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ABSTRACT 

 
 
 

Spatially disaggregated maps of the incidence of poverty can be constructed by 

combining household survey data and census data.  In some cases, however, statistical 

authorities are reluctant, for reasons of confidentiality, to release household-level census 

data.  This paper examines the loss in precision associated with using aggregated census 

data, such as village- or district-level means of the data.  We show analytically that using 

aggregated census data will result in poverty rates that are biased downward (upward) if 

the rate is below (above) 50 percent and that the bias approaches zero as the poverty rate 

approaches zero, 50 percent, and 100 percent.  Using data from Vietnam, we find that the 

average absolute error in estimating provincial poverty rates is about 2 percentage points 

if the data are aggregated to the enumeration-area level and around 3-4 percentage points 

if they are aggregated to the provincial level.  Even census data aggregated to the 

provincial level perform reasonably well in ranking the 61 provinces by the incidence of 

poverty: the average absolute error in ranking is 0.92.    
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POVERTY MAPPING WITH AGGREGATE CENSUS DATA: WHAT IS THE 
LOSS IN PRECISION? 

 
 

Nicholas Minot1 and Bob Baulch2 
 

 
 

1. INTRODUCTION 
 

 Policymakers and researchers are interested in the geographic distribution of 

poverty for several reasons.  First, knowledge of these patterns facilitates the targeting of 

programs designed, at least in part, to reduce poverty.  Many countries use some form of 

geographic targeting in government programs such as credit, food aid, input distribution, 

health care, and education.  Second, this information is useful in monitoring progress in 

addressing poverty and regional disparities.  Third, it may provide some insight regarding 

the geographic factors associated with poverty, such as access to markets, climate, or 

topography.   

 In a growing number of countries, high-resolution poverty maps are now being 

produced using a relatively new two-step approach.  In the first step, household survey 

data are used to estimate econometrically the relationship between poverty (or household 

expenditure) and a series of household characteristics, including household size and 

composition, education, occupation, housing characteristics, access to utilities, and 

ownership of consumer goods such as radios and bicycles.  In the second step, this  

                                                      
1 Research Fellow, Markets and Structural Studies Division, International Food Policy Research Institute. 
Washington, D.C. Email: n.minot@cgiar.org 
2 Fellow, Institute of Development Studies, University of Sussex.  Email: b.baulch@ids.ac.uk 
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relationship is applied to census data on the same household characteristics to calculate 

an estimate of the incidence of poverty for some small geographic unit.  In some cases, 

other poverty measures and indicators of income inequality can also be calculated.  

 In an early application of this approach, Minot (1998, 2000) combined a probit  

regression on data from the 1993 Vietnam Living Standards Survey and district-level 

means of the household characteristics from the 1994 Agricultural Census to estimate the 

ranking of the incidence of poverty across 543 rural districts.  Hentschel et al (1998, 

2000) use household survey data and household-level census data to estimate 

disaggregated poverty rates for Ecuador.  They show that with household-level census 

data it is possible to generate unbiased estimates of the poverty rate as well as estimates 

of the standard error of the poverty rates.  In the first stage of this approach, the logarithm 

of per capita expenditure is regressed on household characteristics from a household 

survey.  In the second stage, data on the same household characteristics from the Census 

is used to predict per capita expenditures and derive various poverty (and inequality) 

measures.  Poverty maps that combine household survey and census data have been 

prepared for Guatemala, Nicaragua, Panama, Peru, South Africa, Mozambique, Malawi, 

Cambodia, and Vietnam (see Henninger and Snel, 2002). 

 Researchers, however, do not always have access to household-level census data. 

The national statistics agencies in many (developing and industrialised) countries are 

reluctant to release household-level census data to researchers and international 

organizations, in part because of the issue of the confidentiality of the data.  For example, 

China and India have each conducted a census within the past two years, but only 
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district/county level results are available to outside researchers.  In addition, the 

computational burden of processing census data, which may contain tens or even 

hundreds of millions of records, can be a challenge for even the most powerful desktop 

computers.  When data access or computational burdens are constraining factors, one 

alternative is to use census data that has been aggregated to a higher level (such as the 

commune, district or province).  This approach has been used in Vietnam and Gaza and 

the West Bank.  In other words, the researcher uses a database consisting of the (for 

example) district-level means of all the household characteristics.  An important question, 

therefore, is: how much precision is lost in generating poverty maps from aggregate 

census data?  If the errors are small, then reliable poverty maps can be produced for a 

wider range of countries.  If the errors are large, then the use of aggregated data is not 

advisable and researchers should focus on getting access to household-level data.   

 This study uses recent household survey and census data from Vietnam to assess 

the loss in accuracy associated with using aggregated census data instead of the original 

household-level census data. The results of this analysis suggest that errors from using 

aggregated census data in the second stage of poverty mapping are, in the case of 

Vietnam, about 2 percentage points on average, if the level of aggregation is low.  

Furthermore, the paper shows analytically and empirically that the error is close to zero 

when the incidence of poverty is close to zero, close to 50 percent, or close to 100 

percent.   Results from using aggregated census data must be interpreted with caution, 

however, because this approach tends to underestimate poverty rates that are below 50 



 

 4 
 

 

percent and overestimate poverty rates above 50 percent, thus exaggerating differences 

between poor and less poor regions. 3   

 The paper is divided into four sections.  Section 2 describes the data and methods 

used to compare alternative measures of the incidence of poverty using household survey 

data and census data from Vietnam.  Section 3 presents three types of results.  First, we 

present an updated provincial map of poverty in Vietnam based on the best available data 

and methods.  Then, we derive analytical results regarding the factors that affect the size 

and direction of errors from the use of aggregate data.  Finally, we generate poverty 

estimates using census data that has been aggregated at different levels and compare the 

results to those obtained from the household-level census data.  Section 4 summarizes the 

results and draws some implications for future research in poverty mapping.   

 

2. DATA AND METHODS 
 

DATA 
 
 In this study, we use the 1998 Vietnam Living Standards Survey (VLSS) and the 

1999 Population and Housing Census.   The VLSS was carried out by the General 

Statistics Office (GSO) of Vietnam with funding from the Swedish International 

Development Agency and the United Nations Development Program and with technical 

assistance from the World Bank.  It surveyed a stratified random sample of 6000 

households, comprising 4270 households and 1730 urban households.  The VLSS sample  

                                                      
3 In this paper, we use �poverty rate,� denoted by P0, to refer to the percentage of households whose per 
capita expenditure falls below the poverty line. 
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was based on ten strata: the rural areas of the seven regions and three urban strata (Hanoi 

and Ho Chi Minh City, other cities, and towns).  For this analysis, we merge �other 

cities� and �towns� because the census data do not distinguish between these two strata.   

 The 1999 Census was carried out by the GSO and refers to the situation as of 

April 1, 1999.  It was conducted with the financial and technical support of the United 

Nations Population Fund and the United Nations Development Program. Unit record data 

from the full Census are not available, but a 3 percent sample has been released on CD-

ROM and forms the basis of this study.  The 3 percent sample was selected by GSO using 

a stratified random sample of 5287 enumeration units, containing 534,139 households.   

 The two surveys have a number of household variables in common: household 

size and composition, education of the head and spouse, housing characteristics, source 

of water, type of sanitation facility, ownership of three consumer goods (radios, 

televisions, and bicycles), and location of residence.  

METHODS  
 
 We begin with a description of the method of poverty mapping when household-

level census data are available.  As mentioned above, the first step in implementing this 

approach is to use household survey data to estimate per capita expenditure as a function 

of a variety of household characteristics.4   

                                                      
4 Note that some �household� characteristics (e.g., education or occupation of the household head) are 
based on the characteristics of individual members of the household.  Some studies (for example, Bigman 
et al., 2000) also use community level characteristics in estimating per capita expenditures. 
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This typically takes the following semi-log form: 

eXy += β)ln(      (1) 

where y is per capita expenditure, X is a vector of household characteristics from the 

household survey, B is a vector of estimated coefficients, and e is the error term5.   

 The second step is to apply this equation to census data on the same household 

characteristics.  If we are using household-level census data, this generates estimates of 

per capita expenditure for each household in the census.  Hentschel et al. (1998) show 

that the incidence of poverty for a group of households is estimated by taking the average 

value of the probability that each household is poor. Taking the percentage of households 

whose estimated per capita expenditure is below the poverty line, while intuitively 

plausible, gives a biased estimate of the poverty rate.  The probability that a household i 

is poor (P) is given by:  








 −
Φ=

σ
βµ C

i
i

X
P       (2) 

where Φ() is the cumulative normal function, Xi
C is a vector of the same household 

characteristics taken from the census, ß is a vector of the coefficients estimated in the first 

stage, µ is the poverty line, and σ is the standard error of the regression from the first 

stage.  If region r contains N households labeled i= 1..N, the expected value of the 

                                                      
5 Elbers et al. (2001) discuss a number of econometric issues related to this step, including the problems of 
heteroskedasticity and spatial autocorrelation.  In this analysis, we do not apply adjustments for 
heteroskedasticity and spatial autocorrelation.  To the extent that these are problems in our data, our 
estimated coefficients will be still be unbiased but they will be inefficient in that they do not make use of 
all the information available.   
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poverty rate for the region, Pr, is simply the average of the probabilities that the 

individual households are poor6:  

∑∑ 






 −
Φ==

i

C
i

i
ir

X
N

P
N

P
σ

βµ11     (3) 

 In some cases, however, the statistics bureau of the government is not willing to 

release household-level census data but is willing to release aggregated data, such as the 

mean values of household characteristics for each district or village.  The mean values of 

the household characteristics in the census data are then inserted into the regression 

equation estimated with the household survey.  If it is a semi-log regression model, then 

equation (3) can be applied, with Xi
c being replaced by the census means.  If a probit 

equation is used to estimate poverty, then the regression equation directly generates the 

estimated incidence of poverty.   

 As noted in Minot (2000), this is not an unbiased estimate of poverty because the 

probit equation is non-linear.  Using aggregate data ignores the variation in the household 

characteristics within each aggregation unit.  For this reason, Minot (2000) used the 

results to rank districts by the incidence of poverty rather than reporting the estimated 

poverty rates.  Even if we adopted the semi-log functional form in the first stage, the non-

linearity of the cumulative normal function in equation (3) would make it impossible to 

get an unbiased poverty estimate using aggregated census data.    

 

                                                      
6 To simplify the presentation, we give the expression for the estimated percentage of households below the 
poverty line.  For the percentage of individuals below the poverty line, the expression must be modify to 
calculate the weighted average values of Pi , where the weights are the household sizes. 
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On the issue of functional form, probit models are less sensitive to outliers in the 

data and less affected the relationship between expenditure and household characteristics 

in the higher income groups, which is less relevant for estimating poverty.  On the other 

hand, using a probit on data that was originally continuous (like expenditure) involves 

discarding a lot of useful information.  Furthermore, it has not been demonstrated that the 

probit model generates unbiased poverty estimates even when the data are not 

aggregated.   

 In section 3.1, we present the semi-log and probit regression models to �predict� 

expenditure and poverty, respectively, based on household characteristics.  Then we use 

the semi-log model and household-level census data to generate provincial estimates of 

the incidence of poverty in Vietnam.  In section 3.2, we use a second-order Taylor series 

expansion to provide an analytical expression for the error associated with using 

aggregate census data instead of household-level census data.  This provides some 

information on the factors that influence the sign and magnitude of the error.   

In section 3.3, we use data from Vietnam to examine the sensitivity of the results 

to the choice of functional form in the first stage of the procedure and to the use of 

aggregate census data in the second stage.  Table 1 provides a summary of the methods 

being compared in this paper.  With regard to the functional form, we compare the results 

obtained from using a) a probit model where the dependent variable indicates indicating 

whether or not the household is poor (as used by Minot (2000)) and b) the semi-log 

model in which the dependent variable is the logarithm of per capita expenditure (as used 

by Hentschel et al (2000) and other studies).  With regard to the level of aggregation of 
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the census data, we compare the estimates of the incidence of poverty (often denoted by 

P0) from the original household-level census data (considered the most accurate estimate) 

with estimates obtained from census data aggregated to the level of a) the enumeration 

area, b) the province, and c) the region.  The poverty estimates are calculated at three 

levels (provincial, regional, and national).  Of course, the poverty estimates cannot be 

more disaggregated that the census data on which they are based.   

 

Table 1�Summary of alternative methods to be compared 

  Level of aggregation of poverty estimates 

  Province Region National 

Household Semi-log model 
Probit model 

Semi-log model 
Probit model 

Semi-log model 
Probit model 

EA Semi-log model 
Probit model 

Semi-log model 
Probit model 

Semi-log model 
Probit model 

Province Semi-log model 
Probit model 

Semi-log model 
Probit model 

Semi-log model 
Probit model 

Level of 
aggregation  
of the    
census data 

Region  Semi-log model 
Probit model 

Semi-log model 
Probit model 

 
Note:  The underlined item represents the standard of comparison 
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3. RESULTS 
 

PROVINCIAL ESTIMATES OF POVERTY IN VIETNAM 
 
 As described above, the first step in the poverty mapping procedure is to use 

household expenditure data to estimate per capita expenditure (or poverty) as a function 

of household characteristics.  Table 2 provides the semi-log models of per capita 

expenditure in rural and urban areas using the Vietnam Living Standards Survey.  Table 3 

presents the rural and urban probit models of whether or not a household is poor based on 

the same household characteristics.   The second step is to apply the regression model to 

census data on the same household characteristics.   

 If we apply the semi-log model to the household-level census data, the provincial 

estimates of the incidence of poverty rates can be mapped as shown in Figure 1.  The map 

indicates that poverty, defined as the proportion of households whose per capita 

expenditure is below the poverty line, is greatest in the north, bordering on China to the 

north and Laos to the west.  These areas are mountainous and have low population 

densities, poor transport infrastructure, and a high proportion of ethnic minorities.  Seven 

of these provinces have poverty rates of over 60 percent.  Many of the provinces in the 

North Central Coast and the Central Highlands also have relatively high poverty rates, 

ranging from 45 percent to 60 percent.  The Mekong Delta (the 12 southern-most 

provinces) and the Red River Delta (the cluster of small provinces in the north) have 

poverty rates of 25 to 45 percent.   
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Table 2�Semi-log regression model of per capita expenditure 
  Rural model   Urban model   

N 4269  1730  
R-squared 0.536  0.550  

Variable Coefficient t   Coefficient t  
Size of hhsize -0.0772 -19.5*** -0.0785 -8.1*** 
Proportion of members over 65 yrs -0.0831 -2.4** -0.1026 -1.6 
Proportion of members under 15 
yrs -0.3353 -9.4*** -0.2368 -3.6*** 
Proportion of female members -0.1177 -3.5*** 0.0386 0.5 
Ethnic minority -0.0765 -1.9* 0.0142 0.2 
Head completed primary education 0.0585 3.4*** 0.0616 1.7 
Head completed lower secondary 0.0883 4.5*** 0.0338 1.3 
Head completed upper secondary 0.0884 3.3*** 0.1368 3.2*** 
Head completed adv tech degree 0.1355 4.2*** 0.1603 3.5*** 
Head has post-secondary education 0.2552 4.9*** 0.1843 3.7*** 
No spouse 0.0173 1.0 0.0344 0.8 
Spouse completed primary 
education 0.0049 0.3 0.0642 1.9* 
Spouse completed lower secondary 0.0132 0.6 0.0987 2.6** 
Spouse completed upper secondary 0.0107 0.3 0.1912 2.7** 
Spouse completed adv tech degree 0.0921 2.3** 0.1285 3.2*** 
Spouse has post-secondary 
education 0.1571 2.7*** 0.1752 3.1*** 
Head is leader/manager 0.1414 3.5*** 0.2312 3.0*** 
Head is professional/technician 0.1350 3.3*** 0.0576 1.2 
Head is clerk/service worker 0.1362 3.4*** 0.0357 0.9 
Head works in ag, forestry, or 
fisheries -0.0163 -0.6 -0.0093 -0.2 
Head is skilled worker 0.0701 1.9* 0.0071 0.2 
Head is unskilled worker -0.0586 -1.7* -0.1599 -2.9*** 
Permanent house -0.9228 -4.3*** -0.5194 -3.4*** 
Semi-permanent house -0.3120 -3.6*** -0.4001 -3.8*** 
Permanent house x Area of house 0.2958 5.7*** 0.2001 5.4*** 
Semi-permanent house x Area of 
house 0.1180 5.2*** 0.1403 4.6*** 
Has electricity 0.0765 2.7*** -0.0026 0.0 
Has tap water 0.0828 1.4 0.2289 5.3*** 
Has other safe source of water 0.1157 4.4*** 0.0340 0.6 
Has flush toilet 0.2700 5.5*** 0.1311 2.2** 
Has latrine 0.0556 2.6** 0.0049 0.1 
Owns television 0.2124 15.1*** 0.2167 5.5*** 
Owns radio 0.1009 7.0*** 0.1599 6.2*** 
Red River Delta 0.0314 0.6 0.0693 0.7 
North Central Coast 0.0485 0.8 0.0445 0.6 
South Central Coast 0.1373 2.2** 0.1460 1.9* 
Central Highlands 0.1708 2.1** omitted (no urban in region 5) 
Southeast 0.5424 9.4*** 0.4151 5.5*** 
Mekong Delta 0.3011 5.1*** 0.1895 2.1** 
Constant 7.5327 108.7***  7.7538 64.7*** 
 
Source:   Regression analysis of 1998 Viet Nam Living Standards Survey. 
Note: * coefficient is significant at the 10% level, ** at the 5% level, and *** at the 1% level. 
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Table 3�Probit regression model of poverty  
  Rural model   Urban model   
 N=4269  N=1730  
     
Variable Coefficient t   Coefficient t  
Size of hhsize -0.0772 -19.5*** -0.0785 -8.1*** 
Proportion of members over 65 yrs -0.0831 -2.4** -0.1026 -1.6 
Proportion of members under 15 yrs -0.3353 -9.4*** -0.2368 -3.6*** 
Proportion of female members -0.1177 -3.5*** 0.0386 0.5 
Ethnic minority -0.0765 -1.9* 0.0142 0.2 
Head completed primary education 0.0585 3.4*** 0.0616 1.7 
Head completed lower secondary 0.0883 4.5*** 0.0338 1.3 
Head completed upper secondary 0.0884 3.3*** 0.1368 3.2*** 
Head completed adv tech degree 0.1355 4.2*** 0.1603 3.5*** 
Head has post-secondary education 0.2552 4.9*** 0.1843 3.7*** 
No spouse 0.0173 1.0 0.0344 0.8 
Spouse completed primary education 0.0049 0.3 0.0642 1.9* 
Spouse completed lower secondary 0.0132 0.6 0.0987 2.6** 
Spouse completed upper secondary 0.0107 0.3 0.1912 2.7** 
Spouse completed adv tech degree 0.0921 2.3** 0.1285 3.2*** 
Spouse has post-secondary education 0.1571 2.7*** 0.1752 3.1*** 
Head is leader/manager 0.1414 3.5*** 0.2312 3.0*** 
Head is professional/technician 0.1350 3.3*** 0.0576 1.2 
Head is clerk/service worker 0.1362 3.4*** 0.0357 0.9 
Head works in ag, forestry, or 
fisheries -0.0163 -0.6 -0.0093 -0.2 
Head is skilled worker 0.0701 1.9* 0.0071 0.2 
Head is unskilled worker -0.0586 -1.7* -0.1599 -2.9*** 
Permanent house -0.9228 -4.3*** -0.5194 -3.4*** 
Semi-permanent house -0.3120 -3.6*** -0.4001 -3.8*** 
Permanent house x Area of house 0.2958 5.7*** 0.2001 5.4*** 
Semi-permanent house x Area of 
house 0.1180 5.2*** 0.1403 4.6*** 
Has electricity 0.0765 2.7*** -0.0026 0.0 
Has tap water  0.0828 1.4 0.2289 5.3*** 
Has other safe source of water 0.1157 4.4*** 0.0340 0.6 
Has flush toilet 0.2700 5.5*** 0.1311 2.2** 
Has latrine 0.0556 2.6** 0.0049 0.1 
Owns television 0.2124 15.1*** 0.2167 5.5*** 
Owns radio 0.1009 7.0*** 0.1599 6.2*** 
Red River Delta 0.0314 0.6 0.0693 0.7 
North Central Coast 0.0485 0.8 0.0445 0.6 
South Central Coast 0.1373 2.2** 0.1460 1.9* 
Central Highlands 0.1708 2.1** omitted (no urban in region 5)
Southeast 0.5424 9.4*** 0.4151 5.5*** 
Mekong Delta 0.3011 5.1*** 0.1895 2.1** 
Constant 7.5327 108.7***  7.7538 64.7*** 
Source:   Regression analysis of 1998 Viet Nam Living Standards Survey. 
Note: * coefficient is significant at the 10% level, ** at the 5% level, and *** at the 1% level. 
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Figure 1�Incidence of poverty by province 
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These areas are favored by intensive irrigation of rice, fruits, and vegetables, good 

transportation networks, and proximity to the largest cities, Ho Chi Minh City and Hanoi.  

The areas with the lowest poverty rates (below 25 percent) include the province of Hanoi 

in the north, Da Nang on the central coast, and the Southeast region.  The Southeast 

region includes Ho Chi Minh City, the largest and most commercially-oriented city in 

Vietnam.  The rural areas around Ho Chi Minh City have become an important center for 

commercial agriculture and agro-industry.  These patterns conform closely to the results 

from earlier studies (see World Bank, 1995; Poverty Working Group, 1999; and Minot, 

2000). 

DETERMINANTS OF THE ERRORS OF AGGREGATION  
 
  Suppose that we can only obtain district-level means of the household 

characteristics from the census and we wish to calculate district-level poverty rates.  The 

sign and magnitude of the error associated with using aggregate census data instead of 

household-level census data can be estimated using a second-order Taylor expansion as 

follows (the derivation can be found in Appendix A):   
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where the index i refers to households, N is the number of households in the district, and 

C
X  is the vector of district-level means of the household characteristics.  The left-hand 

side of this equation represents the incidence of poverty as estimated from household-

level census data (Xi
C), as described in Section 2.2.  The first term on the right-hand side 
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is the (less accurate) estimate of the incidence of poverty rate obtained from the 

aggregated census data (
C

X ).  The second term on the right side is the approximate error 

associated with using aggregate census data rather than household-level census data. 7  

This error is a function of the variance in the estimated per capita expenditure within the 

aggregation region and the curvature of the cumulative normal function at the means of 

the aggregation region. 8   

 This equation has three implications for the error associated with using aggregate 

census data in poverty mapping.  First, since the variance is always positive and since the 

second derivative of the cumulative normal function is positive (negative) when the 

dependent variable is below (above) 0.5, poverty estimates based on aggregated data will 

underestimate poverty in regions with poverty rates below 50 percent and overestimate 

poverty in regions with poverty rates above 50 percent.  In other words, if a country has 

regions with poverty rates below 50 percent and others with rates above 50 percent, using 

aggregate data to produce a poverty map will exaggerate the differences in poverty 

between the two sets of regions.   

 Second, since the curvature of the cumulative normal function is zero in the center 

of the cumulative normal curve and approaches zero at the two tails of the function, the 

error term approaches zero when the incidence of poverty is 0.5, when it approaches 0, 

and when it approaches 1.0.   

                                                      
7 This is the approximate error because we started with the Taylor series expanded only to the second 
order.  A more precise estimate of the error would take into account the third and higher order terms in the 
series.   
8 Note that the poverty line (µ) and the standard error of the regression (σ) are generally constant across the 
relatively small geographic units for which the incidence of poverty is estimated.   
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 Third, the magnitude of the error is proportional to the variance of the estimates 

of per capita expenditure within the spatial unit of aggregation.  In the extreme, there 

would be no error associated with using aggregate data in a region with no variation 

across households.  If we assume, as is plausible, that the variance in household 

characteristics declines with smaller geographic units, then aggregation over small units 

(such as a district) would produce smaller errors than aggregation over larger units (such 

as a province. 

 Although these results provide us with some information about the factors that 

determine the direction and magnitude of the errors associated with using aggregated 

census data in poverty mapping, they do not give us a sense of the absolute size of the 

errors.  For example, errors of less than one percentage point would be considered 

negligible for most purposes, while errors of more than ten percentage points would be 

considered unacceptable to most users.  In the next section, we use data from Vietnam to 

measure the actual error from using aggregated census data to produce estimates of the 

incidence of poverty.   

EMPIRICAL COMPARISON OF ALTERNATIVE METHODS  
 
 As shown in Table 1, we can estimate the incidence of poverty at different levels 

of aggregation using census data aggregated to different levels (of course, the data must 

be at least as disaggregated as the unit for which poverty is estimated).9  For example, we 

can calculate the incidence of national and regional poverty using the original household-

                                                      
9 At the time of the 1999 Census, Vietnam had 61 provinces, 622 districts and some 176,000 enumeration 
areas (EAs), each containing an average of roughly 85 households. 
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level census data on the household characteristics, using EA-level means, using 

provincial means, and using regional means.  Furthermore, we can use either the probit 

model or the semi-log model in the first stage.  This yields eight sets of estimates for 

national and regional poverty, as shown in Table 4.   

  

Table 4�Regional and national poverty estimates using different methods 
  
     

    
 

Household-level data 
 

EA-level means 
 

Provincial means 
 

Regional means 
    Semi-log Probit Semi-log Probit Semi-log Probit Semi-log Probit
Hanoi and HCMC 0.037 0.039 0.012 0.009 0.007 0.005 0.007 0.004
Other urban areas 0.145 0.133 0.103 0.077 0.075 0.047 0.066 0.037
Rural N Uplands 0.598 0.625 0.606 0.636 0.629 0.666 0.652 0.698
Rural Red R Delta 0.379 0.386 0.355 0.359 0.348 0.353 0.346 0.351
Rural N C Coast 0.513 0.530 0.510 0.527 0.517 0.539 0.517 0.539
Rural S C Coast 0.475 0.447 0.464 0.430 0.465 0.430 0.464 0.429
Rural C. Highlands 0.517 0.464 0.515 0.452 0.522 0.451 0.526 0.450
Rural Southeast 0.125 0.130 0.077 0.078 0.058 0.059 0.054 0.055
Rural Mekong Delta 0.397 0.406 0.369 0.379 0.358 0.370 0.356 0.368
Vietnam 0.365 0.368 0.345 0.345 0.341 0.341 0.342 0.344
 
Source: Estimated from 1998 VLSS and 3% sample of 1999 Population and Housing Census.   
 

The national poverty rate, estimated using household-level census data and the 

semi-log model, is 36.5 percent.  Using aggregate census data, the estimates are about 2 

percentage points lower, ranging from 34.1 to 34.5 percent.  Looking at the regional 

poverty estimates, when aggregated census data is used, the poverty rate is overestimated 

in the poorest region (the Northern Uplands) and underestimated in the least poor regions 

(the two urban strata, the two deltas, and the Rural Southeast).  These results are 

consistent with equation (4) which predicts that aggregate data will underestimate 

(overestimate) poverty when the rate is below (above) 50 percent.  On the other hand, 

using the semi-log model combined with either the EA-level means or the provincial 
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means, the ranking of regions by poverty rate is the same as with the household-level 

data.  In fact, all eight methods agree that the rural Northern Uplands region is the poorest 

and that Hanoi/Ho Chi Minh City is the least poor.   

 Table 5 compares the results from the semi-log model with household census data 

(column 1 in Table 4) and those of other methods (columns 2-8 in Table 4).  The use of 

aggregate data appears to bias downward the regional poverty rates by between 2 and 4 

percentage points on average, for the reasons mentioned above.  As expected, the average 

absolute error rises with the degree of aggregation in the census data.  For example, the 

mean absolute error associated with the semi-log model rises from around 2 percentage 

points for the EA-level aggregation to 3 percentage points for the provincial aggregation 

to almost 4 percentage points for the regional aggregation.  The error associated with the 

probit models is slightly, but consistently, higher than that associated with the semi-log 

models at the same level of aggregation.  The last three rows of the table show the 

distribution of the errors.  When poverty is estimated using EA-level means and the semi-

log model, the errors for all nine regions is less than 5 percentage points.  Even when 

regional poverty rates are inferred from regional averages in the household 

characteristics, the error is less than 5 percentage points for six of the nine regions.  Only 

the crudest method (probit model with regionally aggregated data) produces any 

estimates that are off by 10 percentage points. 

  



 

 19 

 

Table 5�Errors in regional poverty estimated using different methods 
  
       

    Household-level data 
 

EA-level means 
 

Provincial means 
 

Regional means 
    Semi-log Probit Semi-log Probit Semi-log Probit Semi-log Probit
Bias   - -0.003 -0.020 -0.026 -0.023 -0.030 -0.022 -0.028
Median absolute error - 0.012 0.025 0.039 0.032 0.045 0.033 0.046
Mean absolute error - 0.018 0.021 0.038 0.032 0.051 0.037 0.056
Mean squared error - 0.001 0.001 0.002 0.002 0.003 0.002 0.004
Distribution of errors        
  0-5 percent - 89% 100% 78% 78% 56% 67% 56%
  5-10 percent - 11% 0% 22% 22% 44% 33% 22%
  Over 10 percent - 0% 0% 0% 0% 0% 0% 22%
 
Source: Estimated from 1998 VLSS and 3% sample of 1999 Population and Housing Census.    
Note: Errors are calculated relative to the poverty rates obtained using semi-log regression and household-level census data. 
           Statistics are calculated giving equal weights to each region, so the bias is not equal to the difference in national poverty
            rates. 
 
 
 

The ability of aggregated census data to accurately estimate regional poverty rates 

is interesting but perhaps less relevant than their ability to estimate provincial poverty 

rates.  The real advantage of combining survey and census data is to be able to map  

poverty at the provincial level (and below10).  Table 6 presents a summary of the errors in 

estimating the incidence of provincial poverty compared to the rates obtained by 

combining the original household data with the semi-log model.  Once again, the 

aggregated data introduce a small downward bias in the headcount incidence of poverty.  

Somewhat unexpectedly, the bias remains relatively constant, at 1.5 to 2.0 percentage 

points, regardless of the degree of aggregation of the data.  On the other hand, the mean 

                                                      
10We are not able to generate reliable district-level poverty estimates because of the structure of our 
sample, which consists of all the households in 3 percent of the EAs.  Thus, the average district in our 
sample has 858 households, but they are clumped together in just 8.5 EAs (the average district has 280 
EAs).   
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absolute error is about 2 percentage points for the semi-log model with EA-level means 

and almost 4 percentage points for the semi-log model with provincial means.  Again, for 

any given level of aggregation, the semi-log models introduce less error than the probit 

models.  The percentage of provinces with absolute errors of less than 5 percentage 

points falls from 98 percent with the semi-log model and EA-level means to 57 percent 

with the probit model and provincial means.   

  

Table 6�Errors in provincial poverty estimates using different methods 
  
        

      Household-level data  
EA-level means 

 
Provincial means 

      Semi-log Probit Semi-log Probit Semi-log Probit
Bias   - 0.0018 -0.0167 -0.0176 -0.0170 -0.0164
Median absolute error  - 0.0110 0.0207 0.0309 0.0346 0.0440
Mean absolute error  - 0.0143 0.0223 0.0316 0.0366 0.0468
Mean squared error  - 0.0003 0.0006 0.0013 0.0017 0.0029
Distribution of errors       
  0-5 percent  - 98% 98% 84% 70% 57%
  5-10 percent  - 2% 2% 16% 30% 41%
  Over 10 percent   - 0% 0% 0% 0% 2%
 
Source: Estimated from 1998 VLSS and 3% sample of 1999 Population and Housing Census.  
Note: Errors are calculated relative to the poverty rates obtained using semi-log regression and 
           household-level census data.  Statistics are calculated giving equal weights to each 
           province, so the bias is not equal to the difference in national poverty rates. 
 

 

Figure 2 plots the estimate of the headcount incidence of poverty using the semi-

log model and the household-level census data (on the horizontal axis) against the 

estimated incidence using the semi-log model and EA-level means of the household 

characteristics (on the vertical axis).  The diagonal line represent the pattern that would 

be followed if the two methods generated identical estimates of the poverty rate.  This 

graph highlights the pattern predicted from equation (4) and discussed above, in which 
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aggregated data result in an underestimate of poverty for less poor regions and an 

overestimate of poverty for the poorest regions.  In other words, the use of EA-level 

means instead of household census data exaggerates the gap between the poorest and 

richest provinces.  On the other hand, it is interesting to note how close the estimates 

based on EA-means are to the estimates based on the original household data.  The 

goodness-of-fit multiple correlation coefficient (R2 ) of the two estimates is 0.998.  This 

implies that more than 99 percent of the variation in the provincial poverty rates can be 

�explained� by the EA-level means of the household characteristics in the census data.    

Furthermore, the ranking of the ten poorest provinces is the same whether 

household-level or EA-level census data are used.  In fact, across all 61 provinces, the 

average absolute difference between the �true� rank and the rank using the aggregated 

data is 0.52.  No province changes more than two places in the ranking when EA-level 

means of the census data are used.    
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Figure 2: Comparison of provincial poverty estimates using household-level 
census data and using enumeration area means
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Figure 2�Comparison of provincial poverty estimates using household level census data 
and using enumeration area means 

Figure 3 compares the provincial poverty estimates obtained from the semi-log 

model with household-level census data and provincial means from the census data.  It 

reveals the same pattern of errors as Figure 2, in which the incidence of poverty is 

exaggerated for the poorest provinces and understated for the least poor provinces.  As 

explained above, this is due to the change in sign of the curvature of the cumulative 

normal function when the incidence of poverty rises above 50 percent.  On the other 

hand, the estimates in Figure 2 are noticeably less accurate, with many of the points lying 

more than 5 percentage points from the diagonal.  Intuitively, the lower level of accuracy 

is due to the smaller amount of information used to generate the poverty estimates, since 

Figure 3 is based on provincial means of the census data rather than EA-level means.  

Mathematically, the lower level of accuracy is due to the fact that the variance in 
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household characteristics within provinces is greater than that within enumeration areas, 

so the error term in equation (4) is larger.   

The margin of error in using census data aggregated to the provincial level may be 

too high for some uses.  Nonetheless, census data aggregated to the provincial level may 

still be useful in ranking provinces by poverty rate.  The average absolute error in ranking 

the 61 provinces using the aggregated data is 0.92, and only one province changes more 

than three places in the ranking when provincial means of the census data are used.  

Figure 3: Comparison of provincial poverty estimates using 
household-level census data and using provincial means
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Figure 3�Comparison of provincial poverty estimates using household level census 
data and using provincial means 
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4. SUMMARY AND DISCUSSION 
 

 This paper combines household expenditure survey data and census data to 

estimate the incidence of poverty for 61 provinces in Vietnam.  The results confirm that 

poverty is greatest (over 60 percent) in the northern mountain regions along the border of 

China and Laos, followed by the provinces in the North Central Coast and Central 

Highlands.  The least poor areas are the major cities (where less than 5 percent are poor) 

and the rural areas surrounding Ho Chi Minh City, followed by the intensively cultivated 

Red River Delta and Mekong Delta. 

 In addition, the paper explores the errors associated with using aggregated census 

data, since national statistics agencies in Vietnam and many other countries are often 

reluctant to release household-level census data.  Our analytical results suggest that the 

use of aggregated data will underestimate the incidence of poverty when the rate is below 

50 percent and overestimate it where the rate is above 50 percent.  The magnitude of the 

error varies with the estimated incidence of poverty, being smallest when the poverty rate 

is close to zero, 50 percent, and 100 percent.  Furthermore, the error is proportional to the 

variance in estimated per capita expenditure within the aggregated geographic units. 

 Empirical results using the Vietnam data indicate that, if census data are 

aggregated to the level of Census enumeration area (each of which has about 85 

households), the errors in estimating the incidence of poverty are relatively small, 

averaging about 2 percentage points for national, regional, and provincial estimates of 

poverty.  Ninety-eight percent of the provincial poverty estimates using EA-level census 

have errors of less than 5 percentage points.  Not surprisingly, errors were larger when 
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the level of aggregation was greater.  Using census data aggregated to the level of the 

province (of which there are 61 in Vietnam) resulted in errors of 3 to 4 percentage points, 

on average, with almost one-third of the provincial estimates being off by more than 5 

percentage points.  Using census data aggregated to the level of the region (nine regions 

were used in this study) was the least accurate, resulted in errors of around 4 percentage 

points, on average.  

 The study also compared the use of the semi-log regression model with that of the 

probit regression model.  Using household census data, the incidence of poverty from the 

probit equation differed from that obtained from the semi-log equation by about 1.4 

percentage points.  Similarly, the use of the probit model added one percentage point in 

error when using the aggregated census data.   

 What are the implications of these results for other studies that combine 

household survey data and census data to produce high-resolution poverty maps?  

Clearly, the best option is to carry out the analysis with household-level census data.  Not 

only does this generate more accurate estimates of the incidence of poverty (P0), but it 

allows the estimation of various other measures of poverty (P1 and P2) and inequality as 

well as estimates of standard errors of these measures, none of which are possible with 

aggregated census data.  Once the census data are aggregated, information about the 

variability of expenditure across households within the unit of aggregation is lost, 

information necessary for estimating inequality and the higher-order measures of poverty 

(see Hentschel et al, 2000 and Elbers et al, 2001).    
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 At the same time, the results presented in this paper suggest that if household-

level census data are not available, as is often the case, it is possible to generate 

reasonably accurate estimates of the incidence of poverty using aggregated census data.  

The errors associated with aggregation are more likely to be acceptable if the level of 

aggregation of the census data is relatively low, such as at the district or enumeration 

area.  Furthermore,even highly aggregated census data can be used to rank provinces by 

poverty rate relatively accurately.   

If aggregate census data are used to generate poverty estimates, the results in this 

paper provide information on the likely size and direction of bias.  For example, 

household-level data from a sub-sample of the census or a household survey could be 

used to estimate the variance in per capita expenditure which could be used in equation 

(4) to estimate the error associated with using aggregate census data.   

 Overall, these results suggest that, in some cases, high-resolution maps of the 

spatial patterns in poverty can be generated even in countries for which only aggregated 

census data are available.  Such maps can contribute to efforts in these countries to 

alleviate poverty through geographically targeted policies and programs.      
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Appendix A:  Derivation of error associated with using aggregate census data 
 

This appendix derives an expression that describes the error associated with using 

aggregate census data instead of household-level census data in the second step of a 

poverty mapping analysis.  We start with the second-order Taylor expansion:  
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If we duplicate this expression for N values of x, labeled x1..xN, and take the sum of the N 

equations, we get the following: 
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Dividing by N and setting the reference point (x0) equal to the mean value of x ( x ), the 

result is: 
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But since the sum of deviations from the mean is zero, the second term on the right side 

drops out.  Furthermore, the third term on the right side can be expressed in terms of the 

variance of x. 
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This equation gives us the approximate relationship between the average of a 

function (on the left side) and the function of an average (first term on the right side)  In 

order to apply this general equation to the specific problem of poverty mapping with 

aggregate census data, we replace f(.) with Φ(.), the cumulative normal distribution, and 
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we replace xi with (µ- Xi
C ß)/σ, the normalized difference between the poverty line (µ) 

and the estimated per capita expenditure for household i (Xi
Cß).  The result is:  
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If we assume that the adopted poverty line (µ) and the regression parameters (ß 

and σ) are constant across the unit of aggregation of the census data, which will normally 

be the case11, then the first term on the right-hand side can be rewritten as follows: 
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The interpretation of this equation is provided in Section 3.2 of the paper. 

 

  

                                                      
11 Typically, the regression analysis is carried out for urban and rural sectors or for each stratum of the 
household expenditure survey, so there are between 2 and 20 areas over which the regression parameters 
are constant.  Similarly, the number of estimated poverty lines is usually relatively small (less than 20).  By 
contrast, aggregated census data is often at the level of the district or enumeration area, of which there are 
generally more than 100.  Thus, within a unit of aggregation, the poverty line and the regression parameters 
will, in most cases, be constant.   
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