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Abstract 
This paper assesses factors governing farmers’ decision to adopt adaptation/risk-mitigating 
strategies and evaluates the impact of adoption on crop productivity by utilizing household 
level data collected in 2011 from a nationally representative sample of 7842 households 
(11208 plots) in Malawi. We employ a multivariate probit (MVP) technique to model 
simultaneous and interdependent adoption decisions and utilize instrumental variable method 
for the impact estimates. The MVP results suggest that the decisions to adopt each of the 
farm management practices are quite distinct and to a larger extent the factors driving the 
adoption decisions are also different which entail the unsuitability of aggregating them into 
one adaptation variable. We find that favourable rainfall outcome affect positively the 
decisions to adopt short-term inputs such as improved seed and inorganic fertilizer whereas 
unfavourable rainfall outcome encourages farmer to adopt planting trees, maize-legume 
intercropping, use of organic fertilizer and soil and water conservation measures (SWC). 
Land tenure security increase the likelihood that farmer adopt strategies that will capture the 
returns from their investments in the long run and reduces the demand for short-term inputs. 
Access to extension advice, social capital and collective action also affect positively the 
adoption decisions suggesting the importance of information and networks. The impact 
estimate show that adoption of farm management practices has a positive and statistically 
significant impact on maize productivity suggesting the positive synergies between 
adaptation strategies and food security.  
 
JEL Classification: Q01, Q12, Q16, Q18 
Key words: Climate change, adaptation, impact, multivariate probit, instrumental variable, 
 Malawi 
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1. Introduction 
Malawi is ranked as one of the world’s twelve most vulnerable countries to the adverse 
effects of climate change (World Bank 2010). Droughts and floods, the most severe of these 
hazards, have increased in frequency, intensity, and magnitude over the past twenty years, 
with dire consequences on food and water security, water quality, energy resources, and 
sustainable livelihoods of the most rural communities. The adverse effects of climate change 
and variability in Malawi are skewed disproportionately towards agriculture. Malawian 
subsistence farmers suffer from climate related stressors in different ways through droughts, 
dry spells and floods, erratic and unreliable rainfalls (Chinsinga, 2012). Using data from the 
2005 Integrated Household Survey (IHS2), Makoka (2008) has clearly underscored Malawi’s 
vulnerability to the adverse effects of climate change in the agricultural sector. Given that 
agricultural production remains the main source of income for most rural communities, 
adaptation of the agricultural sector to the adverse effects of climate change will be 
imperative to protect and improve the livelihoods of the poor and to ensure food security 
(Bradshaw et al., 2004; Wang et al., 2009). Studies using data for India show that adaptation 
can reduce the damage to agriculture by about 10 – 20% (Jacoby et al., 2010).  
 Adaptation to current or expected climate variability and changing average climate 
conditions, involves both disaster risk management focusing on preventing, mitigating and 
preparing to deal with shocks and adaptive change management that aim to modify 
behaviours and practices over the medium- to long-term. Adaptation activities can reduce the 
impacts of climate change and buffer their effects, reducing the negative impacts on humans 
and the environment. At micro (farmer) level adaptation strategies encompass a wide range of 
activities including climate-smart agricultural options. Examples include modifying planting 
times and changing to varieties resistant to heat and drought (Phiri and Saka, 2008); 
development and adoption of new cultivars (Eckhardt et al., 2009); changing the farm 
portfolio of crops and livestock (Howden et al., 2007); improved soil and water management 
including conservation agriculture (Kurukulasuriya and Rosenthal, 2003; McCarthy et al., 
2011); integrating the use of climate forecasts into cropping decisions (Howden et al., 2007); 
increased use of fertilizer and irrigation (Howdenet al., 2007); increasing regional farm 
diversity (Reidsma and Ewert, 2008); and shifting to non-farm livelihoods (Morton, 2007).  
 It is important to note that farmers are more likely to adopt a mix of measures to deal 
with a multitude of agricultural production constraints than adopting a single practice. Past 
studies assessed the specific technology adoption decision (fertilizer or SWC structures), 
which fails to account for complementarities and/or substitutabilities among different 
practices. Some recent empirical studies of technology adoption decisions assume that 
farmers consider a set (or bundle) of possible technologies and choose the particular 
technology bundle that maximizes expected utility (Teklewold et al., 2013). Thus, the 
adoption decision is inherently multivariate and attempting univariate modelling excludes 
useful economic information contained in interdependent and simultaneous adoption 
decisions. To address this challenge we employ a multivariate probit (MVP) technique to 
model simultaneous and interdependent adoption decisions by farm households. We do so by 
using a nationally representative plot-level data with rich socio-economic information merged 
with climatic information. We make particular effort in trying to use geo-referenced 
information in our analysis to unearth the role of bio-physical and climatic factors in 
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governing farmers’ adoption decisions of adaptation/ risk-mitigating strategies. We also try to 
estimate the causal impact of adoption of these practices on maize productivity2. 
 The rest of the paper is organized as follows. Data source, sample composition and 
descriptive results are presented in section two. The third section presents the conceptual 
framework and analytical methods with emphasis on empirical models and hypothesized 
relationships. The main analytical results are presented and discussed in section four. Section 
five concludes by presenting the key findings and the policy implications. 
 
2. Data and descriptive analysis  
2.1 Data description 
The Third Integrated Household Survey (IHS3) was conducted from March 2010 to March 
2011 covering a period of twelve months. The Survey is a nationally representative sample 
survey designed to provide information on the various aspects of household welfare in 
Malawi. The survey collected information from a nationally representative sample of 12,288 
households statistically designed to be representative at both national, district, urban and rural 
level hence the survey provides reliable estimates for these levels (IHS, 2012). The full 
sample consists of about 16,372 plots, however in this study we focused on plots that have 
been cultivated with maize during the survey rainy season (11,208 plots) given the fact that 
maize is a staple crop which is produced and consumed by large proportion of rural 
Malawian. As discussed earlier maize production is critically important to the Malawian 
economy and to the livelihoods of most Malawian people.  Detail about the sampling 
procedures can be found from the report produced by the Centre of Statistical Authorities 
(CSA) in Malawi (IHS, 2012) 
 All sample households were administered the multi-topic Household Questionnaire 
that collected household composition and characteristics, health, wage employment, 
anthropometrics  and income sources, as well as data on consumption, food security, nonfarm 
enterprises, and durable and agricultural asset ownership, among other topics. The sample 
households that were involved in agricultural activities (through ownership and/or cultivation 
of land, and/or ownership of livestock) were administered the Agriculture Questionnaire 
module. The Agriculture Questionnaire asked for information on land tenure, labour and non-
labour input use, and crop cultivation and production at the plot level. Location and land area 
of the plots are also recorded using handheld global positioning system (GPS) devices which 
then created a possibility of linking household level data with geographic information system 
(GIS) databases (IHS, 2012). In additions to household level questionnaire, the survey also 
administered a community level survey instrument that captures issues related to collective 
action, access to information, access to market and access to road among others.  
 We merge IHS3 data with historical data on rainfall estimates (RFE) at the household 
level to control for the effects of the variation in rainfall on farmers’ adoption decisions. 
Malawi IHS3 survey data included georeferenced household and plot level Latitude and 
Longitude coordinates which allowed us to extract the remote sensing time series indicators 
such as RFE cumulative sum. RFE data are obtained from the National Oceanic and 
Atmospheric Administration’s Climate Prediction Centre (NOAA-CPC) for the period of 

2 We focus primarily on stable crop – maize– which is predominantly grown by farmers in the study region.   
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1996-2011. RFE data we use are based on the latest estimation techniques for 10-day 
intervals and have a resolution of 8 km3. 
 Taking the annual measure of main cropping season rainfall at each enumeration area, 
we calculate the coefficient of variation for rainfall (CV), measured as the standard deviation 
divided by the mean for the respective periods: 1996-2011. One of the major advantages of 
the CV is that it is scale invariant, providing a comparable measure of variation for 
households that may have very different income levels. We argue that the climate variability, 
represented by the CV, is a major determinant of household behaviour in rural areas as a 
result of the dependence on agriculture for subsistence consumption and livelihoods. This is 
distinct from the literature which examines the effects of weather shocks using the level of 
rainfall or deviation from its mean. Whilst weather shocks are clearly important, we give 
particular attention to climate variability, as a proxy for expectations about future uncertainty. 
 Agro-ecological and production capacity suitability index is also obtained from the 
Global Agro-ecological Zones (GAEZ) database and merged to the household dataset to 
control for the effects of bio-physical characteristics. Adequate agricultural exploitation of 
the climatic potentials and maintenance of land productivity largely depend on soil fertility 
and the management of soils on an ecologically sustained basis. The agro-ecological 
suitability and productive capacity suitability index are presented for three input levels (high, 
intermediate and low) at crop level4.  We also merged the IHS3 EA with the Malawi 2009 
election results to control for the effects of voting pattern on household participation in the 
Malawi farm input subsidy programme (FISP). Democratic Progressive Party (DPP) was the 
ruling party at the time and the main opposition party was the Malawi Congress Party (MCP). 
The variables created include vote counts in the constituencies that cover the IHS3 EAs, DPP 
votes as a share of total votes cast and the MPP votes as a share of total votes.  
 
2.2. Variables and descriptive statistics 
We focus in this paper on six different farm management measures (maize-legume 
intercropping, soil and water conservation, tree planting, use of organic fertilizer, improved 
maize varieties and use of inorganic fertilizers)5 that are considered to help reduce exposure 
to climate shocks and at the same time also help as adaptation strategies.  Table 1 show the 
proportion of households that implemented different farm management practices on their 
plots disaggregated by province.  
 Use of planting perennials trees is part of a sustainable agricultural system in Malawi. 
Selected tree and shrub species are often planted either sequentially (during fallow) or 
contemporaneously (intercropped) with an annual food crop. Doing so helps maintain soil 
cover, improve nutrient levels, increase soil organic matter (via the provision of mulch), 
improve water filtration, improve soil loss due to erosion and flooding, provides shades for 
other crops and provides a secondary source of food, fodder, fibre and fuel (Garrity et al., 
2010; Ajayi et al., 2009; McCarthy et al., 2011; Mercer, 2004; Franzel and Scherr, 2002). 

3 See http://www.cpc.ncep.noaa.gov/products/fews/RFE2.0_desc.shtml for more information on RFE 
algorithms. 
4 See http://www.fao.org/nr/gaez/about-data-portal/agricultural-suitability-and-potential-yields/it/ for more 
information on suitability indices. 
5 We lack data on conservation agriculture practices and as result those are not included in our analysis. 
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Planting trees also increases carbon sequestered both above and below ground, thereby 
contributing to GHG mitigation (Verchot et al., 2007). Thus farm management practices like 
tree planting can help reduce exposure to climate shocks and at the same time also help as 
adaptation strategies. In our case, tree planting is used on 39% of maize plots. The proportion 
is the lowest in the Central Province.  
 The maize–legume intercropping system is one option for sustainable intensification 
that can help farmers to increase crop productivity through nitrogen fixation and also helps to 
maintain productivity in a changing climate (Delgado et al., 2011). Maize–legume 
intercropping is practiced on about 22.1% of the plots during the cropping season used for 
this analysis, especially prevalent in the Southern Province (35.5%). 
 There are a number of fixed investments in structures for SWC, in addition to some of 
tree planting investments discussed above. For the farmer, these structures can provide 
benefits by reducing water erosion, improving water quality, and promoting the formation of 
natural terraces over time, all of which should lead to higher and less variable yields. Such 
structures also often provide benefits to neighbors and downstream water users by mitigating 
flooding, enhancing biodiversity, and reducing sedimentation of waterways (Blanco and Lal 
2008; McCarthy et al., 2011). Structures include contour bunds – built of either earth or 
stone, terraces, gabions/sandbags, vetiver grass, tree belts or drainage ditches. Our data shows 
that about 45% of the maize plots have been treated with SWC structures and this figure is 
highest in the Central Province (47%) followed by the Sothern Province (46%).  As with 
planting trees, SWC structures often entail large up-front costs, with benefits accruing – 
sometimes slowly – over time (McCarthy et al., 2011).   
 Use of organic fertilizer is another major component of a sustainable agricultural 
system and a commonly suggested method of improving soil fertility in crop-livestock 
systems. The benefits of the use of organic fertilizer in crop production are improvements in 
soil physical properties and the provision of N, P, K, and other mineral nutrients. The 
application of organic fertilizer increases soil organic matter content, and this leads to 
improved water infiltration and water holding capacity as well as an increased soil carbon 
content (Kassie et al., 2008; Marenya and Barrett, 2007). Our data shows that organic 
fertilizer is used on about 12.2% of the sample maize plots. The adoption seems to be larger 
in the Central Province (16.8%) compared to the other two provinces.  
 The use of high yielding varieties is another practice that could improve food security 
and income for the rural population by improving productivity (e.g., Kijima et al., 2008; 
Mendola, 2007; Berceril and Abdulai, 2010; Asfaw et al., 2012b, 2012c; Amare et al., 2011 
etc). Nevertheless it is an empirical question whether it is superior to the local varieties in 
harsh climatic conditions. The plot planted with improved maize varieties is about 50.7% and 
this figure is larger in the Northern Province (55.4%). 
 The average inorganic fertilizer used for maize in the study areas is about 63 kg ⁄acre. 
About 74.8% maize sample plots are treated with inorganic fertilizer which is relatively high 
compared to other SSA countries which is largely attributed to the farm input subsidy 
program. Looking across the different provinces, there seems to be no significant differences. 
In all the three provinces, the proportion of plots treated with inorganic fertilizer is over 70%. 
Although the productivity impact of using inorganic fertilizer is widely documented, it is 
important to note that along with other inputs, may cause soil degradation in the long term 
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due to the depletion of organic matter in the topsoil (Branca et al., 2011; FAO, 2011; Tilman 
et al., 2002). 

< TABLE 1 ABOUT HERE> 
 Table 2 presents productivity of maize by adoption status and also disaggregated by 
province. The sources of the observed yield effect of the adoption of these technologies are 
expected to result in better food security status for the households. The descriptive statistics 
show a productivity difference in maize yield between adopters and non-adopters. For 
instance adopters of inorganic fertilizer have about 80.5% more productivity compared to the 
non-adopters while adopters of maize-legume intercropping have about 62.7% more. The 
lowest change in maize productivity is reported for tree planting, which is about 8.7%. 
Overall the unconditional summary statistics in table 2 suggest that adoption of any of the 
farm management practices may have a role in affecting quantity of maize produced per unit 
of land. The significant difference between the adopter groups also remains subjectively the 
same when we look at disaggregated analysis by province.  However, because adoption is 
endogenous, a simple comparison of the outcome indicators of adopter and non-adopters has 
no causal interpretation. Therefore, in the subsequent part of the chapter, a rigorous analytical 
model is estimated to verify whether these differences in mean productivity of maize remain 
unchanged after controlling for all confounding factors. To measure the impact of adoption, it 
is necessary to take into account the fact that households who adopted the practices might 
have achieved a higher productivity even if they had not adopted. 

< TABLE 2 ABOUT HERE> 
 Summary statistics of explanatory variables disaggregated at provincial level are 
presented in table 3. The variables hypothesized to explain adoption decision and 
productivity are identified from past empirical work, economic theory and in some case based 
on intuition. Adoption decisions of the farmer for specific farm management practice are 
assumed to be derived from the maximization of a discounted expected utility of farm profit 
subjected to imperfect or missing factor markets for land, labour, credit and perception of 
farm households (D’Souza et al., 1993; Neill and Lee, 2001; Isham, 2002; Arellanes and Lee, 
2003; Gebremedhin and Scott, 2003; Lee, 2005; Marenya and Barrett, 2007; Knowler and 
Bradshaw, 2007; Kassie et al., 2008, 2010; Asfaw et al., 2012b, 2012c; Wollni et al., 2010). 
Variables hypothesized to explain adoption decision and productivity are summarized under 
five categories, (1) household socio-demographic, (2) household wealth indicators6, (3) plot 
level characteristics, (4) climatic and bio-physical indicators and (5) institutions and 
transaction cost indicators.  

< TABLE 3 ABOUT HERE> 

6 The household wealth index is constructed using principal component analysis and takes into account the 
number of rooms in the dwelling, a set of dummy variables accounting for the ownership of dwelling, mortar, 
bed,  table, chair, fan, radio, tape/CD player, TV/VCR, sewing machine, paraffin/ kerosene/ electric/ gas stove, 
refrigerator, bicycle,  car/motorcycle/minibus/lorry, beer brewing drum, sofa,  coffee table, cupboard,  lantern, 
clock, iron, computer, fixed phone line, cell phone,  satellite dish,  air-conditioner,  washing machine,  
generator, solar panel, desk, and a vector of dummy variables capturing access to improved outer walls, roof,  
floor, toilet, and water source. The household agricultural implement access index is also computed using 
principal components analysis and covers a range of dummy variables on the ownership of hand hoe, slasher, 
axe, sprayer, panga knife, sickle, treadle pump, watering can, ox cart, ox plough, tractor, tractor plough, ridger, 
cultivator, generator, motorized pump, grain mail, chicken house, livestock kraal, poultry kraal, storage house, 
granary, barn, and pig sty.   
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3. Empirical strategies 
3.1 Adoption decision –Multivariate probit model 
Foster and Rosenzweig (2010) and de Janvry et al. (2010) point out that the adoption and 
input uses are the outcomes of optimizing by heterogeneous agents. The optimization takes 
place in the presence of constraints on the budget, information, credit access and the 
availability of both the technology and other inputs. Thus, households are assumed to 
maximize their utility function subject to these constraints. Viewing adoption through the 
lens of optimization by rational agents, households adopt a given farm management practice 
if only if adoption is actually a choice that can be taken and at the same time adoption is 
expected to be profitable or otherwise advantageous (de Janvry et al., 2010). Following de 
Janvry et al. (2010), Becerril and Abdulai (2010), Asfaw et al. (2012a, 2012b 2012c), Amare 
et al. (2011) and Teklewold et al. (2013) the adoption decision can be modelled in a random 
utility framework. The difference between the utility from adoption )( AiU and non-adoption 

)( NiU  of these measures may be denoted as *G , such that a utility-maximizing farm 
household, i , will choose to adopt, if the utility gained from adopting is greater than the 
utility of not adopting )0( * >−= NiAi UUG .  
 However farmers are more likely to adopt a mix of measures to deal with a multitude 
of agricultural production constraints than adopting a single practice. Past studies assessed 
the specific technology adoption decision (e.g. fertilizer or SWC structures), which fails to 
account for complementarities and/or substitutabilities among different practices. The choice 
of measures adopted more recently by farmers may be partly dependent on earlier technology 
choices. Some recent empirical studies of technology adoption decisions assume that farmers 
consider a set (or bundle) of possible technologies and choose the particular technology 
bundle that maximizes expected utility. Thus, the adoption decision is inherently multivariate 
and attempting univariate modelling excludes useful economic information contained in 
interdependent and simultaneous adoption decisions (Dorfman, 1996; Teklewold et al., 
2013). 
 Thus we employ a multivariate probit (MVP) technique to model simultaneous and 
interdependent adoption decisions by farm households. We use multiple maize plot 
observations to jointly analyze the factors that facilitate or impede the probability of adopting 
of these practices in smallholder maize system. This approach recognizes the likely 
correlations between the adoption decisions across the different practices for the same farm 
household through unobserved characteristics. It simultaneously models the influence of the 
set of explanatory variables on each of the different practices, while allowing the unobserved 
and unmeasured factors (error terms) to be freely correlated. One source of correlation may 
be complementarities (positive correlation) and substitutabilities (negative correlation) 
between different practices. 
 The multivariate probit econometric model is characterized by a set of binary 
dependent variables ( ijG ) that equals 1 if a farmer adopt the practice and zero otherwise, such 

that 
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ijijij uXG += β* with 


 >

=
otherwise

Gif
G ij

ij 0

0*1
    (1)   

Where mj ,..1=  denotes the technology choices available. In equation (1) the assumption is 

that a rational thi  farmer has a latent variable, *
ijG , which captures the unobserved preferences 

or demand associated with the thj  choice of the practices. This latent variable is assumed to 
be a linear combination of observed characteristics )( ijX , household, plot, climatic and 

community characteristics that affect the adoption of the thj  practice, as well as unobserved 
characteristics captured by the error term iju .  

 If adoption of a particular practice is independent of whether or not a farmer adopts 
another practice (i.e., if the error terms, are independent identically distributed (iid) with a 
standard normal distribution), then equation (1) specify univariate probit models, where 
information on farmers’ adoption of one farming practice does not alter the prediction of the 
probability that they will adopt another practice. However, if adoption of several farming 
practices is possible, a more realistic specification is to assume that the error terms in 
equation (1) jointly follow a multivariate normal (MVN) distribution, with zero conditional 
mean and variance normalized to unity.  
 
3.2 Instrumental variable (IV) method 
In this model, the observed indicator variable, iG , indicates the presence or absence of 

treatment, which in this case refers to adoption of farm practices by household thi  as defined 
above. Formally, given the unobserved or latent variable, *

iG , and its observed counterpart, 

iG  (dummy for adoption of  practices), the treatment-effect equation can be expressed as: 

ijijij uXG += β* with 


 >

=
otherwise

Gif
G ij

ij 0

0*1                       (2) 

ijijijij eGVY ++= γα                          (3) 

where ijY  represent outcome variables (maize yield per acre), ijV  is a vector of exogenous 

variables thought to affect maize productivity, ie is random disturbances associated with the 
impact model. The impact of adoption on the outcome variable is measured by the estimates 
of the parameter γ  in a two-stage simultaneous procedure. Note that it is not possible to 
simply estimate Equation (3) because the decision to adopt may be determined by 
unobservable variables that may also affect maize productivity. If this is the case, the error 
terms in Equations (2) and (3) are correlated, leading to biased estimates of γ , which is the 
productivity effect of adopting those practices. The decision to adopt or not is not voluntary 
and may be based on individual self-selection. Farmers who adopted may have systematically 
different characteristics from the farmers who did not adopt, and they may have decided to 
adopt based on expected benefits. Unobservable characteristics of farmers and their farms 
may affect both the adoption decision and the maize yield, resulting in inconsistent estimates 
of the effect of adoption on productivity. The solution is to explicitly account for such 
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endogeneity using an instrumental regression technique that assumes a joint normal error 
distribution (Di Falco et al., 2011).  

The choice of instruments is challenging as we need a variable that is correlated with 
the adoption of farm management practices, but not with the error term of the yield models. 
We considered using coefficient of variation of rainfall (1996-2011) as potential instruments 
for household decision to adopt adaptation measures during the current year. Whilst the level 
of rainfall or rainfall shocks tend to be used as instrumental variables or proxy variables for 
income or covariate income shocks, there are limitations to this (Rosenzweig and Wolpin, 
2000). As a result, there are identification issues with using the level of rainfall or rainfall 
shocks. For example, more rainfall is usually defined as good, i.e. the coefficient is positive. 
However, even controlling for a quadratic rainfall term – expected to have a negative 
coefficient, indicating diminishing returns to rainfall – may not be sufficient identification. If 
farmers form expectations about the climatic conditions of their area, we might expect that 
they plant crops and use farm practices that are suited to that area. Any deviation from this 
optimal cropping decision in terms of more or less rainfall may not be welfare improving. 
The formation of these expectations is key for production. Thus for households in rural areas, 
rainfall variation across space and time should generate corresponding variation in household 
response or behaviour in term of change in farm practices that will in turn create variation in 
agricultural output and thus household income. For this reason, we focus on rainfall 
variability which, we argue, generates uncertainty about expected climatic conditions. 
However, it is important to control for recent rainfall shocks as this is likely to be correlated 
with the CV which we did in our estimation.  

We also constructed a variable that capture the share of households in the community 
that received extension advice on specific farm management practices and use it as an 
additional instrument in our estimation. Given that this variable is measured at community 
level, such indicator is unlikely to be directly correlated with the maize yield although may be 
correlated with the propensity to adopt farm practices. We are quick to point out that selected 
instrumental variables may not be perfect, but we will try to demonstrate that the test 
statistics support the idea that they help to bolster our case. We assess the quality of our 
instruments by using an F-test of the joint significance of the excluded instruments7. 
According to Stock and Staiger (1997), the weak instrument hypothesis will be rejected if an 
F-test is greater than 10. Additionally, as part of a robustness check, we also perform over 
identification tests of the model. 
  
 
 

7 As discussed above an instrumental variable must not be correlated with the equation’s disturbance process 
and it must be highly correlated with the included endogenous regressor. We may test the latter condition by 
examining the fit of the first-stage regression. The first-stage regression is a reduced-form regression of the 
endogenous regressor, 

iG , on the full set of instruments, 
iY . The relevant test statistics here relate to the 

explanatory power of the excluded instruments, 
iY , in this regression. A statistic commonly used as 

recommended by Bound et al. (1995), is the R2 of the firs-stage regression with the included instruments 
partialled out. The test may be expressed as the F-test of the joint significance of the 

iY  instruments in the first-

stage regression. 
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4. Regression results  
4.1. Adoption decision – MVP results 
The maximum likelihood estimates of the MVP model of adoption of farm management 
practices are presented in Table 5. It provides the driving forces behind farmers’ decisions to 
adopt farm management strategies where the dependent variable takes the value of 1 if the 
farmer adopts specific practices and 0 otherwise. The model fits the data reasonably well – 
the Wald test of the hypothesis that all regression coefficients in each equation are jointly 

equal to zero is rejected )00.0,6440)182(2( == Pχ . Also the likelihood ratio test 

)00.0,2367)15(2( == Pχ  of the null hypothesis that the covariance of the error terms 
across equations is not correlated is also rejected as reported in Table 4. We also find that the 
estimated correlation coefficients are statistically significantly different from zero in eleven 
of the sixteen pair cases, where two coefficients are negative and the remaining nine are 
positive, suggesting the propensity of adopting a practice is conditioned by whether a practice 
in the subset has been adopted or not. Besides justifying the use of MVP in comparison to the 
restrictive single equation approach, the sign of the coefficients support the notion of 
interdependency between adoption decision of different farm management practices which 
may be attributed to complementarities or substitutability between the practices. We find that 
improved seed is complementary to use of inorganic fertilizer but substitutable with maize-
legume intercropping. The correlation coefficient between two yield enhancing technologies 
(inorganic fertilizer and improved seed) is the highest among all (17%). On the other hand as 
expected inorganic fertilizer is significantly substitutable with the use of organic fertilizer, 
nevertheless it’s complementary with maize-legume intercropping and SWC measure. 
Adoption of organic fertilizer is also significantly complementary with planting tree, maize-
legume intercropping and SWC measure. The positive correlation between adoption of 
maize-legume intercropping and use of inorganic and organic fertilizer is not expected given 
the fact that legumes are supposed to help in fixing nitrogen contributing to improving the 
fertility of the soil. Planting tree is complementary with maize-legume intercropping and 
adoption of SWC measures and also maize-legume intercropping is complementary with 
adoption of SWC measure.  

< Table 4 ABOUT HERE> 
 The MVP results reported in table 5 show that the adoption decisions of different farm 
management practices are quite distinct and to a larger extent the factors governing the 
adoption decision of each of them are also different. The results suggest the heterogeneity in 
adoption of farm management practices and accordingly, the unsuitability of aggregating 
them into one adaptation variable. Age of the household head is negatively and strongly 
correlated with the likelihood of adoption of improved seed and inorganic fertilizer while it’s 
positively correlated with adoption of organic fertilizer, tree planting and maize-legume 
intercropping. The coefficient of age and age-square is statistically significant with opposite 
signs perhaps suggesting that younger household heads tend to adopt practices that are yield 
enhancing but relatively risky and capital intensive while the older ones engage more on 
traditional practices that are less risky and require less finance. We also find a differentiated 
role of gender on adoption decision. For instance the likelihood of adoption of improved seed 
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is significantly higher for male compared to female headed households while the opposite is 
the case for adoption of organic fertilizer and maize-legume intercropping.  
 We also find a differentiated impact of education of the head and spouse on the 
adoption of different practices and that use of some practices may entail intensive knowledge 
whereas others not. Education of the household head takes a positive sign for the case of 
adoption of improved seed and inorganic fertilizer while takes negative sign for the maize–
legume intercropping. Result of the correlation between education of the head and maize-
legume intercropping is quit intriguing. On the one hand the coefficient of the variable that 
reflect whether the head can read/write Chichewa (the local language) is positive and 
significant but conversely the coefficient of the years of education of the head is negative and 
significant, perhaps suggesting that adoption of this practice require basic knowledge unlike 
others. Contrary to other findings (e.g. Teklewold et al., 2013), education status of the spouse 
does not seem to play a significant role in the adoption decision of farm management 
practices with the exception of organic fertilizer. 
 As expected, the household wealth proxies such as livestock holding, wealth index 
and agricultural implements index have also heterogeneous impact. Livestock holding is 
negatively and strongly related to the household decision to adopt inorganic fertilizer, 
perhaps suggesting some sort of substitution between the uses of fertilizer with manure given 
the fact that livestock waste is the most important source of manure for farmers in most rural 
areas. Nevertheless it is positively correlated to use of organic fertilizer, maize-legume 
intercropping and use of SWC measures. Wealth index takes a positive sign and significant in 
all the cases with the exception of maize-legume intercropping all suggesting the positive role 
of household wealth in the adoption decision. Contrary to the wealth index results agricultural 
implements index is negatively and strongly related to adoption improved seed and inorganic 
fertilizer while it’s positively correlated with the rest of the practices. Overall these results 
could imply that the higher the capacity of the household to absorb risk and finance an 
investment in additional activities, the greater the likelihood of adopting some of these 
adoption of adaptation/ risk-mitigating strategies. Asset holding can also play a valuable 
indirect role in facilitating access to credit which is consistent with other findings 
(Kristjanson et al., 2005 and Teklewolde et al., 2013)  
 Farm size has a positive effect on adoption of improved seed and inorganic fertilizer 
although the coefficient is statistically significant only for the latter. However, it is negatively 
and strongly related with adoption of the rest of the practices. As expected, larger farms 
appear to use more modern inputs compared to smaller farms while households with smaller 
farm engage more on less capital intensive and traditional technologies which is not 
surprising. Again these results demonstrate the differential role of land holding in promoting 
adoption of these practices. Using irrigation on the plot seems to increase the propensity of 
adoption of inorganic and organic fertilizer and SWC measures.  We also find that farm 
households with highly fertile soils are less likely to implement some of these farm 
management practices. The sign of the coefficients are all negative and statistically 
significant for four of the practices. Consistent with our expectation, results also show that 
the higher the extent of erosion on the plot, the less likely the farmer adopts inorganic 
fertilizer and the more likely they adopt planting tree and SWC measure.   
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 The role of land tenure structure also seems very important. We find that farm 
households who own the land are less likely to adopt improved seed and inorganic fertilizer 
compared to farmers who rented the plot. On the other hand the decision to adopt organic 
fertilizer, planting tree and maize-legume intercropping is positively and strongly related to 
owning the land. Our results are consistent with a number of studies that have demonstrated 
that security of land ownership has substantial effect on the agricultural performance of 
farmers (e.g. Kassie and Holden, 2008; Deininger et al., 2009; Teklewold et al., 2013). Better 
tenure security increase the likelihood that farmer adopt strategies that will capture the 
returns from their investments in the long run. On the other hand farmers with less tenure 
security tend to demand more short-term inputs like inorganic fertilizer and improved seed. 
Kassie and Holden (2008) also found that in areas where land is scarce and search costs are 
high, farmers are likely to apply more short-term inputs on rented plots than owned plots. 
This finding is also consistent with the perspective that planting trees serve a double function: 
reducing exposure to weather shocks and enhancing tenure security by signalling ongoing use 
and investment (Deininger et al., 2009). 
 As expected, the results also suggest the importance of climatic variables in 
explaining the probability of farm households’ decision to adopt adaptation/ risk-mitigating 
strategies. We find that variability in rainfall as represented by the coefficient of variation of 
rainfall variable is strongly associated with adoption of most of these practices although the 
effect is heterogeneous. For instance, adoption of inorganic fertilizer, organic fertilizer and 
SWC measures is negatively and significantly correlated with the coefficient of variation of 
precipitation. On the other hand the probability of adopting tree planting is high in areas 
where the rainfall variability is high as represented by the positive coefficient of the variable. 
Recent climatic variables also seem to play role in determining the probability of adoption of 
farm management practices. Precipitation in the last rainy season seems to affect positively 
the propensity to adopt improved seed and inorganic fertilizer in the current year though the 
coefficient for the latter one is insignificant. On the other hand the decision to adopt organic 
fertilizer, planting tree, maize-legume intercropping and SWC measures in the current 
cropping season is negatively correlated with the average precipitation of the last cropping 
season. We also find that farm households who experience a climatic shock (i.e. drought) in 
the past year are less likely to adopt improved seed, inorganic fertilizer and organic fertilizer 
in the current year while the opposite is the case for planting tree and SWC measures. These 
results suggest that favourable rainfall outcome affect positively the decisions to adopt short-
term inputs such as improved seed types and inorganic fertilizer use whereas unfavourable 
rainfall outcome encourages farmer to adopt planting trees, maize-legume intercropping, use 
of organic fertilizer and SWC measures which in turn helps in conserving soil moisture, 
improve soil organic matter and reduce soil loss from erosion and flooding. This is consistent 
with the findings of Kassie et al. (2010) and Teklewold et al. (2013) who found that yield 
enhancing technologies like inorganic fertilizer provide a higher crop return in wetter areas 
than in drier areas. 
 Better access to services, apart from influencing availability of technology, has an 
effect on farmers’ decision on the use of input and output markets, and the availability of 
information and support organizations, as well as the opportunity costs of labour. We find a 
differentiated effect of distance related variables. Farmers who are further away from daily 
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market and major district centre are less likely to adopt strategies such as improved seed, 
inorganic fertilizer and SWC measures. Nevertheless the opposite seem to be the case for 
adoption of maize-legume intercropping. The further the farmers are away from the daily 
market and district centres, the more likely they adopt maize-legume intercropping, perhaps 
due to the fact that increased input costs increase the appeal of alternative inputs use, such as 
legume intercropping. As expected, maize price influences adoption decisions significantly 
though the sign of the coefficients are not uniform for all farm management practices. We 
find that adoption of improved seed, inorganic and organic fertilizer is positively and 
significantly associated with maize price, nevertheless the likelihood of adoption of planting 
trees and maize-legume intercropping seem to decreases with increase in maize price.  
 Results also show the key role of rural institutions and collective action in governing 
the adoption decisions of farm households. Access to government extension service increases 
significantly the likelihood of adoption of some practices. The higher the share of households 
who received extension advice on the specific practices in the community, the higher the 
probability of adoption with two exceptions – adoption of organic fertilizer and maize-
legume intercropping. Good and timely information on new technologies and techniques is 
essential for farmers when deciding whether or not to adopt an innovation. Farmers who are 
frequently visited by extension agents tend to be more progressive and experiment with 
improved technique. The bottom line is that improving extension service both in terms of 
coverage and efficiency is essential in helping farmers to overcome barriers to information 
and adapt to climate change. This positive effect of farmer technology awareness variable is 
consistent with Shiferaw et al. (2008), Kristjanson et al. (2005), Kaliba et al. (2000), Di Falco 
et al. (2011) and Geberessiliese and Sanders (2006).  
 The coefficient of collective action index is negative and significant for inorganic 
fertilizer and planting tree whereas it’s positive and significant for organic fertilizer and SWC 
measures. Our results are not that odd if we think that the public goods spillover impacts are 
greatest for SWC measures, followed by planting trees, legume intercropping, organic 
fertilizer, inorganic fertilizer and improved seeds respectively. The latter two having fairly 
limited spillovers with improved seeds as purely private, it’s not surprising to see negative 
effect on inorganic fertilizer and no effect on improved seed, though we do think the results 
of tree planting is odd.  We also find that the presence of village development committees in 
the community increase the likelihood of adoption of organic fertilizer, maize-legume 
intercropping and SWC measures, nevertheless it has negative and strong relation with 
adoption of inorganic fertilizer. We also find that the presence of credit and saving 
organizations in the community is positively and strongly associated with adoption of 
planting trees and maize-legume intercropping. With scarce information sources and high 
transaction costs, such informal institutions facilitate the exchange of information and enable 
farmers to access inputs on schedule and overcome credit constraints (Pender and 
Gebremedhin, 2007; Wollin et al., 2010).  
 As expected the estimated coefficients of receipt of fertilizer and improved maize 
coupons (participation in fertilize input subsidy program) are both positive and significant for 
the improved seed and inorganic fertilizer adoption equations, respectively. We expect that 
input coupon receipt is endogenous to the adoption decision, and hence, we need to 
instrument receipt of input subsidy. We do so using as instruments obtained from Malawi 
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2009 election results. We created a variable that capture the major party (DPP) votes as a 
share of total votes cast and use this as an instrument for household participation in the 
fertilizer input subsidy program. There is no reason to suspect the voting pattern in the 
community will affect the adoption decisions except through their effect on receipt of input 
coupon. We use the Rivers and Vuong (1988) approach to instrumentation and include the 
reduced form residuals from the instrumenting regression in the main adoption equation. The 
t-statistic of the predicted residual is only 0.01, which suggests that endogeneity is not a 
problem. As expected, we find that the participation in input subsidy program affect 
positively the probability of adoption of improved seed and inorganic fertilizer. Furthermore, 
adoption decision was found to vary across different agro-ecological zones. Regional 
dummies included in the models are found to be highly statistically significant for most of the 
practices (the point of reference is Northern Province).  

< Table 5 ABOUT HERE> 
 
4.2. Average productivity effect of adoption 
Table 6 reports the estimates of OLS and instrumental variable (IV) regression model 
estimated with clustered standard errors at the household level. The first column presents the 
estimation by OLS of the maize productive function without controlling for any potential 
endogeneity problem and with a dummy variable equal to 1 if the farm household decided to 
adopt the farm management practices on their plot, 0 otherwise, with the exception of 
inorganic fertilizer which is a continuous variable. The second, third, fourth, fifth and sixth 
columns present, respectively, the estimated coefficients of IV regressions where we 
instrument for adoption of improved seeds (2), inorganic fertilizer (3), maize-legume 
intercropping (4), planting tree (5) and SWC measures (6). In this section we focus on the 
effect of each of the adaption strategies on quantity of maize produced per acre of land. 
 The simplest approach to investigate the effect of adoption of farm management 
practices on maize productivity consists of estimating an OLS model of productivity estimate 
that include dummy or continuous variables for adoption decision (Table 6, column (1)). This 
approach would lead us to conclude that there is difference in maize productivity by 
households that adopted the practices with respect to the productivity of households that did 
not adopt.  As shown in Table 6, the coefficients of the adoption variables are all positive and 
statistically significant. This approach however assumes that adoption of these farm 
management practices is exogenously determined in the productive function while it is 
potentially endogenous variables. Therefore the estimation via OLS would yield biased and 
inconsistent estimates. The impact estimates presented further on uses an IV (treatment effect 
model when the adoption variable is dummy and 2SLS when the adoption variable is 
continuous) to account for this problem.  
 Before turning to the causal effects of adoption on maize productivity, we briefly 
discuss the quality of the selection instruments used. To probe the validity of our selection 
instruments we did run an auxiliary first stage regression where our adoption variable is 
regressed against the instruments and the other exogenous variables. In most of the cases we 
found that the excluded instruments are significantly correlated with the adoption variable. In 
some cases, for instance, the estimated coefficient of specific instrument (extension advice) is 
not significant in the adoption of SWC equation nevertheless both instrument (coefficient of 
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variation of rainfall and extension advice) variables are jointly significant at 5%. The same is 
true for variables used to instrument adoption of improved seed and maize-legume 
intercropping (coefficient of variation of rainfall is not significant on its own but jointly 
significant with the other instruments). Overall with the exception of the SWC measure 
equation, over identification tests support the choice of the instruments, as do the F-test 
values for the first stage adoption equation. The F-statistic of joint significance of the 
excluded instruments is greater than 10, thus passing the test for weak instruments. 
 An interesting finding is that after controlling for all confounding factors, maize 
quantity produced per acre of land is significantly higher for female headed households 
compared to their male counter parts. The coefficient of gender is negative and significant in 
all specification with one exception. Female headed households tend to produce about 6-13% 
more of maize yield per acre of land compared to male household heads. Many studies show 
that productivity on plots managed by women are lower than those managed by men which 
are often attributed to difference in input use, such as improved seeds, fertilizers and tools, or 
other factors such as access to extension services and education (e.g., Quisumbing et al., 
2001; Peterman et al., 2011). The estimated yield gaps ranged widely but many clustered 
around 20–30%, with an average of 25%. Our finding, however, is consistent with the 
premise that the gender gap disappears or diminishes significantly once the researcher 
controls for the differences in input use, market access, human and physical capital. Similar 
findings are also reported by Gilbert et al. (2012) and Goldstein and Udry (2008). 
 As expected, average precipitation during the rainy season is positively and 
significantly associated with maize productivity in all the specifications. However, the 
relationship seems to display an inverted U-shape behaviour as indicated by the coefficient of 
rainfall-square. Experiencing drought in the past year is also negatively related to maize 
productivity in the current year. We also find that farm households who have access to 
irrigation produce significant higher maize yield per unit of land compared to households 
without access to irrigation. Plots with access to irrigation have about 40-75% more in maize 
productivity compared to plots without irrigation and this difference is statistically significant 
in all the specification with only one exception. Contrary to our expectation, plot quality is 
negatively related with maize productivity, however as expected the plots that have high 
exposure to erosion tend to display lower productivity. 
 Results also show an inverse relation (IR) between plot size and productivity of maize 
which is consistent with many other findings in the literature. The coefficients of both plot 
size and square of plot size are negative and highly significant in all the specifications. 
Results of negative effect of size on productivity (IR) have been mostly explained by 
imperfect land and labour markets and in particular family labour surplus on small farms that 
increases labour input per land and subsequently output per land (e.g. Newell et al., 1997; 
Reardon et al., 1996). Further explanation of IR is related to errors in land measurements. For 
the IR to be partially or fully explained by errors in land measurements, smaller farmers 
would have to systematically underreport land area with respect to larger farmers, thus 
resulting in artificially inflated yields in the bottom part of the distribution. Contrary to earlier 
conjectures, Carletto et al. (2013) find that the empirical validity of the IR hypothesis is 
strengthened, not weakened, by the availability of better measures of land size collected using 
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GPS devices in Uganda. Given that we also used plot measurements collected using GPS 
devices, our findings are consistent with Carletto et al. (2013). 
 After controlling for the endogeneity problem using IV technique, the analysis reveal 
that on average adoption of each of the five farm management practices has a positive and 
statistically significant impact on quantity of maize produced per acre of land suggesting the 
positive synergies between adaptation/risk-mitigating strategies and food security. For 
adoption of improved maize seed, the overall average gain of adoption is about 0.98, which is 
about 98% increase in quantity of maize produced per acre of land for adopters compared to 
the non-adopters. As also expected adoption of inorganic fertilizer has a significant positive 
effect on productivity of maize. Farmers adopting of maize-legume intercropping gains about 
80% more maize produced per acre of land compared to farm households who did not adopt. 
The same story holds true for adoption of planting tree and SWC measures – about 73% and 
54% increase in maize productivity for adopters compared to the non-adopters. In all of the 
estimated coefficients, the IV estimates are higher than the OLS estimate which suggest that 
OLS approach would have underestimated the true impact of adoption of these farm 
management practices. Nevertheless, it is comforting to observe that the results for the 
adoption variables are qualitatively unaffected across all specifications (in the sense that the 
directional changes in the quantitative results are the same as before) 

< Table 6 ABOUT HERE> 
 
5. Conclusions and policy implications 
The study utilizes farm household level data collected in 2011 from a nationally 
representative sample of 7842 households (11208 plots) to identify the factors governing 
farmers’ decision to adopt adaptation/risk-mitigating strategies and estimate the adoption 
impacts of specific farm practices on maize productivity. We employ a multivariate probit 
(MVP) technique to model simultaneous and interdependent adoption decisions by farm 
households and utilize instrumental variable regression to estimate the casual impact.  
 Four main conclusions can be drawn from the results of this study. First, we find 
robust evidence that the propensity of adopting a specific practice is conditioned by whether a 
practice in the subset has been adopted or not. Besides justifying the use of MVP in 
comparison to the restrictive single equation approach, these results support the notion of 
interdependency between adoption decision of different farm management practices which 
may be attributed to complementarities or substitutability between the practices. The MVP 
results show that the adoption decisions of different farm practices are quite distinct and to a 
larger extent the factors governing the adoption decision of each of the farm management 
practices are also different. The results suggest the heterogeneity in adoption of farm 
management practices and accordingly, the unsuitability of aggregating them into one 
adaptation/ risk-mitigating variable.  
 Second, although household wealth proxies such as livestock holding, wealth index 
and agricultural implements index have differentiated impact on adoption, results overall 
point to the positive role of household wealth on the adoption decision suggesting that the 
higher the capacity of the household to absorb risk and finance an investment in additional 
activities, the greater the likelihood of adoption. Plot size, however, is negatively related with 
adoption of the SWC, maize-legume intercropping, planting tree and use organic fertilizer but 
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positively correlated with inorganic fertilizer suggesting that larger farms appear to use more 
short-term inputs while households with smaller farm engage more on less capital intensive 
and traditional technologies. Better tenure security increase the likelihood that farmer adopt 
strategies that will capture the returns from their investments in the long run and reduces the 
demand for short-term inputs like inorganic fertilizer and improved seed. 
 Third, our findings suggest that favourable rainfall outcome affect positively the 
decisions to adopt short-term inputs such as improved seed types and inorganic fertilizer use 
whereas unfavourable rainfall outcome encourages farmer to adopt planting trees, maize-
legume intercropping, use of organic fertilizer and SWC measures which in turn helps in 
conserving soil moisture, improve soil organic matter and reduce soil loss from erosion and 
flooding. Based on this evidence that climatic condition plays an important role in farmers’ 
adoption decisions, it is natural to conclude that improving the access to reliable climate 
forecast information is key to facilitating adaptation. Linking farmers to new sources of 
information on climate variability will be important, but translating the risks and potential 
margin of error that exist in a way that farmer scan understand and use in making decision is 
equally important.  
 Fourth, access to extension advice and presence of organizations/institutions within 
the community (e.g. development committees and/or credit and savings organizations) affect 
positively the adoption of maize-legume intercropping, SWC and tree planting suggesting the 
importance of information and networks. Collective action also affect positivity the adoption 
of farm management practices that have public goods spillover (such as  SWC) and less on 
practices with limited spillover consistent with theory of collective action. Also as expected 
the receipt of fertilizer and improved maize coupon (participation in farm input subsidy 
program) are positively related to the use of both inputs. The bottom line is that both formal 
and informal institutions matter in governing farmers adoption decisions to adapt to climate 
change. One key role of institutions is the production and dissemination of knowledge and 
information and by increasing uncertainty climate change increases the value of information 
and the importance of institutions that generate and disseminate it. It is therefore imperative 
to strengthen and improve the existing institutions providing extension service both in terms 
of coverage and efficiency and also at the same time building on existing social capital and 
networks by linking to external formal and informal institutions.  
 The final piece of evidence comes from the impact estimates. We find that on average 
adoption of each of the five farm management practices has a positive and statistically 
significant impact on quantity of maize produced per acre of land suggesting the positive 
synergies between adaptation/risk-mitigating strategies and food security.  
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Table 1. Descriptive summary of adoption of adaptation practices – in proportion 

Variables 
North province 

(N=1897) 
Central province 

(N= 3697) 
Southern province 

(N=5614) 
Total 

(N=11208) 
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Improved seed 0.554 0.497 0.530 0.499 0.476 0.499 0.507 0.500 

Maize-legume intercropping 0.104 0.306 0.077 0.266 0.355 0.479 0.221 0.415 

Tree planting 0.511 0.500 0.275 0.447 0.426 0.494 0.390 0.488 

Organic fertilizer 0.072 0.259 0.168 0.374 0.109 0.311 0.122 0.327 

Inorganic fertilizer 0.747 0.435 0.785 0.411 0.724 0.447 0.748 0.434 

SWC measures 0.377 0.48 0.477 0.49 0.46 0.49 0.45 0.49 
Note: The number of observation here refers to number of maize plots 

 

 

Table 2. Maize productivity by adoption status (kg/acre) 

Variables 
North province 

(N=1897) 
Central province 

(N= 3697) 
Southern province 

(N=5614) 
Total     

(N=11208) 

Mean Std. Err. Mean Std. Err. Mean Std. Err. Mean Std. Err. 

Maize-legume intercrop     
 No 

601.2 12.9 347.5 7.1 587.6 16.9 496.4 8.0 
 Yes 

1164.7 70.4 460.1 28.4 821.7 23.7 807.8 20.4 
 Difference (%) 93.7(12.5)*** 32.4(4.3)*** 39.8(8.1)*** 62.7(16.7)*** 
Tree planting         
 No 

693.3 21.6 350.5 8.0 667.1 20.2 546.5 10.6 
 Yes 

628.1 18.7 370.7 13.8 675.8 17.8 594.3 11.2 
 Difference (%) -9.4(2.2)** 5.7(1.2) 1.3(0.3) 8.7(2.9)*** 
SWC measures         
 No 

647.1 18.0 381.5 10.1 600.2 18.9 540.5 10.5 
 Yes 

681.3 23.3 328.3 9.4 754.0 20.2 595.1 11.6 
 Difference (%) 

5.3(1.1) -13.9(3.8)*** 25.6(5.5)*** 10.1(3.4)*** 
Improved seed         
 No 

646.4 22.6 294.9 8.3 566.8 15.0 493.6 9.3 
 Yes 

671.0 18.2 410.2 10.7 785.4 23.8 634.7 12.4 
 Difference (%) 3.8(0.8) 39.1(8.3)*** 38.6(7.9)*** 28.6(9.0)*** 
Inorganic fertilizer         
 No 

536.5 24.1 267.2 11.3 339.6 11.6 352.7 8.4 
 Yes 

701.8 17.1 380.4 8.2 797.2 18.2 636.8 9.9 
 Difference (%) 30.8(5.0)*** 42.3(6.7)*** 134.7(15.0)*** 80.5(15.9)*** 
Note: Number of observations refers to the number of maize plots. *** p<0.01, ** p<0.05, * p<0.1. t-stat in parenthesis. 
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Table 3. Descriptive summary of selected variables  

Variables 
Northern province 

(N= 1404) 
Central province  

(N= 2871) 
Southern province 

(N=3567) 
Total 

(N=7842) 
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Household level indicators         

Age of household head (years) 44.51 15.91 42.83 16.14 42.98 16.86 43.20 16.44 

Gender of household head (1=male) 0.79 0.41 0.78 0.42 0.71 0.45 0.75 0.43 

Household size (AE) 4.10 2.00 4.01 1.86 3.63 1.73 3.85 1.84 

Sex ratio  1.19 0.97 1.16 0.97 1.16 0.99 1.17 0.98 

Dependency ratio 1.19 0.96 1.24 0.92 1.22 1.00 1.22 0.96 

Household head can read/write Chichewa (yes=1) 0.74 0.44 0.64 0.48 0.60 0.49 0.64 0.48 

Household head highest level of education (years) 6.58 3.81 4.93 3.79 4.58 4.01 5.06 3.96 

Spouse has attended school (1=yes) 0.67 0.47 0.56 0.50 0.46 0.50 0.53 0.50 

Livestock ownership (tropical livestock unit (TLU)) 1.12 2.91 0.54 2.36 0.46 2.59 0.61 2.58 

Participate in off farm activities (1=yes) 0.19 0.39 0.18 0.38 0.19 0.39 0.18 0.39 

Wealth index  0.15 1.83 -0.38 1.75 -0.45 1.64 -0.31 1.73 

Agricultural implements access index 0.68 1.25 0.69 1.44 0.20 1.11 0.47 1.29 

Fertilizer coupon (1=yes) 0.57 0.50 0.53 0.50 0.57 0.50 0.55 0.50 

Maize coupon (1=yes) 0.36 0.48 0.16 0.36 0.25 0.43 0.24 0.42 

Drought is a top three shock in the past year (1=yes) 0.21 0.40 0.07 0.25 0.52 0.50 0.30 0.46 

Plot level characteristics          

Land tenure (1= own, 0= rented) 0.91 0.29 0.86 0.34 0.92 0.27 0.90 0.30 

Soil quality of this plot (1= good) 0.44 0.50 0.46 0.50 0.46 0.50 0.46 0.50 

Land size (acre) 2.20 1.69 2.46 1.95 3.12 2.95 2.71 2.45 

Irrigation use (1=yes) 0.00 0.02 0.00 0.05 0.00 0.07 0.00 0.05 

Extent of erosion on the plot (1=moderate/high) 0.18 0.38 0.12 0.33 0.10 0.30 0.12 0.32 

Climatic and bio-physical variables         

Coefficient of variation of precipitation (1996-2011) 0.214 0.019 0.227 0.032 0.284 0.016 0.253 0.038 

Precipitation in the rainy season (209/10) (mm) 891.8 70.7 691.6 73.2 661.8 39.6 710.6 101.3 

Precipitation in the last rainy season (2008/09) (mm) 797.4 115.5 593.3 82.3 425.5 46.6 543.8 155.8 

Agro-ecological suitability index for low-input maize 4418.4 1952.6 6976.4 2265.4 6643.0 1967.5 6376.4 2253.8 

Potential production capacity for low-input maize  4161.6 2095.3 7066.0 2871.0 7102.7 2292.2 6592.8 2701.3 

Community level indicators         

Number of months main road was passable by a lorry 9.47 4.52 10.21 2.84 9.55 3.50 9.78 3.51 

Distance to major district centre (Km) 180.11 108.57 120.18 52.63 91.88 84.39 118.04 85.82 

Distance to a daily market (Km) 14.55 16.50 5.81 7.60 9.27 13.04 8.95 12.51 
Village development committees  in the community 
(number)  1.69 1.95 2.42 3.11 2.06 3.28 2.12 3.03 

Saving & credit organisation  in the community 
(number) 0.14 1.94 0.40 1.56 0.37 2.34 0.34 2.01 

Proportion of households with access to extension 
advice in the community 59.72 29.12 50.38 28.56 45.40 25.35 49.79 27.73 

Collective action index  -0.07 0.84 0.39 1.20 -0.12 0.80 0.07 1.00 

DPP vote as a share of total vote cast 0.95 0.03 0.54 0.18 0.71 0.22 0.69 0.24 

MCP vote as a share of total vote cast 0.03 0.02 0.42 0.18 0.26 0.21 0.28 0.23 
Note: dependency ratio = (family size – total workforce)/total workforce; sex ratio = female to male household members. 
Number of observations refers to the number of maize producing households. 
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Table 4. Estimated covariance matrix of the regression equations between the adaptation 
measures using the MVP joint estimation model 

 Improved 
seed 

Inorganic 
fertilizer 

Organic 
fertilizer 

Tree planting Maize-legume 
intercropping 

Inorganic fertilizer 0.172 (0.017) ***     

Organic fertilizer -0.003 (0.02) -0.097 (0.022)***    

Tree planting  -0.006 (0.016) 0.027 (0.018) 0.058 (0.021)***   

Maize-legume intercropping -1.021 (0.026)*** 0.065 (0.02)*** 0.069 (0.024)*** 0.046 (0.019)**  

SWC measures 0.005 (0.016) 0.056 (0.017)*** 0.072 (0.02)*** 0.074 (0.016)*** 0.079 (0.018)*** 

Likelihood ratio test of  rho21 = rho31 = rho41 = rho51 = rho61 = rho32 = rho42 = rho52 = rho62 = rho43 = rho53 = rho63 = 
rho54 = rho64 = rho65 = 0:  chi2(15) =  2367.65   Prob > chi2 = 0.0000 

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors in parenthesis. 
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Table 5. Results of the multivariate probit model – barrier to adoption of adaptation measures 

 Tree planting  Maize-legume 
intercrop SWC Organic fertilizer Improved seed Inorganic fertilizer 

 Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. 
Coefficient of variation of precipitation 
(1996 -2011) 2.388*** 0.001 -0.055 0.001 -2.975*** 0.000 -3.006*** 0.001 -0.109 0.614 -1.131* 0.179 

Agro-ecological suitability index for low-
input maize -0.000*** 0.653 0.000 0.805 -0.000 0.632 0.000*** 0.800 0.000*** 0.000 -0.000 0.001 

Precipitation in the last rainy season (mm) -0.001*** 0.000 -0.003*** 0.000 -0.001*** 0.000 -0.001*** 0.000 0.001*** 0.000 0.000 0.688 

Drought is a top three shock in past year 0.126*** 0.000 -0.016 0.000 0.177*** 0.000 -0.038** 0.000 -0.075*** 0.016 -0.103*** 0.000 

Age of household head (years) 0.010*** 0.033 0.004*** 0.037 -0.001 0.032 0.002** 0.041 -0.010*** 0.001 -0.007*** 0.005 

Gender of household head (1=male) -0.046 0.001 -0.113*** 0.001 0.055 0.001 -0.114** 0.001 0.205*** 0.039 0.023 0.036 

Household size (AE) 0.025*** 0.012 0.013 0.013 -0.005 0.012 0.009 0.015 -0.011 0.009 -0.053*** 0.000 

Sex ratio  -0.009 0.008 0.010 0.009 0.085 0.007 -0.163** 0.009 0.161*** 0.063 0.030 0.014 

Dependency ratio 0.016 0.065 -0.032** 0.073 -0.031** 0.063 0.005 0.082 -0.013 0.014 -0.014 0.009 

Head can read/write Chichewa (yes=1) -0.005 0.014 0.134*** 0.016 0.242*** 0.014 -0.042 0.017 0.009 0.038 -0.048 0.068 

Household head education (years) 0.007 0.038 -0.021*** 0.043 -0.004 0.037 0.009 0.047 0.009* 0.005 0.013** 0.015 

Spouse has attended school (1=yes) 0.024 0.005 -0.024 0.006 0.018 0.005 0.131*** 0.006 -0.043 0.032 0.042 0.041 

Plot size (acre) -0.098*** 0.006 -1.163*** 0.006 -0.055** 0.006 -0.052* 0.006 0.041 0.032 0.139*** 0.005 

Land tenure (1= own, 0= rented) 0.407*** 0.240 0.354*** 0.273 0.037 0.233 0.273*** 0.234 -0.343*** 0.045 -0.622*** 0.001 

Soil quality of this plot (1= good) -0.140*** 0.047 -0.071** 0.055 -0.098*** 0.043 -0.063** 0.058 -0.036 0.025 -0.062** 0.254 
Extent of erosion of this plot 
(1=moderate/high) 0.143*** 0.026 0.030 0.029 0.756*** 0.025 0.039 0.032 -0.013 0.038 -0.168*** 0.058 

Irrigation use (1=yes) -0.077 0.001 -0.447 0.001 0.446* 0.001 0.634*** 0.001 0.163 0.224 0.690*** 0.000 

Livestock size (TLU) -0.007 0.039 0.029*** 0.045 0.023** 0.039 0.050*** 0.049 0.013 0.010 -0.028*** 0.027 

Wealth index  -0.005 0.010 -0.020** 0.011 0.020** 0.010 0.019* 0.011 0.092*** 0.009 0.229*** 0.041 

Agricultural implements access index  0.152*** 0.009 0.042*** 0.010 0.086*** 0.008 0.083*** 0.010 -0.075*** 0.015 -0.045*** 0.010 
Proportion of households with access to 
extension advice (on the specific 
practices) in the community  

0.007*** 0.075 -0.002*** 0.102 0.000 0.076 -0.002*** 0.100 0.002** 0.001 0.001** 0.085 

Collective action index -0.047*** 0.011 0.023 0.013 0.029** 0.010 0.055*** 0.013 0.004 0.013 -0.049*** 0.013 
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Number of village development 
committees  in the community  0.010** 0.014 0.001 0.016 0.029*** 0.013 0.013*** 0.017 -0.008* 0.005 -0.005 0.013 

Number of credit and saving organization  
in the community 0.029*** 0.004 0.012** 0.005 -0.006 0.004 0.003 0.005 -0.003 0.006 -0.000 0.015 

Number of months the main road was 
passable by a lorry 0.013*** 0.038 -0.009** 0.042 -0.006* 0.037 0.003 0.047 -0.004 0.004 0.010** 0.001 

Distance to major district centre (Km) -0.000 0.004 0.001*** 0.004 -0.001*** 0.004 -0.000 0.005 -0.001*** 0.000 -0.000 0.040 

Distance to a daily market  (Km) -0.001 0.000 0.003*** 0.000 0.001 0.000 0.001 0.000 -0.007*** 0.001 -0.003*** 0.004 

Price of maize grain (MK/kg) -0.002** 0.027 -0.002** 0.044 -0.001 0.025 0.002*** 0.031 0.002*** 0.001 0.001** 0.007 

Residual for maize coupon receipt         2.340*** 0.330   
Residual for fertilizer coupon receipt           2.892*** 0.062 

Northern province (reference)             
Central province -0.161*** 0.001 -0.522*** 0.001 0.253*** 0.001 0.301*** 0.001 0.463*** 0.064 0.303*** 0.030 

Southern province 0.171** 0.055 -0.163 0.079 0.116 0.054 0.110 0.073 0.272*** 0.074 0.109 0.001 

Constant -2.280*** 0.284 1.174*** 0.353 0.595** 0.273 -0.720** 0.356 -0.668** 0.012 0.358 0.315 
Log-Likelihood -34335.77 

         
LR test of rho=0 : Chi2 (182) 6440.41 *** 

         
Number of observations (plot) 11206            

Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at household level. 
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Table 6. Impact of adoption of adaptation practices on maize productivity (log of quantity produced per acre)  

 

OLS Instrumental Variable (IV) Regression 

(1) (2) (3) (4) (5) (6) 

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. 

Household size (AE) -0.008 0.009 0.011 0.011 -0.002 0.011 -0.005 0.009 -0.009 0.010 -0.003 0.010 

Sex ratio -0.096 0.074 -0.011 0.085 -0.149 0.097 -0.067 0.075 -0.066 0.077 -0.083 0.077 

Dependency ratio 0.002 0.016 -0.004 0.018 0.024 0.022 -0.002 0.016 -0.012 0.017 -0.000 0.017 

Head can read/write Chichewa (yes=1)  0.080** 0.041 0.190*** 0.050 0.060 0.058 0.101** 0.043 0.133*** 0.043 0.084* 0.047 

Household head education (years) 0.001 0.005 0.010 0.006 -0.012 0.009 0.007 0.005 0.002 0.005 0.005 0.005 

Spouse has attended school (1=yes) 0.135*** 0.038 0.172*** 0.044 0.075 0.058 0.153*** 0.039 0.162*** 0.040 0.157*** 0.040 

Age of household head (years) -0.001 0.001 -0.003** 0.001 -0.003* 0.002 -0.001 0.001 -0.002** 0.001 0.000 0.001 

Gender of household head  (1=male) -0.100** 0.043 -0.058 0.050 -0.094* 0.053 -0.082* 0.044 -0.115** 0.045 -0.132*** 0.045 

Precipitation in rainy season 2009/2010 (mm) 0.025*** 0.002 0.026*** 0.003 0.015*** 0.006 0.027*** 0.002 0.028*** 0.003 0.027*** 0.003 

Precipitation square -0.000*** 0.000 -0.000*** 0.000 -0.000** 0.000 -0.000*** 0.000 -0.000*** 0.000 -0.000*** 0.000 

Drought is a top three shock in past year (yes=1) -0.123*** 0.016 -0.125*** 0.018 -0.059* 0.032 -0.126*** 0.016 -0.155*** 0.017 -0.155*** 0.021 

Irrigation use (yes=1) 0.647*** 0.197 0.415 0.260 0.750*** 0.242 0.621*** 0.210 0.526*** 0.201 0.424** 0.214 

Plot size (acre) -0.603*** 0.031 -0.795*** 0.038 -0.439*** 0.128 -0.641*** 0.034 -0.752*** 0.034 -0.751*** 0.034 

Plot size square (acre) -0.000*** 0.000 -0.000*** 0.000 -0.000*** 0.000 -0.000*** 0.000 -0.000*** 0.000 -0.000*** 0.000 

Soil quality of this plot (1= good) -0.104*** 0.030 -0.132*** 0.035 -0.152*** 0.037 -0.109*** 0.031 -0.076** 0.031 -0.098*** 0.032 

Extent of erosion of this plot (1=moderate/high) -0.225*** 0.047 -0.243*** 0.051 -0.103 0.076 -0.230*** 0.047 -0.259*** 0.048 -0.381*** 0.081 

Wealth index  0.096*** 0.009 0.180*** 0.011 -0.041 0.073 0.142*** 0.009 0.140*** 0.009 0.133*** 0.009 

Agricultural implements access index -0.016 0.012 0.007 0.013 -0.013 0.017 -0.003 0.012 -0.032** 0.013 -0.012 0.014 

Collective action index 0.018 0.015 0.034* 0.018 0.044** 0.022 0.016 0.016 0.017 0.016 0.011 0.016 

Livestock size (TLU) -0.018 0.025 -0.012 0.025 -0.009 0.025 -0.020 0.025 -0.015 0.026 -0.021 0.025 

Labour per acre (man-days) 0.001 0.001 0.003*** 0.001 -0.003 0.002 0.002*** 0.001 0.002*** 0.001 0.002*** 0.001 

Labour per acre square (man-days) 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Pesticides/herbicides use (yes=1) 0.086 0.175 0.109 0.217 0.040 0.234 0.126 0.176 0.039 0.176 0.053 0.175 

Distance to major centre (Km) -0.001*** 0.000 -0.001*** 0.000 -0.000 0.000 -0.001*** 0.000 -0.001*** 0.000 -0.001*** 0.000 
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Distance to a daily market (Km) 0.005*** 0.001 0.004*** 0.001 0.005*** 0.001 0.004*** 0.001 0.007*** 0.001 0.005*** 0.001 

Number of village development committee 0.004 0.004 0.014*** 0.005 -0.006 0.010 0.008* 0.004 0.008** 0.004 0.004 0.005 

Number of credit and saving organization 0.013** 0.006 0.016* 0.009 0.017** 0.008 0.013* 0.007 0.009 0.007 0.018*** 0.006 
Agro-ecological suitability index for low-input 
maize 0.000 0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000** 0.000 -0.000 0.000 

Northern province (reference)             

Central province -0.321*** 0.060 -0.159** 0.076 -0.165 0.115 -0.309*** 0.061 -0.344*** 0.065 -0.405*** 0.065 

Southern province -0.211*** 0.063 0.013 0.078 0.116 0.144 -0.255*** 0.065 -0.224*** 0.069 -0.158** 0.067 

Improved seed (yes=1) 0.258*** 0.030 0.983* 0.538         

Fertilizer use per acre (kg) 0.004*** 0.000   0.019** 0.008       

Maize-legume intercrop (yes=1) 0.545*** 0.040     0.804*** 0.087     

Tree planting (yes=1) 0.172*** 0.032       0.726*** 0.084   

SWC measures (yes=1) 0.061* 0.031         0.541** 0.229 

Constant -3.973*** 0.972 -3.767*** 1.052 -0.888 1.677 -4.443*** 0.979 -4.950*** 1.014 -4.537*** 1.028 

Number of observations (plots) 11026  11026  11026  11026  11026  11026  

Log-Likelihood -  -26564.98  -  -23863.29 
  -25837.53 

  -26259.18 
  

R-square 0.247  -  0.131  -  -  -  

Wald chi2(31)/F-test  79.32  20262.8  47.4  2188.4  1935.5  1943.8  

Prob > chi2/F 0.000  0.000  0.000  0.000  0.000  0.000  

athrho   0.762***    -0.180***  -0.253***  -0.192*  

lnsigma   0.436***    0.293***  0.309***  0.303***  

LR test of indep. eqns. (rho = 0):  Prob > chi2    0.000    0.000  0.000  0.071  
Note: *** p<0.01, ** p<0.05, * p<0.1. Standard errors are clustered at household level 
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