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ORIGINAL ARTICLE

 

Optimal water usageA. Coram

 

The optimal extraction of water along an 
arbitrarily configured river system

 

Alex Coram and Lyle Noakes

 

†

 

The fundamental problem for any scheme of water management that tries to maximise
welfare across a river system is that of determining the optimal allocation at every
point. The problem cannot, in general, be avoided by trading water rights because the
price will not account for the effect of extraction at any one point on all other points.
This article interprets the problem in terms of the indeterminacy that results from
missing information on the value of water at internal junctions between rivers. It is
then solved in an optimal control theory framework.
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1. Introduction

 

Social planners and policy-makers sometimes have to make decisions about
the allocation of water from an arbitrarily large number of interconnected
rivers in situations where demand exceeds supply in all, or some, parts of the
system. This raises a straightforward and important question. How should
water be allocated to various users at every point?

The issues around this question can be illustrated by considering the
problems faced in managing systems such as the Colorado River Basin in the
US or the Murray-Darling Basin in Australia. The Murray-Darling Basin, for
example, contains more than 34 main rivers all of which eventually flow into
the Murray river to give one end point and 33 points of intersection or nodes.
The stated objective of the Murray-Darling Basin Commission is to implement
an ‘Integrated Catchment Management’ policy for this entire system (Murray-
Darling Basin Commission 2001). This is to be done by setting targets for
catchment health that are intended to protect urban users, to protect those
who use the river for irrigation, to protect other environmental and economic
assets and to protect the health of the system as a whole by imposing an end
of catchment area target on flows at the terminal point, however, defined.

The difficulty with the Murray-Darling Basin Commission’s approach to
integrated catchment management is that the sorts of criteria proposed are
more directed at the question of capacity building than developing a clear set
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of protocols or models of interaction that might help provide some principles
that could be used to inform decision making and discussions between the
different interests within catchments. In addition, it is not clear how the
catchment approach can be extended to the system as a whole. There are, for
example, considerable problems in setting targets for catchment health. Not
only is it difficult to work out how environmental and economic demands are
to be reconciled, but there is also the considerable difficulty presented by the
fact that end point targets for one catchment area are starting point flows for
a downstream catchment. This means that it is not only necessary to deal
with different environmental and economic priorities within catchments. It is
also necessary to deal with different priorities between catchment areas.

In a similar manner the National Water Commission in Australia has
called for a ‘nationally consistent approach to water planning’ that is able to
settle ‘the trade-offs between competing outcomes for water systems, based
on the ‘best available science.’ (National Water Commission 2008). This
again raises questions about the criteria to be used to determine consistency
between different sorts of users and across different geographical regions.

This article suggests one way to approach the problem of establishing
some consistent principles for water allocation would be to start by determining
the allocation of water at each point that would maximise welfare across the
system, in some sense. This would, at the very least, provide a basis for the
sort of integrated view and consistency that both Commissions require in
that the welfare implications of extraction at any upstream point for all
downstream points could be more clearly understood and interests at different
stages of the system could be treated in a balanced fashion.

It must be stressed that we do not claim that a calculation of welfare
would, in any sense, provide a set of criteria that would substitute for negoti-
ation and discussion, or for the capacity building that is a central theme of
the Murray-Darling Commission’s report. Nor do we believe that the
approach here substitutes for detailed policy work. We are aware that welfare
is a contested concept. It is also likely that any attempt at using welfare as a
means of reconciling different interests, and the welfare functions that are
attributed to different interests, would all be the subject of conflict and
debate. On the other hand conflicts over the appropriate utility functions are
likely to be no more intense than those over direct allocation.

Offsetting these difficulties is the advantage that, unlike direct allocation
approaches, a welfare based approach gives some idea of the implication of
different allocations across the entire system based on a common yardstick.
This should be of direct assistance to policy-makers and of assistance more
generally in the process of debate and bargaining. In addition, it would help
guide discussion by providing a basis for understanding what sort of claims
can be justified on at least one set of fairly broad criteria.

In what follows we make a start on considering how this welfare optimisa-
tion problem might be solved. It turns out that the solution for a system of
interconnected rivers, or for any system with interconnected flows of this
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type, is not straightforward. This means that the paper is necessarily fairly
abstract. It is mostly concerned with establishing that the problem can, in
fact, be satisfactorily solved in the first place and with determining a method
of  solution. Unless these hurdles can be overcome there is no point in
discussing a welfare based input into the policy discussion.

Some notes on the implementation of a programme for numerical calcula-
tions, are provided in the second last section of the paper. As is shown, the
programme required to implement the approach is easy to run and requires
little computing time.

A more difficult problem is in determining the type of functional relations
between the various interests and water extraction that would be required to set
up the model. On the other hand, given the low computational costs, it would
be feasible to run a variety of models based on different sorts of assumptions
about payoff functions as inputs to debates on allocation. This might be of some
interest from a policy perspective and as an adjunct to public discussion.

Although acquisition, or collating, the required data at sufficiently large
number of points is fairly straight-forward it is, in itself, a major project. This
is well-beyond the scope of this paper and would require a separate, dedicated,
research initiative. Such an initiative would meet the National Water
Commission’s desire for increased ‘inputs from socio-economic analyses’ and
evidence based planning.

What we can show, however, is that calculation across an entire system is
feasible. Moreover, it is also feasible from a public policy perspective since,
by the standards of river management, the required inputs are inexpensive.

In order to set this out more precisely we begin with a statement of  the
theoretical structure of the problem in Section 2. A general model of the
water allocation problem is developed in Section 3 and analysed in Section 4
where the main results of  the study are presented. We give an example in
Section 5. We discuss the procedure for a numerical solution to the optimisation
problem in Section 6.

 

2. The problem

 

The problem of analysing access to water in a manner that maximises welfare
across all users in a river system has so far not received much attention in the
literature and has not been given a rigorous formal treatment. The few studies
that have treated a river as a flow in order to consider allocation problems
have only considered the problem under restricted conditions, or for flows
between discrete points. The article by Quiggin (1988), for example, considers
the problem of maximising welfare across a number of different activities and
takes into account the impact of upstream users on downstream users. He
does this by adopting an asset value approach in order to examine the way in
which upstream agricultural activities may degrade water supplies for subse-
quent users and hence influence their patterns of production. He only studies
the case where water is used at a small set of discrete points and the optimisation
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problem can be solved with standard optimal programming methods. In
addition, his model avoids the problem that is of concern here by assuming
that there are no river junctions between points of extraction. Other studies
which have treated a river as a flow, such as those by Weber (2001) for example,
have also been limited to discrete number of  points with no intervening
junctions. There are no detailed explorations of the optimal programme
across a complete system with continuous inflows and outflows at every point
and multiple points of intersection between rivers. This problem was raised
and described in Coram (2006) but not solved.

In order to appreciate the problem begin by observing that the uni-directional
ordering of agents along a set of flows means that assumptions about normal
market conditions and independence of traders underlying much of the work
on markets for water rights do not hold. This is because a river is a flow in
which the agents have a uni-directional ordering.

 

1

 

 It follows that, if  a market
for rights produces a uniform price, it cannot maximise efficiency and
certainly cannot maximise welfare, so a different approach needs to be found.
This point is illustrated in the example at the end of the article.

The natural way to think about the welfare problem along a flow is in
terms of dynamic optimisation with a payoff function along the entire river
system and the control being the amount of water extracted at each point.
An alternative to this might be to try and deal with the problem in terms of
network optimisation, and a glance at Figure 1 could suggest this approach.
Although this idea is attractive it has a number of drawbacks. The most
important of these, for our purposes, is that network optimisation can only
deal with gains and losses at nodes where two or more arcs meet. This means
that it cannot deal with gains and losses along any river in the system, or with
extraction at any points other than at a junction between rivers (Trick 1996).

The general problem that we face at this point is that standard dynamic
optimisation approaches cannot be applied to this type of system in a
straightforward way. There are at least two reasons for this, which present
independent sub-problems, simply referred to as problems in what follows:

1

 

.

 

The first of these concerns the situation where there are dams and other
means of storing water, and where there are fluctuations in the water level

 

1

 

The literature on rights is substantial. See, for example, Burness and Quirk (1979);
Kanazawa (1991); Booker and Young (1994); Weber (2001) and Freebairn and Quiggin (2006).

Figure 1 Example of a river system.
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over time at each point. In this case time of extraction matters and we
have to deal with some sort of distributed parameter system.

2. Second, and, we think, most pressingly, is that dynamic optimisation
techniques normally deal with problems in which there is a continuous
single flow of some variable, such as time, in the dynamics. Where there
are multiple rivers, however, we have something like a problem of optimising
across several different flows simultaneously. In addition, there will be
jumps in the amount of water at points where rivers intersect and some
means has to be found of getting information about the value of the water
at these points. Unless this type of problem can be dealt with, it is difficult
to see how it is possible to determine the optimal rate of extraction across
the entire system.

This article is concerned with the second of these problems. It considers
this for the special case where there are sufficiently many points of extraction
that the returns from use along the system can be approximated by continuous
functions.

 

2

 

One preliminary question that should be dealt with is, why can’t this
problem be overcome by dealing with jumps in a state variable as purchases
or sales at a point? This is an established technique in the literature, see
Seierstad and Sydsaeter (1987, pp. 194–210). If  the price were given, as well
as the function that determined the change in the amount of stock for a given
outlay, it would be possible to calculate the optimum amount to be bought
or sold at any junction between rivers from the shadow price for the resource.
The amounts derived from this fictitious transaction would then correspond
to the desired inflows or outflows.

This technique won’t work for a system of rivers, however, since price is not
exogenous. This means that the payoff function for the purchase of water from
a tributary at a junction and the function for the change in stock, are not well-
defined and there is insufficient information to solve the problem in this way.

In what follows we specify the problem for applying dynamic optimisation
theory in terms of the indeterminacy in the differential equations that results
from missing information on the end points at internal junctions between
rivers. We show how the Pontryagin principle can be used to provide this
information.

 

3

 

3. The river system

 

The system is made up of 

 

n

 

 interconnected rivers and is written as 

 

S.

 

 Any
continuous flow of water that terminates at the sea, or in a lake, or marsh, or

 

2

 

This gives considerable advantages in the analysis and should provide a reasonable
approximation to the discrete problem. The technique developed in this article will hold for
either case.

 

3

 

For an accessible introduction to the Pontryagin principle see Macki and Strauss (1982).
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wherever, and any flow that terminates on another path, is thought of as a
separate river. Each river is labelled 

 

σ

 

i

 

 

 

∈

 

 

 

S

 

 where 

 

i

 

 is the index 

 

i 

 

=

 

 

 

1, . . . , 

 

n.

 

An internal point in the system where rivers terminate on another river or
commence from another river is called a node. Where rivers flow into and out
of a lake, the lake could be treated as a node for present purposes. A point
where a river starts that is not on another river, say in the mountains is called
a starting point. A point where a river terminates with the property that no
other rivers in the system leave that point is called a final termination point.
Examples would be where a river flows into the sea, or a lake with no out-
flowing rivers in 

 

S

 

, or into another political jurisdiction. See Figure 1 for an
example. Nodes are represented as solid circles and starting points as open
circles. Final termination points are solid squares. It is assumed that rivers
collect or lose, water as the result of rain, evaporation or seepage along their
way in the normal manner.

There is an arbitrarily large number of agents who wish to extract water in
different intervals throughout the entire system. It is assumed that extraction
imposes a cost on other users, or the community and floods and other
situations where it might be desirable to reduce the level of the river are
ignored. Other users would also include individuals who use the river for
recreation, or derive an income from recreational use, those who derive aesthetic
and other forms of enjoyment, and environmental and community interests.
In order to keep the presentation simple, it is assumed that each of these
interests can be represented by a single function, in general different for each
interest, that covers the payoff from extraction and from the quantity of
water in the river at any point. The quantity of water might also be taken as
a rough proxy for the effects of pollution and return flows. Inflow of a pollutant,
for example, could be taken as a reduction in the quantity of water available.
If  the problem is extended to multiple users, the reduction in the quantity of
water may be different for users of different types.

 

4

 

The planner’s problem is to find the amount that should be extracted at
each point in order to maximise an additive welfare function that depends on
the payoffs to all individuals affected by extraction from the river. In order to
see how this might be done we need to specify the problem in detail.

The flow of water along a river 

 

σ

 

i

 

 is approximated by the almost everywhere
continuously differentiable function 

 

x

 

i

 

(

 

t

 

) where 

 

t

 

 is a point on the river and
the length of each river is normalised to give 

 

t

 

 

 

∈

 

 [0,1]. It is assumed that
water can be extracted in any interval along the river and, taking advantage
of the properties of flows, that we can approximate the amount extracted in
an arbitrarily large number of  intervals by the almost everywhere con-
tinuously differentiable function 

 

u

 

i

 

: [0,1] 

 

→ 

 

R

 

. Since 

 

u

 

i

 

 is to be chosen it is

 

4

 

It would be possible to extend the analysis to the case where there is one or more types of
pollutant that cannot be represented in terms of the volume of water in the river. In this case
it would be necessary to specify the problem in terms of  the appropriate state and control
vectors. This is left for subsequent research.
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considered the control variable. A control vector is given by 

 

u 

 

=

 

 

 

(

 

u

 

1

 

, . . . ,

 

 u

 

n

 

)
where 

 

u 

 

 

 

∈

 

 

 

U.

 

The change in the volume of water per unit of time at every point along a
river 

 

σ

 

i

 

 can now be written as

 

x

 

i

 

: 

 

=

 

 

 

g

 

i

 

(1)

for 
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=

 

 1, . . . , 

 

n

 

 where 

 

g

 

i

 

: 

 

=
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 (

 

u

 

i

 

,

 

 a

 

i

 

) and 

 

a

 

i

 

(

 

t

 

) is the gains and losses due to
rainfall or evaporation, or other inflows and outflows that are not part of the
control programme in the interval around 

 

t

 

.
The payoff function for extracting water in an interval around 

 

t

 

 in 

 

σ

 

i

 

 can
be written as

 

f

 

i

 

: 

 

=

 

 

 

f

 

i

 

(

 

c

 

i

 

u

 

i
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ç

 

i

 

x

 

)

where  can be considered as the composite function made up of the
sum of all interests we might wish to include in the model and the constants

 

c

 

i

 

, 

 

ç

 

i

 

 take account of the normalisation of length to give 

 

t

 

 

 

∈

 

 [0,1].
It is also possible that a scrap value might be attributed to a final termination

point. This water may have some environmental or commercial value, or
value to the next jurisdiction. This is written as 

 

ψ

 

i

 

(

 

x

 

i

 

(1)). It is assumed that
(d

 

ψi/dxi)|t=1 > 0 for xi(1) < xi where xi(1) is the natural level.
In addition, it may also be desirable to add constraints on the amount to

be extracted at each point. These might take the form xi(t) ≥ bi(t) or ui(t) ≤
bi(t)xi(t), for example, where bi(t) ≥ 0 is defined at all t along σ i.

It follows that the planner wants to find the rate of extraction at every
point that maximises the function

(2)

subject to the dynamics in Equation (1), the constraints on extraction, and
the endpoint conditions.

It is assumed that this problem has a unique solution and that this solution
can be found in the sense that all the required boundary condition problems
can be solved for the differential equations. It is also assumed that locally
optimal solutions are also unique. We also assume that the optimal solutions
are continuous with respect to variations in their parameters. These assumptions
are reasonable for practical problems of this type.5

As is obvious, the task of finding this solution is not straightforward. This
is because multiple rivers may flow into and away from a node, and there are

5 This assumption would be expected to hold, except in pathological cases where the two
point boundary condition problems generated may not be solvable. See Noakes (1998) for a
discussion of this and for a development of computational algorithms.
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multiple termination and commencing points. It follows that the amount of
water at any node will depend on the solution to optimisation problems at
other parts of the system. This means that it is not possible to apply the Pon-
tryagin conditions across the whole system simultaneously, or start at a ter-
minal point and use backward induction as might be done in a standard
dynamic programming problem.

In the next section we show how the conditions required for a solution
can, in principle, be found.

4. The optimal allocation

The optimal allocation at every point across the entire system will be determined
by reducing the problem to a set of sub-problems that have the form required
to obtain a local solution using the Pontryagin maximum principle, and then
using these local solutions to get the global allocation. This is done by using
the parameter values from each local solution and progressively iterating
across the entire system with the new values as data in each iteration. This
process is discussed again below when we have demonstrated that it will work
as claimed.

In order to reduce the problem in the required manner it is assumed
that there are K nodes in the system and specify a subsystem 〈vk〉 ⊆ S for
k ∈ {1, . . . , K} as follows. Let 〈vk〉 be made up of  the m ≤ n rivers that
terminate on, or commence from, the node vk. Each river in 〈vk〉 commences
or ends either at some other node, a starting point or a final terminating
point. With the substitution t = 1 − s in all outflowing rivers 〈vk〉 can be rearranged
so that vk is the terminating point for all m rivers in 〈vk〉. This means that,
with suitably defined reverse flows, the only difference between nodes in the
system is given by the number of terminating rivers. See Figure 2 for an
example where all endpoints are nodes.

We need to show that it is possible to get the information required to solve
for each sub-systems 〈vk〉 where ∪k 〈vk〉 = S and that the solutions for the
sub-systems will converge to the global solution by iteration.

Let the m state variables xki correspond to the flows along the rivers, σ i,
that enter or leave vk and the m control variables uki correspond to extraction
from these rivers where i = 1, . . . , m. Define reverse flows so that all xki

terminate on vk. The Lagrangean for the reverse flow problem is

Figure 2 Example of a subsystem σ i ∪ σ j ∪ σ k = 〈vk〉.
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where  and αki(t) for i = 1, . . . , m are the costate variables, hkji are the
constraint equations, expressed in the usual form, and μkji are the appropriately
specified Lagrangian multipliers.

The Pontryagin principle allows us to set  under usual conditions.
This means that we have m costate variables and, under the conditions
required for a solution, these enter into the necessary conditions as differential
equations.

If the terminal values of any state variable, xki, is not specified the associated
costate is required to satisfy a transversality condition which gives its value at
the termination point of the river. Since we have m differential equations for
the xki from Equation 1 the system now has 2m differential equations. In
order to determine the solutions for these we require 2m boundary values.

In any subsystem 〈vk〉 the functions xki for i = 1, . . . , m will have initial
values at t = 0 or s = 0 in any river where the flow is reversed. In the case
where a river σi ∈ 〈vk〉 has a final termination point either the value of xki(1)
is specified, or the value of αki(1) is given by the appropriate transversality
condition in the original problem. The value αki(1) is imposed on αki(0) in the
reverse flow problem. This means that we have information on m initial
values. Write the set of initial values for 〈vk〉 in the reverse flow problem as
wk(0): = {xk1(0), . . . , xkm(0), ak1(0), . . . , akm(0)}.

It is now necessary to show that the information on m of  the values in
wk(0) is sufficient to determine the 2m values needed to solve the differential
equations. The needed values may, of course be in wk(1). It is proven that this
is possible in the following theorem.

Theorem 1. Suppose m-values from the set wk(0) are given. Then there is
sufficient information to provide the 2m conditions required to solve the reverse
flow problem for 〈vk〉.

Proof. Assume that, in the original problem, the number of rivers flowing
into the node vk is r and that m – r rivers flow out. Since the sum of flows in
and out at the node vk is zero in the reverse flow problem the sub-system 〈vk〉
must terminate on the manifold given by

M = {x(1) : γ (x(1)) = 0}

where γ (x(1)): = xk1(1) + . . . + xkr(1) – xk(r+1)(1) . . . – xkm(1). This gives one of
the additional conditions that are needed leaving m − 1 to be found. The
Pontryagin principle tells us that the costates are orthogonal to M in the
optimal programme. The orthogonal vector is given by ∇γ = p(1, . . . ,1, . . . , −1)

L f g hk ki ki

i

ki ki

i

kji

ij

kji:        = + +∑ ∑ ∑∑α α μ0
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ki t( )
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where there are r positive terms and m − r negative terms for p some
arbitrary constant. Hence the costate vector for the reverse flow problem is
αk(1) = p∇γ T and this gives m additional terminal conditions, with one
additional unknown, as required.

It now needs to be shown that we can get as close as we wish to the optimal
rate of extraction for the whole system by solving locally across all K nodes
in any order and then iterating this process a sufficient number of times.
Roughly speaking, this is because whenever the optimum is calculated for 〈vk〉
using optimal values of xki(0) from a previous calculation there must be a
local, and hence global, improvement.

Write the iteration algorithm as F where F is constructed such that
J(F(u)) ≥ J(u) with equality only when u is everywhere locally optimal. This
gives:

Theorem 2. If it is possible to solve the optimisation problem for each 〈vk〉 ⊆ S
then using F to iterate across all nodes will cause F(u) → u where u is the
unique solution to the optimisation problem for S.

Proof. The proof is immediate if  the river has zero nodes or one node since
it has been assumed that a solution is always possible. Assume the river has
more than one node and let vk be a node with r inflowing rivers and m − r
outflowing rivers. Take known values of xki(0) for i = 1, . . . , r and αkj(1) or
xkj(1) depending on the problem for j = r + 1, . . . , m and solve the optimisa-
tion problem for the first round for each 〈vk〉 for all k. What must be shown
is that iteration using αki(1) or xki(1) and optimal values of xki(0) and or xki(1)
from the previous calculation converges to some u = u and that u is the
optimal control.

With U given the uniform norm the function J : U → R is continuous and
we can define

X ⊆ U: = {u : J(u) ≥ J(u0)}

for some u0. Iteration gives F: U → U0 where U0 ⊆ X. Since u ∈ U0 is piece
wise optimal it can be parametrised by K + 1 endpoints. This means that we
can consider U0 ⊆ X ⊆ RK+1. Since X is bounded its closure is compact and
this means that the sequence 

u(0), u(1), . . . , u(k) = F(uk–1)

on X has a convergent subsequence

ukj, ukj+1, . . . → ukj∞

To show that every subsequence converges to the same ukj∞ = u∞ note that
J(ukj) ≥ J(ukj−1) and hence J(ukj∞) = sup J(ukj∞) = Vkj∞. This gives
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and

which means that

From the construction on F, this is only possible when ukj∞ is everywhere
locally optimal. It follows that ukj∞ = u∞ = u for any subsequence.

�

It will be noted that the constraints in Lk on the absolute amount, or the
proportion of, water to be extracted are included in each local, and hence in
the global, solution. A constraint of the type xi(t) ≥ b i imposed on σ i starting
from node vk also affects extraction from all rivers that feed into σ i. These will
be accounted for by the permissible volumes of water at vk.

5. Example

Consider the optimisation problem for a system made up of three rivers with
a single point of intersection. It is assumed that f i(ciui, ç ix) is concave in xi

and ui for i = 1, 2, 3 and that the value of f i and the value of extraction
increases with the amount of water in the river so that (∂f i/∂xi) > 0 and (∂ 2f i/
∂ui∂xi) > 0. It is also assumed (∂gi/∂ui) = −1. Let σ 1 and σ2 be inflowing and
assume x1(0) and x2(0) are known. σ 3 terminates with a scrap value k(x3(1)).
There are no inequality constraints on extraction.

The Hamiltonian for the system is

and the necessary conditions are

and

with α3(0) = k in the reverse flow problem.
It follows immediately that, if  the volume of water in the river is increasing

or remains the same prior to extraction, the amount of water to be extracted
increases in the optimal programme as we move downstream along any river.
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If, on the other hand, the volume of water is decreasing owing to evaporation
or other losses independent of extraction, that the amount extracted may
need to decrease to satisfy the second partial derivative on f i. This means
that, in any pricing system, the price of water should either decline as we
move downstream, or vary according to the flow in the river.

In order to complete the solution note that x1(1) + x2(1) − x3(1) = 0 in the
reverse flow problem. From Theorem 1 the costates are given by p(1, 1, −1)T,
for p a constant. Hence

α1(1) = α2(1) and α1(1) = −α3(1)

Solving for α3 for s = 1 − t gives

and this gives

It is now possible to use this and the initial conditions on xi(0), together
with the equation for xi(1), to solve the system of differential equations for all
xi and αi.

6. Discussion of the iteration procedure

The iteration procedure can be described informally as follows. By starting
with any node chosen at random and holding the end points for each river
flowing into or out of that node constant it is possible to use the Pontryagin
principle, in order to get a new parameter value for the flow  at that node
which improves the payoff. This parameter value can now be used in some
subsequent calculation. We can think of this in terms of adjacent nodes, but
in practice nodes can be chosen in any manner. This process is repeated across
the entire system with checks to ensure that the iteration covers all nodes, and
does not repeat a node until a parameter has been updated. In this way each
local solution to the optimisation problem affects subsequent optimisations
by feeding in updated parameter values.

This updating procedure can be thought of  in a similar way to Gauss-
Seidel or Jacobi relaxation methods for systems of linear equations. In this
case the procedure is to guess an initial set of values for the unknowns. These
are then used to solve part of the system to produce a new set of values which
can again be fed into the system for other iteration. If the system is diagonally
dominant the process it can be shown that the process will converge to the
correct solution.
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In our problem the system is not linear but it is straightforward to see that
the payoff, that is the value of J, must increase at each stage in the iteration
since the parameter values must improve. This constant improvement is not,
however, in itself, sufficient to prove that iteration would produce convergence
to the optimum rate of extraction and we needed Theorem 2 to guarantee
that this would happen.

It will be noted that, since every local problems is small scale, each step in
the iteration procedure is capable of rapid implementation. The only physical
data required to solve the problem at a node are the volume of water at the
commencement point for a river flowing in, or the terminal point for a
river flowing out. Once this initial data is acquired it can be fed into any
programme that gives a numerical solution to the optimal control problem
specified in terms of the payoff function f. In order to get the iteration all
that is necessary is that the output values for the parameters from the previous
step are fed into the next step using an appropriate updating routine.

It is possible, of course that the routine might not terminate. It will be
noted, however, that convergent sequences are Cauchy and that the difference
between any two successive values given by |u(k) − u(k−1)| is decreasing. This
means that we can put a stop on the iteration when |u(k) − u(k−1)| becomes
sufficiently small.

Given the size, and routine nature, of each local problem the computational
demands are small for a reasonably specified f. The appropriate routine could
be implemented using any commercially available package that deals with
optimal control such as miser 3 or matlab.

7. Conclusion

This article has argued that, to provide the basic criteria for making the sort
of consistent decisions that are required by the Murray-Darling and the
National Water Commissions, a solution to the problem of calculating the
optimal rate of extraction at every point across a river system made up of an
indeterminate number of  rivers would be useful. It is believed that such
calculations may be of direct use in allocation or, more reasonably, in the
process of negotiation between interests and in providing some common
measure of  the impact of  the actions of  some interests on others. It is
also believed that they would go some way to meeting the requirements of
the National Water Commission for increased inputs for socio-economic
analysis.

A solution to the problem was provided for a system with an indeterminate
number of rivers and it was shown how this could be implemented by a basic
iteration procedure. It was observed that the solution could be extended to
cover the case where there is more than one type of payoff, including that to
environmental groups and recreational users who do not extract water from
the river. In addition it could also be extended to the case where there are
different types of pollutants or water qualities running back into the river
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from users by extending the dimension of the problem. An obvious example
of such an extension would be salinity related problems.

It was observed that the most significant conceptual problem in applying
the solution would come in estimating utility functions for various users. A
more practical problem is that, to get the required data on flows at all
relevant nodes resources, well-beyond those available to the authors of this
paper, would be needed. The costs of getting this data would be relatively
low, however, and could easily be funded.

It is also worthwhile noting that the solution could be implemented at little
computational cost. This means that, once the initial data on the river system
were given, it would be practical to run a variety of solutions with different
payoff functions. Alternatively a model could be built sequentially for
increasingly complicated assumptions about payoffs, or additional sets of
payoffs, to test different assumptions.
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