
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 
Institute for Food and Resource Economics 
University of Bonn 

Discussion Paper 2011:2 

Bayesian estimation of non-stationary  
Markov models combining micro and macro 

data 

Hugo Storm 
University of Bonn, Institute for Food and Resource Economics, Bonn, Germany 

hugo.storm@ilr.uni-bonn.de  

Thomas Heckelei 
University of Bonn, Institute for Food and Resource Economics, Bonn, Germany 

thomas.heckelei@ilr.uni-bonn.de   

Ron C. Mittelhammer 
School of Economic Sciences, Washington State University, Pullman 

mittelha@wsu.edu  
 

The series "Agricultural and Resource Economics, Discussion Paper" contains preliminary manuscripts which
are not (yet) published in professional journals, but have been subjected to an internal review. Comments and
criticisms are welcome and should be sent to the author(s) directly. All citations need to be cleared with the 
corresponding author or the editor. 
 
Editor: Thomas Heckelei 
Institute for Food and Resource Economics 
University of Bonn  Phone: +49-228-732332 
Nußallee 21  Fax: +49-228-734693 
53115 Bonn, Germany  E-mail: thomas.heckelei@ilr.uni-bonn.de 



Agricultural and Resource Economics, Discussion Paper 2011:2 
 

1 
 

Bayesian estimation of non-stationary Markov models 
combining micro and macro data

Hugo Storm, Thomas Heckelei, Ron C. Mittelhammer 

Abstract 
We develop a Bayesian estimation framework for  non-stationary Markov 

models for situations where both sample data on observed transitions between 
states (micro data) and population data, where only the proportion of individu-
als in each state is observed (macro data), are available. Posterior distributions 
on transition probabilities are derived from a micro-based prior and a macro-
based likelihood, thereby providing a new method that combines micro and 
macro information in a logically consistent manner and merges previously dis-
parate approaches for inferring transition probabilities. Monte Carlo simula-
tions for ordered and unordered states show how observed micro transitions 
improve the precision of posterior knowledge. 

Keywords: Bayesian estimation, Markov transitions, prior information, multino-
mial logit, ordered multinomial logit 
JEL-classification: C11, C81 

1 Introduction 
In this paper a new Bayesian estimation framework for inferring the transition 
probabilities of non-stationary Markov models is developed. Non-stationary Mar-
kov models facilitate analysis of factors influencing the probability that an indi-
vidual will transition between predefined states. Data used for estimating Markov 
models can either be panel data, where the specific movement of an individual 
between states is observed over time, or aggregated data, providing only the num-
ber of individuals residing in each state over time. Following Markov terminolo-
gy, we refer to such panel data and aggregated data as micro and macro data, 
respectively. The overall objective of our approach is to combine micro and ma-
cro information into a unified and consistent estimation methodology  
Examples of empirical problems for which the preceding types of macro and mi-
cro data are relevant are readily available in the literature. One example is the 
analysis of EU farm structural change, where structural change is defined as farm 
size or production specialization change over time (see ZIMMERMANN et al., 2009 
for a review of that strand of literature). In that instance population data on the 
number of farms in specific size or specialization states is available from the Farm 
Structure Survey. Micro data, offering observed transitions of individual farms 
between the states, is available in the Farm Accountancy Data Network, albeit for 
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a relatively small sample of farms. Another example is the analysis of voter tran-
sitions in political science. Here, macro data on the shares of candidates is usually 
available from official statistics, whereas micro data can be obtained from voter 
(transition) surveys. Additional examples of similar data situations can be found 
in the context of Ecological inference problems, which are closely related to Mar-
kov processes (WAKEFIELD, 2004, LANCASTER et al., 2006).  
This paper utilizes a Bayesian framework that allows prior information to be in-
corporated into the estimation of non-stationary Markov models within an estab-
lished and consistent probabilistic framework. Moreover, it defines a rigorous 
statistical method for combining previously distinct micro and macro data-based 
classical estimators. Specifically, we offer a method for utilizing a sample of mi-
cro observations as prior information weighting a macro data-based likelihood 
function. The approach is presented for both ordered and unordered Markov 
states. Monte Carlo simulations are used to assess how the inclusion of prior in-
formation affects the posterior as well as the numerical stability of the sampling 
algorithm, and the degree to which estimator performance is improved under dif-
ferent micro sample sizes for both specifications. The combination of micro and 
macro data was considered previously in the context of a medical application by 
HAWKINS and HAN (2000). They analyzed macro data obtained in repeated inde-
pendent cross sectional surveys within a city district together with limited micro 
data obtained from respondents who where ‘coincidently’ interviewed in two 
consecutive cross sectional surveys. The behavior under study was the benefits of 
an intervention program attempting to modify drug use-related behavior. They 
defined a linear model that jointly explained the marginal probabilities of being in 
a use state in a certain time period (based on “standard observed proportion esti-
mates” from aggregate data) and bivariate transition probabilities relating to state 
transitions (from the micro data), linking the two through an appropriate asymp-
totic covariance structure and constraints imposed by the sampling design. The 
Bayesian approach that we provide offers a more general full posterior informa-
tion approach for combining micro and macro data-based information on transi-
tion probabilities and allows the estimation of functional relationships that link 
transition probabilities with their determinants, in addition to not relying on 
asymptotic properties. 
The paper is organized as follows: First, a Bayesian framework for non-stationary 
Markov models is developed in section 2. Two different specifications of the tran-
sition probabilities are discussed, an appropriate likelihood function and prior 
density are defined, and issues relating to computational implementation are iden-
tified. The design and results of a Monte Carlo simulation experiment are pre-
sented in section 3, where the impact of the prior on the posterior distribution and 
estimator performance are analyzed. Section 4 concludes and discusses areas for 
further research. 



 

3 
 

2 Bayesian Approach for non-stationary Markov models 
A Markov process provides a conceptual model for the movement of individuals 
between a finite number of predefined states, 1,...,i k= , within the context of a 
stochastic process. The k  states are mutually exclusive and exhaustive. A Markov 
process is characterized by a ( )k k×  transition probability (TP) matrix1 tP . The 
elements ijtP  of tP represent the probability that an individual moves from state i  
in time 1t −  to j  in time t . The ( )1k× -vector tn  denotes the number of indi-
viduals in each state i  at time t and evolves over time according to a (first order) 
Markov process  

 1t t t−′=n P n . (1) 

In a non-stationary Markov process, the TPs change over time2 1,...,t T= . Data 
used for estimating a non-stationary Markov process can either be macro or micro 
level. In the case of macro data, only the aggregate numbers of individuals in the 
states, ,tn  is observed at each time period. For micro data, the movement of each 
individual between states is also observed over time. Thus, the ( )k k× -matrix tN  
with elements ijtn  representing the number of individuals that transition from 
state i  at 1t −  to j  in t , is directly observed.  
The specification of the TP matrix tP  depends on the underlying behavioral 
model. In the following subsection we discuss specifications corresponding to 
ordered as well as unordered Markov states. Afterwards the posterior density con-
sisting of a data likelihood function ( )1,..., TL n n β , representing the macro data, 
and a prior density ( )p β , representing the micro data is derived.  

2.1 Specification of the Transition Probability Matrix 
For appropriate specification of the TPs, the nature of the relationship between 
Markov states need to be considered, and we discuss two different behavioral 
models that differentiate between ordered and unordered Markov states. We argue 
that for ordered Markov states the ordered logit model is superior to the more 
common multinomial logit model with respect to both model assumptions and 
from a computational point of view.  

                                                      
 
 
1Bold letters are used for vectors or matrices. 
2Depending on the problem context, one could also consider only two time periods observed over 
various regions, or a combination of multiple time and regional observations.  
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2.1.1 Multinomial logit model 
In cases where the states of the Markov process are unordered, the multinomial 
logit model is a suitable specification for the TPs3. In order to define notation, and 
to establish a consistent modeling context for use throughout the rest of the paper, 
we provide a brief review of the logit model derivation.4 The specification based 
on the multinomial logit model assumes that the transition of individuals between 
different states can be represented by a random utility model. The utility that 
would accrue to individual l  upon moving from state i  in 1t −  to j  in t  is de-
noted as ijtlU :  

 ,ijtl ijt ijtlU V ε= +  (2) 

where the deterministic component of utility is specified as 1ijt t ijV −′= z b , the 
( )1zn ×  vector 1t−z  represents observations on lagged exogenous variables, and 

ijb  is a ( )1zn ×  vector of unknown parameters. Note that the deterministic part 
varies only over time and not over individuals because aggregated data is consi-
dered. Consequently, the deterministic component of utility reflects exogenous 
variables that affect the utility of all individuals alike. The random error ijtlε va-
ries over time and individuals. An individual chooses a transition that maximizes 
its utility, so movement from state i  in 1t −  to state j  in t  occurs if 

( )1 2, ,...,ijtl i tl i tl iktlU Max U U U= . The probability that an individual chooses the 
transition from state i  in 1t −  to state j  in t  is  

 

( )
( )
( )

Pr ,

Pr ,

Pr , ,

ijtl ijtl iftl

ijt ijtl ift iftl

iftl ijtl ijt ift

P U U f j

V V f j

V V f j

ε ε

ε ε

= > ∀ ≠

= + > + ∀ ≠

= − < − ∀ ≠
 

(3) 

which can be rewritten as the value of the cumulative distribution of j
tlε  evaluated 

at the argument ,ijt iftV V for f j− ≠ , where j
tlε  denotes a vector whose elements 

are given respectively by iftl ijtlε ε−  for f j≠ . Letting ( )j
tlf ε  denote the proba-

bility density of j
tlε , the appropriate cumulative distribution value can be ex-

pressed as  

                                                      
 
 
3 A multinomial probit model could be an appropriate alternative and provides flexibility in the error 
structure specification, but is left to future work because of the additional computational complexi-
ties involved. 
4 Textbook expositions of the standard multinomial logit model, which are the foundation of the 
derived model, can be found in TRAIN (2009) or MITTELHAMMER et al. (2000). 
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( )

( ) ( ) ( ),

Pr ,

,
ijt ift

ijtl iftl ijtl ijt ift

j j
iftl ijtl tl tlV V

f j

P V V f j

I f d

ε ε

ε ε
−∞ −

≠

= − < − ∀ ≠

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∏∫ ε ε

 

(4) 

where the indicator function ( ) ( ),a bI x  takes the values 1 if a x b< <  and equals 
0  otherwise. The logit model assumes that the individual ijtlε  are iid random 
draws from a Gumbel distribution. The random vector j

tlε  then follows a logistic 
distribution for which a closed form expression for the integral in (4) can be ex-
pressed as 

 
1

1

ijt t ij

ift t if

V

ijtl ijtV

f f

e eP P
e e

−

−

′

′= = =
∑ ∑

z b

z b , (5) 

where the last equality follows because the deterministic component of utility 
does not vary between individuals (recall (2)). In order to identify the parameters 
in (5) normalization is required because only the difference in utility matters, and 
not their absolute value. Normalization is achieved by using the last state as a 
reference case and transforming equation (5) to  

 
( )

( )

1 1

11
1

1

,
1

t ij ik t ij

t ift if ik
ijt k

ff

e eP
ee

− −

−−

′ − ′

− ′′ −

=

= =
+∑∑

z b b z β

z βz b b

 

(6) 

where , and thus 0.ij ij ik ik≡ − =β b b β  The development of the model implies 
that for each row 1,...,i k=  of the transition matrix, tP , there is one multinomial 
model analogous to (6) specified across states 1,...,j k= .  

2.1.2 Ordered logit model 
If the Markov states are ordered, an ordered choice model is an appropriate speci-
fication for the underlying behavioral model. In this case it is assumed that there 
exists an unobserved continuous latent variable *

itlY  for each individual l  that 
determines the value of the observed variable itlY  according to 

 

*
1

*
1

*
1

1 if

if 2,..., 1

if

itl itl

itl j itl j

itl k itl

Y Y c

Y j c Y c j k

Y k c Y
−

−

= ≤

= < ≤ ∀ = −

= <

  (7) 

for 1,...,i k=  where the jc ’s are the thresholds for each Markov state and the 
index i  indicates the an individual was in state i  at 1t − . The unobserved latent 
variable *

itlY  consists of a deterministic part 1t i−′z β  and a random part *
itlε , and is 

defined by 
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 * *
1 1,...,itl t i itlY i k−′= + ∀ =z β ε . (8) 

For the deterministic part the ( )1zn ×  vector of unknown parameters iβ  are al-
lowed to differ between the k  different states in 1t − . As in the preceding multi-
nomial logit model, the deterministic part varies over time but not over individu-
als. Letting o kc and c≡ −∞ ≡ ∞ , the probability of an individual being in state 
j at t , given that it is in state i  at 1t − , is then given by 

 ( ) ( )*
1Pr Pr 1,...,itl j itl j ijtl ijtY j c Y c P P j k−= = < ≤ = = ∀ =

 
(9) 

and similarly for 1j =  and j k= . The last equality follows from the fact that the 
exogenous variables do not vary over individuals and the errors *

itlε  are iid over 
individuals. If it is assumed that the errors *

itε  are iid random draws from a logis-
tic distribution the model results in an order logit model5 and the TPs in (9) can be 
expressed in closed form as 

 

( )
( )
( ) ( )

1 1 1

1 1 1

*
1

*
1 1

* *
1 1 1

Pr

Pr

Pr Pr

1,..., .
1 1

j t i j t i

j t i j t i

ijt j it j

j t i it j

it j t i it j t i

c c

c c

P c Y c

c c

c c

e e j k
e e

ε

ε ε
− − −

− − −

−

− −

− − −

′ ′− −

′ ′− −

= < ≤

′= < + ≤

′ ′= ≤ − − < −

= − ∀ =
+ +

z β z β

z β z β

z β

z β z β

 

(10) 

j k= . The specification, which consists of one ordered choice model for each of 
the 1,...,i k=  Markov states, allows interpreting the probabilities in (10) as one 
row of tP . 
One important difference between the ordered logit and the multinomial logit 
model is that only one error term, instead of one error term for each alternative, is 
considered for each individual. This implies that the assumption of “Independence 
of Irrelevant Alternatives” (IIA) does not apply to the ordered logit model. This is 
more appropriate whenever the alternatives are ordered since in this case it can be 
expected that the error associated with one state is more similar to the error of an 
alternative close to it than to an alternative further away (TRAIN, 2009). Also from 
a computational point of view, the ordered logit specification is often preferable 
since only zk n  (or ( )1z zk n k n+ −  if thresholds jc  are estimated) parameters 

                                                      
 
 
5 Assuming that the *

itε  are random draws from a normal distribution would result in a probit (see 
footnote 3). 
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need to be estimated, as compared to ( 1) zk k n− parameters for the multinomial 
logit model.  
A further advantage of the ordered choice model is that the interpretation of the 
latent variable is often straightforward. For example, in the case of farm structural 
change where Markov states refer to size classes, the latent variable can be inter-
preted as farm size or in the medical context where classes refer to different stages 
of illness, the latent variable can be interpreted as the degree of illness. The deci-
sion between an ordered and unordered choice model is, however, not always 
straightforward and can depend on the problem context and decision makers’ 
behavioral characteristics. In the voter transition example, one could regard the 
candidates as unordered choices, but alternatively one could also argue that they 
are ordered according to a one-dimensional political spectrum (“right” to “left”). 
In that case both models have their justification and the choice between the two 
must be guided by theoretical and/or substantive behavioral arguments.  

2.2 Data likelihood 
In order to implement a Bayesian framework of analysis, a likelihood function 
needs to be defined. The foundation for this likelihood specification is provided 
by the first-order non-stationary Markov process proposed by MACRAE (1977). 
For the specification of a macro data based likelihood function MACRAE (1977) 
points out that the type of available observations needs to be considered. She dis-
tinguishes the case of perfect observations, where the state proportions, tx , are 
observed over time for the entire population of size N , from imperfect observa-
tions where only the state proportions, ty , of a random sample of size tM N< is 
drawn and observed at each time period. In the case of perfect observations the 
distribution of tx  is fully characterized by 1,t−x  which is not the case for imper-
fect observation where the distribution of ty  also depends on earlier observations, 

2 0,...,ty y− , that provide additional information on ty . For the latter case 
MACRAE (1977) proposed a limited information likelihood concept which is ap-
propriate whenever macro data is available for a sample of the population. In the 
following, however, we restrict ourselves to the case of perfect observations, i.e., 
a census type of data set.  
MACRAE (1977) shows that in the case of perfect observations, the state propor-
tions are distributed as a weighted sum of independent multinomial random va-
riables with probabilities equal to the corresponding rows in tP  and weights 
equal to the state proportions in 1t − . The resulting likelihood function is given 
by  

 
( ) ( )1 , 1

1 1 1

,..., ! / !ijt

t t

T k k

T i t ijt ijt
t i j

L n P η η−
∈= = =

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑∏ ∏ ∏
Η

β n n
H

, (11) 
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where 'itn s  are the elements of the data vector tn . The summation in the likelih-
ood expression (11) is over the set tH  of all matrices tΗ  having rows sum to 
corresponding elements in 1t−n  and columns sum to the corresponding entries in 

tn , so that  

 , 1, ,t t iht i t hjt jt
h h

n n i j−

⎧ ⎫
= = = ∀⎨ ⎬
⎩ ⎭

∑ ∑ΗH η η ,
 

 (12) 

where ijtη denote the (unobserved) number of individuals transitioning from state 
i  at time 1t −  to state j  at time t  , and tΗ  is a matrix whose ( ), thi j  element is 

ijtη . 
The set of matrices represented by tH  is the collection of all conceptually possi-
ble outcomes of between-states transition numbers when moving from observed 
state distribution 1t−n  in time 1t −  to the observed state distribution tn  in time t . 
The number of elements in set tH  increases exponentially with the number of 
states, making the implementation of expression (11) for larger samples challeng-
ing (or impossible) from a computational point of view (for example, in the case 
of only 3 states and 200 observations, there are over 2.5 million combinations of 
( )3 3× -matrices possible if approximately the same number of individuals reside 
in each of the three states). To mitigate this dimensionality problem, a large sam-
ple approximation that avoids the computation of the set tH  is employed (see 
HAWKES, 1969 and BROWN and PAYNE, 1986). In particular, letting *

tn  represent 
tn  without the last row and *

tP  represent tP  without the last column, one can 
assume, in large samples, that *

tn  is distributed as a ( )1k − -variate normal vector 
with mean vector *

1t t−
′P n  and covariance matrix  

 ( ) ( ) ( )* * * *
1 1cov t t t t t t tdiag diag− −

′ ′= − =n P n P n P Γ , (13) 

where ( )diag ⋅  is a square matrix with the argument vector as the main diagonal 
and zero off-diagonal elements. The large sample log-likelihood, laL , can then be 
written as  

 

( )

( ) ( ) ( )
1

1* * * *
1 1

1

,...,

0.5 log .

la T

T

t t t t t t t t
t

L

−
− −

=

=

⎛ ⎞′′ ′− + − −⎜ ⎟⎜ ⎟
⎝ ⎠

∑

β n n

Γ n P n Γ n P n  
(14) 

2.3 Prior information 
As noted in the introduction, the intent of the Bayesian framework is to combine a 
macro-data likelihood function, as derived in the previous section, with a prior 
density representing information derived from a sample of micro observations on 
state transitions. To specify an appropriate prior density ( )p β , consider the un-
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derlying sampling distribution of the micro observations. Let itn  be the number of 
individuals that were in state i  at time t , let i

tX  be the vector of shares across 
states in t of individuals who were in state i  in 1t − , and let itP  be the i-th row 
of tP . The propensity of each individual in the micro sample to transition be-
tween states is in accordance with the appropriate elements of tP . Analogous to 
the case of macro data, the distribution across states in t of individuals who were 
in state i  in 1t −  is multinomial around mean itP  with size itn . The observed 
number of individuals in each of the k states in t, , 1,...,itn i k= , is then the cor-
responding weighted sum of vectors , 1,..., .i

t i k=X  Therefore, the prior density 
can be represented as a likelihood similar to (11), except that now information 
about the individual transitions ijtn are available, making the summation over the 
set tH  unnecessary because the actual transitions are observed. Hence the like-
lihood simplifies to  

 
( ) ( ) ( )1 , 1

1 1 1

,..., ! / !ijt
T k k

n
T i t ijt ijt

t i j

p L n n−
= = =

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
∏∏ ∏β β N N P , (15) 

where the ( )k k× -matrix tN  has elements ijtn  representing the number of indi-
viduals that transition from state i  at 1t −  to j  in t . We emphasize that for the 
case of aggregated data discussed above, the distribution of tn  differs between 
imperfect and perfect observations, while for micro observations, this distinction 
does not apply. In the latter case, the distribution of tx  is fully characterized by 

1t−x  regardless of whether a sample or the entire population is observed. The fun-
damental difference is that in the case of micro observations, individuals in the 
sample in time period t  are the same as in 1t −  which is usually not the case for 
macro data. Consequently, information earlier than 1t−x  contains no additional 
information. 

2.4 Computational Implementation  
In order to conduct Bayesian inference in the model depicted above, integrating 
and/or taking expectations with respect to the posterior density ( )h β d is re-
quired. An analytical approach to such computations is intractable, and therefore 
sampling from the posterior density to implement Monte Carlo integration is pur-
sued in this section. The sampling is accomplished via a Markov Chain Monte 
Carlo (MCMC) method, namely, the Metropolis Hastings (MH) algorithm. The 
MH sampler is capable of generating a (pseudo-) random sample from almost any 
target distribution that is known up to a normalizing constant (see CHIB and 
GREENBERG, 1995). For our purposes, we approximate the posterior mean, which 
is the optimal Bayesian estimator under squared error loss, by calculating the 
mean of an iid sample from ( )h β d for sufficiently large sample sizes.  
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Specifically, a simple random walk MH algorithm is employed to obtain a sample 
of R  outcomes, ( ) ( )1 , ..., Rβ β , from the posterior density. For each iteration 

1,...,r R=  of the MH algorithm u  is drawn from ( )0,1U  and a candidate canβ  
is drawn from the multivariate normal generating density, ( )( )2,r σβ IN . The 
tuning parameter σ  can be used to control the acceptance rate of the algorithm. 
The candidate is accepted, ( 1)r can+ =β β , if ( )( ) ,r canu α≤ β β , otherwise the chain 
remains in its current state, ( 1) ( )r r+ =β β , where following CHIB and GREENBERG 
(1995),  

 

( )( ) ( )
( )( )

( )( )
( )( )

( )
( )( )

2

2

; ,
, min ,1

; ,

min ,1

r cancan
r can

rcanr

can

r

h

h

h

f

h

f σ
α

σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

β d

β d

β d

β β I
β

β d

β
β β I

, (16) 

with the last equality following from symmetry of the multivariate normal proba-
bility density function ( )( )2; ,rcanf σβ β I . For reasons of computational stability, 
(16) is transformed to  

 ( )( ) ( ) ( )( )( ), min exp ln ln ,1rcan c nr ah hα ⎡ ⎤= −⎢ ⎥⎣ ⎦
β β β d β d , (17) 

and ( )ln ln ( ) ln ( )h L pβ β β∝ +d d , which mitigates computer overflow prob-
lems. In cases where the number of parameters to be estimated is large, a “Block-
at-a-Time” algorithm proposed by CHIB and GREENBERG (1995) is employed in 
which the parameters to be estimated are divided into two blocks.  
The sampling algorithm is used to obtain an iid sample from the posterior of size 

samplen  after a burn-in period of burnn  iterations. The tuning parameter σ  of the 
proposal density is chosen such that an acceptance rate in the interval [ ].2, .3 is 
obtained.  

3 Monte Carlo simulations on the effects of prior information 
In this section we analyze the influence of prior information, in the form of a 
sample of micro observations, on the posterior distribution and associated estima-
tors’ performance as well as on the behavior of the sampling algorithm via Monte 
Carlo simulations. Based on an underlying population of 10,000indn =  individu-
als, four different scenarios are considered regarding the availability of prior in-
formation, including a case of no micro observations, and micro samples of n = 
100, 500, and 1000. The scenarios are further distinguished by the number of 
Markov states ( 3, 4,5k = ). Data is generated for 100T = time periods and 
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6zn =  explanatory variables including a constant. All simulations are undertaken 
for a Markov model based on either the multinomial logit specification or the 
ordered logit specification discussed above, and are performed using Aptech’s 
GAUSSTM 11. 

3.5 Data generating process 
The data generating process distinguishes between the two different behavioral 
models, based on the multinomial logit and ordered logit specification discussed 
in section 2.1. In both cases the parameterization is chosen in such a way that the 
deterministic part constitutes roughly one third of the model’s total variation. 
Further, in both cases indn  individuals are considered that transition over time 
between the k  states in accordance with the underlying behavioral model. The 
initial state of each individual in 1t =  is randomly chosen with probability equal 
to 1,...,iu i k∀ = , where the probability is the same for all individuals and given 
by 

1

k

i i h
h

u u u
=

= ∑  with ( )~ 0,1iu iid U .  
In the multinomial logit model each individual l  chooses the state of the next 
period based on the utility, ijtlU , associated with a specific transition from state i  
in 1t −  to j  in t . The utility ijtl ijt ijtlU V ε= +  consists of a deterministic part 

1ijt t ijV −′= z b  and an individual random part ijtlε  (see equation (2)) and is generat-
ed by drawing the elements of the (lagged) exogenous variables 1t−z  from 

( )1,4N  and the elements of the ( )1zn ×  “true” parameter vectors ijb  from 
( )1,1−U . Since only differences in utilities are relevant, the parameters of the 

last alternative are set to zero, 1,...,ik i k= ∀ =b 0 , in order to identify the model. 
To obtain a logit model, the ijtlε  are drawn from a Gumbel (type I extreme value) 
distribution, specified by ( )

3

;0,3
ijtl

g ijtl
eF e

ε

ε
−

−= . In each time period an individ-
ual chooses the transition that maximizes utility, moving from state i  in 1t −  to 
state j  in t  if ( )1 2, ,...,ijtl i tl i tl iktlU Max U U U= . 
For the ordered logit model, the transition between states is based on a latent in-
dex value * *

1itl t i itlY ε−′= +z β  consisting of a deterministic part 1t i−′z β  and a random 
part *

itlε  (see equation (8)). The index value is generated by drawing the elements 
of the (lagged) exogenous variables 1t−z  from ( )1,4N  and the elements of the 
( )1zn ×  true parameter vectors iβ  from ( )1,1−U . The random errors *

itlε  are 
iid random draws from a logistic distribution, specified by 

( ) ( )* 1
2.3* ;0,2.3 1 itl

l itlF e εε
−

−= + . The latent index value determines the outcome of 
itlY  for each individual in each time period according to (7).  

With this sampling design a micro dataset for indn  individuals and T  time pe-
riods is obtained for both the multinomial logit and the ordered logit specification, 
and represents the full population of individuals under study. For the specification 
of the prior density, random samples of size 100, 500, and 1000 are drawn with-
out replacement from these micro datasets. The population is transformed into 
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macro datasets by simply counting the number of individuals in each state in each 
time period.  
In order to avoid dependency of the results on a specific set of parameters, 

10truen =  true models are generated using the data generating process. For each 
of the truen  true models the process is repeated 20repn =  times with the same 
parameters, but with new draws of the random errors ijtlε  or *

itlε  in each repeti-
tion. 

3.6 Performance measures  
The influence of prior information is assessed by a comparison of measures cha-
racterizing features of the posterior density, the performance of the associated 
estimator, i.e., the mean of the posterior density, and the numerical stability of the 
sampling algorithm. Regarding performance of the estimator, for each of the 

200true repn n =  simulation outcomes the squared error, i.e., the squared deviation 
of the estimates from the true value, is calculated. To obtain one scalar value 
measure for each simulation outcome the squared errors are summed over all zn  
parameters.  
For the Monte Carlo simulation a fixed burn-in period and a fixed sample size 
was employed for the MH sampler. Even though burn-in periods and the sample 
sizes were assessed using graphical measures in trial runs for each scenario and 
resulted in substantially large burn-in periods, it still cannot be guaranteed that the 
MH sample converged correctly for every simulation run. Therefore, Box-
Whisker-Plots are employed to detect outliers among the sum of squared errors of 
the true repn n  simulations as an indication that the MH sample had not converged 
appropriately. Measures characterizing the posterior density and performance 
measures relating to the estimator are then calculated based on only those runs 
that were not detected to be outliers.  
The effect of prior information on the spread of the posterior was assessed based 
on posterior variances, and was calculated on the basis of the posterior sample 
outcomes. The total variance of the posterior density was calculated by summing 
over the posterior variances of all zn  parameters in each run and the mean over 
all true repn n  simulation runs, except for any outliers, was then calculated to obtain 
one scalar value measure of the total variance.  
The analysis of the influence of prior information on the Bayes estimator is based 
on the mean square error (MSE) criterion, calculated as the mean of the summed 
squared errors between estimates and true parameter values, where the mean is 
calculated over all of the true repn n  simulation runs not detected as outliers. Fur-
ther, the MSE is decomposed into variance and bias components, where the 
squared bias is again summed over all parameters. Both the distribution of the 
sum of squared errors and the number of outliers detected for each scenario pro-
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vides an assessment of the numerical stability of the MH sampler, and the effects 
of prior information on that numerical stability.  

3.7 Results of the Monte Carlo Simulation 
The results of the Monte Carlo Simulations for the multinomial logit model are 
presented in Figure 1. Results show that considering prior information in the form 
of a micro sample decreases the total variance of the posterior density, and more 
so the larger the micro sample. The effect of prior information becomes even 
more pronounced the more Markov states are considered. Similarly, prior infor-
mation decreases the MSE of the estimator, and more so the more Markov states 
that are being considered. Decomposing the MSE into bias and variance suggests 
that the MSE is primarily determined by the variance of the estimator. In all sce-
narios the share of the squared bias is only 4 to 9 % of total MSE.  
The distribution of the summed squared errors, as depicted in the Box-Whisker-
Plots in Figure 1, provides information about the numerical performance of the 
MH sampling algorithm. Results show that more simulation runs are detected as 
outlier in the no prior information scenario (i.e. micro sample with 0 obs.), espe-
cially when considering 4k =  or 5k =  Markov states. This observation indi-
cates problems relating to the numerical stability of the MH sampler, in the sense 
that the algorithm does not converge correctly for some simulation runs. When 
considering a micro sample as prior information, substantially fewer simulation 
runs are detected as outliers, indicating that the use of prior information improves 
the numerical stability of MH sampler. 
Similar results are obtained for the ordered logit model as depicted in Figure 2. As 
in the multinomial logit simulation, results indicate that prior information reduces 
the variance of the posterior density, and more so the larger the micro sample 
considered. The same can be observed for the MSE, which decreases with in-
creasing micro sample size. MSE is mainly determined by the variance of the 
estimator and the share of the squared bias is only 3 to 9 % of total MSE in all 
scenarios except for the no prior information scenario (i.e., no micro sample for 

4k =  and 5k =  Markov states, for which the bias share is substantially larger 
with 44 and 42 %, respectively.  
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Figure 1: Results for the multinomial logit model of a Monte Carlo simulation to 
analyse the influence of prior information, in the form of a micro sample, on the 
posterior and the posterior mean estimator 

Number of Markov states: k=3 

 
 

Size of micro sample  

Measures 0 100 500 1000 

MSEa, Estimator 0.00892 0.00672 0.00414 0.00275

Sq. Biasa, Estimator 0.00042 0.00041 0.00024 0.00014

Variancea, Posterior 0.00592 0.00496 0.00312 0.00219

Outlier 12 9 7 9
Sample: 50,000;   Burn-In: 100,000;   Blocks: 1;    
σ: 1/800;   num. o coef.: 36 

k=4

 
 

Sizeof micro sample 

Measures 100 500 1000 

MSEa, Estimator 0.09394 0.04425 0.01802 0.01036

Sq. Biasa, Estimator 0.00808 0.00217 0.00108 0.00045

Variancea, Posterior 0.03585 0.02433 0.01340 0.00891

Outlier 34 9 11
Sample: 100,000;   Burn-In: 200,000;   Blocks: 1;    
σ: 1/870;   num. of oef.: 72 

k=5

 
 

Size of micro sample  

Measures 0 100 500 1000 

MSEa, Estimator 0.39920 0.13130 0.0586 0.03296

Sq. Biasa, Estimator 0.03678 0.00758 0.00336 0.00179

Variancea, Posterior 0.18702 0.10570 0.04839 0.02992

Outlier 3 1 7 9
Sample: 250,000;   Burn-In: 500,000;   Blocks: 2;    
σ: 1/580;   num. of coef.: 12 

a Calculated without simulation runs detected as outliers.  
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Figure 2: Results for the ordered logit model of a Monte Carlo simulation to ana-
lyse the influence of prior information, in the form of a micro sample, on the 
posterior and the posterior mean estimator  

Number of Markov states: k=3 

 

Size of micro sample  

Measures 0 100 500 1000 

MSEa, Estimator 0.00124 0.00115 0.00088 0.00064

Sq. Biasa, Estimator 0.00006 0.00005 0.00003 0.00004

Variancea, Posterior 0.00108 0.00103 0.00076 0.00061

Outlier 29 18 13 15
Sample: 20,000;   Burn-In: 50,000;   Blocks: 1;    
σ: 1/750;   num. ofcoef.: 15 

k=4

 
 

Size of micro sample  

Meures 0 10 500  000 

MSEa, Estimator 0.85311 0.00205 0.00118 0.00100

Sq. Biasa, Estimator 0.37768 0.00015 0.00006 0.00004

Variancea Posterior 0.00219 0.00157 0.00111 0.00082

Outlier 6 35 8 8
Sample: 20,000;   Burn-In: 60,000;   Blocks: 1;    
σ: 1/750   num. of coef.: 20 

k=5

 

Size of micro sample 

Measures 0 10 500 1000 

MSEa, Estimator 1.45498 0.00420 0.0255 0.00176

Sq. Biasa, Estimator 0.61503 0.00030 0.00021 0.00016

Variancea, Posterior 0.00576 0.00360 0.00232 0.00169

Outlier 0 48 7 7
Sample: 50,000;   Burn-In: 100,000;   Blocks: 1;    
σ 1/800;   num. o coef.: 25 

a Calculated without simulation runs detected as outliers.  
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The number of outliers detected by the Box-Whisker-Plots are used again to as-
sess the numerical stability of the MH sampler. For 4k =  and 5k =  Markov 
states, however, no outlier are detected and the entire shape of the distribution of 
the summed squared errors needs to be taken into account to obtain a more com-
plete assessment of the performance of the MH sampler. The fact that no outliers 
are detected should not be interpreted as indicating the MH sampler converges 
correctly for every run. On the contrary, when considering the distribution of the 
summed squared errors in these two scenarios it could be that - due to a poor per-
formance of the MH sampler and a large number of outliers - the Box-Whisker-
Plots failed to distinguish between correct and failed convergence of the MH 
sampler. This is important with respect to the comparison of these two scenarios 
to other scenarios because it implies that the calculated MSE and posterior va-
riance might not be accurate. It also can explain the substantially larger share of 
the bias of the MSE in these two scenarios as mentioned above.  
With respect to an assessment of the performance of the MH sampler, the results 
are consistent with the findings in the multinomial logit case, where performance 
of the MH sampler improves the larger the micro sample size considered as prior 
information. It is worth noting that the numerical problems in cases without prior 
information persist (and seem to be more severe) in the ordered logit model com-
pared to the multinomial logit model even though substantially fewer coefficients 
need to be estimated (e.g. 25 compared to 120 for 5k = ).  
Overall the results suggest that without prior information, alternative individua-
lized sampling strategies or extensions of the simple MH sampler (e.g. Parallel 
Tempering (LIU, 2008) or Multiple Try Method (LIU et al., 2000)) should be con-
sidered for successful sampling from the posterior, which could not be automated 
for the Monte Carlo simulations. This suggests that through prior information, the 
computational demands with respect to the sampling algorithm are reduced and 
that precise estimation in terms of the MSE can be achieved with the simple MH 
sampler in both the multinomial and the ordered logit model with a moderately 
sized micro sample. 

4 Conclusion 
In this paper a Bayesian estimation framework for non-stationary Markov models 
is derived that allows micro and macro data to be combined in estimation to pro-
vide more precise inference regarding model parameters. Specifically, it is shown 
how a sample of observed transitions between states at the individual level can be 
implemented as prior information within an otherwise macro data Bayesian esti-
mation framework. Moreover, the paper proposes two different models for the 
specification of the transition probabilities depending on whether the Markov 
states are unordered or ordered, using a multinomial logit and an ordered logit 
model, respectively. In contrast earlier approaches for combining micro and ma-
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cro data offered in the literature, the Bayesian framework considered here offers a 
more general full posterior information approach for combining micro and macro 
data-based information on transition probabilities and allows the estimation of 
functional relationships that link transition probabilities with their determinants, 
in addition to not relying on asymptotic properties. Monte Carlo simulations are 
used to analyze the influence of prior information on the posterior distribution and 
the performance of the posterior mean, which is the widely used Bayesian estima-
tor. Results indicate that prior information, in the form of a micro sample of data, 
improves the performance of the posterior mean estimator and reduces the total 
variance of the posterior distribution substantially. This reduction becomes more 
important, the more Markov states are considered. The results of the Monte Carlo 
Simulation also indicate that the numerical implementation of the employed MH 
algorithm improves the larger the size of the micro sample. Thus prior informa-
tion in the form of a sample of micro transitions can improve estimation in at least 
two ways: with respect to the accuracy of the posterior information on the para-
meters of interest as well as the numerical stability of the estimation approach. 
These findings and the proposed approach are subject to some limitations. First of 
all, the considered likelihood specification is only applicable to the case of perfect 
observations, i.e. if aggregated data is observed for the entire population over 
time. For situations where aggregated data is only available from a sample of the 
entire population, there are other likelihood specifications that can be considered 
for use in the proposed Bayesian framework, such as MACRAE (1977) limited 
information likelihood specification. Secondly, the number of parameters that 
need to be estimated increases with the number of Markov states, often limiting 
the number of Markov states that can be feasibly considered in empirical applica-
tions. The proposed ordered logit approach addresses this problem since substan-
tially fewer parameters need to be estimated compared to the commonly applied 
multinomial logit model. Other model specifications based on continuous Markov 
chains could be developed in which the number of model parameters is indepen-
dent from the number of Markov states. First attempts in this respect are underta-
ken by PIET (2010).  
Overall, this paper contributes to the existing literature by providing an estimation 
framework that allows for combining micro and macro data information relating 
to non-stationary Markov models in a way that is consistent with well-established 
probability calculus and leads to a minimum loss estimator that is based on full 
posterior information. The approach is relevant for a broad range of empirical 
applications in which macro and micro data are available and one is interested in 
quantifying the effect of factors that cause individuals to switch between prede-
fined states. 
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