

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

A METHOD OF DETERMINING THE VOLUME AND TONNAGE OF HAYSTACKS

By W. II. Hosmman, ${ }^{1}$ Associate Marketing Specialist Dieision of Hay, Feed, and Sced, Burcau of Agricultural Economics

In cooperation with the Agricultural Experiment Stations of California, Colorado, Idaho, Minnesota, Montana, Nebraska, Nevada, Oregon, South Dakota, and Utah

CONTENTS

Page		F'beg
	Volume of roind stacks	31
1	Studics on the uetermination of volume.	20
4	Studíes of the accuracy of old volume rules for round stacks	$2!$
2	Formulation of new rule for detormining	
3	volume of round stacks.	24
	Determinatlon of eubie feet required fora ton.	28
(j)	Stacks of various kinds sugregated.	28
1	Mothod of determining volume per ton.-	38
7	Cubic feet per toz...	20
\checkmark	Vatiations in donsity	32
11	Yued for additional researc	34
12	Summary.	35

Stack lany sales finjortant but methods in beedrate.

Popular mensurument rules not based on resenrel.
Hoqiew of previous restarels
Cooperativo investigistions on stack meas-
uroments, 1927,2528 , and 1920.
Objectivas.
Scope of wark
I)ata collucted

Problems presented for stady
olume of rectanifalar stacks
Studles on area of cross sections.
Sturdies of eross-scetion areas by old riles.
Formintation of new riles for determining cross-section area

Volume of routnd stack3 30 Stidides on the uetermination of voluma. 20 Studies of the accuracy of old volume rules Formulatio valume of round stacks
Stacts of of eubie feet required for a ton.
Mothod of determinimg volume per ton--
Cubic feet per tor
Nued for additional research
Summary 34
35

STACK HAY SALES IMPORTANT BUT METHODS INACCURATE

Large quantities of hay have been bought and sold in the stack on a tonnage basis for many years. The parties interested in such transactions commonly agree on the quantity of hay in each stack by measuring it and then computing the volume and tonnage according to various rules that have been devised.

This method of marketing hay is followed extensively in the Pacific and Intermountain States and in the surplus-hay-producing areas of the Great Plains States. The cattlemen and sheepmen of these areas, who do not have a sufficient quantity of forage to feed their stock during the winter, often buy their supplies by measurement. Some stockmen do not have any meadow land, but follow a regular

[^0]$$
40580-31-1
$$
practice of driving their flocks and herds into the high mountain valleys or range lands for pasture in the spring and summer, and of driving the stock down again in the fall and wintering them on alfalfa stubble and on hay bought from the valley farmers.

Hay doalers purchase hay by this method in some areas, although this is not a general practice, beanse the dealer realizes that there is considerable variation in individual stacks and that the tonnage bought by measurement may not hold out by weight. Dealers learn also that some farmers put up their hay in a manner that will cause it to weigh out less than the average tonnage provided by the rule in use in that section. Farmers olten discover, too, that if they build large, weather-resisting stacks, the hay may weigh out a greater tomage than that provided by the rule commonly used.

REASONS WHY fiAy is sold by measure

One of the principal reasons why hay is sold by measure is that in many communities no seales are available to weigh the hay. Another reason is that the method of feeding the hay is sometimes such as to make weighing impracticable even though farm scales are avnilable. Often the sheepmen or cattlemen make arrangements with the hay producers is: pastire the meadows during the fall and winter and to feed the hay direct from the stack when snow covers the pasture, or when the pasture becomes so short that hay feeding is necessary. In such feeding operations the hay is cither scattered direct from the stack with a short haul and consequent economy of labor, or feed racks are arranged about the stack so that the hay is not loaded on a wagon or sled. On the large farms and ranches, to load all hay and haul it to and from a wagon scale would of ten add an expense in the feeding operations that would be as great as any gains possible from buying weighed hay instead of measured hay.

In some sections in which the dealers purchase hay by measure the farmers are satisfied with the returns they receive. Where this custom is Collowed the dealer is often the operator of an alfalfa mill, who buys his season's hay supply from the farmers in the fall of the year, and who hauls the hay from the stack to the mill as it is needed. In the sections in which this method of selling hay is practiced, the farmer renlizes that even though the estimate of tonnage determined by measurement is not so accurate as that determined by weight, it is preferable to use this estimate rather than await payment for several months until the hay can be weighed at the mill. Moreover, he runs no risk from damage that may oceur to hay in the stack.

POPULAR MEASUREMENT RULES NOT BASED ON RESEARCH

The most popular measurement rulcs, such as the Frye-Bruhn, Quartermaster, and Outlaw rules, that have been in use for many years, are not based on the results of extensive research. Those who have used these rules have never known much about their accuracy for compating the volume of haystacks. These rules were born of necessity and were the outgrowth of a situation that required some method of determining the volume of haystacks to meet the practical conditions of hay marketing in the important hay and livestock Strtes.

UNITED STATES DEPARTMENT OF AGRICULTURE Washington, D. ©.

CORRECTION

Technical Bulletin 239 of the U. S. Department of Agriculture "A Method of Determining the Volume and Tonnage of Haystacks".

In the preparation of the manuscript for Technical Bulletin No. 239 "A Method of Determining the Volume and Tonnage of Haystacks" an error in the mathematical formulas was introduced and was not noted until the pubIication was printed, The following corrections should be inserted in this publication:

Page 18: The formulas should read

$$
\begin{aligned}
& (0.52 \times \underline{0}-0.44 \times \bar{W}) \frac{W}{W} \\
& (0.52 \times 0-0.46 \times \underline{W}) \\
& \left(0.50 \times \underline{W}-0.55 \times \frac{W}{W}\right.
\end{aligned}
$$

Page 20: In table 3 the formulas in the box headings should read as above.

Page 28: In the fifth paragraph the coefficients of I should be as stated above.

Page 35: In the firth paragraph the coefficient of I should be as stated above.

Page 24: In the middle of the third paragraph, the formula should read
$V=\left(0.04 \times 0-0.012 \times \underset{\sim}{0} C^{2}\right.$
Page 35: The formula in the next-to-last paragraph should read as next above.

REVIEW OF PREYIOUS RESEARCH

Agricultural literature does not contain many references to rules for determining the volume of hrystacks or the number of cubic feet required for a ton that were developed from research. The most important references are given herewith:

Spillman, ${ }^{2}$ in 1905, referred to the rules now known as Outlaw and Frye-Bruhn rules and said that these rules aro not accurate but give results 15 to 30 per cent less than the actual volume. He gave a rule in which height is one of the measurements required; but since this is very difficult to measure, the rule was never used extensively. He stated that it was a common custom to consider 512 cubic feet as a ton for hay that had been stacked only a few days and 350 to 380 cubic feet for hay that had stood two months or more.

The United States Depurtment of Agriculture, during the years 1910 to 1912, curried on some investigations for the purpose of determining the number of cubic feet in rieks or stacks of hay and to determine the number of cubic fect required for a ton. The results of this study were published in 1913. ${ }^{3}$

In 1916 this material was revised, data relative to errors in measurement and rate of settling of hay in the stack were added, and a second publication was issued. ${ }^{2}$ Thise department publications gave the formula $F O W^{\prime} L=$ Volume. In this formula $O=$ over, $W=$ width, $L=$ length, and F some factor varying from 0.25 to 0.37 , depending upon the height and fullness of the stack. For low, wide stacks the factor used was small (0.25); for tall stacks with full sides the factor was large (0.37). The cross-section drawings of nine stacks of different shapes were shown so that the factor to be used could be selected according to the shape of the stack measured.
These department publications also gave a method for determining the volume of round stacks. The method suggested divided the stack into several geometrical figures and then gave the formulas for determining the volume for each of these figures. In the formula the circumference was given instead of the diameter and a factor varying from 0.027 for cone-shaped stacks to 0.053 for dome-shaped stacks was given. When the stack had a distinct base with straight or sloping side walls, that portion was considered as a cylinder or frustum and a special formula was given therefor.

In connection with this study, 92 stacks were measured, and the hay was strbsequently weighed for the purpose of determining the average number of cubic feet per ton. These dats were obtained in the States of Virginia and New York and showed that timothy hay stacked less than 30 days required an average of 590 cubic feet for a ton. Hay stacked more than 30 but less than 60 days required 581 cubic feet per ton, and hay that was stacked more than 74 but less than 155 days required 515 cubic feet per ton. These figures were obtained on timothy and mixtures of timothy and clover and were not intended to be applicable to alfalfa or prairie hays.

[^1]Macpherson ${ }^{5}$ reported a method of calculating the volume of oblong and round hay stacks:

For calculating the contents of oblong or squarc haystacks (Fig. 1) take the length and breadth of the stack in feet and inches half way between the upper part of the stack bed and the eaves, A to B and B to C, an allowance (from 3 inches in trimmed stacks to 8 inches in others) being made in each measurement for the

Finure t.-Measurements taken in computing volume of haystacks. These are the ruessurements used by Arephoren for determining tho vohme of oblong and round stacks.
loose outsides; then take the hejght from the upper part of the stack bed to the cryes, D to E .

For stacks with gable ends take one-third of the perpendieular height of roof E to F .

For stacks with hipped ends take one-fifth of perpendieular height of roof.

FXAMMLES

Contents of stack $=$ length \times brendth \times total average height:-
$\frac{25}{50}$
$\frac{525}{1250}$
$\frac{1250}{6250}$
$\frac{18750}{694.4}$ cub. cub. yd. $=$ contents of stack.

Having a stack fairly well settled, and weight per cubic foot 8.25 Ib , this would give, according to table, 10 cubic yards to the ton. Therefore weight of hay in stack is $694.4 \div 10=69.44$ tons.

To determine the number of cubic feet contained in a round stack with a conical top [fig. 1] the average girth must be measured at AB. The mean or average height is ascertained by taking the perpendicular height from the base of the stack to the eaves CD and adding to it one-third of the perpendicular height from the eaves to top DE.

[^2]Maltiply the average girth, 45 it., by itself:-
225
180
2025
Multiply the reault by
.0795
10125
18225
14175
160.9875 sci. fi.

Multiply then by heigit C to $D=13 \mathrm{ft}$. plus one-third height of D to $\mathrm{E}=3 \mathrm{ft}=$ 16 ft .:

160.9875
16
9659250 1609875 2575.8000

If hay in stack is fairly well settied and weight per cubic foot 8.25 lb ., this would give, according to table, 10 eubic yards to the ton, by which figure divide, as foltows:-

$$
\begin{aligned}
& 27 \lcm{2576} \text { cub. ft. } \\
& 10 \lcm{95.4} \text { cub. yd. } \\
& 9.5 \text { tons. }
\end{aligned}
$$

The weight of hay per cubic yard in the stack depends on the nature of the hay, its age, the size of the stack, and the part of the stack taken. It varies from 112 lb . to 300 lb . per cubic yard. For different conditions of hay and stacks the number of cubic yards to a ton will approximately vary as follows:

Condition of Stack	Oblong or Square Stacks, Cubic Yards	Round Stacks, Cubic Yards
Not well settled	12 [324 cu. ft.]	13 [351 cu. ft.]
Fairly settled.	$\left.10{ }^{1} 270 \mathrm{cu} . \mathrm{ft}.\right\}$	$11[297 \mathrm{cu} . \mathrm{ft}$.
Very compact	[216 cu. ft.]	$9[243 \mathrm{cu} . \mathrm{ft}$.

Second-cut clover hay will require 13 [351 cu. ft.] or 14 [378 cu. ft. $]$ cubic yards to a ton.
The weight may be ascertained very accurately by actually measuring the cubic contents of a truss, and from this calculating the weight of a cubie foot.

McCarroI ${ }^{\text {e }}$ says that the best method to determine the volume of hay stacks is by use of the prismoidal formula and gives illustrations of various-shaped stacks, the measurements that are necessary to determine the volume of these different-shaped stacks, and the constant multiplier that must be used for the different shapes.

He states that the number of tons of hay in a stack will vary with a number of factors: (1) size of stack; (2) age of stack; (3) condition of stack; (4) sort of hay; and (5) quality of hey.

[^3]The following table gives the number of eubie feet of hay of various kinds to fins ton for various periods after completion of stacking, the figures being the results of actual experiments:-

Cubic F'eet of Hay to the Ton

Period after stacking	Oaten		Wheaten		Lucerne
	Sheaf	Loose	Sheaf	Loose	
Immediately on completion of stack.	350	400	400	500	Varies greatly from 400 to 300 ell . ft. to the ton.
One week after	325	375	375	450	
One month after.	300	350	350	400	
Twelve months after	300	325	350	400	

At Buthurst Experiment Farm, wheaten hay averaged 297 cubic feet to the ton, and loose straw 892 cubic feet to the ton. Any figure taken can only be approximate. The figures in the above table will serve as a guide and indicate that little or no settling takes place after the first month.

Rabate, ${ }^{7}$ a French authority on methods of stacking hay and grain, gives rules for determining the volume of hay stacks. He gives rules for determining the volume of cone-shaped stacks, truncated coneshaped stacks, and prismatic stacks. These are the usual mathematical formulas used for determining volume of such figures, except that the diameters are expressed in terms of the circamference because circumference of the stack is easily measured. Rabate also gives the following information relative to the weight of a cubic meter:

The weight of the cubic meter is rather difficult to determine. It varies, not only with the kind of commodity stacked, but also with the duration of the settlement and the height of the stacks. It is greater in the lower layers or on the parts of the stack where the wagons have been unloaded. To determine the exact weight of the cubic meter in a hay or straw stack in distribution, measure the volume of a section of the stack, remove the section and weigh it. Ringelmann calculates the weight of a cubic meter of hay, in the case of sheaves pressed into stacks, as from 70 to 80 kilograms [457 to 400 cubic feet per ton]. Lefour and Wagner make it 90 to 100 kilograms [356 to 320 cubic feet per ton] in the case of hay in large stacks, firmly pressed dows.

COOPERATIVE INVESTIGATIONS ON STACK MEASUREMENTS, 1927, 1928, AND 1929

OBJECTIVES

Farmers and stockmen for many years bave called the attention of the United States Department of Agriculture to the importance of haystack sales by measurement, and to the fact that no accurate rule, which could be easily applied, for determining the yolume of stacks has ever been developed. The many letters on this subject which the department receives indicate that it is a problem of wide spread importance in the important hay-producing States. In 1927, and at the instigation of one of the western alfalfa-producing States, a project was organized in the Bureau of Agricultural Economics to investigate

[^4]the problem and to determine, if possible, whe ther more nccurate rules could be formulated timen those heretofore developed.

A second purpose of these investigations was to check the rules in use at the present time for determining volume of hay stacks. As these rules are not based on the results of research their accuracy is doubted. If the investigational work should show such rules to be inaccurate the necessity for new rules would be apparent; or if one or more of these should be found accurate, their use could then be recommended.

The third purpose of these investigations was to determine the number of cubie feet recuired for a ton for different kinds of hay. Iittle work on this subject had ever been done. The work of the Department of Agriculture in 1910 to 1912 provided the only data available, and that give information only for timothy and timothy and clover mixed hays on relatively small stacks. No data on the number of cubic feet of alfalfa or prairie hays required for a ton were available except figures used by the farmers; these were not the result of careful mensurements and weights. It is in the sections in which these two hays are grown most generally that selling by measure is a common practice.

SCOPE OF WORK

The investigations were organized in cooperation with a number of the important hay States in which the sale of surplus hay by measure is a frequent practice. In many of these States the surplus hay can not be shipped out of the State either because of alfalfa-weevil quarantines or because high freight rates prevent marketing in the eastern part of the United States.

Data were obtained on stacks of alfalfa, timothy, timothy mixed, wild or prairie grass, and grain hays. The timothy mixed consisted of mixtures of timothy and clover, timothy and alfalfa, and timothy and wild or prairie grasses. In all cases timothy made up 50 per cent or nore of the mixture. The wild or prairie hay consisted mainly of upland grasses, although a few stacks were mixtures of upland and cultivated grasses such as timothy and redtop. Because of the similar texture of these various grasses no attempt was made to segregate such mixtures into separate groups when the wild grasses made up over 50 per cent of the hay.
Most of the stacks were measured during the fall of 1927 and 1928, but in Colorado measurements and weights were obtained on a number of stacks cach year from 1923 to 1928, and in Oregon data were obtained on stacks from 1919 to 1928.
A total of 1,932 rectangular stacks or ricks were measured. Many of these were measured from two to five times at approximately 30day intervals to determine shrinkage while the hay remained in the stack. Six hundred and ninety-five round stacks were measured. All the stacks measured in Nebraska were round and a few round stacks were measured in Minnesota and Nevada. Few of the round stacks were measured more than once. A few of the field records had to be climinated because of obvious errors, but 1,585 cross-section drawings of the ends of rectangluar siacks and 695 drawings of the round stacks were found to be free of errors and were used. Figure 2 shows the geographic areas in which the measurements were obtained and the number of stacks measured in each aren.

Weights were obtained on 1,758 stacks of hay, of which 1,150 were rectangular and 608 were round. Many of these stacks were measured from two to five times so that 2,659 cases were used in the determination of the number of cubic feet per ton.

DATA CODLECTED

The data collected consisted not only of the various dimensions of the stack and the weight of hay at the time it was sold or fed, but also information about the kind of hay, cutting, method of stacking, maturity of hay when cut, texture, amount of rainfall from time of

Figure 2 --Ot the $2,62 \pi$ stacks mensured, 523 were located in Califormis, 94 in Colorado, 3 in Idaho, 365 in Minnesota, $521 \ln$ MIontana. O7l in Nebraska, 30 in Nevada, 159 in Oregon, 32 in Soutí
Dakota, and 220 in Utah
stacking to date of measurement, and any other obtainable facts that might be of value in tabulating the data.

DATA SHEETS

A uniform data sheet (fig. 3) was prepared by the department for the use of the field agents. On the reverse side of each sheet (fig. 4), a cross-section diagram was printed.

The cooperators were instructed to fill out a data sheet for each stack measured. The several dimensions for rectangular stacks were defined as follows:

Width.-The width of the stack is the distance between the lines at which the two sides meet the base. This dimension should be measured at the ground. It is a good plan to measure both ends of the stack and take an average of the two measurements. Width measurements should not follow the bows or contours of stack ends but along a siraight line between two points, each point being where the side line of the stack meets the ground. In ease the stack varies in width from point to point it is necessary to make allowance for such variations in determining the width, the allowance being a matter of judgment.

Length.-If the ends of the stack are straight up and down, meastrement of the length of the stack is a simple matter. If the ends are somewhat sloping, as they frequently are, especislly near the top of the stack, it is necessary to choose a point such that if the hay below it were cut off and used to fill in above, this haty would make the ends straight up and down. In most cases this point should be about one-third of the distance from the bottom to the top of the stack.

Fitutue 3 .- Copy of dinta sheet
Height.--Abont the best way to measure the height (iig. 5) of a stack is to stand a rod straight up as close to the end of the stack as convenient. Then stand at a ristance of 15 to 20 feet from the stack and observe the point on the rod horizontally, even with the top of the stack. Olsserving the height of the stack from the side rather than directly back of the measuring rod will give the most ateurate measurements. A rod with the feet and half feet marked so as to be ensily seen should be provided for this work.

$$
40580-31-2
$$

Over.- The over of a stack is the distance from the ground on one side over the stack to the ground on the other side. If the stack is wider some distance above than at its baso, care should be used to measure the over from the ground at the base of the stack rather than at a point directly under the widest part of the stack. In the case of long stacks where there is a possibility of variation in the over at various points in the stack, a number of over measurements should be made and recorded in the spaces provided on the data sheet.

Height to bulge. -The height to bulge is the distance from the ground to the widest portion of the stack. This measurement should be a perpendicular distance from the point of the bulge to the ground. If the heiglat of the bulge varies several measurements should be made.

For round stacks the total height, height to the bulge, the circumference at the base, and the circumference at the bulge were the measurements taken. These mensurements were defined as follows:

Ifight.-The height of the stack may be oistained by using the same methods as are used in determining the height of square or oblong stacks.

Height to bulge.-Height to bulge may be determined by using the same methods as for square or oblong stacks.

Circumference al base.-Cireumference at lase is the distance around the stack at the ground level. This measurement ean be made with a long tape, care being taken to see that the tape is drawn in close to the stack at all points.

Circumfertace at bulfe.-Circumference at bulge is the circumference at the widest part of the stack; careshould be taken in all cases to prevent the tape from sagging, as this will result in an inacurate measurement.

Over. The over of a round stack is the distance from the ground on one side over the peak of the stack to the ground on the other side. Two overs at righi angles to each other should be taken.

A cross-section drawing of each stack measured was made on the reverse side of the data sheet. This drawing was made to scale and was used as a check on the measurements taken, and for the purpose of determining the actual cross-section area of rectangular stacks and the actual volume of the round stacks. In other words, these crosssection drawings were the bases upon which was determined the accuracy of the various rules for computing the volume of both rectangular and round stacks.

Several methods were followed in collecting the field data. The project was organized on the basis that the States should collect the field data under the general direction of the United States Department of Agriculture and that the department should tabulate and sammarize the data. In most of the States the dnta were collected by a State employee. These employees made the necessary contacts with the farmers, mensured the hay, and obtained the weights or made arrangements for obtaining them. In several States the data were collected by reliable farmers or

Figirer 5.-Memsuring the height of stacks. A rod marked in feet ant hall feet is stood up at one end of the stack. From a diatanes of 15 to 20 feet from the stack, the noint on the rod horizontally even with the toln of the stack is rend. This gives the helght of the stack hay dealers under the general direction of State or Federal men. These cooperators were paid on the basis of the number of completed records turned in.

difficulties encountered in obtaining weights of individual gtacks

Considerable difficulty was encountered in obtaining the weights of hay in the stacks. In 1928 there was a very large hay crop. Much hay that was harvested and stacked with the idea of shipping it to market later in the season was never sold; or it was sold locally, and the weights were not obtained. Throughout the entire period of the investigations many stacks were measured on farms the owners of which intended to bale the hay, weigh it, and ship it to market, but the hay was subsequently sold in the stack by measurement, this making it impossible to obtain weight data.

PIROHLEAIS fRESENTED FOR STLDDY

Three distinct problems were presented for consideration when this study was begun: (1) Volume studies for reetangular stacks or ricks,
(2) volume studies for round stacks, and (3) studies covering the number of cubic feet of various kinds of hay required for a ton.

VOLUME OF RECTANGULAR STACKS

STUDIES ON AREA OF CROSS GECTIONS

Some method of determining the actual volume of the varions hay stacks measured had to be devised in order to decide whether the rules for determining volume at the present time are aecurate. It was decided that the most practicable method for checking the old rules was to use the area of the cross-section drawing of each stack as the basis for comparison. The drawing of the cross section of the stack might not be absolutely accurate, but it would give the general contour of the stack.

This outline drawing obtained in the field was checked by the field agent at the time the drawing was made by measuring the over of the outline drawing with a road or map tracer. If the result obtained by this instrument did not agree with the over obtained by the tape, the drawing was corrected or the fiold measurements were checked. The fiold men found the road tracer of considerable aid in the field work since it tended to check both the outline drawings and the field measurements.

All outline drawings made by the field agents were measured again by the author with the road tracer, and in those cases in which the over obtained by the road tracer did not agree with the actual over given on the data shect, a correction in the cross-section area was made. The formula for making this correction was $A=\frac{O^{2}}{O_{1}^{2}} A_{1}$. (A equals correct area of cross section; A_{1} equals the area of the outline drawing; O equals the actual over given on the data sheet; and O_{1} oquals the over of the outline drawing.). This formula was assumed to be sufficiently correct for this work since the outline drawing and the monsurments of over and width might also contain an experimontal error that could not be cheeked.

Another method for correcting the area of the cross section was followed by H. E. Murdock, of the Montana Agricultural Experiment Station. Ho redrew the outline drawing of each stack until the over of the outline drawing was equal to the actual over given on the data sheet. When he made this new drawing he increased the height of the drawing but retuined the same general outline as that made in the original drawing. This method gave results similar to those obtnined by the formula given above.

The actual area of the outline drawing of each individual stack was measured by a planimeter. The planimeter was so calibrated that 1 square inch was recorded on the planimeter scale as 0.1 . Since 1 square inch on the data sheet was equal to 25 square feet on the actual stack, 1 square foot of the actual area of the stack represented 0.004 on the planimeter scale. Since the scale could be read in thousandths, and since anch cross section was measured twice and required to check within 0.004, the actual area of the cross section was measured to within 1 square foot of its area. This measured area was then corrected according to the formula given in the preceding paragraph, and the corrected area was used as the basis of all future calculations.

studies of cross-section argeas by old rules

The two rules most commonly used at present for determining volume of haystacks are the Frye-Bruhn rule, or rule of two, and the Quartermaster rule. Several others are used occasionally; The Outlaw rule, the FOWL rule, and the mathematical or triangle rule. A description and a discussion of each of these rules are given in the paragraphs next succeeding. Table 1 shows the accuracy of the various methods for determining the cross-section area of a stack by some of the rules mentioned. The percentage range of accuracy by each of the methods is very wide. The accuracy of these rule ${ }^{3}$ was obtained by using the actual cross-section area of the stack as 100 , and the results obtained by the various rules were expressed as percentages of this base. In all these rules W is a symbol for width, O for over, H for height, L for length, and F for a variable factor, depending on the size and shape of the stack.

Table 1.-Comparative accuracy of rules now in use: Number of stacks and per:centage of total folling into certain percentage ranges for each of four rules as obtained by computing the arco of the cross section by each rule and comparing such area with the actual cross-section area

${ }^{1}$ See toxt for derivation or SB.

The Frye-Brubn Rule

The Frye-Bruhn rule, or rule of two, $\frac{(O-W) W}{2} L$, is mentioned
several times in some of the older literature on the subject of measuring hay in the stack. Spillman ${ }^{8}$ says that this is a common rule for determining the volume of a haystack. This rule is in common use throughout all of the Western States where hay in rectangular stacks is sold by measure. The theory upon which this rule was developed was that the cross section of the stack could be reduced to a rectangle by subtracting the width from the over and then dividing the result by two to obtain the average height of the stack. The area of the

[^5]cross section is then obtained by multiplying the width by this average height. This rule is on the statute books of at least two States (Montana and South Dakota) as the method for determining the volume of rectangular stacks, unless some other method of determining volume has been agreed upon previously.

The check made of the Frye-Bruhn rule shows that 96 per cent of the cases ranged between 80 and 95 per cent (Table 1) of the actual area, but that in a few cases this rule gave less than 75 per cent of the actual area, and in only two cases did it give an area equal to or greater than the actual area of the cross section. On an average this rule gave only 80.06 per cent (Table 2) of the actual area, therefore it gave a result that was about 14 per cent less than the actual area.

Tahles 2.-Average percentige and anerage deviation for the Frye-Bruhn, Ouartermaster, Outhas, and Triangle rulen as compared with the actual area

THE QUARTERAASTER HULE
The Quartermaster rule, $\left(\frac{O+1}{4}\right)^{2} L$, known in some localities as the Govermment rule, was probably developed by the Quartermaster Department of the United States Army and was used by that department for deternining the volume of haystacks or ricks in the purchase of forage for Army posts on the frontier many years ago before the department was able to purchase forage supplies by weight. This rule is based on the theory that the area of the cross section of the stack is equal to the area of the cross section of a square with sides equal to one-fourth of the perimeter of the stack (over.plus width divided by 4).

The check made of the Quartermaster rule shows that 83 per cent of the cases ranged between 90 and 105 per cent (Table 1) of the actual area. The fact that for some types of stacks this rule gave less than 85 per cent of the actual area and for others gave over 125 per cent of the actual area, indicates that this rule gives very inaccurate results in some cases. On an average the Quartermaster rule gave 96.19 per cent (Table 2) of the actual area of the cross section of the stack.

> 'LEL U U'TLAW JIULE

The Outlaw rule, $\frac{O W}{4} L$, (also called the New Mexico rule) has been used for many years. At one time it was on the statutes of the

State of New Mexico as the legal method to be used for determining the volume of rectangular haystacks. This rule is based on the theory that the aren of the cross section of the stack is equal to one-half the area of the cross section of a triangle which has a base equal to the width of the stack and an altitude equal to half the over of the stack.

The check made on the Outlaw rule shows that 79 per cent of the cases ranged between 75 and 95 per cent (Table 1) of the actual area. The average percentage of accuracy for this rule was 84.17 per cent. (Tuble 2.) This rule is the most inaccurate of all the rules in use at present and should never be usfod for determining the voln ne of a haystack.

> THE FOWS ICU1,E

The "Fowl" rule, FOWL, was developed by the United States Department of Agriculture and is a modification of the Outliaw rule. Instend of using a constant factor of 0.25 , as is done in the case of the Outhaw rule, a virinble factor ranging from 0.25 to 0.37 was used. The factor used depended upon the size and fullness of the stack. As an aid in determining which factor to use, cross sections of nine stacks of different shapes were illustrated, and the factor for each shape was given.

The accuracy of the FOWl mule could not be determined. An attempt was made to divide the stacks into the nine types illustrated in Circular 67, but may stacks were found that did not conform to any of these nine types; others that closely resembled some of the types were of such shape that it was impossible to decide which factor should be used. For this reason the accuracy on a percentage basis was not calculated. The value of the factor F was calculated for each stack and found to vary from 0.19 to 0.38 . The fact that it was very difficult to chassify the outline drawings according to the nine shapes given in Cireular 67 indicated that it would be anwise to recommend this method for use in determining the volume of hay starks.

Several other rules tased on mathematical formulas bave been suggested frome time to time, but they have always been so complicated that they were impracticable for use. Such formulas require the use of a height measurement which is extremely difficult to make. One of these formulas, the Triangle rule ($1 / 2 T+S B$) L, was studied to find what results were given by rules in which height was neecssary. By this rule the cross section area of the stack is divided into three triangles, and the areas of these are determined. The area of one triangle is obtained by the formula, $\%$ WTI. The other two triangles are equal and the area is obtained by the formula S / B. In this formula $S=\sqrt{ }\left(1 / 2 h^{2}\right)^{2}+I^{2}$ and $\left.B=\sqrt{(1 / 4} 0\right)^{2}-(1 / 2 S)^{2}$.

The check made of the Triangle rule shows that 79 per cent of the cases ranged between 90 and 100 per cent (Table 1) of the actual area. The average percentage of accuracy was 95.96 per cent (Table 2). This rule is the most accurate of any of the four rules stadied but can not be recommended for popular use because it is very complicated to calealate and because a height measurement is necessary, which is difficult to ohtain with accuracy.

[^6]
FORMELATION OF NEW RULES FOR DETERMINING CROSS-SECTION AREA

Consideration was given to a method for accurately determining the area of the cross section of haystacks that would use only the two most easily obtained measurements, namely, width and over. An attempt was made, therefore, to find an accurate expression of correlation between the area of the cross section and these two measurements. In the belief that there should be some definite correlation between these three known factors, several differcat correlations were formulated and studied. A correlation between the area and the over divided by the width was tried. This study showed a fairly definite average correlation, but several extremes of variation appeared, which indicated that there was no dependable degree of correlation. A second study was made in which the area divided by the width, was plotted against the over divided by the width. This correlation was based upon the same theory as the Outlaw rule, and it was thought that probably factors could be determined which would give a higher degree of accuracy than that obtained by the constant factor 0.25 . This plan gave a farly definite averuge correlation, but, as in the first case, wide extremes of variation appeared.

A third study was made in which the area divided by the square of the width was plotted against the over divided by the width, thus making both linear values. This correlation was based upon the same theory as the Frye-Brubn rule, and it was believed that values could be determined to take the place of the divisor 2 used in this rule that would give nore accurate results than the old rule. This method gave a very definite correlation with no wide variations, and an preliminary regression line was calculated on the data from each State.

The equations for these regression lines for each State were then computed, using the formula:

$$
\begin{gathered}
y=n a+b x \\
x y=a x+b x^{2}
\end{gathered}
$$

The values of a and b in the equation for the various States were as follows:

The values of a and b given above are similar for the States of Montana, Minnesota, and South Dakota, where the low, round-topped stacks (fig. 6) are the general type. The values of a and b are similar for the States of Nevada, Oregon, and Utah where the high, roundtopped stacks (fig. 7) are the usual type built. The values of a and b for Idaho are only tentative because only three stacks were used in determining the equation of the regression line.

The values of a and b for the California stacks seemed to be distinctly different from those of other States. Most of the California stacks were square and flat-topped. When the formala obtained
from the data from a given State was applied to determine the crosssection area of the stacks measured in that State, some percentage

Fioure 6.-Low, round-topped stack of mifalfa bay
variations of from 10 to 15 per cent were found. This indicated that the formula for that State did not give the correct value of the cross-

FigUR2 7, - High, round-topped stack of the type buit in tho valleys of Utab, Nievada, and Idaho
section area for certain stacks in The State. Upon examining the cross-section drawings of these stacks it was observed that those that
had a large percentage of error were of different shape from those that made up the bulk of the cases in that State.

In some cases there was a considerable difference between the values for a and b, as, for instance, in California and Montana, whereas for Montana and Minnesota there was no difference. Upon examining the cross-section drawings for a number of these stacks, it was decided to separate the stacks into three groups (fig. 8), as follows: (1) Low, round-topped stacks of the type built commonly in Montana and Minnesota, or throughout the area where the overshot stacker is the usual type of stacker used, and which usually contain less than 10 tons of hay and often not over 5 tons; (2) high, round-topped stacks, with high side walls and well-rounded tops to shed water, of the type built in Utah, Nevada, Idaho, and Oregon, which usually contain 15 tons or more, and may in some cases contain 100 tons; and (3) square, flat-topped stacks, of the type built in certain parts of California that are not built primarily to shed water and are limited, therefore, to areas of very low rainfall.

Scatter diagrams (fig 9) were then made in which each dot represented the relation between the ratio of over to width and the ratio

of area of cross section to the square of the width for each individual stack. It is evident from these dingrams that a very high degree of correlation exists between these two factors when the stacks are separated into three groups according to their general shape. These diagrams also show the regression lines. New values for a and b were then calculated using the same equation as given above and the following formulas for determining the cross-section areas were developed for the three different shapes of stacks:

Low, round-topped stacks of the Minnesota and Montana type,

$$
(0.52 \times O)-(0.44 \times W) W
$$

High, round-topped stacks of the Utah and Nevada type,

$$
(0.52 \times 0)-(0.46 \times W) W
$$

Square, flat-topped stacks of the Califormia type,

$$
(.056 \times 0)-(0.55 \times W) W
$$

The accursey of these formulas is given in Table 3. This table shows that by these formulas a cross-section area may be computed

RELATION BETWEEN THE RATIO OF"OVER"TOWWIOTH"AND THE RATIO"AREA OF THE CROSS-SEGTIONTO TAE 3 QUARE OF THE WIOTN"FOA THAEE TYPES OF STACKS

Frounz 9.-This chart inclicates a vary hali degrea of correlation hetweon theso two raliog. Trend ling were atted and mathomation formulas for determining the volume of osch of the threo types of stacks were doveloped
that is within 5 per cent of the actual cross-section area in practically all cases. In all three types of stacks the formulas gave results that were within 2 per cent of the actual cross-section area 63 to 67 times out of each hundred. This is a much higher accuracy than is given by any of the rules in use at present for determining the volume, as shown by Table 1. The average percentage and average deviation for these formulas are given also in Table 4. This table shows that all three formulas give an average percentage of a little over 100 per cent, and that the average deviation is less than 2 per cent for all three formulas.

Table 3.-Accuracy of the factor method: Number of stacks and percentage of total falling into certain percentage ranges for each of the three types of stacks. The cross-section area of each slack was computed by the proper formula and compared with the actual cross-section area

Table 4.-Average percentage and average deviation for the formulas for rectangular stacks as compared with the aclual area

Trpe of stack	A verage percentage	A verage deviation
Low, round-topped stacks	Per cent 100.03	Per cent
Higb, round-topped stecks	100.05	± 1.10
Square, lat-topped stacks.	100.02	± 1.62

These tables and charts show that the factor formulas constitute much more accurate methods of determining the volume of rectangular stacks than do any of the rules in use at present and are as easy to use.

VOLUME OF ROUND STACKS

STUDIES ON THE DETERMINATION OF VOLUME

To determine the accuracy of the various methods for measuring the volume of round stacks (figs. 10 and 11), some method of calculating the actual volume of the round stacks had to be worked out. Outline drawings of each round stack measured were made on the
reverse side of the data sheet. These drawings were checked by using the road tracer to measure the over of the outline drawing and thereby to ascertain whether the over of the drawing checked with the actual over of the stack measured in the field.

These measurements were checked again by the author when the data sheets were received for tabulation, and a correction factor was determined for each stack if the over of the outline drawing was not the same as the over obtained in the field. This correction factor was obtained by dividing the cube of the actual over by the cube of the over of the outline drawing.

The volume of a stack having a central-vertical-section figure similar to the drawing on the reverse side of the data sheet for that stack was then multiplied by this correction factor, and the result was used as the actual volume of the round stack. The correction formula may be represented as follows: $V=\frac{O^{3}}{O_{1}^{3}} V_{4}$. In this formula V equals actual volume of the stack; V_{1} equals the volume of a figure having a central vertical section similar to the outline drawing; O equals the over as measured in the field; and O_{1} the over of the outline drawing.

Determination of the volume of round stacks presented some difficult problems, and the method that was used in this study may not give exact results, but it is the best that could be devised from the data that were obtained in the field. The field agents made outline drawings of each stack measured. These

Fitare 10.-Small round stack of the tyje buit in Nebrosku ank Alimacsota outiire drawings showed the general contour and shape of the stack and were assumed to represent a vertical section taken through the center of the stack. The diameters of these outhine drawings were measured at 1 -foot intervals, and the volume of each of these frustums was determined. The sum of the volumes of the frustums gave the volume of a figure with a vertical section similar to the outline drawing. If the stack was peaked, the top part was considered as a cone instead of a frustum. The actual volume of the stack was then obtained by using the correction factor discussed above for that particular stack. This corrected volume was used as the basis for all future calculations.

studies of the accuracy of old volume rules for round stacks

The rules that have been used most commonly for determining the volume of round stacks are the Quartermaster round-stack rule and the so-called Prismoidal rule. These two rules are described and discussed in the two paragraphs next succeeding. In the formulas presented C is used as a symbol for circumference, O for over, H for height of frustum, and M_{1} lor height of part above frustum.

The Quartermaster round-stack rule, $\binom{C}{4}^{2} \times\binom{ O-\frac{C}{4}}{2}$, is the most common rule in use at present for determining the volume of round stacks. This rule, also known as the Government rule, has been ased in Nebraska for many years. The rule is based on the theory that the volume of "round stack is equal to the volume of a square stack one side of which is equal to one-fourth of the circumference of

Figitat ll. - Large romid stack of the Neva ta type
the round stack, and whose average height is equal to one-half of the difierence betwen the over and one-fourth of the circumference of the round stack.

The volume of each individual stack measured in the field wat calculated by this rule. The accuracy of the rule was then ascertained by using as a base the actual volume obtained by dividing the stack into a series of frustums and calculating an accuracy percentage for each stack. Table 5 shows that 88 per cent of the cases fell between the 85 and 105 per cent range of accuracy, and Table 6 shows that this rule on the average gives 95.25 per cent of the actual volume. This table also gives the average deviation for this rule.

Table 5.-Comparalive accuracy of rules for determining volume of round stack: Number of stacks and percentage of total falling into certain percentage ranges for each of three rules as oblained by delormining the volume by each rule and comparing such volume with the achual volume

'Pable 6.-Aterage perceniage and average devintion for the Quartermaster and Prismoital rules and the Chart method for round stacks as compared with the achat volame

PRISMOIDAL IEULE
The rule given in Circular 67^{16} which is referred to throughout this publication as the Prismoidal rule was used also to determine the volume of each individual stack. The stacks were segregated into the several types necessary to determine the volume according to the diagram of shapes given in Circular 67, that is, cone shaped, halfsphere shaped, a shape intemediate between the cone and halfsphere shape, and each of these three shapes superimposed on a cylinder or a frustum in those cases in which the stack had a lower part with straight side walls, or the side walle had a distinct bulge. Some difficulty was encountered in segregating the stacks into these types because there were all gradations from the cone to the half sphere.

[^7]The accuracy of this rule was calculated in the same wey as for The Quartermaster rule. Table 5 shows that this rule gives a very wide range of accuracy, varying from less than 50 per cent to as high as 175 per cent of the actual volume, and only 35 per cent of the cases fell within 10 per cent of the actual volume. Table 6 shows that on the average this rule gives 91.55 per cent of the actual volume. This t table also gives the average deviation for this rule.

FOHMULATION OF NEW RULE FOR DETERMANING YOLUME OF ROUND GTACKS -

Much thought was given to the development of a rule or formula that would give satisfactory results for determining the volume of round stacks. It way recognized that farmers can obtain only two measurements with any degree of accuracy, namely, circumference at the base of the stack and over, and that a formula should be based, therefore, on these two measurements. In these investigations the over was taken twice, usually at right angles to each other, and the average was used as the actual over. The height of each stack was measured for this study but as considerable difficulty was encountered, it was concluded that height was not a practical measurement for use in determining volume.

A number of eorrelations were studied. The principal ones were: (1) Correlation behween the volume divided by circumference and over multiplied by circumference, (2) correlation between the volume divided by circumference squared and the over, and (3) correlation between the volume divided by circumference cubed and over divided by circumference. The last correlation gave results that were practically as good as any method that was tried. The formula devcloped from this correlation is: $\mathrm{F}=(0.04 \times 0)-(0.012 \times C) C^{2}$. V arions attempts were made to separate the stacks into groups that would give correlations nore accurate than the average one, bat none gave better results. This rule is based on the same theory as the Qumrtermaster rule, but the factors have been corrected so that the average percentage will be 100 per cent rather than 96 per cent. A logatithuic method was tricd using the equation $\log V=\log a+b$ $\log C+e \log O$, in which V is volume, a, b, and e are undetermined constants, O the circumference, and O the over. The above equation is merely the logarithmic form of the equation $V=A C^{\circ} O^{\circ}$. This method did not give results that could be used.

It was finally deeided to try a graphic method for determining the volume. In this method the stacks were divided into groups according to given circumferences; that is, all stacks with 60 feet circunference were put together, those with 61 feet circumfercnce, etc. The volume was then plotted against theovers for agiven circumference, and preliminaty trend lines were drawn. Readings for volume by circumference were then made on these trend lines and recorded for given overs. The volume was then plotted against the circumference for the individual over readings, and the final trend lines were drawn. From the last chart Table 7 was made. On this table the vertical axis was marked with the circumference and the horizontal axis with the over, the volume for a given circumference and ovor was read on the trend chart and recorded on the table where these two axes crossed. This table was made to cover stacks with circumferences ranging from 45 to 98 feet, and overs ranging from 25 to 50 feet.

The accuracy of this method was then calculated in the same way as for the Quartermaster unle; allhough it gives some variation, the results were more accurate than any of the other methods. Ninetytwo per cent of the cases fell within 10 per cent of the actual volume, as shown by Table 5. Table 6 shows that on the average this method gives 100.03 per cent of the sctual volume. This table also gives the average deviation.

1 The volume of stacks that have circumferences or overs greater or less than those given in tine table can be determined by using the formula, $V=(0.04 \times O)-(0.012 \times C) C{ }^{2}$.
2 Volumes given to the nearest 5 .

DETERMINATION OF CUBIC FEET REQUIRED FOR A TON

STACKS OF VARIOUS KINDS SEGREGATED

The stacks for which weights were obtained were divided into a number of groups for the purpose of tabulating the number of cubic feet per ton. First they were segregated as to the kind of hay, such as alfalfa, timothy, and prairie. In those cases in which the hay was a mixture of several kinds it was grouped according to the kind of hay that predominated in the mixture. The stacks were divided into the following groups: Alfalfs, prairic, timothy and timothy mixtures, grass hay, and tame oat hay.

The timothy mixtures were mixtures of timothy and clover and timothy and wild grasses. The last-named mixtures were common in certnin areas of Nebraska, Montana, and Minnesota where cultivated grasses, such as timothy and redtop, are sown in the native meadows to increase the yield and quality of the hay harvested. These cultivated grasse: thrive only in those parts of the native meadows where there is plen! y of moisture.

The grass liay was of two kinds: That produced in California which consisted mainly of wild oats, cheat, and bur clover; and that produced in South Dakota which was chiefly awnless bronnegrass.

The stacks were divided also into groups according to the number of days from the time of stateking to the time of measuring. Many of the stacks were miasured more than once, and therefore were placed in several groups according to the length of time in the stack. At first the stacks were divided into 5 -day intervals, but these were later grouped into the following groups: 30 days and less, 35 to 60 days, 65 to 90 days, 95 to 120 days, etc.

METHOD OF DETEFMINING VOLUME PERTON

For the purpose of determining the number of cubic feet per ton the volume of each stack was calculated by the formula applicable. For the low, round-topped stacks the rule $(0.52 \times O)-(0.44 \times W) W L$ was used; for the high, round-topped stacks the rule ($0.52 \times O$) $(0.46 \times W) W L$ was used; for the square, fat-topped stacks the rule $(0.56 \times O)-(0.55 \times W) W L$ was used; and for the round stacks the volume was obtained from Table 7, which gives the volume for the various circumferences and overs.

The volume, as determined by these methods, was used in preference to the uctual volume of rectangular stacks, as obtained by measuring the area of the cross section and multiplying it by the length of the stack, or of the round stacks, as obtained by calculating the volume of the 1-foot frustums, because there weto many stacks for which cross-section drawings were not available upon which to base the actual volume, and thus the volume had to be figured from measurements only. The stacks that were measured at the Eastern Oregon Branch Experiment Station prior to 1927, and those measured at the Colorado Agricultural College had to be computed in this manner. Had the actual volune been used, a laxge group of valuable data cond not have been used, or if used, would not be entirely comparable with the other data. Moreover, it seemed preferable to use the formulas for determining volume because the number of cubic feet per ton would then be based on the same method by which the volume would pe determined in a practical application of tixe results of this study.

'UAMC F'RET JFR TON

The volume of each stack was then divided by the number of tons by weight to determine the cubic feet required for a ton of hay. These computations gave a wide range of results, indicating that there was a large varintion in the density of the hay in the stacks. Table 8 shows the average number of cubic feet required for a ton of the various kinds of hay and the maximum and minimum number of cubic feet found in each group.

TAnıs 8.-Number of cubic fect per ton of principal kinds of hay in stack standing various periods

ALFASEA

Pertod elapsed prior to measurement, days	Measure-mentstaken	Volume ger totiat time of measurement		
	Number	Cubic feet	Cubic fet	Cubic fet
30 and less.	294	483	1,102	224
35 is 150.	419	$4{ }^{\text {S }}$	1, 185	234
15.5 to 00.	276	489	1,029	107
95 to 120.	237	472	948	228
125 to 150	159	471	879	258
155 to 180	91	470	853	947
185 to 210	18	+31	677	292
215 to 210	B	481	603	42 V
245 to 270	\because	061	683	580
275 to 300	2	563	133	[08
395 to 120.	9	410	497	$1{ }^{19}$
425 to 150.	4	513	631	418
ts5 to 480 .	1	450	450	150
185 to 510	1	538	385	538

TLMOTHY AND TLIOTIIY MIXED

WILD MAY

30 and less.	92	830	1,554	332
3) to 80.	195	574	1,205	:
05 to 90.	101	033	1,153	$32 i$
95 to 120.	130	468	1,109	277
120 to 150.	110		592	2379
155 to 180.	${ }_{3} 9$	309	515	302
18.5 to 210.	31	410	519	346
-ls to 240.	19	398	488	318
305 to 4 20.	0	617	798	534

Table 9 shows by States the nverage number of cubic feet required for a ton of the various kinds of hay, as well as the maximum and minimum number of cubic feet. These figures indicate that differences in type of stack, method of stacking, and size of stack do not cause significant differences in the number of cubic feet required for. a ton.

Tabs．e：9．－Number of eqbir feet fer lon for hifrrent kints of hay in stack standing tarious pariads，by Nates

A					
	Meature luents taker	Volume per ton at time of measurement			
		A veratso	Maximum	Minimunı	
Catiornlas	Number	Crubie feet	Cubic feet	cubic feet	
\％ithay hes	178.	4		${ }^{224}$	
851600	${ }_{23}$	392	5	20，	
todermete：．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．					
mamal less	16	5	919		
3 10， 0	3	62	752	29	
${ }^{85} 51085$	品：	433	654	327	
19540320	4	＋24	＋148	－	
		48	$4{ }^{4}$	$3 \times$	
Itame：					
30 ntu hess	3	1089	731	533	
	？	96，	183	（6）	
Minnesotis					
30 ntul	111.				
351048	36	\％ 6	923	2286	
		Sth	3 81	337	
¢10 to	$\stackrel{2}{2}$	407	948	377	
Montant					
${ }^{39} \mathbf{3}$ atd liess	37.	511	－51	260	
	4	－		208	
	59	湤亏	883		
	4	510	479	374	
185 102100.	s	58	Stis	－	
245 to 2000		6.51	鮫	\＄80	
27510300	2	（6）	${ }_{832}$	\％	
35510 cio．．	\％	374.	5357	254	
85 10 90，	24				
2901300	极	${ }^{+386}$	762	${ }^{342}$	
125is 10.180	\％	＋139	5×2	298	
1356220	＋	4.56.	627	350	
relat					
25.10 ent．	4	${ }^{1825}$	\％ 3	580	
${ }^{155} 518190$.	1	如	${ }_{7} 7$	x2	
9510120	1				
Wenimi ies					
	is	312		\％	
5361220	23	4	7		
1255 to 150.	14	414 ，	778	208	
	3	4 ct ：	ste	292	
iss ti 210 ．．．．．－．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	\pm	319 ：	538	189	
	\％	910	$\underline{234}$		
	\because	Sis	631	143	
Simth Dakota：					
30 and les．．－．．．					
	18	343	691	237	
	4	341	${ }^{678}$		
	17	\％ 36	${ }_{6}^{4} 2$	＂238	
	1				
Ithh：					
${ }^{30}$ and tess	21				
3is tat	${ }^{38}$		S98	${ }^{2888}$	
8		${ }_{4} 5$	885	${ }_{3} 36$	
1255150.	29	300	${ }_{49} 89$	385	
15515180	20	450	${ }^{686}$	246	
	2	${ }^{136}$	339	535	
335 to t20	3	855	518	420	
	i	fax			
	1	150	．．．－．．．		

 rarions prowals, bil Ntates- ('ontinued

OEOVEKHAY

GKAs liAy

PFAS ANIM BAKEFY HAY

'SMOTHY゙ MIXED

Tabte 9.--Numher of cubic feet per ton for different hinds of hay in slach standing ratrions periods, by Ntates-Continned

WILD ILAY

State and period elapsed prior to mensurement, days	Mensurements taken	Volume per ton at time of measuroment		
		Averako	Mnximum	Alinimum
Minnesota:	Number	Cubic feet	Crbic feet	Catic feet
330 antl fess.	${ }_{58}^{58}$	${ }_{8+10}^{015}$	1,354	${ }_{588}^{392}$
tis to 00.	50	781	1,153	56
\$5 to 120.	20	738	1.109	541
385 to 420 .	91	617	208	[ist 4
Muntama:				
	9 ;	459	198	508
35 to 00.	10	476	529	431
65 to 90.	2	498	002	+36
95 to 120.	17	458	584	392
185 to 210...	9 !	463	510.	428
Nebraska: 30 and 1053				
30 and less. 35 to 6	32 120	487 [490)	417
35 to 6	120 40	428	$610{ }^{610}$:	${ }_{3}^{264}$
	13	411	510 :	277
125 to 150.	110	426	592	299
	59	309	515	302
185 to 210	22	423	519	347
215 to 240	10	388	478	318

The variation in the figures on the cubic feet per ton for the various kinds of hay shows the reason for the difference of opinion that has existed as to the number of cubic feet required for a ton. The hay dealers and stockmen have realized that there was considerable variation in density, even if they have had no accurate data to prove this idea. These average figures show that the 512 cubic feet per ton for alfalfa at the end of 30 days' settling, in use in many sections now, is fairly accurate. Table 8 shows also that stacks do not settle much after 30 days, and that the old figure of 422 cubic feet after 90 days' settling is too low. These figures show further that more cubic feet per ton are required for prairie hay than for alfalfa hay instead of less, as was generally supposed, and that the figures of 422 cubic feet per ton after 30 days' settling, and 343 cubic feet per ton after 90 days' nettling, are entirely too low for prairie hay.

VAFHATIONS IN DENSITY

A number of studies were carried on to find the reason for these variations in density, but the data obtained were not sufficiently comprehensive to provide a satisfactory explanation. Data obtained in Montana ${ }^{11}$ on stacks in various parts of the State showed that there was considerable variation in the density of the hay. Samples (approximately 5 cubic feet in each instance) were taken from various parts of these stacks and weighed. (Fig. 12.) These samples were obtained by forcing the prongs of the hay sampler shown in Figure 13 into the hay and then cutting around the sample with a hay knife. When the sample had been cut loose on all sides, it was lifted out onto a canvas and weighed. (Fig. 14.) By this method a sample of hay was obtained that gave the approximate density of the

[^8]hay at that point in the stack. By taking several samples in various parts of the stack, the approximate nverage density was ascertained. Samples taken from the same general location in different stacks varied as much as 10 pounds, which was about a 50 per cent variation. This sampling method indicates that the yariations in density, shown in Tables 8 and 9 , are not due to crrors in the weights given for the individual stacks, but to some madetermined cruse.

Several theories as to the reason for these variations in the density of stacked hay have been presented, but no data to prove or disprove these theories have been collected. The theory that the moisture at time of stacking is an important factor in the density of the hay bas much to recommend it. Hny with 20 to 25 per cent moisture at time of stacking is more plialle and is heavier per cubie foot than hay with

Figute $\mathbf{1 2}$-Stack of hay that bns been sampled for densty. Samples were taken at various depths to determine tho variation in densits of the lay at different joints and to determino the averaga fensity of Elio stack
only 12 per cent moisture, and therefore would settle more and become more compact. Observations made by the writer in the various hayproducing areas tend to support this theory. It is much easier to force the hand or a rod into a stack of hay made from overcured hay, especially alfalfa, than it is to force the hand or rod into a stack of hay that was stacked before the hay became overdry. The Montana data support this theory, because in several instances the hay was reported to have been stack sweated when the sample taken from the stack was much heavier than the average for the group of stacks sampled. Moreover, in several instances in which the sample taken was exceptionaliy light, it was noted that the hay was very dry and flufly at the time of sampling.

Another factor that may influence density is the coarsness or fineness of the hay, or the quantity of hard, woody stems that do not collapse when weight is added. Hay that is overripe or that contains
large quantities of harsh and woody weeds probably does not settle so much as hay that has pliable stems or that is free of foreign material. Other factors may affect

Figerat la.-Sampling tevicu for determining the tersity of inay in the stack. The bay is cut ruway from aromal the frame to the dejuth of the pronks, then tho bas kulle is faserted under the centrat prongs and the sumple lifted out and weighed the density of hay in the stack, but the ones mentioned are probably the most important.

NEED FOR ADDITIONAL RESEARCH

A determination of the reasons for the variation in the number of cubic feet of hay required for a ton under different conditions is a problem that should receive additionalstudy. Because of the conditions under which much hay is fed in many sections, it will continue to be sold by measure even if the interested parties realize that there is a large variation in the number of cubic feet required for a ton, and that this variation can not be measured in a practical way under existing rules.

Additional research should be carried on, therefore, in a few wellchosen localities where the various factors that influence the density of the hay can be measured and observations made which will explain the variations in density. Special attention should be given to t.e following factors: Percentage of moisture in the hay at the time of storing; texture and maturity of the hay; leafiness of the hay in the case of alfalfa and clover; and rate of settling during the first 30 days.

A series of stacks were measured in California in 1928 to determine rate of settling, but because no common first measurement was given these data could not be tabulated.

Methods should be investigated for determining the density of stacks, either by taking samples from a definite place in

Figuas 14.-Weighing the density sample of hay the stack and then determining the average density of the stack from the sample, or by developing an instrument by means of which the density can be measured by the degree of resistance encountered upon thrusting the instrument into the stack.

It is only by stch research that the reasons for the variation in density and shrinkage of hay in the stack can be found, that the number of cubic feet required for a ton under various conditions can be determined, and that satisfactory methods of selling hay by measure can be recommended.

SUMMARY

Much hay is sold ammally by measure, especially in the Western States. Areurate rutes for determining the volume of rectangular and round stacks and nccurate information relative to the number of cubic feet necessary for a ton should be available.

The rules for determining volume of rectangular stacks in use at present are not very accurate. On an average the Frye-Bruhn rule gives only 86 per cent of the actual volume, the Quartermaster rule 96 per cent of the actual volume, and the Outlaw rule 84 per cent of the actual volume. All three of these rules have a wide range of error, in some cases giving only 70 per cent of the actaat volume, and in others 130 per cent.

The formulas recommended in this bulletin are as ensy to apply us any of the above-mentioned rules and give results that are much more acrumate than any of the old rules.
The formalas recommended for determining the volume of rectangulat stacks are as follows:

For low, round-topped stacks $(0.52 \times 0)-(0.44 \times W) W L$
For high, round-topped stacks $(0.52 \times 0)-(0.46 \times W) W L$
For square, fat-topped staeks $(0.56 \times 0)-(0.55 \times W) W^{\prime} L$
The rules for determining volume of romad stacks in use at present ne not very acemate. On the average the Quartermaster rale gives only 95 per cent, and the Prismoidal rile only 92 per cent, of the actual volume.

The volume of a round stack of a given circumference and over can be determined readily from Table 7 . The volume obtained from this table is more accurate than that obtained from either of the abovementioned rules. Should the circumference or over be greater or less than those given in the table the volume of the stack can be determined by asing the following formula $V=(0.04 \times 0)-(0.012 \times C) C^{2}$. This formula will give results that are as accurate as those obtained from Table 7.

If the hay can not be weighed, or the density determined, the cubic feet per ton which may be used with fairly satisfactory results with hay 30 to 90 days in the stack are 485 for alfalfa, 640 for timothy and timothy mixed, and 600 for widd hay, and for hay more than 90 days in the stack, 470 for alfalfa, 625 for timothy and fimothy mixed, and 450 for wild hay. These figures, when used with the rules for determining volume given above, will give more accurate results than can be obtained from the figures for cubic feet per ton now in use when employed with present volume rules.

ORGANIZATION OF THE UNITLI STATES DEPARTMENT OF AGRICUITURI: WHEN fHIS PUDLICATION WAS LAST PRINTEI)

Secrelary	Anthen M. Hype.
Assistant Secretary	R. W. Duntar.
Director of Scientific Work	A. F. Woods.
Director of Regulatory Work:	W. G. Campbell.
Director of Extension Work-	C. W. Wabrurtox.
Director of Personnel and Business Administration.	V. W. Stockrbager.
Director of Information.	M. S. Eisenhower.
Solicitor.	E. L. Mansitali.
Weather Buren	Chahless F. Matvin, Chicf.
Bureau of Animal Industry.	John R. Mohler, Chief.
Burcan of Dairy Industry	O. E. Reed, Chief.
Burcan of Plant Industry	Willian A. Taylor, Chiff.
Forest Servi	il. Y. Stuart, Chief.
Burcau of Chemistry and S	H. G. Knight, Chief.
Bureat of Entomology	C. L. Marlatt, Chief.
Bureau of Biological Sure	Paul, G. Redington, Chinf.
Burcan of Public Roads	Tuomas H. MacDonald, Chief.
Burcau of Agricultural Economics	Nils A. Oisha, Chief.
Bureau of Home Economics.	Louise Stanley, Chief.
Plant Quarantine and Control Administration.	Ine A. Strong, Chief.
Grain Futures Administralion	J. W. T. Duvel, Chief.
Foorl and Drag Administration	Walter G. Camibeld, Director of Regulatory Work, in Charge.
Ofice of Experiment Stations	- -, Chief.
Offee of Coopcrative Extension Work	C. B. Smity, Chief.
Library	Ceamael R. Barnett, Librarian.

This bulletin is at contribution from

Burcnu of Agricultural Economics
Nils A. Olsen, Chief.
Dieision of Hay, Feed, and Seed.
W. A. Wheelen, Principal Markeling Specialist, in Charge.
\qquad

END

[^0]: 1 The uuthor whshes especially to acknowledge the assistance received In the bureau from E. C. Parker and EI. R. Tolloy in outhing the work and reviewlog the bulletin; and from W. J. Spillman, H. R, Follay, and M. J. II. Ezexiel in the mathernatical studies presented.

[^1]: I Spillyan, W. J. FARM ghasseg of the thited states; a practical taEdtise on tas gaiss crop, SEEDING AND MANAGEMENT OF MEADOWG AND PASTURES, DESCRIPTIONS OF THE DEST YARIETIES, TIE SEED AND ITS IMPURITIES, GRASSES FOR SPECIAL CONDITIONS, ETC, 248 p., IIIUS. NEW York and Lindion. 1905.
 Dept, Agr., Mur. Plant Indus. ©irc. $131: 14-24$, thus. 1913.
 10 p., ilhes. 1916.

[^2]: 155-117, thus. 1020 .

[^3]: - Mcoarrol. W. quantipy estimations on tile farm. Agr. Gaz. N. S. Wales 39: 698-699, limus. 1928.

[^4]:

[^5]: -Spillman, W. J. Op. ett.

[^6]:

[^7]:

[^8]: ${ }^{21}$ Theag data were collected by F. E. Murdock, of the Montana Agricuitural Experiment Santion. The sampling device wns davised by Mr. Murdock.

