
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Minimum-data analysis of ecosystem service
supply in semi-subsistence agricultural systems

John M. Antle, Bocar Diagana, Jetse J. Stoorvogel and
Roberto O. Valdivia†

Antle and Valdivia (2006, Australian Journal of Agricultural and Resource Economics 50,
1–15) proposed a minimum-data (MD) approach to simulate ecosystem service supply
curves that can be implemented using readily available secondary data and validated the
approach in a case study of soil carbon sequestration in a monoculture wheat system.
However, many applications of the MD approach are in developing countries where
semi-subsistence systems with multiple production activities are being used and data
availability is limited. This paper discusses how MD analysis can be applied to more
complex production systems such as semi-subsistence systems with multiple production
activities and presents validation analysis for studies of soil carbon sequestration in
semi-subsistence farming systems in Kenya and Senegal. Results from these two studies
confirm that ecosystem service supply curves based on the MD approach are close
approximations to the curves derived from highly detailed data and models and are
therefore sufficiently accurate and robust to be used to support policy decisionmaking.

Key words: ecosystem services, Kenya, minimum data model, semi-subsistence agriculture,
Senegal.

1. Introduction

Around the world, agricultural policies are undergoing a transformation
from ones that subsidize commercial agricultural production to policies that
encourage sustainable land management practices and address environmental
effects of agriculture. As a result, agricultural policies increasingly are
designed to provide farmers incentives to increase the supply of ecosystem
services from agriculture – public goods that include wildlife habitat, visual
amenities and open space, water quality protection, and greenhouse gas miti-
gation. A growing body of research has attempted to use site-specific data
and models to implement analysis of agricultural-environment interactions
and ecosystem service supply (e.g., Pautsch et al. 2001; Antle et al. 2003; Wu
et al. 2004; Holden 2005; Lubowski et al. 2006; Diagana et al. 2007; Antle
and Stoorvogel 2008). However, the kind of high-resolution biophysical and
economic data used in these studies – referred to here as full-data (FD)

† John Antle (email: john.antle@oregonstate.edu) is professor, Agricultural and Resource
Economics, Oregon State University, Corvallis, OR, USA. Bocar Diagana is a Policy Econo-
mist, IFDC, Ouagadougou, Burkina Faso. Jetse Stoorvogel is Associate Professor, Land
Dynamics Group, Wageningen University, Wageningen, The Netherlands. Roberto Valdivia
is Research Associate, Agricultural Economics and Economics, Montana State University,
Bozeman, MT, USA.

� 2010 The Authors
AJARE � 2010 Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishing Asia Pty Ltd
doi: 10.1111/j.1467-8489.2010.00511.x

The Australian Journal of Agricultural and Resource Economics, 54, pp. 601–617

The Australian Journal of

Journal of the Australian
Agricultural and Resource
Economics Society



studies – are rarely available to provide timely analysis needed to support pol-
icy decision making, particularly in the developing countries. Site-specific data
are often only available from special-purpose surveys, and even when they are
available, often lack the geographic coverage needed for policy analysis.
In response to this situation, Antle and Valdivia (2006) proposed a mini-

mum-data (MD) approach to analyze ecosystem service supply that can be
implemented with data that are readily available in most parts of the world
from existing secondary sources. The motivation for the MD approach was
to provide timely, sufficiently accurate information to support policy decision
making. They validated the MD approach with a case study of soil carbon
sequestration in the dryland grain production system of the northern Great
Plains of the United States. They found that the carbon supply curve derived
from the MD approach closely approximated the carbon supply curve
obtained from a FD analysis, in that case a detailed econometric-process sim-
ulation model parameterized with site-specific farm-level survey data. Their
conclusion was that the MD approach could be used by analysts to provide
information within the degree of accuracy needed to support policy decision
making and do so using readily available secondary data at a low cost.
Since its introduction, the MD model has been made available in several

formats on the world wide web (as an Excel spread sheet, and in SAS), dis-
seminated through graduate courses and training workshops, used to evalu-
ate ES supply for a number of production systems (e.g., Immerzeel et al.
2008; Nalukenge et al. 2009; Claessens et al. 2009; Stoorvogel et al. 2009),
and is being applied in a variety of ongoing research projects in Africa, China,
and Latin America. This rapid adoption of the MD approach appears to
confirm the hypothesis that there is a demand for less data-intensive, less-
complex models that can be implemented with existing data to support
policy decision making, particularly in the context of developing countries
where data availability may be limited.
Theoriginal validation analysis byAntle andValdiviawas for the large-scale,

capital-intensive, monoculture wheat system typical of the Great Plains region
of theUnited States, yetmanyof the applications of theMDapproach are being
made for small-scale agricultural systems in the developingworld.Accordingly,
this article has two objectives: first, to discuss how the MD approach can be
adapted to represent more complex, semi-subsistence agricultural systems; and
second, to provide further validation of theMD approach using case studies of
soil carbon sequestration in semi-subsistence systems inKenya andSenegal.
In the next section of this paper, we briefly review the conceptual frame-

work developed by Antle and Valdivia (2006) to model the supply of ecosys-
tem services. The next discusses how this conceptual model is transformed
into an empirical model and addresses the issues that arise in modeling com-
plex systems with multiple production activities. We then introduce the two
case studies and review the methods used to develop detailed simulation mod-
els of the two production systems and estimate carbon supply curves. We
compare the carbon supply curves from the FD andMD analyses and investi-
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gate sensitivity to key parameters. We conclude with a discussion of implica-
tions for use of the MD approach to support policy decision making.

2. Economic analysis of ecosystem service supply

Farmers’ land management decisions are known to impact ecosystem func-
tion and the supply of ecosystem services valued by people, including services
such as biodiversity conservation, water quality and quantity, wildlife habi-
tat, and greenhouse gas mitigation. To increase the supply, demanders of eco-
system services must provide farmers with incentives to change their
management decisions. Following Antle and Valdivia (2006), we consider a
model of a farmer’s choice between two production systems, a and b, in a geo-
graphic region. We consider a farmer at a site s using a production system a,
which provides an expected value each period equal to v = v(p, s, a), given
product and input prices p. In the empirical implementation of the model dis-
cussed elsewhere, v(p, s, a) is expected returns to the system. A more general
objective function can be used that incorporates other behavioral factors such
as risk aversion or household consumption preferences. For example, Smart
(2009) shows how risk aversion can be incorporated into the MD approach,
given adequate data. Also, production can be modeled as a dynamic system,
and the objective function can be defined as the present discounted returns
over a relevant time horizon. In the MD analysis presented elsewhere, where
it is assumed that farmers must enter contracts for ecosystem service supply,
we simplify the analysis by modeling the average expected returns over the
relevant time horizon and annualizing any relevant fixed costs. With these
assumptions, and when there is no other incentive for the adoption of b,
system a is chosen if the difference in expected returns is positive, i.e., if
x(p, s) = v(p, s, a) ) v(p, s, b) ‡ 0, and system b is chosen otherwise.
We assume that an additional quantity of ES of e(s) units per hectare per

time period is produced at each site s when practice b is adopted. e(s) could
measure soil C changes, as in the case studies presented elsewhere, or changes
in other ES such as biodiversity, or could be an index of multiple ES. To
derive the supply of ES in the region when there is no payment for using b, we
identify each site where the difference in returns is negative, i.e. x(p, s) < 0,
and add up the quantities e(s) produced on those land units. For analyzing
farmers’ participation in contracts, however, a useful way to think about the
supply of ES is to define the density function u(x) by ordering all land units
according to the difference in returns, x(p, s), for a given a value of p. Thus,
in the ‘base’ case in which there is no additional incentive to use system b, the
proportion of land units in system b is

rðpÞ ¼
Z 0

�1
uðxÞdx; 0 � rðpÞ � 1; ð1Þ

where the dependence of r on p follows from the fact that x(p, s) is a function
of p. Now define e as the average or expected quantity of ES supplied per
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hectare in the region. The baseline supply of ES per time period in the region
withH hectares of cropland is then

SðpÞ ¼ rðpÞHe: ð2Þ

The quantity (He) represents the maximum amount of ES that could be sup-
plied if all sites in the region adopt system b, whereas S(p) represents the
quantity farmers are willing to supply absent any additional incentive.
To increase the supply of ES above the baseline quantity S(p), we assume

that the payment g ($/ha) is offered to the land managers by a private or gov-
ernment entity for increasing the quantity of the ES. This payment can be
based on the adoption of system b, or on the amount of service provided,
although the payment per unit of service will generally be more efficient if the
costs of quantifying the amount of service are not prohibitive (Antle et al.
2003). Note that the amount of ES supplied at each site is not known ex ante
and therefore payments must be based on the expected increase in ES. The
increase in ES could be estimated on a site-specific basis if sufficiently good
data were available or could be based on an average rate of services estimated
for the region that could subsequently be verified through a statistically based
sampling and measurement scheme (e.g., Paustian et al. 2006; Mooney et al.
2004). The landowner receives a value of v(p, s, a) for using practice a and
v(p, s, b) + g for using practice b. If the farmer is paid per unit of service,
then g = pee where pe is the price per unit of service, and e is the expected
amount of additional services produced with practice b.
The site-specific land use decisions can be linked to the regional supply of

ES using the spatial distribution of opportunity cost. The area under the spa-
tial distribution of opportunity cost on the interval ()¥, 0) equals r(p) and
represents those land units where farmers use system b without an incentive
payment. Thus, at the point where g = 0, the baseline supply of ES equals
S(p). Those land units corresponding to the range of opportunity cost
between zero and g will switch from system a to b and thus increase the sup-
ply of ES to a quantity greater than S(p). Define this proportion of the land
area as

rðp; gÞ ¼
Z g

0

uðxÞdx: ð3Þ

The supply of ES at g > 0 is equal to

Sðp; gÞ ¼ SðpÞ þ rðp; gÞHe: ð4Þ

Those land units where opportunity cost is greater than g will remain in sys-
tem a. As g increases, r(p, g) increases and approaches 1 ) r(p). Equation (4)
shows that the total quantity of ES is equal to the baseline quantity, S(p), plus
the additional quantity supplied, r(p, g)He, because of the positive incentive.
If farmers are paid only for services above and beyond the baseline quantity,
the ES supply curve is defined as S(p, g) ) S(p) = r(p, g)He.
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As discussed further by Antle and Valdivia (2006), the variance of the
opportunity cost of changing practices plays an important role in determining
the shape of the supply curve of ES. When the variance is positive, the supply
curve has a positive slope, with its concavity depending on the position of the
distribution of opportunity cost in relation to the origin. As the variance
decreases and approaches zero, the supply curve approaches the shape of a
step function with the step occurring at the value of g where the mass of the
distribution lies. This limiting case of a zero variance is equivalent to a repre-
sentative farm model applied to the average land units in the region.

3. MD modeling of semi-subsistence systems

When a spatially explicit FD model is available, it can be used to simulate ES
supply and, in effect, construct the spatial distribution of opportunity cost
discussed in the previous section. The idea behind the MD approach to ES
supply is to use available data to parameterize directly the spatial distribution
of net returns for the competing activities and then use these distributions to
derive the spatial distribution of opportunity cost and construct the ecosys-
tem service supply curve. Following the original MD model presented by
Antle and Valdivia (2006), we assume that the spatial distribution of opportu-
nity cost can be approximated usefully with a normal distribution. Normality
is not essential to the approach, and we test implicitly this assumption when
we investigate the validation of the MD model.
In many parts of the world, secondary data are available for ‘average’ or

‘representative’ costs and returns for a geographic region such as a county, a
crop reporting district, or an agro-ecozone. In the MD approach, secondary
data are used to estimate mean expected net returns to each system in each
region. In addition, estimates of spatial variability in expected returns are
needed. Antle and Valdivia (2006) observe that if the standard deviation of
yield is r and mean yield is m, and if the per-hectare variable cost of produc-
tion is C = cY, c a constant, then for output price P the net return above var-
iable cost (or gross margin) is (P)c)Y, and the coefficient of variation (CV) of
net returns is equal to the CV of Y which is r/m. In semi-subsistence produc-
tion systems, input cost C is typically small relative to output price, so even if
cost is not proportional to yield, the CV of returns will be closely approxi-
mated by the CV of yield.
As shown in the previous section, land management decisions are deter-

mined by the spatial distribution of opportunity costx. The expectation of this
difference is equal to the difference in the mean returns of systems a and b, and
the variance of x is given by r2

x ¼ r2
a þ r2

b � 2rab. While secondary data often
can be used to estimate the variances r2

a and r2
b using CVs of yield as discussed

earlier, it may be more difficult to obtain data to estimate the covariance rab,
so this parameter may have to be specified a priori and subjected to sensitivity
analysis. In many cases, the covariance rab is likely to be large relative to the
variances – e.g., the returns to a crop grown with improved soil fertility
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management practices should have a relatively high and positive – but not per-
fect – correlation with the returns to the crop grown with conventional prac-
tices. Note that if r2

a � r2
b ¼ r2, then substituting r2 into the expression for r2

x
it follows that r2

x � 2r2ð1� qabÞ where qab is the correlation between returns
for systems a and b. Henceforth, qab is referred to as the between-system corre-
lation. Under this approximation, as qab approaches 1, r2

x approaches zero,
and the supply curve approaches a step function with the step occurring where
the opportunity cost equals the ecosystem service price. As qab approaches
zero, r2

x approaches 2r2 and the supply curve takes on a positive slope.
Generalizing to a case in which there are multiple activities in each system

requires determining how the complete system is composed of the individual
activities and then deriving the means and variances of each system. In a FD
model, the allocation of land to each activity is usually determined endoge-
nously. With the information available in MD analysis, endogenous determi-
nation of land allocation is not feasible, so we specify as model parameters
the average or representative share of land, wzi, allocated to a productive
activity i (e.g., a crop or livestock production activity) in system z. This infor-
mation is typically available for the base system a and is also available for sys-
tem b if it is already in use. When the alternative system b is one that has not
yet been implemented, then the likely land allocation within the system may
be uncertain, and the analyst may need to evaluate the effects of different land
allocation assumptions with sensitivity analysis.
Using this approach, for the ith activity in system z, the expected returns

are vi(p, s, z), so the expected return for the system is vðp; s; zÞ ¼Pn
i¼1 wziviðp; s; zÞ. Accordingly, letting the variance of returns to activity i in

system z be /2
zi and the covariance between activities i and j be /zij, the vari-

ance in returns for system z is

r2
z ¼

Xn

i¼1 w
2
zi/

2
zi þ 2

XXn

i6¼j wziwzj/zij: ð5Þ

As noted earlier, estimates of variances in returns are often available and may
be approximated by the variance in yields. In some cases, data may be avail-
able to estimate covariances in returns or yields, but in many cases obtaining
estimates of covariances may be problematic. Often, it is reasonable to
assume that there is a moderate, positive correlation between returns to the
activities in a farming system, particularly when farmers are growing multiple
crops to diversify risk. Given the difficulty in estimating distinct values for all
of the covariances, the MD models presented below use the assumption that
the correlation coefficients between returns to activities within each system
are equal. Letting this within-system correlation be uz we then have
/zij = uz/ziuzj for all i „ j. Below we explore the sensitivity of carbon sup-
ply curves to the value of uz.
Once the system means and variances of returns are calculated, the mean

and variance of the opportunity cost of changing practices can be calculated
as discussed earlier, and then using equations (3) and (4) the contract
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participation rate and the supply curve can be simulated. This can be accom-
plished efficiently under the assumption of normally distributed returns by
using the fact that the difference of two normally distributed random vari-
ables is itself normal, and calculating the area under the cumulative normal
distribution up to the level of the payment. Alternatively, in cases where
either normal or non-normal distributions are used, the simulation may be
implemented by repeatedly sampling from the distributions of net returns for
each activity and selecting the activity with the highest expected returns. This
process is carried out once for the baseline case (no payments for ecosystem
services) and then for each payment level that is of interest. In the baseline
case, we would expect the land allocation to approximate the observed land
allocation (the point S(p) in Figure 1).
Software for data entry and simulation of the MD model is available to be

downloaded from the world wide web. The data are organized in sheets in an
Excel file, which provides a convenient template for data collection and for
implementing the simulations. Simulation model versions are available pro-
grammed in both Excel and the Statistical Analysis System.

4. MD model validation for carbon sequestration in Kenya and Senegal

In this section, we investigate whether the MD model based on population
means and variances can reasonably approximate the carbon supply curves
derived from more detailed models estimated with site-specific farm-level data
(FD model). We first describe the case studies and the general structure of the
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Figure 1 Carbon contract participation rates for Machakos, Kenya, for full-data and MD
models with alternative values for correlation between systems (q) and correlation between
activities within systems (w).
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FD simulation models for Kenya and Senegal and then present the validation
results.

4.1 Kenya case study

The Kenya study area includes Machakos and Makueni districts southeast of
Nairobi. The two districts cover approximately 14 000 km2 and range in alti-
tude between 400 and 2100 m above sea level. The semi-arid climate in the
study area has low, highly variable rainfall, distributed in two rainy seasons.
The annual rainfall average ranges from 500 to 1300 mm, and mean annual
temperature varies from 15 to 25�C. Soils in the region are strongly weathered
and generally deficient in nitrogen and phosphorus with a low (<1%) organic
matter content. Moreover, low infiltration rates and susceptibility to sealing
makes them prone to erosion, especially since most of the rains occur at the
beginning of the growing season when the land is still bare. The farms can be
characterized as subsistence-oriented mixed farming systems that include
both crop and livestock production. Maize is the most important staple crop
that is sold for cash, and a wide variety of subsistence crops are grown, such
as vegetables, fruits, and tubers. Many farms apply manure to crops, but use
of mineral fertilizer is limited. The models were estimated using farm survey
data for 120 households in six villages were obtained from studies conducted
in the 1997–2001 period (de Jager et al. 2001; Gachimbi et al. 2005).

4.2 Senegal case study

The Nioro area of Senegal contains about 103 000 hectares of cropped area,
or about 5% of Senegal’s agricultural area, and lies in the sudano-sahelian
zone of the Peanut Basin. The rainy season lasts from June to October, and
the total annual rainfall is about 750 mm. Annual temperatures average
27.5�C, and the mean maximum and minimum temperatures are, respec-
tively, 38 and 15�C. The cross-sectional data used in this study come from
farm surveys conducted by the Ecole Nationale d’Economie Appliquée in
2001 and surveys managed by the Senegal Agricultural Research Institute in
2003 and 2004 (Diagana et al. 2007). More than a hundred households in
thirteen villages in the Nioro area were surveyed to collect detailed socioeco-
nomic and agricultural production data including household demographic
characteristics, labor availability, annual food grain production and con-
sumption, annual income and expenses, and agricultural inputs and outputs.
The crop system is principally millet and peanut grown in annual rotation.
Average peanut and millet crop yields from the sampled fields are low, and
parcels are small, and mineral fertilizer use is low. Few farmers use organic
fertilizers, presumably because of the limited availability of manure and costs
of collecting and storing manure with existing livestock management prac-
tices. Incorporation of crop residues also is practiced on a limited basis, pri-
marily because of the value of crop residues as livestock feed.
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4.3 FD simulation model design and implementation

The FD simulation models for the Kenya and Senegal case studies are
described in Antle and Stoorvogel (2008), and Diagana et al. (2007) provide
further details for the Senegal study. The models were implemented using the
Tradeoff Analysis (TOA) software, which provides a modular approach to
agricultural system modeling (Stoorvogel et al. 2004). The TOA software
integrates the following components:

4.3.1 Data
The analysis utilizes three types of data: environmental, experimental, and farm
survey. The environmental data describe the spatial variation in soils and climate
and are organized in a GIS format and are used with experimental data to
parameterize models. The survey data describe the farms and the land manage-
ment decisions of farmers and are used to parameterize the economicmodels.

4.3.2 Crop and carbon models
The DSSAT cropping system model (Tsuji et al. 1994; Jones et al. 2003) is
used to estimate the spatial and temporal variation in indexes of inherent pro-
ductivity of the land (crop yield estimated with standard management) that is
driven by soil and climate variations. In the Kenya study, the carbon model
of Stoorvogel (2007) was used to estimate changes in soil C associated with
changes in management practices. In the Senegal case, the DSSAT/Century
model (Gijsman et al. 2002) was used to estimate inherent productivities and
soil C values for the economic analysis.

4.3.3 Econometric-process simulation models
Using farm survey data, econometric production models are estimated and
then simulated using the inherent productivities from the crop models. The
economic simulations provide site-specific land use and management deci-
sions for the base system and for the practices specified under the carbon con-
tract. These decisions can then be used to estimate impacts of carbon
contracts on poverty and sustainability.

4.3.4 Environmental process models
As appropriate to the analysis, the management decisions from the economic
simulation model (e.g., land use, fertilizer use, pesticide applications) can be
used as inputs into environmental process models to estimate impacts on soil
organic matter and nutrients, soil erosion, pesticide fate, water quality, and
other processes of interest.

4.4 Characterization of carbon contracts

The goal of the FD analyses was to simulate the participation of farmers
in soil carbon contracts that provide economic incentives for adoption of
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carbon-sequestering practices. In the baseline conditions that are observed
without carbon contracts, the data from Kenya show that the majority of
farms without irrigation are using little or no fertilizer with their cash crop
(maize), and those that do use purchased mineral fertilizer apply only about
80 kg/ha of active ingredient to maize and almost none to other crops. Farm-
ers do apply some manure and other organic amendments, but also at very
low rates, averaging about 350 kg/ha across the typical farm. In the simulated
carbon contracts for Kenya, the FD analysis assumes that farmers must
apply at least 60 kg N/ha per season and at least 600 kg of organic fertilizer
per ha per season.
In the Senegal data, a large proportion of farms (81%) use some fertilizer

for their cash crop (peanuts), although at a low average rate of less than
60 kg/ha of active ingredient, and in the other main crop, millet, only about
35% of the fields receive mineral fertilizer at an average rate of about 40 kg/
ha. Peanut crop residues are marketed as animal feed, and most other crop
residues are fed to animals, burned, or used for other purposes. Conse-
quently, there is a substantial loss of organic matter from the system, and lit-
tle organic matter is re-incorporated into the soil. In the Senegal FD analysis,
a number of different scenarios were considered, but the analysis showed that
two scenarios were of particular interest. Both of the scenarios required farm-
ers to utilize at least 60 kg/ha of mineral fertilizer on peanuts and at least
40 kg/ha on millet. The two scenarios differed in terms of their requirements
for peanut crop residue incorporation, with one scenario requiring 50% of
crop residues to be incorporated into the soil and the other requiring 100%.
The two case studies each assume that to increase the stock of soil organic

carbon on a land unit, a farmer must make a change from a base production
system that had been followed over some previous period (the historical land
use baseline) to the alternative system with increased use of organic and min-
eral fertilizers. The carbon rate used in the contracts is estimated by agro-eco-
logical zone using field measurements and models. The two studies
considered carbon prices ranging from zero to $200 per metric ton C, a range
considered relevant in studies of a prospective global carbon trading system
(Paustian et al. 2006).

4.5 Construction of MD data

The FD models described earlier are based on farm surveys that were
designed to represent farm populations. The goal of the MD validation is to
investigate the ability of the MD models to approximate the FD models. To
implement the MD analysis, the data used to estimate the FD econometric
models were used to estimate the population parameters (mean yields, yield
CVs, mean costs of production) for the crops in the base systems, for those
farmers who used low levels of mineral fertilizer and manure. For the system
under a carbon contract, levels of inputs required under the contract were
used to estimate the mean yields and cost of production. As a starting point
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in the analysis, the same CVs were used for the base system and for the system
with the carbon contract, implying that if the mean returns increase under the
carbon contract, the variance of returns would also increase relative to the
base system. However, there is evidence suggesting that with higher levels of
inputs the yield variability may change, and so we consider below the sensitiv-
ity of the MD models to alternative assumptions about CVs. Also note that
in a MD analysis, various methods could be used to estimate the technical
potential of the system (i.e., the carbon rates), ranging from highly complex
models such as Century to simpler models or estimates based on previous
research. Here, our goal is to investigate the reliability of the MD economic
model, so we use the carbon rate estimates from the FD analysis.

4.6 Comparison of FD and MD model results

To facilitate comparison across models and scenarios, we present results
using the contract participation rate defined in equation (3). Figure 1 presents
the FD carbon contract participation curve from the Kenya study, and the
MD curves for several combinations of the correlation of expected returns
between system (defined above as qab) and the correlation between activities
within systems (defined above as uz). To interpret the results, note that the
carbon contract makes fertilizer available to farmers that would not be using
it otherwise and that only about 20% of farmers in Machakos use mineral
fertilizer in maize production. Moreover, the FD model shows that fertilizer
is profitable for most farmers, implying that fertilizer availability is constrain-
ing fertilizer use (as confirmed by other studies such as Jayne et al. 2003 and
Salasya 2005). Consequently, the FD curve shows a high participation rate
with a zero carbon payment, because of the fact that the model makes fertil-
izer available to farmers as part of the carbon contract. The other feature of
the curve is its inelasticity with respect to the carbon price, reflecting the fact
that most farmers are willing to participate to obtain access to fertilizer. The
MD models produce a somewhat more elastic participation curve than the
FD model, but the MD model nevertheless provides a participation curve
that is a very close approximation to the FD model’s curve. Figure 1 also
shows that the MD curve is not very sensitive to the between-system (q) or
the within-system (w) correlations.
Figure 2 presents results from the Senegal study for the FD and MD mod-

els, for the two scenarios considered (50 and 100% crop residue incorpora-
tion), with the between-system correlation equal to 0.8 and the within-system
correlation equal to 0.5. In Kenya, very few farmers use more than the con-
tract amount of fertilizer and manure, whereas in the Senegal case many more
farmers use positive amounts of fertilizer. The FD Senegal model scales
carbon credits in proportion to how much fertilizer a farmer uses in relation
to the amount required by the contract. As a result, the technical potential
of the FD model occurs at an adoption rate of about 80% (Figure 2).
Although there is no comparable way to represent such a complex contract
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participation mechanism in the MD model, it is possible to scale the adoption
probability so that the maximum adoption rate is 80% rather than 100% at a
high carbon price. Figure 2 shows that without this adjustment, the MD
model does indeed overpredict adoption, particularly at higher carbon prices,
whereas the adjusted adoption curves are a very close approximation to the
FD model’s adoption curves. This adjustment substantially improves the
100% residue incorporation scenario, whereas in the case of the 50% scenario
the adjustment is too large at lower prices and moves the intercept below the
FD model’s intercept.
Another interesting feature of the Senegal FD curves is their somewhat

irregular shape, explained by the fact that farms in different villages are will-
ing to enter contracts participation at different prices. The MD model tends
to produce smoother curves because of the use of the normal distribution
within each village. We can conclude that with the adjustment for the con-
straint on technical potential, the MD model provides a prediction of con-
tract participation very similar to the FD model, although without this
adjustment the MD model overpredicts adoption in the 100% residue incor-
poration scenario.
Figure 3 shows that the Senegal MD model is somewhat sensitive to differ-

ent values of the between-system correlation q, holding the within-system cor-
relation at 0.5. A very high value of q increases the tendency of the model
to approach a step function and thus overestimate adoption rates in the
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mid-range of the carbon price. Similarly, Figure 1 shows that in the Kenya
case the model is not very sensitive to the within-system correlation. Analysis
of sensitivity to the within-system correlation coefficient (w) showed that nei-
ther model was sensitive to this parameter, so it was set at the mid-range
value of 0.5 for all the results presented here.
Figures 4 and 5 provide a sensitivity analysis to the coefficients of variation

in yield used to represent spatial variability in returns in the MD models.
Changes in the CV will shift the participation curve differently depending on
the mean of the opportunity cost distribution in relation to zero opportunity
cost. In the Senegal case (Figure 4), the mean of the opportunity cost distri-
bution is positive, therefore a reduction in the CV shifts more of the mass of
the distribution above zero and therefore shifts the intercept of the participa-
tion curve leftward; an increase in the CV has the opposite effect. However,
as the carbon price increases above the mean opportunity cost (about $30/
MgC in this case), the curves cross over so that the changes in CV have the
opposite effect. In the Kenya case (Figure 5), the CV of yield is inversely
related to the position of the participation curve because the mean of the
opportunity cost distribution is negative. Thus, as the variance decreases,
more of the mass of the distribution is below zero, and the opposite is true as
the variance increases. While Figures 4 and 5 show that changes in the CV do
affect participation rates as theory predicts, the fact that the CVs are being
varied by 50% and participation rates are changing by relatively small
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amounts suggests that the supply curves will not be substantially impacted
by relatively small errors in estimates of CVs. One implication of this
finding is that the use of the CV of yield to approximate the variability
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in net returns, as discussed earlier and as implemented in the MD model,
is sufficiently accurate to provide reliable estimates of ecosystem service
supply curves.
Antle and Valdivia (2006) argued that using a minimum-data approxi-

mation for policy analysis is justified because policy analysis demands ‘suf-
ficiently accurate’ analysis. They argued that an analysis that is accurate
within an order of magnitude is sufficiently accurate. In the results pre-
sented here, the prediction errors of the MD models averaged over the
range of the simulations are all less than 5% of the FD model predictions.
Considering the various errors possible in this type of analysis, and the
demands of policy analysis, we conclude that the MD models are suffi-
ciently accurate for policy analysis. As noted earlier, the MD model pre-
sented here is based on a normal distribution of opportunity cost. The
reliable performance of the MD models therefore can be considered a vali-
dation of the normality assumption. Finally, it should be kept in mind that
the model presented here assumes decision makers are risk neutral and
choose between systems based on expected returns. Smart (2009) shows
how risk aversion can be incorporated into the MD model, and using the
Kenya case study presented here, finds that if decision makers are highly
risk averse, their willingness to participate in carbon contracts could be
substantially reduced below the rate predicted by the risk-neutral model
because increased fertilizer use is associated with an increase in maize yield
variability. These results suggest that analysts should consider carefully
other factors such as production risk and risk aversion that could affect
farmers’ willingness to participate in ecosystem service contracts. However,
it should be emphasized that the potential importance of other factors such
as risk does not negate the validation of the MD approach presented here,
because the original models of the Kenya and Senegal systems also were
based on the assumption of risk neutrality.

5. Conclusions

This paper discusses the use of the minimum-data (MD) approach to analysis
of ecosystem service supply for analysis of semi-subsistence agricultural sys-
tems and validates the approach with two case studies. The MD approach is
proposed as a particularly appropriate approach for policy analysis in situa-
tions, such as semi-subsistence agriculture, where data availability is limited.
However, the complexity of semi-subsistence systems raises the question
whether the minimum-data approach can provide sufficiently accurate predic-
tions to support informed decision making. The approach taken in this article
is to assess whether MD models can reasonably reproduce results from
complex systems models based on site-specific data.
The two case studies represent different degrees of spatial and system com-

plexity in small-scale, semi-subsistence agriculture and thus differ substan-
tially from the large-scale, capital-intensive wheat system used in the original
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validation exercise by Antle and Valdivia (2006). The results of the analysis
show that the MD contract participation curves for soil carbon sequestration
are good approximations to the curves estimated using FD models. More-
over, the simulated contract participation curves are robust to key parameters
needed to estimate the degree of spatial variability in opportunity cost, nota-
bly the between-system and within-system correlations between expected
returns, and the estimated coefficients of variation in crop yields. The Senegal
case study presented an interesting example of a more complex contract
design, which limited the overall participation rate in carbon contracts, and a
simple adjustment of the model was able to adequately take that aspect of the
analysis into account. We conclude that these two case studies provide further
evidence to support the use of the MD approach in analysis of ecosystem ser-
vice supply in general, and more specifically in production systems with mul-
tiple activities such as those typical of semi-subsistence agriculture in
developing countries.
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