

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

MITNTSOMA TARM MAINGGMENT SERVICE NOTES

İpril 10, 1925
Prerared by the Farm Manafement Group at University Farm, St. Paul, Minn. Ancrew Boss, G.A. Pond, L.D. Bassett, W.I. Cavert, L.F. Garey, A.T. Hoverstad

EARM POT:ER
The Horse Situation
Durine recent years there has been a rather raptid decrease in horse and mule population both in Minnesota and in the United States. Shortly after 1910 the prices of horses werc high and a period of over-production occurred.

MTMBER AND VALUE PER HEAD OF HORSS AND MUEES ON FAPMS

The climax in production was reached about 1917/and since then there has been a continual decrease in the number of colts raised per 1000 horses. Fhis indicates there is now a larger percentage of old horses than would ordinarily be the case. The use of tractors, trucks and automobiles has reduced the amount of work required of horses and has made this decrease in number of horees less tignificant than tine figures show. However, a point may be reached beyond which there may be a real shortage of horses. The number of colts foaled per thousand horses and mules for the United States has dropped from 95.1 in 1920 to 44.5 in 1925, and for Minnesota from 76 to 32 for the same years. Whe rate of decline Wh much less in 1924, which indicates that the decrease has been checked. Evidently the need of replacing old horses with younger horses is being recognized. Even tho there may be enough horses of working age at the present time, if the low rate of reporduction cor aues it may not be long before there is a real shortago of good work stock. Since it takes four years to produce a horse of working age, farmers may delay the raising of colts too long.

Horse Labor Costs
Total feed cost
Man labor cost
Shelter.
Harness
Depreciation
Interest
Taxes, insurance \& misc. cash
\quad Total cost
Manure credit 10 loads @ \$1.00
\quad Net cost

[^0]The foregoine table shows the average cost of maintaining a work horse In 1924 on the Steele County stetintical route. 133 horses on 22 farms are included in the averaec. The overae cost of horsc labor in 1923 was ll. 3 cents. This increase in cost per hour has resulted lareely from higher feed costs which in 1924 were 21 per cent greater. During 1924, however, the horses were used more efficientlir, cach horse averaging 42 more houis than in 1923. For this reason the increase in cost per hour vas not as great as the increase in the total cosi ner horse.

Range of hours per horse	Number of farms	Avcrage houi's per horse	Totel cost per horse	Cost ner hou:
Under 800	7	713	100.66	14.12
800-1000	9	904	107.17	11.09
0yder 1000	6	1106	112.32	10.20

That a low rate for horse labor deponds on the number of hours of work the horse does is very convincingly shom in the mbove table. It will be notyced that the rate oer hour of labor decreases as the average nuber of hours of work per horse incrsases. This occurs in'spito of the fact that the total cost per horse becomes greater as the number ef hours worked increases. In attempting to get a low horse labor rate the horse work should de planned in adrance so that as fow horses as possible will be kept and then the hoses shotid be used productivoly a many hours as possiblo even tho this increased number of hours may raise the tatal cost per horse.
The Place of the Tractor in the Farm Power Supply A. A.

There were 15,503 tractors on Minnesota farms in 1920 according to the federal census. Ey 1923 the number in use had increased to 19,714. This increase of 27 per cent in three years would seem to indicate that farmers are finding a definite place for them in their farm power supply. The following tabla shows the shount of work witually. done by tractors on representative diversifled farms in southern Minnesota.

	1920	1921	1922	1223	1924	5 yr . avg.
No. farras	17	16	15	15	15	78
Tothl actes per farm	207	210	196	195	187	139
Crop acres per farm	150	147	139	147	124	141
Bolt hours	38	70	66	74	100	80
Drawbar hours	270	198	173	148	119	184
Total hours	358	268	239	222	21.2	264

One farmer used a tractor 834 hours in one year and another averagod 608 hours annually for five years. On the other hand one farmer used his tractor only 50 hours in one year and anotier averaged only 130 hours annually for five years. Of the 78 tractor years included, 34 tractors were used less than 200 hours amually, 18 from 200 to 300 hours, 13 from 300 to 400 hours and 5 over 500 hours. The question naturally arises as to how much use a farmer must make of a tractor in order to justify its purchase and what other factors tend to make it a profitable investraent.

It is generally conceded that the tractor ma-r only partially roplace horses as a source of farm power. The problem of the individual farmer then is tr determine whether a combinction of tractor and horses is more economical than horses alone. Some of the considorations involved are sufgested in the follomins statements of porier costs on two farms included in the abobe study.

Farm A (365 acres)
Cost of maintaining 11 horses
Cost of maintaining 6 horses Cost of tractor maintenance Total annual power cost

Decrease in power cost Hours of tractor use(drambar)

Farm 3 (240 acres)
$\$ 1355.09$ Cost of maintaining 8 horses.$\$ 792.00$

739.14	Cost of maintaining 6 horses	519.62
562.34	Cost of tractor maintenance	333.93
1301.188		953.55
53.61	Increaso in power cost	161.55
429	Hours of tractor use(drawbar)	217

These costs have been computed on the basis of 1924 prices for horse feed, tractor fuel and other items of cost so that they are dịectly comparable. 270 macres of Farm A are in crops and 195 acros of Farm B. Both farms are well stocked ahtho Farm A is much more heavily stocked than Farm B. A 3-plow tractor was used on Farm A and a $2-p l o w$ on Farm B.

Before the tractor was purchased 11 horses were used to operate Farm A. Six are now used. In addition to the drawbar mork the tractor is used for 189 hours of belt work such as feed $\begin{aligned} \text { rinding, } & \text { silo filling and corn shredding. This }\end{aligned}$ belt work by sharine part of the fixed tractor costs, thus reduced the amount ahargeable to the draw bar work. In addition to the direct saving indicated less man labor was required to operate the farm after the tractor purchese and it was possible to speed up crop work at certain seasons so as to take advantage of favorable weather conditions.

Farm B was onerated first with a trector and six horses. The tractor was later sold and the ... mas operated as successfully rith eight horses with go change in crops or livestock. Mo more man labor was required than before. Only 36 hours of belt work mas done with this tractor so the drawbar work had to carry 86 per cent of the fixed costs instead of 69 per cent as was the case on the other farm. This belt work was hired after the tractor had been sold for no more than it cost to perform it with the tractor. The eight horses were not worked as heavily proportionately as the six so the feed cost per horse was slightly less.

These examples illustrate sone of the following factors that affect the profitability of a tractor as a supplement to horse porrer in fam oneration.

1. Possibility of displacinE sufficient horses so as to reduce the net cost of farm power. If nearly as many horses are kept as before, a tractor purchase may only add to the cost of farm power.
2. Amount of work for which a tractor might be used. Since interest, shelter, taxes and, to a certain extent depreciation, are fixed annual costs the larger the number of hours over which they can be distributed the less will be the cost per hour. Some of the wans in which the tractor use may be increased are:
```
                                    - 4-
(a) Adanting it to a wider variety of field operations.
(b) - BeIt work such as feed grinding, silo fillinf, sawing wood,
threshing, corn shreddịn, etc.
(c) Custom work off the farm.
```

3. Saring man labor. A tractor may save enounh hired man's mages to more than offset an increase in the cost of farm power. Obviously the 2-plow tractor doing approximately the work of five or six horses will not save, as much man labcr as the larger tractor altho this may be compensated for by the lower investment and lower cost at operations not demanding a larger power unit.
4. Improving quality of work. The tractor may speed up the work sufficiently to enable the farmer to take full advantage of the most favorablesoiland weather conditions. It may also make possible deeper piowing and faster work in hat weather.
5. Mechanical ability of Jperator. Most farmers and farm hands have had life long experience in caring for and handling horses. Similar familiarty with tractors would undoubtedly result. in their more efficient operation. Until this experience is gained high operating costs, rapid depreciation, expensive repairs and costly delays may be incurred.
6. Suitability of equipnent to tractor use. It is quite obvious that the tractcr can be used most effectively with equipment designed especially for it. Most farms are now equipped with machinery designed especially for horses. Unless this equipment can be adapted to tractor use a considerable investment in special tracter machinery may be required in order to get full use of the tractor.
7. The relative price of horse feed and tractor fuel. Horse feed is relatively bulky and is expensive to ship considerable distances. Hence in surplus producing areas such as the developed farming sections of Minnesota, it is likely to prive much lower in price relative to gasoline and kerosene than in areas where feed must be shipped in from outsiae. Then, tao, horses utilize much pasture, stram, corn stover and other non-marketable roughage and by-products. Tractor fuel always represents direct cash outlay.

Farmers considering the purchase of a tractor may save themselves needless expense and subsequent dissatisfaction by first carefully stuaying these points in determining whether they can utilize a tractor profitably, the size best adapted to their needs, and the adjustments in their equipment and power application that will secure the most effective employment of both horses and tractors.
G.A.E.

[^0]: $\$ 74.54$
 17.08
 8.02
 3.99
 6.32
 4.72
 1.44
 116.11
 10.00
 106.11

