

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

S
 T A RT

MEREICOPY RESOLUTION TLST CHART

MICROCOPY RESOLUTION TEST CHART NABOTAM BUREAU OF SIANOMROS 196S-A

DEVELOPMENTAL STAGES OF SOME NEMATODES OF THE SPIRUROIDEA PARASITIC IN POULTRY AND GAME BIRDS

By Eloist B. Cram, Zoologist, Zoological Division, Bureau of Animal Industry'

CONTENTS

Abstract

Page | Page

Fevver of zreceding iavestantions Methots uspd in the present investightiont... Tetromeres tanesicants C'ram, 15327

Therdophent in intermediato hest....... irevelopment In that foost. fate of develomment ing, 18 th Devejomment in intermedinte ho- Development in final host Description of adult parasito.

Cheilospirfara aphnosa Crim, 192; 13 1) velopment in intermediate hast........ 14

I bevelojment in fiml host 15 Dispharypr spiralis (Minin, Lisfo) Skrjabin, 3 101t Qevtopmort in intermedinte host.. 18

Develofment in final host...................... 19

Seurocyrrea colini (Crm, 1v27) Crum, 1030.- Development in intermedinte host....... Dovalopment in finti host.....................

REVIEW OF PRECEDING INVESTIGATIONS

Previous investigations conducted in various parts of the world have revealed the life histories of a few of the nematodes belonging to the Spiruroidea which occur in domestic birds. A discussion of these and more recent findings bus been included in a paper by the writer." The findings of earlier investigators may be very briefly sammarized as follows:

By comparative studies of a morphological nature three crustacens were shown to be the intermediate hosts of three nematodes.

[^0]mamely, the isopod, Porcellio laevis, serving for Dispharyna spiralis as occurring in the chicken; the amphipod, Gammamus pulex, and the cladoceran, Daphnia pulea, for Tetrameres fissispint, as occurring in dueks; and the cladoceran, Dophnia pulear. atso for Echimura whrinata, as occuring in ducks. By experimental demonstrations two insects ware added by the earlier investigators to the list of intermediate inosts for three other nematodes, numely, one of the Isoptera, the termite Macrohodotames mossembicews transrfalensis (synonym: IIodotemes pretoriensis), serving for Hartertia gallinarim of chickens, and one of the Orthoptera, the roach, Pyrnoscelus surinamensis. for Oxyspiru'f parvovum. and O. memsome, also of chickens.

Investigations armied on by the writer have recently added to this list the names of seven arthropod intermediate hosts, of which five are insects and two are crustaceans, serving for six spirurids. These aro as follows: 'Two members of the Coleoptera. the dune heetle, I'henacus vindex (synonym: I '. carnifea) and Copris minutus, serving for a species of Gongylomem, tentatively identified as G. ingluvicold of the chicken; there members of the Orthoptera, the rrashoppers. Melanop/us frmurrubrwm and M. differentialis, both serving for Totromeres mins ricana and Chellowpirura hamulosa of chickens and for C. spinosa of gallinaceous game birds, and the cockroach, Blattclla germanica, serving for Sewocy/nea collime of game bircls; and two isoporls, the sow bugs, Porcellio scabrr and Armadillidhom whlfore, serving for Dispharyme spipalis of gallihaceous game bires.

In the case of the species of Gongrylonema, a natural infection in the clung beetles was disenvered incidental to the conducting of rxperiments on another spiburd, Physocephalus sewalatus of swine, for which these beetles also serve as intermediate hosts; in a chicken a. single male specimen and in a rabbit two female specimens of Gongylonema were developed. which were tentatively identified as G. ing/ubricola, pendiner further investigation when additional matorial is a valable. However, in the case of the other five spirurids, all stages of the life cycle were experimentally prodiced, and it is planned here to describe the various stages observed in the development of each of these nematodes.

METHODS USED IN THE PRESENT INVESTIGATION

The arasshoppers used as intermediate hosts in the present study were laboratory reared. but all the other arthroporis were collected in the wild. The embryonated eqres of the nematodes were obtained from the uteri of the worms and in some cases from the contents of the digestive tract of the infected birds and were fed to the arthroporls with ereen stuff or with finely ground cereals.

The biri hosts used for the life-history experiments were confined indoors throurbout the entire period of the experiment. The chickens were hatched in incubators und in ali but a few cases were kept on raised wire-mesh floors through which the droppings passed, first in electrically heated brooders and later in cages, but in both instances under an insect-proof cover made of fine wire sereening of approximately 2 -millimeter mesh. Control chickens were kept in the same compartment as those experimentally fed.

A

This methoul has provel to be highly reliable, control chickens being consistently negrative as regards the presence of parasites and the chickens which had been artificially infected showing no parasites other than those fed to them. This method was followed in all instances until the life history was definitely established; in a few cases, as in the case of the infections with Tetromeres americana and with ('heiforpipum hamulosa, in order that observations of a more general climical mature might be made, chickens were relensel later in indoor jens. The floors oì these pens were of concrete, and the windows were serened; the pens were in a new building and had never been used for chickens other than those experimentally infected.
Pigeons were held in cares of the kind described, but the birds other than pigeons and chickens were held in the indoor pens rather than in cages. The quail had been hatched in incubators and reared artificially; the ducks and turkeys were obtained from commercial poultry raisers and the ruffed grouse from a Canadian dealer. Therefore the previous histories in these cases were unknown.

TETRAMERES AMERICANA CRAM, 1927 (5)"

Members of the genas Tetramerts and related genera are unique: among nematodes in birls in that the femaices do not conform to the nsual shape of romblworms, that is, elongated and cylindrical, but, after interine the glands of the stomach, become globular in shape as the boly becomes distended with eggs; there are two small projections, one of which, the head, is at one side, and the other, the tail, on the opposite side. The worm lies in the gland in such a position that the taid protrules into the cluct of the gland, to facilitate the passage of the egess. and the head is in the fundus of the gland, to tacilitate feeding. The female beromes blood red in color (pl. 1), another unsinal characereristic. The males, on the other hand, retain chronybout life the elongated. slender form of body and are practically without color. This sexual dimorphism in species of Tetrameres. correlated with the life habit, has been compared with that of the chigoe tlea, which occurs in tropical America and Africa, the female burrowing into the skin of man and of various domestic and wild animals. becoming engorged with bloot, and its body swelling to a globular form as it is distended with eggs.
T. americtena is of fairly common oceurrence in chickens (Gallus (follus) in North America, and in some Iocalitics is of considerable pathological significance. It occurs also in bobwhite quail (Colinus rirginianus).

טEVELOPMENT IN INTERMEDLATE HOST

Embryonated eqge of T. amerricana. when fed to the grasshoppers, II elanophus fomurvurum and LI. differentialis, hatch in the digestive tract. and the larvae pass into the body cavity, where they can be foumd in an active, unencysted state for the first 10 days after the lieding. They then, penetrate the tisenes, chiefly the muscles. and

[^1]become loosely encysted; in heavy infestations all parts of the body, including the head and the femurs, contain the larvae. On dissection of the grasshoppers in a shallow layer of water, the larvae excyst quickly and become very active. In 42 days, possibly sooner, the larvae are infective for the final host. The vitality of the grasshoppers appenred to be considerably reduced by the infection; in certain number died, and those which survived were droopy and inactive, a condition which would make them easy prey for food-seeking fowls in mature.
The most striking chatacteristics of the third-stage infective larva are as follows: Head end blunt, without Jips or other noticenble structures. Cuticle with distinct cross striations. Total length of body, 1.8 to 1.9 mm ; first part of esophagus (muscular portion), 216 to $224{ }_{\mu}$ long; second part of esophugus (glandular portion), 540 to 550μ long; the ratio of total length of esophagus to total body length is therefore as 1 to about 2.4. Anal uperture 170 to 184μ from tail end. Rectum refractive to light, as if chitinized. Tail (fig. 1) with a circle of

0.01 mm Figung 1.Jetramerea 12martcamat. T1I 19 if thatri-atinge 2ntra 12 papillac at its posterior end, the 4 papiliae situated in the lateral, ventral, and dorsal fiekls being larger and more curvel than the other 8 , of which there are 2 in ench of the 4 submedian fields. A pair of slender, sharply pointed papillae are situated in the lateroventral field at in distance of 88μ and 100μ, respectively, from the tail end.

DEVELOPMENT IN TINAL HOST

In the experiments conducted by the writer, the thirdstage larvae of 7'. americant obtained from experimentally infected grasshoppers have proved infective for young and adult chickens, for the domestic duck (Anas phatyrhyncha domestica), for bobwhite quail, and for ruffed grouse (Bonasa tombellus), in the cases shown in Table 1.
'Pable 1.-Detrelopmen' of Tetromeres amribant in wurions hra hosts

As regards the negative results in chickens, in seven of the nine negative cases the chickens were not killed and examined until from five to eight months had elapsed after the feeding of the infectedgrasshopper parts; the possibility suggests itself, therefore, that the chickens in at least some of these cases may have been lightly inferted and that the life of the parasites was not five to cight months long in those cases. This supposition is borne out by the finding
of a disintegrated femule specimen of Tetramares in the wall of the proventriculus of one of the chickens, killed eight months after the experimental feeding; the red color had disappeared, and the cuticle was partially disintegrated, but the mass of coiled ateri and the black saclike intestine remained.

The difficulty in producing experimental infections of dueksonly one specimen of parasite, a temate, developing in the case of the young duck and no parasites developing in the atult ducksugrgests that ducks are not normal hosts of T. americant. This observation is substantiated by the fact that mataral infestations of domestic ducks with this paratsite have never been discovered in this country, so fur as the writer knows. This is contrary to the situation in Europe, where the reports of the European species, T. fissispina, are as frequent from ducks as

Ficene \because. Immature forms on fetramersa ancreana: (A)
 ehickell. Alume thirty timee natural size from thickens, if not more so. The difference in the intermediate hosts of the two species may be correlated with this difference in final hosts, the species found usually in ducks and other water birds having as intermediate hosts aruatie crustaceans, as noted in the introduction to this bulletin, and the species foumb nommily in chickens having as intermediate hosts terrestrial insects, grasshoppers. Gallinaceous birds would ingest crustaceans accidentally in their drinking water with much grenter frequency than water birds would ingest terrestrial

insects, such as grasshoppers: the wider mage of biml hosts for T'. fissispina is, therefore, easily understood.
Natural infestations of bobwhite quail with T. americana have been noted, but the present report of experimental infestations in the ruffed grouse and pigeon appears to be the first observation of this parasite in these hosts.

Rate of deyelopment

As regards the rate of development, the following observations have been made: Eleven days after being fed to a chick the larvae were
recovered from the surface of the mucosa of the proventriculus as fourth-stage larvac which were about to shed their cuticles for the last time, or as immature adults with as yet no noticeable sexual differentiation. After 14 days the immature females (fig. 2, B) were in the glands of the stomach and displayed primary and secondary sexual characteristics. the most noticeable being expansion of the body and the presence of ovarian and uterine colls confined to the intestinal region; these developments were accompanied by the appearance of the four longitudinal, cuticular bands which fater constricted the body. The mates (fig. 2, A) were at this time still on the surface of the mucosa and as yet showed no adult characters. After 16 days no nematodes were found on the surface, even by gentle scraping of the mucosa, but some were expelled upon squeezing of the glands; the males often appearing simaltaneously with the females; the mates then showed their adult characters, namely, fully developed spicules and spines (tir. 3), the latter along the entire length of the boly. At the end of 19 days and also at the end of 25 days a few mates were collected from the surface of the nucosa, but most of them were more deeply embedled. The males had attained their maximum size at that time. The female body had expanded considerably, but its total length had decreased with the expansion in width; the intestine had become saclike, and the coils of the ovaries and uteri had increased but as yet contained no egys. Both males and females showed evidence at that stage of haring fed on blood, the heads of the worms and the contents of their diyestive tracts being stained with blood. Small, petechial hemorrhages weie to be seen in the glants where worms were sitnated, and the wall had become preatly thickened and congested.

There is evidence that this period of invasion of the stomach wall is the period that most serionsly affects the health of the chicks, as it was then that the largest number of deaths occurred, and in nonfatal cases that the most serere clinical symptoms, enaciation and droopiness, were notecl. That the diet may play an important part in the chicks' resistance at this stage is indicated by the fact that of a group of four infected chicks which were being fed : vitamin-deficient diet, that is, one in which no yeast or cod-liver oil was present, all four died, on the elerenth, thirteenth. fourteenth. and twenty-fifth day, respectively. whereas of a comparable group of four infected chicks on a ritamin-sufficient diet, none tlied. Control dhicks on the vitamin-defient diet survived the period of experimentation, so that the condusion is justified that the severity of the parasitic infestation was correlated with the vitamin content of the diet. More extensive experimentation along this line is highly desirable, being of considerable practical importance.

By the twenty-minth day practically all the males had returned to the surface only an occasional one being found in the glands. At this period the females for the first time showed the bright-red color of the bodr: the sactike intestine was seen within the body. appearing very black in color. since the uterine coils were unt yel sufficicatily opaque to obscure it.

At the end of 35 days the females were gravid, but the cags were not yet embryonated; after 45 days the eggs were embryonated. and development was complete. except that the maximum size had not
yet been attaineri. At 2 months the size was approximately the same as at 45 days, but at 3 months it had increased to the maximum.
These observations as to the location of the male specimens of 2 . americana differ from the descriptions of the behavior of l^{\prime} '. fissispina in this respect: In the latter species the mating of male and femal is said to ocer on the surfaed of the muersa. the females then entering the camals of the glands of Lieberkuch and the mates remaining in the lumen of the stomach. In the Anerican species, on the other hand, it is evident that the female sex chameters appear at an earlier date that those of the mals. The female enters the ghand before the mate berones adult. The male follows later and, after the period of mating has passel, again returns to the surface of the mucosa.
Table 2 smmarize the rate of development of 7 . americna. as shown in the mensarements made at different stages in its tevelopment.

CHEILOSPIRURA HAMULOSA (DIESING, 1851) DIESING, 1861 (8)

Syoonyms: Splropterg hamulosa Dlesing, 1851 (7); Dispharagns hamulosus (Dleslng, 1851) Stosslch 1800 (18) ; Spiraptera perforang Centoscudl, 1011 (4) : Acuaria hamulosit (Dlexing, 185.1) Raliffet, 1911 (18)
Cheilosprifura hamulosa is cosmopolitan in distribution, occurring most frequently in the chicken but being known also in the turkey. The nematode is found in the gizard, associated with small, fleshy crowths on the surface of the muscular wall, under the corneous lining, or in burrows in the wall. There is an opening leading to the inner surface of the gizzard for the passage of the egegs of the parasite: these openings are often circumseribed by a rough, browncolored area on the inner surface of the
 corneous lining.

In the United States C. hamalosa is widespread in distribution and in some localities is the cause of numerous fatalities in infected flocks.

DEVELOPMENT IN INTERMEDIATE HOST

Attempts to produce infections in cockroaches, sow bugs, ground beetles, and crickets were unsuccessful; however, as the result of similar feeding experiments, two species of crasshoppers, Melanoplus femurruhrmum and M. differentialis, were found to be capable of serving as intermediate hosts of C. hamulos a. The larvae which hatch from the eggs migrate into the body cavity of the grasshopper and develop among the tissues, chiefly in the miscles, to the third stage, which is infective for the bind host. At this stage the nematode is tightly coiled upon itself, and the tissues form a thin-walled cyst around it. The larvae meoil vory slowly when the tissues are dissected in a small puantity of water, and they seldom become more outstretched than the position shown in Figure 4. The coiled form and relative inactivity of these larvae make them strikingly different from the corresponding larvae of Tetrameres americana, when the two species of bematodes occur in the same grasshopper. As noted previously, the larvae of 7 . americona quickly uncoil and become very active in water.

The third-stage larva of C. hamulowe is 700μ in length by 44μ to 50μ wide. A striking characteristic of this larva, as also that of G. spinosa. (p. 14) and, therefore, possibly a generic character, is the reversat of the curve of the body which is made by the tail. (Fig. 4.) The head end (fig. $5, A$) is roinded but has two prominent lips and four conspicuous submedian papillae. There is no evidence of cordons such as are seen in the adult. The anus is 96μ from the end of the body. The tail end of this larval form of O. hamalosa bears four comparatively long digitate papillae (fig. 5, B) ; one, on the dorsal surface, is larger than the others. The two lateral papillae and the ventral papilla are approximately the same size. On the dorsal suffre, at the base of the papillae, the cuticle projects slightly, as a collar. A compurison of these tail structures of the larva of O. hamu-
losa with those of C. spinosa (Gg. 12, B) shows them to be similar in number and in general arrangement but slightly different in shape and considerably different in size; C. hamudosa, which is the smaller larva, has the larger caudal papillae.

DEVELOPMENT IN FINAL HOST

As a result of feeding third-stage larvae of C. hamulosa dissected from grasshoppers, the remaining stages of the iife cycle of the nematode have been obtained experimentally in the final host. The larvae were tound to be infective for chickens as early as 22 days and as late as 67 days after the ingestion of the nematode eggs by the grasshoppers. The results of the experiments were as follows:

Young chickens: Positive results, 16 cuses; negative results, 15 cases; controls (all negative), 198. Negative results were also obtained when feedings were given to a chicken, a pigeon, a ruffed grouse, a bobwhite quail, and a turkey, all these bircls being adult.

In the 16 cases it which. chickens were infected experimentally with ' ${ }^{\prime}$. hamulosa, the nematodes were collected from the gizzards of the fowls at varying periocis, ranging from 11 days to $91 / 2$ months; in t of the cases the nematodes were adult when collected, whereas in the other 9 cuses immature specimens were obtained. Observations made in this way as to the rate and location of development include the following:
C. hamulosa larvae col. lected 11 days after the feeding of the chicken from the underside of the corneous

Figtre 5.-Chetionpirura hambloga: A, head end: B, tail end of third-stage larva lining of the gizzard, possessed the head and tail characters of third-stage larvae, but had attained a length of 1.2 millimeters and a width of 64μ. Sixteen dnys after the feeding of the chicken, however, larvae collected from this site showed characteristics of immature adults. Sexual differentiation was apparent in that the nematodes were of two sizes; the larger ones clearly showed the primordia of the vulva and ovejector. The cordons were conspicuous in the submedian fields of the cuticle, and the head structures resembled those of the adult. Mensurements made of the nematodes at this time were as follows: Male, 2 millimeters long by 72μ wide; anus 200μ from tail end; cordons extending posteriorly from the head end for a distance of 340μ. Female, 2,5 millimeters long by 72μ wide; a primordium of vulya somewhat posterio: to middle of body, dividing body length in ratio of 9 to $\mathbf{7}$; anus 190μ from tail end; cordons strongly developed for a distance of 288μ and cliscernible for an additional 360μ, from the head end. At the end of 19 days the males were 3 milimeters long, with cordons developed for a distance of 780μ from the head end; the females were 3.8 millimeters long, with cordons 1.2 millimeters long. Throughout this period of development the nematodes remained on the surface of the muscular wall of the gizzard, under the corneous lining; at the end of 25 days, however, they were found
to be penetrating the muscular wall, the head end being inserted. Males and females did not enter the wall through the same opening. but one of each sex was often found in close proximity to the other. Mcasumments mate at this time were approximately the same as those made at 19 days: Male, 2.7 to 3 millineters long by 100μ wide; cordons well developed for a distance of 800μ; cloacal aperture abont 218μ from posterior end ; spicules and caudal papillae faintly cliscrinible but not well developed. Female, 3.8 millimeters long by 125μ wide ; cordons well developed for a distance of 1.4 millimeters: vulva rlividing body length in ratio of 3 to 2 ; anus 225 a from postrerine end.

Between the twenty-fifth day and the time when the nematodes became matare, at about 5 o clays, they were extremely difficult to locate. They had disappeared trom the surface of the gizzacd but had not yot made any observable tumels, apparently having penerated depper and deeper into the tissue, between the muscle fibers. Females 6.2 millimeters long by 188μ wisle were collected at the end of 29 days: the rges were begimning to form in the ovaries at that time hat ware still very elementary. The vulva divided the body length in the ratio of 5 to 3 ; cordons were discemible to a point somewhat posterior to the vulva. Males collected at the end of 61 days were $4 . \hat{i}$ millimeters long by 188μ wide; the cordons were discernible to within $8801 /$ of the posterior end of the body; the spicules were well formed, the long, slender spicule, 1.25 millimeters in length, being just six times the lengrth of the short, stout spicule, which measired 208μ. Caudal papillae were well developed. At the end of 76 days both males and females were collected; the tissue reaction was noticcable at that time, a small nodule having formed around the parasites. The males at that time measure 13 millimeters long; the longer spicule is 1.5 millimetris, the shorter spicule 220_{μ} in Tength; the females are from 15 to 17 millimeters Jong and (mbryonted equs are present in the uteri. Development appears to be complete at this time except for the fact that female specimens collected at later periods, namely, at $8,8 \%$, and $91 / 2$ months, exceeded 17 millimeters in lengrth, attaining a miximim size of 22 millimeters.

It is thourht probable that the mortality rate is high among the immature specimens of C. hamulosa duritig the periot of invasion of the thick, muscular wall of the gizzard. It was found that a comparatively large number of larvae must be ingested by the micken, in these experimental feedings, in order to obtain an infection. Several of the masuccessful attempts reported above as negalive fundings were cases in which only from three to six larvae were fed to the fow?. Others of the negative findings probably do not represent artual noniafection of the chicken but merely failure to locate the larvac during the period when they were biried in the wall and were still so small that they were found only after prolonged microscopical search, if at all. Aside from such considerations, however, the fact that early examinations, that is, up to 25 days after the initial infection, gave positive findings in proctically 100 per cent of the experimental feedings, and on the other hand that about one-third of the total negative findings were at a period of two and one-half to four and one-half montlis after the feeding and thus at a time when the worms would have been fully grown if present. inclicates that a certain proportion of the invading nema-
todes never develop to maturity. It is possible that the general state of health of the fowl may be a factor in letermining whether the nematodes successtully accomplish this invasion.

As regards the site of imvasion, the latrae of ('. hamalosa appeared to burrow under the corneous lining of the gizzard at its anterior end, near its junction with the proventriculus where the tissues are softest. They were found in that area in the early stages, that is, at 11 days. Later, howeser, they were well distributed over the surface of the muscular wall of the gizzam and were found at 25 days penetrating the musculi laterali as well as the musculi intormedii. On the other hand. in the experimentally produced infections, the final location of armlts, with accompanying tissue damage, was always in the museali intermedii, in the comparatively soft, thin area on the side of the gizzarl opposite the openings of the stomach and intestine.

Table 3 summmizes the rate of development of C. hamalosa, the measmements having been made at rarious stages, as indicated.

Tanee 3.-Mcasurements of Cheilospirura hemedosa at varions stages in its decelopment

DESCRIPTION OF ADULT PARASITE

The descriptions of C. hamulosa given in the literature have been lacking in certain important respects. Von Drasche (9) furnished good descriptions and illustrations of the head (fig. 6, B) and of the
 1)rascise, 1584
cuticular cordons (fig. 6, A). The cordons are one of the most important ilifferential characters of this species; the donble row of irregulaty phacel plaques extending posterionly from the head end for at least two-thirds the length of the body

Figune $\overline{7}$-Mnle tait of Chenlospirura ham-ulosa. After Centosculd, 1911 furnish an easily recognizable specific character. Von Drasche explains, however, that on account of the poor condition of the specimens available to him his description of the male tail, especially as regards the preanal papilae, is incomplete. He describes four pairs of postannif papilhe two of which are small and near the tail end, and two other pairs very large and separated from each other by a considerable distance; he pictures (fig. 6, C) an additional small pair just posterior to the cloacal aperture.

Centosendi (4) added to these observations made on the male tail, in his description of Spiroptery perforcons, which species Railliet (12) in a critical review of Centosetadi's paper showed to be synonymons with the species, C. hamulosa, under discussion here. Centosendi rescribes the tail as having two large papillae near its posterior end and eight additional pairs, four of which are preanal and four postanal. His drawing of the tail is shown in Figure 7.
The tail of the male specimens of C. hamalosa is tightly coiled; this fact and the density of the unterlying structures in the region of the cloana aperture and immediatoly anterior to it make discermment of the caudal papiliac
very difficult. The writer was able to straighten out the tail ends of eight male specimens and by slight staining with gentian violet and subsequent clearing of the specimens in ethylene glycol was able to bring the papiliae into sharp relief. Observations made on these specimens, which were from 9 to 13 millimeters in total length, include the following:
Cloncal aperture situated at a point 416μ to 488μ from the tail end, surrounded by an ammar projection, refractive to light, chitinous in appearance. Short, thick spicule (fig. 8), in the shape of a chopping knife, 200μ to 220μ long by 64μ wide as viewed from the dorsal surface. Long, slender spicule 1.6 to 1.8 millimeters in length by 12μ in width. Ten pairs of catalal papillae (fig. 9), of which four small pairs are preanal and six pairs postanal. Of the postanal papillae, three pairs occupy the space which makes up the first third of the length posterior to the cloncal aperture; each pair of the papilate

FIGERE S.-Whor: spicule of Cheitonpirthra homthlosa of this group becomes progressively somewhat larger
in size than the pair anterior to it. A consid-

Ftgune 9.-Male tait of Chellospirtura hamelosa erable distance separates this group from the remaining three pairs, which occupy the posterior one-half of the tail length. The middle pair of this posterior group is always the smallest. The arrangement of the six papillae which make up these three pairs varies considerably in different specimens, often being asymmetrical. (Fig. 10.)

In a full-grown female specimen of C. hamulosa, 22 millimeters in length, the vulva was located at a point 10 millimeters from the posterior end of the body and was thas slightly posterior to the middle of the body; the anus was about 590μ from the posterior end ; eggs dissected from the uterus were 40μ long by 27μ wide.

CHEILOSPIRURA SPINOSA CRAM, 1927

This parasite was first reported from the ruffed grouse (Bonasa umbellus) of Michigan and was subsequently found in that bird in Minnesota, Wisconsin. New York, Massachusetts, New Jersey, and Pennsylvania (1). It has been collected from bobwhite quail (Colinus virginainus) of Tennessee and of Virginia, which localities are within the range of the ruffed grouse, but has never been found in quail in States farther south, although an ex-
tensive search has been made for it." These findings suggest that the nematode was originally a parasite of the grouse and has spread from it to quail.

In ruffed grouse the percentage of infection was reported by Allen and Gross (1) as varying from 14 to 42 per cent in different States. As regamds puail. Stoddard found approximately 60 per cent infection of birds from Temessee, and the writer foum approximately 90 per cent infection among quail which were half grown or fully grown, originating from a small area in Virginia, the quait being eaptive birds of which the original stock had been obtamed froni the monntainous regrons of that State.
C. spinosa is located in the gizzard of the bird host, on the under side of the cornenus lining, producing tortuons pathe between the lining and the muscolar wall. When the nematodes are present in considerable numbers they may prombee noticeable damage to the gizzard, as subserfuently ileseribed.

DEVELOPMENT IN INTERMEDIATE HOST

In attempts to discover possible intermediate hosts of this nematorde, feeding the worm's eggs to corkroaches, ground beetles, sow

Figiras 10. -IJtagram of viriatiuns in artangement of
 крігйн hamulosu bugs. and crickets gave neqative results, whereas in two species of grasshoppers(Melanophs femorrubruma and M. difierentialis) infestations were successfully produced. Nematorles from quail were first twed and the experiments repeated later with nematodes from grouse, with the same resufts. The larvate which hatched from the nematode eqgs migrated drom the digestive tracts into the tissues of the grasshopper, chiefly into the muscles of the legs and of the inner surface of the body wall. At the end of 25 days they were loosely encysted and had developed into third-stage larvae, the stage which is intective for the bird host. The larvae uncoiled slowhy when the tissues were dissected in water. These third-stage larvae are R 50μ long by 40μ wide; the posterior end of the body is bent sharply backward, reversing the curve made hy the anterior part of the body (fig. 11), a trate seen also in the thiri-stage larvae of (". hatmulost. (Fir. 4.) The tail end bears four dirititorm papillae. three of which, oceupying the ventral fiekl, are smalle than the fourth. which is situated in the dorsal field. At the base of this dorsal papillat the cuticle forms a collar with projects slightly as seen in lateral viow. (Fig. 12, B.) These tail structures are similar in number and in form to those of C. hamuiosa (fig. o. B), but smaller in C. spinosa than in C. homulosa. 'The head end of the lavva of O. spinosa is provided with two latge. lateral lips: at their base the cuticle forms

[^2]a distinct collar, which projects anteriorly in the dorsal and ventral fields. (Figs. 11 and 12, A.)

DEVELOPMENT IN FINAL HOST

As a result of feeding the third-stare larvan of ('. winosu dissected from grasshoppers. the remainder of the lite excle has been artifi--ially produced in the fimal hosts as follow:

Bobwhite anail: Positive results, 10 cases; negative results, 0 cuse: controls (all negative). 13. Ruffed grousp: Positive results, 1 case; nequtive results, 0 case; con(rols (all negative), 5. In atdition, tive attempts were made to infoct young rhickens, all with negative results.
('ross tamsmission of the parasite from rafled growe (o) guail was accomplished, seven of the experimental infections of quail. as well as that of the rufted gronse. being producer with larvae which had been deadoped from material origenating from the grouse; in the remaining case of experimental infection of quail the oriarimal material was derived from the quail.

Observations makle in the course of the development of ('. spinosa in quail in-

Figrae 11.-Third-same larva of Cheiorpirara miniske from grassitopper rluble the following: Fondteen days after the feeding of third-stage harvac, the parasites were found tumerneath the corneous lining of the gizatad as fourth-stage larvae or immature adnlts. Sexual differentiation was apparent at this time ; the larerer nematodes. 4.5 mm . long by 120μ wide, displayed a cudimentary vulva and the primordia of the uteri at approximately the middle of the body

Fitithe 12.- Oheilosphrtra spinona; A, bead evel;
 length. The cordons could be seen extending posteriorly for a distance of 187μ from the hand end; the tail was 218μ long. The smaller specimens, apparently males, had not developed sextal characteristics to the extent seen in the females; spicules, caudal alae, and caudal papilhac were still lacking. These sperimens were 8 millimeters lony and 88μ wide; cordons extenderl for al distance of 125μ from the head end; the tail was 224μ long; primmertia of the testes were apparent.

Figent 1:t-Chcilompirurn spinosa: A. lead end; B. elements of cordon; \because, valva;

Ftacer 14.-Male tall of Cheithapirtira apphong, as seen when coiled und when strajghtened ont

Thirty-two days after the experimental feeding of the bird host, the aematodes had fully developed sexual characteristics; eggs were present in the uteri, but in suall numbers and were not yet embryonated. Neither males nor females had reached their full size, however, the males being \& millimeters long and the females I8 millimeters long at that time. At the end of 45 days, embryonated eggs were being deposited by the fenales, and the development of both sexes appeared to be complete. The females at that time were $3 \overline{3}$ millimeters, the males about 12 millimeters long. In ruffed grouse the nematodes attained a greater size, the males being up to 20 millimeters, the females up to 40 millimeters long. The adult characteristics are shown in Figures 13 and 14 .
In cases of heavy infestation, both as found in nature and as artificially produced, the gizzard lining may be hemorrhagic and necrotic and the wall flabby (figs. 15 and 16); marked proliferative changes were noted in the gizzard wall in one of the quail, associated with a heavy infection of 84 days' duration. (Fig. 17.)

 hembrthate necrosis, Cheifopisura apinoat protrading frotn understad.: Experimetutat infection of ruffed grovise

 whll, whowing cheionpirkra sphnoda ami tamuge produced by tbem. Experlmethet dafection of rafed gromse, Actum nize

DISPHARYNX SPIRALIS (MOLIN, 1858) SKRJABIN, 1916 (16)

 191: (13)

The adult forms of these spirurids are short and comparatively thick, white worms, with the body curved or rolled in a spiral.

 rimoved.) Two times nethal size
(Figs. 18 and 19.) Their usual location is the glambluar stomach. or proventriculus, where their heads may be deeply buried in the wall. The characteristies of the head end of D. spiralls may be seen in Figure 20, and those of the male tail in Figure 21.

This parasite is not of common occurrence in the Cuited States, but its distribution covers a wide territory and a wide range of (lamestic and grame birds. It has been coilected from the Hungarian partridge (Perdix perdia) in Wisconsin, the ruffed grouse in Wisconsin and in the New England States, the bobwhite quaii in New Jersey, the turkey in Maryland, the chicken in Louisiana, the pigeon in Texas, and the guinea fowl in Porto Rico. The parasite is po-
tentially, and in many cases actually, highly pathogenic; in the case of pigeons the parasitic disease may result in high mortality among domestic birds, and in the case of ruffed grouse it has been considered the probable cause of deaths of birds in the wild.

DEVELOPMENT IN INTERMEDIATE HOST

In the search for possible intermediate hosts of D. spiralis in the United States, cultures of eggs of the nematodes collected from

mafed gronee were fed to smais, whers, eathworms, millipeds, grasshoppers, leat hoppers, crickets, coekronches, groumd beetles, beetle larrae, and isopods (sow bugs). Al the results were negative except in the case of the isopods, in two species of which, Porcellio saber :und Armadillidium vulgure, the eggs hatehed, and the larvae confinace their development. After four days the lamye were found among the tissues of the borly cavity of the isopol, distributed throughout the whole bolly length. They were outstretched, not colled, and only very slightly active when removed in a small cquantity of water; they were
 that stagre of their development. After 14 clays in the isopol the laryae were seen to be about to shed their enticle, the whath protrading at both ends of the body, or in some cases to have already shed it, these hatter larvae (second stage) being somewhat larger than those still retainang the shath (first stase). The Jargest larvae were at that time from 1 to 1.2 millimeters in length by 50μ to 36μ in width; this width being compara-

FI隹时 19,-Femu? of Dispherynto spirails. After I'innt, 1847 tively great, they presented a stocky appearance, which was accontuated by the fact that the head end was very biuntly rounded. There were no lips at the mouth; the total length of the esophagus (including the pharyon) was 300 p to 330 p ; the excretory pore was prominent in live specimens, being situated about 85μ to 90μ from the head end. The tail was short, tapering very little but with a small point at the end. The larae were very mactive at that stage, merely giving little jerky movements, chiefly with the anterior part of the body.

Development of the larvar in the intermediate host was completed within 26 days: that is. the larvar reached the infective third
stage. There is no evidence that these larvae were encysted or even coiled, as is often the case with third-stage spirurid larvae, in the tissues of the arthropod host; they emerged from the tissues very quickly when the isopod was partially dissected in a small quantity

Figuts $20,-$ Hend ent of Dispharyns ${ }^{*} p$ ircelit. Alter Nerrat, 1917 of water. This thirdstage larva is from 2.9 to 3.2 millimeters in length by 65μ to $8 \bar{\pi} \mu$ in maximum width. The head end tapers little or not at all, having abluntappearance; there are two small, pointed lips and four submedian papilac. (Fig. 22, A.) There is no evidence of cordons such as are present in the adalt form of the nematode. A slender, distinct pharynx, 60μ to 70μ long, is followed by a 2 -part esophagus; the first part, the muscular portion, is 275μ to 320μ Iong; the second part, the prandular portion, is about 720μ long; the excretory pore is $17 \% \mu$ to 100μ from the head end. The tail is short (fig. 22, B), the anal aperture being 135μ to 145μ from the posterior end. The

Nigutre At.-Male tail of I)ighharyne xpiralis rectal glands are very conspicuous. The tail end is without sphes or papilate, but the tip is rounded and slightly set off by a constriction from the region anterior to it.

DEVELOPMENT IN FINAL HOST

Third-stage larvae of D. spiralis recovered from the two species of isopods, the isoporls having been fed on eggs of the nematode collected from the ruffed grouse, were fed to bird hosts, with the results shown in Table 4.

Table 4.-Development of Dispharbax apiralis. in wamous bird hosty

The nematodes were fully cleveloped, the female worms being gravid and their eggs embryonated, 27 days after the ingestion of the larvae by the bird host. In all cases the adult nematodes were concentrated in one area of the proventriculus, and this area was thickened and ulderated. The heads of the woms were found tightly burier in the wall and on being forcibly extracted were seen to be stamed with blook. None of the birds showed serious clinical eflects from the infection, possibiy because of the small number of nematodes present in cach case.

The exphanation of the negative results in the case of the experimental feedings of chickens is not apmarent. From 2 to 20 harvae were led in these cases, the larvae origimating from several difterent lots of isoporls (all specimens of Porcellio scaber), and being feal to young chicks ranging in age from 6 to 29 days at the time of feeding. Specimens collected from the chicken in natural infestations were contpared with thase from the rulfed grouse, and no morpholoricat differences of importance were to be seen. In these experiments. however, all the materiat origimated from the ruffed grouse, and it is possible that \mathfrak{a} bindoyieal stran hats become established in that host and other game birds, the game birds heing new hosts, if one may judge by the fact that the records of collection of the parasites from them are all of recent date as compared with those of collections from domestic fowls, which are of many

Figleme set-Phird-ntage larva of Diapherrinto spirnils: A, hatad; B, 1atI years' stamding. The chicken may thus have become muelh more resistant to infection with this parasite than are game birds.

SEUROCYRNEA COLINI (CRAM, 1927) CRAM, 1930

Seurocyrnea colini is of common oceurrence in bobwhite quail of the Southeastern States. It has also been collected from that host in New Jersey and from Colinus virginianus texanus in the Philadelphia Zoological Gardens; it occurs in the turkey (Meleagris gallopavo) of Georgia, in the prairie elicken (Tympanuchus americanuy) of Wisconsin, and in the sharp-tailed grouse (Pedioccetes phasianellus) of Wisconsin and Montama. As yet it has not been reported from may country other than the United States.
The nematode is located in the wall of the proventriculus, at its junction with the gizzard; it burrows into the wall at this site,
but no pathological condition has been found which was definitely attributable to its presence.

DEVELOPMENT IN INTERMEDIATE HOST

The writer undertook an investigation of the life history of A. colimi as part of a study of the parasites of quait conducted by the cooperntive quail investigation (report by H. L. Stockard, now in press). The nematode is of fregnent orcurrence in Georgia and northem Florida, and attempts were made there to infect various ground beetles and dung beetles, with no suecess. The study was resumed at a later date in Washington, D. C., specimens of the parasite having been obtained from quait shipped Erom Mississippi. Grasshoppers and sow bugs Fave negative results in teeding experiments, but in the case of cockroaches (Blattella yermanica) experimental infections were successfully produced. This species of cockroach is the one commonly found around habjitations. but it is probable that other cockroaches, such as ocem in fields and woods, are the forms more commonly serving as hosts.

The larvae which hatch from the erges of S. colini leave the direstive tract of the cockronch and develop in the body cavity. They do not appear to encyst but develop to third-stige larvae among the tissues, from which they fuickiy emerge when the cockroach is dissected. These larvae are the largest and the most active of all the third-stage spirurid larvae considered in this study. They can readily be scen with the naked eye. being 3.2 to 3.3 mm . long by approximately 100μ wide. The head end is bluntly rounded; it is withotit lips. but the structure underlying the cuticle surgests the primordia of lips. (Fig. 23. A.) The pharynx is 24μ deep; the first part of the esophagus 225μ, the second part 1.2 millimeters long. The anus is situatel 90 to 95μ from the posterior end. The tail ends in a small, bulbous swelling which is covered with minute, refractive points. (Figs. 23: B and C.)

The larvat of S. colini are apparently fully developed at the end of 18 days in the cockroach, as they do not change in size or appenr-
ance between the eighteenth and the forty-fifth days; however, it is only at the end of a 45 -lay period that their infectivity for the final host has been tested, with the results given in Table 5 .

DEVELOPMENT IN FINAL HOST

Third-stage larve of S' coline were fed to the following birts with the results indiated in Table 5 .

The specinums collected from the quail and from the chicken at the end of 13 days were composed of fourth-stage larvae and immature adults. The former were 4.2 millimeters in length at that time; the head structures were not fully developed, and the bulbous swelting was still present on the tail. Of the immature adults which were also present, the mates were 5.5 millimeters long; the caudal ahe and the candal papilae were well formed, there being 10 pairs of the latter, 9 pairs of which were situated laterally and 1 pair, just antrior to the clonenl aperture, situated slighty more ventrally. The females were $6: 3$ millimeters long; the location of the vulva was Fouph and that of the anms $17 \overline{0}$, , from the posterior ent.

The specimens collected from the quail 41 days after the experimontal feoling eomprised 13 femates mad 5 males. When collected they were stained with bloon pigment, especially in the case of the males; the pigment was most noticerble in the head region. The males were from 7 to 8 millimeters long by 175 to 200μ wide; the spicules were 2 milimeters and 384μ long, respectively. Development was apparently complete at that time; in a considerable number of specimens coliected from matural infestations the males were (i) 10) 10 millimeters long, with the spicules 2 millimeters and 365 to 400μ long. respectively. The females, at the end of the 41 -day periocl, were from 13 to 15 millimeters long; the eggs in the uteri wre embryonated and were shown to be infective by experimental feeding to ecokroaches, with subsequent development of third-stage larrae in that host. It is probable that the females increase somewhat in si\%e after the forty-first lay, as specimens collected in natural infestations had a maximum length of 18 millimeters. The anas in adult female specimens was 260 to 332μ from the tail end, and the vulva was 760 to 960μ anterior to the anus. (Fig. 25, B and C.)

The head structures of adult specimens of S. colini are very distinctive. (Fig. 24.) There are four lips, of which those situated dorsaliy and ventrally are deeply divided into two parts, in such a manner that in lateral view the head appears to bear four conspicuous papillae. Each of the four parts of these lips bears on its outer edge a prominent thumblike extension. The lateral lips are very large; each bears two digitiform processes on its inner surface and two lateral winglike expansions which project into the median groove of the dorsal and ventral lips in such a mamer as to give the appearance in some views of being processes from the latter lips.
The male tril (fig. 25, A) is also distinctive, the caudal alae being short and wide, with coarse, transverse striations. The number and position of the caudal papillae vary slightly. Nine or ten pairs may be present, or occasionally 9 papillae on one side and 10 papillae on the other side; they are ustaily arranged in two practically straight rows, but in some specimens one pair, or occasionatly an umpaired

Fiavie: 0.4.-Mend of Seturocyrnce colini: cn faca view; semldingrammatic papilla, is situated more ventrally and just anterior to the cloacal uperture.

The experimental infection of a chicken here klescribed constitutes the first record of the collection of S. colini from that host. The chicken was only 2 datys old when fecl.

That the three negative results, namely, those in a quail, chicken, and turkey, were all cases in which the observations were made 30 days after the feeding, whereas the three positive results, namely. those in two quail and a chicken, were observations made at 13 days in two cases and at 41 days in one case, probably represents merely a coincidence. But the possibility is suggested that at 30 days the nematodes are not in the same location as at an earlier and again at a later date, and that this fact may account for their not being found in those cases. Additional experiments are desirable in order to make further observations at the 30 -day period.

SUMMARY

The present study furnishes information concerning the life histories of six nematodes of the superfamily Spiruroidea, occurring in birds; three families, namely, the Spiruridae. Acuariitae, and Tetrameridae, are represented. In one case. involving a member of the Spiruridae, Gongylonema ingluvicola, the adult nematodes were deyeloped experimentally in a chicken and a rabbit from larvae found in natural infestations in the dung beeties Phanacus vindex and Copris minutus. In the other cases the entire life cycle was artificially produced. For a second member of the Spiruridae, Seurocymea colini, the cockroach (Blattclla germanica) was found capable of serving as intermediate host. Of the Acuaridae, two species of

Cheilospirura, C. hamulosa and C. spinosa, were developed in grasshoppers (Melanoplus femurrubrum and M. differentialis) as intermediate hosts, and a species of Dispharynx, D. spiralis, was developed in isopods (Porcellio scaber and Arnadillidium malgare). Of the Tetrameridae, Tetrameres americana was developed in grasshoppers (Melanoplus femarrubrum and M. differentialis).

Fxperimental development of the adult spirurids was accomplished in the following bird hosts: Tetrameres americance in the chicken (Gallus gallus), domestic duck (Anas platyrhyncha domestica), domestic pigeon (Columba livia domestica), bobwhite quail (Colinus virginiamus), and ruffed grouse (Bonasa umbellws); Cheilospirura hamulosa in the chicken; O. spinosa in bobwhite quail and ruffed grouse; Disphavynas spiratis in bobwhite quail, ruffed grouse, and the domestic pigeon; and Seurocymea coline in bobwhite quail and, as immature specimens, in the chicken.

Differential characteristics of the third-stage larvae of the five species of spirurids developed experimentally in the arthropods include size, activity, and encystment. The size of the larvae varies

Figurg 25.-Sturvcyrnéa collni: A, male tall; 13, femaln tall; C, ovejector
greatly, the length being in the calse of Cheilospirwo hamulosa 700μ, in the case of C. spinosa 850μ, in the case of Tetrameres americmal 1.8 to 1.9 mm ., in the case of Dispharynx spiralis 2.9 to 3.2 mm ., and in the case of Scurocyrnea colini 3.2 to 3.3 mm . The larger the larvae, the greater the activity shown by them when the intermediate host is dissected; those of D. spiralis and S. colini are outstretched and emerge from the tissues quickly, crawling and swimming with great agility; those of T. americana are coiled rather tightly but soon uncoil and become fairly active; those of C. hamulosa and C. spinosa on the other hand are tightly coiled and comparatively inactive for a considerable period and seldom become completely outstretched under such conditions. The three smallest harvae, those of C. hamulosa, C. spinosa, and T. americana, all of which are in grasshoppers, are contained in thin-walled cysts, but the larger larvae, those of D. spiralis in isopods and those of S. colimi in cockroaches, appear to be unencysted in the tissues of those hosts.

As regards the length of time for development in the intermediate host, the following observations were made: The infectivity of the lurvae for the final host was demonstrated as early as 22 days after
irtificial infection of the arthropod with θ ．hamulost， 25 days after infection with G ．spinosa，and 26 days after infection with D ．spiralis． With S ．colind infectivity was demonstrated only at the end of 45 days，but the havae appored morphologically as fully developed on the eighteenth day as on the forty－fifth day．The infectivity of T＇． americanat was demonstrated atter a ti2－day perion，hat it is thonght probuble that athorter period would suthee．

With reference ta the lengeth of the period of development in the linal host，before maturity is renchert，D ．spiallis matheed in 27 days， S．colini in 41 days，T．amficuna in 40 days，C ．spinowa in ty days， and θ ．hamalosa in 76 days．The lenath of this perion of develop－ ment appears to be corredated with the dearee to which the nematoles penctrate the tissues of the final host and，when deep penctation occurs，to be correlated also with the density of the tissue．D．spiralis does not penetrate，except for the head end of the worm，which is buried in the manessa of the proventriculus；the penctration of s． rolini is shallow and the tissue sort，at the junction of the proven－ triculns and gizard ；the penetration of T ．americona is deep but appears to take place through the camats of the grands of Lieberkaehn and to be therefore comparatively easy；that of a ．spmosa is shatlow but through dense tissue，namely，the comeons layer of the wizanel； and finally，the penetration of \mathcal{C}^{\prime} ．hamulowa is both deep and through very dense tissue，that of the muscular wall of the gizzame．

The greatest damare to the final host was observed during the period of invasion of the wall of the digestive tract by the nematores： climeal effects were most severe am the mortality highest at that \therefore tage．

LITERATURE CITED

11）At，\＆N，A．A．．：mul（ikoss，A．（）．

（ㄹ）Dinvils．If．A ．
 illus．Lomdon．
（：3）Jisiderá，l．

（．）Cli，m，Pi．Ii．

（fi）

 dgr．Terh．Hul．41）， 14 ［r．illus．
（6）Dumang，に゙，M，

is）
 Naturw．たl．（1860）42：59\％－736．illus．
（9）Drasche，R．vox
1884．RETISION DER IN JER NEMGTODEN－GAMMLLSG DESK，K，ZOOLOGISCHEN HOFCAHNETES BEFINDITCHEN ORTGLNHT－FNEMPLARE DIESING＇S UND Motix＇s．Zool．－Bot．Gesell Wien，Verhandl．（1883）33：107－ 118．193－218，illus．
(10) Molin, R.
1858. prospectis helminthti, qCat in prodromo macnae mecmintho-
 Math. Naturw. Kl. 30 (14): 127-10s.
(11) Paxs, G. I'.

(1:) Rishmat, A.

(13) -_ Iesmy, A., and Sroors, P.
 'rabes bakastres des onsentx. Compt, Fend. Soc. Biol. [Paris] (Ame tif) 73: $022=-624$.
(1:1) Semmr, L. G.
 Soc. Biol. [l'atis] (Anltée fi6) $76: 300-393$, illus.
(1:3)
 (881 79 : 934-938. illus.
(16) Skroman, K, f.

(17) Stafsemi, H. J., amd Kotmix, A.
 (ikorse is micticas. dehr. Amer. Vet. Met, Assoc. (in. s. 20)

(1.S) Smossich, M.
 liol. Soc. Adriat. Sci. Nat. Trieste 12: [49]-ñ6.
(19) Stiani, 1:
 jiss. Univ. Sist. Zool. lust. Riga Darbi No. 29, pr. 1-29. [Rewinterd from Actar [iniv. Latriensis $20: 1-20$. 1920 .]

ORGANIZATION OF TIIE UNITED STATES DEPARTMENT OF AGRICULTURE WhEN THIS PUBLICATION WAS LAST PRINTED

Scerefary of Agriculture.	Hyde
	R. W. Dusimp.
Director of Scientift Work	A. F. Woons.
Director of Requlatory Work-	W. G. Camibell.
Dircctor of Extension Work_-_-------.-	C. w. Warburtos.
Dircetor of Personnel and Businces Administration.	W. W. Stockberger
Director of Information	M. S. Eisenhower.
Solicitor.	E. f. Marbiall.
Weather Bur	Citames F. Maryta, Chiff.
Burens of Animal Induwry	John R. Momler, Chicf.
Burcan of Dairy Industry	O. F. Reed, Chicf.
Burenu of Piont Tulustry.	Wilctam A. Taytor, Ghicf.
Forest Servic	R. X. Stuart, Chief.
Bureau of Chemistry and Soils	II. G. Knieht, ('hicf.
Burcout of Entomology-.---	(. I. Mahlatt, Chicf.
Burcau of Biohofical Suro	Pave G. Remngton, Chiff.
Burcau of Prblio Rouds	Thomas Ih. MacDonald, r'lief.
Burcat of Apricultural Economic	Nits A. Olsen, Chicf.
Bureau of Home Economicx.	Louide Stantey, Chiff.
Plant Quarmine and Control Adminixtration.	Lee A. Strong, ('hief.
Grain Futures Administration--_-	J. W: T. Duvel, Chief.
Food and Drwg Administration	Wadter G. Campheld, Dirretor of Regulafory Wort, in rharge.
Office of Esperiment Stations	-. Chicf.
Offee of Cooperative Extrusion Work	C. B. Smitil Chief.
Library	

This bulletin is a fontribution from
Zootogist, ('hief.

[^0]: of the lurean of Fintomology, have asslsted the wriser most generously by sumpiying
 Gurear of Entomology, and t. O. Maloney, of the Smithoonian Institation, Identified the dung beties and the lsomots, respectlvely. The Antmat Hushandry Division of the Burmu of Anmal Industry supplen day-aid, facubator-hatetimd chackens. The ipestimation of parastes of ruffed grouse was underaken in cooperntion with the New baphand hafom firouse luvestigaton Cotimittee: the writer is espectally indebted to A. O. Gross of that committee for obtaining the live grouse for the feeting experimonts. and for collectlay nad subnitting unpreserved spechmens of Dispharynx ppiralis and Cheitospirura aphnosa from grolize. The study of parasites of bobvhite punil wis uadertaken in cooperation with the Lurenu of Blological Survey, and the writer is especinily indebted to H. L. Stoddard, of that bureat. for ald in obtatalig materin. W. B. Coleman, of the White oak quat farm, Mtchmond. Va., has also been most generous in has cooperation. The Conncerleat (iamo Commission made possible the succe日five completion of the ilfe-history exjerlmedts on Sctiocyrnea colini by furnishing quail, originating fo Mississtppi, which were infected with that parasite.

[^1]:

[^2]: TII. L. Stomard examided orer 400 ghah from the Southeastern States: a report of this study for now in press.

