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Abstract 

This essay investigates the relationship between rural household income growth and access to 
electricity, extension services and roads. Following Dercon et al (2009), I outline a household 
income growth model that includes access to these public goods as growth conditioners. I 
estimate the model using panel data on Kenyan smallholders covering the period 2000-2010.  I 
find that the expansion of electricity, feeder roads and agricultural extension services are all 
important conditioners. Access to agricultural extension services has a particularly strong impact 
on growth.  

As an extension of the growth model, I investigate whether spatial spillovers in public goods 
exist and to what extent these spillovers contribute to household growth. I find strong evidence 
of spatial dependence in the growth process. Specification tests support a spatial Durbin model 
which allows for both endogenous spatial dependence in outcomes and exogenous spatial 
dependence through access conditions in neighboring areas. Direct and indirect spatial spillover 
effects have the greatest impact through feeder roads, suggesting that conventional (non-spatial) 
estimates of partial effects may be particularly prone to downward bias. Results from this study 
also indicate the importance of rural services and electricity to household growth outcomes, 
suggesting that studies of rural infrastructure which focus exclusively on road networks will miss 
important dimensions of rural accessibility and economic remoteness. 

 

1. Introduction 

Enabling smallholder growth is a key development policy objective in sub-Saharan Africa, 

where a majority of the rural population is characterized by low levels of farm productivity, 

household income and asset wealth. Furthermore, different expressions of growth are related to 

one another: without growth in farm productivity, household asset accumulation may be 

constrained; low levels of productive assets may also constrain investments which are necessary 

for achieving productivity growth.  
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A key public policy response to this challenge is the provision of growth-enabling public goods. 

The role of public goods in enabling smallholder farm growth is generally characterized as 

follows: public goods enhance the productive potential of privately-held productive assets by 

increasing the marginal productivity of such assets. Infrastructure that facilitates transportation 

and communication, such as roads and telephone services, lower the costs of accessing input and 

output markets. Reduced access costs imply relaxed constraints on the decision-making problems 

faced by utility maximizing farm managers. Theoretically, this should enable farmers to make 

more efficient production and marketing decisions. As a consequence, improved infrastructure 

and other public assets should enable farm productivity growth and household asset 

accumulation. 

This paper empirically evaluates the role of public assets as a conditioner of asset growth 

experienced by small farm households in Kenya over the last 10 years. I examine a key 

household-level component of the rural development process: household asset accumulation. I 

offer a conceptual model in which asset accumulation is a function of farm productivity and 

household income, which are strongly conditioned by the provision of public assets. The public 

assets I include in my analysis include: road, electricity and telecommunications infrastructure, 

and agricultural extension services.  

A distinguishing feature of this work is the incorporation of spatial dependence in a panel 

modeling framework. Micro-econometric models typically assume independence of observations 

in the cross-section. However, recent growing amount of empirical studies on smallholder 

decision making show important local interdependence of decision making outcomes (much of 

this comes from the literature concerned with technology adoption). Because the growth 

processes of interest here are directly related to technology and farm management decisions, I 

test and control for spatial dependence in the growth outcomes of interest, as well as in the error 

terms of our models. I note that without such controls, estimation results may be severely 

compromised: if the data generating process is characterized by spatial dependence in the 

dependent variable, standard linear approaches to estimation (e.g. using fixed or random effects 

estimators) will give inconsistent estimates; if the model is characterized by a spatial error 

component, standard estimators will be inefficient, at best, and may be inconsistent if the error 

structure derives from an omitted covariate with a spatial expression. 
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The remainder of this paper is structured as follows: the next section offers a conceptual 

framework. Thereafter, I describe the empirical model. I then describe estimation results and 

discuss their implications for our understanding of the role of public goods in achieving targeted 

smallholder growth trajectories.  
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2. Rural household income and public goods in Kenya 2000-2010 

Rural households in Kenya have experience only moderate nominal income growth, on average, 

over the past decade (Table 1). In real terms, incomes have actually declined in many places. To 

be certain, some households have experienced growth, but the overall trends have been 

disappointing. Raising rural incomes is a strategic priority for the government (GOK 2007, 

2002).  

One of the root causes of rural poverty is remoteness (Stifel et al 2003, Stifel and Minten 2008, 

Barret 2008). Key mechanisms underlying this relationship include higher cost of consumption 

goods and agricultural inputs, lower prices for agricultural outputs, greater price volatility and 

greater costs of accessing public services. In the case of Kenya, there is considerable evidence 

that remote households are less likely to be engaged in markets, less likely to have income from 

non-farm sources, and are more likely to be poor (e.g.  Barret et al 2001, Renkew et al 2004). A 

negative relationship between income and distance from towns is fairly pronounced beyond 

thresholds of about 10km or so (Figure 1).  

One of the strategic mechanisms for increasing agricultural incomes and reducing poverty in 

Kenya has been investments in rural infrastructure and other public goods. Key investment 

targets include expansion or improvements to infrastructure, such as electricity, 

telecommunications and transportation networks, and better access to education, health care, 

agricultural extension and other public services. Over the past decade such investments have 

taken place throughout the country and access improvements have been documented for a range 

of indicators. Chamberlin and Jayne (2009) show that the provision of physical infrastructure and 

key services has been gradually expanding for most areas of the country. However, with few 

exceptions, the pace of expansion has been incremental. Figure 2 shows boxplots representing 

the reported distances between rural households and a variety of public goods: the nearest source 

of electricity, agricultural extension office, all-weather (tarmac) and feeder road. In the long run, 

improvements are clearly taking place, although the inter-period improvements are often minor. 
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Table 1: Trends in household income among rural smallholders in Kenya 2000-2010 

  2000 2004 2007 2010 
nominal KSh 

    income 149,196 161,757 171,375 234,515 
per capita income 22,093 38,738 32,334 45,211 

     real (2010) KSh 
    income 391,714 321,354 245,683 234,515 

per capita income 58,006 76,959 46,354 45,211 
     

Note: per capita calculation based on the number of adult equivalents in the 
household in each year. 

 

Figure 1: Household income and distance from the nearest district capital 

 

Note: Data are in real 2010 Kenyan Shillings, pooled across the 2000, 2004, 
2007 and 2010 rounds of the MSU/Tegemeo household survey. The dark line in 
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the figure is a local polynomial estimate of household income over the distance 
gradient. The grey shaded area is the 95% confidence bounds.  

 

Figure 2: Trends in distance to public services and infrastructure

 

Note: Box plots are based on the village-level averages of household reported distances. The dark 
shaded area in each plot represents the interquartile range (IQR: 75th – 25th percentile) of values 
reported for each year. The upper and lower bars are the most extreme values occurring within 
1.5*IQR of the IQR.  

 

Given these changes in Kenya’s rural access landscape, is there any evidence of a positive 

impact on rural household income growth? On the face of it, the overall flatness of rural income 

growth, and the relatively modest improvements over time in access conditions would appear to 

suggest that investments in public goods have not had a major impact. However, aggregate 

statistics may obscure important patterns of change at the community and household level.   
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To investigate this relationship, I use household panel data covering 107 villages in all major 

production regions of the country.1 I use 4 panel waves, collected in 2000, 2004, 2007 and 2010. 

Included in the dataset are a number of indicators of the distance to the nearest instance of a 

variety of infrastructure and services. Summary statistics of household income and other 

characteristics are presented in the table below. The majority of households in the sample derive 

their livelihoods primarily from agricultural production and marketing. Most households operate 

very small farms, with only moderate levels of input use and participation in output markets. 

The average household is located about 4-5km from the nearest provision of electricity or 

extension services. Most households are several kilometers from an all-weather road, but are 

rarely located more than a kilometer from a feeder road. About half of the sample is located 

within 10km of a district capital, which is often the most important local market. Larger urban 

markets are usually much further away: the average estimated travel time from the farm gate is 

more than 12 hours.  

Public goods such as infrastructure and extension services have important spatial expressions: 

they are located in particular places and their location influences how accessible they are to rural 

populations. Consider, for example, the relationship between distance from the nearest 

agricultural extension office and the probability of receiving extension advice, shown graphically 

in Figure 3. Physical expansion of service provision, therefor, corresponds to a reduction in 

distance for would-be rural beneficiaries.  

A second point to note is the close proximity of villages in the sample. If the impact of public 

goods provision extends out over space to non-trivial extents (i.e. beyond a few kilometers), then 

it is reasonable to assume that neighboring villages share some degree of access to the same 

conditions. This opens an additional avenue for potential impact of public good investments: the 

indirect impacts of improvements in public good provision in neighboring areas.   

1 This dataset has been described extensively by Chamberlin and Jayne (2009). See details of the sampling 
methodology in Argwings-Kodhek et al (1999).  
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Table 2: Household and community characteristics  

   
average values by year 

 
percentiles in 2010 

 
unit   2000 2004 2007 2010   5th 25th 50th 75th 95th 

             household characteristics 
            income KSh 

 
149,196 161,757 171,375 234,515 

 
28,765 76,250 151,963 285,676 705,664 

per capita income KSh/adult 
 

22,093 38,738 32,334 45,211 
 

5,305 14,211 29,113 55,648 138,429 
off-farm income share % 

 
36% 37% 41% 40% 

 
0% 12% 37% 67% 92% 

marketed share of production % 
 

44% 42% 45% 41% 
 

0% 13% 41% 67% 88% 
high-value % of marketed output % 

 
35% 34% 30% 34% 

 
0% 1% 13% 71% 100% 

used inorganic fertilizer 1=yes 
 

70% 72% 76% 75% 
 

0 1 1 1 1 
inorganic fertilizer use rate kg/ha 

 
49.92 46.42 48.02 44.65 

 
0 0.03 35.35 70.81 133.53 

land holding size ha 
 

5.66 5.76 5.41 4.78 
 

0.75 1.75 3 5 15 
adult equivalents adult 

 
7.28 4.76 6.17 6 

 
1.66 3.96 5.7 7.68 10.96 

female-headed household 1=yes 
 

16% 20% 23% 27% 
 

0 0 0 1 1 
value of productive assets KSh 

 
25,529 8,364 41,892 49,827 

 
0 2,200 7,050 23,300 214,500 

age of household head years 
 

45.85 56.53 58.7 60.56 
 

39 51 61 70 82 
education of household head years 

 
5.07 6.2 6.31 6.48 

 
0 3 7 10 15 

             community characteristics 
            distance to electricity km 

 
4.82 4.27 4.07 1.32 

 
0 0.5 1 2 4 

distance to extension office km 
 

5.21 4.93 4.13 4.77 
 

1.5 2.25 4 6 10.5 
distance to tarmac road km 

 
7.85 7.77 7.5 6.9 

 
0.3 2.25 5 9.5 20 

distance to feeder road km 
 

1.05 0.85 0.35 0.3 
 

0 0 0.2 0.4 1 
distance to district capital km 

 
12.41 12.41 12.41 12.41 

 
3 6 9.9 16.75 30 

time to city of 50,000 or more hours 
 

3.97 3.97 3.97 3.97 
 

0.31 1.72 3.42 5.58 11.09 
rural population density p/km2 

 
308 353 382 408 

 
109 244 379 502 744 

average annual rainfall mm 
 

531 531 531 531 
 

248 372 554 700 751 
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Figure 3: Relationship between location and access to agricultural extension services 

 
Note: Data for 2010 only. 
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3. Conceptual framework 

Smallholder household incomes are derived from a variety of sources, the most important of 

which are the value of farm production, earnings from participation in agricultural output 

markets, and from sales of household labor in agricultural and non-agricultural labor markets. 

Income may be used to satisfy consumption needs, as well as reinvested in production inputs, 

productive capital or human capital development, thereby improving future prospects for 

additional income growth and asset accumulation. The major channels of agricultural income 

growth are through increases in farm productivity, production specialization and/or market 

engagement. Non-farm income growth may result from returns to experience or specialized 

skills. The opportunities to engage in such pathways are conditioned by household endowments 

and, critically, the provision of public goods. For example, improved roads lower the cost of 

accessing input and output markets; access to agricultural extension services can contribute to 

productivity gains; and the provision of electricity enables a wider variety of rural non-farm 

industrial activities. The structural linkages in this system are complex. Here, I adopt a reduced 

form approach that relates growth outcomes with enabling conditions. 

Let us denote household income by 𝐴, with 𝐴it referring to the outcome for household 𝑖 at time 

period 𝑡. Following Dercon et al. (2009), I model a household growth process (ln𝐴𝑖𝑡 − ln𝐴𝑖𝑡−1) 

as a function of changes in capital stock of public goods (as proxied by distance to tarmac and 

feeder roads, electricity and agricultural extension services). I define an empirical growth model 

that allows for transitional dynamics, as follows. Consider changes in 𝑦 over a time period of 

length 𝑝: 

(1) �ln𝐴𝑖𝑡 − ln𝐴𝑖𝑡−𝑝� 𝑝⁄ = 𝜉 + 𝛼 ln𝐴𝑖𝑡−𝑝 + 𝛽 ln𝐾𝑖𝑡−𝑝 + 𝛾 �ln𝑅𝑖𝑡 − ln𝑅𝑖𝑡−𝑝� 𝑝⁄ + 𝜆𝐻 +

+𝜇𝑖 +  𝑢𝑖𝑡 

where 𝜉 represents sources of growth common to all households. 𝐻 reflects fixed characteristics 

of the household, such as location, that also affect growth. 𝐾 represents exogenous levels of 

capital stocks (roads, electricity, extension), the term (ln𝑅𝑖𝑡 − ln𝑅𝑖𝑡−𝑝) represents transitory 

shocks such as changes in rainfall and prices, and 𝜇𝑖 denotes unobserved individual 

heterogeneity (i.e. a vector of time-invariant individual-specific effects). To deal with unobserved 

1 
 



heterogeneity, I use FE to time-demean equation (1).  In doing so, all time invariant explanatory 

variables drop out of 𝐻 and 𝜇𝑖drops out completely. 

As an extension of this model, I also allow for spatial dependence in the cross-section. Following 

Manski (1993), I consider three types of dependence:  (a) endogenous interaction effects, 

whereby the income growth experienced by a household is dependent upon the income growth in 

neighboring households; (b) exogenous interaction effects, whereby the growth outcomes 

experienced by a household depend upon the provision of public goods in neighboring locations 

(as well as in their own locations); and (c) correlated effects related to unobserved factors 

affecting neighboring households in similar ways.  

The first channel may be thought of as a kind of local growth spillover process, akin to the 

growth spillovers which have now been widely documented for contiguous regions (e.g. Ertur et 

al 2006, Le Gallo et al 2003, Richaud et al 1999). At the local level, empirical studies of growth 

spillovers have not yet been implemented, to my knowledge. However, such spillovers are 

consistent with growth multiplier effects operating through consumption and production linkages 

( Johnston and Mellor 1961, Mellor and Lele 1973, Haggblade et al 2007).  Consumption 

linkages include spending by wealthier rural households on local consumption goods and 

services. As local incomes rise, the resulting increases in demand benefits local producers. 

Additionally, with increases in farm productivity (which both enables and is enabled by higher 

incomes) may drive growth in local non-farm activities, which may enhance off-farm income 

earning opportunities.  

To implement this idea, let us redefine our outcome of interest as 𝑦𝑖𝑡 = �ln𝐴𝑖𝑡 − ln𝐴𝑖𝑡−𝑝� 𝑝⁄  

and define the right hand side elements of equation (1) as the vector 𝒙𝑖𝑡, with 𝑖 indexing cross-

sectional observations 𝑖 = 1, … ,𝑁 and 𝑡 indexing time periods 𝑡 = 1, … ,𝑇.  We then write our 

model for a given observation as: 

 (2) 𝑦𝑖𝑡 = 𝒙𝑖𝑡𝜷 + 𝑢𝑖𝑡  

 

Now, to allow for endogenous spatial dependence, let us rewrite this model as 
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 (3) 𝑦𝑖𝑡 = 𝛿 ∑ 𝑤𝑖𝑗𝑦𝑗𝑡𝑁
𝑗=1 + 𝒙𝑖𝑡𝜷 + 𝑢𝑖𝑡  

where ∑ 𝑤𝑖𝑗𝑦𝑗𝑡𝑁
𝑗=1  is a spatial lag of the dependent variable, 𝛿(|𝛿| < 1)  is the spatial lag 

parameter. This term represents the endogenous spatial dependence in growth outcomes for 

neighboring households.  

The other two channels of spatial dependence (exogenous dependence and correlated effects) 

may be thought of as aspects of a spatial diffusion process through which changes in 

infrastructure act upon the growth enabling conditions throughout a local region. Given the close 

proximity of many of the villages in our data, shared exposure to similar access conditions is 

likely. If this shared exposure operates directly, i.e. through observed access conditions in 

neighboring locations, we may extend our model as follows: 

 (4) 𝑦𝑖𝑡 = 𝛿 ∑ 𝑤𝑖𝑗𝑦𝑗𝑡𝑁
𝑗=1 + 𝒙𝑖𝑡𝜷 + 𝜃 ∑ 𝑤𝑖𝑗𝒙𝑗𝑡𝑁

𝑗=1 + 𝑢𝑖𝑡  

where ∑ 𝑤𝑖𝑗𝒙𝑗𝑡𝑁
𝑗=1  is a spatial lag of the independent access variables, 𝜃(|𝜃| < 1)  is the spatial 

lag parameter. This term represents the exogenous spatial dependence of growth outcomes on 

neighboring access (and possibly other) conditions.  

If the spillover is not directly related to observable access conditions in the model, but to 

unobserved factors which influence growth outcomes for neighboring households in similar 

ways, then this is simply reflected in spatially autocorrelated errors: 

(5) 𝑢𝑖𝑡 = 𝜌∑ 𝑤𝑖𝑗𝑢𝑗𝑡𝑁
𝑗=1 + 𝜀𝑖𝑡 

where ∑ 𝑤𝑖𝑗𝑢𝑗𝑡𝑁
𝑗=1  is the spatial autocorrelation structure, and 𝜌(|𝜌| < 1) as the spatial 

autocorrelation parameter.  

Note that these channels of dependence may coexist. In other words, the nested structure of a 

model consisting of (4) and (5) allows for all three channels of spatial interaction (a model 

sometimes called the Manski model; see Appendix A for a typology of spatial models). A priori, 

I do not discard any possible channel of spatial dependence, including its absence.  
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4. Empirical model 

Public goods 

I use a number of indicators of access to public goods, all of which are based on household 

reported distances to the nearest instance of each type. The types of public goods that I evaluate 

are presented in the table below. 

Table 3: Public goods variables used in this study 

Variable Description 2000 2004 2007 2010 

km advice Km to nearest agricultural extension office x x x x 

km elect Km to nearest electricity supply x x x x 

km tarmac Km to nearest all-weather road x x x x 

km feeder Km to nearest motorable road x x x x 

Endogenous initial state variables 

The initial value of the variable whose growth we are measuring is likely to be endogenous. In 

equation (3) this variable is written as ln𝐴𝑖𝑡−𝑝. In this paper, I deal with the endogeneity of 

ln𝐴𝑖𝑡−𝑝 by using a control function approach (Wooldridge 2010b). I implement the control 

function as follows: let us model ln𝐴𝑖𝑡−𝑝 as a function of a set of instruments which are not 

included in equation (3). We obtain the residuals from this first stage regression and add them to 

our estimating version of equation (3). The inclusion of the control function residuals, if they are 

based on valid instruments, acts to break the endogeneity of ln𝐴𝑖𝑡−𝑝 in the primary model. 

Furthermore, the control function approach provides a simple test of whether or not the 

suspected regressor is truly endogenous: a significant coefficient estimate on the control function 

residual supports the endogeneity assumption (Wooldridge 2012). 

The instruments I use in the control function are all time-varying household characteristics 

observed at time (𝑡 − 𝑝). I instrument initial income levels with log per capita value of livestock 

and whether or not the household owned a television set. 
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Long-run and short-run changes in access 

There is considerable enthusiasm for panel estimators that control for unobserved heterogeneity 

in the cross-section, as failure to account for such factors may result in severe bias (if the 

outcome of interest is in fact confounded by such heterogeneity). Fixed-effects (FE), first-

difference (FD) and correlated-random effects (CRE) are examples of such estimators.  

However, there are potential drawbacks to this strategy. When there is little variation in the 

covariate of interest and/or there is a high degree of measurement error – i.e. when the signal-to-

noise ratio is low – the results from FD, FE or CRE estimation may be seriously compromised, 

with coefficient estimates severely attenuated towards zero. This is sometimes referred to as 

attenuation bias (Deaton 1997: p108, Baltagi 2008: p205-208, Wooldridge 2010: p365).2    

This problem is usually framed as a tradeoff: differencing approaches exacerbate measurement 

error bias even as they eliminate heterogeneity bias. In other words, order to remove the 

inconsistency arising from unobserved heterogeneity, precision has been sacrificed.  

Deaton (1997) notes that “a consistent but imprecise estimate can be further from the truth than 

an inconsistent estimator” (p108). Furthermore, “we must also be aware of misinterpreting a 

decrease in efficiency as a change in parameter estimates between the differenced and 

undifferenced equations. If the cross-section estimate shows that β is positive and significant, 

and if the differenced data yield an estimate that is insignificantly different from both zero and 

the cross-section estimate, it is not persuasive to claim that the cross-section result is an artifact 

of not “treating” the heterogeneity.” (p108).  

McKinnish (2008) shows that the measurement error problem can be extended to include cases 

where an indicator is measured with precision, but where this indicator is an imprecise measure 

of the true factor relevant to the outcome of interest. She notes that time-series variation in 

panels – i.e. the variation that remains after removing fixed effects – often reflects idiosyncratic 

changes in the independent variable that have little or no influence on the dependent variable.  

2 The case for attenuation bias is usually made for FE and FD methods, but since CRE estimates approach those of 
FE estimators, under the CRE assumptions, this argument applies to CRE also. See Wooldridge (2010) for 
comparison of CRE and FE estimator properties. Solon (1985) and Griliches and Hausman (1986) are the seminal 
studies of attenuation bias from measurement error in panel data. 
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“For example, we may know the exact value of state welfare benefits from administrative 

records, but not all of the variation in these benefit levels will necessarily influence 

behavior. In particular, we expect many outcomes to respond differently to short-term 

and long-term variation in conditions. This differential effect of long-term and short-term 

variation can generate the same bias as “true” measurement error.” (p 336).  

In this case, measurement error as conventionally defined is not an issue, although the resulting 

“measurement error problem” is the same. To paraphrase her argument in the context of this 

study, consider a simplified household growth model: 

 𝑦𝑖𝑡 = 𝛼𝑖 + 𝛽𝑥𝑖𝑡 + 𝜀𝑖𝑡 

 𝑥𝑖𝑡 = 𝑧𝑖𝑡 + 𝜈𝑖𝑡 

where is yit is the growth outcome of interest, xit is the access measurement for the 

corresponding period, and zit is the sustained component of access. Even in the absence of 

measurement error on xit, x may still not capture the underlying causal relationship of primary 

interest: if z is highly correlated over time and two observations of x from adjacent periods are 

differenced, most of the information about z will be eliminated, leaving variation which is 

mainly associated with the noise component ν. 

We have already seen that most of the access indicators in the Kenya panel dataset vary 

incrementally between successive panel waves. Furthermore, there are indications that 

measurement error may be a problem: for example, intra-village variation in the reported 

distance to the nearest paved road often exceeds (by a large margin) the variation in household 

locations within the village. This suggests that farmers are either measuring distance to very 

different targets, or there is measurement error (or both). Furthermore, given the slow pace of 

changes, the substantive changes may best be measured over longer periods of time. In other 

words, even in the absence of measurement error, the sustained component of access changes is 

probably more important to income growth outcomes. To address this, I compare estimates from 

fixed effects (FE), first-differences (FD) and long-differences (LD), where the LD estimator is 

based on differencing levels in the first and last period of the panel. Given the four years of 

observations in the dataset and the single-period lag structure of the model, the LD estimator 
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means that one year drops out. McKinnish (2008) suggests that a comparison of these methods 

will yield insights about the presence and magnitude of attenuation-type biases.  

 

Spatial dependence 

Spatial models pose special challenges for estimation. The cost of ignoring spatial dependence in 

the dependent variable (and/or a spatial lag in the independent variables ) is high due to the 

simple fact that if one or more relevant explanatory variable are omitted from a regression 

equation, the estimator of the coefficients for the remaining variables is biased and inconsistent 

(i.e. the omitted variable problem; Wooldridge 2010). In contrast, ignoring spatial dependence in 

the disturbances, if present, will only cause a loss of efficiency (assuming, of course, that this 

non-spherical spatial error term is not an artifact resulting itself from an omitted variable). 

Furthermore, even when correctly specified, models with lagged dependent variables which are 

estimated via least squares will generally result in inconsistent parameter estimates inconsistent 

estimation of the spatial parameters, and inconsistent estimation of standard errors (Le Sage and 

Pace 2009). 

There are three main approaches described in the literature for estimating models that include 

spatial interaction effects. The first is based on maximum likelihood (ML; see Le Sage and Pace 

2009, chapter 3). The second is based on a generalized method of moments approach that uses 

instrumental variables to deal with the endogeneity of spatial lags (IV/GMM3; e.g. Kelejian and 

Prucha 2009). A third approach uses a Bayesian Markov Chain Monte Carlo (MCMC) approach 

(e.g. Le Sage and Pace 2009; chapter 5). ML estimators assume normality of errors; IV/GMM 

does not rely on this assumption. Both ML and IV/GMM approaches, however, assume that the 

εit are independently and identically distributed for all 𝑖 and 𝑡 with zero mean and variance σ2.  

Franzese and Hays (2007) compared the performance of the ML and IV/GMM estimators for 

panel data models with a spatially lagged dependent variable in terms of unbiasedness and 

efficiency. They find that the ML estimator weakly dominates the IV/GMM estimator in terms of 

efficiency, but that the IV/GMM estimator offers more robust estimates for some ranges of 𝛿. 

3 The estimator used in this approach is frequently referred to as the Generalized Spatial 2-Stage Least Squares 
(GS2SLS) estimator. 
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However, Elhorst (2010) notes that they did not consider differences between spatial fixed or 

random effects. In this section, I describe a ML approach to estimating equation (3). I describe 

approaches for the spatial lag fixed effects model, but extensions to the error model are 

straightforward.  

 

Fixed effects spatial lag model 

To implement the FE approach, let us remove the time constant effects 𝜇𝑖 by demeaning the 

equation. This leaves us the following time-demeaned variables 

(6) 𝑦𝑖𝑡∗ = 𝑦𝑖𝑡 − 1
𝑇
∑ 𝑦𝑖𝑡𝑇
𝑡=1   and  𝒙𝑖𝑡∗ = 𝒙𝑖𝑡 − 1

𝑇
∑ 𝒙𝑖𝑡𝑇
𝑡=1  

Now,  stack  the  observations  as  successive  cross-sections  for 𝑡 = 1, … ,𝑇 to obtain vectors of 

dimension(𝑁𝑇, 1) for 𝒀∗ and (𝑰𝑇⨂𝑾)𝒀∗, and an (𝑁𝑇,𝐾) matrix for 𝑿∗ of the demeaned 

variables.  

As shown by Elhorst (2010; following Kelejian and Prucha [1998]), a consistent estimation 

procedure is as follows.  Let  𝐛0 and 𝐛1 denote  the  OLS  estimators  of  successively  regressing  

𝒀∗ and (𝑰𝑇⨂𝑾)𝒀∗ on 𝑿∗, and  let 𝐞0∗  and 𝐞1∗  be the corresponding residuals. The ML estimate of 

𝛿 is then obtained by maximizing the concentrated log-likelihood function 

(7) 𝐿𝑜𝑔𝐿 = 𝐶 − 𝑁𝑇
2 𝑙𝑜𝑔[(𝒆0∗ − 𝛿𝒆1∗)′(𝒆0∗ − 𝛿𝒆1∗)] + 𝑇𝑙𝑜𝑔|𝐼𝑁 − 𝛿𝑾| 

where 𝐶 is a constant not depending on 𝛿. 

Third, estimators for 𝜷 and 𝜎2 may be computed, using the numerical estimate of 𝛿, as follows: 

(8) 𝜷 = 𝒃0 − 𝛿𝒃1 =  (𝑿∗′𝑿∗)−1 𝑿∗′ [𝒀∗ − 𝛿(𝑰𝑇⨂𝑾)𝒀∗] 

 𝜎2 = 1
𝑁𝑇

(𝒆0∗ − 𝛿𝒆1∗)′(𝒆0∗ − 𝛿𝒆1∗) 

For reference, Elhorst and Freret (2007) derive the asymptotic variance matrix of these 

parameters. 
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Measuring direct and indirect impacts in spatial models 

As indicated earlier, my primary analytical interest is in the partial effect of a change in access 

on the outcomes of interest. Unlike non-spatial linear models, where parameter estimates may be 

interpreted as partial effects, spatial dependence requires that we consider the dependence 

channels specified in the model. In particular, models containing spatial lags of the dependent 

variable require special interpretation of the parameters (Anselin and LeGallo, 2006; Kelejian, 

Tavlas and Hondronyiannis, 2006; Kim, Phipps, and Anselin, 2003; LeGallo, Ertur, and 

Baumont, 2003).  

For a single period, we can represent the partial effect on outcome 𝑦 for an individual 𝑖 from a 

change in the 𝑟th explanatory variable 𝑥𝑟, in terms of an own derivative: 4 

𝜕𝑦𝑖
𝜕𝑥𝑖𝑟

= 𝑆𝑟(𝑊)𝑖𝑖  where 𝑆𝑟(𝑊) = (𝐼𝑛 − 𝜌𝑊)−1(𝐼𝑛𝛽𝑟)  

However, we might also consider the effect on observation 𝑖 deriving from a change in 𝑥 at 

observation 𝑗, i.e.  𝜕𝑦𝑖
𝜕𝑥𝑗𝑟

= 𝑆𝑟(𝑊)𝑖𝑗 . This expression, unlike in non-spatial models, is not 

necessarily zero.  

Le Sage and Pace (2009) suggest the following summary measures of aggregate impacts:  

Average Direct Impact: The impact of changes in the 𝑖th observation of 𝑥𝑟  on 𝑦𝑖 could be 

summarized by averaging over the direct impact associated with all observations 𝑖. This is 

somewhat analogous to the standard non-spatial linear regression coefficient interpretations that 

represent the average response of the dependent variable to changes in the independent variables. 

Average Total Impact to an Observation: The sum across the 𝑖th row of 𝑆𝑟(𝑊) = (𝐼𝑛 −

𝜌𝑊)−1(𝐼𝑛𝛽𝑟) would represent the total impact on individual observation 𝑦𝑖 resulting from 

changing the explanatory variable 𝑥𝑟 by the same amount across all 𝑛 observations. 

4 To see the derivation of this expression, consider the following transformation of the standard SAR model (derived 
following LeSage and Pace 2009): 
 𝑦 = 𝛿𝑾𝑦 + 𝑿𝜷 + 𝑢  
 (𝑰𝑁 − 𝛿𝑾)𝑦 = 𝑿𝜷 + 𝑢   
 𝑦 = ∑ (𝑰𝑁 − 𝛿𝑾)−1(𝑰𝑁𝛽𝑟)𝑥𝑟𝑘

𝑟=1 + (𝑰𝑁 − 𝛿𝑾)−1𝑢  
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Average Total Impact from an Observation: The sum across the 𝑗th column of 𝑆𝑟(𝑊) =

(𝐼𝑛 − 𝜌𝑊)−1(𝐼𝑛𝛽𝑟) represents the total impact over all 𝑦𝑖 from changing the 𝑟th explanatory 

variable by some amount in the 𝑗th observation. 

 

Spatial weights matrix  

The weighting matrix 𝑾 may be defined in various ways. Because our dataset has geographic 

coordinates assigned at the household level, the weights I emphasize in this study are based on 

geographic distances between observations. In particular, I define neighbors as households 

residing within 20km from one another, with the relationship between neighbors weighted by 

inverse distances. This corresponds to a scale of plausible interaction and shared conditions for 

rural households, whereby households will be neighbors to all others within the village, but also 

(possibly) to households residing in nearby villages.5 

5 Tests of alternative specifications of the weighting matrix W wew carried out using Kelejian’s extension of the J-
test (Kelejian 1998, Kelejian and Piras 2009; see Elhorst 2010a, and Le Sage and Pace 2009 for alternative testing 
approaches based on Bayesian posterior model information). I used the J-test to evaluate several alternative 
weighting matrices.  Based on these results, I conclude that the best fit for this application is a simple weights matrix 
derived from inverse distances, using geographic household coordinates, and a threshold value of about 20 
kilometers.  However, it is worth noting that when spatial dependence is pronounced, the specification of the 
weights matrix is fairly robust to misspecification (Elhorst 2010). In this case, given the strength of spatial 
dependence in my estimating equations, as I show in the results section, the choice of weights is fairly robust to 
misspecification and I do not elaborate further on the specification tests for reasons of conciseness. 
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5. Discussion of results 

Table 2 presents estimation results of the basic (non-spatial) household growth model. The 

dependent variable here is log per capita household income.6 The first two columns show results 

from first difference (FD), with the endogeneity of the lagged dependent variable controlled for 

with Control Function approach (in column 1) and IV-2SLS approach (in column 2).Similarly, 

the fixed effects (FE) estimation results are shown in columns 3 and 4 and the long-difference 

results are shown in columns 5 and 6. For each method, the differences in estimates under 

alternative endogeneity controls are most pronounced in the lagged outcome variable; for other 

covariates the choice of CF or IV does not make a large difference. Although the CF method is 

less robust than IV-2SLS, these results suggest that any bias arising from failing to meet the CF 

assumptions (which essentially are that the endogenous variable has a linear expectation which is 

correctly specified by the control function auxiliary regression) is minimal with respect to the 

independent variables of primary interest, namely the access/public goods indicators.  

Access indicators are measured in log terms (after first converting to meters to preserve positive 

values). Thus, their coefficients may be interpreted as elasticities. generally have the expected 

negative sign, indicating that better proximity to infrastructure and services has beneficial 

impacts on income growth trajectories (the only positive estimates are not distinguishable from 

zero). In comparing the magnitude and significance of the FD, FE and LD coefficient estimates, 

we may clearly observe that magnitudes of estimated coefficients are increasing and that 

standard errors decrease (note: the table shows p-values, not standard errors, but the direction of 

the changing magnitudes of standard errors is easily deduced from the significance of the 

estimates). 

Griliches and Hausman (1986) summarize general results for alternative estimators in the 

presence of measurement error: FE and LD estimators will suffer less from bias than FD; the LD 

estimator will suffer less from bias than the FE estimator (with the magnitude of that difference 

depending upon the structure of the data, number of periods, length between them, etc.). 

McKinnish (2008) suggests using these observations to diagnose the presence of attenuation bias 

6 All values are in nominal terms. One reason for this was to preserve a positive direction of growth (recall that there 
is a net decline in real incomes across the period). Since all specifications include price controls which are also in 
nominal terms.  
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resulting from mis-measurement and/or conflation of transitory and sustained changes. She notes 

that, under this condition, we would expect that FD estimates will be the most attenuated, as 

much of the signal is differenced out, relative to the noise of short term volatility. Longer 

differences, such as FE and especially LD, will capture proportionally more signal relative to 

noise, and therefore be less attenuated. This is exactly what we observe in the table. For this 

reason, my preferred estimator is the LD estimator.  

The LD estimates using the CF indicate that electricity, extension and feeder roads all play 

significant roles in conditioning income growth. Of these, the magnitude of access to extension is 

the largest: a 50% reduction in distance to extension office (about 2.4km at the sample mean of 

4.7km) is associated with nearly 9% larger rates of income growth. A 50% reduction in distance 

to electricity (about 1.8km at the sample mean) is associated with a 2.5% increase in income 

growth. At the sample mean of 0.8 km from the nearest feeder road, a reduction of 0.4 km is 

associated with a 1.1% increase in income growth. 

The household characteristics are largely insignificant. This has to do with the fact that there is 

little variation over time: there is some change in household heads, which prevents these 

characteristics from falling out after differencing, but too little variation to contribute 

meaningfully as explanatory factors. Of the contemporaneous shocks, only fertilizer price is 

consistently important, with the expected negative sign. Maize wholesale prices approach 

significance with a negative sign, suggesting that maize prices affect incomes more through their 

role in household consumption expenditures than through output sales. Rain shocks are not 

significant, although this may have more to do with the greater periodicity of rainfall variation: it 

may not be meaningful to compare individual seasons which are separated by multiple 

unobserved periods.  
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Table 4 Determinants of income growth (log per capita KSh) 
 First-difference Fixed effects Long-difference 
 (1) (2) (3) (4) (5) (6) 
 CF IV CF IV CF IV 
      
Lagged endogenous variable:      
log income -1.195 -1.335 -0.935 -1.306 -0.479 -1.243 
 (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)*** (0.000)*** 
Access:       
km electricity -0.006 -0.009 -0.021 -0.026 -0.050 -0.051 
 (0.691) (0.549) (0.228) (0.316) (0.068)* (0.187) 
km extension 0.004 0.012 -0.077 -0.074 -0.173 -0.180 
 (0.944) (0.847) (0.262) (0.164) (0.081)* (0.024)** 
km tarmac -0.048 -0.054 -0.025 -0.021 0.057 0.047 
 (0.269) (0.196) (0.605) (0.728) (0.749) (0.757) 
km feeder -0.008 -0.009 -0.011 -0.011 -0.022 -0.015 
 (0.323) (0.276) (0.170) (0.237) (0.076)* (0.313) 
Household characteristics:      
farm size -0.005 -0.002 0.003 0.011 0.020 0.035 
 (0.513) (0.787) (0.766) (0.195) (0.199) (0.002)*** 
female 0.078 0.066 0.037 0.039 -0.041 0.005 
 (0.337) (0.419) (0.653) (0.550) (0.690) (0.954) 
age -0.001 -0.002 -0.005 -0.006 -0.010 -0.012 
 (0.910) (0.716) (0.257) (0.152) (0.069)* (0.045)** 
education 0.011 0.012 0.019 0.021 0.024 0.033 
 (0.146) (0.165) (0.021)** (0.044)** (0.062)* (0.042)** 
Shocks:       
rain 0.002 0.008 0.008 0.017 0.003 -0.038 
 (0.937) (0.801) (0.786) (0.615) (0.986) (0.790) 
maize price -0.105 -0.042 -0.206 -0.268 -0.594 -0.774 
 (0.648) (0.882) (0.447) (0.342) (0.191) (0.031)** 
DAP price -0.665 -0.778 -0.881 -0.846 -0.869 -0.879 
 (0.003)*** (0.007)*** (0.000)*** (0.004)*** (0.116) (0.107) 
R-squared 0.731 0.728 0.645 0.641 0.491 0.444 
N 2465 2465 3698 3698 2465 2465 
Note: P-values shown in parentheses are based on bootstrapped standard errors, with significance levels denoted by: 
* p<0.10, ** p<0.05, *** p<0.01 
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Table 5: LM tests of spatial structure (for LD model) 

Hypothesis LM test statistic p-value robust LM test statistic p-value 

H0: no spatial lag 8453    0.000***  797    0.000***  

H0: no spatial error 7657    0.000***  0.04    0.842 

 

To evaluate possible spatial structure, I implemented LM and robust LM tests for spatial panels 

as suggested by Anselin et al (2006) and described in Elhorst (2009). The null hypothesis is no 

spatial structure, against alternatives of either a spatial lag or a spatial error. (The robust LM tests 

are called robust because the existence of dependence of one type does not bias detection of the 

other type.) Results, shown in table 5, indicate that a spatial lag structure is very likely. Support 

for a spatial error structure is given by the regular LM test, but the robust test suggests that this is 

not likely. 

Elhorst (2010) suggests that, after rejecting a non-spatial model structure, further specification 

testing should begin with the spatial Durbin model, which contains a spatial lag of the dependent 

variable and of (some or all) of the independent regressors. (A diagram of spatial models and 

their relationships is provided in Appendix A.) The spatial Durbin model (SDM) can be tested 

for reduction to either a spatial lag (i.e. spatial autoregressive, or SAR) model or the spatial error 

model (SEM), since both SAR and SEM are nested within the SDM.7 

Table 6 shows LD estimation results for non-spatial and spatial models. Of principal interest is 

the efficiency gain obtained from any of the spatial specifications, relative to the non-spatial 

specification, particularly for distance to extension services and feeder roads. For the most part, 

there are only minor differences in the magnitude of coefficient estimates. The biggest change is 

for distance to extension advice under the spatial Durbin model, which increases substantially. 

However, this effect is counterbalanced by the indirect effect of distance to extension in 

neighboring villages: the exogenous lags are reported under the section labeled Wx. The positive 

coefficient on the lag of km extension is a little puzzling, as it suggests that simultaneous 

improvements in a village and in neighboring villages is not complementary; bear in mind, 

however, that these coefficients are not directly interpretable as partial effects (I calculate those 

7 This nesting is not intuitively obvious; Elhorst (2010) shows that the exogenous lag coefficients, 𝜃, reduce to the 
spatial error coefficient 𝜌, under the following special case, which is testable:  𝜃 = −𝜌𝛽. 
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below). One possible explanation is that if extension offices tend to be located in non-central 

places (i.e. in villages rather than in rural towns) and they are fairly well distributed, then a 

checkerboard pattern may result, whereby in a pair of neighboring villages, if there is an 

extension office in one of the pair, there is little chance of there being an office within the other. 

In such cases, a net positive benefit deriving from having an extension office somewhere in the 

vicinity would be difficult to identify from direct and spillover terms which are simultaneously 

measured.  

The exogenous lag coefficients for roads and electricity are negative, which suggests that direct 

and spillover effects work in complementary ways, as we would expect. The most significant 

effect is for feeder roads, which indicates that denser feeder road networks have particularly 

strong spatial spillovers, whereby community-level improvements percolate out to neighboring 

areas.  

The spatial autoregressive parameters (i.e. the coefficient on the spatial lag of the dependent 

variable) are highly significant in all models. The estimates of the spatial error term are more 

variable: in the SEM model, which confines spatial spillover to the error structure, the parameter 

estimate is highly significant. However, in the SARAR model, which allows for both a spatial 

autoregressive term and an autocorrelated error term, the error term is not significant. This is 

consistent with the LM results shown earlier. If, a priori, we are unwilling to accept the 

existence of an endogenous spatial lag, then we should accept a spatial error specification, as it 

offers a better fit and more efficient estimates than the non-spatial model. However, tests and 

specification results both indicate that the spatial lag is more likely to be the true specification. 

What about the endogenous lags (in the SDM)? A Wald test rejects the null that the endogenous 

lags are jointly equal to zero at the 95% level (F(4,1212) = 2.96; p-value=0.019). (Tests also 

reject collapsibility into the SEM or a non-spatial model.) This suggests that the spatial Durbin 

specification fits the model best, although the differences from the SAR and SARAR model 

estimates are very small. 

For the non-spatial and spatial error models (columns 1 and 4) the coefficient estimates may be 

interpreted as partial effects. However, as discussed earlier, if we accept an endogenous and/or 

exogenous spatial lag terms, then partial effects require additional calculation. Table 7 shows 

coefficient estimates of the access variables from all models, along with the direct, indirect and 
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total impacts for the SDM, SARAR and SAR models. Not surprisingly, the largest changes in the 

estimated impacts are for distance to feeder roads: the non-spatial estimate of the impact of a 

50% reduction in distance is a 1% increase in the income growth rate. The estimated impact of 

such a change under the SDM specification, which includes both endogenous and exogenous 

lags, is nearly 11%. Even under the SAR model, which excludes the exogenous lags, the 

estimated impact is 2.4%, more than double the non-spatial impact.  

The changes in impacts for the other access variables are less pronounced, but operate in the 

same general way, i.e. have larger magnitudes than non-spatial estimates. The impact of distance 

to extension services is the most significant of these other effects: the estimated elasticity 

increases from -0.173 (in the non-spatial model) to -0.146 in the spatial Durbin model and -0.222 

in the spatial lag model. 

It is likely that the role of access is different in the growth trajectories of households pursuing 

different livelihood strategies. For example, households who are heavily engaged in agricultural 

markets may benefit more from agricultural extension services. Similarly, households which earn 

a majority of their income from non-farm sources may benefit more from expansion of electricity 

and other investments that facilitate growth in the non-farm rural economy. To investigate this, I 

ran the basic model on two subsets of the sample: marketing specialists, defined as those who 

sold more than 50% of total value of output in 2000, and non-farm specialists, defined as 

households with more than 80% of total household income from off-farm sources in 2000. 

Results are shown in Table 8: model 1 is identical to the non-spatial model shown earlier; model 

2 includes marketing specialists only; and model 3 is restricted to off-farm specialists. 

Results indicate that income growth in market specialists has been benefited most from the 

expansion of agricultural extension services (relative to other access indicators in the model). 

The role of infrastructure in the growth of marketers’ incomes is small relative to that of the total 

sample. This makes sense: access to new technologies through extension services is of most 

value to agricultural specialists, and output market participants are more likely to be able to 

obtain returns on investments in new technologies (as opposed to subsistence-oriented farmers). 

For non-farm specialists, on the other hand, the expansion of the rural electricity grid has been 

especially beneficial to income growth. Although we do not observe more details of the non-

farm sector in local areas, the expansion of electricity has presumably enabled expansion and 
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diversification within the sector, which should allow local labor market participants to earn 

returns on human capital investments, such as education, specialized training and experience.  
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Table 6 Comparison of non-spatial and spatial models, estimated with LD estimator 
  (1) (2) (3) (4) (5) 
  NS SDM SARAR SEM SAR 
Lagged dependent  log income -0.479*** -0.507*** -0.499*** -0.490*** -0.501*** 
variable:  (0.000) (0.000) (0.000) (0.000) (0.000) 
 CF residual -0.518*** -0.473*** -0.485*** -0.499*** -0.480*** 
  (0.000) (0.000) (0.000) (0.000) (0.000) 
Access variables: km electricity -0.050** -0.009 -0.038 -0.044 -0.036 
  (0.046) (0.832) (0.154) (0.132) (0.155) 
 km extension -0.173* -0.282*** -0.180*** -0.195*** -0.176*** 
  (0.087) (0.000) (0.001) (0.001) (0.000) 
 km tarmac 0.057 0.241 0.087 0.112 0.082 
  (0.746) (0.116) (0.405) (0.331) (0.419) 
 km feeder -0.022* -0.016* -0.020** -0.018** -0.021** 
  (0.091) (0.090) (0.028) (0.049) (0.023) 
Household variables: farm size 0.020 0.020*** 0.018*** 0.018*** 0.018*** 
  (0.234) (0.004) (0.006) (0.007) (0.006) 
 female -0.041 -0.043 -0.042 -0.055 -0.039 
  (0.691) (0.446) (0.462) (0.335) (0.493) 
 age -0.010* -0.010*** -0.009** -0.009** -0.009** 
  (0.065) (0.009) (0.017) (0.014) (0.018) 
 education 0.024* 0.028*** 0.026*** 0.027*** 0.026*** 
  (0.064) (0.006) (0.009) (0.007) (0.010) 
Shocks: rain 0.003 0.009 -0.002 0.012 -0.005 
  (0.986) (0.927) (0.980) (0.916) (0.955) 
 maize price -0.594 -0.379* -0.480** -0.521* -0.471** 
  (0.162) (0.083) (0.034) (0.058) (0.029) 
 DAP price -0.869 -1.099*** -0.827** -0.845* -0.825** 
  (0.134) (0.003) (0.028) (0.061) (0.023) 
Wx km electricity  -0.041    
   (0.427)    
 km extension  0.180*    
   (0.099)    
 km tarmac  -0.280    
   (0.195)    
 km feeder  -0.069***    
   (0.007)    
Spatial lambda  0.192*** 0.172**  0.202*** 
   (0.000) (0.012)  (0.000) 
 rho   0.044 0.226***  
    (0.612) (0.000)  
R-squared  0.491 0.385 0.382 0.390 0.380 
Log likelihood  -3096 -3071 -3077 -3079 -3077 
N  2465 2464 2464 2464 2464 
* p<0.10, ** p<0.05, *** p<0.01 
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Table 7 Impacts of non-spatial and spatial models 
  (1) (2) (3) (4) (5) 
  NS SDM SARAR SEM SAR 
Coefficient km electricity -0.050** -0.009 -0.038 -0.044 -0.036 
estimates  (0.046) (0.832) (0.154) (0.132) (0.155) 
 km extension -0.173* -0.282*** -0.180*** -0.195*** -0.176*** 
  (0.087) (0.000) (0.001) (0.001) (0.000) 
 km tarmac 0.057 0.241 0.087 0.112 0.082 
  (0.746) (0.116) (0.405) (0.331) (0.419) 
 km feeder -0.022* -0.016* -0.020** -0.018** -0.021** 
  (0.091) (0.090) (0.028) (0.049) (0.023) 
Wx km electricity  -0.041    
   (0.427)    
 km extension  0.180    
   (0.199)    
 km tarmac  -0.280    
   (0.195)    
 km feeder  -0.069***    
   (0.007)    
Spatial rho  0.192*** 0.172**  0.202*** 
   (0.000) (0.012)  (0.000) 
 lambda   0.044 0.226***  
    (0.612) (0.000)  
Direct km electricity  -0.007 -0.036  -0.035 
   (0.869) (0.205)  (0.205) 
 km extension  -0.281*** -0.181***  -0.177*** 
   (0.000) (0.000)  (0.000) 
 km tarmac  0.267* 0.109  0.104 
   (0.069) (0.285)  (0.296) 
 km feeder  -0.016 -0.018**  -0.019** 
   (0.101) (0.048)  (0.040) 
Indirect km electricity  -0.051 -0.007  -0.009 
   (0.358) (0.294)  (0.221) 
 km extension  0.135 -0.038*  -0.045*** 
   (0.281) (0.057)  (0.005) 
 km tarmac  -0.335 0.022  0.026 
   (0.147) (0.344)  (0.301) 
 km feeder  -0.092*** -0.004  -0.005* 
   (0.001) (0.142)  (0.055) 
Total km electricity  -0.058 -0.043  -0.044 
   (0.120) (0.205)  (0.205) 
 km extension  -0.146 -0.218***  -0.222*** 
   (0.109) (0.001)  (0.000) 
 km tarmac  -0.068 0.131  0.130 
   (0.711) (0.283)  (0.294) 
 km feeder  -0.108*** -0.022*  -0.024** 
   (0.000) (0.051)  (0.041) 
 R-squared 0.491 0.385 0.382 0.390 0.380 
 Log likelihood -3096 -3071 -3077 -3079 -3077 
 N 2465 2464 2464 2464 2464 
* p<0.10, ** p<0.05, *** p<0.01 
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Table 8 Determinants of income growth for sub-groups in the sample 
  (1) (2) (3) 
  full sample marketers non-farm 

workers 
     
Lag dependent  log income -0.485 -0.361 -0.310 
variable:  (0.000)*** (0.002)*** (0.011)** 
     
Access  km electricity -0.050 -0.012 -0.111 
variables:  (0.072)* (0.700) (0.032)** 
 km extension -0.173 -0.336 0.004 
  (0.080)* (0.039)** (0.977) 
 km tarmac 0.059 0.124 0.363 
  (0.742) (0.699) (0.161) 
 km feeder -0.015 -0.039 -0.007 
  (0.492) (0.206) (0.824) 
     
Household  farm size 0.020 0.011 0.050 
variables:  (0.181) (0.648) (0.246) 
 female -0.037 0.038 -0.065 
  (0.719) (0.765) (0.644) 
 age -0.010 -0.006 0.000 
  (0.075)* (0.432) (0.953) 
 education 0.024 0.041 -0.011 
  (0.057)* (0.020)** (0.610) 
     
Shocks: rain 0.005 0.009 0.054 
  (0.974) (0.959) (0.775) 
 maize price -0.578 -0.859 0.084 
  (0.193) (0.208) (0.874) 
 DAP price -0.889 0.180 -0.614 
  (0.102) (0.756) (0.372) 
     
 R-squared 0.490 0.398 0.335 
 Log likelihood -3098 -1338 -904 
 N 2465 1136 803 
Notes: Marketers sold more than 50% of output in 2000. Non-farm workers earned more than 80% of total 
household income from off-farm sources in 2000. P-values shown in parentheses: * p<0.10, ** p<0.05, *** 
p<0.01 
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6. Conclusions 

This work has shown that access to infrastructure and public goods are important 

conditioners of rural household income growth. I have used a variety of indicators of rural 

infrastructure and public services: household reported distances to the nearest tarmac roads, 

feeder roads, electricity and agricultural extension services. Although expansion of these 

services has been very gradual over the period studied, this expansion has had positive effects 

on rural income growth rates. In particular, the expansion of agricultural extension services, 

of the electrical grid and of rural feeder roads have all had positive impacts which are 

statistically significant and of important magnitudes. 

The role of transportation infrastructure is often emphasized in rural accessibility studies, 

given its theoretical role in mediating the costs of market participation. Results of this 

analysis indicate that the expansion of feeder roads, rather than further extension of the all-

weather system, may be the most important element of an investment agenda. Furthermore, 

the pronounced role of rural services and electricity in growth outcomes indicate that these 

are also important components of the rural access landscape. Policies that emphasize roads 

over all other infrastructure investments may fail to maximize rural investment potentials. 

More effective investment strategies will emphasize a range of infrastructure types as well as 

the provision of public services.  

This study also provides evidence that rural income growth processes, as well as the role of 

public goods in those processes, are explicitly spatial in nature. I show evidence in support of 

a model of household income growth in which household growth outcomes are spatially 

dependent upon growth outcomes of neighboring households. Household growth has 

significant and relatively large positive spillovers on neighboring outcomes. This model has 

implications for the evaluation of the impacts of rural infrastructure investments: under a 

spatial lag model, the estimated impacts of such investments are considerably larger, 

especially for feeder roads. This magnification of impact estimates is even more pronounced 

when an exogenous lag of access conditions is included. This latter result suggests that it is 

important to consider the spillover impacts of access investments even if the process under 

consideration were not characterized by spatially dependent outcomes. In the case of 

household income growth, outcomes and the determinants of those outcomes are both 

characterized by spatial dependence, which results in positive synergies and larger net 

impacts than non-spatial models would suggest. 
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These results are important for a number of reasons. First, failure to correctly specify the 

spatial structure of household models will, at a minimum, affect the efficiency of estimators. 

As we have seen, this may be a particularly important issue when focusing on independent 

variables which vary little over time or suffer from measurement error. Furthermore, if the 

process of interest is characterized by endogenous spatial dependence, wherein household 

outcomes are not independent of their neighbors’, then ignoring that structure carries a high 

cost: all estimates will be inconsistent. Finally, under exogenous and endogenous dependence 

structures, both direct and indirect effects should be incorporated into impact estimates. 

Failure to do so may seriously underestimate the role of model covariates, as in the case study 

presented here. 
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8. Appendix A: Typology of spatial models (from Elhorst 2010) 
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