot been rounded oft, as have the values for the other species. (western Washington and Oregon type) and southern yellow pine are 325,225 , and 200 , respectively, for continuously dry, oceasionally wet but quickly continuously damp or wet conditions.

USES OF WESTERN LARCH

Western larch is an excellent general-ntility woon. It is one of the strongest and hardest of our native softwonls; it has grool decayresistance and nail-holding power; the annalagrowth rings are narrow and of uniform width; it ghes well; it has a pronounced figure and can be given natural, polished, or paint finishes. On the other hand, certain of its properties, such as strength, mail-holding power, slow response to moisture changes, and its narrow and uniform width of anmual-growth vings are sufficiently outstanding to warrant its consideration for special uses that require exceptional combinations of properties and characteristies. Primarily, westem larch is a generaliase wood, but a portion, possibly a selected portion, of the cut should be marketed as a specialty wood.

The suitability of western larch for any use must be determined largely from a comparison of its properties with the requirements of the use under consideration. Information on the properties of western larch is comprehensive and fairly complete. Information on use requirements, however, is in most cases based on ofservation and experience rather than on the results of laboratory or service tests. Complete information on use requirements will never be avalable because the uses are too numerous. Furthermore, the reguirements of common and typical uses will vary enough with time and conditions to change the order of importance of the projerties, if not to change entirely the actual properties required.

The discussions of ases of western larch in this bulletin are examples intended to illustrate how the data on the properties of western larch can be applied to determine the suitability of the wood tor a use. The uses dealt with have been selected because of the amount of lumber consumed by them, the anount of western larch consumed by them, or because a study of properties and requirements imbiates a possible market for western larch.

Table 17 is a list of some of the uses to which western larela and larch-fir commonly is put. The general grade or quality of material usually purchased for the various uses is also shown. The list is of interest principally as an indication of present practioe, aml it is not intended to imply that westem lateh is the best wool avalable for the varions uses listed. In many cases several grades of material are shown to be employed in a single use. This apparent hack of definite grade refurements is die in part to difterent orades being required for different parts, but nome generally to the range in the quality of the finished products and to differences in design influencing the grade recuirements.

BUILDING MATERIAL

The properties of western darely adapt it for use in practicially all the wood items used in buildings; consequently the bulk of western larch cut goes into building material. The properties that especially adapt western larch for building material are strength, decay resistance, and nail-holding power. Western larch is especially suted to those building material items for which it is impossible to predict the use requirements or conditions at the time of purchase. For example $8 / 4$-inch dimension may be used for rafters, headers,
studding, or joists where bending strength, stiffness, and nail-holding power are desired but decay resistance is of little importance, or it may serve for sills or floor bourds, which have some decay hazard. In adaptability to a wide rauge of buidding items western larch is similar to Douglas fir (all types) and southern yellow pine. The larch-fir mixture is not quite so adaptable for building items as western larch.

TAble 17.-Grade or form of westron lareh purchand for rarious uses

Use	'inule		Fors		Use	' ¢ame		Form	
	tect	comb		Itomad, hewed her or stht		Sce	com.		$\begin{aligned} & \text { Round, } \\ & \text { bewed, } \\ & \text { or sobte } \end{aligned}$
Casings (wimbew		!	,						
Ceilint door)								x	?
17oons. --...-..-.-...							is		
Fiooring -.........								$\stackrel{1}{ }$	${ }^{-}$
$\begin{aligned} & \text { Franes (window } \\ & \text { and loor) } \end{aligned}$							$\stackrel{8}{8}$	$\stackrel{*}{*}$	
						,	-	\times	
Siding-									
Wainseoting--.-.--						s	${ }^{*}$		
Yosts, girders, med silis, stringers....-									
Planking, laracing.:-			-			マ	\times		
moidge tics i.....			\checkmark						
Seises, stuading, raf-						*	\checkmark	--	
Sheathing, subilour-									
						\times	$\stackrel{\rightharpoonup}{x}$,	
fobding.									
Plaster yrounds hath								,	
(ross arms			$\stackrel{r}{ }$						
			!						
Cates amd fences...-.			:						
Grain doors......									

COMMON BOARDS AND SHIP-LAP

Common boarts and ship-lap are not manufactured for a specific use. Not only are they ased for a number of purposes in building, but they also go into a wide variety of other uses. Common boards and ship-lap are therefore general-utility items for which the strength. decay resistance, and nail-holding ability of western lach are especially adapted. Western larch boards ean be used for concrete forms where strength is required. for roofing boards where strength and nail-holding power are required, and for drip boards, where some decay resistance is required.
About one-fourth of the cut of western larch and one-third of the cut of Douglas fir (Inland Empire type) go into common boards and ship-lap. Less than one-half of 1 per cent are of No. 1 Conmon grade. The bulk of the common boards and ship-lap is sold as No. 2 Common and No. 3 Common, or as No. 3 mal Better. Some boards, about 1 per cent, are sold is No. 4 and No. 5 Common. Westem lareh common boards usably range from 4 to 10 inchess in
width; a few boards, less than one-half of 1 per cent, are 12 inches or more in width.

Boards and ship-lap of the less decay resistant, lighter weight and weaker species have some advantage for cortain uses over western larch. They are easier to cut, saw, nat, and handle, and hold paint better. When the final use can be anticipated betore parchase these properties should be weighted against the greater strength, modrate decay resistance, hardness, and nail-hokding power of western farch. The following discussion of inclividual uses of boards shows how the properties can be used in comparisons for specific rather than general uses.

Sumemons
A mumber of species, including western larch, are successfully used for subfloors. 'This is due to the facts that under shandard methods of construction there is hate danger of floors failing mechanicaby and that the decar hazard is small. Western lareh subfooes are very similar in ease of constraction and servicenbility to those of Donglas fir and sonthern yellow pine. Western hed subfoors are stronger and stiffer and hold nails better than those of the bemlocks, spruces, or true firs. On the other hand, wostem harch subfooms require more time to construct than hembock, space and trie fir subfoors, which are softer and lighter species and conseruently ensier to work and hartle. The hehter-weight species also stay in place better than western ham principaly berase of their smaller shrinkage. The moderate decay resistance of western lareh. howerer is some protection against deray hatambs resulting from fathy plumbing, drip from iceboxes and ofher someres of moisture.

Large amounts of western lardi. esperially of the No. 3 Common and Better grode, are beet for sheathing. Where western larch is ased for sheithmer it is primarily becanse of the small size and timhtness of the knots rather than hecanse of the poperties of the clear wood. The strenerth and monderate decay wesistane of western lareh are of little practical importance in shathing for the efle iency with which sheathing ties nembers into wits depends upon nailing rather than the strength of the wook, and shoathing is so protecter that it seldom decays. ('apacity to way in phoer is desimble to reduee to a minmam the pasage of air and heat through catks. Ease of working is clesimable in that it speeds tup and reduces the cost of construetion. Tembeney for araks to open, howeres is dependent move on the thoroughess of sasming than on the capacity of species to stay to place. Wase of working influmes cost hat mot service. Comparison of western lawh with other speriss tor sheathing shoukd therefore be made largely on how well wood stays in place, tightness of lenots, thononghmes of sasoningr and cost after adjusting for differences in case of working.

moring beanbs

Westen harch has a good combination of the properties desired for roofing loards. It will hold wherles or other roofing well. for it has a high mail-holding power and rotans its nail-holding power
well with moisture changes. (Fig. 19.) Of the softwoods commonly used for roofing boards, only Douglas fir and sonthern yellow pine are stiffer than western harch. The moderate decay resistance of western larch, which is a desirable property should leaks develop, is about the same as that of Donghas fir. The tendeney of western larch to split under roofing mails is slightly less than with Douglas fir. In eatse of working, western larch is similar to Doughas fir and southern yellow pine but is harder to cut, saw, and nail than the hemlocks, true firs, and spruces.

Western lareh roofing lorards are obtained almost entirely from the Xo. 2 Common and No. 3 Common grades, which are always a larch-fir mixture. Roofing boards of larels-fir mixtare are not cqual to those of westem larch alone. While they have the same stiffinesis they are slightly weaker in hending, contain more sapwood, and have a wider range in hardness. The difference in value, however, would probably not justify the cost of separating the species.

In so far as properties are concerned, there is little choice betwen lareh-fir roofing boards and those of Douglas fir and sonthern yellow pine. As between larel-fir and the spmees, hembolss, and trie firs, the lareh-fir roothing lomeds hold mils beter, are stiffer, and nore decay resistant, but are heavier and harder to cht, saw, and handle.

MTsGELANEOTS FABM ERES

Western larch is a good general-utility wool; conserpently the boads and ship-tap of the species have a wide range of usefulness on the firm. The hareness and strength of western farch bourds adapt them to the heary loads and rough usige to which the floors of many farm buildings are subjected, and their moderate decay resistance embles them to be used in pens. copps, troughs, and cribis that are subject to moderate decay hazarels. The range of use of western larch bourls is wry similar to that of Douglas fir (coast type) and southern yollow pine; it is not so wifle as that of southern cypress, but is wider than those of the true firs, hentocks, and spences. Because of paint-holding characteristies, ease of working. and light woight, the true firs, lomborks, and spruces require less painting maintenanes than westem larel.

The larch-fir mixture does not have so wide a range of usefulness as western larch becatse of the higher percentage of nondurable sapwood in the Douglas fir ("Inland Empire" type). Boards with a high percentage of sapwood should not be used where there is a dectay hazard. If the differeme in the hardness of the two species in the lurel-fir mixture is objectionable (p. 2t), the Douglas fir can be separated from westem larch.

DHENSION

Dimension is nsed for many propese in intilding construction. Joists, studding, stringers. planks. rafters, seriffolding, sills, and bracing are some of the more important use of dimension. Euch of these ases reguires a different combination of properties. There are few softwoods that meet the refuirements of all the uses of dimension as well as western larch. As a result over half the cut of western larch and Douglas fir ("Inland Empire" type) go into dimension.

Over 95 per cent of the larch-fir climension is of the No. 1 Dimension and Thmber grade. A smatl amomit of No. 2 Dimemsion is nuntufactured, and practically no No. 3. The bulk of the lareh-fir dimension is nominally 2 inches thick and from 4 to 12 inches wide. (Fig. 24.) Stock 3 and 4 inches thick and some stock wider than 12 inches, however, is available. Sixteen feet is the nsual lengeth; however, shorter lengths are aralable as a result of nimming. Long lengeths of 90 feet and over are not readily available, although there is a demand for such lengths in some cities and they can be produced from western lareh trees.

 "ff (Esin

High nail-hodling power is a common requirement in practially ah unes of dimension. It is desimed to hold sheathing, flooring. or other covering to the framing. Sight weight and eane of working, Which facilitate fabrication are also miversally desinable properties in all uses of dimension. Stiflness is the most important strengeth property in many items of dimension. esperfally in 2 -inch stock. In stuck thicker than 2 inches bomding strength isually replaces stiflness as the most important strenerth property. Comparion of western larch with other spectes in any of the foreroing properties, exepp ease of working, can be made from Table t. Such a comparism justifien the previonsly made statement that tew softwots meet ant of the use werpuremonicu at dimension as wath as western lated.
The lawdifir mixture don hot hate so liverable a combination of properties for dimension as western lated. This is bucanse the

Douglats fir ("Imand Empire "type) in the mixture ham a lower nail hodding power and a lower bending st rength than the western larch. The stiffness of two species in the mixture is pratereally the same. The larch-fir dimmsion consists of abont three parts of west(rin lared to (wo parts of Jomglas fir ("Intand Empire" type). (Table 8.)

From a ntility standpoint stiffacs amb hail-hohling power are the important properties in joists and studs. Stilliness is derived of joists and studs in home construction because the amont of deffection that "an oreur withont damage to the phaster is small. Nibl-hodling power is elesired to hold thoming, widing, sleathing. and hath in place. In stiflums and nail-hoding power, western hardi

rands high among the softwools. Compormans of the stiftress and mal-holding power of western barch with that of other species are made in Fixume to and 1!. Figum en whe westem lareh joists and stakls in the liamework of a "lwelfing.
 ustady of greatm impontane than stiffese, and decay resistance is often an whed reminement. Jeary jents are nose in the construction of warohoses, mills. and simijur tructures. They most, Gary have Iomds, there is no phater to crack, and oreasionally, as in textile nills, ponditions are farombe for deray. Tho load-carying caparite of heary joists should be julged hy the disconsion mader Stractural Timbers (p. 61). Western larh neets the reguitemento of heary construetion ever better than it does thow of small honses or light construetion. The bending strength of westem lated (fig. 11) rompares more favorably with that of other species than does its stifliess (fig. 15). The moderate decay resistance of western lareh is also ath atssed.

 species shown in Figures satil 13. The importame of whight and
tardness in joists and studs lies in their influence on constrution costs. Heavy joists and studs are harder and slower to hatndle and place than light ones. Hardness increases the difficulty in cutting, satwing, and nailing.
sturngers
Bending strength combined with decay resistance is the combination of properties desired in stringers. Bending strength is desired because stringers are primarily lead-carying members, and decay resistance is desired because they are often used under conditions favorable to decay. The requirements of stringers are, therefore, similar to those for heavy joists except that decay is more often an important requirement.

Stringers are structural timbers, although they may be and often are of dimension size, that is, under 5 inches thick. Like all structural members, the strength of stringers is dependent more on the size, number, and locution of the defects than upon the strenget of the clear wood. The safe working values in Table 16 should be used in preference to values for clear wood in comparing the strength of western larch stringers with those of other species. Such a comparison is based on comparable grades and consequently takes into consideration the influence of defects. A high percentage of western larch No. 1 Dimension and Timbers should class as select under basic recuirements for structural material of the American lumber standards (2S) because of the characteristically small size of the knots in western larch.

PlANKING
The value of western larch as planking lies largely in the combination of properties and characteristics which make it a good general utility wood. The use reciurements of planking vary widely. (Fig. 26.) The most important requirement may be resistance to wear, resistance to decay, or load-carrying capacity. Some uses combine all three of these requirements. Western larch is especiatly walapted for use as planking, for it combines high hardness and bending strength with moderate decay resistance. In addition, the miformly natrow annual rings in western larch result in a more even texture than is generally found in woods with alternate bands of hard and soft wood. A comparison of these propertios and characteristics of western larch with those of other softwools slows that while a few species rank higher in some one of the desired properties, none of the species rank higher in all.

The larch-fir mixture is not so desirable for use as planking as western larch. The difference in the hardness and texture between western harch and Douglas fir ("Inland Empire" type) when used in mixture may canse uneven wear, which is undesirable. In ededition, higher working stresses are recommended for use with western larch than for the larch-fir mixture. Where the most important property desired is load-carring caparity, the working stresses recommended in Table 16 for Doughas fir (Rocky Moumtain type) should be used for the mixture. In computing load-rarrying cipacity the safe working values recommended in Table 16 are applicuble to dimension used flatwise as well ats on edge. Where planking is to be subjected to heivy wear western larch should be specified or

 of adjacent plabks to wha burvoly. In addition the vide from nearest the bark. that is, the sap sithe of fat-graturi flank of buh

I. AMTERS

The lareh-fir mixture does wod differ greath from pure larch in suitability for raters. The bad-carrying capacity of the Doughas fir ("Inland Enpire" (ype) in the harch-fir combanation will be slighty lower than that of western latel the to the lower bending strength of the clay wond and the slighty larger a wage size of the knots. The Douglas fir ("Inhan Rompire" type) ratters will probably not hold rofing boarls quite so well, but will be easier to work and lighter to hande.

SILIS

Decay resistance or maitholding power or both are usually primary refuirements of sills. In smali-house construction sills are usually protected trom mositare. 'Their prineipal function is to hold in place members which are maled to them. sills, however, are often used in contact with the ground or moder conditions favomble to decay. The

moderate decay resistane mot mil-holding power of western lareh are favorable to its ase for sills. If the tecay hazard is high, as when parts are in contact with the ground, the sills should be treated. A comparison of the properties of westem hareh with thowe of other species shows that nowe of the species commonty used for this parpase have a heiter combination of these properties.

The properties of westem lard to be rompares with those of other species in order to dotermine its ratue for seaflolding amt bracing are stiffness, strength both in bending and compression, nail-holding power, and ease of working and handing. The strength, stiffness, and nail-holding power of western hareh commend it for work where heary loads are to be supported. The hardness and weight of western larch are a disadvantage in work where loads are light and speed of erection is important.

STMECTVRAL, TMBERS

The value of westem lard for structural timbers depends primarily upon its strongla in large sizes and upon its monderate decay resistance. The strength of structural timbers, however, depends more on the defeets, such as knots, decay, shakes, whe checks, that are present in the timbers than upon the imherent strength of the clear woxd in them. Comparison of wetem lareh strutural timbers with those of other species most therefore be base on comparable grades. At present the eommercial stactural grates of other species are not comparable with the dimension and timber grades of western larch. The only comparable grades on wheh to base a comparison of the strength of wastern larch timbers with those of other woods are the American lumber standards (25) banic provicions for structural materin. The working stresses recommended in Table 10 are for grades meeting these basic provisions and therefore can be used for comparing westem larch structural timbers with those of other speries. Sinh a comparison shows that the ralues remmented for filere stres in bending and moklates of datiett. for westem lareh are lower than those rewommond for a mamber of the softwordThe values rexommented for shear, compreses parallel and perpendienlar to the srain, howerer, do mo difter greaty from these recommenten for the heavier softwond. The emparatively low ratus recommend for western hard for fiber strese in beating are the to the fesults of tests of the wool in st ructurat sizes (1/).

The determination of ralues from Table 16 on which to bace design in a strueture is a highty technical problem. It will vary in structures with the use regnimements and conditions, and should be loft to an engineer or an architect.

The charater of the knots in western larch is favomble to the profuction of structual timbers. Their characteristicelly small size ambles a high percentage of the fimbers to mee the knot eperefinations of the higher strenget grades. The pretominance of encased over intergrown lonots is an aldantage, for encased knots are las injurions to the strength than intergrown lnots of the same size becanse the gran distortion aromed them is less.

Dany untreated strutural timbers are used where conditions are more or hess favorable to decay. The eombination of moderate decay resistance and strength in westem lath is such that the sperios "an mest the requirement: where untreated timbers are mot essentiat. (Fig. 르․)

INTERIOR TRIM

The most desimble properties and charateristies of wextern lawh for interior trim ars its figure color, hardness and show reponse to changing mionme comitions. Its ahtermate bands of hard and whit wood reate in a promotared ligure that is equerially atapted in matural inishes. Stans bema wedl with its matual reddisf heown color and hardass redues the temdeney to wer, mar. or dent.

Western lareh interior trim is commonly used with matual or staned finshes rather than with paint finshes. (kig. e2.) Natural and stain finishes bring out the figure. On the other ham, the tendcoley of the fimere to bow through and the tendency of the summerwood bands to rise slighty ame objectionable in light-rokored paint
and enamel finishes. Lighter-colored softwoods with less pronounced summer-wood bands are therefore generally preferred for enamel and highly decorative paint finishes.

The principal items of western larch interior trim are ceiling, partition, and wainscoting, all of which are manufactured in : variety of patterns and go hargely into such uses as porches, pavilions,

Figtre 28.-A hithway iritige of westarn lareh. The strmbith am? moderiate decay resistance of bestern Lareh tanke it atestrable sumehos for hridge timbers
and beach houses, where there is some exposure to the elements. In such uses the moderate decay resistimce, adaptability to natural and stain finishes, and hardness of western larch form a desirable combimation of properties and characteristics. Other items of western larch interior trim are molding, trim balasters, colomades, newel posts, and stair treads. Figure is also desired for natural and stain finishes, and hardness for resistance to wear, denting, and marring. Decay resistance, except under exceptional conditions, is of no prac-

M1243.
Western larch finish of D grade sirfacerl on two siles. The waste in convertins the grade into clear material by culting is stmall

Center-matelwed, werticil-arnined western tarch dioring of C and belter aralc. The grade has

 fs typicul of western hareh sertical-grained formas

M2:3F
 can be obsamed from this grate with small waste from cuthog alont one-third of the piects have a ince free of knots, sueh is a and b, 'hey are in the grade becatse of pont backs, chectes, or torn grain. other pieces, sued as c, t, and f ean be cut io give fractically two clear pieces. Oecasionalls piecos will have small piteh jockets, such as shown ine
tical importance in interior trim. Figure 20 shows western larch beams, molding. casing, base and doors used as an interior trim.
Westem larch interior finish is manufactured principaty in two grades, (am henter, and D . The genema apparance of these two grades, both as to figure and dofects, is shown in Phates 11 and 12. The C'grale permits only small defeets and has a high percentage of clear material. In fact, a single serions defect is sufficiont to canse the refection of a piece. The 1 grade is made up of pieces with one serious defect that may be cut out, thas leaving two pracetically clear pieces of boards having a C or Better face but is back that will not meet the refuitements of the D grate. and of boards with a manber of small mino theterts.

Oniy about 3 per ernt of the westem tard thish is witer than 0 inches. Only about 1 per eent of the finish is thicker than 1 inch. Sost of the fini-h in 16 tere long, athough there is a demand in some sections and in the larger citios for 14 -foom matemal becatse of the high proportion of porches which are 7 teet wite.

FLOORING

The combination of properties possesed by western laweh makes it suitable for use in pactically all typers of fooring. The wood has hardhess for resistance to denting marming. and wear; uniform narrow ring growth for uniformity of appermee and wear; slow response to moisture changes for reduction of shrinking and swelling; high bending strength and stifness tor supporting heavy loads; a moderate revistance to thongs attack; and small. tiglat knots with conerspondingly small eflect on strength. Wextem lareh shrinks
more than most softwoods used for flooring (fig. 1i), but less than the hardwoods which furnish some of our finest flooring. Ease of working and painting characteristics of western larch also are not so good as those of a number of lighter: more uniform-textured softwoods.
Western larch is manufactured in a variety of types, grades, and sizes to meet demands of different types of fiooring. The principal types are edge grain, flat grain, surfaced two sides, center matched, and jointed (square edge). The select grade is confined to narrow widths of 3,4 , and 6 inches and to thickness of 1 and $11 / 4$ inches. Western larch select grades are largely edge grain. The common grades are largely 1 -inch stock of mixed edge and flat grain, and are avalable in widths of 4 to 10 inches. The flat-gramed stock predominates in the common grades.

Western larch is probably best adapted to the manufacture of high quality, narrow, end and side matched, edge-grained flooring of the type used in residences, offices, gymnasiuns, and ballrooms. This type of softrood flooring is carefully selected for uniformity and narrowness of amual-xing growth. Narow, uniform growth rings are the outstanding growth characteristic of western larch. A higher percentage of the cut of western larch meets the recguirements for narrow ring growth than is the case with any of the other softwoods commony used for floming of this type. In addition, the narrow sapwood ring makes for a high percentage of all heartwood pieces. Sapwood is objectionable because it contrasts in color with the heartwood. Western larch has a high resistance to denting and marring because of its hardness. The edge-grained flooring of C and Better and D grades of western larch illustrated in Plates 13 and 14 show the "wire-grain "figure resulting from very narrow uniform annual rings.

The bending strength. stiffness, hardnoss, small tight knets, and uniform ring growth of western larch adapt it to heavy flooving for factories, mills, and grain elevators. Its bending strength enables it to support heary loads, and the defiection under such loads is small because of the stifthess of the wood. Injury to strengeth from the characteristic small tight knots is smalt, and a sood wearing surface is provided by the combination of hardness and uniform narrow amual rings, especially in edge-grained material. The wood is well adapted to bridge, phatform, and similar types of heavy flooring, because it combines moderate decay resistance with the other properties that adapt it to heary-service requirements.

One of the popular uses for western lareh at present is for flooring in such structures as porches, pavilions, balconies, and beach houses. Jointed or square-edged flooring atso goes into this type of use. Out-of-door flooring is subjected to some decay hazard, the wearing requirements are similar to those in houses or offices, and the wood may reccive either a paint or natural finish. Edge-grained material is preferred and is superior to fat-grained material for out-of-door flooring. The larch-fir mixture is not so satisfactory for flooring as western larch, chiefly because of the higher percentage of sapwoorl, the wider and less miforn growth rings, and the lower degree of havhess of the Doughas fir ("Inland Empire" type).

The common grades of western larch make an excellent barn flooring. The knots, while more numerous, are smaller than in any of the softwoods used for this purpose. The arerage size of knot in the No. 3 Common grade of western laveh is only one-half inch in diameter. In addition the knots in western harch are generally tight; only about 1 knot in 30 in No. 3 Common is loose or missing. Cnsound and decayed lonots are rare in the western lard grades higher than No. 4 Common, occurring in only about 1 boart in 30 . The sman knots combined with the bending strength and the stiffness of the wood enable western larch floning to cmry the heary loads it is sometimes called upon to support, the hardness provides resistance to wear, and the moderate decay resistance of the wood makes it desirable.

EXTERIOR TRIM

Western larch is best adapted to those items of exterior trim that are subjected to some decay hazard. While much exterior trim is used where conditions are infarorable to tlecay action, some resistance to decay is necessary or desirable in such items as drip boards, garage doons, porch columns, and poreh steps. Sometines these items are so phaced as to reduce or eliminate the decay hazard: however. knowledge that decay resistance will not be reguired is seldom a ailable in adrance of use. The more decay resistant a species is the better it is adapted to these items, other things being equal. On the other hand. items such as trim. noblings, mind siding ate seldom subjected to conditions farorahle to deray. Where there is no decay hazard the better painting qualities ind greater ease of working of the lighter-colored. more uniform-textureti, lighter-weight, and soiter woods will usally ontweigh the greater strength and moderate decay resistance of western latch.

Westem larch exterior trim should be painted as soon as practical after it is phacel in service. The wool will start to weather check in a short time if expesed unpanted. especially it it is not thoroughly dried. Also, a gook protective paint coating should be maintained on western larch, since the wood checks amd the grain loosens or rises more quickly and more than on lighter, more uniformtextured wools.
Most items of western harch exterior trim are manufactured in both the select and common grades. The bulk of the production in and items, however, is of C and Better and D gralles. A few items, such as casings. window and door frames, wainscoting, and screens, are prodnced only in the select grades. The finish shown in Plates 12 and 13 is as adaptable to exterior as to interior use.

SIDING

Western larch is produced in drop, bevel. and rustic siding. In addition, ship-lap and surheed two sides and center-matched boards are also used for siding. The first three types are produced only in 4 and 6 ind widths of the select grades. The ship-lap and sarfaced two silfes amb enter-matchod hards are obtainable in any grade and in widths ap to 12 buches. The bulk of the production, however, is of common grades man in widths of from 4 to 8 inches.

Western larch siding is very similar to that of Douglas fir (coust type) in appearance, painting characteristics, decay resistance, and strength. Its painting characteristics are not so prood as those of the more uniform-textured, softer, and lighter woods. This, however, can be compensated for to a large extent by confining the manutacture of western hreh siding to edge-graned material. Edge-graned western lamel siding will require repainting in approximately the same time as flat-grained siding of sotter, lighter, and more uniform-textured species. Edge-grained material of such species, however, will not require repainting so soon as edge-grained western lareh. The difference in time before repainting is required for the protection of the wood depends on the species. The properlies and the characteristics of western larch that are desirable in siding are moderate decay resistance, the small, tight character of its knots, the small amount of sapwood, and the slow response to moisture changes. Sometimes one and sometimes a combination of the aboye properties ant characteristics account for the use of the bulk of the western larch siding for barns, factories, grain elevators, houses, silos, and warehouses.

POHCH CORMMNS

The grincipat cause of failure of columns used for exterior tecoration of honses is decay. The methods commonly tased in construction permit the collection of moisture around the ends of the columns and thas establish a high decay hazard. Western hareh poreh columns, while moderately decay resistant, should be treated with a preservative. Colmans must be kept well painted to prevent cherkiner; the paint, however, also prevents any moisture that may be absorbed at the ends of the columns from drying out rapidly and therefore may make conditions fuvorable for decey. Cohums constructed of nondurable woods or columns which contain sapwood rot out in a comparatively short time. The small percentage of sapwod in western larch makes it easy to select all heartwood pieces for columms. Care should be exercised to prevent, in so fur as pessible, the absorption of moisture through the ends of columns, even with a decny-resistant wood.

nowns

The same properises and charateristies which have made the Donghas fir (coast type) doors so popalar also make western lateh a grod wood for dooss. Westem lareh has a pronounced figne with matural and stain finishes. It also has at high derree of hardnoss, which tends to reduce the denting and marking from knocks and hows. The high hearwood content of western latch makes it casy to obtain the desired miformity of color. All hemtwood is atso important in some exterior and in many garage doors becanse of the low decay resistance af sapwood. High nail or serew holding power is also desirable in all doors for fastening hinges. It is especially necessary in garage roors because of their size and weight. The swelling and shrinking with changing atmospheric conditions, which are objectionable in all doors, are rectuced by the slow response of western lareh to moisture changes. This property, however, is largely offset by the high shinkage of the wood. Western larch
doors that are exposed to the weather must be kept well painted or protected by a good natural finish if they are to prove satisfactory. In this respect they will require more maintenance than doors made from lighter, more uniform-textured woods. Generally, the properties of western lareh adapt the species to doors subject to some decay hazard, doors with pronomed firured finishes, large heary doors, and doors subject to hard usaye from knocks and lilows. Whale it is adaptable and can be used for light doors finished with paint or enamel, the lighter and more uniform-textured wookls neel the requirements for such doors better, provided the decaly hazard is low.

SASH AND FUAMES

Sosh and frames for doors and windows are quite generally made from softer, more easily worked wooks with more sapwood than western lareh. So far practically no limitation has beren put on the anount of sapwood admissible in sash and frames. Some demand, however, hats arisen for more devar-resistant amd stronger sasth and frames. This demand has developed in factories, hotels, and greenhoases, and other buibdings which have a decay hazard or which are using exceptionally large and heary windows, where rephacements are expensive. Wrestern larch, becanse of its strengeth, hatdness, and moderate decay resistanee, meets these repuirements abont as Doughas fir (const type) does. Edge-grainel western larch is much better atapted to use in sasho mat frames than is flat-grained material.

STEPS
Resistance to decaly and wear are two important refuirements of stepping usel out of doors. The hardness and moderate decay resistance of wostem larch adapt it for stepping. In addition, its narrow and miform anual rings result in miform wear, which is very desirable in stepping. Eifgo-grained western larelh steppitur is much superior to flat-grained stepping, because it takes and boldes paint better, wears more uniformly, and reduces the chatce of the grain loosening and creating a tripping hazard. Poor design, wood in contact with the soil, joints that collect and hold moisture, and lack of ventilation, rather than lack of decay resistance of wood, are responsible for much of the replacement necessary with stepping. Satistactory results can not be expected from westem larch stepping, even though it is decay resistant, if the design is poor.
The requirements of interior stepping differ considerably from those of exterior stepping. In intecior use appearance is more important, wear is not so severe, protection against wear is better, and the deny hazard is practically negligible. Western larch stepping for interior use, therefore, does not have the arlvantages over stepping of soft, lightweight, nondurable woors that it possesses in exterior use. Stepping for interior use is selecter in most cases to match other trim. Eigge-grained western Iarch farnishes the popular "wire-grain" figure, and fat-grainerl material furnishes the pronounced fgure. With natural finishes both edge-grained and fat-grained stepping result in a comparatively dark trim. The desirability of western larch stepping for interior use depends largely upon personal preference for color and figure.

INDLSTRIAL USES

It is impractical to discuss all of the industrial uses of western larch. They are too numerous and the requirements vary too widely, depending on the design and quality of the finished article it is desired to produce. (Fig. 30.) A few of the more important industrial uses are discussed to show how in the absence of experience or special tests the information on properties and chatacteristics can be ased to detemme the suitability of westem larch. The consumer, with more complete knowledge of his requirements and local market prices can come to a more definite conclusion as to the suitability of western larch for his purpose than is possible in this bulletin. Here it is only possible to compare general repuirements with properties and characteristics of western lareh and show the adaptability of the wood to the use without deciding whether it or another wood should be used. Determining the most desirable species to use involves comparisons of price as well as of properties and chamateristics.

> мINe тדмbers

Considerable western latch is used for mine timbers. A number of the mills, expecially small onew, make a speciatty of mine timbers and ties. Some of them mon pratically the entire cut to these products. The large mining operations in the "Inland Enpire" furnish a ready market for western lard mine timbers. Becanse of its combination of strength, moderate decay resistance, ligh heartwood content, and small knots, western lareh mine timbers are better than those of any other species grown in the "Intand Empire." As manafactured at present, sawed westem lawh mine timbers are probably equal to those of any softwoods commonly used for this purpose. Softwoods whose clear wood in stronger than that of western larch have larger and more injurious knots. When the quality of the clear wood and defects present in the various species are considered, therefore, westem larch mine timbers will compare favorably with these of any of our other native softwoods.

Westem larch in round form is especially adapted to the requirements of mine timbers becanse of its narrow sapwood. The high heartwood content results in a higher percentage of decay-resistant wood than is commonly found in any softwood species of equal or higher strength. An increase in the proluction of western larch mine timbers is not desirable from the standpoint of good utilization, because at present too much of the I) product of the log is going into mine timbers. Good utilization requires that such high-quality material be marketed for uses with more exacting requirements.

crossties

About 10 per cent of the totak western larch cut amnally goes into crossties. It is estimated that about 4 per cent is in the form of hewed crossties and 6 per cent in the form of samed crossties. Small circular mills, which produce only crossties and other rough products (fig. 31) increase the percentage of sawed crossties from the 1.1 per cent reported by association mills. (Table 9.)

The suitability of western larch for crossties is, so far as mechanical properties are concemed. shown by composite strength figures

for softwoods (4) to be exceeded only by southern yellow pinc, alligator jumiper, and Pacific yew. The high rating of western lareh is due to ils bending strength which cuables it to resist center benkling, its mall-holding power which furmishes resistance to spike pulling and its hardness which emables it to resist rail and plate wour.

The average life of untreated westem larch ties in a mainline tesc track in Montama subjected to heavy trafic was seren and onc-hald reats. Douglas fir ("Inland Empire" type) in the same test track had about the same a rerage life. The life of ties, however, varies su widely with service conditions that the average life is indicative only and not necessarily a measure of the life that will be obtained in any specific tie. The high heartwood content and the moderate decay

resistance of western larch are important assetsi when ties are to be used untreated. On the other hand, in ties that are to be treated with preservatives, the high heartwood content is mot desirable, for sapwood is much easier to treat than heartwood.

Western larch is not an easy wood to treat with preservatives. However, with the nid of incision, a number of commercial phants now successtully treat the species.

TANKS

Decay resistance is usianly the most important requirement of wood for tanks. Either tight-knotted material or clear woorl is required, and the wood should not be easily penetrated by liquids. Water-soluble extractives are objectionable for some uses to which tanks are put.

The small amount of sapwood in western larch and the inherent decay resistance of the heartwood make western larel suitable for
tanks of moderate life requirements. Supwood, when used in tanks, causes high mantenance charges and unsatisfactory service, for it is low in decay resistance. The sapwood is easily exeluded from western lareh tank materina and imolses less waste with wes!ern larch than with most woxds used for tanks. The hareh-fir mixture meets the requirements for tanks about as well as western larch except that a somewhat higher wastage oceurs in eliminating the sapwookt. Teither western Jareh nor Douglas fir ("Inland Empire" type) is ensily penetrated by moisture. but the Donglas fir is more dificutio to perretrate than weitem harel.
No. 1 and No. 2 (Common are the grades of lareh-fir commonly used for tanks. The tightness and small character of the knots in western larch ant Doughas fir ("Tuland Empire " type) enable such at low grade to be used with a small amome of citting, the Douglas fir requiring more cutting than the westem lareh.

In westem lacel the galactan (p. 43), which is solubie in water. may prove objectionable for some timks. Trouble from this source. hoverer, can usually be prevented hy thorough soaking before or after construction.

$$
\mathrm{stin}, \mathrm{Os}
$$

Wood in silos is sabjected to surere comitions. It is alternately wet and dry and therefore sabjected to conditions favorable to decay and to swelling and shinking. The pressure exerted by silage subjects the wood to some stress. Western larch has the desired strengeth for silos and can be used untreatel, but will give better service if treated with a woox preservative.
Like all woods, western lards is a gool thermal insulator, fumishing protection agrainst the silage freering and holding the heat in the silo during the fermentation stage. In this respect, western larch is better than the heavier woots, but not so goot as the lighter woods. Generally, however, tightness of ronstruction is more important in obtamige good themal insulation than the kind of wook used.
Good silage can only be secolter by having an ar-tight wall. The wood in a silo must therefore stay in place well. Western hareh is straight proined, and consequently has small tendency to warp and t wist and thus permit leakage of air. On the other hand, its shrinkage is high, and in westeri harch silos therefore carefal attention should be paid to hoop and anchor cables. The resistance of western larch to the penctration of liguids is an advantage when the wood is used in silos.

The small number of lonse knots, knot holes, unsound and decayed knots in westerm lareh faror its use in silos. Knot holes are objectionable in silos in that they may permit leakage of air, and boards or staves containing knot holes should therefore be cut or culled. While the black color of many of the knots in western larch is sometimes objectionable from an apearance point of view, they do not injure the serviceability of the silo when they are tight.
Silos constructed of western larch should be panted is soon aftererection as possible to prevent weather checking. Western larch silos reguire somewhat more painting maintenance than lighter woods without pronounced summer-wood bands.

No sapwood should be permitted in untreated silo staves or siding because the sapwood of all species has low decay resistance．The narrow sapwood ring of western larch makes it easy for the species to meet the sapwood requirements for silos．One manufacturer reports changing from a more decay－resistant species to western larch because western larch has less sapwood．The change materially reduced maintenance charges resulting from his gutantee even though the larch reguired more painting．This manutacturer has used a special drop siding of western lavel on thousants of silos．

The properties and characteristies of westem larch are as a whole admirably adapted to the requiements of silos．To obtain tull adrantages of the properties of western harch，howeven，requires somewhat more care and attention than is necessary with the weaker and lighter woorls with less pronounced summer－wood bands．Spe－ cinl graces for silo staves would aid in maketing westem larch in this field．Such grades．if drawn to take advantage of the lack of sapwood and the smah，timht－knotted charncteristic of the species， woukd provide a high－quality silo materinl．

Decay is responsible for more replacements in freipht cars than all other causes combined．A study of 265,660 individual treight－ ear parts showed that 82.3 per cent failed because of decay（4）． In items，such as roofing，decking，grain strips，and running boards， replacements were due almost entirely to decay．The vahe of the decay resistance of western larch is obvious when the species is used in freight－car construction．

Strength and hardness are required in freight cars to withstand the shocks and to resist the hard usuge that car material receives． Western lareh ranks high in both strength and hardness．Only the strongest and hardest of the softwoods are equal to western larch in this respect．（Figs． 11 and 13．）

The use of western larch for car lining，siding，decking，and roofing has been handicapped by the fact that it has not been readily available in the fesired sizes imd quantities．Most of the western railroads use $13 / 4$－inch stock for clecking and $\frac{1}{1} 3$－inch stock for siding， lining，and roofing．Western harch is not readily available in these thicknesses except to rablroads owning their own mills．Railroads purchasing western larch have had to take 1%－inch stock for decking and $\frac{2}{3} 2$－inch or $3 / 4$－inch stock for roofing and lining．Several car builders and repair shops report satisfactory scrvice from No． 3 Common western larch for longitudinal roofing under a Douglas fir （coast type）finished lateral roof．Engineers report the successful use of western larch in refrigevator cars for lining，for strips to keep meat away from walls，and for temporary foor racks in frait cars． The moderate decay resistance，hardness，and small，tight knots of the species are largely responsible for satisfactory results being oftained in spite of the fact that the material is thinner than that commonly used．

The combination of strength，decay resistance，nail－holding power，and retention of nail－holding power should enable western
larch to render good service as car framing. No. 1 and No. 2 Dimension are the grades commonly used for frames, sills, and posts. Moderate decay resistance, combined with high heartwood content, permits the use of western larch untreated timbers; the high bending strength combined with small knots provide for the required strength; the nail-holding power and the retention of mailholding power enable timbers to hold siding, roofing, and lining under the varying atmospheric conditions that cars encounter in moving from one part of the country to another.

Generally the properties and characteristics of western larch are favorable to its use in freight cars, but the sizes in which it is most readily available are unfavorable to its use for certain items. If western larch is to be more extensively used for siding, lining, roofing, or decking, either the manutacturers must make provision to cut the special thicknesses that railomal-rar builders believe to be necessary, or some conclusive data mast be obtained to show that the sizes a anilable in western larch are adequate to meet the requirements of some or all of these itcms.

cross f.RMS

Very little western larch is used for cross arms. Douglas fir (coast type) and southern yellow pine fmonish the bulk of wool for this purpose. One company atone used over a million cross ams of these two species. The heartwool of western larch, being very similar to that of Donglas fir of const type in its strength properties and decay resistanere, would be expected to meet cross-arma requirements about as that species does. 'The Douglas fir would have an advantage due to its greater stiffness, and western lareh an advantage due to its greater harhness. Southern yellow pine would have an advantage in strength and stiffness but a smaller advantage in hardness. On the other hand. the growth and defect characteristics of westem larch are better adapted to the rigill specifications of the large users of cross ams than are those of either Doughas fir or southern pine. The limitations on the size of knots in cross arms are rigid and definite. The average knot in western laveh is smaller than that in Dunglas fir and only about half the size of the average lmot in southern pine. The percentage of the objectionable loose, missing, and ansound knots is also lower in westem Iarch than in Donglas fir and southern vellow pine. Pitch pockets; occur only about ore-thircl as often in the western larch as in the other two species, and they avorage smaller in size. In addition, species having narrow annual rings are desimed by cross-am purchasers. In this respect western thech has no equal among the softwood species. Neither ean any other decay-resistant softwood so readily meet the limitation imposed on sapwood. A slope of 1 in 12 , which is the cross grain allowed in the specification on which the bulk of cross arms are purchased, is radily met by Douglas fir, southern yellow pine, and western larch. Only in the limitations on checks will western larch find more difficulty in meeting cross-arm specifications than Douglas fir and sonthern yellow pine. Checks are about three times as prevalent in farch as in those species.

METAIGERAZORS

Westem larch is used both in the small household refrigerators and in large ones of the type used in meat markets. In the household type the species is used principally for frames, bottoms, insulation, and backing. Its strength, nail and screw holding power and high heartwool content are the properties valued for frames. No. 1 Common western larch dimension is commonly used for this purpose. The brownish color and narow wiform ring growth are largely responsible for the use of western larch for refrigerator backing mat botions. Ceiling or dressed and matched western lach of the (${ }^{2}$ and Better or 1 grate is used for these items. No. 3 Common 1 inch thick by 8 or 10 inches wide is sometimes. vesawed, and used for retrigerator insulation. As a thermal insulator, western larch hass a higher heat conductivity than the lighter-weight woods, but the tightuess and manll size of koots and samall amone of decay in the low grades of the speries are athantages.
Wextern larch finish and ceiling are used principally for exterior trim in refrigerators for grocery stores and meat marliets. It is
 in the moderate-priced boxes. In nore expensive boxes western larch ceiling is used for sitles. In both the expensive and moderate-priced boxes the ravk color of beartwood, combined with the "wire-grain" figure of edge-grained stork. is lurgely resimonsible for the use of the sjecies for this purpose. The brown color of heartwood blends well with other trim, especially sonthern yellow pine. The tark color of western larel does not show dirt and hand marks on the sides of refrigerators so readily as would lighter-colored words. and the havelness of the wood resisfs denting and marring. Western laret js only occasionaly nsed for interion lininge since for this purpose the preference is for lighter coloret and softer words.

The use of softwoods in automobile borlies is increasing. In some of the smaller and lighter cars about co per cent of the wood used is softwool. Ia the heavier ame larger cars softwoods are limited to those parts the property regurements of which are not exacting.

Southern yellaw pine and Donglas fir are the principal sortwoods used in automobile bodies. In the larger and hearier cars both speceses are used for flow boards, moning bords, seat risers and frames, fillets, braces, and cleats. They carry no steel and are not subjected to heary impact loads. Western lardl lumber will serve as well as the species now used in suche parts, but it is not so featily available. In some of the smaller cars, softwoods, particulally laminated Donglas fir (conast type). are used in more important structural parts, such as main sills, cross wills, and top or woof rails. Here nail-holding power, bending strength, and toughness are desired. Western larela has the same bending strength ant toughness as Douglas fir (const type) (figs. 11 and 14) and has a higher nail-holding power. In general, the properties of westeru hareh indicate that it can be used for parts similar to those for which Doughas fir is successtully used. A comparison of the properties of western lareh with those of red grm, a species widely used in the small type of cars, also
indicates the possibility of using western larch in automobile parts. Western lareh has a higher nail-holding power and is stiffer and higher in compressive strength than red gram. but it is lower in bending strength and shock resistance and is not so unifom in texture.

The ease with which western lareh can be glued is another property desired in a number of automblile-borly parts. Sills are made of glued laminations, joints are erlued. and other parts are luilt up. It is easy to glue western lareh wo as to obtain joints stronger than the wood.

Some of the growth characteristics of western larch are also favorabie to its use in automobile bodies. The higl heartwood content retares trouble from deeny, and the marrow uniform annual rings make for case of working.
The use of western larch ia atomobile bodies is confined largely to raming boarls and foor boark. For rmming boards D select 1 inch thel by 4 inches wide. dressed and matehed loards are used. Fleor boards are generally square-elged No. 1 and No. 2 Common.

The principal obstacle to the more extensive use of the species for automobize body parts is the comparatively small eut and stand. The stand of westem Jarch. however. is sufficient to meet hearier demands than are now made on it and is harger than that of many of the bardwook now nsed. Manufactures of wesiem lareh must be prepared to meet a lage demand owe long periods of time if any appreciable amomat of western lareh is to be marketed for automobile parts.

Large quantities of lumber are usod for seats and footboards in stadium and bleachers, but very little western lareh has been used for this purpose. Douglas fir (coast type), souhem crpress, redwood, southem yellow pine, and eastern spouce are the principal wooils used.

There are two main type of stands: The stadime which has fived seats on concrete, steel. or wood. and the beacher, or temporary stand, which can be knocked down ame moved from phace to place. Stadimm seats are anally expered to weatber the year wount temporary seats are usually expesed for only hort periosh or are nsed under eover. Bleacher seats are mate largely of 1 -ind stork. of to 12 inches wide: stadimm spats are shats 112 or 2 irehes thick and from 2 to 4 indes wide or single phanks 8 to 12 indes wide.

The two types of stands have a momber of reguirement- in emommon. Both require strength in bending to cary live loads: hardness to resist denting, scufling, and marmig: and holding power for screws in order that the seat may not brok lowse. 'Twisting is objectinnble bectuse it ratses shats to pall bowe from thatenings, and also makes the seat uncomfortable for the oreapant. Cupping is objectionable becanse cupped seats loid water after min. Exadation of pitch or coloring matter is sepectaly objectionable because they injure cothing and lowe or rased grain is objectionable becalte of danger from splinters.

The two types differ, however, in some of their requirements. Decay resistance and painting chamateristics are more important in exposed permanent seats than in temporary, lnock-down seats.

Strength in bending. stifiness. and toughness, on the the other hand, are more important in bleacher seats than in stadium seats because failure of seats or f.ootboards in bleacher seats often has more serious results for the occupants. In addition. the bleacher seats are subjected to hard usage in snocking down and erection when they are moved from place to place.

The properties and characteristics of western larch adapt it to both types of seats. It has about the same bending and compressive strength, toughness. decay resistance and painting characteristics as Douglas tir (coast type). which is the wood most commonly used for such seats. Douglas fir is stiffer and has a higher spliting resistance, but western larch is harder and has is higher nail-holding power. In addition, westem larch is less resinons and less subject to pitcl defects and will therefore give less trouble from resin exudation. Both species stay in place well and mormally will give little trouble from warping or cupping.

The hardness. strength. mail-holding power. and decay resistance of western larch are the properties that commend the wood most strongly for bleacher seats. Westem larch also has fer pitch defects. and when commongrades are used. the small, tight character of the knot: is an adrantage orer the common grades of other softwood species. Wrestem lach will require more panting maintenance than the other weods commonly used for seats. except Douglas fir and southern pine. which are very similar to larch in paint-holding qualities. Western larch is more subject to checking than any of the commonly used words and mast be kept well painted if checking is to be prevented. The coating of end surfaces is also adrisable.

The gencral conclusion drawn from the properties is that westem larch is an excellent woxd for stadium and bleacher seats and stands. Service records to confirm this ponelusion are lacking. Such record: wond be of watue in opening this maket to westem larch. for actual performane in service is neressary as the fual proof of the adaptability of a wood for any parpose.

The value of wesem lareh for beacher and stadium seats can be materially increased by the appication of a few well-known principles. Elge-grained material will give more satisfactory service because it holds paint better. presente a more uniform wearing surface, shrinke and swells less. cliecks less, and is less subject to loose and rased gram than fat-grained stock. but it ensts more. In permanent sents exposed to weather. all-heartwood stock should be specified or pieces comaming tapwood should be culled because the sapwook of all apecie. rots quickly. Checking at bolt holes neat the end of the seat can be reducell liy roating the end surfaces as soon after cutting as possible. Hardened gloss on is an excellent couting for this purpose. ${ }^{25}$ and will prevent most of the end checking. which is particularly objectionable at bolt fastenings. The heat sile of fat grained boards, that is, the side farthest from the bark. would be phaced down. This arrangement will redure trouble from splinters resulting from raised or Joose grain. Most of the foregong principhe: can be profitably applied to all of the woods now need. hot are expecially applicabic ta westem lardh.

[^13]
EHIPPING CONTAINERS

Western larch is used for all types of shipping containers. No. 1 and No. 2 Dimension are the grades commonly used for heavy and export crating. Wooden boxes are made from all of the common grades. Frames for veneer boxes are commonly made from 1 by 4 inch pieces of No. 3 Common ripped into three equal parts. One by four-inch square-edged boards of D Select grade are used for tight cooperage. The D Select grade, as well as No. 1 and No. 2 Common grades, is used in slack cooperage.

The properties of western larch adapt the wood better to crating, especially heavy and export crating, than to boses. Crating for heavy and valuable merchandise requires a wood with high strength and nail-holding power. In these properties western larch ranks with the best of the softwoods. (Fig. 10.) The weight and dark color of western Larch, while objectionable in boxes, are not objectionable in crating for heary valuble commotities or in crating for shipment by water. The weight of the wood is given little consideration in crating raluable commodities, for the failure of only an occasional crate will usably more than offeet the saring in transportation costs that could be made by using a lichter and weaker weot. Cost of transportation by water-bome shipments is hased on volume; hence the weight of the contaner is not an important item. Color and appearance are less important in crates than in boxes becabse commodities are sold more often in or from boxes than in crates.

Boxes made of western lareh are heary, strong, and dark-colored. The average weight of the canned-food boxes of western larch used in tests ((\mathcal{S}) at the Forest Products Laboratory was $9.4 t$ pounds. The same type of box of aspen arerared about two-thirds and of western yellow pine about three-fourths of the weight of westem larch boxes. In resistance to rough handling the westem larch boxes were betwem those of westem Jellow pine and aspen, which were higher, and those of western hemock, which were lowes. All of these woods are ned extensively for boxes and are recognized by the box trade as excellent woods for that purpose. The westerin larch boxes had a relatively small percentage of failures from cross breaks, the outstanding cause of failure being splitting in sides, tops, and hottoms. This type of failure indicated that the cfficiency of the western harch boxes could lee improved by using thinner lumber and more and smaller nails than were used with softer and lighter woorls. It is, however, hardly possible that western larch boxes could be made the earal on a weight basis of boxes of western yellow pine or aspen. The dark color of western harch boxes is shown ia Figure 32 which also shows the size and type of box used in the tests.

Western larch is not primarily a box wood. The percentage of the eut of the species used for boxes will probably never be so high as that of the lighter weight, lighter colored, softer, and weaker woods.

Tight cooperage must be slow to absorb liquids and not easily penetrated by them. It must be pasily bent to shape and must stay in phace wefl. Western hark mects these regurements about like Douglas fir (roast type), which is used largely for tight cooperage. Western larch shrink more than the Derglas fir (wost type) and is not so stiff. On the other hand, it is harder and lees resimons. λ high percentage of western larch has namow rings of miform
width; consequently a high percentage of the material from the tree is adapted to the manufacturing of tight cooperage. Western larch tight cooperage is used principaly for pickie barrels.
The common as well as the select grades of western larch are used for slack cooperage. The small, tight knots of western larch are therefore an advantage over the same grades of stocks of other softwood species. On the other hand, the dark color of the wood is a disadvantage in tubs, pails, and buckets.

POLES

Western lareh has been used locally in small quantities for poles. Poles in the past have been chosen principally for a combination of light weight, narrow sap ring, and high decay resistance. Western red cedar is one of the principal sources of poles of this type. Western larch poles are decay ressistant, have a narow sap ring, but

 ared loox
are comparatively heary. They are, however, strong. Heary, strong, decay-resistant woods are rapidy entering the pole market. Such poles are usually treated with a preservative, cither because they have a wide sapwood ring or because they are less decay resistant than species proviously used. Southom yellow pine is the principal source of these heavy, strong poles althongh some Douglas fir is also used. Western lareh can furnish heavy, strong, moderately decayresistant poles. The availability of light, more decay resistant woods, such as western red cedar, or strong, more easily treated woods, such as lotgepoie pine, in the "Hand Empire" has prerented and will probably continue to prevent the maketing of much westem larch for poles.

PILING

Western larch makes an exedlent pile because of its strength and moderate decay resistance. The wood has the strength necessary to withstand driving, and has the hardness to resist mashing under the driving hammer. The heartwood is moderately decay resistant and
the sapwood band narrow; consequently it can be used untreater. Under conditions favorable to decay western larch piling should be treated with a preservative if long life is desired. Western larch, along with Dotiglas fir and southern pine, is classed among the softwood species best adtapted to use as piling.

PIIPWOOD AND PAPER

Western larch is not especially well adapted to use in the manufacture of pulp or paper. Alchough it can be pulped by the sulphite, sulphate, soda, and ground-wood processes (31), it is not so suitable for the production of pulp by any of these processes as are the spruces, true firs, or hemlocks. It is heavier than any of these woods, which fact tends to increase the yield per cord. Its fiber length, 2.6 millimeters, is the same as that of white spruce. Its hardness, dark color, and resin content, however, are not favorable to its use as a pulprood.

Western larch is best adapted to pulping by the sulphate process. By this prowess the wood is readily pulyed, yielding 1.290 pounds of pulp per 100 cubic feet of solid wood. The polp is of good quality and strong. It is suitablic for use unbleached in the manufacture of fiber boards and of grod quality kraft wrapping paper.

Westem larch is also adapted to pulping by the soxta process. The yields cotamel with this process. howerer are lower than those obtaned with sulphate processes, and the pulp is not quite so high in quality. There will therefore probably be litile or no use of soda process with western larel.

Westem larch is not well adapted to pulping by the sulphite process. It reduces mevenly and with diffeulty. The unbleached pulp has poor strength and color. It is difficult to bleach, recuiring 15 to 25 per cent of bleach. The yield is about 1.200 pounds of pulp per cord (100 cubic feet of solid wood). Western larch pulp produced by the sulphite process may be used for low-grade wrapping paper and boards.

Mechanical pulp is produced with dificulty from western Iarch. The hardness of the wood results in high power consumption. About two and one-half times as moch power is required as is required for white spruce. The pulp is rather coarse, decidedly brown in color, and of fair strength. It is unsatisfactory for use as newsprint because of its dark color. It can be used as a filling material for boards or for any purpose where a medium quality of ground woud is desired and brown color is not objectionable.

The probability of using any large portion of the stand of westem larch for the manufacture of pulp ind paper is not great. Sulphato is the only pulping process which produces a satisfactory quality and yield of pulp from western larch. The amont of raw material suitable for use with this process is larger than for any other. It includes large amounts of woots and mill waste of better pulping species which are arailable in the "Inland Empire" and along the Pacific coast. It is reasmable to expect that the paper and puip industry will utilize these species before attempting to use western larch. In addition, pulp mills along the Pacific coast will have an advantage over any mill established in the western larch region due to the lower cost of transportation by water.

APPENDIX

The names of humber adopted as official by the Forest Servien are not always identical with the mames adopted by the trate as American hamber standatd. Where the names are not idmileal sone confusion mas renh. Table 18 has therefore been prepared to show be American lumber standards name (28) corresponding to the Forest service mam used in this bulletin. The common and botanical ammes of the trees from which the lumber is cut are also shown. Other trade manes for lumber from the varions siperges can br foma in the Forest survief eheck list of the torest treps of the I'nited States (27).

TABEE 19.-Lumber mames wack by the worest אertice in this buhbtin ant corresponding smericos thmber standurds mands

Same uset in balielin	Anericion lumber smalawls mame	Common numbe of lree	Betanical name of tree
Western red cedar..... Western red cedmh........ Wentern red			
So	Yellow eypress (intand iype		$\mathrm{DO}_{1} \mathrm{O}$
Doughas fir Scenst t	Dountes fr tconst (tye)...	Doutias fir	in.
Donglas ofr "InhamilDinjirecypet			
Doubiss fir (Rocky \| Red fir (liock: Mountain Mountain typa). (y) :			
Eastera hembock.	Fusiern hembork	Tastem hembock	Tsuga canatensis.
Western harn	West coast he	Western harsh...	Laria occidentais.
Southern yellow pin	Southern pine:		Pinus.
Lomblity mine.	Goblobly pine	hobloby line	Pinus taeda.
Sibortlear mine	Shortieaf pine	Shorthar mine	Pinus echinuta.
Lonklear pine.	Lombleat pine....		finus palustris.
Northera white bini	Northern white piue.	Nombem white pine	Pinus strabus.
Western wilte pine	Idato white pine	Western white pine	pitus ninnicola.
liedwond.	Redwomat	Hedswan	Sefproin somper vitens.
	Eastern surnee ${ }^{3}$..	Red spruc	F'cen mubra.
		\#hie sprame	Picea gindeck.
	'1a	Mamarack -..	Prea mariama. iarix laricima.

[^14]
LITERATURE CITED

(1) Allen, T. G.
1923. FOREST FIGURES for pacticic coast stames. F. S. Smate Select Committee on Reforestation. [18] 1 .
(2) American Railway Engineming association.
 Amer. Isy. Engin. Assoc. 27 (284) : $529-912$.
(3) Austin, L. W., and Eastman, C. ${ }^{\text {W. }}$.
1902. ON THE RELATMO BETWEEN HEAT CONDUCTIITY AND OENSITT IN some of the common wonds. Wis. Acad. Sci.. Arts and Letters. Trans, 13 : \{539\}-542, illns.
(4) Bowe, F. E.

(5) Bradxer, M., and Fultaway. S. V., ir.

1926-28. STZE OF TIMBER. AMOUNT OF DEFECR. IMOOHTANT FACTORS IN LUMBERING. AN ANALYBIS OF THETR EFFECI UTON PRODUCTHN CONTS AND FMLUES ANB THEIR CONSEXUENT INFLTENCE OS HBOHTAbIE TREE AND TOG UTMHYATION TN THE "INLANO DMPIRE." Timberman 29 (2): 38-40, 44. 46, 45; (3): 40-49. 44. 46: (4) 62-63: (6) : 162 - 1 ($14,166,7 t 4$.
(6) Browne F. $I_{\text {. }}$.
1930. PRORERTES OF WOOU THAT GETERMINE THP SERNICE GIVEN HY FX-
1930. EFFECT OF PRLMING COAT RETACGTMN AND SPECTAE PRIMERS ON THE SERTICE GNEN RY phiNT COATHVGS ON mPFERENT woons. Indus. and Fngin. Chem. 22:857-854, illus.
(8) Cartson. 'L. A.
 gias. Barrel and Box 34 (1): [15]-19, ilus.
(9) CliNe, M., ind Ferm, A. L.
1912. Tfests of structrial minibers. U. S. Dept. Agr., Forest Serv. Pul. 108, 123 p ., illus.

1926. Montina foaest and timber handmook. Nont. State Gniv. Noudies no. 1, 162 p., illus,
(11) Goss, O. P. M.
 Forest Sery. Bul. 722, t5 p., illus.
(12) Koehzer, A.
1917. GODEROOK FOR THE IDENTIFICATION OF wOOD TSED FON TEES NN timbras. U. S. Dept. Age., Forest Serv. Mise. Iub. RL-1, 79 p., illus.
(13) McErmanney, T. A., and Perry, R. S.
1927. some commpreini, softwoods of mimtish colembla; wheit mecfanical and phystoal properties. ('amalat Dept. Int., Porost sery. Bul. 78, 44 p., illus.
(14) Markwabdt, L. J.
1930. COMPARATIVE STRENGTH PKOPERTIES OF 104 woons for chosstives. Crosstie Bul. $11(9): 6-14$.
(15)
1930. COMPARATIVE STRENGTH PROPEBTRES OF WOODS GROWN IN THE VNITEI
(18)
1931. TEE DISTKIBUTION AND THE MECFANICAE PHOPERTIES OF AEANKA

(17)
 Variety of wood completed by enginelirs of fonent pronects caboratohy, madison, wiscongin, Tfmberman $30(10):$ If? -143 , itilus.
(18) Newlin, J. A.
1926. wnit stresses in timber. Amer. Soc. Civ, Engin. Trans. $91: 400$ 407, illus.
(19) Prok, d. C.

102S. sheinkage of boards of mougras fir, western yeldow and the

(20) Rowley, F. B.
1923. thansmishon of heat throgh mindmg materlat.s. Minn. Univ. Fngin. Expt. Sia. Bui. 3, T4 1., illus.
(21)
 Ript. \& p.
(2d) Sayprr, T. E.
 Farmers' Bul. $14 \pi^{2}, 22$ b, illus. (lievised cl.)
(23) Stokes, W. 1.
 19, $1: 3 \mathrm{p} .$, illis.
(24) Supworth, (i. B.
1027. eheck list of thin fohest thens of the untten states. their

(25) 'Ihelen, R .
 (Reviset.)
(20) Truax, T. R.
1929. The alding of wood. U. S. Dept. Agr. Bul. Joot, 78 p. illus.
(2T) Leited States Departmest of Agheulitre.
[II. d.] shextefeance of the "factol of safete" in wohking stbesses
 Tech. Notu $2 \cdots,{ }^{3} \mathrm{p}$.

 Pract. Recommendation R $10-20.04 \mathrm{p}$., illus.
(20)
 is buthing material. herort of buiding code committef.
 of Waste Ser. BHig. 23 p., illus.
(30) Vax Dutsex. M. s.
1920. qhe phermal conileotivty of hbat tasulators. Refrig. Eugin.
 amb Vontiatins Fugin, $26: 62 \bar{u}-656$, illus.
(31) Welig, S. D., abad Refe J. D.

192t. tife actpabifty uf american woods for paper pelf. I. S. Dent. Agr. Bul. गtsit, 102 p.. illus.
(32) Weatran line Manufacturbas' Assoclattox.
1920. stindam grading reles for ponoog plag, califormat white HiNe, sugar pine, imato white pine. habch, dogglas fin, whtie

(33)

Wilson, T. R. C.
1921. the effect of sifibat graiy on the strengtil of wood. Jout. Forestry 10: itu-7ti, illus.

ORGANIZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE WHEN THIS PUBLICATION WAS LAST PRINTED

Whis Juletin is a contribution from

[^15]

[^0]: ${ }^{1}$ Mainfaned by the Th. S. Department of Agricuiture at Madison, Wis, in cooperation with the thtiversify of Wisconsin.
 *The writers arte jndebted to S. V. Fullawas formerly of the Forest Sorvier, for much
 distribution of lumber, and to Je. M. Divis, Forest I'roducts Libolatory, for the tables

 mambers of the forme Produets Lationatory stan, from the Western line anmufieturers Association, and from the lothictl Lamber (is.
 THe staruland names duplared lay the Forest servion for lumber and for the trees
 same specins ate givers in the - ippondix.
 Northwnstry Momitha, Than norif of the samon River, Washington enst of the Cascade Mountains and the thorthensteran if af orean.

[^1]:
 Dougha fir (it Inlaud bingire" fype), Dunghs fir (cousc type), aud bouglus thy focky Mountain lype).

[^2]: I Less than I per cent.

[^3]: fuenthention to the Forest Frodncts inborntory, Madson, Wis.

[^4]: to Amerien lumber standards should be compored by tuens of allowablo wotking strosses, walues for which are presented in thable ib.

 2 Other common mames of the above species are given in the Apperdix.
 a For derivation of composite values see Markwardt ($/ 5$).
 3 T3ur oak, chestnut onk, post onk, swamp chest nut oak, swamp white oak, and white oak.
 3 The trees on which these values are based were somewhe higher in density than the gemeral average for spectes. It is, therofore, prohable that fatere tests which are now under way will slightly lower the present figures, although it is not expected that this will necessitate any change in the working stresses recommended for structural timbers as given it Table 16.

[^5]:

 3 Weight of wel ghe mixture.

 ${ }^{3}$ Some commerial phes refure more orless water tha given her in ortici wobtain the same consisteney of mixture.

[^6]: American iumber standards (SS) defnce nibe dassifies defects. The discussion of characteristles in thas bullein is based on those standard defuithons.

[^7]:

 sirface or uldinlitup surface.

[^8]: ＂tight pitch is a slightily avident presemer of miteln．

 of jumber．
 1 has surface on which it oceurs．
 ${ }^{3}$ Incipletht demy is an early stage of deeny in wheh ditantegration lias not probeded far enough to soffen or otherwise change the hardmess of worl pererptidy

 or crumbly．

[^9]:
 Breselixit of lis jungth,

[^10]: Based on shipments of the Western Pine Mbunacturers' Associntion. Average over a 5 -year period (i224 to 1828 , inclusive).

[^11]:

[^12]:

 3

[^13]: At formala for the perparation of herdeded gloss on can be obtained from the Forest 1'roducts Laboratory, Madison, Wis.

[^14]: 1 Forest Service incuries five and dmericon tumber standards four other shecies ander the name southern vellow pine, but oo dntt on these sperias are shown it this buliet in.
 t Jefrey pine (Pinas Jefreyi) is marketed along with western vellow pine which it cdosely resenibes
 3 black spruce is not inclutied in the averages shoutn in this malletin.

 - Changed to pondergan phe after thts bulletin webt to pross.

[^15]: For sale by the Superintendent of Ducumeats, Wishlarton, D. C. Irtice ise emita

