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Value of Genetic Information for Beef Cattle at the Feedlot Stage 

Abstract 

We estimate the value of using information from genetic marker panels for seven 

economically-relevant feedlot cattle traits. At the current cost of genetic testing it would not pay 

to sort cattle by optimal days-on-feed, but it could pay to use the genetic tests for breeding cattle 

selection. 

Key words: Beef cattle, genetics, molecular breeding value, value of information 
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Introduction 

Genomic technology has the potential to generate value in each sector of the beef 

industry, seed stock, cow-calf, feedlot, and processing, by aiding in both management and 

selection decisions (Van Eenennaam and Drake, 2012). Commercial testing services can  provide 

livestock producers with a range of genetic information, including parentage assignment, 

detection of genetic defects, and genetic markers, or single nucleotide polymorphisms (SNP), for 

qualitative traits, such as hide color, and quantitative traits, such as marbling score. Many 

quantitative traits, such as growth and carcass characteristics, are economically important but can 

be difficult to measure pre-harvest. Therefore, genetic markers associated with these traits may 

provide valuable information to decision makers prior to investing considerable time and 

expense. Although independent validations have found that many of these markers are correlated 

with the traits they are designed to predict (Van Eenennaam et al., 2007; DeVuyst et al., 2011; 

Hall et al., 2011; National Beef Cattle Evaluation Consortium, 2013), to date, economists have 

considered few of these markers and their value to producers.  

Early interest in genetic testing for beef cattle involved the leptin gene, which is 

associated with fat deposition (Fitzsimmons et al., 1998; Buchanan et al., 2002). Mitchell et al. 

(2009) found leptin genotype to be correlated with calf weaning weight and cow productive life. 

As a result, differences in annualized returns for dams with different genotypes range from $15 

to $64 per head. Feedlot studies have differing results with respect to the most profitable leptin 

genotypes (DeVuyst et al., 2007; Lusk, 2007; Lambert, 2008), but report differences in expected 

profit between the best and worst performing genotypes of as much as $60 per head. These same 

studies found that the leptin genotype has little effect on optimal days-on-feed.  
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Today, leptin tests have been replaced with more accurate marker panels for a variety of 

economically-relevant traits. These panels include several, potentially hundreds, of SNP to better 

predict phenotypic expressions (DeVuyst et al., 2011). Moreover, the availability of marker 

panels for several traits allows decision makers to better consider the chance that selecting for 

desirable attributes would have adverse effects on other economically-relevant traits. Previous 

research has found economically meaningful relationships between genetic marker panel scores 

for average daily gain, tenderness, marbling, yield grade, and rib eye area, and growth and 

carcass characteristics such as average daily gain, feed efficiency, days-on-feed, hot carcass 

weight, rib-eye area, yield grade, and quality grade (for example, DeVuyst et al., 2011). 

However, much remains much to be learned about the economic value of utilizing such genetic 

information to improve feedlot profitability.  

Prior research has provided useful, preliminary analysis of the biological and economic 

impacts of genetic marker panels. However, the limited data and simplified approach fails to 

capture the full value of information obtained from genetic marker panels. To realize the full 

value of genetic information, determining whether cattle with different genetic makeups progress 

differently throughout the feeding process is important (Ladd and Gibson, 1978; Lusk, 2007). In 

other words, genetic markers do not directly influence profit, but they rather influence growth 

and carcass traits that, in turn, determine profitability. Accordingly, this study seeks to provide 

such an analysis using a large sample of cattle with considerable genetic diversity. Genetic 

information is conveyed as molecular breeding values (MBVs), which, like panel scores, 

represent an animal’s propensity to express a given trait. Unlike discrete panel scores, MBVs are 

continuous, allowing for a more precise depiction of the traits they characterize. In addition, 

genetic information is only useful if it conveys meaningful information beyond visual appraisal. 
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Therefore, hide color is used to partially control for breed effects not considered in previous 

literature.  

The increasing accuracy of genetic marker panels and the rapidly declining costs of 

genotyping present livestock producers with the opportunity to increase profitability by taking 

advantage of the information derived from genetic testing. However, the usefulness and value of 

this information will vary among the seed stock, cow-calf, feedlot, and processing sectors. The 

objective of this research is to estimate the expected value of genetic information for seven 

economically-relevant traits at the feedlot stage, which results in two scenarios of value. First, 

this information could be used to better manage the distribution of cattle already owned by a 

feedlot by choosing optimal marketing dates, or marker-assisted management. Second, a feedlot 

could use genetic information to differentially select and feed cattle based on genetic makeup, or 

marker-assisted selection
1
. Expected values of genetic information derived in this study have 

important implications, not just for decision makers in the feedlot sector, but for those 

throughout the beef cattle supply chain.  

This study uses data from feedlot cattle to estimate the expected value of genetic 

information at the feedlot stage. Prediction equations for average daily gain, dressing percentage, 

yield grade, and quality grade are estimated using live animal performance characteristics and 

MBVs for seven economically-relevant traits. Prediction equations and a multivariate normal 

distribution of error terms are used as part of a stochastic simulation to estimate expected profits 

per head. The expected value of genetic information is calculated as the difference in expected 

                                                           
1
 In the animal science literature, marker-assisted selection specifically refers to using the results 

of genetic testing to assist in the selection of breeding stock (Van Eenennaam, Werf, and 

Goddard, 2011). However in this analysis, marker-assisted selection at the feedlot stage is 

defined as using genetic information to select and feed cattle based on genetic makeup.  
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profit, with and without genetic information, for both marker-assisted management and marker-

assisted selection.  

Expected Profit Maximization and the Value of Information 

Due to the capacity of large scale feeding operations, management of individual cattle 

with different rations or different expected sale dates is cost prohibitive. Therefore, feedlot cattle 

are managed in a group environment, such as pens or lots (Kolath, 2009). We assume producers 

maximize expected per head profit for each group: 

(1)  

   
      

 [  ]  
 

  
∑   

  

   

(               )       (                    )

 (    )      (          )      (         )     (    )

     (         ) 

 

where      is days-on-feed for the kth management group,    is the total number of animals in 

the kth group,     is dressed fed cattle price determined in part by yield grade,     , quality 

grade,     , and hot carcass weight,      , for the ith animal in the kth group, where       

(                )      ,      is placement weight,       is average daily gain,      

is dressing percentage,    is mortality rate which is bounded by zero and one,      is the 

purchase cost of feeder cattle,      is feed cost,     is yardage costs, and      is interest cost on 

the purchase of feeder cattle. At placement, purchase cost and placement weight are the only 

variables known with certainty. Other profit determinants are a function of random growth and 

carcass characteristics ADG, DP, YG, and QG and the choice variable DOF. Although the 

producer is assumed to have contracted a guaranteed future price grid, it is unknown how 

animals will develop, and therefore, what weight and/or carcass premiums or discounts they will 

receive. Information derived from genetic testing can be used to predict unknown growth and 
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carcass characteristics. This information gives the feedlot the opportunity to differentially 

manage and select cattle based on genetic potential. Although acquiring this information incurs 

costs, it yields information that may increase profitability (Stigler, 1961).  

The economics of information was first developed by Stigler (1961), and has since been 

extended to many agricultural settings, including the value of genetic information in livestock 

production (Ladd and Gibson, 1978; Hennessy, Miranowski, and Babcock, 2004; DeVuyst et al., 

2007; Lusk, 2007; Lambert, 2008). Typically, the value of information is calculated as “the 

difference between expected returns (or utility) using the information and expected returns 

without the information, with both expectations taken with respect to the more informed 

distribution” (Babcock, 1990, p.63). Note that expected profit in equation (1) does not include 

genetic testing costs. Therefore, the resulting improvement in the objective function from 

acquiring genetic information sets an upper limit on testing costs.  

Data 

Data for 10,209 cattle from six commercial feedlots were provided by Neogen, the parent 

company of Igenity. At placement, animals were weighed, and a hair sample or tissue punch 

from ear tag application was collected for genetic testing. Molecular breeding values 

characterizing average daily gain, hot carcass weight, yield grade, rib-eye area, marbling, 

tenderness, and days-on-feed were provided. Although many breed associations are working 

towards developing breed specific MBVs (MacNeil et al., 2010), much like they have done for 

expected progeny differences (EPDs), the MBVs used in this study were developed using a 

sample of commercial cattle
2
. Unlike EPDs, which represent the genetic potential of an animal as 

                                                           
2
 For more information on the development and validation of MBVs see National Beef Cattle 

Evaluation Consortium, Commercial Genetic Test Validation (National Beef Cattle Evaluation 

Consortium, 2013).  
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a parent, MBVs represent the genetic potential of an animal to express a given trait. Increases in 

MBVs increase the likelihood of expressing more favorable outcomes
3
. While, like EPDs, MBVs 

are reported in units of the trait, they “reflect the relative differences expected in animals across 

breeds compared to their contemporaries” (Igenity, 2013a). That is, if two animals have marbling 

MBVs of –100 and 20, respectively, we would expect, on average, that these two animals’ 

marbling scores would differ by 120 units. Additional live animal characteristics for gender, hide 

color, average daily gain, and days-on-feed were also provided. At slaughter, data were collected 

for final live weight and carcass measurements for hot carcass weight, back fat, rib-eye area, 

calculated yield grade, and marbling score.  

Missing data were common for a few critical variables. Final live weight was unavailable 

for 4,436 observations. Although not used directly, final live weight is essential to the estimation 

of dressing percentage (dressing percentage=hot carcass weight/final live weight). Also 422 

observations were missing for marbling score. After deleting these and other observations with 

missing data, 5,353 complete records were available for analysis. These data consist of six sets, 

each of which represents a different commercial feedlot and/or time period. In addition, each set 

is divided into contemporary groups, which are defined as groups “of animals that have had an 

equal opportunity to perform: same sex, managed alike, and exposed to the same environmental 

conditions and feed resources” (Northcutt, 2005, p.144). A total of 197 contemporary groups 

average 27 head per group, and range from one to 202 head. The sample is made up of 74% 

steers and 68% black-hided cattle (Table 1). On average, cattle were fed for 165 days, and 

                                                           
3
 Intuitively, more favorable outcomes are increases in a given trait (e.g., higher marbling score), 

except for yield grade where lower outcomes are more favorable. 
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finished with a yield grade of almost three and a marbling score of 412 (low Choice on the 

quality grade scale)
4
.  

To remove time-varying effects in our simulation, all animals are assumed to face the 

same market prices for March 2013. Purchase costs for feeder cattle are estimated using feeder 

cattle prices for steers and heifers based on placement weight (U.S. Department of Agriculture, 

Agricultural Marketing Service (USDA AMS), 2013a). Finished cattle are assumed to be priced 

on a fixed grid with a base price of $201.71/cwt. dressed, with appropriate yield grade, quality 

grade, and weight premiums and discounts (Table 2) (USDA AMS, 2013b).  

Procedures 

Average daily gain (ADG), dressing percentage (DP), yield grade (YG), and quality grade 

(QG) in equation (1) are assumed to be random variables. A mixed model regression equation for 

each of these growth and carcass characteristics is estimated such that the data generating 

process is specified as: 

(2)                                     
                             

           ∑            

 

   

                

 

where       is the dependent variable for the ith animal in the jth set and the kth contemporary 

group for the lth equation, where l=1,2,3,4 for       ,      ,      , and      , respectively, 

      is placement weight,        is days-on-feed,        is a dummy variable equal to one if 

the animal was a steer and zero otherwise,        is a dummy variable equal to one if the animal 

had black hide and zero otherwise,         is the molecular breeding value of the mth 

                                                           
4
 Marbling scores between 200-299 are said to have traces of intramuscular fat and are graded 

Standard, 300-399 or slight marbling are Select, 400-499 or small marbling are low Choice, 500-

599 or modest marbling are average Choice, 600-699 or moderate marbling are high Choice, and 

scores over 700 are Prime (USDA AMS, 1997, 2006). 
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economically-relevant trait,      (     
 ) is a set random effect,       (     

 ) is a 

contemporary group random effect nested within sets (Greene, 2012), and        (     
 ) is an 

error term, where    ,     , and       are independent. A full set of MBV, days-on-feed 

interactions are also investigated as slope shifters in the YG and QG equations. Only the 

marbling MBV, days-on-feed interaction is statistically significant in both equations. Therefore, 

it is retained and all other MBV, days-on-feed interactions are dropped from the models. 

Dependent variables YG and QG are both represented as continuous variables. Yield grade, as 

defined by the USDA AMS, is a continuous variable as a function of backfat, kidney, pelvic, and 

heart fat, hot carcass weight, and rib-eye area (USDA AMS, 1997), and the marbling score is 

used as a continuous representation of QG. 

Models are estimated independently using Proc Mixed in SAS (SAS, 2012). D’Agostino-

Pearson K
2
 omnibus test for skewness and kurtosis rejects the null hypothesis of normality in 

each of the four prediction equations, and conditional variance tests identify static 

heteroskedasticity. Cluster robust standard errors are estimated to obtain estimates of standard 

errors that are consistent in the presence of nonnormality and heteroskedasticity (Liang and 

Zeger, 1986). Given the large sample size, asymptotic properties are relevant, and the small 

sample biases common with generalized method of moments estimators should be of little 

concern.  

Feed costs are also needed to calculate expected profits. Given that observations of feed 

intake were unavailable, a dry matter intake (DMI) model is used following the National 

Research Council’s (NRC) Nutrient Requirements of Beef Cattle (NRC, 2000)
5
. The DMI model 

                                                           
5
 A constant cost of gain approach could also be used to estimate feed costs. However, such an 

approach is just a parallel shift of the revenue curve. The dry matter intake model reflects that the 
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generates an estimate of “standardized” feed intake. That is, we are ignoring additional factors 

that may have influenced feed intake across different feedlots and/or time periods, such as 

weather. Much like holding prices constant, this approach places all animals on a level playing 

field in order to estimate an expected value of genetic information. Prior to calculating DMI, a 

projected live weight for each animal for each day on feed is estimated as:  

(3)          (
       

    
)                   

 

where     is the weight of the ith animal at the tth day on feed,     is final live weight,     is 

placement weight, and      is days-on-feed. The NRC’s DMI equation also allows for 

adjustment factors for breed, empty body fat percentage, growth hormones, air temperature, and 

muddy soils that may influence growth in the feedlot. Based on available information, a body fat 

adjustment factor (BFAF) is included in the analysis. The BFAF is determined by empty body fat 

percentage (EBF) (Perry and Fox, 1997): 

(4)        [
     (     (

   

   ))              

     (
   

   )
]       

 

Essentially, the BFAF corrects for over prediction of DMI as animals become larger (Table 3) 

(NRC, 2000).  

Using this information, we then estimate DMI (lbs/day) for the ith animal for the tth day 

on feed as: 

(5)        [    (
   

   
)]     

[                   
        ]

   
            

 

                                                                                                                                                                                           

cost of gain goes up as the cattle weight increases and thus provides concavity to the profit 

function.  
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where     is the net energy required for maintenance that is set to a constant of two 

megacalories per kilogram (NRC, 2000). Finally, cumulative dry matter intake (CDMI) of the ith 

animal is: 

(6)        ∑      

    

   

  

 

Additional information needed to estimate expected profit includes dry matter cost of $230/ton
 

($0.115/lb.), yardage costs of $0.40/day, a 7% interest rate on the purchase of feeder cattle, and a 

mortality rate of 1% (Lardy, 2013)
6
. This information, in conjunction with equations (2)-(6), can 

be used to estimate profit per head.  

However, expected profit in equation (1) is nonlinear. Therefore, because of Jensen’s 

inequality, profit calculated at the expected value of prediction equations will not equal expected 

profit (Greene, 2012). For this reason, stochastic simulation is used to estimate expected profit 

per head. The Cholesky decomposition of the four-by-four variance-covariance matrix of the 

error terms from equation (2) is calculated and used to generate a multivariate normal 

distribution of 1,000 error terms for each of the four prediction equations, for each animal in the 

sample. Profit per head is evaluated at each draw using actual live animal characteristics and 

MBVs. The average across draws is expected profit per head. This process is repeated for days-

on-feed from 150 to 200.  

The advantage of genetic testing is the ability to differentially manage or select cattle 

based on unobservable growth and carcass characteristics. As a result of producer interest in 

which MBVs are most economically-relevant, the primary objective here is to determine the 

                                                           
6
 No sick treatment costs are included. Costs for sick treatments are generally assessed on an 

animal-by-animal basis (for example, $1 per head for each pull plus material costs), and 

information on animals being pulled for sick treatment was not available. 
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value associated with each individual genetic marker panel. To do so, cattle are divided into 

quartiles for each of the seven MBVs and the expected profit per head is calculated for each 

quartile
7
. A grid search is then employed to determine days-on-feed that maximizes expected 

profit per head for each group. The primary advantage of this approach is the ability to identify 

which MBVs capture the most economic value. Marker-assisted management is the process of 

using genetic information to sort cattle already in the feedlot into management groups that are 

most likely to achieve similar endpoints (Van Eenennaam and Drake, 2012). Although it can 

include several objectives, such as implant strategies and value-added marketing, marker-assisted 

management for this analysis is limited to optimal marketing dates, or days-on-feed. The value of 

genetic information associated with marker-assisted management (      ) for a given trait is 

calculated by comparing expected profit when a feedlot can differentially choose optimal 

marketing dates for each quartile of a given trait relative to the case where all cattle are fed for 

the same number of days-on-feed:  

(7)  
 [      ]  ∑

 [   ]

 

 

   

  [    ] 
 

where     is maximum profit for the ith quartile, and      is maximum profit when all cattle in 

the sample are fed for the same number of days-on-feed.  

At the feedlot stage, marker-assisted selection involves differentially selecting and 

feeding cattle based on genetic information. Feedlots are still expected to feed both high and low 

quality cattle. However, access to genetic information allows them the opportunity to place 

premiums on cattle with superior genetic potential, as well as discounts on cattle with poor 

                                                           
7
 The choice of four groups used in this analysis is subjective. However, Cargill Cattle Feeders 

utilize a four group management system to “allow for efficient management within a group 

production environment by preventing groups with too few animals, while still allowing us to 

come close to maximizing the genetic potential of each animal” (Kolath, 2009, p.105).  
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genetics. The maximum value of genetic information associated with marker-assisted selection 

(      ) for a given trait is calculated by comparing expected profits for the best performing 

quartile relative to the case where genetic information is unavailable and all cattle are fed for the 

same number of days-on-feed
8
: 

(8)   [      ]     { [   ]  [   ]  [   ]  [   ]}   [    ]   

Although currently genetic information is typically not available to feedlots prior to purchasing 

feeder cattle (Kolath, 2009), knowledge of the value associated with marker-assisted selection at 

the feedlot stage is important. These values provide estimates of the premiums or discounts 

feedlots could place on cattle with varying levels of genetic potential, or a bid price differential. 

In addition, knowledge of the traits that generate the most value to the feedlot sector may also 

guide selection decisions in the breeding sectors.  

Notice that in equations (7) and (8), we treat the “base” scenario as the maximum 

expected profit when all cattle are fed for the same number of days-on-feed (    ), instead of 

using the actual observed returns. This approach allows us to confidently make comparisons 

across all animals in the sample. Alternatively, these same comparisons may not be appropriate 

when using actual observed returns given that the cattle were fed under different conditions. For 

example, the dataset consists of animals from several commercial feedlots over multiple time 

periods. Therefore, differences in marketing decision rules among feedlots, as well as differences 

in input and output prices over time influence the observed days-on-feed decisions and returns to 

cattle feeding. In addition to these obvious differences, unobservable constraints are also likely 

to influence the observed outcomes, for example, capacity constraints and weather conditions. 

                                                           
8
 The expected value of marker-assisted selection in some previous studies has been calculated as 

the difference in expected profit per head for the best and worst performing quartiles (or 

genotypes). However, this assumes that the original state of nature involves the feedlot owning 

all cattle from the worst performing quartile, which is likely not the case.  
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With that said, feedlots do not have a constant days-on-feed expectation with or without genetic 

information. Therefore, the values reported here are likely upper bounds on the value of genetic 

information.  

Genetic information characterizing economically-relevant traits may also be supra- or 

sub-additive. That is, managing for multiple traits simultaneously may increase the value 

associated with marker-assisted management or marker-assisted selection. If cattle are divided 

into quartiles for each MBV, simultaneously managing for two traits yields 16 potential 

management groups. Again, a grid search is employed to determine days-on-feed that maximizes 

the expected profit per head for each group. The expected value of marker-assisted management 

and marker-assisted selection is estimated similarly to equations (7) and (8), except that each 

group no longer makes up an equal proportion of the sample.  

Results 

Regression estimates for growth and carcass characteristics ADG, DP, YG, and QG are 

reported in Table 4. Missing observations for dependent variables in the sample are deleted so 

that all four equations have the same number of observations (n=5,353)
9
. Coefficients for live 

animal characteristics generally exhibit expected relationships. Heavier placement weights 

increase predicted values for ADG, DP, YG, and QG. Growth and carcass characteristics ADG, 

DP, and QG display a concave relationship with days-on-feed, increasing at a decreasing rate, 

but only in the DP equation are linear and squared terms both statistically significant. Consistent 

with expectations, the effect of days-on-feed on each of the performance characteristics is 

diminished as placement weight increases as is suggested by the negative coefficient of 

                                                           
9
 Each of the four equations is also estimated with its own maximum number of observations to 

investigate fragility. Differences are minimal, and results are presented as is for conciseness.  



15 
 

placement weight, days-on-feed interaction terms. Steers have higher ADG as well as lower YG 

and QG compared to heifers. Also, black-hided cattle have higher ADG and QG.  

Molecular breeding values influence corresponding feeder cattle traits in the expected 

direction. Average daily gain MBV positively influences actual ADG, hot carcass weight MBV 

positively influences actual DP, yield grade and rib-eye area MBVs negatively influence YG, and 

marbling MBV positively influences actual QG. Each of these effects are statistically significant 

at the 1% level except for the marbling MBV. However, a joint test of the marbling MBV and 

marbling MBV, days-on-feed interaction terms in the QG equation is statistically significant at 

the 1% level (df=2, 5128; F=306.91). Additional effects of MBVs on growth and carcass 

characteristics offer many interesting relationships. Most notably is the significant, inverse 

relationship between yield and quality grade. Higher yield grade and rib-eye area MBVs 

decrease QG, and higher marbling MBV increases YG
10

. These cross-trait MBV effects suggest 

the need to consider multiple MBVs when making management or selection decisions.  

Prediction equations are used as part of a stochastic simulation to estimate expected profit 

according to equation (1) for days-on-feed from 150 to 200. Results indicate that if a feedlot was 

restricted to pick the same marketing date for all cattle, maximum expected profit of $146.14 per 

head would be realized at 185 days-on-feed. This result is higher than mean actual days-on-feed 

observed in the sample of 165 days, but is well within the range of observed values which has a 

maximum of 308 days. A variety of circumstances contribute to the discrepancy between 

predicted and observed days-on-feed. One potential explanation is the unobservable constraints 

faced by feedlot operators (Boys et al., 2007), such as differences in input and output prices 

                                                           
10

 Marbling MBV has a negative coefficient in the YG equation. However, the marbling MBV, 

days-on-feed interaction is positive. Therefore, over the range of days-on-feed analyzed (150-

200) the sum of the two effects is positive and jointly significant at the 1% level (df=2, 5128; 

F=41.44).  
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actually faced when the cattle were on feed and the prices we use in this simulation
11

. In 

addition, feedlot operators may be risk averse. Therefore, cattle may be harvested prior to 

reaching maximum profits in order to avoid potentially large discounts associated with higher 

yield grades if cattle are overfed.  

Optimal days-on-feed and expected profits per head are determined at the quartiles of 

MBVs for each economically-relevant trait (Table 5). Results indicate differences in expected 

profit among quartiles ranging from $8 per head for days-on-feed MBV to $46 per head for 

marbling MBV. Higher MBVs increase expected profit for all traits except yield grade, rib-eye 

area, and days-on-feed. The inverse relationship between expected profit and MBVs 

characterizing yield grade and rib-eye area is likely the result of the inverse relationship between 

yield grade and quality grade. More favorable yield grade and/or rib-eye area outcomes result in 

less favorable quality grade. Therefore, for the budgeted price grid, yield grade premiums are 

insufficient to offset lower quality grade premiums (or higher quality grade discounts). Despite 

differences in expected profit, optimal endpoints for the quartiles of each trait are quite similar to 

the uniform endpoint for all cattle in the sample of 185 days-on-feed.  

Marker-assisted management increases expected profit for each of the economically-

relevant traits evaluated. The ability to choose optimal marketing dates for each quartile of the 

rib-eye area MBV increases expected profit to $146.63 per head, resulting in the highest value of 

genetic information for marker-assisted management, $0.49 ($146.63 – $146.14) per head (Table 

6). Rib-eye area partially determines yield grade, which is directly reflected in the price grid. 

                                                           
11

 The current price grid rewards higher quality grades, incentivizing feedlot operators to feed 

cattle longer. The use of a price grid from the period when cattle were actually fed may lead to 

more similar results for predicted optimal days-on-feed and days-on-feed actually observed in 

the sample. However, because we are ultimately interested in the current value of genetic 

information to producers, the use of a current price grid is appropriate. 
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However, the value of marker-assisted management associated with the yield grade MBV is only 

$0.03 per head. Therefore, the rib-eye area MBV appears to capture markers that are more 

economically sensitive to days-on-feed than the yield grade MBV. The expected value of 

marker-assisted management for other key profit determinants marbling, average daily gain, and 

hot carcass weight are $0.35, $0.20, and $0.10 per head, respectively. In general, low values 

associated with marker-assisted management are partially influenced by limited differences 

among optimal days-on-feed for the quartiles of each trait and the uniform endpoint for all cattle 

in the sample. This result is consistent with the findings of previous research (DeVuyst et al., 

2007; Lusk, 2007; Lambert, 2008), and supports the finding that agricultural profit functions are 

often flat near the optimum (Pannell, 2006).  

Results also indicate that if a feedlot could differentially select cattle based on genetic 

information for each trait, expected profits could be increased considerably. Marker-assisted 

selection for the MBV characterizing average daily gain increases expected profits to $168.35 

per head, resulting in the highest value of genetic information for selection, $22.21 ($168.35 – 

$146.14) per head (Table 6). The ability to select for animals with higher average daily gain will 

result in heavier finished weights and/or fewer days-on-feed, both of which increase profitability. 

Similarly, MBVs characterizing carcass characteristics marbling and hot carcass weight generate 

value for selection of $21.27 and $18.42 per head, respectively. These results are similar to the 

findings of Lusk (2007) who reports values of marker-assisted selection at the feedlot stage for 

leptin genotype of approximately $23 and $28 per head for steers and heifers, respectively
12

.  

                                                           
12

 Other previous studies either did not report values of marker-assisted selection or reported 

values that were not comparable given differences in the estimation of marker-assisted selection 

at the feedlot stage.  
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The above results estimate the value of marker-assisted management and marker-assisted 

selection when focusing on a single economically-relevant trait. However, the ability to manage 

or select for multiple traits may further increase expected profits and the value of genetic 

information. For example, a feedlot operator could simultaneously manage or select for MBVs 

characterizing average daily gain and marbling (Table 7). When each management group is fed 

for its own optimal number of days-on-feed, expected profits across all 16 groups increase to 

$146.62 per head
13

. Therefore, the value of multiple-trait marker-assisted management for 

average daily gain and marbling MBVs is $0.47 ($146.62 – $146.14) per head. The group 

comprised of the fourth quartiles for both traits generates the highest expected profit of $176.57 

per head, resulting in value of multiple-trait selection for average daily gain and marbling MBVs 

of $30.43 ($176.57 – $146.14) per head.  

Similar analyses are conducted for each pairwise combination of the seven MBVs to 

determine the value of genetic information when simultaneously managing or selecting for 

multiple economically-relevant traits (Table 8). Results indicate that the highest value of 

multiple-trait marker-assisted management is realized when simultaneously managing yield 

grade and rib-eye area MBVs, $0.79 ($146.93 – $146.14) per head. Similar to single-trait 

management, the economic impacts of the rib-eye area MBV appear to be more sensitive to 

days-on-feed than other economically-relevant traits. The highest value of multiple-trait marker-

assisted selection is realized when selecting for MBVs characterizing hot carcass weight and 

marbling, $37.56 ($183.70 – $146.14) per head. Although selecting cattle based on multiple 

economically-relevant traits increases the expected value of genetic information, this information 

                                                           
13

 The sum across groups of each group’s expected profit multiplied by its effective proportion of 

the sample.  
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is generally subadditive
14

. This result is rather intuitive given positive correlation among many of 

the marker panels. Note, the values reported in Table 8 may underestimate the value of genetic 

information that would be available if the entire profile of genetic information is used.  

Conclusions 

The objective of this study is to estimate the expected value of genetic information at the 

feedlot stage. Using data from 5,353 feedlot cattle, prediction equations for growth and carcass 

traits average daily gain, dressing percentage, yield grade, and quality grade are estimated using 

live animal characteristics and molecular breeding values for seven economically-relevant traits. 

Prediction equations and a multivariate normal distribution of error terms are used as part of a 

stochastic simulation to estimate expected profit per head for each day-on-feed. A grid search is 

employed to determine the optimal number of days-on-feed and maximum expected profits, both 

with and without genetic information.  

The expected value of genetic information for marker-assisted management is low when 

sorting cattle into management groups for one or two economically-relevant traits (less than $1 

per head. However, the value associated with selecting and feeding cattle based on genetic 

potential is rather high (as much as $22 per head for single-trait selection and $38 per head for 

multiple-trait selection). Should feedlots have the opportunity to obtain genetic information prior 

to purchasing feeder cattle, the values of marker-assisted selection reported here may be of value 

in determining bid price differentials. Even with improved accuracy of genetic marker panels for 

economically-relevant traits, the qualitative implications of these results are similar to those 

reported in previous literature evaluating the value of genetic testing for leptin genotype 

(DeVuyst et al., 2007; Lusk, 2007; Lambert, 2008). However, here we are able to identify 

                                                           
14

 The value of simultaneously selecting for two traits is less than the sum of the values when 

selecting for each trait individually.  
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average daily gain and marbling as the most economically-relevant feedlot cattle traits. Note that 

the estimated values of marker-assisted management and marker-assisted selection reported in 

this study may be overestimates of their true values if the same information could be obtained by 

visual appraisal. Although a hide color dummy variable is used to partially control for breed 

effects, additional characteristics, such as frame size and muscling, may be observable 

independent of breed. Therefore, estimated values of genetic information are likely an upper 

bound for traits that may be able to be partially determined without genetic testing.  

To put the results of this study into context, consider that over the past ten years the net 

returns to finishing cattle in Kansas has averaged –$31.45 and –$19.32 per head for steers and 

heifers, respectively (Tonsor and Dhuyvetter, 2013). Hence, the values of marker-assisted 

selection reported here represent meaningful economic value to the cattle feeding industry. 

Comparing the value of information with the cost of genetic testing services is also instructive. 

Currently, Igenity offers a profile of marker panels that includes each of the traits evaluated in 

this study except hot carcass weight and days-on-feed for $38.00 per head (Igenity, 2013b)15. 

Despite the low value of using genetic information to sort and optimally choose days-on-feed, 

the potential for using such strategies remains. As genomic testing technology continues to 

advance, the potential for declining costs of genetic testing and the development of markers for 

other important feedlot profit drivers, such as disease resistance and feed efficiency, may lead to 

cost-effective marker-assisted management in the feedlot sector (Van Eenennaam and Drake, 

2012). In addition, random sampling could be used to measure the genetic potential of a group of 

cattle without having to test each animal. Still, at the present time, the functional value of genetic 

information at the feedlot stage continues to be the ability to improve the genetic distribution of 

                                                           
15

 This profile also includes additional traits not included in this study such as maternal calving 

ease, docility, and stayability. 
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cattle entering the feedlot. These improvements will need to take place in the industry’s breeding 

sectors. In particular, selection for desirable traits in the seed stock sector will accelerate the rate 

of genetic gain (Weaber and Lusk, 2010; Van Eenennaam, Werf, and Goddard, 2011). Note, 

however, that selecting breeding stock for traits that are valuable in the feedlot sector may or 

may not be advantageous in other sectors. Although beyond the scope of this research, the 

impacts of these traits on other sectors must be considered.   
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Table 1. Summary Statistics for Live Animal, Carcass Performance, and Molecular 

Breeding Value Characteristics (n=5,353) 

Variable Mean 

Standard 

Deviation Minimum Maximum 

Live Animal and Carcass Performance     

Placement weight (cwt) 6.83 1.22 2.94 11.16 

Steer
a 

0.74    

Black
b 

0.68    

Average daily gain (lbs/day) 3.33 0.77 0.42 6.52 

Days-on-feed 165.45 34.09 81.00 308.00 

Final live weight (cwt) 12.09 1.42 7.06 17.27 

Hot carcass weight (cwt) 7.58 0.95 4.58 11.06 

Dressing percentage 0.63 0.03 0.49 0.83 

Calculated yield grade 2.86 0.69 0.06 5.71 

Marbling score 412.32 76.86 190.00 830.00 

Molecular Breeding Values (MBV)
c 

    

Average daily gain MBV 0.18 0.10 ‒0.19 0.48 

Hot carcass weight MBV 27.63 9.24 ‒17.73 55.91 

Yield grade MBV ‒0.06 0.07 ‒0.34 0.21 

Rib-eye area MBV ‒0.63 0.51 ‒2.16 1.59 

Marbling MBV ‒22.53 28.24 ‒119.37 68.26 

Tenderness MBV ‒1.18 1.43 ‒5.90 2.92 

Days-on-feed MBV ‒2.58 2.99 ‒14.35 8.49 
a
 Steer is a dummy variable equal to one if the animal was a steer and zero otherwise.  

b
 Black is a dummy variable equal to one if the animal was black hided and zero otherwise.  

c
 Molecular breeding values (MBVs) are reported in units of the trait, and reflect the differences 

expected in animals across breeds compared to their contemporaries (Igenity, 2013a). Therefore, 

mean MBVs offer little insight. Instead, the range of MBVs is more informative. For example, 

the range of average daily gain MBVs suggests that the animal with the highest genetic potential 

for average daily gain in the sample would be expected, on average, to gain approximately 0.67 

lbs per day more than the animal with the lowest genetic potential for average daily gain [0.48 – 

(– 0.19)]. 
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Table 2. Yield Grade, Quality Grade, and Carcass  

Weight Premiums and Discounts for Price Grid 

Grid Component 

Premium/ 

(Discount)
a 

 $/cwt. 

Base Price
b
 $201.71 

  

Yield Grade (YG) Adjustment  

YG < 2 $4.58 

2 ≤ YG < 3 $2.18 

3 ≤ YG < 4 $0.00 

4 ≤ YG < 5 ($9.25) 

YG ≥ 5 ($15.02) 

  

Quality Grade Adjustment  

Prime $19.40 

Choice $0.00 

Select ($2.69) 

Standard ($17.87) 

  

Hot Carcass Weight (HCW) 

Adjustment 

 

HCW < 500 ($25.48) 

500 ≤ HCW < 550 ($19.62) 

550 ≤ HCW < 600 ($3.89) 

600 ≤ HCW < 900 $0.00 

900 ≤ HCW < 950 ($0.24) 

950 ≤ HCW < 1000 ($0.24) 

HCW ≥ 1000 ($21.99) 
a
 Discounts are designated by parentheses. 

b 
The base price is the five-area weighted  

average for 65%-80% USDA Choice dressed weight  

for mixed lots of steers and heifers.  

Source: United States Department of Agriculture,  

Agricultural Marketing Service, 2013b. 
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Table 3. Dry Matter Intake Empty Body Fat Adjustment Factor  

for Beef Cattle 

Empty Body Fat Percentage (EBF) 

Body Fat Adjustment Factor 

(BFAF) 

EBF < 23.8 1.00 

23.8 ≤ EBF < 26.5  0.97 

26.5 ≤ EBF < 29.0 0.90 

29.0 ≤ EBF < 31.5 0.82 

EBF ≥ 31.5 0.73 

Source: National Research Council (2000).  
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Table 4. Mixed Model Regression Results for Average Daily Gain, Dressing Percentage, 

Yield Grade, and Quality Grade Prediction Equations (n=5,353) 

 Equation
a
 

Variable ADG DP YG QG 

Constant 2.2582* 0.3830** 1.0798 218.1700** 

Placement weight 0.1805 0.0094** 0.2079*** 22.8606*** 

Days-on-feed 0.0097 0.0019* 0.0039 1.2387** 

Days-on-feed
2 

−2.00E−05 −3.55E−06* 2.69E−06 −0.0006 

Placement weight 

× days-on-feed 

−0.0014* −4.00E−05 −0.0006 −0.1145*** 

Steer 0.3923*** 0.0001 −0.1452*** −34.2965*** 

Black 0.0225* −0.0003 0.0217 4.0083** 

Average daily gain 

MBV
b 

0.3877*** −0.0055* 0.0081 −11.6896 

Hot carcass weight 

MBV 

0.0026** 0.0001*** 0.0024 0.3596*** 

Yield grade MBV 0.2221** −0.0089 −0.7557*** −10.1476** 

Rib-eye area MBV −0.0341 0.0023 −0.3241*** −9.3658*** 

Marbling MBV 0.0004 −7.89E−06 −0.0022 0.1504 

Marbling MBV  

× days-on-feed 

— — 2.40E−05** 0.0033*** 

Tenderness MBV 0.0126** 0.0002 0.0018 −0.8510 

Days-on-feed MBV 1.00E−05 −3.00E−05 −0.0040* −0.4305 
a
 Dependent variables in the four equations are average daily gain (ADG), dressing percentage 

(DP), calculated yield grade (YG), and marbling score (QG).  
b
 MBV is molecular breeding value.  

Note: Joint tests for marbling MBV and marbling MBV, days-on-feed interactions are 

statistically significant at the 1% level in both the YG (df=2, 5128; F=41.44) and QG (df=2, 

5128, F=306.91) equations.  

Note: Random effects for set and contemporary groups nested within sets are included in the 

estimation of each equation, i.e., mixed model regression (Greene, 2012).  

Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels.  
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Table 5. Maximum Expected Profit ($/head) and Optimal Days-on-feed for Quartiles of 

Economically-Relevant Molecular Breeding Values  

 Quartile 

Molecular Breeding Value Q1 Q2 Q3 Q4 

Average daily gain     

Expected profit  $125.19  $140.23 $151.61 $168.35 

Days-on-feed where expected profit is 

maximized 

181 184 185 187 

Hot carcass weight     

Expected profit  $129.21 $141.46 $149.73 $164.56 

Days-on-feed where expected profit is 

maximized 

185 184 187 186 

Yield grade     

Expected profit  $158.42 $147.69 $143.53 $135.06 

Days-on-feed where expected profit is 

maximized 

187 184 185 185 

Rib-eye area     

Expected profit  $161.83 $154.00 $145.37 $125.34 

Days-on-feed where expected profit is 

maximized 

192 188 185 181 

Marbling     

Expected profit  $121.05 $140.93 $156.57 $167.41 

Days-on-feed where expected profit is 

maximized 

181 185 185 188 

Tenderness     

Expected profit  $143.05 $142.21 $146.47 $152.98 

Days-on-feed where expected profit is 

maximized 

187 185 185 184 

Days-on-feed     

Expected profit  $149.46 $146.65 $146.62 $141.93 

Days-on-feed where expected profit is 

maximized 

187 185 185 183 

Note: If all cattle are fed for the same number of days-on-feed, maximum expected profit of 

$146.14 would be realized at 185 days-on-feed.   
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Table 6. Expected Value of Marker-Assisted Management and Marker-Assisted Selection 

at the Feedlot Stage for Molecular Breeding Values Characterizing Economically-Relevant 

Traits 

 Value of Information 

Molecular Breeding Value 

Marker-Assisted 

Management
a 

Marker-Assisted  

Selection
b 

 —————— $/head —————— 

Average daily gain $0.20 $22.21 

Hot carcass weight $0.10 $18.42 

Yield grade $0.03 $12.28 

Rib-eye area $0.49 $15.69 

Marbling $0.35 $21.27 

Tenderness $0.04 $6.84 

Days-on-feed $0.02 $3.31 
a
 The value of marker-assisted management is calculated by comparing expected profit when a 

feedlot can differentially choose optimal marketing dates for each quartile of a given trait relative 

to the case where all cattle are fed for the same number of days-on-feed.  
b
 The value of marker-assisted selection at the feedlot stage is calculated by comparing expected 

profits for the best performing quartile relative the case where all cattle are fed for the same 

number of days-on-feed.  
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Table 7. Maximum Expected Profit ($/head), Optimal Days-on-feed, and Effective 

Proportion of Management Groups for Simultaneous Management of Average Daily Gain 

and Marbling Molecular Breeding Values  

 Quartile for Average Daily Gain Molecular Breeding Value
 

Quartile for Marbling 

Molecular Breeding 

Value Q1 Q2 Q3 Q4 

Q1 $111.13 $120.79 $132.02 $146.40 

 (181)
a 

(180) (181) (184) 

 [0.11]
b 

[0.07] [0.05] [0.02] 

Q2 $127.58 $139.82 $144.21 $159.82 

 (183) (187) (185) (185) 

 [0.07] [0.07] [0.06] [0.05] 

Q3 $141.66 $148.72 $159.73 $169.56 

 (180) (189) (188) (190) 

 [0.04] [0.07] [0.07] [0.07] 

Q4 $149.80 $161.49 $164.69 $176.57 

 (188) (188) (188) (192) 

 [0.03] [0.04] [0.07] [0.11] 
a
 Numbers in parentheses are days-on-feed for each group where expected profit ($/head) is 

maximized.  
b
 Numbers in brackets are the proportion of cattle in the sample for each group. 
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Table 8. Expected Value of Marker-Assisted Management and Marker-Assisted Selection 

at the Feedlot Stage for Pairwise Combinations of Molecular Breeding Values 

Characterizing Economically-relevant Traits 

 Value of Information 

Pairwise Combinations of Molecular 

Breeding Values 

Marker-Assisted 

Management
a 

Marker-Assisted  

Selection
b 

 —————— $/head —————— 

Average daily gain-Hot carcass weight $0.37 $33.58 

Average daily gain-Yield grade $0.39 $31.92 

Average daily gain-Rib-eye area $0.66 $26.44 

Average daily gain-Marbling $0.47 $30.43 

Average daily gain-Tenderness $0.42 $30.07 

Average daily gain-Days-on-feed $0.38 $23.87 

   

Hot carcass weight-Yield grade $0.22 $31.83 

Hot carcass weight-Rib-eye area $0.70 $32.61 

Hot carcass weight-Marbling $0.50 $37.56 

Hot carcass weight-Tenderness $0.30 $28.80 

Hot carcass weight-Days-on-feed $0.23 $23.76 

   

Yield grade-Rib-eye area $0.79 $24.38 

Yield grade-Marbling  $0.49 $27.15 

Yield grade-Tenderness $0.26 $16.86 

Yield grade-Days-on-feed $0.15 $16.75 

   

Rib-eye area-Marbling $0.67 $23.08 

Rib-eye area-Tenderness $0.70 $20.25 

Rib-eye area-Days-on-feed $0.62 $22.08 

   

Marbling-Tenderness $0.59 $23.94 

Marbling-Days-on-feed $0.47 $24.00 

   

Tenderness-Days-on-feed $0.23 $10.52 
a
 The value of marker-assisted management is calculated by comparing expected profit when a 

feedlot can differentially choose optimal marketing dates for each management group relative to 

the case where all cattle are fed for the same number of days-on-feed.  
b
 The value of marker-assisted selection at the feedlot stage is calculated by comparing expected 

profits for the best performing management group relative the case where all cattle are fed for the 

same number of days-on-feed. 

 


