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Farm-level impacts of prolonged drought: is a
multiyear event more than the sum of its parts?

Dannele E. Peck and Richard M. Adams’

A multiyear discrete stochastic programming model with uncertain water supplies and
inter-year crop dynamics is developed to determine: (i) whether a multiyear drought’s
impact can be more than the sum of its parts, and (ii) whether optimal response to
1 year of drought can increase a producer’s vulnerability in subsequent years of
drought. A farm system that has inter-year crop dynamics, but lacks inter-annual
water storage capabilities, is used as a case study to demonstrate that dynamics unre-
lated to large reservoirs or groundwater can necessitate a multiyear model to estimate
drought’s impact. Results demonstrate the importance of analysing individual years of
drought in the context of previous and future years of drought.

Key words: crop rotations, inter-year dynamics, multiyear drought,
stochastic integer programming.

1. Introduction

Multiyear drought is prominent throughout the world (Dai et al. 2004).
Nearly half of all droughts in the U.S., for example, are multiyear events
(Diaz 1983). Australia’s Murray Darling Basin experienced 23 years of
drought between 1952 and 2002, 16 of which comprised multiyear events
(Nicholls 2004). Multiyear drought is expected to become even more frequent
in many parts of the world, because of global climate change, population
growth, and land use change (Rosenzweig and Hillel 1993; Gleick 2000; Wilh-
ite et al. 2006; Meehl et al. 2007).

Despite the historical frequency of multiyear drought, such events have
been the focus of relatively few economic studies. Studies that do address
multiyear drought tend to focus on livestock grazing (Toft and O’Hanlon
1979; Thompson et al. 1996; McKeon et al. 2000), rather than crops (Iglesias
et al. 2003). Studies of drought in crop systems focus primarily on single-year
events instead (e.g. Bernardo et al. 1987; Bryant et al. 1993; Keplinger et al.
1998; Chen et al. 2001; Mejias et al. 2004). The lack of multiyear drought
analyses for crop systems leaves readers wondering if multiyear drought can
be modelled as a series of single-year events, or if multiyear analyses might
provide unique insights about drought impacts in cropping systems.
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Agricultural and Applied Economics, University of Wyoming, Laramie, WY, USA and
Richard M. Adams is Professor Emeritus at the Department of Agricultural and Resource
Economics, Oregon State University, Corvallis, OR, USA.

© 2010 The Authors
Journal compilation © 2010 Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishing Asia Pty Ltd
doi: 10.1111/5.1467-8489.2009.00478.x



44 D.E. Peck and R.M. Adams

The potential for multiyear drought to generate more complex impacts
than a series of independent single-year events has been raised in the literature
(e.g. Clawson et al. 1980; Thompson et al. 1996; Iglesias et al. 2003). Claw-
son et al., in particular, hypothesizes that a producer’s response to, or recov-
ery from, 1 year of drought may impair their ability to endure subsequent
years of drought. They neglect, however, to test their hypothesis. If Clawson
et al. is correct, producers’ decisions during a multiyear drought, as well as
the resulting impact, may be more dynamic and complex than previously
acknowledged.

To test hypotheses about the economic impacts of single versus multiyear
droughts, we develop and solve a multiyear, stochastic and dynamic pro-
gramming model for a hypothetical irrigated row-crop farm. The farm faces
water supply uncertainty; both the occurrence and duration of drought are
known only probabilistically. Decision-making under uncertainty is made
more complex by cropping decisions that generate inter-year dynamics. The
producer must therefore consider not only how crops chosen in the current
year will perform under alternative states of nature, but also how they will
affect cropping options, and hence vulnerability to drought, in subsequent
years.

Optimal farm activities (crop choice, irrigation technology, and deficit irri-
gation) are identified for each stage and state of the multiyear planning hori-
zon, given uncertainty about the timing and duration of drought. Optimal
farm activities and returns to land and management for various single and
multiyear drought scenarios are then compared to determine: (i) whether a
multiyear drought’s impact is more complex than the sum of its component
years’ impacts, i.e. whether the impact of drought in 1 year affects the impact
of drought in subsequent years, and (ii) whether optimal response to 1 year
of drought leaves the producer more vulnerable to subsequent years of
drought, i.e. whether a producer’s effort to mitigate drought in 1 year
increases the economic impact of subsequent years of drought. The economic
impact of drought is measured as the difference in returns between a drought
scenario and a drought-free scenario. Because an optimization approach is
used in this study, rather than simulation, drought impacts reflect the pro-
ducer’s ability to make optimal decisions under uncertainty, and respond
optimally when drought is revealed.

2. Case study

2.1 Overview

The farm-level decision model is based on irrigated row-crop farms in the
Vale Oregon Irrigation District, located in a semi-arid region of the U.S.
Pacific Northwest. Drought is a major source of production risk in the Dis-
trict; multiyear droughts have occurred there most recently from 1990 to
1992 and 2001 to 2003. The District’s primary source of irrigation water is
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Farm-level impacts of prolonged drought 45

snowmelt stored in small reservoirs that provide essentially no inter-annual
carryover capacity. Reliable groundwater is not widely available in the Dis-
trict, and state laws deter water transfers. Producers therefore rely primarily
on crop and irrigation management to prepare for and respond to drought.
Several studies address reservoir and aquifer management under inter-
annual water supply uncertainty (Dudley 1988; Iglesias et al. 2003; Chen
et al. 2006; Iglesias et al. 2007). Few, however, explore multiyear drought in
crop systems that lack inter-annual water storage (Weisensel ef al. 1991). In
the absence of inter-annual water storage, a dynamic multiyear model may
seem unnecessary to investigate optimal drought management. Other sources
of inter-year dynamics that have important implications during a multiyear
drought may exist, however, such as crop rotations, which are discussed next.

2.2 Crop rotations and inter-year dynamics

A wide variety of crops can be grown in the study area, including onions,
sugar beets, winter wheat, corn, alfalfa, and potatoes. Crop rotations are
therefore diverse and flexible. Rather than adhering to a rigid crop rotation,
producers in the study area have a suite of eligible crops from which to
choose each year. The suite of eligible crops for a particular field depends on
the field’s crop history, and a set of agronomic ‘rules’ that producers follow
to reduce pest and disease outbreaks. Example agronomic ‘rules’ include the
following: onions are typically grown only once every 6 years in each field;
sugar beets once every 5 years; wheat is not grown in consecutive years, and
corn is grown consecutively for no more than 2 years. Constrained by a set of
eligible crops for each field in a given year, the producer chooses one crop per
field, taking into consideration relative profitability, probabilistic information
about the upcoming growing season’s water supply, and their goal to maxi-
mize the farm’s discounted stream of expected returns. These crop decisions
are made each year.

Agronomic rules (as opposed to rigid crop rotations) enable the producer
to flexibly adjust crop plans after the water supply is revealed; however, they
also generate inter-year dynamics. Crop choice for an individual field in a
given year restricts the set of feasible crops in subsequent years. This
restricted set of feasible crops might, in turn, reduce the producer’s future
drought-preparedness and response options. Inter-year dynamics arising
from agronomic rules therefore create the need for a dynamic multiyear
model, as well as the potential for more complex drought management deci-
sions and impacts.

2.3 Water supply uncertainty and intra-year dynamics

Water supplies in a given year are finite, so the producer must carefully con-
sider crop water requirements and drought tolerances when making their
crop, irrigation technology, and deficit irrigation decisions. Furthermore, the
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46 D.E. Peck and R.M. Adams

producer’s water allotment for the upcoming growing season is uncertain at
the time most crop-irrigation combinations must be chosen (in fall, winter,
and early spring, i.e. stage 1). After the water allotment is revealed in mid-
spring' (i.e. stage 2), the producer can respond by planting or abandoning
fields that were prepared in stage 1, and deficit irrigating.

Division of the crop year into two decision stages, because of water supply
uncertainty, creates intra-year dynamics between stages 1 and 2. The number
of fields prepared for sugar beets in stage 1, for example, creates an upper
bound on the number of fields that can be planted to sugar beets in stage 2.
Additional sugar beet fields cannot be prepared after the water supply is
revealed because of labour and machinery constraints (which are captured
implicitly through agronomic rules, rather than explicitly). Winter wheat, as a
second example, is both prepared and planted in stage 1; therefore, the num-
ber of fields planted to winter wheat in stage 1 creates an upper bound on the
number of fields of winter wheat harvested in stage 2. Similar intra-year
dynamics exist for nearly all other crops, with the exception of corn, which is
both prepared and planted in stage 2.

2.4 Decision problem

The producer faces a stochastic and dynamic decision problem. They must
choose the current year’s crop plan, and make initial resource investments in
it, before the growing season’s water allotment is known (stage 1), and revise
that plan in response to the revealed water allotment (stage 2). In doing so,
the producer must consider the implication of stage 1 decisions for stage 2
activities (because of intra-year dynamics arising from water supply uncer-
tainty), and stage 2 activities for future crop years (because of inter-year
dynamics arising from agronomic rules). The producer’s decision problem is
modelled empirically as a multiyear discrete stochastic program, as described
next (see Appendix S1 for the theoretical model; all supplementary appendi-
ces are available at http://agecon.lib.umn.edu/).

3. Empirical model

3.1 Primer on DSP

Discrete stochastic programming (DSP) is a method for solving decision
problems that have random variables in the objective function and/or con-
straints (Cocks 1968). DSP is also known as discrete sequential stochastic
programming or stochastic programming with recourse, but should not be

! The District allocates water using a shares system, so each producer receives the same vol-
ume of water per hectare. Water shortages are therefore shared equally per hectare. The Dis-
trict manager’s announcement of the upcoming growing season’s water allotment is sometimes
revised as spring progresses and snowmelt is fully realized. We assume for simplicity that the
allotment is announced with certainty each spring, just before the planting season.
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Figure 1 Decision tree representation of a 2 year discrete stochastic program. Fall and spring
crop activities, x, and y,, respectively, are chosen for # = 1, 2 to maximize expected net present
value of activities over the planning horizon, given uncertain water supplies. Once x; is imple-
mented; water supply for crop year 1 is revealed (full or dry), after which the corresponding y;
is implemented, resulting in returns to land and management for crop year 1. x; is implemented
in the fall of crop year 2. The water supply for crop year 2 is then revealed and the correspond-
ing y; is implemented, resulting in returns for crop year 2. At the time x, is chosen, the producer
does not know which of the four possible water supply scenarios will occur, and therefore faces
a stochastic and dynamic decision problem.

confused with stochastic dynamic programming or Monte Carlo simulation
(see Appendix S2 for a comparison of these approaches).

The structure of a DSP model (Figure 1) captures the sequential timing of
decisions versus information discovery (Hardaker ez al. 1997, p. 198). DSP
can therefore model a multistage problem in which decisions are made both
before and after random variables are realized; these decisions are known as
first and second-stage (or recourse) decisions, respectively. DSP models can
be expanded to accommodate any number of decision stages and a variety of
information structures (Rae 1971; Apland and Hauer 1993). Those con-
structed such that first-stage decisions constrain activities in subsequent
stages represent a stochastic and dynamic decision environment.

The optimal solution to a two-stage DSP problem includes a single set of
first-stage activity levels, and one set of second-stage activity levels for each
possible realization of the random variable. The solution therefore indicates
not only how best to prepare for an uncertain future, but also how best to
respond after some, but not necessarily all, uncertainty is resolved.

3.2 Case-study using DSP

3.2.1 Model overview

The empirical DSP model is written and solved in General Algebraic Model-
ling System (GAMS; GAMS Development Corporation 2006). The producer
maximizes the expected net present value of returns to land and management
by choosing crop activities in stages 1 and 2 of each crop year of a 6 year
planning horizon. A 6 year horizon captures the longest timeframe spanned
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Figure 2 Stage | and 2 decisions for each field in each year.

by an agronomic rule in the study area.” Stage 1 decisions (those made before
the current year’s water allotment is revealed) and stage 2 decisions (those
made after the water allotment is revealed) are depicted in Figure 2.°> Crop
activities in stage 1 of any given year are constrained by crop activities in
previous years. Costs incurred while preparing a field during stage 1 cannot
be recouped if the field is abandoned in stage 2. Crop activities in stage 2 of
any given year are constrained by crop activities in stage 1 of that year, as well
as activities in previous years.

Water supply, a random variable, influences the objective function through
crop yields (see Section 3.2.3). A crop year’s water supply is revealed with cer-
tainty only after stage 1 decisions are made. In response to the revealed water
supply, the producer revises their crop plan, and chooses deficit irrigation
levels. Water use may not exceed the revealed supply, as supplemental water
sources, including water trading, are uncommon in the District. The pro-
ducer’s deficit irrigation decisions determine crop yields, which directly influ-
ence the objective function.

3.2.2 Agronomic constraints

To represent agronomic ‘rules’ accurately as constraints, each field’s crop his-
tory is tracked through time. This requires decision variables to be defined over
discrete fields, rather than continuous hectares. Ten fields of identical quality

2 Specifically, onions can only be planted once in a 6 year period; the producer’s decision
about onions in year ¢ therefore imposes constraints on the feasible crop set through year
t + 5. A 6 year planning horizon is sufficiently long to capture this particular source of inter-
year dynamics, as well as all other agronomic rules that span shorter periods.

3 No harvesting or marketing management options are included in the model, which implies
that all crops planted in stage 2 are harvested and marketed under certainty. Price risk and
post-planting risks, such as hail or freeze, are not modelled.
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and size (86.5 hectares, or 35 acres, based on aerial photographs of the study
area) are assumed. In any given decision period, the producer chooses one crop
to plant in each field. For each field, a crop is therefore assigned either a value
of 0 (if not chosen for that particular field) or 1 (if chosen). This contrasts to
modelling crop choice as a continuous variable, in which the producer chooses
the number of hectares of each crop, with no indication of the field(s) in which
they will be located. Modelling crop choice as a discrete decision for individual
fields allows crop history to be tracked at the field-level, rather than the farm-
level; agronomic rules are captured more realistically as a result (as demon-
strated in Appendix S3). One drawback of discrete decision variables is that
the model becomes a stochastic integer program, which is difficult to solve
because of the absence of convenient convexity properties (Schultz 2003).

The set of eligible crops for each field in a given year is a function of that
field’s crop history; therefore, crop choices in the previous planning horizon
affect initial opportunities in the current planning horizon. The model accom-
modates an exogenously-defined crop history for the preceding planning hori-
zon.* A crop history that imposes no constraints on the current planning
horizon is assumed. This generates the largest set of eligible crops, the most
flexibility in current crop decisions, and hence more conservative drought
impact estimates.

Similarly, cropping activities in the current planning horizon affect oppor-
tunities in subsequent planning horizons. A terminal value function is there-
fore defined to relate cropping activities in the current planning horizon to
land rental values in the subsequent planning horizon. More specifically, if a
parcel of land is capable of supporting high-value crops during the next plan-
ning horizon (because of activities in the current planning horizon), the pro-
ducer receives a relatively large rental payment to reflect their ability to lease
that parcel for a premium. The producer otherwise receives a small rental
payment because their parcel can only support low-value crops.

3.2.3 Crop yields

Deficit irrigation, i.e. the practice of intentionally providing less water than is
needed to maximize crop yield, is assumed to influence yields through the fol-
lowing yield response function (developed by Doorenbos and Kassam 1979;
tested by Food and Agriculture Organization of the United Nations 2002):

yield, a1 = yield ., * [1 — [k * [1 — [(W* (ETmax — Precip) + Precip) /ETmax]]]]-
Water is the only input assumed to limit crop yield. The degree to which

realized crop yield (yield,cua) deviates from maximum yield (yieldyay)
depends on the crop’s sensitivity to water stress (k), precipitation received

4 Crop history in the preceding planning horizon is defined exogenously, rather than deter-
mined endogenously, because of limits in GAMS on the number of subscripts on decision vari-
ables.
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50 D.E. Peck and R.M. Adams

during the growing season (Precip), which is assumed constant and certain at
10.2 cm, and the proportion (w) provided of the crop’s maximum irrigation
water requirement (ET ,.).

This function assumes water deficits occur in equal proportions throughout
the growing season, i.e. season-long deficit irrigation. Strategic deficit irriga-
tion, in which crops are deficit-irrigated during their least sensitive growth
stages, is preferable; however, data for the study area are insufficient to apply
it. Yield estimates under season-long deficit irrigation likely underestimate
yields under strategic-deficit irrigation, and therefore underestimate the use
of deficit irrigation in the study area.

3.2.4 Irrigation technology
Available irrigation technologies include furrow, reuse furrow, solid set sprin-
kler, wheel line sprinkler, centre pivot sprinkler, and subsurface drip. Feasi-
bility varies by crop (e.g. corn is too tall for wheel line sprinklers); Appendix
S4 reports parameter values for feasible crop-irrigation combinations.
Simplifying assumptions about irrigation technology adoption are made
because of the decision model’s inherent complexity. An irrigation technology
is chosen in stage 1 for each field (except those left unprepared), and cannot be
changed in stage 2. Irrigation technology in a given field can, however, be chan-
ged between years. This simplifying assumption implies that the producer is
either able to use the irrigation system on another field (technological advances
have made some drip, sprinkler and reuse furrow systems portable), sell it for
the balance of the principal, or idle it at no opportunity cost. A variety of irri-
gation systems used in the study area can be easily moved or idled, however. It
would therefore be overly-restrictive to impose a single irrigation system on
individual fields for the entire planning horizon. Our simplified treatment of
irrigation technology adoption overestimates the producer’s year-to-year flexi-
bility, and therefore reduces the model’s drought impact estimates.

3.2.5 Water allotments

A producer’s annual water allotment is, in reality, a continuous random vari-
able, and therefore best represented by a probability density function. Unfor-
tunately, the decision problem becomes unreasonably difficult to solve when
water is defined as a continuous variable, because of the large number of deci-
sion variables and stages in the model (Birge and Louveaux 1997, p. 91). A
discrete probability distribution is therefore used to approximate the water
allotment’s density function. Nonetheless, dimensionality increases quickly
with the number of water allotment categories (i.e. states of nature). Two
states of nature, in each year of a 6 year planning horizon, for example, gen-
erates 64 unique water supply scenarios. Three states of nature, in contrast,
generates 729 unique water supply scenarios, and four states of nature gener-
ates 4096 unique scenarios. A Gaussian quadrature procedure (Miller and
Rice 1983; Preckel and Devuyst 1992) is used to help identify a small but
meaningful number of water allotment categories for the District.
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Table 1  Water allotments for the Vale Oregon Irrigation District, 1981-2003

Year Allotment Year Allotment

(m’/ha) (m’/ha)
1981 10,922 1993 9398
1982 10,922 1994 7874
1983 11,176 1995 8382
1984 10,922 1996 9144
1985 10,668 1997 10,922
1986 10,922 1998 8382
1987 8890 1999 9144
1988 3048 2000 9652
1989 8890 2001 6604
1990 6350 2002 6604
1991 3302 2003 5334
1992 2794

Producers in the study area indicate they can fully irrigate planned crops if
given 9144-10,668 m?/ha (36-42 acre-inches per acre), and that economically
significant water shortages begin to occur around 6096-7620 m>/ha (24-30
acre-inches per acre). Application of the Gaussian quadrature procedure to
historical water allotment data (Table 1), assuming two states of nature, sug-
gests similar water allotments of 4064 and 10,160 m*/ha (16 and 40 acre-
inches per acre) with probabilities of 40 per cent and 60 per cent, respectively.
These sources of information led us to select the following two water allot-
ment categories and associated probabilities: ‘Dry’, defined as 6096 m*/ha (24
acre-inches per acre) with a 40 per cent probability in any given year, and
‘Full’, defined as 10,160 m’/ha (40 acre-inches per acre) with a 60 per cent
probability in any given year. Appendix S5 explores the use of two versus
three water allotment categories.

Historical streamflow data above reservoirs in the study area shows no cor-
relation between years, so statistical independence between annual water
allotments is assumed. The probability of a particular 6 year water supply
outcome (e.g. Dry Dry Full Full Full Dry) is therefore calculated as the prod-
uct of the probabilities associated with each year’s allotment (e.g. pr(Dry Dry
Full Full Full Dry) = pr(Dry)*pr(Dry)*pr(Full)*pr(Full)*pr(Full)*pr(Full)).

3.2.6 Model output
The model’s optimal solution® includes a crop plan for each of the 64 water
supply scenarios. Each crop plan includes optimal stage 1 and 2 activities for

5> The model is solved using CPLEX, a commercially available solution algorithm (ILOG
Inc. 2006). Because of the size and complexity of the model, CPLEX reports a solution that
approximates the global optimal solution to within a specified tolerance level. Although a zero
tolerance level can be set (i.e. no difference is allowed between the approximate and global
solutions’ objective function values), this increases the solve time beyond reasonable limits.
The approximate solutions presented here (referred to, hereafter, as optimal) are within 2.5 per
cent of the global optimal solution’s objective function value.
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52 D.E. Peck and R.M. Adams

each year of the 6 year planning horizon. All 64 crop plans are solved for
simultaneously, which enables DSP to mimic forward-looking behaviour,
rather than naive or recursive behaviour. Each water supply scenario’s associ-
ated crop plan generates a net present value of returns to land and manage-
ment (assuming a 5 per cent discount rate, and a 7 per cent interest rate
(American Agricultural Economics Association Task Force 1998)). Given the
probability and net present value of returns associated with each water supply
scenario, the producer’s expected net present value of returns (i.e. objective
function value) is calculated. Optimal crop plans and associated returns for
various water supply scenarios are then compared to address the research
questions.

4. Results and discussion

4.1 Is a multiyear drought’s impact more than the sum of its parts?

A multiyear drought is comprised of individual years of drought whose eco-
nomic impacts may not necessarily be independent, particularly for farm sys-
tems with inter-year dynamics. If the economic impacts of individual years of
drought are interdependent, it may be incorrect to examine an individual year
of drought independent of events and decisions in preceding and subsequent
years. The following four scenarios’ crop plans and associated returns are
compared to determine if the economic impact of a 2 year drought (occurring
in years 2 and 3 of a 6-year planning horizon) can be deconstructed into inde-
pendent parts, or is more than the sum of its component years’ impacts: (A)
[Full Dry Full Full Full Full], (B) [Full Full Full Full Full Full], (C) [Full Full
Dry Full Full Full], and (D) [Full Dry Dry Full Full Full]. Scenario (A) repre-
sents a single-year drought in year 2. Scenario (B) represents the case of no
years of drought, and serves as a baseline to which the other scenarios’ crop
plans and returns are compared. Scenario (C) represents a single-year
drought in year 3. Scenario (D) represents a 2 year drought in years 2 and 3.

A comparison of scenarios (A) and (B) reveals that a single-year drought in
year 2 generates a total loss of returns over the 6 year planning horizon of
$30,040 (4 per cent of total undiscounted returns) (Table 2, row-i). A similar
comparison of scenarios (C) and (B) shows that a single-year drought in year
3 generates a total loss of $22,424 (3 per cent of total undiscounted returns)
(Table 2, row-ii). If the impacts of these single-year events are in fact indepen-
dent (i.e. confined within the years in which the droughts occurred), the fol-
lowing two outcomes are expected: (i) the economic impact of a 2 year
drought that occurs in years 2 and 3 should approximately equal the sum of
the individual droughts’ impacts ($52,464 or 6 per cent), and (ii) losses attrib-
utable to a year 3 drought should be the same regardless of whether it is pre-
ceded by drought or not.

Comparison of scenarios (D) and (B) reveals that a 2 year drought that
occurs in years 2 and 3 generates a total loss of $85,737 (10 per cent of total
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undiscounted returns) (Table 2, row-iii), which is 63 per cent more than the
hypothesized loss of $52,464. The economic impact of this multiyear drought
is indeed more than the sum of its parts. This result is also found in a compar-
ison of the impact of a year 3 drought that is preceded by a year 2 drought
versus a year 3 drought that is not. The marginal impact of a year 3 drought
when preceded by a year 2 drought (obtained by comparing scenarios (D)
and (A); see Table 2, row-iv) is $55,697 (7 per cent), as compared to $22,424
(3 per cent) when not preceded by drought (Table 2, row-ii). That is, the mar-
ginal impact of a year 3 drought is 150 per cent larger when preceded by
drought in year 2. The underlying explanation of this result is discussed in the
next subsection.

Similar results are found for other multiyear drought scenarios (see Appen-
dix S6), including a 2 year drought that occurs in years 2 and 4, i.e. scenario
[Full Dry Full Dry Full Full]. In this case, a single-year drought in year 2 gen-
erates a total loss over the 6 year planning horizon of $30,040 (4 per cent of
total undiscounted returns). A single-year drought in year 4 generates a total
loss of $17,198 (2 per cent). If the economic impacts of the two events were
independent, the 2 year drought’s impact should approximately equal
the sum of the individual years’ impacts ($47,238 or 5.8 per cent). Instead, the
2 year drought generates a total loss of $72,336 (8.8 per cent). It may be
tempting to analyse this particular drought scenario as two independent years
of drought, because a wet year separates them. It is clear, however, that the
economic impacts of the non-consecutive years of drought are interdependent;
the impact of drought in year 4 is conditional on the impact of drought in year
2. Therefore, even the total impact of non-consecutive years of drought
cannot necessarily be estimated as the sum of two independent events.

4.2 Can response to one drought increase vulnerability to subsequent droughts?

For the drought scenario [Full Dry Dry Full Full Full], the impact of a year 3
drought is larger when preceded by a year 2 drought. This is because the pro-
ducer attempts to recover from the year 2 drought (which caused them to
abandon two fields of sugar beets) by preparing four fields for sugar beets in
the fall of year 3, rather than three (Figure 3). When drought is revealed in
the spring of year 3, the producer’s best strategy is to abandon three fields.
Had they attempted only three fields in year 3, losses associated with the year
3 drought would be smaller because only two fields would have to be aban-
doned (Figure 4). It was optimal under uncertainty, however, to attempt in
year 3 to recover revenue lost during the year 2 drought, despite the possibil-
ity of incurring more severe drought impacts in the event of a dry year 3.
Under certainty, a producer would know not to attempt in year 3 to recover
revenue lost during the year 2 drought; losses during the year 3 drought
would be smaller as a result.

The same explanation exists for the drought scenario [Full Dry Full Dry
Full Full]. The producer attempts four fields of sugar beets in year 4, rather
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Figure 3 Crop impacts of a year 2 drought. A stage-by-stage comparison of optimal crop
activities for scenarios [Full Full Full Full Full Full] and [Full Dry Full Full Full Full]. Crop
Key: F, furrow; RF, reuse furrow; D, drip; 0.9, 90 per cent of crop’s irrigation requirement is
provided.

than three, to take advantage of a potential opportunity to grow sugar beets
in one of the fields abandoned in year 2 (rather than waiting 5 years, as would
be required if they adhered to a fixed crop plan). In response to drought in
year 4, the producer must abandon three fields rather than two, and therefore
experiences larger losses to the year 4 drought than they would if the year 2
drought had not occurred.

The above results demonstrate that a producer’s decisions in response to a
particular year of drought can affect their future circumstances and hence the
losses incurred during subsequent years of drought, particularly in the pres-
ence of uncertainty and inter-year dynamics. This result echoes the sentiment
of producers in the study area who indicate that changes in their crop plan in
response to drought often affects cropping activities for years to come, and
hence the impact of future droughts.

One can imagine similar results arising for other farm systems that
exhibit inter-year dynamics. A tree-fruit producer, for example, might lose
more trees during a year of drought (or a year of abnormal disease out-
breaks) than would be expected during a normal year. The optimal
response might be to plant more replacement trees than usual, because of
their time preference and the delay before new trees will bear fruit. If
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Figure 4 Crop impacts of a year 3 drought when preceded by a full versus dry year 2. A
stage-by-stage comparison of activities for scenarios [Full Full Dry Full Full Full] and [Full
Dry Dry Full Full Full]. Crop Key: F, furrow; RF, reuse furrow; D, drip; 0.9, 90 per cent of
crop’s irrigation requirement is provided.

drought occurs in the following year, however, the producer risks the loss
of a larger number of young trees than usual, or alternatively, the loss
of a larger number of older trees than usual if they direct scarce water
supplies towards young trees.

Similarly, a cow-calf producer might begin feeding hay earlier in the
winter than usual in response to drought (and associated shortages in
range forage). Whether the producer purchases additional hay, or draws
down their own hay reserves, they are left with fewer resources than
usual, and are consequently more vulnerable in the event of subsequent
years of drought. The impact of a subsequent year of drought might be
larger than usual because the previous year of drought depleted their
physical or financial reserves.

This concept also applies to non-agricultural contexts, and other natural
disasters. The U.S. Forest Service, for example, recently discovered that an
aerial retardant used to extinguish wildfires promotes the spread of invasive
species, some of which create new fire hazards (e.g. cheatgrass). Use of the
retardant in response to a wildfire therefore increases the probability of future
wildfires in the area. The agency must determine whether the immediate bene-
fits of using the retardant to extinguish an existing wildfire outweigh the
potential future costs of subsequent wildfires. Similarly, Hurricane Katrina
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changed the city of New Orleans’ vulnerability to subsequent hurricanes.
Because Katrina damaged levees and coastal wetlands, subsequent hurricanes
may be more likely to cause flooding and generate damages.

5. Conclusions

Producers whose farm systems exhibit inter-year dynamics weigh the immedi-
ate benefits of a particular drought response against potential future costs in
the event of subsequent droughts. Even when producers behave optimally,
management decisions in response to drought can worsen the impacts of sub-
sequent years of drought. The marginal economic impact of a given year of
drought was shown to increase by as much as 150 per cent when preceded by
previous years of drought. This highlights the importance of evaluating the
impacts of an individual year of drought in the context of preceding and sub-
sequent years. It also confirms Clawson et al.’s (1980) hypothesis, and pro-
ducers’ assertion, that the form of recovery from one drought might affect a
producer’s ability to cope with subsequent droughts.

Inter-year dynamics and uncertainty about a drought’s duration make it
more difficult for producers to determine how best to respond to a particular
year of drought. Economists can assist producers by (i) being cognizant of
the increased complexity of drought preparedness and response decisions
when inter-year dynamics and the potential for multiyear drought exist, and
(i1) developing multiyear stochastic and dynamic simulation models that can
be used in consultation with producers to explore the intra- and inter-year
consequences of alternative responses to drought under various water supply
scenarios.

Similarly, farm policymakers and administrators need to understand that a
year of drought can change a producer’s crop plan for years to come, thereby
generating impacts long after the drought itself subsides, and potentially
exacerbating the impact of drought in subsequent years. They also need to
interpret drought impact estimates carefully, particularly if derived in a man-
ner that disregards water supply conditions in preceding years, and consider
the ability of alternative risk management tools to reduce producers’ vulnera-
bility during future drought events.

Disaster assistance and crop insurance (including prevented planting provi-
sions), for example, provide payments based on the current year’s crop activi-
ties, and therefore inherently account for the influence of past droughts on
the current drought’s impact. They do not, however, necessarily reduce pro-
ducers’ vulnerability to future droughts. Producers might still attempt to
recover lost revenue opportunities during what is revealed to be another year
of drought. Water supply forecasts with longer lead-times, in contrast, would
help producers avoid failed recovery attempts, and thereby reduce vulnerabil-
ity to future droughts. The value of forecasts with longer lead-time is rela-
tively well-studied (e.g. Carberry et al. 2000), so an estimate using this study’s
multiyear stochastic framework is left for future investigation.
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Supporting Information

Additional Supporting Information may be found in the online version of this
article:

Appendix S1. Theoretical decision model.

Appendix S2. Discrete stochastic programming versus simulation and sto-
chastic dynamic programming.

Appendix S3. Continuous versus discrete crop choice variables.

Appendix S4. Parameter values assumed for various crop-irrigation tech-
nology combinations.

Appendix S5. Consideration of three states of nature.

Appendix S6. Profit impact of alternative multiyear drought scenarios.

Please note: Wiley-Blackwell is not responsible for the content or function-
ality of any supporting materials supplied by the authors. Any queries (other
than missing material) should be directed to the corresponding author for the
article.
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