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Abstract: 3 

ENSO is a climatic phenomenon that influences global weather patterns. The objective of this 4 

paper is to assess the impact it has on DSFW. DSFW fluctuations impact an operator’s 5 

equipment purchases, planting/harvesting decisions, and profitability. Results indicated that 6 

DSFW is inversely related to El Niño cycles for states analyzed. 7 
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Introduction  11 

Predicting the number days suitable for fieldwork (DSFW) and its implications on agricultural 12 

production has been a topic of discussion in agricultural literature for more than five decades 13 

(Rutledge, 1968) (Baier, 1973) (Dyer, 1979) (Rosenberg, 1982) (Rotz, 2005). It continues to be a 14 

topic of discussion as a result of the influence it has on timing of agricultural field operations, 15 

equipment purchases, and risk management. One relatively unexplored area of the literature is 16 

the influence of global weather patterns has on DSFW. Specifically, this paper investigates the 17 

influence El Niño Southern Oscillation (ENSO) has on DSFW.  18 

ENSO is a global weather pattern that takes place in the Equatorial Pacific Ocean. Within 19 

the ENSO cycle there are three phenomenon observed: 1) El Niño, 2) Neutral or Normal and 3) 20 

La Niña (Figure 1). During El Nino the Equatorial Pacific ocean waters warm to temperatures 21 

above their neutral or normal temperatures as opposed to La Niña where the waters cool below 22 

normal temperatures. The warming and cooling of these waters influences global weather 23 

patterns (Ropelewski, 1987) (Adams R. C., 1999) (Zhang, 2012). Within the United States, 24 

during an El Niño cycle there is typically increased rainfall across the southern tier, especially 25 

from Texas to Florida. Additionally, during this period more intense storms tend to develop 26 

across the southeastern United States (Cook-Anderson, 2008). During the La Niña cycle, there is 27 

below normal precipitation across the southeast and higher than normal temperatures across the 28 

southeast (Graham, 1999).  29 

 30 

  31 



Figure 1: Observed ENSO Cycles 32 

                                                              33 

 34 

Source: (NOAA, 2013) (Graham, 1999) 35 

DSFW is typically determined by weather related events, such as rainfall and 36 

temperature, that affect the condition of soil in a field (Spurlock, Buehring, & Caillavet, 1995). 37 

As shown above, ENSO has implications for both rainfall and temperature depending on where 38 

the operation is located at in the United States. Farm decision makers are heavily dependent on 39 

weather risk for timing of applications, machinery management decisions and whole-farm 40 

planning. Widhalm (2013) setforth an outline for a Corn Forecast-Decision Cycle for 41 

meterologist and weather modeler to help them understand when decisions need to be made to 42 

optimize corn production in the Midwest. Within this cycle they prescribe that weather 43 



phenomenon such as ENSO need to be considered to optimize the production of corn. This 44 

prescribed cycle focuses on the farm remaining sustainable in an economically, biologically, and 45 

climatically volatile environment, field operations and machinery investment must be optimized.  46 

The rationale for being concerned with DSFW is that during weather events that shorten 47 

DSFW, increased capacity from larger equipment or additional units of equipment are needed to 48 

achieve a timely planting or harvest of crops for a given number of acres. Uncontrollable factors 49 

include weather events that affect the ability to conduct field operations. Although uncontrollable 50 

factors such as weather are just that, uncontrollable, the influence of such events is somewhat 51 

predictable. 52 

Conducting field operations such as tillage, planting, spraying and harvesting in a timely 53 

manner are important to obtain optimal yields to maximize whole-farm profitability. Too-early 54 

or too-late planting may adversely impact crop yields. Machinery management decisions such as 55 

choosing machine sizes relative to farm acreage should be made considering equipment 56 

efficiency and the likelihood of having sufficient days suitable to operate the machinery in the 57 

field. The farm decision maker has to evaluate the tradeoff between the added cost of machinery 58 

and completing field operations in a timely manner. Additional machinery requires increased 59 

capital investment while field operations conducted at non-optimal times lead to reduced yield 60 

and/or quality. Debate often arises relative to machinery sizing and being over or under equipped 61 

for a particular farming operation. Knowledge of these probabilities on days suitable for 62 

fieldwork, harvest progress, and yield penalties by harvest date is important for machinery 63 

management, acreage allocation and financing decisions; and ultimately how many acres can 64 

realistically be harvested with a given set of equipment. Being able to forecast structural changes 65 



in DSFW several months in advance would allow the initiated decision maker to adequately 66 

prepare by acquiring necessary equipment in years where DSFW is expected to decrease.   67 

El Niño and La Niña cycles can have potentially damaging implications for the United 68 

States agricultural sector, accorrding to Solow et al., (1998) and Chen, McCarl, & Hill, (2002). 69 

Ubilava and Holt (2013) and Tack and Ubilava (2013) analyzed ENSO influence on world 70 

vegetable oil prices and United States corn yields, respectively. However, there is currently no 71 

literature on ENSO influence on DSFW. Changes in DSFW can have substantial implications for 72 

a producers income on a yearly basis. Producers who are under equiped in years when DSFW are 73 

decreased can encounter significant yield penalties as a result of untimely field operations. 74 

However, in years when DSFW increase over equiped producers are incurring additional costs 75 

because their equipment set is larger than needed. This has created the need for a deeper 76 

understanding of factors influencing DSFW. 77 

The objective of this study is to investigate the impact of ENSO, precipitation index and 78 

drought severity on days suitable for fieldwork. To our knowledge, no other study has utilized 79 

these variables and evaluated there influence on DSFW. A deeper understanding of this 80 

relationship could increase the probability of farm profitability and decrease the probability of 81 

yield penalties as a result of untimely field operations. Thus, reducing the production risk due to 82 

weather and reducing the financial risk by not being unnecessarily over equipped during period 83 

when DSFW is increased.  84 

Data and Methodology 85 

Although the number of good days to conduct field operations varies each year, the influence of 86 

ENSO on the number of DSFW per month can be estimated. There are three primary data 87 

sources utilized in this estimation. First, data on DSFW is collected from USDA archives for 88 



eight states listed in Table 1. Currently, the two states with the most observations are Arkansas 89 

and Mississippi with 36 and 35 years of data, respectively. Second, data from the National 90 

Weather Service on historical ENSO cycles was utilized. Data on historical ENSO cycles goes 91 

back to 1950 and is broken down by month (National Weather Service, 2014). Within the data 92 

set, El Niño conditions account for approximately 24% of the observations, La Niña account for 93 

approximately 27% of the observations and the rest exhibit a normal condition. Third, data 94 

containing the precipitation index, temperature index, Palmer Drought Severity Index, and one, 95 

two, and three month standard precipitation index were collected at the state level from the 96 

National Oceanic and Atmospheric Administration (NOAA) (National Climatic Data Center, 97 

2014). Descriptions of these variables are found in Table 2.   98 

Table 1: DSFW Years Available by State 99 

State Years 

Arkansas 1975-2011 

Georgia 2006-2011 

Louisiana 2005-2011 

Mississippi 1976-2011 

North Carolina 2010-2011 

South Carolina 2007-2011 

Tennessee 2006-2011 

Virginia 2007-2011 

 100 
DSFW is pooled and modeled using a two-limit tobit model followed by Blinder-Oaxaca 101 

decomposition for non-linear regression. DSFW is the dependent variable limited by 0 and 31 in 102 

the two-limit tobit model. Explanatory variables and descriptions can be found in Table ___. 103 

Constrains are developed within the model prohibiting DSFW from exceeding seven days in a 104 

week. The theoretical framework for the two-limit tobit model follows McMillen & McDonald 105 

(1990), where the model for latent variable y*, is observed only in the range (0,31), as shown 106 

below. 107 
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As shown in Maddala (1983), the expected value of y is:  112 
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         represent the values of the unit normal density at          . The last term [  116 

    ]  is the probability that the dependent variable is at the upper limit times the value of the 117 
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Therefore, the expected value for y between 0 and 31 can be found by: 119 
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Table 2: Variable Descriptions 141 

Variable Name Variable Description 

enso El Niño Southern Oscillation is a ocean-atmosphere phenomenon that 

causes global climate variability on interannual time scales. There are three 

different events that can happen: 1) La Niña, 2) El Niño, or 3) Normal.  

niña La Niña is the cooling of Equatorial Pacific Ocean water temperatures and 

is a dummy variable. 

niño El Niño is the warming of Equatorial Pacific Ocean water temperatures and 

is a dummy variable 

pcp Precipitation is rainfall sleet, snow, hail, etc. and is the state monthly 

average.  

l_pcp Lag of precipitation 

pdsi Palmer Drought Severity Index is based on the principles of a balance 

between moisture supply and demand. Irrigation is not considered in this 

calculation (National Climatic Data Center, 2007) 

tmp Temperature is a measure of the degree or intensity of heat present in the air 

on a monthly basis and is  measured in Fahrenheit.  

sp01 Standardized Precipitation Index is the probability of observing a given 

amount of precipitation in 1 month. (National Climatic Data Center, 2007) 

sp02 Standardized Precipitation Index is the probability of observing a given 

amount of precipitation in 2 months. (National Climatic Data Center, 2007) 

sp03 Standardized Precipitation Index is the probability of observing a given 

amount of precipitation in 3 months. (National Climatic Data Center, 2014) 

 142 
The two-limit tobit is then decomposed by employing a Blinder-Oaxaca decomposition  143 

(Bauer and Sinning,2008). This allows for the decomposition of the difference in DSFW related 144 

to El Niño and La Niña into observable factors from the characteristics controlled for in the 145 

model and unobservable differences in the coefficients for La Nino and El Nino periods. The 146 

theoretical framework for this decomposition is represented below.  147 

  ̅    ̅̅ ̅  (  ̅̅ ̅    ̅̅̅̅ )  ̂    ̅̅̅̅ (  ̂    ̂) (7)   148 

The first term   ̅    ̅̅ ̅ is the difference in the outcome between two different groups (i.e. 149 

La Niña and El Niño). The second term   ̅̅ ̅    ̅̅̅̅ , allows for the observable attributes between 150 

the two groups to be determined. The final term   ̂    ̂, allows for the differences in the 151 

unobservable effects to be determined. This decomposition will lead to erroneous predictions if 152 

the goal is to analyze the observable corner solution. Therefore, assuming homoscedastic and 153 



normally distributed error terms    , the conditional expectations of    given    consists of the 154 

respective conditional expectations and probability of observations   ,   or a value between    155 

and   . 156 
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In equation 9,   is the standard normal density function. 160 
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Using equations 10-12, equation 8 can be rewritten in terms of a sample: 164 
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This allows for the single parts of the decomposition equation to be estimated by equation 14. 167 
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 However, equation 7 is not appropriate for the observed outcome variable of the tobit 169 

model because of the conditional expectation in the tobit model depends on standard errors   . 170 

This will not impact the signs of the marginal effects, but will impact their magnitude. However, 171 

if the dependent variable is not truncated then equation 14 will reduce to the original Blinder-172 

Oaxaca decomposition as stated in equation 7.  173 



 When estimating the decomposition in STATA the decomposition is performed for two 174 

different weighting matrices or Omega 1 and Omega 2. Omega 1follows Reimers (1983) and the 175 

weight Ω is treated as a scalar matrix. Therefore weight is found by: 176 

  (   )                                                                                                                            (15) 177 

where I is an identity matrix. Omega 2 follows Cotton (1988) and the weight Ω is again treated 178 

as a scalar matrix. Therefore the weight is found by: 179 

                                                                                                                                     (16) 180 

where I is an identity matrix and s is determined by the relative sample size of the majority 181 

group.  182 

Results 183 

In 2012, these states produced crops that accounted for over $24 billion dollars in value and there 184 

are approximately 365,000 operators in this region (National Agricultural Statistics Service, 185 

2014). Changes in DSFW substantially influence the farm management decision making 186 

strategy. This research expands the literature on DSFW by analyzing the influence of ENSO on 187 

DSFW. This study focuses on states in the Southeastern United States, except for Alabama and 188 

Florida (Table 1 and Figure 2). In general, producers in this region will face the same general 189 

climatic conditions on an annual basis for a given ENSO cycle. This allowed for the data from all 190 

of these states to be pooled and a two-limit tobit model to be estimated.  191 



192 
 Figure 2: Map of States Included in Study:  193 

 The results from the two-limit tobit model indicate that El Niño cycles have an inverse  194 

impact on DSFW and La Niña cycles have a positive impact on DSFW (Table 3). This is 195 

consistent with expectations for these two cycles, given that during an El Niño cycle rainfall 196 

across the southern portion of the United States increases. According to the model, 1.12 fewer 197 

DSFW per month in El Niño cycle.. On the surface this may not appear to be a big decision 198 

influencer for producers. However, applying this to a simple example more clearly illustrates the 199 

issue that producers face is shown in Appendix. The impact of the El Niño is further amplified 200 

because the additional precipitation encountered during this cycle further decreases the DSFW 201 

available per month. A decrease in DSFW has the most significant influence on farm operators 202 



during planting and harvesting, as producers are trying to avoid yield penalties. Those pivotal 203 

months for this region would be April-Mid June and August-October.  204 

Temperature and the One Month Standardized Precipitation Index influence DSFW.  205 

DSFW tend to increase as temperature increases as observed in 2012 as a La Niña cycle started; 206 

temperatures soared and 78% of the U.S. corn production area experienced drought (Rippey, 207 

2012). An increase in the average temperature is good for increasing DSFW and increases the 208 

probability of timely field operation. However, during La Niña cycles producers could run into 209 

increased costs as a result of increased need for irrigation. The last significant factor that 210 

influences DSFW is sp01. The Standardized Precipitation Index has the opposite sign of what 211 

was expected. This measurement is indexed such that 0 is the median historical precipitation, 212 

positive values indicate periods of wetness, and negative values indicate periods of dryness . It 213 

was expected that this should be negative so that as the probability of receiving above median 214 

precipitation should decrease DSFW and vice versa.  215 

 216 
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 224 

 225 



Table 3: Results of Tobit Model 226 

Variables Coefficients 

enso 0.7337* 

(0.434) 

nina 1.1468*** 

(0.358) 

nino -1.1219*** 

(0.369) 

Pcp -1.4292*** 

(0.238) 

l_pcp -0.1437 

(0.159) 

pdsi 0.2234 

(0.249) 

Tmp 0.3050*** 

(0.082) 

sp01 1.3565** 

(0.529) 

sp02 -1.5747 

(1.284) 

sp03 0.3595 

(0.699) 

cons 7.4822 

(5.791) 

N: 180 

Pseudo R2: 0.129   

Log psuedolikelihood: -491.9 
Notes: Standard Errors in parentheses. *significant at 10%; ** significant at 5%; ***significant at 1% 227 
 228 

The tobit results revealed that ENSO cycles do influence DSFW. A closer examination of 229 

specifically the El Niño phenomenon, through the usage of a Blinder-Oaxaca Decomposition, 230 

allows for the observed and unobserved impacts to be examined. Results for the decomposition 231 

indicate approximately 87% of the variation in DSFW is explained by observable characteristics, 232 

primarily El Niño (Table 4). The results also indicated that there is little difference between the 233 

Omega 1 and Omega 2 weighting matrices utilized in the decomposition  see Sinning, Hahn, & 234 

Bauer (2008) for more detail on weighting matrices).  235 

Table 4: Results EL Niño Blinder-Oaxaca Decomposition 236 



Results Coefficient Percentage 

Omega = 1 

             Characteristic 

             Coefficient 

 

-3.3723 

-0.5069 

 

86.73% 

13.27% 

Omega = 0 

             Characteristic 

             Coefficient 

 

-3.365 

-0.5223 

 

86.56% 

13.43% 

Raw -3.888 100% 

 237 
Discussion 238 

Even if used as efficiently as possible, planters, harvesters, and other equipment have theoretical 239 

limits less than 100%. This means that while farm equipment is committed to a field operation, 240 

only a portion of that time does the equipment actually conduct the operation it is intended to do. 241 

Even with sufficient understanding of the optimum timing to plant and harvest a crop, making 242 

farm management decisions such as machinery management and acreage allocation without 243 

information on DSFW may lead to unsuccessful farming operations. 244 

This paper illustrates the importance incorporating ENSO cycles into the operating 245 

decision making process. Findings reveal that during the El Niño cycle there will be decreased 246 

DSFW that can result in the need for different or additional equipment requirements than in 247 

years where La Niña or Normal cycles dominate. Additionally, operators may have increased 248 

operating costs during La Niña periods as a result of increase irrigation needs because of reduced 249 

rainfall across the region.  250 

Overall, ENSO climatic cycles have a significant influence both positive and negative on 251 

DSFW. Operators who fail to recognize the influence of these weather patterns could find 252 

themselves operating at less than efficient levels. Operating at non optimal levels could lead to 253 

non-sustainable profit levels and jeopardize the long term viability of the operation. However, 254 

each operation will be impacted differently and further investigation into how each state is 255 



impacted specifically by these weather phenomenon. There are also other minor weather patterns 256 

that could also be incorporated in that would help to further explain DSFW.  257 

 258 
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Appendix  328 

During the one-month time period of 40
th

 to 43
rd

 weeks of the year, there is nearly a 50% chance 329 

of having between 25 and 27 days suitable for fieldwork during; the time period considered most 330 

crucial for harvesting cotton in the southeastern United States. There is an 89% chance of having 331 

between 23 and 28 days suitable during this time period. A ‘bad’ year with respect to days 332 

suitable occurs when 22 or fewer days suitable are observed. During this time period it is 333 

expected that cotton harvest progresses from 15% to 70% (National Agricultural Statistics 334 

Service, 2013). 335 

A hypothetical multi-crop farm may have 1,000 acres of cotton and one cotton picker 336 

with a working rate of 5.8 acres per hour for 8 hours per day (Stiles & Griffin, 2009). The goal is 337 

to complete harvest by end of week 43. Under the best conditions, 46.4 acres can be harvested 338 

each day (5.8 acres per hour multiplied by 8 hours per day). It will take 21.6 days to complete 339 

harvest (1,000 acres dived by 46.4 acres per day). The minimum and average number of days 340 

suitable for fieldwork recorded in the 1995 to 2007 dataset for Arkansas was 12.1 days and 23.2 341 

days, respectively. The minimum number of days observed were 9 full days less than needed and 342 

the average year had 23.2 days suitable, which is 1.6 days more than needed. Therefore even a 343 

slightly worse than average year could cause the farm decision maker to not be able to meet their 344 

goals of a timely harvest. The impact of a El Nino year reducing days suitable by 1.2 days per 345 

month forces this hypothetical farm decision maker to not meet their goals or to consider 346 

expanding equipment capacity for the given scenario (Griffin & Kelley, 2009) (Griffin T. , 347 

2009). 348 
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