

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

MICROCOPY RESOLUTION TEST CHART mational gureall of stanoaros-1963.a

ELECTRICAL EQUIPMENT ON MOVABLE BRIDGES

By Conoe B．MeCtanotgir，Bridfe Bngineer，oregon Stute Highwaj Depart－ ment；Albin L．Gemeny，Senior Structural Engineer，Division of Testa，Bu－ rean of fiubic Roads；and W．li．Wickerfini，Electrical Engineer．

CONTENTS

Introluction．．
Types of olectrio motors
Drect－current inotors．
Fundambintals of direct－curreat motor
operatonLodd charucteristicu of tirect－．．．．．．．．．．．．．motors ．．．．．．．．．．．．．．Speed cotitroi obilirect－current motors
StartIng resistance，low voltage re－lease，overload jrotection，otes．Serien－parallel control of rintorsAlternatink－cirrent motors

Fundasental principles relating to alterristing cufrentes relating to
Hage

FrgeInilactance．

General discission of polyphaso in－ suetion miolors．
Syuirrel－cage mators
Woundatolor motors
Power factor
speed conlrolof woundi－rotor mators
Starting switches，compensators，and speed controls
Single－phnse motors
Selection of eloctrlo trotors
IMrect－current a．alternating－currer mators．
Tests and ratings for motors．
Special featurey involved in the of direct－current notors
Sjeclal features Involved in ise of niternating－current motors
Inbricatlon．
Afotor housings．
Ohbr meneralfentures
Control and intorlacking of operations
Control nad requintion of electric motors
Starting compensistion
Speod control and reversal
veriond protection
1rotection against excossive accelera－ tlon．
Control of sefurnce and interiecking of operations．

Dotable－las basela bridges
Single－leni bascule bridges．
Shing－span bridiges
Vertlear－iff britges．
Cieneral rules for interlocking
Filat and fordlcatling deviges
f＇rolective and truvel litnit devisers
Electrical Intorlocking and control as． semblies．
Т T pes of electric－control systenis．．．
Maznetie contactor details
Master switeh dotails．
Reastors．
Solempld brakes．
Limitswitehes
Motorstarting switehes
Deflnite time relays．
2
3
3
3
3
3

Contral and intarlocking of opemtions－Con－ tinued
Mriscellaneolus and minor controi detalls．．
Location of amumeters and voltmeters－
Sesting of bascule and vertical－litt spans．

Knife switehes
Grounding comanections．

游

Teleptionles，hizzzers，and sixuals
Navigatiom and service Ighting．
Misceliancous and minor equiprnent．
Dynamic braking
Wiring for electrical control．
Control system for a double－leaf bisuculu
orfdge using alecrnatiog current．．．．．．．
Wiring for power chreuits istator winditgs）
Rotor windiags

Auxillary solenoid brakes．

Start and stop push buttons．．．．．．．．．．．．．．．．．．．．
interlock with center－locking mech－ anisra．
Ataster switches
Linuit switches
Overloud relays．
Current－jlinit relays

motor control
78
span，usinc alternation current swing
Control wirin＇s
Control system tor a single－feaf buscule bridge，using alternating current．．．．．．．
incoming lines and service circuits．．．
Mann control circuit
Roadway gates
Trallic batriers
Rear jacks．
Oteration of span
C＇ontral spstem for a vertienlilit．
using direet etrrent．vertendren sfur，
Cong fireet etristent
Con．
Mnintenanion of interloeking．
$8:$

In manye of interloeking．．．．．．．．．．．．．．．．． 87
Recent developments in electrical brifgo control：

Varlable－voltuge conirol
J＇rotective and speed－mint ching indi．．．＊＊
for vertical－1ift hridgos
Light－sensitive rolays．

Appendix：

Definitions ．．． 103

Qualifying terms of rolays．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 05
Fraperties and eharagteristles of apps．
ratus．．

Rating，performance，ant test－u－．．．．．．．．．！！
Manufacturers＇speciacations．．．．．．．．．．．．．．．．．．．．．．．． 107

INTRODUCTION

The modern electrified novable bridge involves three elements which are more or less separate and distinct. These are (1) the structural design proper, conprising the moving leaves, the approach spans, and the substructure and foundations; (2) the mechanical assembly, comprising the various gear trains, shafting, and other machinery for transmitting power to the span, and to the various lifts and latching devices, and all other necessary equipment, and (3) the electrical assembly, comprising motors supplying power, and all clectrical ant mechanical equipment necessary for power reguLation. speed control and the correct interlocking or sequence of operations.
The strictural design of movable bridges is treated in considerable letail in many of the current standard texts on structural analysis. The design of machinery for movable spans has also received considerable attention in the engineering literature of the last fer years. However, mery little datn pertinent to the selection of the electrical atsombly have been published.
In discussing this question with various bridge engineers, three distinct reartions have been encountered. One group of engineers appears to have dismissed the subject an compatatively unimpor-tant-simply a matter of selection of standard ecquipment fiom the manufacturerss catalogue. The second gronp regards the question as purely the province of the electrical expert, preferving to refer this portion of the design to an outside electrical consultant, specifying only busic requirements in their broadest terms. The third gromp, which is fast coming to represent the majority, feels that the Tridure engineer has not given sufficient attention to this phase of desifn. This group believes that a short publication covering the fundamentals of movable bridge electrification would constitute a Giluable addition to the jiterature on this type of structure.
This bulletin is intended to present in somewhat confensed form a treatment of those fandiamental principles which must be applied in making a selection of an assembly of electrical apparatus for bridges.

Consider the mature of the problem-the highway traffic is composed in large part of fast-moving vehicles with all kinds of drivers, thany of whom are inclined to neglect the most common safety precautions. 'This highway traffic is opposed to the witer traftic nuclet-neath-a bulky and miwieldy movement with tremendous kinetic anergy oren at slight speeds. and subject to deviation from its correct path ins a result of floods, for, wind. and cross eturents.
Where a movable bridge is necessary these traffic stremms should be saferuarded by the installation of a power phant capable of swift and stre acceleration, and a system of control and interlocking which is certain, flexible and dependable. Many aceidents might have been avoided had the power plant met the above specifeation.

A boat approaching on a freshet staye and at a sufficient speed to ayoid lowing steerage way-a britge to be cleareel of rehiculat traffic before the gates can be closed, fol anxious operator watehing
botle traffe ways, timiner his operations by split seconds, and ther a hoisting motor that will not develop the necessary rapid acceleration, or a center lock or svedge motor stalled, or a roadway gate fouled beraluse of faulty interlocking details. ${ }^{\text {The }}$ This is a situation which is of fyeguent ocearrence.

A majority of the movable bridges in this country use electric power, and bridge engineers have been guided by the manufacturers in the selection of major power units and have placed almost entire flependence mon them in the selection of control and interlocking devies. The lare electrical firms have cone a great deal to develop, control apparatus, and the eagineer untat be gilided by the limitations of commerrial manufacture. He can not, with die regard for economy, insist ufon the procluction of special equipment except in at tew special instances, but he can apply an inteligent inderstanding of fundamental principles, and in the case of wiring and assembly, he ean prolace a specialized arrangement of standard products to fit his particular needs.

Many movable bridges are incorrectly wired. Either the interlocking is: inaleguate or the equipment used is lacking in flexibility or is not sufficiently positive in action, causing uncertainty in operation or high mantobance expense. Much of this trouble may be diminated hy a stady of each imbividual problem, and by the appliration of those tundamental principles which form the subject matter to be disenserd in this bulletin.

It should be pointed out that this bulletin is not a treatise on industrial power design and control. It does not encroach upon the field of electrical enginerring literature and does not go into lengthy diseussioms or derizations. It is simply a condensed statement of findamental primiples written for the bridge engineer and, for tho most part, is based on the personal experience of bridge engineers, and if some of the electrical principles stated appear self-evident or alonentary this fact shond be borne in mind.

ELECTRIC MOTORS

'TYPES OF ELECTRIC MOTORS

Flectrie motnis are used on movable bridges for the following purposes: For hoistinir or swinging the leaves; for operating end and center welges or other litting devices; for operating locks or latehes: for operaling tradic qutes and barriers; and for other ansiliary service such ats the operation of counterveight pit pumps.

In gencral, motors may be groupen into the following major rlasses: Shmot-wound direct-current motors, series-wound dizect-current motor, compomad, wound direct-curvent motors, syuchronous altemating-cmront motors, polyphase induction motors (alternating current) of (i) womd rotor type, and (2) scuirred cage type, and single-phase altermating-rument motors.

The three types of dired-current motors and the polyphase inducbon motors are most promally used ats power units and will be disctased in the foilowing pates. Single-phand alternating-enrent. motors are sometimes used to operate roalway ates and like equip-
mont but the bridge engrineer is not partiondary interested in their operating characteristics.

DIRECT-CURRENT MOTORS

FUNDAMENTALS OF DIRECT-CURRENT MOTOR OPERATION

The following brief discussion of fundamentais is presented as a basis for the discussion of control systems.

Figure 1 illustrates the primary elements of a direct-current motor which are a revolving armature consisting of an iron core wound with wires carrying a current, I, and a system of field magnets which prodaces a magnetic flux, ϕ, passing through the amatare and which is cont by the mmature wires when the armature rotates.

When the switch (fig. 1), is chosed, the applied voltage, E, forces a corrent though the armature winding which produces in it a tendency to rotate, since any wire carrying current and lying in a magnetic field is neted upon by a force teuding to move the wire at right

 ramunt motar angles to both fhux and current.

The torque or rotation temiency is proportional to the product of fux and enment or,

Porque $=I \phi \times$ a constant.-- (1)
The rotation of the ammature wires which move through the magnetic field indaces another electrical pressure opposite in direction to the line woltage, E. In other words, the motor in motion acts also as a qenerator inducing its own voltage, $h=$. The value of this batk pressure or counter voltage increases with the speed of the motor.

The difference between the applied voltage and the back voltage at any instant constitutes the effective electrical pressmre, which forces the cument, I throagh the armature resistance, R, that is:

$$
E^{\prime}-E^{\prime}=R I
$$

Fre a the frondamental law of direct-current generators this back pressu mast be proportional both to the speed and to the magnetic fiehe, that is:

$$
E^{\prime \prime}=- \text { r.p.n. } X_{\phi} X_{a} \text { constant. }
$$

or

$$
\begin{equation*}
\text { R.p.m. }=\frac{R^{\prime}}{\phi} \times \text { a constant }=\frac{E^{\prime}-R I}{\phi} \times a \text { constant. } \tag{2}
\end{equation*}
$$

The above equations serve to explain all of the operating characteristics of direct-carment motors.

LOAD CHARACTERISTICS OF DIRECT-CURRENT MOTORS

The mandetc flax, ϕ, in produced by energizing or exciting the field magnets by mems of a wire woum about them and carrying
surrent. The flux, ϕ, is proportional to the exciting current, i, and to the number of turns, n, in the winding. That is:

$$
\phi=n i \times a \text { constant }
$$

When the field winding is connected across the line, as shown in Figure 2, the molor is said to be shunt wound. When the field winding is in series with the armature cturent, as shown in Figure 3, the motor is series wound.

Frgirke 2.-Elements of a shunt motor

$[\phi=72 I \times$ A CONSTANT $]$
Figure in-Elements of a sirles motor

The armature resistance, R, in any motor is very stuall, so that the term, $R I$, is always small and the term, $E-R I$, is nearly constant, Equations 1 and 2 may be written (for constant line voltage E), as follows:

$$
\begin{aligned}
& \text { Torque }=I i \times \text { a constant }, \\
& \text { R.p.m. }=\frac{\text { a constant }}{i} \text { (approximate) } .
\end{aligned}
$$

In the shant-wound motor of Figure 2, the exciting rurrent, i, is constant with constant line voltage whence, for the shunt motor,

Torgue $=I \times$ a constant, R.p.m. $=$ a constant (approximate).

For the series motor (fig. 3) $i=I$, whence,

$$
\begin{aligned}
& \text { Torque }=I^{2} \times a \text { constant, } \\
& \text { R.p.n. }=\frac{a \text { eonstant }}{I} \text { (approximate). }
\end{aligned}
$$

Therefore, for constant line voltage, the shunt motor is practically. a constant-speed motor producing at torgue that varies directly as the armature current.

Under like conditions the series motor produces a torque that theoretically raries as the square of the armature current at a speed that varies inversely as that current.

The componm motor (fig. 4) is a compromise between the above types, obtained by using part shunt and part series windings, and its load characteristices obviously lie between those of the shunt and
series-wonnd types.

Typieal characteristic curves for the abuve types of direct-current motors are given in Figures 5 and 6.

SPEED CONTROL OF DMEECT-CURRENT MOTORS

In movable-bridge operation it is highly desirable that some method be used for controlling and varying the speed of the motors. This is especially trae for double-leaf basente spans where the

 for ilreet-current mators having the Finter fall-lond harsepower athl sperd ratlos

 shame stard mothe hit foll lond
operator will often desire to speed up or retard one of the leaves withont resarting to coasting or the application of brakes.

Equation 2 is, r.p.m. $=\frac{E-R I}{\phi} \times$ a constant, and thercfore the speed of a shunt motor may be varied by varying either E or ϕ. Referring to Figure 7, $E=E_{0}-R^{\prime} I$, and by varying the resistance R^{\prime}, the effective terminal voltage, E, is varied and consequently the speed. By varying the resistance, $R^{\prime \prime}$, the fied coil current, is, is varied, which in turn varies the flux, ϕ, proportionately, and the speed inversely.

Resistance inserted in a shunt field winding circuit causes the spead to increase, resistance inserted in the armature winding circuit causes the effective terminal voltage and the speed to decrease. This last method is somewhat wastefil? of power.
The speet of a series wound motor may be varied by (1) the use of a variable resistance in the amature cirenit, (2) shanting the field coils with a resistance, or (3) short circuiting part, of the fietd coils.
Figure 8 illustrates these methods of speed control. In method A, as the resistance, R^{\prime}, is increased, the effective terminat voltage, R, dirops, and the speed is reduced proportionately since less back e. $\mathrm{m} . \mathrm{f}$. (electromotive force) is now needen. In methorl B, as the resistance is decreased, the excitation is decreased, and the motor
speeds up. In method C, as more of the field coils are cut out the ffux, ϕ, is decreased and the motor speeds up.

Compound motors are sometimes controlled by short circuiting the series windings after the motor has attained a certain speed, thus converting it into a simple shunt motor. The series characteristics are adrantageous for starting while the shunt characteristios are advantageous for speed regulation after starting. This type of control is sometimes used for electric elevators, but is rarely used for bridge control.

The methods by which the resistances are varied and controlled are discussed on subsequent pages.
STARTING HESISTANCE, LOW-VOLTAGE RELEASE, OVERLOAD PROTECTION, ETC.
Refering to Figure 1, if the switch is closed with all the stat ${ }^{+2} \mathrm{ng}$ resistance cat out, a large current will flow through the armature, since the back pressure at the instant of starting is zero. This excessive curcent will quickly burn out the armature windings. To prevent this action, a variable stating resistance is used. The cireuit is closed with ail resistance in, and a small current flows through the armatmre winding. If the torgue produced by this current is not suffient to turn the motor, resistance is gradually cut out until the curent is sufficient to furnish the required starting torque. As the motor speeds up the resistance is graduatly cout out to balance the increasing back pressme. .lt fuilload speed the resistance is generally all cut out, and the amature is carrying full-load current. If

Figoue 8.-Thyee methods of speed control for a series motor the load on the motor is increased, it slows down slightly if it is a shunt motor and considerably if it is a series motor. This loss in speed decreases the back pressure and allows more current to flow.

Such a starting arrangement requires safeguarding against two daugers as follows:
(1) If the power should ro off with the resistance all cat out and then come back on, the full current may burn the armature winding provided the operator has not opened the line switch or thrown in the resistance. As a safeguard, a low-voltage release is provided to automatically cat in the full resistance, or else open the circuit, when the line voltage drops below a certain predetermined value.
(2) An excessive load demand during operation may draw a destructively high current through the armature. This contingency is provided for by means of a circuit breaker or overload relay, or by means of fuses.

Figure 9 is a diagram of a hanc-operated motor starter fitted with overload protection, and low-voltage release. A current passes through the metal contact arm, A, and through the variable resistance to the armature as shown. The normal position of this arm is such as to keep the axtor cirenit open, the arm being held in the open position by means of a spring. To start the motor, the arm is moved around the resistance are and, step by step, the resistance is cut out. At the last step the magnet, Mr, atiracts and holds the arm in the full-load position. The magnet winding is shunted across the main line as shown.
If the power suddenly goos off, or if the line voltage drops sufficiently, the force of the mannet is overcome by the spring and the arm springs back, ofening the circuit. This device is termed a

Fiuldie n--Ifond-operifid motor starter will overlond frotwethan und low-soltage releanc " low-roltage release mechanism."
The main armature current passes through a solenoid, and at a certain preletermined overload current ralue the solenoid core is lifted so ans to close the contacts (-C'. This short circuits the magnet, and again the arm springs latek to its open position. This is an overload release.
This is one of many methools of control and is simply illustrative of a principle. The subject of starting resistances, overload relays, circuit breakers, controllers, and master switches is too large to present here, and data is available in manufacturers' catalogues or standard texts. Further discussion of control will be found in the sections which treat of control equipment.

SERIES.PARALLEL CONTROL OF MOTORS

Figure 10 ilhnstrates it method of connecting series motors in pairs which has sometmes been used for the operation of movable spans. The first section of the controller connects the motors in series with each other. As the controller handle is moved aroundi, successive resistance steps are cut out. and at the end of the first section the starting resistance is all cout out and the motors are operating in series, cach motor operating on onc-half the line voltage. The next step on the controller changes the terminal comnections, throwing the motors in parallel and cut in all the original resistance. This resistance is again cut out step by step until the motors are each operating under the full line voltage.

With the motors in series, each motor takes the full line current at balf the line voltage. A strong torgue at a low speed is produced without drawing exeessive carrent from the line. In the parallel comection cach motor takes balf the line curent at the full line voltare and produces less torgue but operates at a higher speed.

ALTERNATING-CURRENT MOTORS

FUNDAMENTAL PRINCIPLES RELATING TO ALTERNATING CURRENT

Alternating current is generated whenever a revolving magnetic field of alternating polarity cuts one or more stationary conductors, is shown in Figure 11, A. The current (and the electromotive force) , reverses in direction once during the time required for any two adjacent poles to pass a conductor.

Figmow 11.-Dingram to Illustrate principle involvida jn an alternating-eurrent Inotor:
The e. m. f. and the current vary as shown graphically in Figure 11, B. The distance, u, represents a complete cycle or 360 electrical regrees.

The frequency of the e. m. f. is the number of cyeles per second, and is represented hereinafter by the symbol, f.
If p be the number of poles, obriously

$$
f=\frac{\mathrm{r} \text { p. . m. }}{60} \times \frac{p}{2}=\frac{\text { r.p.m. } \times p .}{120}
$$

An e.m. f. imposed upon a single circuit is known as a singlephase voltage, ore. m. f. Suppose there are three such circuits, the e.m.f. in each circuit lapring the adjacent e. m. f. by 120 electrical degrees. The graph of the three voltages superimposed would be as shown in Figure 11, C. Such a voltage is known as a polyphase voltage (in this case, a 3-phase voltage) and the resulting current is termed a polyphase current.

Suppose there are three altemating-current genemators (or more exactly, three independent coils on one generator), each gemeating an alternating current, and so arranged as to lag each other by 120 electrical degrees. Instead of the six wires shown in Figure 12, A, suppose that wires b, d, and e were connected together to form a
 common lead, as shown in Figure 12, B. This common lead wire carries the three curvents formerly carried by wires b, d, and e, but from Figire 11. (C it is reatlily seen that the algebraice sum of the three voltages at any instant is zero. Since there is no voltage there can be no current and the wire can be dispenser with as shown in Figure $13, \mathrm{~A}$. This method of conneeting the lead wives from the three stator coils of a 3 -phase generator makes it possible to carry a 3 -phase current over three wires, each wire acting as a returu for the other two.

Figuna 19-Dlagram jutastrating principles fovelven in giturating "3-phake eurrent
 used, the one in Figure 13, A being known as the Y connection and the one shown as Figure 13, B being termed the Δ (delta) connection.

If each phase coil gencrates a voltage, E, across its terminals, and a current, I, the currents and voltage: in and across the line wires, for the two different methorls of connection are as shown in figure 13. A proof of this fact will be found in any textbook on alternating current.

Figture 14 shows the different ways in which loads are connected to a 3 -phase main.

INDUCTANCE

Whenever there is a change in the current fowing in any line, there is induced an e. m. \mathbf{f}. opposite in direction to the elrrent chnuge. This electromotive force is known as the e. m. f. of self-
induction. Without woing into a theoretical and lengthy discussion, the tollowing facts may be stated.
The e. m. f. of self-induction is proportional to the rate of change in the current. It is zero at the instant that the current ceases to change, and a maximum when the current is changing the most rapidly.

This e. m. £. is always in such direction as to oppose the change in curent. When the current is increasing, the induced e.m. f. tends to cause the current to decrease. and vice versa. The greater the frequeney of an alternating curent, the greater the e. m. f. of self-induction.

Consider the altemating curment shown graphically in ligure 15. It the instants a, b, and c, the current change is zero. Therefore, the e. m. f. of self-induction is zero at these points. Between a and b, the current is decreasing, therefore, the e. m. F. of self-induction must be positive between these points. Between b and a, the curvent is inmeasing, therefore, e. m. f. of seltimbution must be neqative. The maximm rate of change in current takes plare at the instants d, e, and f. which indicates that these points mast be the points of maximum e. m. £. of self-imuction. Plotting the e. m. f. curve through these control pints results in the dotted ature of fignare 15 which mast be the corve of E_{i}, the e. m. f. of selfinduction.

The impressed roltage. l, must bo sufficient to overcome this eome ter voltage, E_{1}, and also to force the current. I, through the resistance, R, of the circuit.

If this resistance is zero, then the impressed c. in. f. is only just equal and opposite to the e. m. f. of selfimdution, and varies as shown in

three loads y connected

SINGLE LOADS \triangle CONNECTED

THREE LOADS A CONNECTED
 to :3-hlase ctirtent Figure 1 .
The above facts are the basis of the following very important $h_{1} w$: In inductive circuits of negligible resistance, the applied voltage leads the curent by 90 electrical degrees, or, ats generally expressed, the chrrent lags the voltage by 90 electrical clegrees.

The self-induction of a circuit acts against the impressed or applied voltage, and lessens its power to force current through the line. The value of this resistance is generally termed the "inductive reactance," and is expressed in ohms.

If, in any circuit there be a resistance, R, and also an inductive reactance, X, the impressed voltane no longer leads the current by 90 electrical degrees. but by some angle, θ, which suay be determined from the following sonsiderations.

The impressed voltage, E (fir. 16), must have a component, E^{\prime}, equal to $R^{2} I$, and in phase with the current, I, else it could not overconne the resistance R. This voltage must also have another component, $E^{\prime \prime}$, equal to $I X$, and in phase with it, else it could not overcome the inductive reactance, \bar{X}. This inductive reactance leads the current, I, by 90°, as shown above. Theretore, these two components are at right angles, and the result-

Figere 15..- Dingram whowing ratetion betwhen eurront, Impresside voltuge, dud ant voltage is found as shown in Figure 16.
The actual usetul jower in the circtit is measured by the product of the current. I, times the voltage component, E^{\prime}, in phase with I, since the other component (in phase with X) is balanced by the e. m. f . of self-induction.
'Ihat is, power in watts $=\mathrm{E}^{\prime} \mathrm{I}=$ $E I \cos \theta$.
The term, cos θ, is called the power factor, and varies with the ratio of inductance. X, to resistance R.

GENERAL DIBCUSSION OF POLYPHASE INDUCTION MOTORS

The essential parts of a polyphase induction motor consist of a stator or stationary element with windings carrying the several phases of the line current, and a rotor inside the stator. If the rotor wires are connected together at their extremities, the motor is known as the squirrel-cage type. If they terminate in brushes, which are connected with variable resistance elements, it is termed the wound rotm, or slip-ring type of motor.

Figure 17 shows a stator of ant induction motor wound for a 3 phase current with the phases spaced 120 electrical degrees around the ring. When the current in phase 1 is a maximun positive value, the value of the current in both phase 2 and 3 is equal to $-I \sin 30^{\circ}-1 / 2 I$.
The resultant marnetic field is therefore in the direction shown in Figure 17 at this instant. When the current has passed through 120 electrical degrees (after $\frac{1}{3 f}$ sec-

Figuse 16.-Determination of rexultant voltage in an alternating-current circult containing resistance and reactance onds, where f is the frequency) the value of phase 2 is maximum and positive, and that of both phase 3 and phase 1 negative and each equal to one-halif the maximum value. The resultant magnetic feld at this instant is, therefore, 120° to the left of its original position. After another equal interval the field is 240° to the left of its original
position. A 3 -phase current, therefore, produces a rotating magnetic field with a speed in r. p. m. of $60 f$ for a 2 -pole machine. For multipolar machines with P poles, the speed of the revolving magnetic fiekl is, $r . \mathrm{p} . \mathrm{m}=\frac{60 f}{6}{ }_{2}=\frac{120 f}{P}$.
This is known as symolnomens speed, and depends on the frequency of the appied current, and not on the motor load. The action of the rotating magnetic: field is exactly the same as if the permunent magnets of Figure 18 were revolved about the rotor at synchronous preerd.
Suppose the rotor of Figure 18, A to be at rest and current suddenly applied to the stator winding. The hypothetical magnets, N

Figtare 15.-Diagram illastrinting principles involved in an induction motor
and S, start to revolve at synchronous speed, and an electromotive force is induced in the rotor wires. This e. m. f. induces a current in the rotor wires and since these wires already lie in a magnetic field, a torque is at once developed which tends to revolve the rotor, and with it the motor shaft. The flax is moving downward with respect to the wires on one side of the line A-A (fig. 18, A), and upward with respect to the wires on the other side of this line. The induced e. m. f., therefore, is opposite in direction on the two sides of the line A-A.
If the rotor current is in phase with the rotor voltage, the condition shown in Figure 18, A obtains (i. e., relative motion and current reverse at the same time), and the torque is all in one direction. If, on the other hand, the induced rotor current lags the volt-
age, at condition stach as shown in Figure 18, B obtains, and part of the torque is negative. From Figure 18, B the retarding torque sector is seen to be proportional to the emrent lag, θ.

SQUIRREL-CAGE MOTORS

The above fandamentals will now be applied in a discussion of the load characteristics of polyphuse notors. Assume the notor at rest and no stator current flowing. At the instant the line switch is closed, the magnetic field intuced by the phase winding starts to revolve at symbronous speed, and currents are set up in the rotor

bars. The frequency of the rotor currents at the instant of starting must be the same as that of the stator currents, since the rotor has not started to move. With this relatively high frequency, a large inductive reactance is introduced (since the inductance varies as the frequency). Since the rotor resistance must always be relatively low (to avoid excessive heating), the current must, in this case, lag the induced e. m . f. by a large angle. A large retarding torque sector (fig. 18, C) is, therefore, developed so that the net or useful totque is relatively small while the rotor current, Ir, is quite high. At starting, therefore, there is a relatively small starting torque, with a relatively high starting current. Generally, a starting current
equal to abont five times the full-load current is nepeded to develop Sho per cent of full-kad torque.
As the torque develops sutticiently to orercome the inertia of the rotor and the extermal load, the rotor starts to rotate. For no load conditions, the rotor accelerates to practically synchronous speed; for full loak, the rotor generally has a slip of about 4 per cent; i. e., the rotor moves through 96 per cent of one revolution, while the stator fied makes a complete circle.

As the freguency of the rotor current depends apon the rate at which the rotor bars slip past the rotating field, the full-load frepuency is but 4 per cent of the frequency at starting. This low fregrency reduces the reactance in the rotor circuit proportionately and, therefore, reduces the current lag since the rotor resistance is constant, and the rotor currents become more nearly in phase with the rotor voltape. Full-load torque is, thertiore, developed at a greatly increased power factor. Full-load torque at full-load speed obvionsly requires the rated full-load current, while for this same torque at the start aboat 330 per cent of the full-load current is reguired.

As the load on the moter is increased above the rated full load the fotor slows down and the percentage of slip becones greater. This jncrease in slip increases the amount of current in the rotor bars and atso increases the frequenc. The current increase tends to increase the torque, white the increased frequency increases the current lag and, therefore tecrenses the torque. ${ }^{-} p$ to a certain load the current itwerase is greater in its effect than that of the frequency incrase mad, therefore, the torque increases to carry the increased load. Above a certain point, however, the effect of the lag in rotor currents is more than the effect of the increased enrent itself. At this point the notor starts to slow down, and the torque decreases with any further increase in current. (Fig. 22.)

The change in curent values is great even for a small change in the pertentage of slip, so that the squirrel-cage motor is to all intents and purposes a constant-speed motor. This type of motor nhays takes a lagring current, and has a power factor at full load marying between 0 and 90 per cent, depending on the sige.
The symhronons speed of a spuitel-cage motor may be fomd bey the lommia

$$
\text { r. p. m. }=\frac{1-2)}{\rho}
$$

Full-kod specel is generally about 90 per cent of synchronous speed.
The harge enrent required by the squirrel-cage motor for starting moxer full load is the principal objection to this type and eliminates it from consideration for heavy starting dily. It is, however, very sturdy in construction, and has no brushes or sliding contacts such as the commutator of a direct-current motor or the slip rings of a wound-rotor motor. For small units or other use not involving heary starting duty this motor is very satisfactory.

WOUND-ROTOR MOTORS

It has been pointed ont that for the squirel-care motor the large ratio of corrent to torpe at starting is due to the lagring current, whin in turn is a fume tion of the high reactance and low resistance
of the rotor. For example, if the resistance R in the rotor circuit (fig. 19) be increased to R^{\prime}, then the angle of current lag decreases from θ to θ^{\prime}, and the retarding sector on the rotor is decreased proportionately. (Fig. 18, C, D.) By increasing the rotor resistance a larger torque is produced with less current, and the angle of lag can be so reduced that full-load torque at starting may be developed at about full-load current.
As soon as the rotor speeds up the resistance is no longer needed,

Fiocine TD-Dtarram showing eftect of introdzeing resintauce la rotor of iaditethon montre since the reduced frequency of the rotor current automatically takes care of the current lag, und this high rotor resistance would cause heavy power loss due to heating. Instead of having the rotor bavs connected together at their extremities, the wound-rotor motor terminates these bars on slip rings to which are wired resistance grids arranged so that they may be cut out step by step as the motor speeds up. This type of motor is suitable for heavy starting duty, as it has much better starting chameteristics than the squirrel. cage type.
For the main hoisting or turning motors of a movable bridge the wound-rotor or slip-ring type should preferably be used if the power required is in excess of 15 to 18 horsepower. Below this value squir-rel-cuge motors can be used. They are also suitable for such purposes as the operation of pumps, locks, latches, gates, and barriers. Squirrel-cage motors having what is known ths "high-resistance rotors" are sometimes used for intermittent duty of this kind and may be used for power units up to 25 horsepower and perhaps even higher.

POWER FACTOR

Thus far the discussion has been of rotor currents, voltages, and resistances. The stator current, however, is the metered current for which the consumer pays. Under

Figurs 20--Erfect of inad earrent on puwer factor no load, the stator currents lag the voltage by nearly 90°, as the resistance of the stator windings is low and the only impedence is the reactance of the circuit.
As the load comes on the rotor develops a slip, and rotor currents are developed which tend to demagnetize the stator. To counteract this tencency a load current is developed in the stator which mast be in phase with the stator voitage.

As the load current increases the power factor increases, ats shown in Figure 20. For example, if O a represents the value of the stator leadel current at one-halff full load, the power factor is $\cos \theta$. As the load is increased to full luad, the magnetizing current or current
opposing the inductance remuins practically constant, the load current increases to the value $O b$, and the power factor becomes $\cos \Theta^{\prime}$.
The power factor for an induction motor varies with the load approximately as follows:
Percentage of
full load
0
95
50
75
100
150

It is not advisable to design a power system so that the motors are ulways inderlonded, as this means not only a waste in the first cost but also a lew power factor and a consequent plant waste at the point of generation.

speed control of woundrotor мотоиs

The motor torque depends upon the rotor current which in turn is induced by the slip of the rotorIf, at any given load and speed resistance were inserted in the rotor circuit, the rotor current would drop and the torgue would decrease. This wonld cause the rotor to slow down until the additional slip produced the requived torque current. The motor would then continue to rotate and carry the load, but at a reduced speed. Speed control on wound-rotor motors is therefore made possible by varying the resistance in the rotor circuit.
Figure 21 shows the torque-speed curves for a 440 -volt, 60 -cycle, 6 -pole, wound-rotor, induction motor having five resistance steps. These curves are self-explanatory. betwen speed, torque, Figure 22 shows the relation between speed, torque, and current for a 440 -volt alternating current motor.

STARTING SWITCYES, COMPENSATORS, AND SPEED CONTROLS
The full line voltage can be thrown directly on the stator of small, squirrel-cage motors by means of an ordinary knife switch, but all circuits shoud be protected against overloar by stitable fuses. In starting large motors, use is frequently made of autotransformers, or starting compensators, which are placed in the line to reduce the voltage at starting and thus avoid the possibility of dangerously high curvents.

$$
64559^{\circ}-31-2
$$

The Y-delta method of starling is sometimes need. This method depends for its action on the difference in voltage across Y-connected against delta-connected loads us shown in Figure 14. During the starting period the stator windings are Y-connected to the line, giving a voltare of $\frac{E}{\sqrt{3}}$ or 58 per cent of the line voltage. as the machine speeds up, the connections are thrown into a delta connection, increasing the voltage to E or 100 per cent of the line voltage.

These starting devices are used for squirel-cage motors, while the slip-ring motor's need no device other than the rariable rotor resistance. This latter type of control, which is most readily effected with magnetic contactors (remote or magret control), presents so many advantarges that its use for movable-bridare operation is becoming almost universal. This method of control and also the question of motor starters in gemeral is to be discussed more fully in following pages.

SINGLE-PHASE MOTORS

It is sometimes necessary to use single-phase motors for small units because no other current is amilable. For mits above a single horsepower this shotd not be done unless mavoidable, as 3-phase motors are always considerably less expensive. less complicated as to wiring, and easier to install and mantain.

As an illustration, the following quotations on 2 -horsepower and 3-horsepower units have recently been mate for ase on a briklege.

There is also the fater that single-phane motors most be fitted with brushes which ate always likely to catuse some trouble or expense because of sparking or flashing over.

SELECTION OF ELECTRIC MOTORS

The determination of the power required for movable bridges is so thoroughly covered in current literature that it ned not be repeated here. The discussion which follows is. theretore based on the assamption that the torgue and power demands at the motor shaft for all comditions of hadimp, have already been determined.

The fandamental permeples anderlying the operation of electric motors have bem discussel and it now remains to smmarize this subject matter and dellere a few simple robst for the grtidance of the engineer in specifying and selecting equipment.

DIRECT-CURRENT VERSUS ALTERNATING-CURRENT MOTORS

The choice betreen direct-current and alternating-current motors will, of course, be largely controlled by the character of electrical muergy commercially avaifable. Aternating current is used for rencral distribution through high-voltage lines because of its flexibility. The majority of commercial service lines carry alternating current, while direct current is used for street railways and for distribution in industrial centers. The majority of installations for movable brilgres make use of alternating curent because of its more frefuent commercial use. Where both types of current are arailable at approximately equal mates, the choice between the two is largely it matter of personal prefernce.

The direct-current series motor has starting characteristies somewhat better actaptesl to haravy hoisting duty than the polyphase induction motor as indicated by Table 3. Direct-current motors are apt to have more sparking at the brushes thatn wound-rotor motors, uspecially where commutating poles have not been supplied. Machines of the surimel-cuge type do not have such trouble.
Alternating current is more flexible, easier to handle, and somewhat qusier on contacts becanse the frequent current altermations minimize the tendency to spark.
All things considered, altermating curvent is perhapsis slightly nure dewirable than direct current for morable laridges.

TESTS AND RATINGS FOR MOTORS

The capacity of any motor is limitel by two factors-commutation and temperature rise. Commutation is necessary only on directrutrent motors axi certain trper of single-phase machines, and if commurating poless are supplied the sparking at the brushes is greatly minimized.

The horsepower of a moter is a function of torque and speed which are in turn functions of the voltage and load current. The load rurrent is limited to that value which will not heat the motor to a point detrimental to the insilistion. It is apparent that the internal temperature of the windings is at function of the time during which the motor operates so that the size or capacity of any motor is not a fixed term but a term which has a variable meaning. depending upon the period over which it must be operated continuotsly. This is illustrated by Table 1 taken from the catalogue of a manufacturer.
'Tame 1-Horsepoger rating of airect-emrint motors for different periods of time bustd on "I limuting rise in temperature of $7 \overline{5}^{\circ} \ell$.

Motor	One-fourth hour	One-hale	1 Lout	3 bours
1	Horsepower	Horsepower	Horsepower	Horsepower
4	33^{2}	23	${ }^{0}$	14
(50	65	50	30
1)	180	$1+0$	100	62
E.	300	250	185	100

The duty imposed apon the motors of any movable bridge is highty intermittent, but it appears advisable to specify a time rating not less than that necessary for five complete operating cyeles, and, in any event, not less than the following minimum limits:

The limiting rise in temperature shond. in gemeral. be not more than 50° C. above a roon tenurature of 40°, athomph a temperature rise of 75° is sometimes permissible for certain types of direct-current motors. The stambard rating tests of the Lumerian Institute of Electrical Engineers are universaly specifed.

SPECIAL FEATURES WVOLVED IN USE OF DIRECT-CURRENT MOTORS

Shmat motors rmat practically constant speed and draw power from the mains in direct proportion to the torque demand; while, theoretieally, series motons draw emment in proportion to the square root of the torgue and operate at a decuased speed ats the current increases. Tf the load on a series motor is smblenty removed, the sped inereases raphily and the notor may bast under the centrifutril stresses inducerl.

The dharacteristies ol a compound motor lie somewhere between those of a shant motor and those of a series motor, repending on the ratio of shant coils to suries coils. A compound motor with characteristies approathing those of a series motor is sat to be heavily componuled.

The main motors of a movable bridere should be of the series or a heavily compounded type in order to produce the torgae required for starting and to overeone wind resistance without undaly increasing the eurrent.

As an exmmple, a bascule span wat recently designed by one of the writers with at required torque at the main pinion of 23,000 footpounds mader normal conditions, and 62,500 foot-pounds under extreme comblions (wind pressure of 1.5 pounds per square foot). For a series motor the ratio of current required under extreme conditions to that required under normal conditions would theoretically be. $\sqrt{\frac{02,500 \text { foot-pounds }}{23,000 \text { toot-pounds }}}=1.65$. The extreme condition would require an ineroses in current of 6 per cent as against 172 per cent excess current required for the same condition if a shunt motor was used. A heavily compounded motor would require a curent sightly in excess of that for the series motor but much less than that for the shunt motor.

- Under the above conditions the overload would decrease the speed of the series motor to about 60 per cent of its value under normal load. Constant speed is not obtainable with this type of motor and a strong wind maty increase the opening time but such delays can oftela be tolerated.

If two motors are used to move a nipan and one of them becomes inoperative the torque clemand of the single motor is 200 per cent
of normal. This will double the current passing through a shunt notor, but will increase the current in a series motor by only about 41 per cent. Current induced by overloading causes a temperature rise in the motor, and the maximun load is limited by the maximum current which may be induced without heating to a temperature destructive to the insulation. The safe load on a directcurrent motor, as has been stated, is often limited by commutation (unless interpoles are used), as an excessive armature current weakens the reversing field, and causes destructive sparking at the brushes. If a shunt motor is used a larger power unit should be employed as less margin can be allowed for overload.

A series motor is not suitable to operate pumps for the counterweight pit of a bascule span, since the suction pipe might break and release the load and let the motor attain a dangerously high speed.

For roulway gates and taffic barriers, either shunt motors or compotind motors with pronounced shunt characteristics are preferred in order to have constant speed, since no great amount of overload is likely to be applied. Where chain drives are used to operate gates there is a possibility of chains breaking and removing the lcad and the shant characturistios are best suited for this condition.

Center locks for touble-leaf bascule spans and center wedges or lifts for swing brilges maty be operated by shunt motors or those having a light compounding. End wedges for swing spans, however, shouli preferably be driven by a heavily compounded motor in order to develop the necessary power at the end of the lift when wedge friction is a maximum or when a wedge is jammed. Shunt motors have been used for such service in miny instances, but the expericnce of the writers with end-wedge lifts indicates that a motor with better overiond characteristics is desirable.

In general, the main losisting motors of turning motors, endwedge motors and those for any other duty demanding occasional overloading should possess strong series characteristics unless the conditions are such as to make possible a sudden release of lond. Motors for lighter duty or where constant speed is desirable. may be of the shunt type or the compound type with shunt characteristics.
(1)3LSCTTATION

The following brief discussion is presented to explain the value of commutating poles on direct-current motors for certain kinds of servire.

Figure 23. A shows part of the armature and commutator of a common type of direct-curent generator: Each of the armature coils revolving through the main magnetic field carries an current. These coils tre in series so that the current induced in each coil flows through erery other coil between it and the commutator segment in contact at chat particular instant with the brush. An instant before the armature assume the position shown in Figure 23, commutator segment C was buck of its present position so that point d was at some point d^{\prime} over the brush. Thus the commutator segments B and C were comected and coil A was short circuited. As commatator segment (moves on past the brush, coil A is suddenly thrown in series with coil E . This sudden change of current in coil A is opposed by the self-induction of the coil as indicated by the
arrow; thus causing a part of the current to be forced across the gap and into the brush, catosing sparking.

If the brush is shifted forward to the position shown by the dotted outline, coil A would still be short-citcuited charing a certain perior of the rotation, but it would be short-circuited in a reversing magnetic field since it has now been moved inder the pole tip \mathbf{N}.

This disanssion can be applied to a motor where the armature corrent is applied rather than induced if it is remembered that the direction of rotation is revarsed. The following general rale may be stated: 'To avoid sparking. the broshes mast be shifted forwath foe gemeraters and hack for motors.

B

usp and allytemilios

Figure $23 . \mathrm{B}$ indicates the distribution of flux through the armatture of a generator or motor due to the field magnets only. Figure 23. C illustrates the marnetic field produced by the armature winding. Figure 23. D shows the resultant of these two fields. It is apparent that the effect of armature reaction is to weaken the reversing field, and that furthermore the degree of weakening is directly proportional to the armature carrent. For sparkless commutation, therefore, it wonld not only be necessury to shift the brushes further on account of armature reaction, but the neatrul position for these brushes wonld vary with the load (the armature current).

To avoid this difficulty, interpoles or commatating poles may be placed us indicated in Figure 28 . A. The function of these poles
is to create an axilaty mersing field for the ammatare coil which is beiner short cirenited.

The followiner statement on commatatine poles is quoted from the catalogue of a large electrical manufacturing company.
 roLes

The weakest puint of a noncommatating-pole motor is the commotator, on :acombt of its tombeny to disintegito becaluse of the sparking and wear by brash frietion. The commutathy pote motw is primaty a lom-sparximy mat chine with the result that a theth hatere brash teasion nay be used. In fact,
 direvecure 10 molse as the nse of commatating poles. The beneficiat effects of commataing poles wre particularly noticeable on the higher voltages, and יn cimits havins a wife and mpidis fluctuating voltage where they greatly minituize the tembency to thast over at the commatator.
The mepmal bint of commutating pole machfats is tixed, regardess of the direcion ot whation, thercfore wmmotation poles are particularly vatuathe on reversitio zutors
The conmatatiar pole windines are in serips with the windines of the armat ture and man potes. This mates the advantages of the commatating poles matkerly efferive in the case of serieswomm motors, for ats the load fircrentsts, the expitation of both the commntatiag and main potes increase equaldy mad togethry, resulting in an chomonsly increased capmety of the machne to stand sudden leary orerloads withont slarking at the commatator.

SPECLAL FEATURES INVOLVED IN THE USE OF ALTERNATING-CURKENT MOTORS

For the main hoisting or swinging motors the fotlowing general pratere should graide the selection:

For powne thits of less than 15 homsepower: Squirrel-age motors may be used, although sip-ring induction motors are somewhat prefrered on accomat of the need for some speed controt.

For powe wats between 15 and 2. horsepower : Either slip-ring induction motors or squmel-cage motors with high-resistance roto" should be met. ifan the slip-ring type is preferted.

For power tuits above 2; horserower: 'The slip-ring induction motor shouk he ased and are taken to provide enourh resistance Wops to areberate and decolecate the span thoughout its complete oprating eyele at such a mate as to combletely eliminate all shock and jar, and to provide a sped range sublicient for the needs of the installation.

For ernter locks, tail locks, end wedges and lifts, pit pumps, roadwiy arates, and all other light duty, ordinary squirrel-cage motors are satisfactory.

LUBRICATION

The methot of Inbrication will slepend upon the nature of the installation. Swine bridges and vertical-lift spans have stationary motors. This is also trute of the man hoisting notors in cortain types of bascule bridges. For certain types of rolling-lift spans. however, ath for motors which operate center-locking mechanisms or tail locks. He motors mast rotate with the moving leaf. Motors which are momated an a stationary portion of the structure may be labricated by monns of oil rings. Motom which rotate with the noving lenf. hoverer. mast be equipped for oil waste or wiek lubrication or
fitted with grease cups or other effective system for pressure lubrication.

MOTOR HOUSNNG

The housings of motors are generally classified as open frame, seminclosed (perforated covering), and totally inclosed. The openframe motor has hetter ventilation, and. therefore, heats iess rapilly tunder heayy current. Since the capmeity of any motor is entirely a matter of temperature rise (onless commatation is a factor), a somber power mit may be selected it an open-trame design is permissible. For open ail service, however, open-frame construction maty result in danage to the armature and windings due to moisture, dirt, dust, and other 'a itions of exposure. All motors except those which are located in wom detely inclosed, heated rooms shonld preferably be of the inclosed type.

Certain conditions may preclule the use of open motors and yet not neecssitate a frall inclosure. For such a condition, perforated covers (the seminclosed type) may be used.

Tnder severe conditions motors may be fitted with a complete inclosure having an air intake and an air outlet for the comection of ventifation pipes. Motors thus equipped are commercialy available and are of two types; those aranged for external ventilation, and the self-ventilated type which is efuipurd with fans as an integral part of the machime.

OTHEL GENETRAE PEATURES

In general, the motors on any bridge shouhl be arranged and hocatel so as to permit of the most efficient system of ventilation and to permit pasy acesss to all parts for insjection and repars.
Where both 2 -phase amd 3 -phase alternating current is avalable, preference should be given to the 3 -phase current becmuse of the better distribution of the stator windings which inereases the efficiency of the motor. The power factor is also higher and the starting characteristics better with the 3 -phase motor: There is also a saving in the amount of copper reguired for the distribution system.

For the same power rating, high-speed motors weigh less, ocrupy less spare and cost less than low-speed motors. Table 2 illustrates the variation in weight for a few typical alternating current indution motors of various speed ratings.
 motor:

30 horsemswer		30 borscmoter		160 horsepowr	
Full-load speex	Weftht	Full-load sseet!	Welyht	Full-kud speed	Weight
	$\begin{gathered} \text { Pownds } \\ 7 \times 10 \\ 789 \\ 1,2 \times 1 \\ 1,070 \end{gathered}$				

Motor housings should be tapped for conduits so that all motor lenis may be thoroughly protected. Inspection holes, of ample size,
and easily accessible should be provided over commutators and brushes on all totally inclosed motors. The motor shaft should be extended and key seated for a standard shatt coupling, except where back gearing and a secondary shaft is used. In this case the motor shaft is keyed to a forged-steel pinion, engaging a cast-steel gear with machine-cut teeth and keyed to a secondary shaft. This secondary shaft shoukd be supported on bearings rigidly fastened to the motor housing, and generally the entire back gearing except the protreding end of the secondary shaft is totally housed. Motors which are to be used in conjunction with motor-mounted solenoid brakes should be fitted with a double shaft extension, one end of which is for the attachment of the brake mounting.

Where more than 40 horsepower is required to move a span or a leaf in the case of double-leaf bascule bridges there is great advantage in using a set of two motors rather than a single motor. Should one motor fail it would be possible to operate the movable span with the remaining motor, although, of course, at a considerably reduced speedi. This system also has the advantage of permitting inspection, repair, or renewal of a motor during the course of operation by simply cutting the motor ont of the line temporarily. Where direct current is useat the motors may be installect with series-parallel method of control which affords a large speed variation, and also a large torque for starting.

Where motors are operated in pairs, the discontinuance of one of them places a large burden upon the other. Motors are generally rated on the basis of thre torque values-full-load torque, maximumstarting torque, and maximum-running torque. The maximum starting and ruming torques are generally more than twice the normal or full-load torque. Table 3 indicates the ordinary range of torque values for a few typical motors.

Tanse 3.-TOrque tutues of tupial motors mofycha hithrastivervibrent motors

	+	K.titas	Full lomi toriduo	Maximam running sorfita	NIaxinnm slarting toryiue	Steetit 14 hall joatd
	1. peur 505		Fend-pothals	Food-pathds	Food-poundy	17. PA. AI
30.		- - -	155	375	335	6, 630
50	${ }^{2} \mathrm{l}$ honkr, 50	--	272	iso		575
100	I hour, 59°		460	1, 130	1.020	575
	(\cdots	8183	$\underline{3} 3.5$	2120	375

Where motors are ased in pairs they should be able to operate against the specified wind load in the required opening time when running at full-load speed and producing not more than fill-load torque. Each motor alone should be able to exert a maximum torque sufficient to operate the leaf agrainst a wind pressure of 10 pounds per square foot. Such a wind pressure is of common oecurrence and may occur at the time one motor is inoperative. While the single motor is exerting its maximum torque, it will run at a reduced speed, particularly if it is a series motor. It is not necessary that each motor be able to open the bridure in the required opening tine, as a single motor will be used

 rent motor

 induction mator only in an emerqency.

It may be possible to install an electrical or hand-operated gear shift which will reduce the specd of operation when one motor is inoperative. The maximum torque will then be redaced by the factor representing the gear ratio. An arrangement of this kind introquces another mechamism into the operating train, and since the cost of motors is not a large portion of the investment for a movable bridge, it is fuestionable whether this procedure is advisable. However, in many localities there is the important consideration that olectrical energy is sold on the basis of a fixed cost pere horsepower of connected load. When. this is the case, the use of harg motors will increase the monthly operating expense by a material amount, and this may have considerable bearing upon the selection of motor sizes.

With any type of gearing it is conservative and sare practice to proportion the mechanism so that when only one motor is in operation the actual maximm torque at the math pimion or operating strut is sufficient to operate the bridege against a wind pressure of 10 pommen per square foot.

The total power system should abso be sulficient to hold the bridger in any position asainst a wind pressure of 15 pounds per square foot with a comfortable margin of safety.

Each motor should be rigidly supported by a firmly anchored base. Motor bases supported directly upon masonry are much preferred over motors supported by the structural work.

Vertiond motors are sometines used for the aperation of sump or pit pumps. Such motors should be equivalent in all respects to horizontal motors for like daty and shomld have thrust bearings designed to cary considerathe exess vertical lomel.

It is desirable that there be supplied with each motor as spare parts one set of brushes, one armature complete with shaft and commutator or one rotor complete with shaft and slip rings, one set of field coils or stator coils, and one set of bearing linings.

Figures 24 and 25 show motors suitable for movable-bridge service.
The following data should be included in the specifications for any motor needed for a movable bridge in order to furnish the basis For an intelligent birl:
(1) 'The character of the charent (whether alternating current or direct anrent).
(2) The voltuge.
 is used).
(4) For ifirect-current motors, the type of winding (whether shunt wound, sertes woma, or compound wound), atho for alternating-current motors, the type of rotor (whether squirrel-cage, high-resistance rotor type, or woundrotor type).
(5) The type of frame (whether open, seniinclosed, or totally inclosed).
(6) Ther type of insulation (whether special moisture-proof insulation need be provided ().
(7) The rating in horsepower, giving the basis of rating in terms of temperature rise and duration of test (for example, a rating of 40 horsepower on the basis ot a temberature rise of $50^{\circ} \mathrm{O}$. for 30 minutes when subjected to the standard tests of A. I. B. E.).
(8) The spred or the motor in revolutions per minute at full load and, in case of attermatintenrent motors, the syoctromus speed at well.
(9) The full-hall torgue, the maximam starting torque, ind the naximum rumbing torelue values.

It is probably well to provide that each motor shall be tested at the contractor's expense, and at the manufacturer's plant, and that a certified copy of the results of such tests be furnished the engineer or purchasers.

CONTROL AND INTBRLOCKING OF OPERATIONS

A complete control system for any movable bridge must be designed to perform several separate and distinct functions, as follows: (1) The reguation and control of the power plant proper, (2) the proper condrol of sefuence or interlocking of the various operating steps, and (3) the safegrarding of the structure and its operating mechanism.

The first functiton, or power-plant regulation, comprises four separate features-starting, acceleration, deceleration, and reversal. The control equipment for starting must be sutch as to effect a transference of lond to the power plant without undue shock or jar, and without introclucing torques of loat corrents in excess of those for which the plant is desirned. Acceleration and deceleration must be effected at a rate necessary for satety and traffic efficiency. This rate is, of course, influenced to a laree extent by the character of traffic for which provision must be marle.

The second function is that of controlliny the succession of operations so that they can occur in only one predetermined order.

The thirl tumetion involves saferparding the structure by mechanisms and devices such as limit switches. automatic stops, indicators, buzeres. and seating devices, so that the varions portions of the structure are protected from overload. overtravel, or undue impacts and shocks or vibrations. liach of the above functions will be discussed in detail.

Attention is called to the appendix at the end of the bulletin cos taining definition of terms and manufacturers' specifications for various electrical appliances.

CONTROL and regulation of electric motors

The regulation of electric motors inchudes starting compensation speed control, reversal, overload protection, and protection agains, excessive acceleration.

STARTING COMPENSATION

Starting compensation may be defined as the means employed to counteract the tendency toward destructively high currents in the motor during its initial and early acceleration from a point of rest. The need for compensation has been discussed in connection with motor charactexistics. Starting compensation may be said to be the electrical equivalent of a friction clutch-it is the method by which the load is eased onto the motor at starting.

Smail motors of either direct-current or alternating-current type do not require starting compensation and full-line current can be applied by means of an ordinary switeh. As the duty increases, compensation at starting becomes a necessity unless the size of the motors in comparison with the load be greatly increased. It must be remembered that, aside trom commatation, starting compensation is only necessary to protect the motor against excessive currents, and if the motor windings were to be built large enough to withstand such currents, starting compensation could be dispensed with. Some of the larger manufacturing companies are now building motors of rather large horsepower which have been designed for direct-line connection at starting. However, for general practice in movablebridge design, the following rules are suggested.

Motors for roadway gates, counterweight pit pumps, and other light duty may be directly connected to the line at starting. Totors for end wedges of swing spans, tail locks of the toggle type for bascule spans, heavy traffic barriers, bascule center locks, or other like intermediate duty where the load is ordinarily light, but due to a possible jamming or sticking of the mechanism may have to carry abnormal loads occasionally, should preferably be provided with some starting compensation. Motors for hoisting or swinging the leaf or leaves of a movable span, are under a service that necessitates provision of this character in all cases except for very small structures.

Starting compensation for direct-current machines is effected by a reduction in the voltage or by interposing resistance in the armature circuit which is cut out in successive steps or stages as the motor attains speed. Starting compensation for alternating-current motors is effected by a reduction in line voltage or by a group ot resistance steps in the rotor or secondary circuits. (For a further discussion see p. 57.)

SPEED CONTROL AND REYARSAL

Speed control of direct-carrent motors is effected by varying either the field or armature curents as previously explained, while in alternating-rurvent motors.

There are several general types of overload relays in common use. In one type the relay controls a latch on the main switch, and when the latech is released the switch opens. The relays themsel ves an reset instantaneously, but it is necessary for the operator t^{\prime}) reclose the switch manually. This type of relay is applied to circuit breakers or switches installed on the main switchbourd in the inconing line. They furnish protection to the circuit as a whole, but not to individual motors (if there are two or more motors on the line),

Fhatite se---Dhagram of a serios relay with wectrle matomatice resort since they must be adjusted for the combined load of all connected apparatus. In a direct-current circuit or single-phase alternating-current circuit only one lead wire need be opened to break the circuit. For at 3 -phase circuit two of the leads must be controlted to insure against the possibility of a motor operating on a single phase with one of the leads open.

In another type of apparatus a pilot circuit operating a magnetic contactor in the main line is controlled by contacts on a line relay. This type of apparatus is genernlly installel in the circuits of single motors. In some installations it is necessary to close the relay contacts by hand or by a magnetic device controlled by a push button located at any desired point. Use is also made of relays which open and then antomatically close. While the auxiliary circuit is momentarily open the power supply is shat off. bat can be reconnected by means of another auxiliary circuit controned by a push batton or other reset point.

Figure 26 is a schematio wiring dingram for an overload relay with clectrical automatic reset and anxiliary push-button start station to protect a direct-current motor. The breaker circuit is normally held in contact at point A by means of the balancing or reset relay \mathbf{P} shanted across the line. When the current in the power lead reaches a certain value series coil C exerts a pull on its core D sufficient to overcome the attraction of the relay P'and opens the circuit at point A. This deenergizes magnet coil E . opening the main power circuit at F. An instant later (almose instantaneonsly) contact A is remade (since series coil C is deenergized with the opening
of circuit at $F\rangle$, but this instant has been sufficient to open ap ile shunt circuit $G-H$, causing the core on the holding relay to drop, opening the circuit actiating magnet coil E at K . All circuits are reestablished by pressing the button M.

If a spring is attached to the contact arm A to reestablish contact when coil C ceases to function, the arrangement is known as an automatic spring reset. If the effect of gravity is substituted for spring tension, the type is known as the antomatic gravity resed type.

Protection against exressive acceleration

Where successive resistance steps ane cat ont with a controller or master switch, excessive curgents will be induced if the action is too rapid. As euch resistance step

Flatite 27. Fiffect on sprest and current of normatl athe raph reobetion of atartthis remptaner is cut out, armatare or rotor currents increase, causing the motor to speed up. As the motor speed increases these currents drop back due to the increased back e. m. f. in the case of direct-current motors and to the decreased slippage of the rotor in the case of indaction motors. In either case the current ratiation as successive resistabe stepe are cat out is as indicated in Figure $2 \overline{1}$. If the controller or master switch handle be moved over at just the right speed. the current variations maty be kept along the lime IBCDEFGH. If this handle is thrown over too rapidly, however. the current variation graph issumes some position sueh as ABCITKLH. resulting in an excessive comrent.
To aviod excessive acceleration. it is adrisable to install in the main motor circuit (armature circuit of direct-curent motors, and either the rotor or stator circuit of alternating-current motors ${ }^{2}$) current limit relays which opeate on each resistance step and hold open the circuit, cutting out the next resistance step until the power current has dropped to a certain predetermined value. These relays are quite similar in general construction to overloud relays consisting of an electromagnet in series with the armatime circuit or the rotor or stator circuit.

As any step of resistance is cut ont the power current steps up. This current passes through the relay and while above a certain value it exerts a puil arainst the relay armature or core sufficient to open an auxilary cireuit which is wired in such a manner that electromagnetic controls hold open all additional resistance steps on the controller or master switch. So matter how far the controller or master-switch hande is now thrown over. m further resistance can be cat out. 'The andilary eirent is hok open by the carcut-

[^0]hinit relay magnet arginst the pull of a spring (or a weight or another relay coil), and as the motor speeds up the power current tecreases to a point where the spring overcomes the magnetic attraction and the relay arain closes, rendering the next point on the controller on master switch arailable for cutting out another resistance step. As the next step is cut out the cycle is repeated. Currentlimit relays are generally adjustable and can be set for any value of current within the range for which they are designed.
'The present discussion has been limited to an outline of the functions necessary for a proper regulation amb control of motors. Selection of equipment, wiring, and arrangement will be considered later.

CONTROL OF SEQUENCE AND INTERLOCKING OF OPERATTONS

The next question which logically presents itself is that of controlling the sequence of the various events constituting an operating 'ycle. As there events are somewhat different for different types of movable bridges, the discussion mast be segregated by types, (each of which will be discussed in brief detail.

DOUHLE-LEAF BASCULE BRIDGES

A complete operation cycle for this type of structure comprises the following events which should be performed in the order given. opening:

Opration of warniag sigmuls and signs.
Closiug of remote gates, if any.
Closiog of near wates, tralle barriers or opening of ceralls.
C'nlocklug the leaves.
Openisg the span.
clowing:
Closing the stan.
Lowking the leaves.
halising the rattlic barriers, wear gates, or closing of deralls.
Raising of remole gites.
The wroning sigmats may he sirens, whistles, and beils for audible Warning. and semaphores and lights for visiat waming. The bells and simis may be operated during the operation of the gates, or may cease betore the gates are lowered. In peneral, a traffic bell or fong ringing daring the operation of gates is not objectionable, hat a prolonged siren is apt to drown ont signals from the river raft so that it is perhaps better to stop the siren before the gates are lowered. The trafic-boll circuit maty be cut into the gate circuit so that it is impossible to operate the gates matil the traffic-bell circuit is closed and the traffic bell may be made to sound during the entire operation of the gates. The necessity for this precaution will depend on trafle conditions. Semaphore atmos or lights may be electrically interbocked so that they must be set to danger before the gates can be operated. The semaphore can be arranged to close the ollary don-type switeh in the gate circuit when the semaphore is in the warning position. The trafferight circuit can be arranged to oprate a retay which closes the gate civeuit only when the light rimenit is mergized.

Semaphore amms and traffic hights can be arranged to operate on a rimait which is closed the instant the gate mowes from its fully open position. Both of the above described armogements are indicated whematially in Fisury $2 \times$. This diatan shaws butons for short-
circuiting the switches controlled by warning devices, so that the gates can be operated when there is a failure in the interlocked circuits. Interlocking of controls serves an admirable purpose, but, carried to excess, and without provision for cutting out the various

Fiocin 20.-Wiring of controls on the center-lock motor
steps in case of emergency, it may cause dangers as great as those it is intended to avoid.

The closing of neat gates, traffic barciers, or derails should not be possible mintil the rumote grates are closed.
The leaves of a buscule laridre are locked together in their closed position by a center-locking device, and in addition, tail locks are
sometimes used. These devices are generally operated through a master switch or controller which should be arranged so that they can not be released until all signals, gates, and barriers have been property operated. (Fig. 29.)

The main lemes are generally controlled by amaster switeh which should be wired through a contact on the center lock which is closed onjy when the conter-lock pin is fully released; otherwise at careless operator might chase serious damage by attempting to raise the leaves before they were untocked. (Fig. 30.)

In closing a bridge the leaves are lowered to a bearing at an outboard or live-load shoe at the stream edge of the abotment and at a rear bearing or anchorage. (Fig. 29.) At either of thesa points a device may be instahed to complete the circuit for the center-beck or tail-lock motors in the "drive" direction, so that these devices can not oparate in that direction untid the bridge leates are down. fully seated. and correctiy aligned. Whether this partioular interlocking is essential to safe operation is an open question. If this interlock is not proviled, the center or tail locks may be driven while the bridge is in the open position. This in itself is not particularly objectionable, since the man motor circuit is wired so as to be inoperative exept for those deviers fully open. (Fig. 30.) There is, however, danger of jamming the center and tatilocking deviees by trying to
$6+550^{\circ}-31 — 3$
drive them with the leaves not fully seated, and in exact vertical aligrment (except for certain types of locks designed to draw the leaves together for the last inch or so of their movement). If it is possible to operate the lock pins with the leaves partly open, provision shouk be made for making the roadway gates, trafic barriers, etc., fnoperative with the leaf up; otherwise, the rates and barriers can be raised (lock-pin interlock is closed) with the leares partly or fully open. If, on the sther hand, the contactor for the gate and barriee circuits is operated through a pair of contants, one on the pin and the other on its mating scat. then the leaves nust be seated and the pins driven before the barriess and gates can be cleared for tratic. (Fig. 30.)
Pigure 31 is a diagram of a centertock contact for a barrier or gate motor circuit. If the two contact points are at A and B the barier dircuit can be energized whenever the pin is driven forwayd, regardless of the position of the leaves and additional interlocking should be provided on the live-load shoes

 chtt ta lattrber ort rate unotars or andior colame. If the contact points are at A and C no additional contact on the leaves are necessary.
If the rate or barrier cireuit is interlocked with the leaves, but not with the center or tail lock, it is possible to carelessly permit traffic orer an mulocked span and thus produce live-loal stresses not provided for in the design.

The segmence of the remaining operations (movement of barriers, sear gates, derails, remote gates, etc.), is controlled by aramping cach cirenif so that it is copen until the operations which slould precede have loen completed.
Where cinenits carry only low power as in the case of gates and signols, the control switches may be operated ulirect, but for high power they should be operated magnetically through a control circuit. (Fig. 30.) As au example of an incorrect arrangement, suppose that contact A in Figure 30 is placed on the centerlock master switch; then if the roalway gates or barriers are open, the circuit to the centerlock motor is open and the handle on the centerlock switch can be thrown to the draw-lock-position, but the pin will not be drawn. However, this removes the interocking on the circuit to the main hoisting motors. With such an arangement a careless operator might eause serious damage.

SLNGLE-LEAF RASCTILE BRIDGES

The sequence of opuations for this type of britge is much the same as for the domble-leat type.

Heary positive-action tratic barriers ure ensential as the open end presents a tralfic damer more acote than in the case of the monble-deaf type where the opened lenves act as effective traffic barriers.

The tail lock at the rear end of a single-leaf bascule may be arranged in several ways, but the manner of interlocking does not differ from that of the center lock or tail lock of a double-leaf span.

SWING-SPAN BRIDGES
The operating cycle of a swing span includes the following: 0) jenting:

Operation of warming signtils ated signs.
(thosing of remote hates.
(hosing of netar gates, trafle burblars, and opening ot derails.
Itetense of center wedses, it any:
Unlatelaing of spars.
Withdrantil of end wedpus.
Opening span.
Clositur:
Closing the span.
Closing latches.
Driving of center wedges.
Driving of end wedges.
lintsing of traffic barciers, near gates, etc., and closing of deralls.
Ruislng of remote gates.
Interlocking of the varions steps in moving a swing span follows the principles which have been outlined. If there is a large volume of trafic some method of protection in aldition to the ordinary roadway gate is almost imperative.
Center wedges are used on center-bearing swing spans, and their function is that of a pair of live-load shoes at the central support. These wedges are driven to a snig bearing only and take no dend load. Sometimes they are mechanically connected with the end wedges so that all three are operated simaltaneously. If this is done, some method must be provided to prevent overdriving which will make them hard to release. If the center-wedge system is separately operated, it should preferably be interlocked with the traffic gates and barriers, to prevent a release of the center wedges with the roadway rpen to traffic. This would expose the center pivot to live-load stress, and nllow the span to rock laterally under traffic.

The end wedges must also be interlocked with the gate and barrier mechanism or else live loal over the span with the wedges released will cause hammer at the supports and induce excessive chord stresses. It might also cause severe impact stresses in end floor beams and hip vertiett truss members.

It is not considered necessary or atlvisable to interlock the latching device with any other device. It may be arranged to release simultaneously with the end wedges and be operated by the same mechanism or it may be operated independently. In any event, unlatehing the structure can catise no harm. If the wedges are driven the structure is stable without the latch, and if they are released, the endwedge and center-wedge interlocks insure that the traffic gates and barriers have been properly set.

The circuit to the main swinging motors should contain a magnetic switch controlled by a circuit interlocked with both end wedges and center wedges, and preferably all gates and barriers as indicated in Figare 32.

[^1]When the span has been swong to the closed position and the latches relensed, the next operation is the driving of the center wedges and end wedges, and it is not necessary to interlock the power circuit actuating these mechanisms with the span movement. In such a case the wedres can be driven when the span is open, but the main motor ciruit is interlocked with the end wedges and the span can not be chesed under power until the wedges are drawn and there is, therefore, mo danger of swinging the span against a driven welge. The omission of this interlock is sometimes a convenience. as the wedgen ean be driven back and forth for inspection while the structure is over the draw rest, which is a convenient inspection

point. Of course, even with the interlock, this smme opention may he performed with a short-circuiting button.
'The cimeuits adtating all gates, barriers, and signais, and any derail medhamism, must be interlocked so that the roadway will tre opened only after the wedqes are fully driven. If the wedges are not interlecked with the sima mowment, then the gate and larriev circuits mast be interlocked with the span itselt so as to becone operative only after the span is closed and seated. Otherwise when the span is open the wedges can be derom and all mates and other rondway protection can be operated.

Where sevaral satety operations follow each other in sequence, it is sometimes desirable as an aditional precantion to donble or cross interlock the remote devices; for exmmple, interlocking the remote gate power circuit (for chetring) with both the traffe harrior and the end wedges: thas providing two interleckes, efther of which will safegame the opration.

Figure 3) is a sehematic layout for the math-mator and wedgemotor interlocks on a typical swing-span installat; on. For simplicity. the center wedge has been omitted, the latel.es are assumed as hand opeated and are not interlocked, and onlv two traffe protertive deviess (an am grate and a vertically moving barrier net) have bern considered. It should be pointed out that Fighres 28 to 3b are not wiring diagrans, but merely schematic layouts thed to illastrate certain rencral principles in electric interlerking. Mush of the detailed eirenit wiring has been maited for the sake of simplicity. Complete wiring diagrams will be alisonsed in later pages.

The degree to which is swing bridge is protected by means of interlocking and other protective devices from mistakes in operating is a factor ritally affecting its service life. For example, a careless attempt toswing an mprotected leaf with either the center or the end wedges driven or with the latch bar in place mircht easily result in stalling of the power plant, burning out of clatehes, stripping of genrs, twising of shafts, damage to wedges, shearing of lateh bar, or owntress in the lower chord of the span.

Overdriving of the ent werlges must be safegtatded against by mitable trare limiting devices (p. 39). otherwise the span may be mised above its nomal position; thas temeling to introduce danrerous stresis reversals in some of the truss members. or injuring the wedge-striving mechanism. Another method of protection is fo use a torgue current relay in the motor circuit.

Torlerdriving the wolges results in at diference in floor elevation at the junction of fixerd and movable spans which causes heavy int pact on and floor beams, and hip verticals. It also tends to cause worstresses in varions chord members due to the increased cantiberer action.

If the wedres are not released the full amount, there is quite apt to bo in interference as the wedges swing off their pedestals and pass over the other shoe. As the wedges swing away from their supports there is apt to be a slight dropping alue to the lost motion in the puide castings. and if conditions are such that the upper chords are at a materially higher temperature than the lower chords, the nomal swinging clemane may be curtailed to such a degree that, maless the weilges are fully drawn, the inner wedge strikes the outer shoe as it swings around and over it, with destructive affect on werteres and serions impact stresses in the truss members proper.

VERTICAI-LIFT BRIDGES

A romplete operation eyele for this typ romprises the following: oproing:

Gheration of warming sigumbs, signs, lights, ette.

- "losing of remote gales.

Fontuckines the span.
Litting.
' 'lowiner:
'Clasing llat sitan.
torking or lathering.
tanding of mad gates, trathe larriers, and resetting of demils.

These operations are interlockerl in moch the sabe manner as the other types and need not be discussed in detail. Sometimes the span locks are omitted, in which case the main hoisting motors should be interlocked through the romelway signals.

general rules for interlocking

Each interlocking problen is, of course, more or less of an individual one. 'radic density, sight distance, and other factors may modify the arrangement of details. In general, however, the folJowing featares of interlocking are necessary.
(1) Each control circuit should be so wired that the prior operation must be adtually and completely performed before it becomes operative.
(2) Interlocking contarts must be positive in action and so located as to minimize the dengex of short-cireuiting or deterionation from moisture. ice, or mechamionl injury.
(3) Contacts shothd preferably be made by a spring or snap device rather than by a sliding motion in order to avoid sparking and injury to contact points or tips. although a certain amount of wiping motion may be advantageous in tending to keep the contacts clean ant brigrit.
(4) Make-and-break contacts for interlockiner should not be placed directly in a hearily loasled power line but rather on an anxiliary or control cireuit wired to operate a magnetic contactor cut into the main power line.
(5) ('ross interlocking of operations should be provided wherever there is a danger dare to the possibility of a falure of one phase of operation.
(6) Short-circuiting buttons or switches should be provided to permit operation in the event of a failure of any portion of the interlocking merhanism.
(7) In general, the entire interlocking arrangement should be as simple as possible, compact, sturdy. protected to the maximum possible extent. and so designed as to eliminate as far as possible every conceivable tratfic hazard and every contingency or event that might expose the structure 10 undue stress.

PILOT AND INDICATING DEVICES

In addition to the interlocking proper, added protection may be obtained by means of suitable indicating devices. A system of lights or a moving indicator should be provided to indicate to the operator by day or by night the exact position of the leaves.

All circuits to roalway traffic lights and signs and navigation signals should light a pilot light in the operitor's house to indicate whether or not they are are operating. The position of all traffic pates, roadwiy barriers, derails, welges and center locks should likewise le indicated by pilot sirmals or other satisfactory devices.

The reatinus of the beaves of a buscule span shomlin be indicated to the operator by a buzare sigmal controlled by contacts which are closed when the situcture comes to rest upon its live-load bearing or ngainst its roar anchorage har. Such an armarement is particularly usplul in bringing the far leaf of a basenle span to a correct seat
on a dark or fogry night. A seating indicator is desirable but not quite so necessary with the other types of movable spans. In the case of a swing span, a latch-pin contact in a buzzer circuit will serve this purpose and be distinctly admantageous.

PROTECTIVE AND TRAVEL LIMIT DEVICES

Another function of a control system is that of protecting the structure itself and its operating mechanism. This is generally accomplished by means of limit switches so designed as to ent off power from the motor citcuit at a certain selected point of travel of the mechanism protected. These limit switches maty also be arranged to apply brakes where necessary, aml to complete circuits of pitot lights indicating the position of the mechanism.

It is essentinf that a main-leat limit switeh be provided on basenle and lift suans at both the upper and lower portions of travel. Generally these limit switches areset some little distance from the actual extreme upper or lower limit. When it is necessary to operate the structure above the upper-hmit switch a short-circuitiner button makes it possible to put power to the span. The lower-limit switch is also provided with a short-circuiting buton and sometimes with a seating button by means of which the structure can be gently seated under power.

It is not partienlarly necessary to provide a main-leaf limit switeh on swing spans as the span will do no damare if it swing past its correct position, except perhaps to shear a latch pin, and this danerer is generally eliminated by of her means.

Centerlocks. tailiocks, wedges, mat other devices are generally provided with limit switches at one or both limits of tracel. 'The mechanism of comanceral wodway arates and traffic bariers genamaly includes a limit switeh which not onty euts off current bat matomatically resets the contacts for reverse novement. . Ill of these features will be discussed in mome detail later on.

The question of control has bean discussed in a rather general manner, avoding any discussion of methods and appliances, since it appeared advisable to present a genemal picture of the problem before discussing details. The following pages will present a more fetailed consideration of the question and the last portion of the butletin will present a daseription of actual wiring diagrams for constructed brideges.

ELECTRICAL INTERLOCKING AND CONTROL ASSEMBLIES

An assembly for electrical bridge control is largely a poreialized arrangement of standarl parts. Solenoid brakes, circuit breakers. overloar relays, curent-limit switches, marnetic contartors-these and other like devies make up the instalation. Nost of these devices are standard commercial units and this is a desirable feature of electrichl control. There are many instances which appear to call for specially designed control derices. but at little stuly will otten indicate that a peciad armargment of standard equipment win he abequate. In the paramaphis which follow the principal items of equipment necessary for an instalation will be briefly deseriberd and a few
essential points with reference to their design and general construction will be discussed.

TYPES OF ELECTRIC-CONTROL SYSTEMS

The three genemul types of electrical-control systems are manual, full matgnetic, and seminmagnetic.
In the manal-control system all circuits are operated directly by hand controls.

With magnetic control the circuits carrying heavy current, such as motor circuits and bake circuits, terminate on a magnetic control boarl. Magnetic contactors, as shown in Figures 98 and 30 , are

Figene 33.-A typlent magnoticeontactor manpl, The magbet coll, A, is wired in serles with the control circuit

 blow-out colls, F , cratate a mapmetic flem hetween the sides of the are chutes, C, stretching ont the are and ruptarlac be qukekly the the contretor tips. It. afo kiphphteh. The briked copper strigs, F, cary the current from the itne for the esfatactor thos mounted on this loard. The power circuits and other heavy current leads terminate on this board in one or more copper contact points such as at B in Figure 33. These contacts are made and broken by an electromagnet (fig. 33 A), which is actuated by a separate control circuit extending to the operator's station, and terminating in what is known as a master switch.
A master switch of the drum type (fig. ;it) may be usech, or the control circuits may be operated by push buttons, hand levers, orlike devices.
The advantages of magnetio control are: (1) The elimination of long lines carrying heary current and requing large wire, thus effecting a saving in copper. (2). The elimination of cumbersome controlling derices in the operator's guarters. The circuits necessary for the operation of any movable bridge are numerous, and if the main circuits are all extended into the operator's quarters the devices for controlling them nccupy considerable space. On the other hand, control circuits may be operated, at least in part, by push buttons or other devices which argmore economical of spare. (3) The magnetic system is safe and flexible in operation and lends itself more readily to intertocking.

Whe cost of full magnetic control is somewhat higher than that for manual control owing to the additional cost of magnet contractors. This increased cost, however, is partly offset by the saving in copper by dispensing with long lines carrying heary currents.

The semimagnetic-control type is a compromise between the two systems of control. Some of the power circuits are opened and closed direct from the operator's station, while others are magnetically operated.

A system of full magnetis control consists of a main switchboard, a matgnetic or remote-control bourd, and an operator's control board.

SWITCEIDOARJ AFSSEMISLIFS
$T l_{10}$ main swatchboard may be located at any convenient point on the structure. It is generally located near the operator's station in moler to have the meters and instrments conveniently accessible. The main power cirecuits must run from the main swithboard to the remoterontrol boad. and thence to the motors or other appliances Whed they actuate. These two boards should be so located as to give a conseniont amagement for power wiring. The circuits from the remate-control board to the operator's bench carry only low power anti it is not particularly essential that the operator's station be close to other erquipment. If the main switchboard is located at some distance from the operater's station and if it is clesinable that certain of the instrments (roltmetres, ammeters, ame the like) be accessible to
the operator, there may momes upon a reparate pane mand placed near the operators etation. The main witchamel should have space for all wermary instrmento swithes, sime breakers, cut-outs, fuss, and other apmatha, and each device -houd be easily accessible.

Comtrols and indicators shombe be matked with permanent labels cowned with colludad or ather similar material. Figume as shows a fortan of a typeal switwhamed intahation.

In wheral. the main swithbsam thents ham the followiug (2)
(1) A suitable circuit breaker. Oil-type switches are used for this purpose, with provision for an inverse-time-element ${ }^{3}$ overload release, and suitable low-voltage protection. Carbon-type circuit breakers (3 -pole for alternating current and single-pole for direct current are also used for this purpose. These switches are placed on the incoming fine (the power supply) and when open the current is cut off from all electricul units. The current rating for such a switch should be sufficient to cover the entire power demand.

If alternating current is used the incoming line is genecally protected by a reverse-phase relay which opens the main power circuit in case of phase failure or reversal. ${ }^{+}$
(2) A suitable system of voltmeters and ammeters.
(3) A system of inclosed fuses, preferably of the cartridge type for the protection of all circuits.
(4) A system of knife switches for disconnecting each inclividual circuit.

```
BESOTE: OH BLNGNETIC CONTROL BOARUS
```

The remote or magnetic control board should, in general, contain the following panels (fig. 57):
(1) A line switch for each power circuit.
(2) A line switch for each control circuit.
(3) Individual disconnecting switches for each motor circuit.
(4) A system of overload relays.
(b) A system of current-limit accelcrating relays.
(6) A system of mechanicully interlockerd magnetir reversing contactors for each group of reversible moto"s.
(7) A system of magnetic contactors fey each of the solenoid brakes.
(8) A battery of magnetic-accelerating contactors for speed control and starting compensation.

The magnetic-control board should, in general, be located as near as possible to the main motors or in the path between them and the main switchboard, so as to avoid excessive length of large wire. Where wedge motors, lock motors, and similar units are operated by magnetic control, a separate magnetic-contacting panel may be installed near these motors or the panel may be a part of the main magnetic-control bourd. Lock and wedge motors, in general, do not need any devices for speed control. If they are to be reversed, a reversing contactor must be provided, or else a reversing switch installed on the operating bench.

In general, the agreeration of individual contactor, switch, and relay panels which constitute the remote-control board should be

[^2]momented on first-quality enamelend slate or ebony asbestos lamber not less than 1 ! 2 inches thick. These individual panels are assembled and secured toqether and should be mounted on a rigid metal frame so located as to be readily accessible and conrenient. Many remote-eontrol boards are not located a sufficient dintance from the alljacint wall to afford sufficient safety to the operator. The curremts lewe in bridge apration are heary, and the remoterontrol

boarl is a place of danger. 'There should be sufficient room belind this board to avoid the necessity of working in cramped quarters, of coming in contact with a ciecuit which may be gromeded through the aljarent wall and its structural comections.

Each magnetic-ematrol board shomd be efnipped with one or more pilot lights momeded at convenient locations near the top of the loard and lightol at all times except when the board is completely deenergized. The line switches on magnetic-control boards are sometimes arranged so that they may be locked in the upen position with a padtork. Thar leck-nut switches are not needed except where it is: medenary for the operator to come in contact with ededtreal circuits at points from which the magnetic-control buard in nut risible.

In some cases the orerloal and current-limit relays on the remotecontrol board are placed in inclosed cases and locked to prevent unauthorized persons from attenpting to adjust them.

OHEHATOMS CONTBOL BF:NCH

The operators housd or bench (somotimes called a manaal) gencrally consists of an asembly of the master switches, starting switches, push buttons, short-circuiting switches. and any other apparatus for the control of the leaf or leaves. Figures $30,3 \overline{4}$, and 38 are typical instanlations.

The operator's bench is generally rquiperd with a sys tom of indientars and lights to enable him to dotermine, at any time. tho position of the leaves, center and end focks, lifts or welges, roadway gates. trafic 1arriers, and other like protective devices. Pilet lights to indicate whether the rarions roadway and navifration lights are burning may be lomated on this beatry. or on the main switchlxame or on a separate hard consenient to the operater. The lights for position indication are sometimes blaced in an indicator box as shown in Tigure 30.
The operator's bench should be sth) stantially constructed of sheet metal and

 operator's brocta. Nota the conventert tationting ot ata-

 nut the fout jwelti for whorting " the leaf limit switetes heated at the point which will give the greatest degree of visibility of both roadway and waterway. Ench switch or button on the oper. ator's bench shouhl he suitably marked with a babel amp phaced under a tranparent cover securely fastened to the bench. Sometimes the hrom controllers or master switches are mounted aganst the inner alge of the bench as shown in Figure 34, and in other cases they are atranged as shown in Figure 36.

In the arangement shown in Figure 30 , the position of the leaves amb locks is imideated be the flanhing of in series of lights. Figure 0) shows a phan view of ton operating bench for a touble-leat hatcule beridee. using a different type of porition indicator. Temmal hoxes for all comertions can be provited bencath the bewh and fines for
 bench prowide space for the nersoary shor-cireniting buttons or lewe for nomal opration. If it in disired to instah shert-cireniting switeher for cutting out iny of the interloeking steps ower

 where they wan le larket.

phase) is geated direst to the main leaf, and a similar motor is directly connected to the model. The rotor circuits of these two motors are commected together and the primaries are comected to the power line. Any movement of the leaf is, therefore, tramsmitted to the model. This device indicates the position of the bridge leaves quite accurately and is probably son what more desirable than a battery of lamps. Altemating current is reguired for its operation. One manafacturer of this device states that it is not as satinfactary as the dial-type imbiator hown in Figure to.

 tial 1 gaw pusition latientor

MAGNEIC CONTACTOR DETAILS

Magnedic comators are wed for the following parposes:
For coting ont reistane steps in armature and rotor cirenits; for opening and cosing motor cirenits, and reversing the direction of curvent through motor windings; for operating brake circhits and othre auxilime devies: ami for oremond amb eurent-limit protertion.

There is a standard commercial product suitable for cach of these troes of service. Figure 33 shows the general armasement of these contartom on a magnetic-rontrol bumal. It will be noted that, in gemeral, the main contacts are probected by memes of are
 are somethes thed on the bighter tyees, and are mate and broken

[^3]by the movement of a squate shatt which is revolved in its bearing by the pull of an electromagnet wound in series with the control circuit for that particular panel. (Fig. 33.) There are a number of points in connection with the sclection of these contactors which should be bome in mind, as follows:
(1) The contact tips should be of solid copper.
(2) Alf contact tips. are selhites, coils, -prings, shants, and like details should be interedaureable where practicable.
(3) All magnet coils shond be impreymatelf with at moisture prooling.
(4) The contact tips shoull come together with a certain amonnt of wiping motion in order to keep them bright and clean.
(5) Reversing contactors shouk be mechanically interlocked so as to prevent the closing of one circuit until the circuit in the ruverse direction hats been opened. Figure 33 shwws a mechanical locking bar used with this type of contactor.
(6) Large flexible copper shunts should be used to carry curvent aromen the bearings.
(7) Each contactor shoula be provided with a spare operating coil and a spare set of contacts.
It is sonnetimes considered advisable to provide contactors with two separate line contacts arranged to operate in sequence so that if one "frececs" due to short-circuiting, the other is free to open the line. Thuse contactors are generally wired to o push button, and when the double line contactor is used, the push button is so arranged that it can not be made to close the open contactor until the "frozen" contactor has been pried loose.

master switch details

The Electric Power Club defines the term " master switch" as follows: "A device or gromp of devices which serve to govern the operation of contactors or anxiliary devices of an electric controller." This organzation also defines the term "manual controller" as follows: "A controller having all of its basic functions performed by haud." The term master switch may therefore be considered as including such devices as hand levers, push buttons, or any other device ased to open or close an electrical-control circuit. It also, of course. incluldes the stamlard drom-type master switeh shown in Figure 34. which is the clevice to which the term master switch is generally applied. The drmotype manala controller is much the same in general construetion as the clrum-type master switch except that it is designed for heavy currents.

The drum-type mastrer switch should be equipped with a large, easily gripped hamile and fitted with a hatching device to prevent armitental reversing of the motor and a star whed or pawt to indicate when the switch has been thrown to any particular point and to insure a positive rontact at each point. Mannal controllers and mantrer swithes harding heary currents are generally equipped with are schutes and magnetic blow-ont eoils while for lighter service are bariers are placed between adjacent rentact points to prevent arcing. Contacts are pracatly made by forged copper fingers against copper segments. The fingers imbl ruming segments should be easily moneuble, aljustable for atimment and presure, and the contact should
have a wiping or shiding motion to insure clean surfaces. The operating shaft should be designed to eliminate the danger of any slippage or turning of contacts on the shaft, and the entire construction should be rigid, well insulated, and protected from dust or mechanical injury. Master switches used to operate the main hoistirg and tuming motors are placed adjarent to, or as an integral part of the operators bench, and are wiped to the magetic-control board.

In gememb, the mater switch shoufl be ammged to furnish for each direction (foward aml reverse) one drift point, or point at which all electrically operated brakes are released with the motors idle. The second point each way starts the hosting or swinging motors, amb the additional number of powe points mist be sufficient to oprate the brigge from a position of rest to an atceleation such ats will open the span in the specified time without shock or jar. In general, master switches should be equipped with auxiliary contacts whech are wired in such a maner as to render it impossible to start the motors or release the brakes once the push-button circuit has been broken, without first moving the master-switch handle back to the drift point, or perhaps the frst power point. This device is known as an "manter-switch reset," and is penerally wired through circuit breakes and other protective devichs. The necessity for such prolertion is ohroms. If, due to an overload or for any other reason, power should be cut off with the master-switeh handle on a forward match of power, a restablishment of power throuph any of the reset devices (such, for example, as the start push button), wouk cause current to fow throtigh the mators with seremal steps of starting meximane cut ont.

RESISTORS

The variable resistatee which is used for rotor and armature circuits is gencrally of the stadarl cast-grin type consisting of cast zigzay metal prids mounted on an insulated frime (fig. 41), athough the edre-wound resistor consisting of a flat alloy ribbum spirally wound on elige about an insulated core is sometimes used. The rebistors are so wired as to be cut out in successive steps by the maptetic atecerating contactors monated on the remote-control buard which contactors, in tum, are actuated by control circuit contacts made on the varions points of the master switeh. The current capacity of the rexistors shombla tunple for the mamm possible on each partioular step.
 (hedd pheostats) may be of the coil type (coils embeded in a speciat cement of suitable themal condactivity and insulating properties) but all armatare or rotor resistors should be of the cast-grid or mge-woum type.

All resistors should be of adequate current-carrying capacity, or they will heat to a point sufficient to constitute a fire hamath and even to a point sumpient to calase the units themselves to be twisted or bent ont of shape.

The resintors showh operate ander conbitions constituting the most axtrone rontinuobs cycle of duty without heating to a temperintheremoneral:

$$
6459^{\circ}-31-1
$$

It is probably advisable to specify a resistor capacity sulficient to withstand at least five successive operating cycles without heating to a point above $2.50^{\circ} \mathrm{C}$., the motors being accelerated at their normal rate. For structures under an exceptionally heavy operating schedule it maty be advisable to specify resistors rated for continuous duty on any notech of power.

SOLENOID BRAKES

Solemoid brakes derive power through the attraction or repulsion of an iron core paced inside a coil camying curront. The current in the coil creates a magnetie fiehl, and also an induced magnetic

 brake stube's at D
polarity in the iron core. If the current in the coil is reversed, the magnetic fiedi is reversed, but the polarity of the core is also reversed so that the pull or atteretion of the core remains fixed in direction. Thus solenoils may be nsed with either direct or alternating current.

Two types of solenoid brakes are manufacturet - disk brakes and band brakes. The disk brake is generally a half-torgue brake and is used principally to check the momentum of motor armatures and other rotating parts und to hold them in a fixed position when the motor is not in operation. The band trpe of solenoid brake is usually used on movable bridges, and the general arrangement is indicated in Figures te and 43 .
Solenoids exrited by alternating carreat are generally wound for single-phase operation. For direct curent the brakes may be wound either in series or as a shme (if a drift point is to be provided, shant winding mast be ased). The brake neehmism consists of a series
of levers which tighten a pair of brake shous bearing against a metal brake wheel. The outer end of this series of brake levers in ronnected to a rod or rods supporting the core of a solenoid. When current is applied to the circuit the solenoid attracts this core, palling it up and rele wing the brakes. When curment is interupted the eore drops and bakes are applied. The force applying the brakingr pressure may consist of the werght of the solenoid core (aravity-set type, fig. 43) or it maty be clerived from a coil spring (spring-set - type, fiy. 44). Brakes placed in a horizontal position may lie of

 the spring betrg heta in the release petstion by the sotenote core
either type (the spring-set type is somewhat easier on machinery), but brakes monnted on a movathe portion of the leaf which will swing through a vertical angle must be of the spring-set type.

Some solenoid brakes are mate so ats to apply only one value of braking pressure for each setting of weight hevers or spring pressure. This type is most freguently used for bridges. Tho maltiplo-magnet type is amanged so that one or more magnots may be excited, flas eiving two or more values of braking pressure or torque for rach adjustment.

There are a number of atwantages clamed for the spring-set brake, as follows: More uniform and gradual application of braking torque; a simpler method for torque and air gap adjustment (both of these adjustments in the spring-set type bing capable of atecomplishment by means of a series of nuts on the connecting rod) : the ability of the bake to operate in any position; and the fact that the brake will operate even if mounted considerably out of line.

The following points should be considered in selecting solenoid brakes:
(1) The braking mechanism should preferably be adjustable for a range of torque values varying by 30 per cent or more each way from the mean.
(2) The brake wheel should be a small as practicable to reduce the inertia.
(3) The bruke shoos should be lined with compressed asbestos material, or other material not affected by heat or moisture.
(4) The brake shoes should be adjustable for wear. Figure 42 shows a method by which this adjustment is made automatically. There should also be an atomatic device to insture a constant minimum air gap in the solenoid as the brake shoes wear. A device of this kind is shown in Figures 42 and 43 .
(5) The mechanism should be so designed as to minimize the shock when the solenoid core is attracted. This is sometimes done with springs. One company manafactures a brake with a floating top core to accomplish this purpose.
(6) The solenoids themselves should be well ventilated and covered with a moisture-proof compound.
(7) All brakes should be provided with a hand release for use in case of power fainure.
(8) Brakes which operate on the main hoisting motors of bascule spans should be equipped with some means for absorbing the shock when the brakes are applied suddenly. Coil springs interposed between the solenoid core and its frame are sometimes used. One company uses an oil dashpot on the latger sizes of their brakes for this purpose. This dashpot is single acting in the down direction, prevent.; rebound, and absorbs a considerable amount of the shock and jar incident to the application of the brakes. These dashpots are adjustable and can he usel to produce vatuble-time application braking if so desirecl.

Each brake should be large enomgh to develop a mean braking torque of not less than 140 per cent of the full-load torque of the motor if it is mounted on the motor shaft and not less than 120 per cent of the full-load torque of any other shaft on which it may be mounted.
Solenoid brakes for main motors should be controlled by magnetic contactors so wired that the brakes are released only when the contactor circuit is closecl. This release circuit is generally wired through the master switch, the limit switches, and auxiliary contacts in connection with the start and stop push-button circuits in such a manner that the relay circuit is open and the brake applied under the following conditions:
(1) When the span runs through the limit switch at either end of its travel.
(2) When the master switch is in neutral.
(3) When the auxiliary push-button circuit is open at the stop button.
(4) When any overload relay has been opened.
(5) When any of the roadway gates, traffic barriers, and other like devices are not in proper position for the bridge to open.
(6) When the center locks or end wedges have not been released. or, in general, when any of the operations which should precede the hoisting or swinging of the brialge have not been perfomed.

Ordinarily, motors driving auxiliary devices such as lifts and locks are not equipped with solenoid brakes, but they are desituble in driving henry wedges or other lifting devices. In cases where they are used, they are quenerally wived so as to be controlled ly the limit switches which cut off jower to the partiendir derice.

It is sometimes adriwable to smpplement the motor-mounted brakes with brakes on one on more of the shafts on the gear train. The re. quirements for these brukes are the sume as for motor-mounted brakes. They are controlled by a magnetic contactor, which in turn is controlled by start and stop push buttons. or a system of hand levers conveniently located on the operator's bench.

LIMIT SWITCHES

Moving parts which may be thanared by movement beyond a certain point, should be protected by linit switehes. Bascule and vertical lift spans should le protected at hoth the lower and upper limits of travel of the span. Limit switches are not abosolutely necessary on swing spans, but they are sumetimes installed in order to prevent too rapid closing with a possiblo danger of shearing latch pins or a destructive impact between pedestals and superstructure in case wedge clearances are insufficient asometims happens during criticat temperatore periods.
 shows a type l'rexuently used on batembe brideres. A lomer pinion is geared thromeh an intemediate gear to a wheel which travels longriGudiatiy on a stationary serew. The surface of these traveling wheels is perforated for the attachment of lugs which trip switches or contacts. The long pinion is comected with the main power mechanism of the bridge and the lugs can be set to trip the switches at any desired point of bridge travel.

Figure 45 shows a linit switeh of the drum type which operates on mach the same principle as the drum-type master switch or controller. Figure 40 shows other types of switches.

Limit switches can be arranged in many different ways. In the majority of cases commercial devices can be used as manafactured or in special cases they can be assembled from standard units.

The contacts on limit switches should preterably be snap or spring contacts. Sliding contacts as illustrated in Fiume 45 are apt to become dirty and catuse sparking or flashing over.

The man-hat limit switch for bascule and vertical-lift spans should be provided with a set of contacts for opening the main motor eircuits and another set for applying the solenoid brakes at or near the upper limit of travel. In some cases the same contacts are used for both purposes, but it is better practice to allow a short period of drift between cutting off the motor and applying the brakes. Similar enntacts are also required to control the movement at or near the lower limit of travel.

In addition to these main contacts, it is desirable that certain contarts for interlocking be provicled. The ain limit switch may be arranged to make a contact in the concrol circuit for center
locks or tail locks when the span is at the extreme lower limit of travel so that these devices can be operated only when the bridge is closed. A shorting button can be provided for use when it is desired to operate these devices with the span partly open for inspection and adjustment. Roadway gates and barriers may also be interlocked through this limit switch if desired, Where limit switches are provided on swing spans the end wedges may be interlocked with the main leaf by an auxiliary contact on the leaf limit switch which kecps the wedige-control circuit open except when the bridge is fully closed.
Limit switches should be adjustable so that the exact points at which motor circuits are broken or brakes applied may be shifted

 A, motnited on the travellag whects, B, trip the spriag snup switeles, is, nt certan prodeterminelf points eludng the movement of the leaf, making and ineakibe cir. cults for control ama hadeator huhts.
to different positions of travel. The contacts controlling motor circuits and brake circuits should be entirely independent of each other, so that the duration of the drift period may be adjusted to suit conditions. Short-circuiting devices must be provided for the mainleaf limit switches as otherwise it would be impossible to operate the span beyond the cut-uff point.

Short-circuiting devices should have a spring action so that they will remain open except when held closed by the operator. In some cases short-circuiting devices on limit switches have been actuated by means of foot perlais. (Fig. 37.) This is not altogether desirable because the operator may stand on the pedal while operating the brikge, thas cutting out all limit-switch protection. Many operators grow increasingly careless as they become more adept at operation. They pride thenselves on their ability to seat the leaves
under power without jar or shock, and if short-circuiting switches are too conveniently arranged they will feel that their skill makes it unnecessary to use the limit switches.

The main-leaf limit switeh should be ammed to open and close rircuits for the varions sigmal amp pilot lights nsed to indicate the position of the leaf or leaves, undes a position imatiator is usel. light indiators shomblan when the bridge is closed, nearly closed, nowly open, and fully open.

Control circuits operating motors for wedges (fig. 47), locks, and lifts should be wired through limit switches in every case where it is necessary to safeguard against overtravel. Limit switches for these devices should preferably be arranged to open the power circuits at the limit of travel, and also reset the contacts for reverse motion.

MOTOR STARTING SWITCRES

Some of the devices used for throwing electric motors on to the line have alrealy been discussed. Devices used for this purpose will now be briefly deseribed.

The ordinary line switch.-This may be a push button or an ordinary knife switch either with or without quick-break blades,

 une of the travelingrate typu
or it may be a blatle switeh of the inclosed or safety type. In any (ase. the motors are thrown directly across the line without starting compensation. This type of starter is suitable only for small motors.

The protected line suitch.-This type of starter is also operated without starting compensation, but the motor is protected with overload relays and low-voltage coils. The overload protection may consist of one or more series relays (p. 29), or a type of relay known as the thermil relay. This latter type consists of a heating clement connected to a thermostatie strip in such a way that excessive current will break a contact wired in the circuit controlling
the line relay, thus opening the power circuit to the motor. The motor circuit can not again be closed matil the device has cooled down sufficiently to permit a recontact in the relay circuit. These themal overlow refors may be oftaned with either an automatic or a ham reset.

Additional protection is sometimes provided by what is known as a thermal cut-out which is simply a fuse. Fuse wire is quicker acting than a heating element and gives protection against a momentary rush of curent.
oil-type line suitches.--This type of switch may be used tor small motors without compensation or with the types of compensating starters described below.

 thets at C for consfol clretilis tox fadicator fights
Mand-operated starting rheoxtats.-A starting rheostat for a direct-current motor has been described and illustrated on page 7 . The same type of theostat (with certain modifications) may be used for aternating-current slip-ring motors and is nsed to cut ont resistane step) in the rotor or secondary cireuit.
Storting crompenseffors.-This type of starting switch is used with squirrel-rage induction motors, and consists essentially of an autotransformer. The starting handle is first placed upon the start position which conncets the motor to the line through the autotransformer which redures the applied voltage: as the motor attains speed the hamde is thrown over to the run freition, enting out the transformer not womeeting the motor divectly to the line,

Resistor-type starterr.-'This type is used for squirrel-cage motors. A resistance block is used to reduce the starting voltage, and is cut out after the speed has been attained.

All of the starter types discussed are hand operated. The first three types are direct-line starters suitable for smaller motors, while the fast three types provide starting compensation and are therefore suitable for laryer motor service. It now remains to describe a few of the common types of automatic starters.

Electrically timed rutomatic starter.-The operation of this type of antomatic starting switch depends on the curent drop in armawe or rotor (and comequently stator) cirenits as the motor attains

 induction motor)
speed. Figure 48 shows the wiring of a starter of this type. When the contiol switch A is closed, relay B is actuated and the primary motor circuit is dosed with fall starting resistance in the circuit. Relay 13 also closes an auxiliary contact C (generaily set to close slightly later than the main contacts) actuating relay D. Relay D tries to close contact F, but the series relay G is now carrying its first inrush of starting current and since it is wired to oppose relay D, contact F remains open. As the motor speeds up, the primary rurrent drops until it is no longer able to balance the pull of relay D and contact F closes, actuating relay H and closing the first necelerating contactor (part of starting ri istance cut out). One auxiliary contact on this contactor shorts around contact F and another makes contact I in the control circuit. As the first accelerating contactor closed, the current through series relay (i) again in-
creased and relay D is no longer able to maintain contact F , nor to close contact K. Contact F has been shorted (otherwise the first accelerating contactor conld not be kept closed) but contact K must remain open until the current again drops to a safe vatue. Then and not until then will contact K be made actuating relay M and closing the second accelerating contactor. This operation is repoated for each contact until the motor is operating on full-line woltare.
 ing contactor in sequame at pretetermined current ralues.

Automatice starter with merhanicully timerd urcelerutiny crontac-tors--This type of autonatio starter consints of a line eontactor in combiation with a group of acelerating coutactors ectupped with a mechanical timing mechanim somewhat similar to the escapement of a clock and so denigned as to prevent the acceleating contactors from chosing until after a defnite time interval. When the operating relay chases the line contactor, these accelerating contactors alsa attempt to close, thas exerting a torpue on the gear train of the timing device. These yrams rotate at a predeterminod rate of speed as controljed by the evapement device, thas insuring a definite time interval between the closing of the line contactor and the first accelerating contactar. Each accelemating contactor then closes in sequence, cutting out rotor or armatare resistane step by step antil the motor is directiy across the line.
Automatic metuev-roltage starters.-Dior squired-cage motors an automatic starter using either the antotmenmer principle or resistance blocks mar be oftained through the ase of what is known as a tefinite the me my.
Of the typus of sarting swithes described above, the first three are obviously suitable only for small motors, such as pit-pump motors, gate and barier wotors, ett. TYpes 4 , , and 6 are sometimes used for hoisting or swinging duty. but onfy for small structures where the need for spead control is not rreat and the expense of a magnetic-control system is not waranted. Type 4 may be arranged for spead control as well as starting eompensation the resistors and resistor circuits are designed for the necessary time rating.

If large wedges require motors too large tor direct-line commection, types 4 , $\overline{5}$, or 6 may be employed for starting.

Automatic starters are occasionally used, but for larger installations the majority of eases are such as to warant the atoption of full warnetic or semisugnetic control.

DEFINTYE THME RELAYS

it is often desirable to have one operation follow mother at a definite time interval. In me instance the two end wedges on a swing span were designed to operate simultanemsly. On account of other conditions these derices were consmang too much power and it was desired to close one wedige a few secomblis earler than the other. Since these wedges were operated by a single motor: it was necessary to use a definite time relay:
One type of wefinite time relay on the narket ronsists of a small induction motor driving a disk through a train of gears. This motor operates at line frephene and starts to motate as soon as the first contartor -loses. The disk enrries a tripping finger which
actuates at lateh, which in turn controls a relay contact for the second contactor. As the disk travels at approximately constant speed, the time interval is a function of the angle through which the clisk must rotate in order to trip the latch. By changing the location of the tripping finger on the disk, on by changing the gear ratio of the gear tran, a range in time interval is obtainable. fofinite time intervals ap to 30 seconds may be obtained on a $60-$ cyele emorent with this type of devier Figure to is a diagrom of

wiring for sucls a relay with push-button control. When the start button is pressed, the small induction motor starts, making contact A, short-circuiting the start button, and energizing the operating refay lor the starting contactor. After a definite time interval (clepending. of conrse, on the position of the tripping finger on the motor disk) rontact B is made, closing the running contactor and also disconnectime the small motor. By udjusting the tripping finger, these two contartors may be made to close at any time interval within the fimit of the machine.

MISCELLANEOUS AND MINOR CONTRGL DETAILS

LOCATION OF AMMETERS AND VOLTMETERS

It is orcosionally desibable to determine the degree of leaf balance for bascule and vertial-hif spans by rarefol ammeter readings during an entire cyde of operation on the same power noteh. This
can be done b^{y} a sinurle person if the atmmeters and voltmeters are placed so as to be visible to the operator from his control bench.

SEATING OF HASCLLE AND VERTICLE LIFT SPANS

In order to avoid excessive impact on the leaves and deterioration of the operating mechanism, it is essential that the seating of the
 the leaf rus through the lower-limit switch, it is genemaly brought to a stop a short (listame above the hormal crosed position. It is then seated by bise of the button shore -inouting the limit switeh. If the leases ate sufficiently monalaneed this maty be clone on the master switeh drift pesint. If the leaves are not sufliciently out of balance to coast to prosition. then the master switeh mast be put over to the first power point. If chis

 sechmatie arnwims results in too rupid seatiner, the master switch handle must be altermated between the drift and first power points which makes seating a rather awkward procedure. Seating may be accomplished by means of the stave and stop push buttons, but perbaps the most desimble mothod is that of a lever sating button as illustrated in Figure 20 . This emables the operator with one slight motion to cut the brakes in and out and to apply small amounts of power to the spain seating the leaves renty on the supports with practically mo jar of impact.

A seating deviee surb as shown in Figure 00 should preferably be operated on the first or second power notches of the master switeh in order to avoid exessive rotor or armathere currents. However, the duration of power during soating is so short that no damage would be likely to oreur eron if the master switch handle were left on a higher power point. The forward position of the seating switch is the neutrel or open position, the ecntral position short circuits that portion of the leaf limit switeh controling the brake circtait, while the rear position completely shorts the leaf limit switch, patting power to the spans.

wiring

Whenever possible all wiring shotale be run in approved conduit and all conduits shoud be secomely fastemed to or bailt into the structure. Conduit sumps should be provided with suitable drain holes. The contractor shombl be required to finmish, at the completion of the job a complete conduit plan showing in detail the location of eath condult rum and the various circolits carried. This is important in connertion with future maintemance. Adectuate terminal boxes with provision for numbering or otherwise labeling each binting post or comestion, shouk be installed at the bads of each long conduit. These temimal boxes should be of sabstantial con-
struction and arranged so that they may be locked to prevent unanthorized distrrbance. Figure 51 shows a typical contact switch.

All wires between the fixed and movable portions of the structure should be caried through fexible steel-armored cables. Feed wires should have imple capacity to carry the currents when the motors are exerting their maximiun torguie with a voltage drop of not more than :5 per cent.

Circuits from one portion of the structure to aunther on the opposite side of the chamel are generally carried through submarine cables which should be armored and. where the location requires, buried beneath the natural river bottom. It is good practice to proride a number of spare cirenits in such a cable for use in case of wire trouble or the uddition of other protective devices.

So wires or grounds should be attached to any metal part of the

 the stat bitary portion of the wat restorts
 The moving batrt of the spithe ds the
 aldicut! nas maxiliary arim, If, may be?
 bridge and common returns should lee aroided.

knife switches

Knife switches should be designed so that the maximum load will never exceed 700 to 800 amperes per square inch of cross section and all vircuits should be protected with suitable tuses.

GROUNDING CONNECTIONS

All portions of the structure and its operating mechanism which are, in any degree in tanger of accilentally comitug in contact with wires carrying current should be protected by a ground connection. Gromed connections shoald terminate in an iron pipe deiven through the water into the stream bed or other similar device of positive action and substantiatly built.

TELEPHONES. BUZZERS. AND SIGNALS

Structures requiring the services of more than one operator should have ath alequate system of buzzers, signals, speaking tubes, or interphones, as a safity precaution. The system shouk be separate from any commercial telphome installation in the operator's quarters, and shoud be designed purely for intercommunication between various peints on the structure.

savigation and hervice lighting

The reguirments for navigation lights are completely covered in the regulations of the Cuited states Lighthouse Service, and need not be ronsitered here. Service lighting on movable bridges presents ne new or pecmian problemis. However, the affect of service lights on the operator's reom shomble benentioned. On a dark night
the glare of the service lights nakes it difficult for the operator to observe the river chamel. In order to expedite his operations, he will want to turn off the service lights and abaen the operating room. In order that this may be done without undue waste of time, the entire house lighting should operate from a pair of 3 -way switchen, one of which should be a push fatton or lever to the operating bench.

MISCELLANEOUS AND MINOR EQUIPMENT

There are many andiary or special devices suitable for particular installations. Float switches, pressure switches, solenoid valvesthese and many more devices of like character are useful in special cases. Equipment of this character is completely described in the literature pat out by manofacturing argencies and will not be described here.

DYNAMIC BRAKING

Where a direct-current motor is used for hoisting or swinging a bridge span it is possible by cutting off or cutting down the armature current to slow the the notor to the point where the bridge overhauls and turns the motor. Luder such a condition the amatne may be disconnected from the live and short-circuited through a variable resistance, and the motor becomes a direct-current generator driven by the momentum of the brike. The moving mass tends to maintain the speed of this generator which, sending current through the resistance develops a metaming torque tending to bring the moving leaf to rest.

As the resistance in the short-cireuited armature is decreased, the current and ronsequently the retarding torque is increased. By this methox the speed may be reduced to almost \%ero. However, to stop the structure completely, a mechanial-braking torque must be applied, since the dymanic retarding torque only occurs white the armature is in motion. This operation is called dynamic braking.

With a compond motor, the shunt coils are not disconnected from the line so that durim tise period of dynamic braking the motor acts as a separately excited generator. With the series type of motor the series coils mast be reconnected as shme coils before the armature is short-circuited in orler to provide fiekd excitation.

Dynamic-braking comections may be made on the off or neutral position of the master switch or at a special control point provided for this purpose only.

Figure is is a dharran of a manully operated controher giving dynatie baking on the off position. The motor is a compoundwound type. On the first power noted in the raise direction, the circuit path is as follows:
 moved over, successive resistance steps are cut out in the ammatare circuit and the motor speeds up. For the reverse direction, the first noteh makes the following circuit :
 of current through the armature. Again swe susive points cut out resistane steps in the amature cirmit. In cither case, the brake resistors are comected as a shut from point c to point d in the arma-
ture circuit. In the off position, the motor is disconnected from the iine and acts as a generator separately excited throngh the shumt roils, ami deven by the momentum of the bridge.

By varying the braking comections (BL to Bo) the braking current may be varied, which, in tum, varies the braking torque.

In ligure :3, wo arrangement is shown for varying the braking harine operation. These comections may be set for the particular braking fore desived, or they may be arranged for variable braking hurime operation if it appeats necessary.

Pery faw thenable bricliges in this comntry have made use of Mranibe Daking and these luve been direct-current installationsThe following extrat from a letter to one of the writers from J. H. Bellinap, chief of the division of control engineering of an electric

 braking on the off position
amb manufacturing company, in response to an inquiry as to this method of controi is of considerable interest.

1) gataic baking has heen usod te a limited extent on D. (. bridge controls. W'hern combound of shant motors are used entirely satisfactory porformance (am be oltaned withour undte compliontion in the control. Dymamic braking With a sudits motor introduces a control complicatlon in that meaths must be
 dyamme brakith points. Wo hate used this scheme on mumetous other appli-
 we led that dymate braking with series wand motors others no real akatafage owor sum brakitg with componad or shont moturs, and in most cases the latitre ann lat therd with less wapliention.

So far as we know, dymmid laraking fur A. C. bridges has not heen tased. It can he ohtainel hy exciting all or part of the stator windings by direct rurcut. Vurfatians in torgle are obtained by variation of cotor (secondary) restators or by vititaton of the D. (., exciting current. The fact that slirect marmi is also regured, comped with the eomplexity of the scheme, practically almanales the ofe of tymante braking on A. (' britge motors.
('ertain csmphiated selemes amploying regrouned windiags, condensocs, remetors, etc, have been used to some extent in Europe we are told. Suels schenies make use of under-synchronous speeds for retardation. These schemes could probably be admped so as to poyite something apmonching the armature shant chatactaristices of D. (. bridge control. Fiowert. mothing has been done along this line in our country and the complieation would probably tuake the control andersimble and expatisive.

The methorl of armature shunt referred to in Mr. Belknap's letter is described on page si.

WIRING FOR ELECTRICAL CONTROL

The term" wiring" as used here menns something nore than connecting up various devises by means of combuit and cable rans; it inctudes the complete nssembly and arrangement of equipment so as to insure the performance of siberial functions in a predetemined sedneme. The desifn of any electrical-controt system is largely a matter of the assombly of stamburd mats. However, the proluct of this ansembly is far from at standard product. Buidding brick ate a stambard motuet. yot the brich buiding affords an mimited feld for individuality of expression. And so with the standard units of elertrial controi (contwhems and master switches, overdoul and cur-pent-limit rebys, acelerating eontactors, Limit switches, sotenod brakes. motors, lights, ant sitrmal apmatas).

The grenemi mature of the problem can be ildustated he a detailest fewerption of a few complete control systems as actually installed. The brikes selected were eonstructed under the personal supervison of one of the whiters and are chosen because of faniliarity with the details of the design and construction problems presenterd.

Several types of movable bridges will be considered, and it is feit that the disussion shoud fumbin a temeral fountation apon which to constract an outline for control and wining for any span or set of ronditions.

CONTROL SYSTEM FOR A DOLBLE-LEAF BASCLLE BRIDGE USING ALTERNATING CURRENT

Figure 53 shows the general plan of the bascule span under discussion, including the general location of the main hoisting motors, the conter locks, pit-pump motors, sirens, fog bells, navigation hights, switchbourds, ate. The operator's board is locnted at the forward end of the operators house overlooking the channel. The various indicator lamps, switches for operating rondway gates, and other like devices are mounted on this board. In front of the board are mounted the naster switehes and controlers for operating the span. At the side of the bourd and to the operator's right is the main switchboard, upon which are mounted the main power switches, the various light and heating circuit switches, as well as the necessary cincuit breakers, ammeters, voltmeters, etc. From this board the power wires run to the remote-control boards, one for each leaf, these bourds being located in the machinery rooms below the floor.

Figure St is a plan view of one of the machinery-room floors showing the location of the remote-control panel, hoisting motors, limit switches, etc. All power and control wires are laid in conduits in the concrete floor. The power and controd submarine cables temibate at each leaf in boxes mounted on the inside of the pier walls as

shown. Figure 55 is a photographic view of this machinery room, and Figures 56 and 58 are close-up partial views of the re-mote-control board.

WIRING FOR POWER
CERCUTGS (STATOR
WINGINGS)
The power line passes through a 3 -pole switch on the main switchboard in the operator's house. When this switch is open, the remote-control bourd in each machinery house is completely dead. When this switch is cosed, the line terminals L1, L2, and L3 on panel 13 (fig. 57) become energized, and as soon as the main switch at panel 13 is closed the main stator wires become energized as far as points O and C on panel 14. The switches on panel 13 are always closed except when the operator desires to "kill" one remote - control board to permit handling the magnetic switches or contactors. The large 3-pole switch on panel 13 carries the stator current (440-volt, 3phase). The small double-pole switch is connected across any two of the three stator wires, and therefore carties a 440-volt single-phase current.

The knife switches (panel 15) whose terminals are marked T1A, T2A, T3A, and T1B, T2B, T313 are also normally in a closed position, their purpose

$$
0
$$

lanig to provide a mans of eutting ont one of the motors withont interteriner with the operation of the other. It will be nowerved thate the wires from termimals Tld, Te.t, and TBA lead to the stator windinge on motor A, while the other three lead to the stator windinars on motor I3.

The line wires L 1 and L 2 z rum through a system of overload relays and curvent-limit relays and terminate at points () amd (\% on panel 1f. (These redass modify the control circuits and have no effect on the prowe coment. Theif operation will be disenssed later.) The

 rustacel pulats:
 to the stator windings on the main lowing inotors.

Aswme that tho line switehes on panel 13 and adso both motor switehes on patel thare cosed. When the main power swited in the operatore homse is closed, therefore, one of the three statore wires
 revosing switeh (pame 1t) in the position shown, howerer, the

Whan switd O (pmel 1.t) is cosed, howerer, the stator windings comer rament, mat the motion stats to then over. If whiteh os is

 1.:.. •. \&

resistance, and thas act as both starting compobators and spoed controls. To be more explicit: At a certain point on the master switch in the operator's house, circuit $4 x-7$ is made (sice patalels 1 and 6), and relays $7-48$ close the main switches on panels 1 and 6 . Panel 1 switch connects the terminals R2N-R3A and R+A (in delta) and thus cuts out the first step of resistance for the rotor of motor A. Panel 0 switch performs a similar function for motor B.

Panel 2 has a switel which connects Rosh, Rod, and RTA, tud thus cuts out another step of resistanee. Panel 7 has a switch which performs the same function for motor B . Other panels perform a similar function until at panels 5and 10 the contacts R14A, R15A, and R1GA for motor A und R14B, R1sB, and R16B for motor B are connected and the motors are running as squirrel-cage motors with the rotor bars short circuited.

AUXILIARY SOLENOID HRAKES

The normal position of the brake (no current through solenoid) is with the shoes bearing against the brake wheel. The solenoid coil is excited by a 440 -volt single-phase current taken from lines Li and I 2 , thus rating the core and releasing the brakes.

The brake operated from panel 11 is desimned ats an analiary brake and is entirely independent of the leaf-limit switch or the master switches in the operator's house. It is controlled by the push button shown at M in Firrure 5t; the manner of control being as follows: The solenoid will operate when the switch on panel 11 is closed, since wire 12 goes directly back to one terminal of the line, and wire 48 directly to the other. It is only necessary, therefore, to close the switch on panel 11 and the brake will be released. The above switch is closed by means of relay coil $17-46$. Wire 17 connects to one terminal of the line through 16 to 48 . It is only necessary, therefore, to connect wire 46 to the other terminal (12) and the switch at once operates. The push-button station shown at M accomplishes this result as follows: There are two push buttons in this station, one labeled "stop" and other labeled "start." These buttons are of the spring type and are normally held in the position shown at M, in which pesition the switch at panel 11 is open. Now if the start button is pressod contact $46-47$ is made, and relay circuit $1 \tilde{r}-46$ on panel 11 is completed through $46-47-12$ and from 12 back through the cable to the terminal point 12 on panel 13 . Instantly relay $17-46$ operates, attracts its amature and closes the man switel, on panel 11 , making the eontarte $12-34$ and $48-33$ and the anxiliary solenoid brake is released.

It may appear that as soon as the operator* finger is remover from the start push button the cireuit will open and the bake will be again appled. This is not true, however, owing to the following device: There is an auxiliary contart $40-45$ operating on the relaty that closes the main switch at panel 11. 'The instant that contact $46-47$ is made at the push button station, contact $46-47$ is made on panel 11. Release of the start push button does not release the contact $46-47$ on panel 11 , and the brakes contime to be released. This device, known as a holding relay eircuit and deseribed on page 29. is a rather common expedient in magnet-control wiriner of this kind. If the stop push buteon is pushed down. contact $47-12$ is broken and
both 46 and $4 \overline{7}$ are instantly killed, rendering panel 11 dead until the start button is again pashed down.

Thus at any position of the leaf and at any time, regardless of the position of limit switch, master switch, controller, or center lock, if the start button is depressed the auxiliary brake is instantly released; if the stop button is depressed the brake is applied.

During the installation of this device on this particular job it was arguel by some of the engineers connected with the work that a serious defect lay in the fact that the operator did not know from the position of the push buttons whether the emergency brake was on or off. As a matter of fact this is amimportant. At any position, regardess of whether the brakes are on or off, the start push button will instanty release them or keep them released if they are already released, and the stop button will apply then or keep them applied if they are already on.

MOTOR-MOUNTED SOLENOID BRAKES OR PRIMARY BRAKES

These bukes are momoted on the motor shaft, whereas the auxiliary or energency solemoid brake is monnted on an intermediate shaft. There me two motor-mounted solemod hrakes and one auxiliarysolonoid bake for earh leaf.

The motor-mounted brakes operate on cirenit $12-48$, as shown on pand l: but are controlled through a relay 419 wired through the master switel. It will be shown later that point 4 on this relay is 'merrized on point I of the master switch, the other terminal depenfing for its connection to the line on a second auxiliary switch 19)-17 on the panel 11 marked "Aux. sw. B." In other words, before the primary brakes can be released the master switch must be moved to point 1 , but in ardition the start push button mast be pressed to make contact 17-19 on panel 11 .

START AND STOR PUSH BUTTONS

it was shown above that there can be no connection between wire 19 and the power main until the start push button is pressed. which means that this buttom mast be pressed before the primary brakes can be released. From inspection of panel 14, it is also seen that until this start button is pressed there can be no current throurh relays $10-20$ or $10-21$, and consequently the reversing switch can not be rlosed in wither direction, nor the motors started.

The operatoe mast first press the start button, else he can not rebase the brakes not start the motors. This start button is, therefore, a key to the entire operation. For heary traffic, or where other conditions warant special precautions against premature opening, it may be advisable to interbock this start control with all rondway Fates and sirnals. This wouk require some modification of the wicing shown in bigure bT and was not considered necessary in this atace.

interlock with center-locking mechanism

Inapection of Figure it shaw that one tominal of every eontrol relay on the brami is "omoerted in somes way (or may be connected) with wire fis, whoh is one temamal of the control circuit. For ex-
ample, relay $4-19$ on panel 12 leads through the contact $19-17$ on panel 11, through 17-16 and $16-48$ on the overload relays directly to the line. (Under normal conditions these contacts are all closed.) The other terminals of all these relays lead through the master switch.

In order that the master switch may close the varions control circuits, there must be some way of leading the current from the other site of the line (wire 12) to this master switch. This is done through contact 12-3 on the center-locking device. When the center-lock bar is driven, locking the leaves together, contact $12-3$ is open and the master switch is entirely dead. It is impossible to release the motormounted brakes or to start the motor. When the bar is drawn, contact 12-3 is made and points 3 and 2 on the master switeh are energized. This interlock insures the withdrawal of locking bar, release of brakes, and starting of main lifting motors in proper sequence.

MASTER SWITCHES

The distinction between master switches and manal controllers is that the former carry light control currents while the latter carry man-power curvents. The main-control board in this cate is operated through a matar switch, while the center-lock motor is operated through a controller: (carrying 440 -volt, 3 -phase current).
As the handle on the master switch is moved around, the finger contacts, 1,2,3 . . 10 fall on the vertical lines, $1,2,3$, ete., making the following contacts:

beverse on closing

Aswme the span closed, and the master-switel hande at neutral. Assume the start-push button to have been pressed so that the auxiliary botke is released, and contact $17-19$ on panel 11 is made.

As the master-switch handle is moved to point 1, wire 4 is energrized, relay circuit +18 on panel 12 is made, and the motor-mounted brake releaned.

[^4]On point 2 of the master switch, energy is applied to wire 1 which runs to the limit switch. This limit switch (geared to one of the operating shafts and set so as to open and close contacts 1-11 and $5-25$) will be described in detail later. On its last trip down this limit switch has closed contact $1-11$ so that eurrent from wire 1 fows through wire 11 to panel 14 , from 11 to 20 , und thence through the relay $0(-19$, thas closing the reversing switch O and cansing current to flow in the stator windings. The motors, therefore, statt up with all rotor resistance in. At panel 14 an auxiliary contact connects wire 6 with the line so that finger 6 on the master switch is now pnergizerl. On the next point on the master-switch contact (-7 is made. This completes circuit $7-18$ and closes the aceelenating contactors on pancls 1 and 6 , cutting out the first step of rotor resistance, and speeding up the motor. The other successive points on the master-switch cut out successive resistance steps in the rotor circuit increasing the motor speed.
When the span is from 10° to 15° from its fully open position the leaf-limit switch opens contact 1-11 and the reversing switch flies aljen denergizing the motor.

LIMIT SWITCHES

Figure 44 on pare $\overline{z o}$ illustrates the general arrangement of at limit switch similar to the one userd in this case except that two traveling wheels are shown in the figure while only one is used on the bridge described. Ordinarily the limit switch should be placed as near the main trumion as possible to avoid variation in timing due to backhash on the power gears. This main trumion, however, is a very slow moving shaft, and a large number of back gears would be necessary. The back gears, when used, should be made of hardened and heat-treated metal and should be polished to reduce backlash (by ruming each gear with its mate using an abrasive).
Sometimes the limit switch is arranged to turn through an angle equal to the opening angle of the leaf without any speed increase. In other words, the limit switch is simply a master switch set on its side with its shaft keyerl to the main trumbion. As the trumion moves thromg the opening angle, the master-switeh shaft moves through the same angle and makes and breaks the desired contacts. This design eliminates the neeresity for a large number of back genes, but intronluces a sliding electrical contact with the conseguent danger of sparking and smoking. A switech of this type, but with one set of grams to increase the angle of rotation of the contactor shaft. is shown in Figure tis.
Figure of shows that as the bridge is started upward from the closed position the moving contactor whee on the leaf limit switch moves towart the top of the deawing.

The pilot light indicating bridge closed is glowing, but all other lights are out : contact $1-11$ is closed (having been closeci on the last downward trip of the limit switel, but contact $5-2.5$ is open, having been opened just before the bridge was closed on the bast trip).

As the limit-switch contactor wheel W travels upward, its first function is to trip the switch closing the circuit ion-w, thas causing the hamp imbeating nearly (losed or 10^{2} open, 1.5° opern, etc. (as may be desired), to glow.

Its next function is to close contact $\bar{i}-2$. This contact controls the reverse or downward motion of the leaf (see master-switch wirings), and was, of course, opened at this same point on the last trip down. It must be closed at this point, else the operator would not be able to lower the bridge on the next trip.
'he third function of the limit switch is to open contact $1-11$, cutting off power from wire 11 on control pancl $1 t$, and causing the reversing switch at O to fy open, thas cutting off cursent to the motors. At a certain point on the travel of this contactor wheel the nearly-open or 60°-open light circuit is closed, and at the end of tavel the bridge-open light is also maxle to glow.
()n the return or downward trip, contact $1-11$ is remade, the lights are extinguished one by one, and at a predetermined position near the and of the return, contact $2-25$ is opened, thus opening the reversing switch C on control panel it which, in turn, cuts off current from the hoisting motors.

The limit switch ulso applies the brakes (motor-mounted) at certain predetermined points. This may be accomplished in a number of ways, and is not shown in Figure $5 \overline{7}$.

The small pitot lights indicating the position of the bridge may be of difterent colors if desired. These lights are located on the operating board. It desired, other positions of the leaf may be indicated by introducing additional contacts on the limit switch.

Curent may be applied to the motors after the limit switches have operated by mems of the short-circtiting push batons shown in the diagram.

OVERLOAD RELAYS

Referring to panel if on the remote-control board, it will be seen that if the stator cument rises to a certain predetermined value the sotenoid cores will be drawn up, opening contacts 48-16, or 16-17. ${ }^{t 1 h}$ is breaks the eirenit through relay $46-17$ on panel 11, and at the same time breaks auxiliary contacts $46-17$ and $1 \bar{i}-19$, thus opening the reversing switch and putting on all solenoid brakes.

The opening of contact $48-16$ or $16-17$ on the overload relay is only momentary, imamuch as the rising solenoid core also closed the contact $31-4$ or $18-16$, and relays $2-51$ or $2-18$ at once remade the circuits $48-16$ or $16-17$. This arrangement is quite common in industrin wiring, and is known as an antomatic-electrical reset which has been described.

This momentary break in the circuit, however, is sufficient to open contact foth ou panel 11, sa that the entire wontol boand remains slead until the start push button is again pressed.

The purpese of these overlond relats is to prevent the possibility of a destractively high arment flowing thromeh the stator coils due to an excessive loat on the leat, or for other reasons.

CURRENT-LAMIT RELAYS

In order to prevat the oparator from cotting ont the varions steps of mor resistance tos rapidly and inthecing high motor current and a low fower factor, there is provided a systan of analiary
contacts with wiring leating through a system of emrent-limit relays.

The rotor resistance for motor A is waried by means of the jacks or magnetic accelernting contactors on panels $1,2,3,4$, and 5 . Motor B is operated through contactors $6,7,8,9$, and 10 in exactly the same manner. Therefore. for the purpose of illustration, moto A may be considered alone.

Consider the contactor on panel 1 open, and the motor ruming with all resistance in. At the instant this contactor is closed, the dotor currents increase (due to the recrease in rotor resistance) and the motor speeds up. 'The stator cturents also incrase to orercome the demagnetizing tendency of the rotor currents.

At the instant the main contactor on panel 1 was closed (or slightiy later, depending upon the adjustment of the contacts) the atuxiliay contact $2: 3-24$ was made, but the increased stator current has opaned contact $50-48$ on the current limit relay (panel 18) and very little current flows throurh wire 24 (since the resistance of the relay $48-24$ is very high).

The 22 side of relay 20.8 on panel 2 is, therefore, practically dead, and even if the master switeh were moved to the next point (energizing point 8 from the other siste of the line) insufficient current would fow through relay $8-i 2$ to close the jack.

As the motor speeds up, however the stator curment drops until the core of the current-limit coil is pulled down by the balance relay, making contact $50-48$. This contact shunts the current in wire 24 around the high resistance of relay $24-48$ (panel 18) and instantly point 24 on panel 2 is energized.

Then, and wot until then, can this switeh be closed by energizing point 8 through the master switch. Contact $48-2 y$ on panel 2 is made and contart $23-22$ is broken with the closing of the contactor on panel 2 so that this contactor is hekd in the closed position thereafter by means of the circuit $42-22-8$ and further operation on this pabel is indepeatent of the stator cument. If this were not provided for, any further current increase would cause this contactor to fly open which is obviously not the purpose of these current-limit relays.

In a simitar manner, contact $30-29$ on panel 2 energizes one side of the relay on pand 3 as soon as contact $48-49$ on the current-limit relay drops in phace, ath so on for ench of the fise magnetic accelerating tontartors.

This armagement insures a proper time sequence in closing the contactors, and eliminates the possibility of cutting out any resistance step before the motor hats attained its proper speed. Were it not for this arangement, a careless operator might frequently cut out resistance with such rapidity as to operate the overload relays, killing the entire board, and resulting in a jerking and meven movement of the leaf. The life of a bascule span depends to a great cxtent on the elimimation of such unnecessary jats and shocks.

It will be observed that the last two jacks operate from one point on the controder, the time sequetuce of closing (for panels 4 and 5) being entirely controlled by contact $30-37$ (panel 4) and the current-
limit relay. This ammarment is remed a time-element switelt, or contactor.

CENTER-LOCK MOTOR CONTROL

Figure 57 illustrates the general arrangement of limit switch, resistance elements, reversing switches, etc., for the center-lock control which involves no new features and cloes not require detailed discussion.

Since the load is light, the variable mot resistance might very well be omitted, using a squimel-cage motor. The saving it cost, however, would be very small.

The power circuits in this case are taken throngh the contactor which is a manal controller mather than a master switch.

genefal hemarks

Figure 03 is typical of working drawings prepared by manufacturers except that considerable explanatory matter has been added.

The engrineer in charge of the erection of a bascule span must be able to check a wiring diagram of this kind, and to trace out the varions circuits and their functions, else he can not possibly give the work the intelligent supervision it deserves.

The wiring diacram of Figure 57 is onty one of many possible arrantements, but a careful study of the drawing and explanatory matter will give the engineer an understanding of the subject sufficient to enable him to prepare an intelligent preliminary sketch and to cooperate with the electrical contractor in working out the most officient and economical armmgement for the particular problem before them.

No attermpt has been male to describe the interlocking for roadway fates and signals employed for this particular bridge as the general principles involved have already been discussed and an example of gate and trafic-barrer interiocks is discussed on page 83.

CONTROL SYSTEM FOR A RIM-BEARING SWING SPAN USING ALTERNATING CURRENT

The wiring and control assembly for the double-leaf bascule just described may be termed a fairly complex installation, although it is not as complicuter as that for many of the larger bascule struethes. The installation wheh is now to be considered has beat selected as representative of a much simplier type of control.

Figure so shows the gemeral layout of the wiring for this strucfure which is a rim-bearing swing span, 230 feet in over-all length. The trafic orer this structure and the openings required were not sufficient to warmat the instalation of power gates or traffe barriers, and no attempt was made to interlock trafice lights, sirens, and other dirnals with the shan movement.

Electric power is delivered at a small power house built on the bank of the stream, and the main switchbourd is a very simple affair, as it reed only provisle space for a power meter, and the line switehes for power and lighting ciretits.

The power lime supplies 3 -phase, 22n-volt, atternating current and is run to the center of pivot pier through a submarine cible termi-

 WFE，MFT METGR HFEN－LETMLTER

SWTCH 8 DF
（ค） WETEESARE KELEATEU ［ B swist C CLOstocur WHES WEDOE AEt FEMY RELEASEO
SFAn matmentmaref INTER－KCKECNTHREAU－ Warcares or Thaffic Gamilks Rormale tor

ENCWECGE MUVETE NT BAY PE WTEGIOCEETVITE RODD WE INTERLOCRES BARFERSS OR
 AS NDLCAYED FOR ONE UR HOTE WTEHLOCK KINS THKOUG Stievarine catil．

 $642 \pi n$
 AMMrghfor Mi ge TAN

GPLCATE EOMPMENT，SAME
LOTHERENO CONSISTINO －Nartranoz umir smithe

 SDVGAMF SMCLETHRON OECDN． AI EOTTOM．WHTH RETLLABLE FUSES， glate base
1HOV－3JAMD SNGLE－THRCW OLSCON－ NECTING，KHIFE SWITCH，2．POLE WITH REFILLABLE FUSES SLATE EAS

WeG．BMGS GAGE－STRANDEO WIRES．RC．COLELE GRAID－SOAMP GOOV．POWER WORES TOEND MOTORS
 1．LIMIT Switch fur drive and releaje conifol or chd lift ic
SEQUENCE OF OPERATIONS

———ンシニン＝－1 1－REVERENG ORUM SWITCH FOR ELP RING INDUCTION motar for primaryano seconiop CNTROL WITH AUXILIARY CONTACTS FOR USE WITH PRIMARY MAG SWITCH －EPEEO REGU ATING DUTY RESISTOR． REVEFINGEQUFMENT，KFC RESISTOR CLASEFFICATLUN N：95）
1．20OV 3．ISHF BALL BEARING SLIPRING WNECTHOHMOTOK．FCR VERTICAL OPER－ ATIUN OF MOIOR WITH PINION RIOUNTED ON TOP ENO CF MOTOR SHAFT

1．CLOSEPOWERANDSIREN SWITCHINOPERATOR＇，HOUSE DRIVEN ANO RELEASED BY THE STOP GUY TON WEDGE

 MOTOR THEOUGH CLLMIS SWITCH A CLOEEDAT EEGINMNCOF SWITEHC KHLING SWUSGMCTCR AT THE ENOOF THIS RELCASE STROKE TRAVEL OFTHE ENO WEDGES MAYBE STROKE LIMIT SWITCH A OFLHS．

Figune 50．－Wiring dingram for rim－bearing swing span
nating in thre single-throw, 3 -pole, inclosed sat fety swite hes, protected with refillable fuses. These three safety switches feed three magnetic contactors, one for each of the end wedges, and one for the swinging or turning motor. The wedge contactors are of the reversing type, with a temperature overload relay wired as an integral part, and are operated by a push button, and a drum-type controfler is provided for the swinging motor. The wedge notors are direct line connected and of the squirrel-care induction type, and the turning motor is of the slip-ring induction type, with the rotor resistance wired to cut out in successive steps on the controller. No rument-limit relays are provided. as the installation is small and each magnet contactor is protected with a temperature relay. The swinging-geay and werlge-motor circuits are suitably interlocked as indicated at A, B, and C. Thie entire control assembly is mounter at the side of the roakiway in the plane of the trasses in al weatherproof metal cabinet which is kept locked except during operation. The operator goes to the center of the span, unlocks the control cabinet, and completes the entire operating cyele at one station in full view of both roadway and waterway.

The detailed arrangement of wiring is evident from Figure 59. However, a few explanatory paragraphs may be helpful in understunding the workings of the installation. The operating sequence is completely given in Figure 59 . The detailed wiring, however, may need some explanation.

CONTROL WIRING

When the three safety switches are closed, each end-wedge circuit is energized as follows, Liz- $8-11-9-7-2=$, etc. down to point 4 on the release push button on one side of the line, and L3-5-6-6 on the other side of the lime. When the release button is operated, contact $4-6$ is made, and the wedge-motor circuit is closed in the release direction. This is accomplished by the attraction of operating relay $2-7$, which also (loses anxiliary contact 40 , which shunts $4-10-6$ around the relase push button so that the wedge motors continue to operate after the push button is released.

The control circuit will be opened and, therefore, the wedge motors will be inoperative under the following conditions:
(1) When the wedpes have been fully released. This is acoomplished by means of the limit switches \dot{B} (one at either end wedge) hy means of which the control circuit is opened at either one or both of the eontanets $2 \boldsymbol{i}-2$.
(2) When the stop push button is pressed. This opens rontact 5-6. opens relay $2-7$, and therefore opens contact 4-10. i reestablishment of contact $\tilde{0}-6$ on the stop button (by releasing the button) will not remake the control eireuit, as it is now broken at andiliary contact $4-10$. and can only be remade throurh the release button. The stop button, therefore, stops the mechanism at iny peint permanently.
(3) Wher the drive button is operated. This breake contact 2-4 and opens the control circuit. It is seen that the push-button installation furnishes an affective reversing interlock.
(4) When the temperature relay opens the control cirenit at contact $8-11$. This funishes overlond protection to the wedge motors.

Figure 00.-Typleal circuits for electrical control and interlockiug 100 -foot single-leaf bascule spau

On the return trip the wedge motor is actuated by the control circuit energizing operating relay $3-9$ and the circuit is completed at 1-6 (the drive button), and the shunt contact 1-6 on the contactor panel. This circuit may be opened at either of the limit switches A (contacts 3-3A), the release button (contact 1-3), the stop button (contact 5-6), or the temperature relay. The sume interlocks are therefore furnished for the drive direction of the wedge motors as are furnished in the release direction.

The magnetic panel controlling the swinging-gear motor is not of the reversing type, and reversing, acceleration, and starting compensation are controlled by the drum-type controller. The first point on this controller in either direction closes the control circuit operating the line contactor relay $2-4$. This control circuit is wired through contact switch C on the etiat soiges, thus rendering it impossible to put power to the swinging gear until both end wedges are fully released. The dotted lines indicate a method of interlocking roadway gates, barriers. and signals should traffic conditions demand such a precaution at a futnre time.

The connection of circtits between fixed and moving portions of the structure is through a spiral length of flexible submarine cable supported on a flat platform attached to the pivot pier above the masonry and below the level of the roadway deck. There is enough slack in this cable to permit the span to be turned through 180° in either direction, the coil merely adjusting itself to the position by slipping over the platform. This arrangement eliminates the necessity for sliding contacts, which are often a source of trouble dae to sparking and flashing, especially it they are so located as to be exposed to grease or dust.

CONTROL SYSTEM FOR A SINGLE-LEAF BASCULE BRIDGE USING ALTERNATING CURREN'T

Figure 57 is typical of drawings submitted by manufacturers or electrical contractors as shop or working drawings. Figure 60 is the type of drawing which should be prepared by the engineer for use by bidders, and shows the genemp layout and arrangement of circuits. This figure does not indicate detailed wiring but only the general character and arrangements of circuits.
The general plan of control and interlocking used on this job was very much the same as that for the double-leaf bascule described on pages 66 to 78 .

incoming lines and service circuits

The incoming lines go directly to the main switchboard in the operator's house. Lidnting and heating circuits are taken from the power company's transfor mer direct to the swithboard and pass through ordinary knife switches, protected by cartridige fuses. The power circuit is passed through a 3 -pole, oil-type swith with inverse time exment overload relay, and suitable low-voltage protection. The various heating and lighting circuits and the location of all metering devices is indicated in Figure 60.

main control circuif

This circuit is taken from two of the main power leads through a knife switch mounted on the remote-control board as shown at A. This control circuit branches at point B, runs through the overload relay contacts at C (which are, of course, normally closed) through the stop button, through the start button, through the master-switch reset (contact $10-11$), andi back to the line through the gate, rear-jack, and traffic-barvier interlocks.

To close this control cireuit it is necessary to set the master switch on either neutral or point 1 or 2 either way, to close both roadway gates, to set the traffic barrier, and to release the rear jacks. The control circuit may then be completed through the start button, which actuates operating relay D, slosing contacts E and F, and releasing the auxiliary solenoid brukes. Contact E shorts around the start button and the master-switch reset, allowing the start button to be released and the master switch to be freely operated. Contact F energizes one side of the magnetic reversing contactors at points 26 and 27 .

If either of the roadway gates be raised or if the traffic barrier be cleared, or if the rear jacks be moved from their fully released position, or if an overioad curvent opens contact C , the main control circuit is broken, operating relay D is cleenergized, opening contacts F and \mathbf{E}, and applying the auxiliary solenoid brakes. 'The gates, barriers, and rear jack must be reset by hand. The overload relay, however, is of the automatic electrical reset type and reestablishes the control circuit through contact G, relay K, and contact I an instant after it is broken at C .

However, the momentary interruption of the current has opened contact \mathbf{E}, and afier the gates, barriers, and jacks have been set, it is still necessary to reset the master switch and to push the start button.

The stop button breaks the control circuit and applies the auxiliary solenoid brakes at any point in the operating cycie and stops all span movement. Before the span may be continued in operation the master switch must be reset and the start button operated.

The talaster-switel reset in combination with the start button is complete "no voltage "protection for the entire mechanism. Should the power be discontinued at any time during the operating cycle, contact E is opened and it is impossible to operate the span from a point of rest on any power notch of the master switch above point 2 (the first power point). If this were not done (if contact 10-11 were cut out of the control circuit) it would be possible to push the start button and start the lifting motors from a point of rest and with so much of the rotor resistance cut out as to quickly kill the circuit at the overload relay, resulting in a jerky movement of the spmu.

F JADWAY GATES

A complete operating cycle will now be considered step by step. The first operation is obviously that of soumding the siren and traffic gong. This operation conkd very well be interlocked with the roadway gates but it was not thought to be necessary in this case.

The roatway gates are then closed by throwing two donble-throw, inclowed safety switches on the operator's bench. The ordinary standard arn gates eduipped with their own motors were used. Gate motors are generally equipped with limit switches which cut off power to the motor at both upper and lower limits of travel. The motors are small enough to be connected directly to the line and the gates can be operated by a simple double-throw reversing switch as shown. It will be observed that the gate-motor circuit runs through a door-type switch on the barrier which is closed only when the barrier is clear to traffic, so that after the barrier is once set against traffic the gates can not be moved under power.

Framat 6t.-A risid type barrier of the baseule typa

TRAFFIC BARRIER

The next operation is setting the barrier against traffic. The barrier is a rigid frame of the bascule type, located in the roadway of the fixed approach at the onter end of the main leaf as shown in Figure 61. It is operated by a hydraulic hoist which is actuated by two solenoid valves, one valve being used to maise the barrier, and the other to lower it. These valves are controlled by a simple reversing-type inclosed switch as indicated in Figure 60. The barrier valve circuits are interlocked with both gates and rear jacks.

REAR JACKS
Setting the gates and barriers to oppose traffic resulted in opening the gate circuit at M and closed a door-type switch N in the rear jack control circuit on the release side. Cp until this time the control circuit for the rear jacks has been dead on this side of the line, thus eliminating the possibility of traffic over an unlocked span.

The rear jacks are now released by means of a simple reversing switch on the operator's board which operates a meehanically interlocked magnetic reversing contactor 0 . As the rear jacks reach the end of their travel a limit switch cuts off power to the magnetic reversing contactor and resets the connections for reverse movement. It will be observed that the instant the jacks start to release. the barrier-control circuit is opened, locking the barrier against truffic.

OPERATION OF SPAN

All safety devices now oppose traffic and the main-leaf control circuit is open at only the start button. The master switch is at neutral. The start button is pressed, releasing the auxiliary solenoid brakes and energizing the main-leaf reversing contactors on one side of each of the operating relays 26 and 27 .

The master switch is now moved to point 1 on the raise side, making the contact $b-20$ and $20-25$ through the leaf limit switch, thus completing the control circuit for the motor-mounted solenoid brakes, and releasing them. Point 2 on the master switch makes contact $b-22$ and this contact in conjunction with contact $22-26$ on the limit switch closes operating relay 26 on the reversing contactor and puts power to the motor. Successive points on the master switch rake the contacts $b-30, b-40$, and $b-50$ which energize the operating relays on the magnetic accelerating contactors, thus cutting ont successive steps of rotor resistance and speeding up the motor.

The last resistance step is wired to cut out antomatically as soon (after contact 50 has been made) as the stator currents drop to a certain value. This arrangement is termed a time-clement resistance step and results in five speed ranges with only four masterswitch control points.

As the span moves up the leaf-limit switch moves as indicated, first breaking the jack-control circuit and at the upper limit of travel breaks contact 22-26, cutting off power to the motors, and then breaks contact $20-25$ and applies the motor-mounted brakes. The interval between the breaking of these two contacts may be varied to produce a suitable drift period.

The short-circuiting buttons for the leaf-limit switch permit operation beyond the upper and lower limits of travel, and the interlock short-circuits permit operation in case any device or mechanism is inoperative.

It will be noted that the motor-mounted brakes are wired in series with contact F, which makes these brakes operative whenever relay D is open. The stop button, the overload relay, or any of the interlocks in the leaf-control circuit, therefore, set all three of the brakes.

Figure 60 makes clear the operation on the return trip as well as the wiring for indicator and service lights.

CONTROL SYSTEM FOR A VERTICAL-LIFT SPAN USING DIRECT CURRENT

The three examples which have been given are all alternatingcurrent assemblies. Direct-current control involves no new principles, and, in fant, is: much the same except for the method of speed regulation.

Figure 62 illustrates a method of magnetic control for a directcurrent lifting motor and solenoid brake recommended by one of the larger electrical manufacturing companies. The nettral or off position of the master switch opens the motor circuit and applies the solenoid brakes with all reversing contactors open. The third point on the master switeh is a dritt point, the brakes being released but no power applied to the motor. The fouth point closes the reversing switch with contactors A to F, inclusive, open, thus cutting the entire resistance into the series field circuit and opening the armature shunt. The fifth point closes contactor F , cutting out one step of

resistance in the series fiek, and each succeeding point cuts out an adlitional resistance step until the motor is ruming at full acceleration with all resistors out of the series field circuit.
For deceleration contactors C to F are opened in order, cutting each resistor in turn into the field circuit. As the master-switch handle is moved back to point 3 . the reversing contactors are opened and the motor is made to idle or drift under the momentum of the bridge. Point 2 again closes the reversing contactors and also contactor A, thus shmong the armature and cansing the motor to slow down. Point 1 closes both contactors B and A, decreasing the resistance of the armature shunt and causing the motor to slow down

still further. These last two points provide for two "creeping" or very low speeds, and as the motor is made to slow down the moving matss quickly overhauls it, and as soon as it does, dynamic braking takes place.

The second master-switch point provides armature shunt for median slow-down torque while the first master-switch point provides heary show-flown torque. This method of deceleration (by means of amature shont) is considered by some engineers to be a better methorl for dynamie deceleration than the method of dynamic beaking described on page 6.4 .
Figure 63 shows the wiring dityram for the complete installation.

CONCLUSION

The wiring diagrams discussed are only a few of many possible arrangements. and the treatment given them can not, in the limited avalable space, include many of the points which are thorocerhly covered in standard texts and descriptive techmical bulletins issued by the larger electrical mandacturing companies. A careful study of these dingrams, howner shoukd serve to give to the bridge engineer an understanding of fundabental principles sufficiently thormugh to emable him th: Diselass his problems inteligently with the plectrial mamfarturer and contractor: formulate his requirements, in the form of a gencral layout plan and specifications, in a clear-cut and definite manner, and in sufficient detail to enable the electrical contractor to submit an intelligent bid on the proposed work; check the shop drawings and wiring diagrams submitted; intelligently supervise the installation of the assembly; and maintain the assembly in service with a minimum of repairs and scrvice interruptions,

maintenance of interlocking

It is important that electrical interlocking be frequently inspected and carefully maintaineth. The existence of electrical interlocks affords a sense of serurity that may lead to carelessness in operation. . il intertocks shonil be carefully tested out at least once each month in the premence of the chicf bridge operator and the engineer in charge of bridge maintenance.
The following blank form, prepared for reporting interlock tests on the single-teaf bascule bridge described on pages 82 to 85 , illustrates one ucthod of tabulating and reporting these data.
Repore blanks should be dessigned to fit the partientar type of interlocking used, and in general, no two forms will be exactly the same undess the interlocking assemblies are duplicates. Each report shonid be signed by all present who witnessed the test, and should be dated. This report may prove a valuable exhibit in the event of a future accident involving an official inguiry or litigation.

In the sample interlock report given below, the data included in italiss represents those items which are to be filled in during the progress of the test, the balance of the subject matter being part of the printed form.

MONTLLY HETOHT ON INTERLAKKKS ANE ELEOTRICAL SAFETY MEVIEES FOIT THE SINGBELEAF BASCULE GPAN OVER THD IBWIS AND CLARK HIFER, ABTOALA, OLER.

1. Roadway gate circulf:

Barrier set agzinist traffic-
North sute_-_-de'ud_.......
south gate_-_dedd_-....
2. Eurrier circuit (gate Interlock):

Both gntes up (eleured to traftic), barriet___dead__... North gate down.
 gates dawn, barrier_-_operyter_-_-.
3. Jack firctilt release:

Tack clicuit drive,
Leaf down_-_operaten.
4. Main leaf curnit:

Both fatest town, barter set against traftic and fear jack driven, mana lenf..--dedall.---
Both gates down, burrier set agninst trafic and rear jack reteasel, main lenf_-.opperftes_-....

Both gates down, barrfer ciear (but shorted) rear jack released, maln lenf_-.operatex......
North gate up (by hand), barrier raised, rear fack released, main leationdead
South gnte up (by hand), farter ralset, rear jack released, main leaf_odedal
5. Mafn leaf limit switches:

Cpper_-_operatex (). Fi-_-.
6. Maln leaf Hintt switeh short circuits:

Lowet _-_operater O. K._...
7. Start pash button station: 0. K.
8. Stop push button station: O. K, texted both yoing up and yoint douch.
9. Indicator lamps:

For mavisathon lights, $O . K$.
For posifion of leaf, O. K.
Fol barter motor, O. K.
Above inspection made April $25,1080$.
The following are a few simple rules with reference to the installation of electrical-control apparatus, its maintenance and the renewal of parts:

All parts whould be inspected at regular intervals, and shouk be kept free from alirt, oll, or grease.

Contact thes should be carefuly inspected and rephaced when worn. An ample suphy of spare coils and contact tips should be kept on hame at all thes.

Spectal attention shoula be pald to the maintenance of ciean contacts. Oil should not be ased on the maln copper contacts as it tends to shorten their life. If they become pitted or rougth, they should be cleaned with an emery cloth or very fine tile.

All comections, binding posts, etc., should be frequently inspected for loose coutucts.

Grid resistor unfts should be zept tighty clamged together.
A complete withag dingram of the electricni-control system shond be fumished the operftor. (One copy of this wiring dingram shond preferably be mounted under gluss fn the operator's house for permanent yecord.) 'This wiring dagram shouh be complete enough to chable the operator to trace out all connections.

Contacts with mechanicul faterlocks should be kent in such adjustment as to provide a very slight play. This play, however, must not be great enoligh to permit a clrcult to be made through hoth coutactors at the same time.

Andilary contactors for electrical interlocking are genefally adiusted at the factory, but their ad\}ustmont shoukd be carefally watehed, In gemeral, aux-
bhary contacts will be made ant broken simntameously with the main contacts.

 contars.
 allowey to operate on a valtage more than 10 per cont greater than that for Whids they are sesignef, as this results in a deterioration of the itsonation, hacrease in the poundiog effect when the armature is attracted, a noisfer

The entire apmatus should be propery prountes. (irounding termimats are gemerally provited, exerpt when conduit conacetions are werd, in whels

 keated as to permit af adermate ventiation. One manufacturing company revomands that fifind spares be used hetwent rasistor boxes, stacked verthaty, fand that the shacks be 12 ineles itart.

The hent loon wesismes is likely to musi damage if the grids are placed sullicintity dosp to any matrifil or surfime which whl be damaged from
 resistor chaneity in the orighal instahation, and a cureful inspection of the resistors to insure that they are functinntig property.

RECENT DEVELOPMENTS IN ELECTRICAL BRIDGE CONTROL:

Among the more important molern developments of electrical atparatus for momble bringes have been the following:
(1) The adaptation and application of the variable voltage system for driving the moving span of all types of latge bridges; (2) a protective and speed-matching indicator system that makes possible the sureesstul perfornance of a simplified type of verticallift bridge, using independent hoisting machines for each end of the span: and (3) light-sensitive relays, which have lately become a rommeremal produrt and which foreshadow greater refinement in briflge protective devices and control schemes.

variable-voltage control

('omparison of the variable-voltage system (from the standpoint of apparatus involved) with the rheostatic types described elsewhere in this bulletin, indicates all itenns abont equal, except that the former employs a direct-curent generator with a driving motor or migine, where the latter uses a magnetic control board and resistor. The variable-voltage system oflers the advantages of absence of complirated switching and control devices, ith absolute guarantee against excessive torques or overload conditions which are hazardous to hoisting machinery or the electrical apparatos itself, and a system which is immune to abuse liy careless operation. The motor of the motor-generator set may be arranged to operate from any commercial soure of power, either direct current or alternating current, high or low voltage. This system is also particularly adaptable to the nse of an internal conbustion engine as a prime mover for the generator. ('hoice of variable-voltage drive for a bridge is therefore not limited by the available power service, and opportunity is of-

[^5]fered to make use of more than one power sonter as a standby for emergency operation.

Figure 64 is an elementary diagram of a movable bridge instal-

lation using variable-voltage drive. Tse may be made of any one of three different sources of power to drive the particalar generator sopplying the turning or lifting motors. 'There are thee generators,
A, B, and C , identical in construction and in method of connection to the turning or lifting motors and each controlled by the variablevoltage master controller.

Generator A is driven by a direct-current motor. The diagram shows this motor connected to a single wire with a ground connection to complete the circuit.

Generator B is driven by a gasoline engiae and generator (' is Wriven by an alternating-current motor.

If for any reason all three generators should become inoperative the tuming or lifting motors may be ariven with direct current (from ontside source) by means of the dirum controller shown on the left.

The diagram shows a pair of shont motors connected to the apnreator's and also an alternte arrangement using compound motors.

Attention is called to the absence of any compliated switching from the main armature circuits of the machines, particularly where shant-wound bridge motors are used. This is possible since the ontpat of the genemator can be made to conform to the requirements of the motor or motors for all operating conditions, both in magnitude and polatity, depending on the type used. Contactors and resistors for reversal of molor rotation and for limiting the carrent input are therefore maneressary. The ontpat of the gencrator is governed by ma ordinary drum master controller throngh manipulation of the thunt fielts amal it is alss aftereded by the load ronditions throagh the madimm of a differential series field. Consequently all switehing for speed control of the bridge mentors is limited to anxiliary circaits where the corrent does not exceed a few amperes.

The bridge motors may be either shunt or compound wound. Shunt motors will be tised where simplicity in control is of puramonnt importance. Compound motors have additional complication in the form of magnetie reversing contactors, but offer a slight inrrease in efficiency as requrds power consumption, when two motors are used to drive the bridge. The lower over-ali effeiency of shont motors whith should be connected in paratlel, is due to the use of resistors to insure an equal division of load between the motors.

Operation of the motors in parallel rather than series results in a more economital design of generator. When two motors are ased to Wrive a bridge they are usially of such size that one may be cut out in an emerrency and the bridge operated by the other motor alone. In either case, the power input to the motor or motors (for equal load) will be the same. With the parallel connection the nominal voltage of each motor is the same as that of the generator and the removal of one motor from the circuit in no way aflects this voltage. The only result, so far as the motors are concerned, is that with single-motor operation all of the generator current mast be absorbed by one motor instead of being divided between two. The nominal voltage of each motor when connected in series is half that of the generator, hence removal of one motor from the circuit necessitates readjustment of the genemator voltage to hati the nommal value. The current must then be doubled in order to maintain the same power output. This is illustrated diamratmatically in Figure 65 and may be shown symbolically as follows.

The generator, for motors in parallel, need be capable of delivering only E volts and I amperes, whereas the series motor connection

PARALLEL OPERATION - TWO MOTORS

SERIES OPERATION- TWO MOTORS

PARALLEL OPERATION - ONE MOTOR

SERIES OPERATION - ONE MOTOR

Figuaf (th. Motor characteristles in seriey and purallet operation
requires that the generator be large enough to deliver E volts and $2 I$ amperes.

Equal division of load between the two parallel-connected motors depends upon overcoming their tendency to unload with increase in load. Three factors determine the fiow of current through the armature of any motor, namely, the line voltage, the resistance in the armature circuit, and the counter electromotive force.

$$
\begin{align*}
& I=\frac{E_{\mathrm{Hin} \theta}-\text { CEMF }}{R} \tag{1}\\
& \mathrm{or}_{\mathrm{His}}=I R+\mathrm{CEMF}
\end{align*}
$$

The latter equation states that the line voltage is equal to the resistance drop and counter electromotive force of the armature. If
an increase in current is accompanied by an appreciable increase in either of the latter factors there will be a reaction against this increase in current and hence the desired unloading tendency. Both motors (designated as A and B) operate from the same impressed voltage; therefore the following equation is true:

$$
\begin{equation*}
I_{A} R_{A}+\mathrm{CEMF}_{A}=E=I_{B} R_{B}+\mathrm{CEMF}_{B} \tag{3}
\end{equation*}
$$

Equation (3) shows that for balanced conditions of load the total counter voltages in each motor circuit are equal.
For constant load, any increase in current through one motor must be accompanied by a like decrease in current through the other motor and therefore

$$
\begin{equation*}
\left(I_{A}+i_{A}\right) R_{A}+\mathrm{CEMF}_{A}=\left(I_{B}-i_{B}\right) R_{B}+\mathrm{CEMF}_{B} \tag{4}
\end{equation*}
$$

This equation may be considered to apply to two shunt motors. The total counter voltages are unbalanced by an amount equal to the difference in resistance drop, and are higher in the circuit carrying the larger current. The unbulance, however, is very slight on account of the small numerical value of R, and can not be relied upon as a means for balancing the current in the two motors. The addition of a slight amount of resistance in series with each motor, brings the total resistance drop to a value that will produce the necessary result. The equation then becomes

$$
\begin{equation*}
\left(I_{A}+i_{A}\right)\left(R_{A}+r_{A}\right)+\text { CEMF }_{A}=\left(I_{B}-i_{B}\right)\left(R_{B}+r_{B}\right)+\text { CEMF }_{B} \tag{5}
\end{equation*}
$$

where $r=$ external resistance. This external resistance will cause a decrease in overall efficiency not exceeding 4 per cent.

When the motors have compound windings, the quantity CEMF, in the above equations is affected by change in current. Counter? electromotive force is proportional to the motor speed and field flux, and the iatter is roughly proportional to the ampere-turns producing the flux. This may be expressed

$$
\mathrm{CEMF}=K N I S,
$$

where

$$
\begin{aligned}
& K=\text { the numerical multiplier } \\
& N=\text { turns in series field winding } \\
& I=\text { motor amperes } \\
& S=\text { motor speed }
\end{aligned}
$$

Since N and S are the same for both motors, the above may be written

$$
\mathrm{CEMF}=K_{1} I
$$

where $K_{1}=$ KNS. Equations (3) and (4) when applied to compound motors may be written

$$
\begin{align*}
I_{A} R_{A}+K_{1} I_{A} & =I_{B} R_{B}+K_{1} I_{B} \tag{6}\\
\left(I_{A}+i_{A}\right) R_{A}+\left(I_{A}+i_{A}\right) K_{1} & =\left(I_{B}-i_{B}\right) R_{B}+\left(I_{B}-i_{B}\right) K_{\mathrm{A}} \tag{7}
\end{align*}
$$

The unbalance in the counter voltage due to the unbalance current, i, is sufficient to guarantee against a large value of this current. This unbalance is caased principally by the factor $(I \times i) E_{i}$, in other words, by a change in the generator CEMF.
Conclusions in regard to the use of motors with variable voltage control may be briefly stated as follows: Shunt-wound or compoundwound motors may be used. Both types provide approximately equal performance as regards speed and torque. Shunt motors offer simplicity and economy in wiring and apparatus, but operate at slightly reduced efficiency when two motors are used. Compound motors offer maximum efficiency, but invoive increased complication in wiring and appuratus.
The generators used with this system are arranged to operate at constant speed, and have a special design of field windings. Three separate field windings are used, two of which are of the shant type, and the third, a series type. One of these shunt windings, called the separately excited field, is energized from a source of constant potential, usually supplied by an exciter directly coupled to the generator. The other shunt winding, called the selfexcited field, obtains its energy from the terminals of the generator itself. The series winding is connected directly in the main circuit of the generator, and its polarity is such that it opposes the magnetomotive force of the two shunt windings. The reactions of these three field windings are such that the terminal voltage of the generator drops slighitly as the load increases from zero to normal, but with further increase in load drops of very rapidly permitting the motors to stall at a cerrent which is not more than two or three times the normal load current for bridge movement. This voltage characteristic is illustrated by curve $E_{5}^{\prime}-I_{3}$ in Figure 66.

The speed-torque characteristics are approximately the same as the voltage-load characteristics, since the motor speed varies directly as the gencrator voltage and the motor torque substantially as the generator current. It is obvious from this that the system inherently provides a definite maximum torque which it is impossible to exceed. It is therefore impossible to subject the machinery to strains or overloads by careless operation, and since there are no protective relays there can be no damage due to their failure to function. This safety in operation may result in the reduction of safety factors in the strength of the hoisting machinery, since such muchinery is ordinarily designed to withstand excessive torques and shock, such as might be clelivered by other types of drive under abnormal conditions.
The rnagnitude of the generator voltage, and hence the speed of the motors, is regulated by a master controller of che usual type, operating principally in the separately excited field circuit. Figure 66 shows three curves labeled $E_{1}-I_{1}, E_{2}-I_{3}$, and $E_{2}-I_{3}$. These are produced, respectively, by the first three power points on the master controller, and are the net result of the reactions of the separately excited field and the differential series field. When the master controller is moved to the first power point, the generator yoltage tends to rise to E_{1}. Current immediately flows in the main circuit and, due to the differential action of the series field, the ampere turns of the separately excited field are nullified to a certain extent so that a voltage only equal to $R I_{1}$ (resistance drop of the circuit) appears. This circu-
lates a current of I_{1} amperes. The carrent I_{1} may be in excess of normal, and if so, the motors will accelerate and, due to the accompanying rise in CEMF , the armatare cirrent will decrease with rise in speed. Decrease in armature current results in decreased differential field action, with the result that the generator voltage now rises in proportion to increase in motor speed to a limiting value of E_{1} for no load. The reaction for the second and third power points are identical.
It will be noted that the maximum current I_{3}, which flows in the armatare circuits, is not affected by the last two power points of the controller which add the self-excited shunt field. At the point of maximum current the ampere tums of the separately excited field are neutralized by the ampere turns of the differential fieid. Curves $E_{4}-I_{4}$ and $E_{5}-I_{3}$ are produced by the self-excited cield, governed by the last two power points on the controller, and it will be noted that these result in increase in geneartor yoltage (also motor speed) but not in entent. The maximun anpere turns of the selt-excited field do not huve sulficient magnitude to build up or maintain the generator voltare from its action alone. Initial woltage must be established by the separately excited fied before the self-excited field san become effective. Thus when the separately excited fied is nentratized by the differentinl winling. the selferexited field also collapses. The curved shape of the curves $E_{2}-I_{3}$ and $E_{5}^{\prime}-I_{3}$ is, the to the effects of a saturation of the

Pigcas 66.-Charnctristic eurves for satiable-roltage operatlon generator field poles. There is an excess of total field ampere tums when operating on curve E_{s} in the region of full load. With medium increace in load the loss of net ampere turns in the field windings does not appreciably effect the field flux on account of pole saturation. When the fied flux reaches the point where saturation no longer exists, there is a rapid collapse as illastrated by the sharp drop in curve $E_{0}-I_{s}$ for high current value.

The adjustment of voltage and current as the master controller is moved from point to point never occurs abruptly, due to an inherent time lag in the flux change in the generator fields, and also because the differential fiedd always tends to oppose any change in the existing load current. The result is a cushioning effect on the motor torque. The master controller may be jerked from the off position to the full on position without shock to the machinery. The load current in this case rises to maximum at a smooth rate in approximately one to two seconds. The gradual rise in current permits slack to be taken up in gears before heavy torque appears.
Decrease in genemator voltage on returning the master controller toward the off position results in its becoming less than the motor CRMF, which is always proportional to the bridge speed. The motors, therefore act as renerators, reversing the flow of main current and supplying negative or decelerating torque provided the load
is overhauling. In effect, this means that for each point of the master controller there is a fairly definite motor speed, regardless of whether the loacl torque is positive or negative. This fenture is of some importance on bridges which are not exactly counterbalanced throughout full travel, since there is no tendency to "run away" such as would be the case with certain types of rheostatic controllers when the load is overhauling. This feature is important on any bridge for purposes of "slow down," resulting in greatly reduced duty on friction-type brakes.

A study of Figure 66 indicates that the power input into this system varies from theoretical zero with the motors operating at maximum speed and no kotd, to a maximum at some intermediate value of speed and load, and back to zero with the motors stalled at maximum torque. Horsepower is the product of voltage, current, and a coustant. Zero horsepower at full speed and no load is due to the absence of the current factor, and at "stall" it is due to the absence of the voltage factor. This is a most important feature where the generator is driven by an internal-combustion engine. With an ordinary type of generator and rheostatic control, the power input would increase directly as the generator current output. The power of the engine for such a system would need to be based upon the maximum emergency currents required for operation under unusual ice or wind loads and the engine would therefore be considerably larger than required for normal operation. The maximm power input for the variable-voltage system on the other hand, oceurs in the region of normal load current, and, therefore, the engine need be only large enough to supply this power. The engine will never be required to deliver power in excess of this, since the heavy emergency torques are handled at reduced power. The ratings of inter-nal-combustion engines are generally such that they have little reserve power, but since the variable-voitage system eliminates the necessity for reserve power a closely rated engine may be safely used.
General conclusions on the performance of the variable voltage system as a whole may be summed up as follows:

The machines themselves are practically immune to damage from overload due to careless opemation.

The maximum torque is definitely limited, eliminating the possibility of damaging mechanical strains in machinery.

Protection is afforded against shock or jar due to careless operation and the system is almost ideal in giving smooth acceleration.

Slow down (or retarding torque) can be obtained with an overhauling load.

Certain advantages may be realized in the applicatioin of engine prime movers.

Full automatic starters, controlled remotely by start and stop push buttons on the operator's board can be used for motor generator sets. Whare the motor uses alternating current the starter may be either of the line or reduced-voltage type. The line-type starter employs a single contactor, of oil circuit breaker where the voltage is above 600 , and full-line voltage is applied directly to the motor terminals in starting. The reduced-voltage type makes use of two or three switching devices together with an autotransformer or renctor for the purpose of applying from 50 to 80 per cent normal voltage to the motor at starting. The current drawn
from the line at the instant a line starter is closed may reach a value approximately 600 per cent of normal, but for the reducedvoltage starter the current may be limited to only 200 or 300 per cent of normal. The driving motor for the motor-generator set for a large bridge may be rated as high as 500 horsepower in some cases, and a current inrush approximating six times normal current would cause objectionable surges and voltage fluctuations on a pub-lic-service line where lighting circuits are part of the connected load. The bridge engineer will probably be compelled to use the reduced-voltage type starter in most cases, due to power-company regulations which prohibit excessive and abrupt demands on their lines.
Auxiliary and control circuits handling magnetic brakes, motor field, generator fields, magnetic contactors and relays, electrically operated circuit breakers, etc., can be supplied with power at 115, 230 , or 550 volts direct current by an exciter on the main generator shaft. Another arrangement makes use of a 125 -volt storage battery for control circuits, which may also be used for emergency lighting service, in the event of a failure of alternating-current power. This latter arrangement, of comse, necessitates the use of a small auxiliary motor-generator set for charging the battery.

PROTECTIVE AND SPEED-MATCHING INDICATORS FOR YERTICALLIFT BRIDGES

The common type of vertical-lift bridge has the lifting machinery mounted on the moving span. This has been necessary, perhaps, since the same drum can be arranged to lift both ends of the bridge, thus insuring that the span remains level throughout the lift.
A few bridges have been recently constzucted, in which there is no machinery on the moving span and which use separate hoisting machines and motors for each end of the span, these being located in the tops of the stationary towers. There appears to be considerable mechanical economy in this design, particularly in lifting cables and accessories, but it is essential that the two hoisting machines operate in synchronism in order that the bridge be maintained level during the lifting operation. The maximum amount of permissible skew on any of the completed installations has not exceeded approximately 12 inches in 150 feet. The electrical problem consists, of course, in maintaining the average speed of the motors equal and in permitting no transient variation in speed that will cause a skew greater than the allowable limit.

The control system used so far has made use of a system of skew indication conveniently arranged with a leveling master controller. In addition to this an ultimate skew limit switch has been provided, und arranged to bring the bridge to a stop by cutting off power and setting brakes whenever the skew approaches the allowable limit. The latter device is in the nature of a positive safety factor, and doos not depend upon the operator, as in the case of the leveling scheme.

The motors in the towers are all controlled from a common master rontroller located in the operator's house. The arrangenent provides that all control functions such as applying power, closing accelerating contactors, etc., occur simultaneously for each drive. This
guarantees that the speeds of the ends of the bridge will be approximately equal for normal operating conditions. There will always be small inequalities in friction or weight between the ends of the bridge with the result that sooner or later one end of the bridge will lead the other during the movement of the span. The operator, guided by the skew indicator, manipulates the leveling controller to correct for skew as it appears. This is accomplished by slowing down the leading end of the bridge momentarily.
Figure 67 illustrates the main items involved in the control apparatus. The two transmitters, A and B , and the receiver, C , of the skew indicator system are identical in design principle with ordinary wound-rotor induction motors. The transmitters are geared to their respective hoisting machines so as to rotate at some low speed not exceeding about $60 \mathrm{r} . \mathrm{p} . \mathrm{m}$. when the britge is moving at full speed. The primary winding of each tramsmitter is connected to a common source of supply. Each acts in a sense as a transformer generating equal voltages in circuits A and B . The frequency in these two circuits is rariable, being equal to that of the supply when the bridge is at rest, but decreasing to some lower value when the bridge is moving at full speed. Circuits A and B conform in every respect to the rotor circuits of wound rotor induction motors, and the frequency varies inversely as the speed of the rotor. It is obvious that the frequency in the two circuits will be equal, though variable, as long as eath end of the span moves at eqtal speed, but any difference in speed will result in a slight difference in frequency in the circuits A and B .

The elementary diagram (fig. 67) indicates circuit A connected to the stator of the indicator receiver and cireuit B connected to the rotor, with phase rotation such that the magnetic poles set up by each revolve in the same direction. When the briclge is at rest the rotor will take up a fixed position such that a moving north pole on the rotor is opposite a moring south pole on the stator, etc. The pointer on the indicator dial is adjusted to stand at the vertical or neutral point marked "level" when the bridge is level. It will be understorel that, although the magnetic poles revolve at high speed, there is no movement of the pointer while the brilge is at rest, or while both endis move at the same speed.

Movement of the pointer occurs only when there is a difference in frequency between rirenits A and B. To malyse the reactions, let it be ansumed that the bridge is in motion, that end A is moving at a slightly higher speed than end B and that the receiver fields are rotating in a clockwise direction. This will result in a frequency of, let us say. 50 eycles per secomd in circuit B and 49.9 cycles in circuit A. The speed of the magnetic poles on the rotor will be-
R. p. m. $=\frac{\text { Altematens per minute }}{\text { poles }}$

$$
=\frac{50 \times 2 \times 60}{4}=1,500
$$

For the poles on the stator-

$$
=\frac{49.9 \times 2 \times 60}{4}=-1.497
$$

This indicates that the magnetic poles on the rotor will lead the poles on the stator by one quarter revolution (90°) at the end of a 5-second period assuming that they were in synchronism at the start. Actually, however, this does not occar. The magnetic reaction between the poles on the stator and roter are such that a north pole on the rotor must always remain exactly opposite a south pole on the stator, therefore the rotor must rotate mechanically one quarter revolution in the opposite direction to compensate for the loss in the speed of its field. The movement takes place at a uniform rate, and at the end of five seconds the indicator dial hand will have rotated 90° in a counterclockwise direction amd will indicate A end high.

If it had been assumed that end B traveled at the higher speed, the magnetic poles of the rotor would have made 124.75 revolutions while the stator poles revolved 125 tums. In this case the rotor must rotate mechmically one quarter rev jution in a clockwise direction to compensate for the higher speed of the magnetic field. At the end of the 5 -second period the dial hand will have rotated 90° in a clorkwise direction. indicating B end high.

The deflection of the dial hand is of course proportional to the skew of the bridge. The dial may therefore be calibrated in inches of skew.

Any tendency of the bridere to become skewed while in motion is at once bronght to the operator's attention by a movement of the indicator hamb, one way or the other. An arrangement has been worked out that eliminates any necessity for the operator to interpret the movements of the indicator. This has been accomplished by momnting the leveling controller immediately beneath the indicator, so that the movement of the vertical handle is similar to the swing of the indicator hamd. The operator comects for skew by moving the controller handle in the opposite direction to the swing of the indicafor hand.

Existing installations use the leveling scheme described above, with the actual leveling depending upon a manipulation of a device by the operator. With transmitters and receiver of increased size, there is no reason why the indicator could not be replaced by a contactmaking device arranged to perform the same function as the leveling controller. An arrungement of this kind would antomatically tend to maintain the bridge level without attention by the operator.

The ultimate-skew switch shown in the diagram, is a positivecircuit interrupter, arranged to stop all motors and set all brakes in ease the bridge skew approaches the maximmo allowable limit.

The circtit interrupter includes two units, one of which is geared to the hoisting machinery at each end of the bridge. Each unit consists of a rotating drum, or face plate, carrying six contact segments. One of the segments on each thrum makes contact throughout 360° of rotation and serves as a common feed for the drum. Each of the other five semments are in contact somewhat less than 180°, and are spacel at equal distances around the face plate. The five fingers of unit A in contart with these latter segments are connected to the corresponding fingers on unit B.

The action of the two mits is sum that they are connected topether electricilly, fhrongh one, two. or three of the five conductors is long as they are not nore than approximately 120° out of phase;
that is, as long as a point on one face plate does not lag or lead a corresponding point on the other by more than 120°, as both rotate, the circuit between the two is not broken. When the lay or lead exceets this angle, the circuit will be broken momentarily five times for each 360° of revolution. The first momentary interruption of the circuit trips a cut-ofl relay, which can not be permmently reset until the bridge skew has been corrected and all master controllers brought to the of position.

Figure 67 shows a series of four shetches with the two face phates superimposet upon each other with varying degrees of disphacement. The fingers of both units will fall along the same position line in ail cases. Thit A carries left-hand spiral shading and unit 13 carries right-hand shading. Overlapping parts of the segmente are shown in black, while parts of the segments not overlapping cary line shating. A cirenit from one unit to the other can only De completed where the seqments overlap, therefore the fingers that fall in the back areas will complete a circuit between the two units via their respective circuits.

Sketch No. 1 shows the units exactly in phase with the bridge level. It will be noted that two or three circuits are always completed between the units. At position a circuits 1,4 , and 5 are completed, at 4 cirenits 1 and 5 , at c circuits 1,2 , and $\overline{5}$, at d circuits 1 and 2 , at e circuits 1,2 , and 3 , etc. Sketch No. 2 shows unit B lagging by 93°, caused by the bridge being skewed with A end high. This sketch shows that at least one circuit is always completed between the two mints, and part of the time two circuits are completed. At position acirexit t is complete, at $a b$ circuits 4 and 5 , at b circuit 4 , at d circuit 1, cte. Sketch Xo. 3 shows a displacement of 120°. A circtit between the two units is not always complete for this displacement. At position a circuit 4 is complete, at ab all circuits are incomplete. (ircuit \bar{f} is established for positions b and c. For this displacement there will be five momentary interraptions for every complete revolution of the switches. The skew corresponding to 120° displacement of the limit swithes therefore represents the maximum amount of skew attamable, provided both ends of the bridge are in motion.

Sketch No. 4 shows the result of 180° displacement, with aill circuits incomplete at all times during rotation of the switches. This amount of displacement can only be approximatel by moving one end of the bridge alone. It is appareat that all the cross-hatched area shown in sketch No. 3 will not disappear mantil the displacement approaches 180°. It is only possible to attain this degree of displacement by moving one end of the bridge with the other at a standstill. This will be apparent if it is assumed the fingers on position 2 in sketch No. 3, and then consider that unit B be rotated in a counterclockwise direction. The overtapping full black area at position Z will not disappear mitil unit 13 has rotated neary 180°, and circuit is will be mantainel until this oceus:

The interrupter therefore does not break the circuit at a fixed point of skew, but may cot out anywhere within fixed limits. These limits ocur betwen 130° und 180° of dispherment for the units, and this may be transiated into any desired amount of bridge skew by a choice of suitable yearing. Assuning a maximum permissible skew of 12 inches, the gearing should prefermbly be such that the maximum cut-
out oceurs with a skew of about 9 inches. The minimum cut-out would then occur at 6 inches skew (both ends in motion).

LIGHT-SENSITIVE RELAYS

One of the most important problems in comection with movable bridges has to do with the design of a rehable protective system. The bridge and operating machinery mast be protected against damage due to overtravel, or incorrect operating sequence, and provision must be made for the protection of bridge traffic. This has been accomplished in the past by the use of mechanically operated limit switches of varions types, which are fully described else where in this bulletin.

The new light-sensitive relays which have recently appared on the market possess characteristics which may permit an inprovement in the design of these protective deviees in three respects, namely:
(i) Elimination of complicated mechanical operating devices for homit switches.
(2) Gpeater refinement in precision-type limit-switch applications.
(3) Elimination of subnarine or flexible acrial cables between moving and stationary parts of bridges.
Light-sensitive telays may be arranged either to make or break a contact, and both of these pertormances may be brought about by either cutting off a beam of light or establishing the beam. This can be accomplished either by moring the source of the light with respect to the hight receiver or by interposing a shatter between a fixed light somec and the receiver. In general, where the relay is applied for the purpose of limiting travel, a scheme which depends upon an interruption of the light beam should bo used so that a failure of the light source will stop the machinery and prevent damage. Those artangements where the relay depends upon establishing the light beam between the source and the light-sensitive clement should be restricted to the sequence interlocking system, where a failure can be taken care of by the ordmary interlocking by-pass or short-circuiting switches.
The only operating device required for use with light relays will consist of at menber or shatter for the purpose of interrupting the ligit beam. This will not always be required, since the same purpose can be accomplished by moving the source of light with respect to the relay. This sort of opernting device can not be thrown out of adjustment by dimensional chauges in the bridge due to varying temperature, such as may occur with certain mechanical arrangements and does not suffer from impact when engagel by high-speed moving parts.

There are a few limit-switch applications on bridges, where it is perhaps impossible to design a mechanionlly operated switch that will function with the desired precision. These generally may be classified as switches operated directly by a moving member and which must go through a complete cycle of opening amblosing with contimoses movement of the artuating member. An example of this is a switch designed to riose a contact when a double-action swing bridge is in a fully closed (netura) position. Any ordinary
mechanically operated switch that might be applied for this purpose will mantan its eontacts chesed for a distane of from 1 to 3 inches of travel on either side of the neutral for the end of the bridge. This is not a very high degree of accuracy, and, moreover, such accuracy may be impaired by temperature dimensional varintions in the moving span. A light-relay system arranged with the light sonre on the rest pier and the relay on the moving sipan, and employing an aperture for the light bem in the form of a vertical slit, contd be arranged to confine the operating mange to within at least one-touth inely of the sact fully elosed position.

Fior bridges of the swing and rertical-lift types the operator's horse is generally located on the moving span. Roadway gates, waming lights and signats, trafle bariers, ate., are lecated on the bridge apmoaches. Power for operating and controlling these derices is brought from the operator's honse on the moving span by matieonductor sthmatine or aeriat ables. These cabless may be (for the greater part at least) elimimated and the tratic gates, lights, and signats controlled by light relays located on the approaches and artanter by hight projecters mounted on the moving span. It will be outed that this selome besides controlling the roadway devices, also automatically provides the necessary interlocking, inasmuch as it will be impossible to inalyertently operate any of the roadway deviees with the span open, since the hight beam from the projectors can not engage the relays in any other than the full-closed position.

APPENDIX

In much of fire distussion amb inany of the firares contand in this bubletin no alterngt hats bern matie to foilow the exact stamiamis of terminotory adopteat

 in the fatronst of einrity of expression, and beenuse the strict eparention metio-
 chearly iltastrate the text.

DEFINITIONS

 shatrex exi to the apmathe to which it is comberted.

 mumans.
 basie fombtans perfommed by hamb.
 swheh as the batia swjelomg dement.

[^6]Autotransformer starter.-An autotransformer starter is a starter having an autotransformer to furnish a reduced voltage for starting. The device includes the necessary switching mechanism and is frequently called a comgensator or autostarter.
Contact.-A contact is a conducting part designed to be united by pressure to another conductint part for the purpose of carrying current.
Switeh--A switch is a device fol making, breaking, or changing the connections in an electric circuit.
Disconnecting switch.-A disconnecting switch is a switch which is intented to open a circuit only after the load has been thrown off by some other means.
Motor circuit switch,-A motor circult switch is a switch intended to open moder load and will brenk tōo per cent of its rated load. Such a switch may De used to stop the motor under normal running condltions and also provide mentus for discomecting the controller and motor from the line when it is necessary to make repait's.
Drum sucitch.-A drum swltch is a switch having electricul connecting parts in the form of fagers held ly spring pressure agalinst contact segments or surfaced on the periphery of a rotating cylluder or sector.
Nfaster switch-A master switch ${ }^{41}$ is a switch which serves to govern the operation of contactors and auxilinty devices of an electric controller.
Contictor.-A contactor is a device for repeatedy establishing and interrupting an electric power circuit.
Mugnetic confactor.-A magnetic coutactor is a contactor actuated by electromagnetie means.

Resistance,-Resistane is the opposition offered by a substance or body to the passage through it of in electric current and converts electric energy into hert. Resistance is the reciprocal of conductance.

Resistor.-A resistor is a device used primarily because it possesses the property of electricnl resistance. A resistor as used in electric circuit for purposes of operation, protection, or control, commonly consists of an aggregittion of unfts.

Rheosfat.-A theostat is a resistor which is provided with means for readily varying its resistance.
Resistive conductor-A resistive condnctor is a conductor used primarily because it possesses the property of electrical resistance.

KINDS OF PROTECTION

Lote (or wader) voltage protection.-Low (or under) voltage protection is the elrect of a device operative on the reduction or fallure of voltage to cause and maintain the interruption of power to the main circuit.
Loto (or under) vollate releuse.-Low (or under) voltage release is the effect of a device, onerative on the reduction or fathure of voltage, to couse the interruption of pover to the main circuit but not to prevent the reestablishment of the main circuit on return of voltage.
Phuse-fwiture protcetion--Phase-faihure protection is the effect of a device operative upon the failure of power in one wire of a polyphase circuit, to cause and thaintain the intermption of power in all of the circuit.

Phasc-reversal protection-Phase-reversal protection is the effect of a device operative on the reversal of the phase rotation in a polyphase circult, to cause and maintain the interruption of power in all of the cireuit.

Overload protection--Overiond protection is the effect of a device operative on excussive current to cause and maintain the interruption of curcent flow to the llevice governed, When it is a function of a controller for a motor, the device employed shall provide for intercupting any operative overloads, ${ }^{\text {in }}$ but shall not be required to interrupt short circuits.

RELAYS

Rclay.-A relay is a device that is operative by a virintion in the conditions of one electric circuit to eflect the operation of other depices in the same or tmother electric cirevit.

[^7]Phase-rotation relay, A plase rotation relay is a relay which functions in accorthace with the direction of plase rotation.

Curent relay.-A current relay is a relay which functions at in predetermined value of enrrent. A current relay may be either an overcarrent relay or an undercurrent relay.

Overbiad relay.-An overlond relay is an opercurrent relay in the circuit of a motor which functions at a predetermined value of the current to culle the alsconnection of the motor from the line.

Tollage relab-A voltage relay is a relay which functions at a predetermined value of voltage. A voltage relay may be either an overvoltage relay or an undervoltage relay.
Differmifit relay. ${ }^{33}-$ A differential relay is a relay which functons by reason of the diliference betweat two fuintities such as current or voltage, ete.

Frofucney relay.-A frequency relay is a relay which functions at in predetermined vatuc of frequency. A frequency relay may be either an overfrequency relay or an underferfuency relay.

Temperature rehay.-A temperature relay is a relay which functions at a predeterminell temperatare in the apmaratns protected.

Opm-phate retaju.-An open-phase relay is a relay which functions by renson of the opening of one phase of a polyphase circuit.

Stcp-buch: reloun. ${ }^{14}$ - A step-back relay is a relay which operates to limit the cmrent peaks of a motnr when the armature or line current increases. 1 stepback relay may, in addition, operate to remove the canse of the limitation to the current peaks of a motor when the armature or fine current decreases.

QUALIFYING TERMS OF RELAYS

Notching-A qualifying term applied to any relay indicating that a predetermined number of separate impulses are required to complete operation.
Inverse timb-Inverse time is a qualifying term indicating that there is purposely introduced a delayed action, which delay decreases as the operating force increases.

Definit time.-A gualifying term applied to any relay indicating that there Is purposely introluced a delny in action, which delay remains substantially constant regardless of the macnitude of the quantity that catuses the relay to function. (For quantities slightly above the minimum operating value, the delay may be inverse.)

Instantaneous.-- A qumlifying term applied to any relay indicating that no delay is purposely introduced in its action.

PROPERTIES AND CHARACTERISTICS OF APPARATUS

Pick-un roltage (or current).-The piek-mp voltage (nr current) is the voltage (or current) at whieh a magnetic contactor starts to elose under conditions of normal nperating temperature.

Scaling woltafe (or current). The seating voltage (or current) is the voltage (or current) necessary to sent the armature of a magnetic contactor from the position at which the contrets first touch each other, under conditions of normal operating temperature.

Srating fap.-The seathug gap is the distance between the armature and the center of the core of a magnetic contactor when the contacts first touch each other.

Drop-ont toplage (or ourrenf).-The drop-out voltage (or current) is the whlage (or current) at which the contacts of a magnetic contactor open under conditions of normal operating temperature.

MISCELLANEOUS

Conducting perfa.-Combucting mats of control apparatus are those designeti to calry current or which are conductively connected therewith.

Grounded parts.-Grounded parts are those parts which are so connected fint, when the Installation is complete, they are in electrien connection with the carth.

[^8]Mafmet bruke.-A magnet brake is a friction brake controlled by electromasnetic memas.
fogying servicc.-Jogring or inching is the quickly repeated closure of the clrcuit to start a motor from rest for the purpose of accomplishing small movements of the trived matchine.

Control circuit transformer.-A control circuit tansformer is a voltage thansfarmer atilized to supply a voltage suitable for the operation of shuat-coil maturetic devices.
(tontroller-citing diafram.-A controller-wiring diagram is a diagram showing the electrical commections between the parts comprising the controller, und indicating the extemal eonnections.
bistemal controller wiriny diogrom,-An external controller wiring diagram is a diagram showing the electrical connections between the controlfer terminals and outside points, sach as conneetions from the line to the motor and to anxiliary devices.
controherconstrucfion diagram.-太 controllereonstruction diagram is a diagram indicating the physical arrangement of parts such as wiring. buses, resistor buits, ete. Example: A diagram showing the arrangement of grids and terminals in a grid-type resistor.

Elementarycontroller diagram.-An elementary-controler diagram is a diagram using syabols and an elementary phan of comections to illustrate, in simple form, the motor circuits and the scheme of control.

Control sequence lable.-A control sequence table is a table indicating the cometing derices which are closed for each suceessive position of the controller.

Fuscs:-A fuse is an overcurrent protective device with a circuit opening finsible member directly heated and destroyed by the current passing through it.

Thermal cut-out-A thermat cut-ont is an overcmrent protective device that contains a heater element ${ }^{15}$ in addition to and affecting a fusible member which opens the circuit.
Burrier:-A barser is a partition for the insulation or isolation of electric cirenits or electric ares.

RATING, PERFORMANCE, AND TEST

Amoicht temperuture."-Ambient temperature is the temperature $v{ }^{n}$ the tir or water which, coming into contact with the heated parts of a machine, carries off their heat. (See A. I. E. E. Rule 3.000. ${ }^{25}$)
Rating. ${ }^{20}$ - A rating of a machine, apparatus, or device is an arbitrary designation of an operating limit.
For the purpose of this section the rating of a controller is based upon the power governed, the duty. and the service regnired. Standard ratings do not provide for overlond capacity.
The rating ${ }^{20}$ of control apharitus in general shall be expressed in volts, amperes, borsenower, or filowatts, as maj be appropriate.
lesistors shall be rated in ohms and amperes and class of service. The various kinds of rating recognized are:

Continuous ruting. The continuous rating defnes the load which can be carried for an unlimited periol, without causing any of the limitations established herein to be exceeded.
Eipht-hour rating-The 8 -homr rating of a magnetic contactor is its amperecarrying capacify for eight hours under conditions of free ventilation starting with new, clean centact surfaces and not exceeding N. E. M. A. temperature limitations and with the operating coil circuit excited at full-rated voltage.

[^9]The 8 -hour rating is the recognized standarit rating. Any other time capacity required should be specified in detinite terms:

Nopen-"Continuous rating" with respect to contactors is considered as an indesinte teru.

The service characteristics of contractors are recognized as determining Heir applicability to various dinty cycles such as-
Maxinum circuit closing capacity.
Maximum interruting capacity.
Wearing qualities under given frequeacy of operation.
Pcriodic rutiog.-The periodic rating detilnes the load which can be carried for the altemate periods of loath and rest specified in the rating, the apparatas starting cold, and for the total time specified in the rating without causing any of the limitations established herein to be exceded.

Stundurd periodic ratings.--Standard periodic ratings are as follows:
15 seconds lond every four mimutes, or one-sixteenth time rating.
30 seconds load every four minntes, or one-eighth time rating.
$4 \bar{i}$ seconds load every four minutes, or three-sixtrenths time ratine 1 minate load every four minotes, or one-fourth time ratibg.
$11 / 2$ minates load every four minutes, or three-eighths time rating.
2 minutes lond every four minutes, or one-hali the rating.
In cach case the alternate neriods of low and rest shat be continued for one hour.
Scrive classifiations of motor-control resistors--(1) Numbers used to desigmote the resistors required for tifferent classes of control service are given in Tnble 4.
(2) The test on starting and intermittent-duty yoristors to meet the above chasification shall be continted for one hour. Thes are primarily designed for use with motors requiring an initial torque corresponding to the current value for the chass of resistors specified and requiring an average (root-mennsfuate) accelerating current in any case of 12 B per cent of full-load value.
(3) The test on continunus-duty resistors shath be continued until maximum temperatare is reachest. They shan be capable of carrying fullioud current ou any point where the resistance will pertmit that amount of current to pass.

Thbse 4.-Ctassification of resistors for periodic ruting ${ }^{\prime}$

Approximate percentake of fullload current on the first point			45 seconds out of 4 minute	1 minute out ot 4 minutes	152 min- ut+s or minutes	$\left\lvert\, \begin{gathered} \text { 2 minuzes } \\ \text { out oft } \\ \text { minutcs } \end{gathered}\right.$	Continduty
$\begin{aligned} & 25 \\ & 50 . \\ & 70 . \\ & 100 . \\ & 150 \\ & 200 \end{aligned}$	$\begin{array}{r} \text { Nubey } \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 10 \end{array}$	Number 31 34 33 34 34 35 34	$\begin{array}{r} \text { Number } \\ 44 \\ 42 \\ 43 \\ 44 \\ 45 \\ 4.5 \end{array}$	$\begin{array}{r} \text { Number } \\ 5! \\ 52 \\ 53 \\ 51 \\ 35 \\ 34 \end{array}$	Number 61 62 63 64 65 60 60	Number 71 72 73 74 75 76 76	Number

[^10]
MANUFACTURERS' SPECIFICATIONS

Overload protection,--Orerload protection of motors alore 5 horsepower at 115 volts, or harger than 10 horsepower at the higher roltuges, shall be provided by a contactor with overlond relay or some sort of circuit breaker which shall respond to exeessive current on one side of direct-current and single-phase aiternating-current circuits, and to excessive current in two sides of poiyphase circuits. Fuses may he used for the protection of smaller motors.
Low (or under) voltage protection,- Where the restarting of a motor on the restoration of vollage naty cmas damage or injury, fov (or umer) voltage protection shall he furnished. For all other cases ether low-voltage release or low (or under) voltage protection shall be furnished.

Taps for autotransformers.-(1) Standard small autotransformer starters (50 horsepower and smaller) shall have taps at approximately 65 per cent and approximately 80 per cent as determined under load conditions.
(2) Standard large autotransformer starters (larger than 50 horeepower) shall huve taps at 00 per cent, 65 per cent, and 80 per cent as determined under load conditions.
(3) For determining load conditions, the arerage stalled-motor current siall be assumed to be six times normal current at full voltage. The load taken from the diferent taps shall be based on the relation of the tap voltage to the normal line voltage, and the load shall be inductire with a power factor of 50 per cent or less.

Marking of autotransformers.-(1) The tans and the coils of autotransformer motor starters (or compensators) shall be marked as indicated in partgraph (2).
(2) The end of the winding which is connected to the Y or delta noint, and which is the start of the winding, shall be marked 0 . The intermediate tans shall be numbered 1, 2, 3, ete., No. I leing the low-voltage tap. The end connection which goes to the line shall le marked " F ."

Marking cond eonnectors for resistor umits.-Where a resistor is made of two or more unils and it is necessary to connect these units together, the use of the letters \mathbf{A} to A, B to B , etc., is recommended.

Nomeorroditide muttrial.-Iron, steel, or other naterial with a suitable protective coating shall be considered noncorrodible material.

Direct-current numun-starting rheostatx.-Standard starting rheostats shall be capable of opening the circuit on the first point with the motor at rest.

Standard $5(\%)$-volt face-plate type direct-current milluan-starting rheostats mat be furnished for a maximum of 600 volts.

Three-pole primary contuctor conncetions.-It is recommended that 3 -pole prluary contactors should be so conneeted that the two overtoad elements are in the leads of the motor terminals $\mathrm{T}-1$ and $\mathrm{T}-2$.

When this contactor is used on a 2 -phase, 3 -wire circuit, L-3 should be made the common power line, and terminals $\mathrm{T}-3$ and T 4 should be connected together at the motor for the common lead to the motor from the terminal $x-3$ on the panel. When used on a 2 -phase, 4 -wire circnit, line $\mathbf{L}-4$ should be run direct to terminal $\mathrm{T}-\star$ at the motor:

Size of lcods for wound secondary motor.-The connecting wires between the secondiry of in wound-secondary motor and its resistor shalt not be less than the percentages of contimuous rating given in the following tabulation:

Duty | Percentage of |
| :---: |
| continnous |
| rating |

if beconds out of four minutes (extra henvy starting)
3 minute out of font mhuniss (light intermittenti--2-
$11 / 4$ minastes out of four minutes (merlitum interturitent)

Cunt fluenis
Sure.-Spe Thble 4 for service elassfficution of resistors.
Speed redurtion.-Speed reduction of motors as aecomplished by control appuratus will be expressed in percentage of full load speed.

Ancloyures for comirollerx.-(1) Inclosures are furnished with and form a
part of industrial control equipment for the purpose of affording protection by constraction. These inclowures are of the following general classes:

Class 1.-A solid inclosure without slot or other openimy.
Class 2-A solid inclosate excent for a slot for the operating handle or onemings for ventilation, or both. Chass 3 . Wire mesth, perroratied sereens or grill work.
Design.
(1) Ah inclosures shall be so designed and assembled that they will withstand handing during shimment and installation.
(2) There must be suffecent space within the inclosure to permit unin(2) There must be sumident space within the inclosure to pernit min-
sumated parts of wire terminals to be sejurated so ats to prevent their coming in contact with eath other. Inclosures must ine such ats to nermit proper wire connections to be made with adequate spacing of the terminals and ends of conductors from adjacent points of the inclosures.
(3) Exposed nonareing eurrent-carrying parts within the inclosures shail have an air space between them and the uninsulated part of the inclosure of at least one-half incil for for volts or less. Inclosures of sizes, material, or form not securing adeguate rigidity must hatre greater spacing.
(4) All inclosures ind parts of inclosures. such as doors, corers, tanks, etc., must be provided with means for firmly secaring them in place. Among the a vailable means are locks, futerlocks, screws, and scals.
(5) Where the walls of the inclosure are not protected by barriers or by a lining of noncombustible insulating material, the arc-rupturing parts of the controller shatl have alr spaces, as ner Thble 5 , between them and the walls of the inclosure, unless it test on eny specific device demonstrates that a smaler space is safe for that particular device.

Material.-(1) Materinl: In the following paragraphs it is assumed that steel (or gray iron for castinis) will be the netal employed. Copper, bronze, nud brass are somptimes used, in which case the requirements given for steel shall be complied with.
(2) Thickness of castings: Cast metal for inclosures, whether of iron or other metal, shall be at least nue-cighth inch thick at every point and should be of greater thickness at tapped holes for conduit, at reinforcing ribs, and at door edges.
(3) Sheet-metral thickness: The minimum thickness required for sheet-metal construction varies with the size of the device. For classes 1 and 2 the inclosures of shect metal shall be of a gage not less than that given in Table 6 .
$(+f)$ All class 3 inclosures shall is provided with a supporting frome.
(5) Wire sereening used for inclosures must conform to the reguirements in Table 7.
(6) Where the opening is over one-half inch, the inclosure must not be less than 4 inches from nay live part.
(7) The requirements of inclosures for floor-mounted controllers for voltages not in excess of 7 tan wolts shall be:
(a) Where the surrounding inclosure is 6 fect or more in height and exposed Ifve parts are not less than 6 thehes below the aprer edge, no covering is required facross the ton of the inclosure.
(Exceptions:) Where crimes or other movable apparatus or operations of a special character may introduce possible hazards from above, overbend inclosures may he reguired.
(b) Whare the sarrounding inclosure is within 6 inches of the floor and exposerl live parts are mot less than 6 inches above the lower edge, no covering will be requircl for the bottom.

Insulation cicarances.-The distances between nonarcing, uninsulated live parts of control equipment to ground or to honarcing uninsulated live parts of opposite polarity shall be not less than the ralues given in Table 8 .

Table bi-Clewrance between are rapturing parts and inctosure:

Horsepower rating	Distanee from conthectsin direction of blow-out direct curreing alternating eurrent		Yertical distance above contracts without blow-out				Horizointal distance from contraels and distance be low contacts, direct cirrent and siternatiag current.	
			Direct current		Aternating current			
	300 voles	600 volts	300 volts	600 volts	300 volts	600 volus	300 volts	600 volts
	Inches	Inches ${ }_{3}$	Inches ${ }_{\text {; }}$	Incines	Inches	${ }^{\text {Inches }} 3$	Inches ${ }^{\text {a }}$	Inches
	4	(i)		(2)	4	(2)	2	2
Above ind	(2)	(1)	(2)	(1)	()	(2)	(1)	(1)

[^11]Table 6.-Mtinimum thicknesk of steel metal inclosures

Maximim volume of inclosture	Muximam area of any surface	Maximum dimension	Withont support[ng frame. Nimimam United States gheat steel sage		With supportling frame, or equivalent reipforcemant, mini${ }_{\text {States }}^{\text {mhect steel }}$ gage	
Cubic fuet		Inches 18182448	$\mathrm{r} u \mathrm{mber}$2018161410	Inch 0.047 - 065 . 078 .132	Number242928181616	Inch 0.025 $+837$.062 .062
	Syuare inches					
	$\begin{aligned} & 1, \ldots \infty 0 \\ & 0 \text { ver } 1,200 \end{aligned}$					

Table 7.-Requirements of tire sereons

Mamimum opetings in SCrex	Minimum wito size American steel wire gage
	$\begin{gathered} \text { Number } \\ 16 \\ 12 \end{gathered}$

Table 8.-Cicamate befacon tuinkuiated nonarcimg parts and to grouthd

Maximum voltago	Minimum clearance distance			
	$\begin{gathered} \text { Through } \\ \text { air } \end{gathered}$	$\underset{\text { pil }}{\text { Through }}$	Across ciean dry surfaces	
			Air	Oil
	fnches ${ }^{\text {, }}$	inchea ${ }^{\text {a }}$		Jnches,
300 (and witr for 600		垁年		
\%,000........	$\underline{6}$	1%		2

${ }^{1}$ Theso clemraten distanes shouk be inereased for dirty or moist conditions.
In Fighres 68, 69, and 70 are indicated the standard convention symbols adopted by the National Electrical Manufacturers' Association.

Fiocre GS.-Stamiard conventlou symbols

		SEQUENEE OF SWITCHES
	HOUCTENCE REACTOR OR CHOKE COL	5HUNT
power TRANSFORMER	Ayto TRANSFORMER	POWER FUSE
BELL	testing terminals ANO LINKS	PUSH BUTTON SPRING RETURH
(w) (B) (G) INDICATING		

Fioure 09.-Standard convention symbols

RESISTOR	USEO ON SWITCHBJARD diaframs	USED ON CONTROLDIAGRAMS	
 tuge type	d C machine	o c machine -Whn- 5Hunt -WMW- series $\cdots(\mathrm{CO}$	
Rheostat	a,c.generator and SYNCHRONOUS MOTOR		
hNIFE SWITCH 0000 MULTIPOLAR DOUBLE THROW z-POLE SINGLE THROW	INOUCTION MOTOR 5QUIRREL CAGE	$3 \not \\|_{\text {a }}$ C. SQUIRREL-CAGE MOTOR	
TRUCK-TYPE SWITCHBOARO CONTACTS	INDUCTION MOTOR WOUND SECONDARY	3 DA.C. SLIP-AING MOTOR	
	SYNCHRONOUS CONVERTER		

Fenters 7 o.-Standard convention symbols
$\left(6+570^{\circ}-31 — 3\right.$

ORGANIZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE WHEN THIS PUBLICATION was LaSt PRINTED

[^0]: decreater demagneetelthe atret.

[^1]:
 reperatos.

[^2]: overlond relays which flmits the amount of eurrent which can la carried without fipening of the cireutt la fuversa propertion to tha time or apylication. This is accomplesked by an oll daghpot, thermostatie strip, or oltar suitable device. As an flustration, one oll-type devte recenty used is rated at 100 per cent tof ceblibrated cutrent) for 30 seconds (without opening eircnit), 150 pare eftut for 7 semonds, 200 per eent fur $: 3$ seconds, anti 300 per cent for $\frac{2}{}$ secends.
 metal disk 'The normat eurrent flowing through thene colls produces a maguetic fietd which tends to turn this nlisk. This turning tomithe is the resnltatit of the normal ;-phase toriun, atm a shate-phase torque whteh acts in the opposite direction. The mormal

 In the opposite divection tripping a contact which opens the litue.

[^3]:

[^4]:

 os,

[^5]:

[^6]: lay, tie.

[^7]: ${ }^{16} A$ masfer switch may be nutomutic, us a foat switela or pressure regulator. It may be mamually operated, is a dium, pusli button, or knife switeh.
 why operating overlond is methit a eurrent not in exeess of six times the rated current for ulterming-curment motors, nor in exepss of four times the rated current for directcurrment motors.

[^8]: ${ }^{13}$ This term Includes polnys heretopore known as "ratlo batance redays," "blased relays." and "percenthge iliftivential retays."
 When usen with n motur having a flywhed, the reiny causes the momentary transfer of storerl contay irom the flywhell to the hoad, but does not limit the curvent peaks if the doad if sustalned for a cobsiderable interval after the relay operates.

[^9]: st The hater clement may be a coil, a resistive conductor, or any heat-producing means responding to the curreat.
 ${ }^{20}$ dmblent tenperature is commonly knowd as "ruom lemperature" in connection with nir-cooled apparafus bet provided with artifialal ventiation.

 17 Sationat Clmetrleal Manufacturers' Association rulns specify that the standard nmbient tempratmo of wference, when the cooling wedium is ath, shati be $40^{\circ} \mathrm{C}$.
 fixed standards, ant ean not, therefore indicate the safe onerating limit under all condithas that masy ocear in service.
 ${ }^{20}$ Wor convendence th applicution startars are froguently rated in horsepower. fo such casey the startor rathor is the horsepower ratine of the hargest motor for wheh the starter is deslgned to br used.

[^10]: Starting ami intermitent-taty resistors ta the classification table are primorily designed for use with motors requirifg an initial torctac corresyondiny to the current value for the ciass of resistor specifed und refairing an averuge (root-ratan-sfuart) accelerating current not in excess of 125 ger cent of the full-foad value.

[^11]: A Nit distances shall be measured from the contact tips or are horns.
 : Bartiers.

