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ABSTRACT 

 
The worsening degradation of natural resources urgently requires the adoption of 

more sustainable management practices. This need has led to growing interest and 

investment in monitoring systems for tracking the condition of natural resources. 

Although grounded in concepts of sustainability, the application of monitoring systems 

has progressed little beyond the identification and measurement of large numbers of 

potentially interesting indicators. Most monitoring activities are also passive and do not 

lead to the changes needed to rectify the problems they identify. Too often monitoring 

becomes an end in itself and an expensive claim on public funds. This study is concerned 

with the design of monitoring systems that have direct relevance for the management of 

natural resources. We call these Policy Relevant Monitoring Systems (PRMS). Such 

systems have several key characteristics. They provide: a) a decision framework for 

selecting resource problems to monitor that offer potentially large social payoffs relative 

to the costs of monitoring, b) timely, including early warning information on emerging 

problems, c) a means of identifying the causes of an emerging problem, d) an analytical 

framework for identifying options for corrective action, e) an institutional framework for 

achieving ownership among key stakeholders (the resource users and those affected by 

the resource use) and agreement about emerging problems, the corrective actions to take, 

and effective implementation, and f) a built-in mechanism for learning from past 

experience  to improve the performance of the monitoring system over time. The design 

and implementation of a PRMS is complicated in reality by the presence of multiple 

resource users with often conflicting interests, and by the presence of environmental 

externalities. The approach is developed and illustrated through detailed examination of 

the Arenal-Tempisque watershed in Costa Rica. This watershed exhibits classic multiple 

user and externality problems: deforestation by dairy and cattle farmers in the upper 

watershed leads to soil erosion and siltation of the various reservoirs that feed an 

important hydro-electric power generation system, and agro-chemical use by irrigated 

farmers has adverse impacts on a highly valued wetlands park and on wildlife and fishing 

in the lower reaches of the watershed. 
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MONITORING SYSTEMS FOR MANAGING NATURAL RESOURCES: 
ECONOMICS, INDICATORS AND ENVIRONMENTAL EXTERNALITIES IN A 

COSTA RICAN WATERSHED 
 

1. INTRODUCTION 
 

We live in a world in which increasing demands on natural resources are placing 

them under considerable stress, and their sustainable management has taken on new 

urgency if they are not to be severely and irreversibly degraded. Towards this end, there 

has been growing interest and investment in monitoring systems for tracking the 

condition of natural resources, both to measure the extent of degradation that has already 

occurred and as an aid to more sustainable management practices. Although grounded in 

concepts of sustainability, the application of monitoring systems has progressed little 

beyond the identification and measurement of large numbers of potentially interesting 

indicators. Moreover, most existing monitoring activities are passive and do not lead to 

the changes needed to rectify the problems they identify. Unfortunately, monitoring is not 

a costless activity, and public funds have to be used that have alternative uses (e.g. 

investments in schools, roads, and education). Monitoring can all too easily become an 

end in itself, particularly once it has been institutionalized.  

This study is concerned with the design of monitoring systems that have direct 

functional relevance for the management of natural resources. We call these Policy 

Relevant Monitoring Systems (PRMS). If monitoring systems are to serve a viable social 

function, then priority should be given to monitoring environmental problems that offer a 

potentially large social payoff relative to the costs of monitoring. This requires a 

framework for identifying the important problems to monitor. Moreover, if monitoring 

systems are to lead to rectification of the environmental problems that are being 

monitored then they must be designed and operated in ways that lead to corrective actions 

amongst the key resource users. This requires not only timely, including early warning, 

information on emerging problems, but also a method of identifying appropriate 

corrective actions to take and an institutional framework for achieving agreement among 

key stakeholders for the effective implementation of corrective action.  

The design and implementation of PRMS is complicated by the complexity of 

most natural resource management problems. Individual resources are components of 
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complex ecosystems involving multiple resources, multiple users, and often spatially but 

functionally interconnected sub-systems within the full system. We use a detailed 

examination of the Arenal-Tempisque watershed in Costa Rica to illustrate the approach 

The lessons learned in this exercise, however, are much more widely applicable and can 

be applied to any situation where there are multiple actors (or stakeholders) and 

interactions between the various parts of the ecosystem. As economists, we focus on the 

economic ramifications of these interactions, but recognize that there may also be 

important social and institutional dimensions In fact, as shown by this study, any 

effective implementation of policies to correct problems, and to try to maximize net 

benefits from the system, has to deal with the social, political, and institutional setting. 

Nevertheless, it is economic impacts that drive much of the analysis, and the 

system under study. Again, as economists we are interested in the goal of maximizing 

social welfare in the entire system,  realizing that there are likely to be conflicts between 

individuals and different interest groups within any system.  There are few solutions in 

the real world where all of those involved are better off. There are many solutions, 

however, where social welfare (the sum of all welfare in the system) is increased, and 

sometimes increased substantially, even if selected “actors” may suffer individual loss. 

This situation—maximization of the welfare of the system with individual 

“winners” and “losers”—is very common It is precisely because of the existence of 

significant environmental externalities within the system that a system-wide approach is 

required.  If each group or individual in the system merely follows their own welfare 

maximizing strategy, then total welfare will be less than it would be with the use of the 

more integrated approach illustrated here. 

 

The Report 

The approach presented here is commonly found in textbooks on resource 

management, and only rarely found in practice. Hence the decision was made to 

undertake an integrated study of one discrete watershed in Costa Rica where a number of 

different “actors”—resource users or those affected by the use of the resource are to be 

found. We chose the Arenal-Tempisque watershed because it has a number of attractive 

features.  It is relatively small, it has multiple actors and types of resource use within it, 
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and it mixes high-valued commercial activities (hydropower generation, irrigated rice 

cultivation) with more traditional agricultural uses and even protected areas, fishing and 

recreational uses in the lower reaches. In addition, the flow of water (and the power of 

gravity!) means that there are clear linear relationships between different user groups and 

the impact of activities on those located downstream. 

Since information on the physical and economic impacts of different actions is 

key to the analytical, and management process, the study is based on how data, 

information, and indicators, can be used to link the different parts of the physical 

system, serve as a monitoring and early-warning tool, and help identify the magnitudes of 

potential impacts and appropriate corrective actions. Hence the use of the term Policy 

Relevant Monitoring System (PRMS). 

A formal economic model links the different elements in the watershed, and a 

Payoff Matrix is developed that explicitly shows the economic impact on each 

individual group, and the impacts on others, of alternative resource management 

decisions. In fact, if the data and indicators are the raw material and basis of the analysis, 

the Payoff Matrix is the way that the pieces are brought together and formal trade-offs 

between different management options are most clearly illustrated. 

The report consists of 8 chapters:  Chapter 2 introduces the concept and basic 

elements of a Policy Relevant Monitoring System. Chapter 3 describes the Arenal-

Tempisque watershed, the major actors, and the physical links through the ecosystem. A 

formal economic model of the system is developed and reported on in Chapter 4 (with 

details of the model in the Appendix), and preliminary results for different management 

scenarios are illustrated in Payoff Matrix form. The formal indicator system that helps to 

monitor what is happening, but also serve as an early warning system of potential 

problems, is introduced in Chapter 5. Finally, the institutional framework of the Arenal-

Tempisque watershed is introduced in Chapter 6, along with a proposal for the kind of 

modified structure necessary to implement a PRMS. Chapter 7 applies the lessons learned 

in the specific case of the Arenal-Tempisque watershed, and illustrates how the PRMS 

might operate in practice. Chapter 8 discusses how the approach presented here could be 

applied to other settings, and points out the strengths (and shortcomings) of this 

approach. 
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A Final Note 

This report is the result of a research effort to illustrate an approach and its 

application. It is not a complete study of (nor the definitive answer to) the management 

problems of the Arenal-Tempisque watershed. Such a study would require much more 

information on the individual actors in the watershed and the valuation of different 

externalities. Time and resources prevented the authors of this report carrying out that 

level of detailed fieldwork. 

Rather, the results presented here should be considered as “realistic if sometimes 

synthetic” and, although they are based on the best information available, should not be 

used to make actual management decisions. The methodology employed, however, is 

robust and illustrates an approach that, properly calibrated and applied, offers real 

promise for the more sustainable management of natural resources, in Costa Rica and in 

other locations around the world. We believe that the latter is the real contribution of this 

research effort and this report. 
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2.  POLICY RELEVANT MONITORING SYSTEMS FOR  NATURAL  
RESOURCE MANAGEMENT 

 
Ujjayant Chakravorty, John Dixon, Peter Hazell,  Danièle Perrot-Maître, and                    

Lisa Segnestam 
 

 

 THE NEED FOR A MONITORING SYSTEM 
 

Sustainable development means making hard decisions on trade-offs between 

present and future use of natural resources, and conversion of some part of a country’s 

resource endowment to other forms of capital. Often the process of economic 

development involves extraction and use of natural resources such as forests, water, and 

soil used to produce food, fiber, and other products needed for industrial use as well as 

for direct consumption. Over time, unless corrective steps are taken, the finite stock of 

natural resources or natural capital is constantly being depleted. For example, agricultural 

production can lead to soil erosion and depletion of micronutrients in the soil. Clearing of 

forest lands for farming and for timber are the most important causes of deforestation in 

the developing world.  

Monitoring of these and other variables is an important part of resource 

management. Indicators serve a valuable function in measuring both the stocks (or 

quality) of resources, but also the rates of change of these measures. This information, in 

turn, is used to highlight potential problems, identify trade-offs, and make more informed 

decisions. 

Another important reason for periodic monitoring of the state of natural resources 

in developing countries is the need for compliance with new international protocols, such 

as the international agreement on greenhouse gas emissions (Kyoto Protocol) and the 

Biodiversity Convention. For instance, under the Kyoto Protocol, there will be a need to  

systematically monitor land-use changes, estimate carbon sequestration by forest sinks 

and carbon emissions from a variety of sources including agriculture. 

It has been said that we need to be able to measure something in order to manage 

it. Hence the importance of developing systems to measure, and monitor, a nation’s 

resource stocks. The need for developing monitoring systems also ties in with recent 
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efforts towards developing operational notions of “sustainability” and “sustainable 

development.” Developing countries are constantly striving towards adopting economic 

development strategies that do not cause irreversible damage to their limited natural 

resource stocks while at the same time taking corrective measures for their protection. 

Projects for "sustainable" natural resource management are being undertaken at the 

national, regional and local levels by a range of agencies including international 

organizations, national and state governments, non-governmental organizations, and the 

private sector. However, the notion of sustainable development rests on an accurate 

estimation of the stock of natural capital (e.g. soil, trees, mineral resources) and an agreed 

upon rate of their depletion and conversion to “physical capital” (i.e., machines) or for 

human consumption. In this sense, current notions of “sustainability” cannot be 

operationalized without an effective monitoring of a nation’s natural resources.   

The concept of monitoring is not novel, and there are numerous studies in the 

literature, some of which will be reviewed below. Monitoring of natural resources is not a 

costless activity, and public funds that are used in this exercise have a high opportunity 

cost in alternative uses, such as in investments in education, transportation and other 

infrastructure services. However, most previous studies of monitoring have treated it as a 

costless activity which essentially involves collecting reams of data on the health of a 

country’s natural resources, without any attempt at integrating the data collection exercise 

with policy analysis. These monitoring systems are “passive” and do not lead to any 

improvements in the problems they were designed to identify. This also creates the 

danger of monitoring becoming an end in itself, especially once the process has been 

institutionalized. Data collected is often not prioritized, leading to a high degree of 

irrelevant information that only serves to overload the information system.   

If monitoring services are to serve a viable social function and to be adopted more 

widely, then they should be in a position to offer a potentially large social payoff relative 

to the costs of monitoring. Realizing favorable benefit/cost ratios is more likely if: 

! The environmental problems selected for monitoring have high environmental 

or social costs if left unchecked. 

! The monitoring system is designed and used in a way that leads to a correction 

of the environmental problems that are being monitored.  
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! The monitoring system is designed and operated so that it is cost effective. 

The above suggests that this extended notion of a monitoring system implies that 

it is not only a periodic stock-taking of the state of natural resources, but provides an 

estimate of the relative costs of resource and environmental degradation. These costs 

must in turn be compared with some notion of benefits from possible policy 

interventions. While corrective policy actions may move the economy closer to its 

production possibility frontier and thus the aggregate benefits to the country as a whole 

may be positive, the welfare consequences may lead to an inequitable distribution of the 

benefits and costs. Certain stakeholders affected by the intervention may suffer a welfare 

loss, while others see a net gain, and the sum-total of these effects may still be positive. 

To be policy relevant, the monitoring system must be able to sort through these 

distributional implications and the associated political economy of environmental 

policies.  

The monitoring system must be able to generate quantitative estimates of who 

loses and who gains. For example, if input restrictions on fertilizer use in a watershed 

improves water quality in the river basin and reduces the incidence of water-borne 

diseases in the downstream reaches, then it is clear that downstream water users may see 

a net welfare gain at the expense of upstream farmers. The monitoring system would not 

only provide estimates of the distributional consequences of such policies but also 

examine the viability of alternative compensation mechanisms that ensure participation 

by affected stakeholders in the design and implementation of corrective policies.  

 

 OBJECTIVES OF THE MONITORING SYSTEM   
 

The policy relevant monitoring system (PRMS) proposed here has three primary 

objectives:  It is Informative about changes in the condition of key natural resources. It 

should provide information about: a) what is changing; b) how it is changing; and, c) the 

timing of the change. Ideally, the monitoring system should give advance (or lead) 

warning about future changes. It is Intelligent in that it identifies the causes of change and 

suggests appropriate responses by key stakeholders for fixing the problem. And, it is 

Interactive and brings the key stakeholders together to: a) obtain consensus on the 
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problems to be addressed, their causes and solutions; and, b) assign responsibilities for 

implementing the agreed solutions. 

A monitoring system should thus function as an early warning system, and 

provide timely information on the state of natural resource stocks that generate 

opportunities for real time policy intervention. Degradation and depletion of resources is 

often reduced or prevented at a relatively low cost through timely action. In many 

instances, these biological processes, such as the extinction of important plant and animal 

species, are irreversible. Moreover, the impacts of resource degradation to the economy 

may be significant. Without a real time warning system, problems may be diagnosed with 

a costly time lag, and a consequently expensive process of analysis and policy 

formulation may need to be undertaken at a late stage. 

The monitoring system is expected to generate shadow prices for different 

exhaustible and renewable resources, as well as for pollution from specific point and non-

point sources. These shadow prices can then form the basis for comparison of policy 

choices and trade-offs and prioritizing between projects. The costs of local and global 

externalities to the country or within a specific region can be then determined using these 

accounting shadow prices. An indirect benefit is the valuation of environmental resources 

in order to incorporate them in the computation of Net National Product (Dasgupta and 

Maler, 1991). The generated resource shadow prices from policy modeling could be used 

to compute the social cost of resource degradation for the economy. These values in turn 

can be deducted from the GNP to obtain the NNP.  

 
PREVIOUS RESEARCH ON MONITORING SYSTEMS  
 

There exists a voluminous literature on the choice of indicators for sustainable 

development. Several alternative frameworks have been proposed. The theoretical 

discussion has focused on developing an analytical framework that begins by defining 

what sustainable development means in practice (Dasgupta and Maler, 1991; Dasgupta, 

1993; Pearce, Atkinson and Dubourg, 1994). These writings have mostly focused on the 

choice of discount rates, inter-generational equity, and uncertainty issues. However, the 

focus of the operational literature has largely been on choice of monitoring indicators. 

Although most studies talk about the need for use of indicators in policy development as 
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well as in sustainable management of natural resources, there is clearly a huge gap 

between the theory and its application in policy-making. Policy makers do not have a 

consistent set of operational tools for resource policy analysis and most analysis is 

performed on an ad hoc basis. Monitoring systems that are already in place have served 

as data collection efforts but without any systematic analysis of the data or involvement 

of stakeholders in data collection and in policy analysis and dialogue. 

In previous operational work, the Pressure-State-Response (PSR) framework, 

originally popularized by the OECD, has been used extensively to develop monitoring 

system indicators (Hammond et. al, 1995). It involves three distinct sets of indicators that 

describe the state of the environment and natural resources (state indicators), causal 

factors (pressure indicators) and actions that affect the state of the system (response 

indicators). The framework relies on the premise that there is no unique set of indicators 

and that the appropriate set depends on the needs of different users of the monitoring 

system. This system focuses primarily on indicator development, which is only one 

aspect of the monitoring system proposed in this study.  

 

 OVERVIEW OF A POLICY RELEVANT MONITORING SYSTEM 
 

In order to achieve the objectives of a policy relevant monitoring system, the 

monitoring system requires three major components. First, a set of Indicators for 

monitoring resource condition. Three types of indicators are suggested to help contain 

costs; alarm indicators, diagnostic indicators, and response indicators. Second, an 

Analytical Framework to provide a means of identifying the causes of an emerging 

problem and to evaluate alternative options for fixing it. Third, an Institutional 

Framework to a) manage the collection and analysis of monitoring data, b) maintain and 

operate the analytical framework (or model), c) provide a forum in which the different 

stakeholders can meet to resolve any disputes and to agree on the implementation of 

needed changes, and d) to monitor and assess the impact of agreed changes.  

Figure 2.1 shows how all the various components would fit together in a proposed 

Policy Relevant Monitoring System (PRMS). It is assumed that a suitable institutional 

structure has been set in place to manage the monitoring system and to perform the roles 

identified above. At the top of the cycle are the alarm indicators. These give an early 
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warning when a problem arises. If there is no alarm, then the monitoring agency 

continues to monitor on a routine basis. However, if an alarm indicator crosses a key 

threshold, then the monitoring agency activates a set of diagnostic indicators to enable 

more in-depth analysis of the causes of the alarm. 

 
Figure 2.1—The operational cycle of the monitoring system and the role of 
indicators 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once information from the diagnostic indicators is available, this provides input 

into the analytical framework or model which is then used to evaluate the likely 

consequences and social and environmental costs of the problem, and to identify and 

evaluate appropriate corrective actions. The next step in the cycle calls for dialogue 

among the key stakeholders leading to an agreed plan of corrective action. The 

institutional structure plays a key role in promoting this dialogue, especially when there 

are conflicting interests among different stakeholders (e.g. when there are important 

environmental externalities). 

Once a plan of corrective action has been agreed and implemented, then 

appropriate response indicators are activated to monitor its impact and to determine 
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whether it has successfully corrected the initial problem. If the impact is successful, then 

the monitoring agency resorts back to the routine tracking of alarm indicators as a 

precaution against any future problems. But if the impact is not successful in correcting 

the problem then the monitoring agency engages in a learning process. This involves 

evaluating why the expected response did not occur and making any necessary 

corrections to the institutional structure, indicators, or model to avoid the same problem 

in the future.  

We now discuss each of the components of a policy relevant monitoring system in 

more detail. 

 

 THE SELECTION OF INDICATORS 
 

Types of Indicators 

In order to contain costs, three types of indicators are proposed that have different 

functions in the monitoring system and are implemented sequentially in the monitoring 

cycle (Figure 2.1).  

Alarm indicators should have relatively high social return and low cost making 

them worthwhile to monitor on a routine basis in an early warning system. They provide 

an overall assessment of the health or quality of key resources. However, if the value of 

these indicators crosses a designated threshold level, then the monitoring agency 

performs an evaluation to determine if there is a need to expend additional resources and 

generate diagnostic indicators. Note that thresholds are a central part of the operational 

cycle. Without thresholds the alarm has no way of sounding, and people would not know 

when to react. Some indicators have “naturally” established thresholds (e.g. an indicator 

of appropriate land use for a particular soil type and topography has a built-in threshold 

—whenever the land use patterns diverges from what is appropriate, the threshold is 

reached). But thresholds for other indicators may have to be determined after consultation 

with relevant experts and stakeholders on a case-by-case basis.  

Diagnostic indicators provide more detailed information on the status of the 

resource that has been flagged and the causes of the change that has occurred. They  also 

need to inform the policy modeling, since once an alarm has been generated it will be 

necessary to evaluate, using both quantitative and qualitative techniques, the relationship 
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between policy variables and resource degradation. Diagnostic  indicators are only 

collected at problem detection, and are likely to be more costly than the alarm indicators. 

For example, they may involve fieldwork or data collection effort that could not be done 

at low cost or within standard budgetary allocations on a regular basis. The diagnostic 

indicators may also need to provide information at appropriate and multiple levels of 

aggregation to be useful. For example, if an alarm indicator provides a warning that forest 

cover in a certain region has fallen below its threshold level, then diagnostic indicator 

data may need to be collected on forest encroachment and settlement, extraction of timber 

and non-timber forest products, biodiversity, and other key variables for different types of 

households as well as at more aggregate landscape levels. 

 Response indicators are used to monitor the impact of policy and other resource 

management changes that have been implemented to correct a problem. The primary 

purpose of these indicators is to inform relevant decision makers about the consequences 

of their corrective actions, and whether any additional action is necessary. In some cases, 

alarm indicators may also serve as useful impact indicators (for example, when actions to 

improve water quality have been taken), but more specialized indicators may also be 

required, for example, to monitor the actions of particular stakeholders. The responses to 

be monitored should include both the implementation of agreed corrective actions by 

relevant stakeholders and the impacts of those actions on the resources being monitored. 

As long as the responses and impacts are as expected, the monitoring system can be 

assumed to have made the correct assumptions and appropriate changes. At this point, 

new readings of the alarm indicators should be back below their thresholds. 

Indicators may be quantitative (such as soil erosion in tons per hectare), but others 

may be qualitative and based on participatory approaches, such as community and 

individual plot histories, group elicitation and rapid rural appraisal (RRA) techniques. 

The latter may often serve as proxies for preferred data that are not easy to collect, or can 

be directly used to construct alternate scenarios for policy analysis. They may also be 

helpful in the analysis and interpretation of model results. It is conceivable that model 

results regarding, say, the impacts of certain policies, may be tempered through 

information and insights acquired through participatory techniques.  
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Selection Criteria for Indicators 

There is no universal set of indicators that is equally applicable in all cases.  

However, a small set of well-chosen indicators tends to be the most effective approach.  

Some of the more important criteria to be used in narrowing down the number of indicators 

are as follows. 

Direct relevance to issues.  The indicators selected must be closely linked to the 

problems that need to be addressed.  Vague or overly broad problem formulations, such as 

"loss in biodiversity" are of little use in selecting indicators, and may well indicate that the 

issue itself is not very well identified. 

Clarity in design.  It is important to define the indicators clearly in order to avoid 

confusion in their development or interpretation. 

Realistic collection or development costs.  Indicators must be practical and realistic, 

and their cost of collection and development therefore needs to be considered in relation to 

their cost.  This may lead to trade-offs between the information content of various indicators 

and the cost of collecting them. It is generally easier to measure the cost of collecting 

indicators than their benefits. Often, it may be relatively easy to determine qualitatively 

whether an indicator is useful in a given policy modeling exercise, and it may be more 

efficient to use non-quantitative and participatory approaches, such as expert assessments 

(e.g., Delphi), to rank the "benefit" of an indicator according to some ordinal scale.  

High quality and reliability.  For most monitoring systems, there is a discrepancy 

between the kinds of data that exist or are easy to collect and the kinds of data that would be 

most useful, or “ideal”, for the system.  Practical indicators that partly fulfill their purpose 

but are not “ideal” are usually called proxies.  If the “ideal” indicator to measure a problem 

is based on unreliable data, it is better to depart from the “ideal” indicator and use proxies 

instead.  There is often a trade-off  between the costs of data collection and the value of the 

resulting indicator in the PRMS process. 

Appropriate spatial and temporal scale.  Careful thought should be given to the 

appropriate spatial and temporal scale of indicators.  Since the environmental impact of an 

activity seldom coincides with administrative boundaries, indicators often need to be 

measured at different spatial scales.  There might also be lags in time before impacts are 

noticeable.  This is especially important in the selection of alarm indicators since it is 

crucial to include indicators that allow timely reaction.  
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 DEVELOPING AN ANALYTICAL FRAMEWORK 
 

A major point of departure of the proposed policy relevant monitoring system 

relative to previous work is the use of the data in an economic model that is expected to 

generate quantitative estimates of the magnitude of welfare losses arising from resource 

degradation. Although the alarm and diagnostic indicators themselves will provide 

information on the state of natural resources and their cause-effect relationships, policy 

makers need to get quantitative estimates for different resource and environmental 

degradation problems in terms of aggregate welfare losses, valuation of externality 

damages, economic impacts on alternative beneficiary groups and stakeholders, and 

estimates of the stocks of different resources as well as their shadow prices. These 

quantitative results will allow for the analysis of policy trade-offs and the ranking of 

problem areas and potential interventions. Finally, sensitivity analysis could be 

performed on the parameters to generate plausible hypothetical scenarios. The 

sophistication and reliability of a model is to some extent a function of the quality of the 

data but also the resources and time that are available. In a full monitoring system, 

complex quantitative models that replicate the biophysical and economic relationships 

more precisely can be developed over time.  

 

A Payoff Matrix  

A useful way to display the key policy relevant information generated by a model 

is in a Payoff Matrix. This is a simple matrix that maps the principal activities found in 

the system being studied against each other. Since the same activities (or resource uses) 

are found in both the rows and columns, the cells on the diagonal represent the net 

economic benefits from that activity or use, and the off-diagonal elements represent the 

impact of one activity on another (the externalities). As seen in Figure 2.2, the net private 

benefit from Activity A is shown in cell AA. The column for A in the Payoff Matrix 

shows the impacts (externalities) that Activity A imposes on other activities in the 

system. These externalities can be either positive or negative and are a key dimension of 

the proposed monitoring system. For example, if Activity A is an upland agricultural land 

use, it may have a negative impact on Activity B located just downstream. This 
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externality is shown in cell BA and has a negative sign, indicating that it is a “cost”. 

Similarly, if Activity A has another impact, in this case a positive one, on Activity C 

further downstream, this is recorded in cell CA and has a positive sign. In this way the 

Policy Matrix explicitly shows both the returns to any activity from its own operation, as 

well as its impacts on others in the system, be they positive impacts or negative impacts. 

 
Figure 2.2—An illustrative Payoff Matrix. 
 

 Activity 

Activity A B C D E F G H 

 A AA   -AD     

 B  -BA BB       

 C CA  CC      

 D    DD     

 E         

 F         

 G         
 H         

 

When, as in this study, a watershed is being modeled, most of the externalities are 

below the diagonal. This happens since most externalities in a watershed are uni-

directional and follow the downward flow of water and soil. But for other problems it is 

entirely possible that there may also be externalities above the diagonal, as seen in cell 

AD in Figure 2.2. In this case, activity D imposes a negative externality cost on activity 

A. In an urban case, for example, there may well be impacts between all of the major 

activities in a system.   

While the columns of the Payoff Matrix show the private return of an activity and 

all of the externalities it imposes on others, the rows on the other hand show the private 

return of the activity on the diagonal, and all of the externalities generated by other 

activities that affect that activity. Both are powerful pieces of information. 

The Payoff Matrix thus brings the various components of the analytical 

framework together and allows an explicit comparison of both private and social benefits 

and costs. It shows the impacts of any activity on the broader system, and shows how any 
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activity is affected by the actions of others. It also links to the PRMS approach and helps 

to identify those who will benefit or lose from any changes in resource use. As an 

economic framework, the Payoff Matrix presents information useful for economic policy 

making, and can present both a private, financial analysis as well as a broader, social 

welfare analysis of a natural resource system and all of the stakeholders involved. It is a 

powerful tool that is used extensively in the case study presented in this volume. 

 

 IDENTIFYING AN INSTITUTIONAL FRAMEWORK 
 

A monitoring system will not be effective in correcting emerging environmental 

problems if it does not have an adequate institutional framework or structure to manage 

the system and to organize and negotiate amongst the interests of different stakeholders 

when problems arise. Most resource management problems involve multiple stakeholders 

with objective functions that may not be entirely in consonance with each other. For 

example, at the national level, the government may be the premier stakeholder, yet there 

may be many non-governmental organizations and industry associations with divergent 

economic goals. While the objective of the government may be economic growth, full 

employment for its citizens or achieving a balanced budget, the non-governmental 

organization may be interested in resource conservation while the industry association 

may be more concerned with maximizing economic output and firm profits. Thus at 

every level of the hierarchy—national, regional and local, stakeholders may have 

divergent objective functions.  

 

Stakeholder Analysis and Information Needs 

It is necessary to begin with the identification of all key actors involved in using, 

managing and controlling the resources to be monitored. Stakeholders include all those 

who affect or are affected by policies and actions within the system and the Payoff 

Matrix is one way to clearly identify who are the affected groups, and the relative 

importance of their impacts. The stakeholders include individuals, communities, 

institutions, and professional groups, and the impacts may be felt at different scales—

from the local to the national level. It may be important to recognize the special needs of 

certain groups in this analysis. For example, landless or women farmers tend to be under-
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represented in formal institutions yet they often have significant impact on resources and 

can be greatly affected by policy decisions. 

The Role of Participation.  

Monitoring system needs to be "participatory" in the sense that diverse 

stakeholders are adequately represented and engaged. It is important to blend 

participatory approaches in the various elements of a monitoring system ranging from 

stakeholder problem identification, to the development of indicators, to stakeholder 

dialogue based on model formulation and policy runs. Stakeholders often have valuable 

information to contribute as well as relevant skills and interest in collecting data, and 

their active involvement should be sought. It may complement or substitute for top-down 

data collection efforts in a cost-effective manner. Active involvement of the policy 

makers and stakeholders will ensure that over time, there is “demand” for a monitoring 

system and it can continue to be effective without external assistance. 

  
Problem Identification and Defining Alarm Indicators 

Stakeholder participation is particularly important in identifying the problems to 

be monitored.  Using a  variety of participatory research tools (e.g., participatory 

mapping of resources, land use and resource degradation, time lines, seasonality mapping 

and open and semi-structured interviews), local knowledge can be explored to develop an 

understanding of priority areas in natural resource management both in terms of issues 

and geographical locations, the magnitude of problems, and the extent to which natural 

resource problems are inter-linked. A tentative list of grassroots indicators commonly 

used by local resource users to assess resource health should be developed and the 

feasibility of using these indicators as proxies for key land quality indicators assessed. 

For example, the extent of vegetative cover or gully formation may be used as a proxy for 

soil degradation, or the presence of certain plant species may indicate a change in water 

quality. Participatory methods can also be used to graph the location of “hot spot” sites 

that exhibit major environmental degradation, such as point and non-point source 

pollution, fragile soils, areas with major deforestation or low forest quality 

To develop stakeholder interest and commitment to the monitoring system, it is 

important to ensure that stakeholders develop a common understanding of the resource 

issues and economic linkages both locally and at a regional level (analytically, these links 
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are seen clearly in the Payoff Matrix). In particular, the externality effects of local and 

regional resource-use decisions may need to be demonstrated. For example, most 

inhabitants of a typical watershed may be unaware of the consequences of their actions 

beyond their immediate surroundings. This awareness could be developed by organizing 

visits among downstream and upstream dwellers 

 

Analysis of Causes of Resource Degradation and Diagnostic Indicators 

Once a resource problem has been flagged, semi-structured interviews in the 

context of a participatory diagnosis can be conducted with focus groups to analyze the 

causes of the problem and the likely impacts of alternative corrective policies or actions. 

Discussions and analysis can be facilitated using graphical techniques such as flow or 

linkage diagrams to illustrate the size and direction of causality between variables. The 

effect of alternative policies on local user behavior, such as input/output prices, credit and 

subsidies, infrastructure, land tenure, agricultural reforms, macro and sectoral 

modernization policies, and forest policy can be clarified from the local resource users’ 

standpoint. Whether or not changes in practices or the adoption of conservation 

technologies are due to policies or other factors can also be investigated with these 

methods. The analysis can be strengthened by soliciting stakeholders’ views about 

possible solutions and outcomes.   

The cost and complexity of data collection can be simplified through use of local 

knowledge. For example, orders of magnitude for crop production functions  

(relationship between yield and input use) can be estimated quickly through focus groups 

or key informant interviews if a prior informal survey indicates that there is no great 

variation in practices for a given farming or cropping system. If substantial variation is 

found, a more elaborate survey may have to be conducted with a stratified sample of farm 

households.  

Table 2.1 summarizes the above discussion by illustrating the complementarity of 

the modeling and the participatory approaches. It highlights the multiple levels at which 

the results from the participatory process can feed into the model and help in developing 

alternative policy scenarios, and the reverse process in which model results are made 
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accessible to stakeholders for follow-up and implementation through participatory 

dialogue.  
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Table 2.1—Use of Participatory Tools in a Natural Resource Monitoring System 
 

TASK TOOLS 

Problem Identification 
1. Collect information on watershed-level natural resource and 

development issues. 

2. Identify the actors at the local, regional, national and international 
levels. 

3. Identify rules and regulations governing the use of natural resources. 

4. Define grassroots alarm indicators for resource degradation. 

5. Rank natural resource issues by importance. 

6. Analyze time trends and spatial distribution of  natural resource issues 
(“hot spots”) 

Analysis of Resource Issues and Policy Alternatives.  
1. Estimate the costs of environmental degradation, and biophysical 

relations. 

2. Analyze the causes of environmental degradation/resource use 
(diagnostic indicators).  

3. Validate model results and discuss policy impacts, construct alternative 
scenarios 

 

Direct observation through transect walks1, open-ended2 and semi-structured 
interviews3 with key informants4  

Stakeholder analysis using Venn diagrams to illustrate links, responsibilities, 
common interests and conflicts among user groups . 

Semi-structured interviews with focus groups 

Semi-structured interviews 

Listing and ranking5  

Seasonality mapping and time lines6, participatory mapping7 of resources, land 
use, and areas prone to environmental degradation 

 
 

Semi-structured interviews with focus groups8 

 

Flow diagram and semi-structured interviews with focus groups 

Semi-structured interviews with focus groups 

Notes: Although the table presents an association between tasks and tools, Participatory Rural Appraisal (PRA) tools are not a pre-set package. The process itself is flexible and 
adaptive and modified if needed as more information and experience with informants is gained. Accuracy is achieved through triangulation which involves the use of a diversity of 
methods and information rather than statistical replicability. Tools are used as much to obtain information and develop an understanding as to stimulate analysis, promote interaction 
and develop consensus. In that sense, PRA is both a product and a process. 
1Transect walks: walk through one or more cross-sections of the landscape to observe and discuss spatial differences with one or more key informants. 
2Open-ended interviews: interviews in which no questions are predetermined and new questions arise during the interview in response to the respondent’s answers. Open-ended 
interviews are important to build trust and confidence between the interviewer and the respondents and encourage people to raise and discuss issues. 
3Semi-structured interviews: interviews which are guided by a limited number of pre-determined questions. A check list is used as a reminder of the topics to cover. New questions 
arise during the interview in response to the respondent’s answers. 
4Key informant: individual possessing specialized knowledge. 
5Ranking can be performed directly from a list of issues or using a two by two ranking technique where two issues are compared at the same time to minimize ranking inconsistencies. 
6Seasonality mapping and timelines: bar or line diagrams illustrating the change in issues over time or season when relevant. 
7Participatory mapping: individual or a small group of informants draw a map to localize and discuss resource issues, land use or any issue with a spatial dimension. Maps are drawn 
with paper and pencil or directly on the ground (and later reproduced on paper) depending on the respondents’ preferences. It is best to leave the maps with the informants as a 
reference for further discussions and work and for ownership of knowledge. This is especially relevant if a community-level natural resources monitoring system is to be designed. 
8Focus group: a carefully selected group of individuals to discuss a specific topic in great depth. Results of the focus group exercise depend greatly on the size and 
composition of the group as well as the skill of the facilitator and the person taking notes.   
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Institution-Building through Participatory Research 

Given that stakeholder participation is key to the success of a policy relevant 

monitoring system, it may be important to form a stakeholders committee that will 

represent all the major stakeholders. Such a committee could contribute to reaching 

consensus on relevant technical issues such as indicator selection and measurement, 

determination of threshold levels and problem identification as well as broader institutional 

issues and overall sharing of responsibilities.  

The feasibility of a community monitoring system may be evaluated through a 

multi-level (cascade) analysis. As part of this approach, meetings could be held with 

different institutions and communities in order to develop an initial information base. Then 

participants from different stakeholder groups (e.g., groups located in the upstream and 

downstream regions of a watershed) could meet to exchange information and local 

knowledge regarding the resource and environmental interactions at the regional (e.g., 

watershed or river basin) level. These interactions could then form the basis for the 

development of participatory work plans.  

There are several major factors that can make a monitoring system self-sustaining 

in the long run. They are: 

! broad-based stakeholder participation: ensuring that stakeholders have a stake 

in the system will motivate action. 

! fair degree of consensus within and across stakeholder groups for undertaking 

coordinated action. 

! empowerment of stakeholders: stakeholders must be provided with adequate 

resources in terms of equipment, personnel, information, technical support and 

financial assistance to carry out their duties  

! incentive schemes may need to be developed to ensure that relevant 

stakeholders participate in the monitoring effort. Appropriate incentives can be 

identified through focus group discussions with stakeholders and then discussed 

in committee for implementation. For example, forest dwellers inhabiting the 

upper slopes of a watershed and living near protected areas may be willing to 
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participate in monitoring in exchange for access to clean water and electricity or 

limited access to forest resources in the protected areas. 

 

 CONCLUSIONS 
  

In summary, the proposed Policy Relevant Monitoring System is unique in the 

sense that it provides a framework for integration of monitoring data with policy analysis 

and stakeholder dialogue through participatory approaches. This combination is useful 

because a top-down resource monitoring system is likely to be highly inefficient in its use 

of information on the state of resources and the environment, which tends to be 

decentralized. Previous efforts at setting up environmental information systems in 

developing countries have failed because of a lack of stakeholder participation and absence 

of serious policy analysis of the data collected.  

To illustrate the design of a Policy Relevant Monitoring System, a case study was 

undertaken of the Arenal-Tempisque watershed in Costa Rica, and a Payoff Matrix 

developed that illustrates many of the environmental and economic links in the system. As 

explained in the next chapter, the water flowing through this watershed is first used to 

support dairy and cattle production upstream, to generate electricity midstream, and then to 

supply irrigated rice and sugar farms downstream. The water then passes through a highly 

valued wetland park before draining into the Gulf of Nicoya, an important fisheries and 

tourist area. The wetlands and coastal fishing areas are affected by large but irregular flows 

of fresh water released after electricity generation, and by water contamination with 

fertilizers, pesticides and herbicides from irrigated farming. 

There are classic externality problems in the watershed: deforestation by dairy and 

cattle farmers in the upper watershed leads to soil erosion and siltation of the various 

reservoirs that feed the electricity generation system, and agro-chemical use by irrigated 

farmers and soil runoff have adverse impacts on wildlife and fishing in the lower reaches 

of the watershed. The case study involves development of appropriate sets of indicators 

and a formal economic model for the watershed, and discusses options for an institutional 

framework that could serve the various stakeholder groups in managing the environmental 

externalities inherent in the watershed. The case study is designed to illustrate the 

application of a PRMS approach to a real watershed; the lessons learned, however are 

applicable to similar resource management problems in many other parts of the world.  
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3. INTRODUCTION TO THE ARENAL-TEMPISQUE WATERSHED 
 

Rafael Celis, Ujjayant Chakravorty, Daniele Perrot-Maitre and Luis Gámez 
 

 
 
 INTRODUCTION 
 

This chapter describes the key features and problems of the Arenal-Tempisque 

watershed. It outlines the important environmental problems that must be addressed by a 

Policy Relevant Monitoring System (PRMS) and introduces the various stakeholders who 

would have to collaborate to make the system work. The watershed faces a number of 

classic land use and water quality problems that are endemic to most watersheds that are 

subject to intense agricultural and settlement activities. The forested upper catchment area 

is steadily being converted to pasture for dairy and cattle production and this leads to 

greater soil erosion. Soil erosion contributes to the siltation of a large lake and a series of 

smaller reservoirs that feed a major hydro-electric power system. From the hydro-electric 

power system, the water flows through a fish farm and an area of intensive irrigated 

farming before draining into a valued wetland park and a coastal fisheries and tourist area. 

The water flow is irregular, reflecting the needs of the electricity generation system, and 

this impacts on the availability of water for irrigation and the seasonal flow of water 

through the wetland. The irrigated farms use agro-chemicals and generate soil sediments, 

both of which pollute the drainage water and impact adversely on the wetland and coastal 

fisheries. And the wetlands are home to huge bird populations which are a major pest to 

irrigated rice farms bordering on the park. There are many diverse stakeholder interests in 

the watershed, and those lower down the system are impacted by the actions of many of 

the stakeholders further upstream. At present there is little organized attempt to manage the 

environmental externalities in the watershed, and the development of a natural resource 

monitoring system that could help improve the management of the watershed offers 

potentially large social benefits.  

The Arenal-Tempisque watershed is located in northwestern Costa Rica and is one 

of the most economically productive regions in the country. The ARCOSA hydroelectric 

power complex provides over a third of the electricity produced in the country. The 

irrigation district is the largest in the country and the premier producer of rice and 

sugarcane. The Gulf of Nicoya downstream of the watershed is one of the most productive 
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estuarine ecosystems in the world and accounts for about 20 percent of the total fisheries 

harvest in Costa Rica and houses half the total coastal population of the country. The Palo 

Verde National Park is a wetland of critical importance and attracts aquatic birds that 

migrate southwards during the winter season. Deterioration of its natural habitats has led to 

its inclusion in the Montreaux Register of Endangered Ramsar Wetlands following the 

Ramsar Convention of 1971. 

Map 3.1 and Figure 3.1 summarize key characteristics of the Arenal-Tempisque 

watershed. Following sections discuss the various segments of the watershed in sequence, 

beginning with the upper catchment area. This is followed by a discussion of the key 

stakeholders in the watershed and their interests and inter-dependencies.  
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Map 3.1—Geographic location of watershed components 
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 THE ARENAL RESERVOIR AND CATCHMENT AREA 
 

Lake Arenal has a surface of 87.8 km2 and a volume of 2.416 billion m3. It was 

built in the 1970s to supply water to the hydroelectric complex and the irrigation district. 

The lake feeds a cascade of three turbines and three dams which produce a maximum of 

363.4 MW of electricity. Lake Arenal is the core of the catchment and storage system. It 

was built and is managed by the Instituto Costarricense de Electricidad (ICE), an 

autonomous parastatal, which until 1991 enjoyed a monopoly in electricity production. 

The starting point was the construction of a dam to retain the water flow of Arenal River, 

which was the natural drainage towards the Atlantic Ocean of the old Arenal Lagoon. 

Lake Arenal was filled for the first time in 1979; that same year the first powerhouse 

came into operation, and water was diverted towards the Pacific Ocean. Since then, the 

lake is replenished by direct rainfall on its surface and by water coming from the South 

and North catchment areas.  

At the southern rim of the lake, the rivers Agua Gata, Caño Negro, and Chiquito 

drain directly into the lake. More recently, ICE built a dam on river Fortuna, which drains 

towards the Atlantic and, after allowing for a minimum water flow required to maintain 

life in river Fortuna, it conducts the remaining water through a tunnel into river Agua 

Caliente, which in turn drains directly into the lake. Other smaller creeks drain directly 

into the lake: San Luis, Sábalo, Piedra, Aguacate, Dos Bocas and Mata de Caña. All these 

rivers and creeks originate in a mountain range located farther south from the lake. The 

conservation of tropical cloud forests in two private reserves upstream of the lake, the 

Monteverde Cloud Forest Reserve and the Eternal Forest of Children, has a regulating 

effect on the volume of water runoff downstream. The flow of water into the lake is also 

reduced through consumption by dairy farms and cattle ranches, as well as by small 

population centers, all located along the roads that connect the towns of Santa Elena, near 

the conservation areas, and Tilarán, on the southern rim of Lake Arenal. On the Northern 

rim of the lake, ICE diverts water from Lake Cote, which used to drain to the Atlantic 

Ocean. By means of a dam, a water intake and a tunnel, water is diverted towards 

Rugama creek, which drains directly into Lake Arenal.  
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The water level of Lake Arenal follows a seasonal cycle. It steadily increases 

from June through December, the period during which most precipitation takes place, and 

decreases during the period January through May. Figure 3.2 shows the seasonal pattern 

of water levels and usable stocks of water for the best year (1990), the worst year (1995), 

and the monthly average for the period 1990─1999. On average, the amounts of water 

extracted from the lake each year seem to be in balance with the annual inflow and there 

is no evidence that the lake is being run down except in drought years.  

 

Figure 3.2—Water level at Lake Arenal 
 

 

 
Environmental Externalities 

The changes that ICE has made to the upper watershed, and the activities of the 

dairy and cattle farms have several environmental implications. First, the reversal of 

water flows from the Atlantic to the Pacific Ocean may be having a significant impact on 

the region’s flora and fauna. This is not only because of the artificial transfer of species, 

but also because the increased volume of fresh water on the Pacific side necessarily 

affects the levels of salinity in soils and seawater. For example, the salinity in mangroves 

in the Gulf of Nicoya may be lowered, disturbing the breeding and feeding habitats of 
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shrimp, fish and other species. Second, water supply to Lake Arenal will be very 

sensitive to decisions relating to the conservation of forests, both around river springs and 

along the rivers in the southern catchment and Lake Cote to the North. Third, because of 

the location of a cheese factory in Monteverde, dairy production is a flourishing industry 

that is likely to expand with increased tourism, growth in exports, and with population 

growth in the local communities and in the country as a whole. Expansion of dairy 

production will in turn increase pressure on forests and soils, thus affecting the quantity 

and quality of water that flows to Lake Arenal. Although current rates of siltation are 

minor relative to the huge capacity of Lake Arenal (at current rates of soil erosion, Lake 

Arenal is expected to have a useful life of about 500 years), part of the silt is carried in 

the water down to the hydro-electric power complex where it creates more serious 

problems. Fourth, as population in local communities increases in the future, more water 

may need to be diverted out of streams and aquifers for human consumption, thus 

reducing the inflow to Lake Arenal. 

 

 THE ARENAL-COROBICI-SANDILLAL (ARCOSA) HYDROPOWER 
GENERATION COMPLEX 

 
ICE releases water at the southwestern point of Lake Arenal and conducts it 

through a tunnel, an oscillation tank and a high-pressure pipe to operate the first of three 

power plants lined up between the towns of Tilarán and Cañas. This first plant, named 

Arenal, consists of three Francis turbines that transmit mechanical energy to three power 

generators that produce a maximum of 157.4 MW. Water released by Arenal is stored in 

the Santa Rosa reservoir where the water stock is augmented by the flow of river Santa 

Rosa. This river continues along its natural riverbed serving as an overflow for the 

reservoir and as drainage to smaller creeks downstream, and feeds the system again at the 

Sandillal reservoir. 

A water intake at the Santa Rosa reservoir, a tunnel, an oscillation tank and a 

high-pressure pipe transport water to the second powerhouse, Corobicí. This powerhouse 

is similar in design to the first one and has a maximum generating capacity of 174 MW. 

Water released by Corobicí is stored in the Sandillal Reservoir, which also discharges a 
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minimum flow of water necessary to maintain the ecological balance in the river Santa 

Rosa during its course downstream until it finally drains into the river Magdalena. 

Water from the Sandillal reservoir is transported through a tunnel and a high-

pressure pipe to two Kaplan turbines, which power two generators producing a maximum 

of 32 MW. Water discharged by Sandillal flows into the river Magdalena and feeds the 

Miguel Dengo diversion dam, at which point the flow is split in three: river Corobicí, and 

the South and West Canals that feed the Arenal-Tempisque irrigation district. 

Several salient features of this power generation complex are worth noting. First, 

in order to fully exploit the topography of the terrain, ARCOSA uses different types of 

turbines; Arenal and Corobicí use Francis turbines that require greater slopes and less 

water, whereas Sandillal uses Kaplan turbines which require less slope, but greater 

volumes of water. This means that water released from Lake Arenal generates different 

amounts of electricity on its passage through each of the three plants. For instance, 100 

m3 of water released from Lake Arenal can produce up to 160 MW at Arenal 

powerhouse, 180 MW at Corobicí, and 32 MW at Sandillal.  

Second, as a regulation dam, Lake Arenal is intended to make water available for 

power generation in a discretionary fashion. Therefore, at any given time during the day, 

the amount of electricity generated in ARCOSA is determined at the National Center for 

Energy Control, located in San José. In doing so, the Center allocates electricity demand 

nationwide in strict order: geothermal plants are the first to enter in operation, followed 

by private producers of electricity, ICE's runoff river generators, the ARCOSA complex, 

and finally thermally generated power plants. The criteria for this rigid sequence are 

diverse: geothermal energy is readily available 24 hours; privately generated power from 

run-of river and aeolic (windpower) generators- go second because ICE has a mandate to 

purchase all their production between 05:00 and 21:00 hours and as needed between 

21:00 and 05:00 hours; ICE's runoff plants go in third because of their very low storage 

capacity; ARCOSA goes in fourth to use stored water; and thermal power kicks in at the 

very end because thermal generators use relatively valuable imported fuel; diesel and 

bunker. 
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Figure 3.3 shows the amount of electricity produced from these sources on a 

typical day during the rainy season.  

 

Figure 3.3—Costa Rica: Power generation and consumption on September 28, 1999 
 

 

When it is ARCOSA's turn, the Center transmits its production order by remote control to 

a computer in each power plant. This PC is also connected to sensors that gauge the water 

availability in the reservoirs and sets in motion each of the eight generators at any level 

from zero to maximum capacity. The fact that the three plants all use the same water flow 

in sequence and which in turn is further used by the irrigation district downstream, 

imposes specific constraints on water management.  

An additional constraint is the location of a tilapia farm that uses water from the 

South Canal before it enters the irrigation district. This farm demands a continuous flow 

of water. To cope with this requirement, ICE set up the Sandillal facility for round-the-

clock operation. This means that at all times, at least one generator will always be in 
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operation at minimum capacity; i.e. 6 MW, using between 18 m3 and 22 m3 of water, 

depending on the water level at Sandillal reservoir. 

Soil erosion in the upper catchment area has potentially costly impacts on the 

ARCOSA complex. Lake Arenal is large, with a usable volume of 2.0 billion cubic 

meters. Silt from the catchment area will have little impact on this lake for many years to 

come. But the Santa Rosa and Sandillal reservoirs are much smaller (0.1 and 5.15 million 

cubic meters, respectively), so even if only a small portion of the silt flows into these 

reservoirs they could get rapidly silted. The Santa Rosa reservoir is not only the smallest 

but also the first in line, and hence silts up the fastest. Unfortunately, this reservoir feeds 

the Corobicí power station which also produces the cheapest electricity (1.56c/KWH, 

compared to 2.83c/KWH for Arenal and 7.9c/KWH for Sandillal. If the Santa Rosa 

reservoir were allowed to silt up, then ICE would have to move more production to the 

higher cost Arenal plant. This increased cost of electricity represents the opportunity cost 

of siltation from the catchment.  

Measurements from a hydrologic station located at the Arenal Powerhouse 

indicate that during the period 1977─1992, sediment loads ranged from 1,117 tons to 

5,390 tons per year for an annual average of 3,212 tons. At this rate, the Santa Rosa 

reservoir needs to be dredged every other year in order to maintain the Corobicí power 

plant in action. The reservoir will need to be dredged even more frequently if the 

expansion of dairy farming in the upper watershed continues unabated. 

 

 THE ARENAL-TEMPISQUE IRRIGATION DISTRICT 
 

The irrigation system currently waters about 20,000 hectares of agricultural land 

which is mainly planted to rice and sugar cane (50 and 40 percent of the crop area, 

respectively). Additionally, some vegetables are grown (about 1 percent of the crop area), 

especially melons. Irrigation is needed during a pronounced dry season that extends from 

November to May, but some supplementary irrigation is also needed during the rainy 

season. Many of the irrigated farms are small, being beneficiaries of the state land reform 

program which provided 7─10 hectares of mainly rice-growing plots to approximately 

600 landless families. However, the distribution of land in the district is skewed, with 
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several farms owning several hundred to 2,000 hectares each. There are plans to construct 

another 20,000 ha of irrigated land, bringing the total to about 40,000 ha by 2014. 

The Arenal-Tempisque Irrigation District is conceived as an integral part of the 

ARCOSA power generation complex. Construction of infrastructure and administration 

of the scheme is the responsibility of the Servicio Nacional de Riego y Avenamiento 

(SENARA), an autonomous parastatal. Water is delivered to the irrigation district 

through the South and West canals and distributed through a network of secondary and 

tertiary canals.   

The South canal is 8 km in length and has a maximum flow capacity of 30 cubic 

meters per second. It is connected to a network of secondary canals, which in turn are 

connected to tertiary canals. Altogether, the south system currently serves a total of 8,827 

hectares, i.e. land on which the infrastructure for water distribution and leveling work has 

been completed. By the year 2014 the canal is expected to irrigate 15,700 hectares.  

The West canal is 21 km in length with a peak flow capacity of 55 cubic meters 

per second. It is connected to a network of secondary and tertiary canals. Altogether, the 

West system currently has the potential to irrigate a total of 11,025 hectares. By the year 

2014 this canal is expected to irrigate 28,400 hectares. 

The first user of irrigation water on the South canal is Aquacorporación 

Internacional, a tilapia farm. Aquacorporación runs the water through a cascade of three 

successive layers of one-meter-deep ponds, with a total surface of 150-160 hectares. This 

water returns to the Cañas River and then to other downstream farms within the irrigation 

district. The tilapia farm requires a constant flow of fresh water from the canal to keep 

the fish alive. When the tilapia farm started operations, this capacity was 7 m3/s; later on 

it was augmented to 12 m3/s. 

To access irrigation water, landowners or tenants have to apply to SENARA and 

pay the approved tariff at the beginning of each semester. Water gates at the farm level 

are locked, and water is released only after a SENARA engineer certifies that the farm 

has been prepared to use irrigation. A "gate-opener" then makes daily passes along canals 

and opens the gates for those farmers who are ready and have no outstanding tariff 

payments. 
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The main soil in the district is vertisol, which is characterized by its high clay 

content. These soils have good chemical quality but poor physical characteristics; i.e., 

they are fertile but tend to flood in the rainy season and to dry and break during the dry 

season. Both rice and sugar cane grow very well in vertisol soils under controlled water 

applications. With reliable water supplies, melons, watermelons and other vegetables 

could also grow well during the dry season. However, they cannot be planted close to rice 

paddies because the spraying of herbicides would kill them. Besides, it is not clear that 

there is an immediate export market for these higher valued crops, and much depends on 

openings in the US market. 

 
Water Conservation and Management 

Water levels in Lake Arenal have been fairly stable during the last decade with 

the only exception being the drought of 1995. Thus, water availability appears to be 

sufficient to meet the steady increase in electricity demand in Costa Rica, which averages 

about 6 percent per year. However, abundance of water in the hydropower generation 

complex does not translate into abundance in the irrigation system. This is because the 

release of water from ARCOSA mimics the intra-day variation in electricity consumption 

and peaks during the hours of 05:00, 11:00 and 18:00 hours. During these times, there is 

excess water for irrigation, while in the off-peak hours, the irrigation canals could be 

empty.  

The Sandillal reservoir was built mainly with the intention of smoothing out the 

flow of water to the irrigation district. However, it has proved insufficient to provide this 

service. SENARA and ICE are now assessing the feasibility of building two more 

reservoirs within the irrigation district to eliminate current and future shortages. Parallel 

initiatives are being considered to divert water directly from the rivers Magdalena and 

Corobicí to produce a continuous flow of water to the tilapia farm and other agricultural 

users. 

Construction of irrigation canals has not gone hand in hand with the demand for 

water by individual farms. SENARA reports that water delivered to some farmers 

exceeds their needs, while others face a shortage in supply. SENARA is quite concerned 

about the need to improve water use efficiencies at the farm level. The agency realizes 

that the farming community needs to be educated about water scarcity. The current 
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system of water tariffs based on farm size does not provide an incentive to farmers to 

save water or invest in increasing on-farm water efficiency. Thus other options such as 

volumetric pricing and markets for water permits that will charge farmers the opportunity 

cost of supplying water are being explored. However, it is still not clear whether these 

pricing systems will be implemented, and if so, under what time frame. Average water 

use efficiencies in the region fall in the 40─45 percent range, except for melons which 

can achieve 80 percent efficiency through use of drip irrigation. 

The availability of irrigation water from the project has had a major impact on 

cropping patterns in the region. Farmers switched to project-supplied water and became 

less dependent on pumping water from streams or wells using more expensive electricity 

or gasoline-powered pumps. It also provided irrigation water to those farms for whom 

pumping from rivers or aquifers was not a feasible option because of their location. It 

increased the reliability of water supplies, which in turn enabled farmers to move from 

one to two crops per year, resulting in a significant increase in land productivity and 

contributing to national food self-sufficiency.  

These changes have also caused a shift from traditional to intensive cultural 

practices, with a sharp increase in the use of fertilizers and pesticides. This in turn has 

resulted in increased levels of nitrates, phosphates and other chemicals in the drainage 

water. The problem is aggravated by the continued use of early high-yielding varieties of 

rice that have poor pest resistance and need more frequent spraying. More modern pest 

resistant varieties have not yet been adapted to the conditions of this region. To make 

matters worse, spraying is largely done from helicopters, which leads to the 

indiscriminate spraying of surrounding areas beyond the rice fields. Another problem is 

the use of mechanized land puddling methods for rice planting that lead to high soil 

sediment content in the drainage water. Soil sediments are contributing to the degradation 

of the wetlands. 

 Declining water quality from an increase in chemical and soil sediment loading 

in the runoff from the irrigation district has in recent years become a cause of major 

concern for SENARA. This has come about not only through increased awareness at 

various levels within the organization but also from discussions with the Interamerican 

Development Bank (IDB) which has made water quality a key component of loan 
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provisions to finance further infrastructure construction. A proposal to monitor water 

quality for agricultural use before it is delivered to farmers and after it is returned to 

canals and drained downstream is currently under active consideration. 

 

 THE PALO VERDE WETLANDS AND NATIONAL PARK 
 

Downstream from the Arenal-Tempisque Irrigation District is the Palo Verde 

National Park, a 20,000 hectare refuge for migratory waterfowl and resident water birds. 

The park contains a diversity of habitats: mangrove forest, riverside forest, thorny shrub 

land, grasslands, deciduous forest, brackish marsh, freshwater wetlands, limestone forest, 

savanna brush land, and evergreen forest. One section of the park, Laguna Foohas, 

houses an estimated 50,000 birds including ducks, herons, storks, egrets, grebes, ibis, 

jacanas and other forest birds such as macaws and small parrots. The Palo Verde forests 

are the nesting grounds of the endangered jabiru and home to the only colony of scarlet 

macaws in the dry tropical forest on the Pacific. 

Palo Verde is subject to seasonal floods of great magnitude, due to its lack of 

natural drainage. This has resulted in the coexistence of diverse ecological niches; 

between 12 and 15 distinct habitats have been identified. They include salt and fresh 

water lakes and swamps, grasslands with black mangroves, mangrove swamps, pastures, 

lowland stunted forests, wooded savannas and evergreen forests.  

The most conspicuous species and the one from which the park takes its name is 

the "palo verde" or horse bean, a leafy bush with its branches and parts of its trunk 

colored light green. The hills are home to an endemic species of cactus. The lignum-

vitae, a tree prized for its wood and in imminent danger of extinction, is also found here.  

Palo Verde's natural water system has created an environment capable of 

supporting one of the largest concentrations of waterfowl and wading birds, both native 

and migratory, in the country and, in fact, in all of Central America. The area also 

includes some of the best patches of dry forest remaining in Central America, with giant 

pochote, cedro, and guanacaste trees. The freshwater marsh is an important feeding 

ground for some 60 species of resident and migratory water birds. Within the marsh, such 

species as the black-bellied whistling duck and the blue-winged teal have been observed 

in large numbers. The park is also a principal migratory ground for many neotropical 
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migrants, including hummingbirds, flycatchers, warblers, tanagers, orioles, vireos, owls, 

and falcons.  

Some of the most abundant mammals are the howler and white-faced monkeys, 

white-nosed coati, white-tailed deer, tree squirrel, porcupine, and numerous felines 

including the ocelot and puma. Iguanas can be spotted in many places in the park, and 

crocodiles up to five meters in length have been sighted in the Tempisque River. The 

global importance of Palo Verde was acknowledged in 1992, when it was included in the 

Ramsar List of Wetlands of International Importance, sponsored by the Convention on 

Wetlands, signed in Ramsar, Iran, in 1971. 

 

 PARK CONSERVATION AND MANAGEMENT  
 

There are several important issues relating to the preservation of the Palo Verde 

National Park. The foremost is the need to maintain a water mirror in the marshes to 

support resident and migratory waterfowl. Before it was officially protected, part of the 

park was a cattle ranch planted with African bluestem grass, which can grow up to six 

feet high. During the dry season, forest fires can easily ignite the grass and the flames 

also consume the natural vegetation. These grasses can multiply and choke the delicate 

ecosystem by restricting the growth of competing plant species. When the park was 

established, removal of cattle from the park allowed the grass to grow unchecked. Park 

management has successfully implemented an innovative solution for several years. It 

allows ranchers access to selected parts of the park who graze their cattle for a fee. 

Grazing cattle prevent aquatic grasses from overtaking the wetlands. However continued 

runoff from the irrigation district and increased loading of chemical and organic nutrients 

suspended in the water - caused by soil erosion and sedimentation – is likely to cause 

invasion of marshes by grasses and to make their control more difficult and costly. 

Another important issue is the potential for conflict with agricultural operations in 

the areas adjacent to the park. Rice fields bordering the park are subject to invasion by 

birds, causing substantial income losses to farmers. Farmers often respond by shooting or 

poisoning birds. In other cases, thanks to cooperation with environmentalists, propane gas 

detonators have been used to chase away birds from destroying the crops. Birds also feed 

in rice fields, catching insects, fishes and poisoned rats. There have been occasional 
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discoveries of soft and cracked eggshells of bird offspring, which suggests that increased 

chemical pollution in the rice paddies and wetlands may be responsible for a reduction in 

the survival of offspring. Thus, while an increase in bird population allows for increased 

ecological diversity in the Park and its tourism potential, there is a downside in terms of 

its impacts on agriculture in the vicinity of the park.  

 

 THE GULF OF NICOYA MARINE ESTUARY 
 

The Gulf of Nicoya is an estuary system on the Pacific Coast of Costa Rica that 

supplies approximately a quarter of all fish production in the country as a whole. The 

outer part of the Gulf has seawater with a maximum depth of 200 meters. The inner part 

has low salinity, a muddy bottom, with a maximum depth of 20 meters. The middle part 

of the Gulf mixes both seawater and muddy water. 

The inner part of the Gulf extends over approximately 630 square km and lies 

contiguous to the Palo Verde National Park. Two rivers, the Tempisque and Bebedero, 

which provide natural boundaries to the Palo Verde National Park, drain into this area of 

the Gulf. The salinity in this part of the Gulf is low, and the bottom is soft and muddy due 

to river discharges and the tidal action in the mangrove ecosystem.  

The species composition of fish catches is quite different between the inner and 

outer parts of the Gulf. The main catches in the former include white shrimp, sea bass, 

mollusks and snapper. A crab fishery has recently been established. The inner part of the 

Gulf also serves as an important breeding ground for fish species in the entire Gulf 

region. Thus adverse environmental impacts through excess nutrients from fertilizers and 

pesticides, sediment runoffs and high volumes of fresh water discharge could have far-

reaching impacts on fisheries harvests in both the inner and outer Gulf regions.  

Although there is serious concern about the draining of agricultural runoff from 

the Tempisque watershed, there has been insufficient research to establish any direct 

cause and effect relationship with the state of the fisheries. Most evidence is anecdotal 

and based on casual observation by fishermen and tourists. Thus whether an observed 

depletion in fish catches is because of environmental impacts, over fishing, or climatic 

variation is not known. However, there is a clear and growing consensus that Gulf fish 

catches have declined significantly in recent years. Some reports suggest that large water 
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aquifers lie underneath the irrigation district, but their dynamics and interaction with the 

rivers Tempisque and Bebedero and with the Gulf of Nicoya estuary are unknown. 

The Gulf also serves as a sink to the Tarcoles River, which runs through the 

central valley of the country─home to 80 percent of the nation�s industries and 60 percent 

of its population. Thus industrial and domestic wastes discharged by the Tarcoles River 

also affect water quality in the Gulf. The relative importance of pollution from the 

Tarcoles River compared to agricultural pollution from the Tempisque in impacting the 

fisheries is unknown. This makes it difficult to ascertain which specific pollution-

generating activities need to be monitored and regulated. In addition there is a danger of 

undertaking costly pollution reduction programs which may not have the desired effect 

on water quality in the Gulf. 

 

 INSTITUTIONAL ISSUES 
 

There are many stakeholders in the Arenal-Tempisque watershed, not all of whom 

live within the watershed but who nevertheless expect to have a say in its management. 

Some stakeholders operate in their individual capacities (e.g. many farmers), but most are 

organized and represented by formal institutions. Stakeholders who depend on the 

watershed for their living include the dairy and cattle farmers in the upper watershed, 

ICE, the tilapia farm, irrigated farmers and fishermen. Other stakeholders include the 

Ministry of Environment and Energy (MINAE) that has formal responsibility for all 

conservation areas, the Ministry of Agriculture which has responsibility for agricultural 

development, and various environmental organizations contributing to the upkeep of the 

forest preserves and the Palo Verde National Park.  

In the initial stages of development of the watershed, institutions developed to 

meet specific management needs in different sections of the watershed. Poor 

communications infrastructure and lack of knowledge about the links between different 

sections in the watershed contributed to the creation of a culture of “institutional 

territories” that has proven difficult to overcome in seeking more integrated management 

of the entire watershed. This is still true, despite the fact that communications and 

knowledge have improved, and a new generation of institutions has emerged, like the 

National System of Conservation Areas (SINAC), that aim to foster institutional 
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coordination and cooperation within the watershed. These issues are examined further in 

chapter 6. 

Because the existing stakeholders and institutions work largely independently of 

one another, their actions contribute to the creation of economic (and environmental) 

externalities within the watershed. Stakeholders effect each other according to their 

location in the watershed─and most of the effects are unidirectional because of the force 

of gravity. Consequently, the possibilities for determining cause-effect relationships and 

for resolving conflicts that arise from externalities also is very dependent on location, and 

recognition that some impacts and actions are very far-reaching.  

 
The Payoff-Matrix. 

The interactions between different parts of the watershed, and the economic 

activities contained in each section, can be clearly seen in a Payoff Matrix. Table 3.1 

portrays the spatial distribution of the major actors from upstream to downstream (from 

left to right and from top to bottom) and the costs and benefits that each stakeholder 

group imposes on other stakeholders in the watershed. The diagonal cells indicate the 

“own” interests of each stakeholder group, such as maximization of own income for 

farmers and fishermen, of optimal electricity production for ICE, and maximization of 

conservation efforts by park officials and environmentalists in the forest preserves and 

the wetland. The off-diagonal elements capture the externality and other costs (indicated 

by a “-” sign) and benefits (indicated by  a “+”  sign) within the watershed caused as a 

result of each stakeholder group pursuing its own best interest.  
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Table 3.1—Payoff matrix of stakeholder interests 
 
 

 Forest Reserves 
Dairy/Cattle 

Farmers ICE Tilapia Farm Irrigated Farms Wetland Fishermen 

Private Reserves Maximize forest area       

Dairy/Cattle Farmers 
Reduces land available 

for dairy/cattle (-) 
Maximize livestock 

income      

ICE 
Reduced siltation of 

reservoirs (+) 
Siltation of reservoirs 

(-) 

Optimize 
electricity 
production     

Tilapia Farm NA NA 
Irregular flow of 

water (-) 
Maximize fish 

income    

Irrigated Farms NA 
Reduced water in 
drought years (-) 

Irregular flow of 
water (-) NA Maximize crop  income 

Bird damage to 
crops (-)  

Wetland 
NA 

 
Reduced water in 
drought years (-) 

Irregular flow of 
water (-) NA 

Agro-chemical pollution 
and soil runoff (-) 

Maximize 
conservation  

Fishermen NA NA NA NA 
Agro-chemical pollution 
and soil runoff (-) 

Agro-chemical 
and soil sink (+) 

Maximize catch 
fish income 

 Note: NA means not applicable
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Reading down a column shows the costs and benefits imposed by the stakeholder whose 

name appears at the top on all other stakeholders in the watershed. For example, the column for 

dairy/cattle farmers shows that in pursuing their own income maximization, these farmers 

deforest land and contribute to the siltation of the reservoirs that feed ICE’s power plants and 

reduces the recharge of Lake Arenal in drought years. These impacts have direct costs for ICE 

and the irrigated farms, which are represented by the off-diagonal elements in the dairy/cattle 

farmers’ column. Similarly, the irrigated farmers generate agro-chemical pollution and soil 

runoff that negatively affects the wetland and the fishermen, and these costs are represented in 

the off-diagonal elements in the column for irrigated farms. On the other hand, the wetlands 

generate positive environmental benefits for the fishermen since greater conservation leads to 

more absorption of agro-chemical and soil runoff in wetland “sinks”, reducing their flow to the 

Nicoya Gulf (this positive externality is indicated by a “+” sign in the Payoff Matrix). However, 

by increasing bird populations, greater conservation of the wetland leads to increased bird 

damage of irrigated crops, which is a cost for irrigated farmers. ICE imposes costs on the tilapia 

farm, irrigated farms and the wetland because its pursuit of optimal electricity production for the 

nation leads to irregular flows of water downstream, both seasonally and hourly, that do not 

match with the needs of downstream users.  

The rows in Table 3.1 show, for each stakeholder group, the value of their own output 

(the diagonal entry) and the costs or benefit imposed on that stakeholder by other groups in the 

watershed. For example, the row for irrigated farms shows their own income on the diagonal, 

and the costs these farmers suffer from irregular water flows and reduced water availability in 

drought years that result from the actions of the dairy/cattle farmers and ICE. The lower down 

the watershed a stakeholder is located, then the more likely they are to be affected by the actions 

of everybody else upstream, and hence the more off-diagonal entries there are in their row.  

Table 3.1 also provides insights into the relative bargaining power of each stakeholder, 

the other stakeholders they need to negotiate with, and who their natural allies might be. For 

example, reading across a row in the table shows all the other stakeholders that the stakeholder 

whose name appears on that row needs to negotiate with to minimize (maximize) the costs and 

benefits imposed on them. The more entries there are in the row, then the weaker the 

stakeholders’ negotiating power is likely to be. This is because they then face high transactions 
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costs in entering into so many negotiated settlements. At the same time, the off-diagonal entries 

in the column of the stakeholders they need to negotiate with show other stakeholders who could 

be potential allies. For example, the tilapia farm faces a relatively simple negotiating problem. 

They are only negatively affected by the actions of ICE (irregular water flows) and hence have 

only one serious negotiation to encounter. But ICE is a powerful adversary, and the tilapia farm 

may need allies to help it. Fortunately, ICE’s decisions about water flows also impact negatively 

on the irrigated farms and the wetland, so these stakeholders might be willing to collude with the 

tilapia farm in negotiations with ICE. In practice, the tilapia farm has been successful in 

negotiating a solution with ICE (see Chapter 6), which may reflect the relatively simple 

bargaining problem indicated by Table 3.1. On the other hand, the wetland in negatively affected 

by the decisions of the dairy and cattle farmers, ICE and the irrigated farmers, and hence the park 

management has a larger number of problems to solve with a greater number of stakeholders. 

They also have few potential allies for addressing agro-chemical pollution other than the 

fishermen who are poorly organized. Not surprisingly, there has been little resolution of the agro-

chemical pollution problem in the watershed. 

In the next chapter, a formal model is used to quantify many of the entries in the payoff 

matrix for the Arenal-Tempisque watershed. Attaching dollar values to all the entries in the 

matrix gives a greater sense of which costs and benefits are really important in the watershed, the 

economic incentive that various institutions may have to negotiate, and the potential social gains 

or loses arising from such bargaining processes. 

 

 CONCLUSIONS 
 

The management of the Arenal-Tempisque watershed illustrates many of the 

environmental problems that haunt similar watersheds around the world. Each sector of the 

watershed is managed by stakeholders who pursue their own narrow interests, and in so doing 

impose important but unintended environmental costs and benefits on other stakeholders further 

downstream. An apparent inability of the relevant stakeholders to come together and negotiate a 

common solution to their problems means that the watershed is managed in a sub-optimal way 

that not only reduces aggregate social benefits, but also undermines the long-term sustainability 

of the system. It is a watershed that would benefit greatly from a policy relevant monitoring 

system that could improve the overall management of the system. Following chapters develop 
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the components of such a system, and then discuss the kinds of institutional options that might 

enable the system to work.   
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4.  AN ECONOMIC MODEL OF THE ARENAL-TEMPISQUE WATERSHED 

 
Ujjayant Chakravorty and Yanjing Chen 

 
 
 INTRODUCTION 
 

This chapter develops an economic model for the Arenal-Tempisque watershed that aims 

to capture the economic value of the most important activities in the watershed and estimate the 

value of the environmental externalities that result from these activities. Given that the case 

study is expected to serve as a prototype for a generic monitoring system, the modeling approach 

adopted was not to be comprehensive in terms of methodology and data collection, but provide a 

set of usable tools that can be adopted in a typical developing country setting where research 

budgets are severely constrained, the availability of reliable biophysical and economic data is a 

perennial problem and the resource and environmental degradation problems being modeled are 

exceedingly complex. An equally important objective of the modeling exercise is to show how 

the indicator information that is to be collected as part of the monitoring system feeds into the 

model and therefore becomes an integral part of the policy analysis. This is one important link 

that has been missing in the indicator work that has been done by development agencies until this 

point. Without an analytical framework, collection of indicator data becomes an end in itself and 

is difficult to prescribe in situations in which policy relevance is an important goal.   

 
 DESCRIPTION OF THE MODELING FRAMEWORK  
 

Following the framework presented in Chapter 3, the model is divided into five modules, 

each of which is interconnected through biophysical relationships, such as the downstream flow 

of water, agricultural chemicals and sediments. Birds from the wetlands fly upstream into the 

rice fields in the irrigation district, and that is the only significant relationship modeled in the 

reverse, i.e., upstream direction. The model components are as follows:  

a) The Arenal reservoir and catchment area 

b) The ARCOSA hydropower generation complex 

c) The Arenal-Tempisque irrigation district 

d) The Palo Verde wetlands and national park, and  

e) The Gulf of Nicoya marine estuary.  
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In the following sections we describe the modeling approach adopted for each of the 

above modules. The mathematical equations are given in the Appendix to this chapter. A more 

detailed description of the model can be obtained separately from the authors. 

 

The Catchment System 

The major land uses in the catchment area consist of tropical forests, dairy farms, cattle 

ranches, and smaller areas devoted to farming and residential use. Each of these land use patterns 

have differential impacts on the quality and quantity of water that flows down to the Arenal 

reservoir. Forests in the catchment watershed have important effects on the concentrations of 

nitrogen, acidity and dissolved oxygen in water (MacDonald et al. 1991, Likens et al. 1970).  For 

instance, the nitrate concentration of streams draining forested areas averages about 0.23 mg/liter 

in the U.S. compared with an average of 3.2 mg/liter for agricultural lands (Omernik, 1976). 

Forests keep the pH value of water from becoming too low which in turn prevents the water from 

dissolving more oxygen. Relative to alternative land uses, sediment discharge from forest lands 

is small. Sediment loads from cropland are on average several times the rate from forests 

(Gianessi 1986).  

Both dairy farms and cattle ranches produce livestock waste which release organic 

chemicals and nutrients into streams and rivers. Overgrazing of livestock causes soil erosion. 

Water flow from catchment areas is likely to increase with deforestation as pointed out by 

Aylward and Echeverria (2000). However, in the Arenal area, water flows are not a significant 

problem at least in the present time and therefore they are not modeled explicitly. ICE’s binding 

constraint seems to be the requirement that it must release a minimal amount of water for 

downstream irrigation, even during the hours of low electricity demand. Residential areas are 

also major sources of water pollution. Runoff from precipitation carries household products, pet 

wastes, yard applications, transportation fuel byproducts, sediment displaced from construction 

sites and other wastes into the river. All of these inflows increase the concentration of nutrients, 

sediments and toxins flowing downstream into Lake Arenal and the other reservoirs located 

downstream.    

The aggregate revenue per hectare of forest includes both commercial and non-

commercial values of the forest stock. The former includes the amortized revenues from logging 

of timber, assuming a standard forest rotation period while the latter includes environmental 
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benefits from forestry such as flood control, biodiversity, soil erosion benefits and amenity 

values. The cost of maintaining each hectare of forest area includes amortized investment costs 

in forestry operations as well as harvesting, tree maintenance and other expenditures. We 

abstract from different types of forests and their differential time-dependent benefit and cost 

profiles. We distinguish between the market and non-market value of forestry services. The 

market value is computed as the profit from logging net the cost of maintaining the forest 

aggregated over the total area under forestry. The non-market value is the estimated 

environmental value of the forest that includes hydrologic benefits, eco-tourism, carbon 

sequestration and its value in pharmaceuticals. Non-market forest services are estimated to be 

$158 per hectare per year, while the market value of standing forests is $23 per hectare per year. 

Net benefits from the upstream forest are the sum of market and non-market values times the 

total forest area. 

It is assumed that 50 percent of the land under pasture is used for dairying and another 50 

percent for ranching. Two scenarios were run: one in which growth in dairy acreage increased by 

3 percent a year and another where it remained constant. However in both scenarios, ranching 

acreage was assumed constant. This may be a reasonable assumption since dairying is much 

more profitable than ranching at current relative prices. A possible expansion of dairy operations 

and supporting area for forage production leads to a reduction in forest cover and increased soil 

erosion. Since ranching profits are a nonlinear function of herd size and other parameters, an 

average value for ranching profits is assumed. The present value of profits from ranching and 

dairying are assumed to be $43/ha and $2,175/ha. 

The catchment area comprises of approximately 50,000 ha of which 20,000 ha is under 

forest cover ranging from secondary to dense forest cover. Another 18,307 ha are used for 

pasture and 1,586 ha for crops. We assume that 50 percent of the pasture is for dairy operations 

(9,153.5 ha) and while the remaining is rangeland. All the cropping in the catchment area is 

assumed to be used for forage production.  

There is no reliable information on sediment rates in the catchment area for different 

types of land uses. Aylward et al (1998) uses values ranging from 13 to 28 tons/ha for different 

types of pasture. However studies in Honduras and other regions have shown that soil erosion is 

much higher on hillsides with slopes of 25 percent or more (Barbier and Bergeron, 1998). In 
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lands covered with permanent grasses and with modest slopes, soil erosion is more in the order 

of 5 tons/hectare.  

We have thus made the following assumptions in running the model and the various 

scenarios. Forest lands are assumed to have no erosion. Pasture lands (approximately 18,000 ha) 

are assumed to erode at the rate of 5 tons/hectare/year. Crop lands under perennial and annual 

crops (1,586 ha) are assumed to lose 15 tons/hectare/year. We do not differentiate between 

emissions per hectare and the final sediment accumulation in the water and take this figure as the 

relevant sediment load being carried downstream to the reservoirs. When performing a 

sensitivity analysis with an assumed annual growth in pasture, we assume that this growth is at 

the expense of forests and there is another 3 percent growth in forage crop acreage that 

encroaches upon the forest area. Given the importance of forests in the Costa Rican economy, it 

is hard to visualize a situation in which encroachment and cutting down of forests on a 

significant scale will be tolerated. However, when we did scenarios where dairying area 

increased at the expense of pasture, there was hardly any change in the results. So, the 

encroachment into forest land should be taken as a polar case that could be approached through 

destructive land use practices but not very likely to happen.  

Profits from dairy farming and cattle ranching respectively are computed as net revenue 

(revenue net of costs) times aggregate acreage. Then the present value of aggregate benefits from 

land use in the entire catchment can be written as the discounted sum of annual profits from 

forestry, ranching and dairying.  

Changes in land use patterns over time are reasonable to expect, given changes in 

profitability of the alternatives from longer-term variations in market prices or government 

policy. Although the model is dynamic, we assume no policy-induced changes in land use shares 

over the period studied simply because of the difficulty of predicting how market forces and 

government policy will impact acreage shifts in the catchment area.   

To avoid double counting, the externality damages from sediments and chemicals 

discharged by upstream activities are evaluated in the modules downstream of the catchment 

area. Although the above methodology allows for evaluation of benefits and costs for all the 

major land use categories in the catchment area, due to limitations in data availability, we have 

only analyzed three activities: forestry, dairying and ranching. For the same reason, we only 

examined the effect of sedimentation from the catchment area on the downstream reservoirs. 
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Externalities such as damage from chemical pollution in the catchment area  and the effect of 

sedimentation on downstream segments beyond the reservoir such as on irrigation, the Palo 

Verde wetlands and the Nicoya Gulf were not considered. It is possible that these segments could 

be included in later runs if further data becomes available. Other sources of pollution such as 

from chemicals may be important locally or episodically (such as immediately after a heavy 

rainfall or flooding) but have yet to be recognized as major environmental problems. 

 
The ARCOSA Hydroelectric Complex 

The demand for electricity is assumed to grow at an annual rate of 6 percent based on 

historic growth rates. The three power plants─Arenal, Corobicí and Sandillal respectively are 

located in series.  Lake Arenal is the reservoir that feeds the Arenal power plant. The water is 

then piped to the Santa Rosa reservoir which supplies water to the Corobicí power plant. The 

third and last plant in the series is the Sandillal reservoir, which supplies water to the Sandillal 

power plant. Details of the physical features of the three plants and their reservoirs are provided 

in Chapter 3. However, it is important to note two features that have a bearing on the magnitude 

of the environmental externalities calculated by the model. The Arenal reservoir, the first in the 

series, is relatively much bigger than the other two. Its usable volume is 2 billion cubic meters, 

compared to 0.1 million cubic meters and 5.15 million cubic meters for the Santa Rosa and 

Sandillal reservoirs, respectively. Thus siltation from the catchment has very little impact on the 

Arenal Lake, but even if a small proportion of the silt ends up in the Santa Rosa reservoir, the 

Corobicí power plant is affected through a reduced capacity for power generation.   

Secondly, the average costs of power generation are different across the three power 

plants. Corobicí is the cheapest at 1.56c/KWH, followed by Arenal at 2.83 c/KWH and Sandillal 

is the most expensive at 7.90c/KWH. Since the Santa Rosa reservoir feeding the Corobicí is the 

weak link in the chain, increased siltation from the upstream will force ICE to shift power 

generation to the more expensive Arenal reservoir in future years as demand continues to grow 

and supply becomes constrained because of siltation in the Santa Rosa. 

The effect of increased siltation and consequent reduction in the usable volume of the 

power plants is computed as follows. First, we measure the volume of sediment that accumulates 

annually in each reservoir and compute the ratio of accumulated sediment volume to the usable 

capacity of the reservoir. For example, if the volume of sediment that accumulates in a reservoir 

is half its usable volume, then we assume that the plant can only produce at 50 percent capacity.  
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ICE is legislated to provide a certain volume of water to the irrigation authority SENARA 

so that there is enough water for agriculture as well as a small but fast growing aquaculture 

industry downstream of the reservoir. This limitation may impose a binding constraint on 

capacity utilization by ICE and therefore the aggregate revenue from electricity. However, the 

economic value of the aquaculture industry is small relative to other sectors such as agriculture 

and fisheries and we abstract from considering it in the model.   

Because electricity demand and water availability vary markedly across seasons, the 

model is run separately in the dry (January to June) and wet (July to December) seasons. We 

assume that ICE is required to provide a minimum flow of 12 m3/sec of water to SENARA. In 

the rainy season, the Arenal and Corobicí plants together can meet the electricity demand at 

night. If there was no requirement to release water to SENARA, then water could be stored in the 

Sandillal reservoir to be used to produce electricity during peak demand periods. Given the 

demand for water from irrigation, ICE ceases production in the Arenal and Corobicí plants at 

night and puts the generator in Sandillal into operation. Therefore, there is an opportunity cost of 

releasing water to SENARA in the rainy season.  

The production of electricity from each plant is assumed to be a function of the amount of 

water flow through the turbines (Aylward et al, 1998). The parameters of the production function 

may differ with each power plant depending upon the size of the turbine. The aggregate 

electricity produced in the dry season is the daily production times the average number of 

operating days in the dry season for each power plant net of transmission losses. When summed 

over all power plants and multiplied by the price of electricity, this gives the aggregate revenue 

from electricity generation in the dry season. Profits are computed by netting out the cost of 

electricity generation for each plant. 

We assume that production and cost characteristics do not change over time. However, 

the demand for electricity is expected to change with time because of economic and industrial 

growth as well as growth in population. Similarly, the water flow may change over time, which 

in turn will affect the electricity produced. The output price of electricity is taken to be 

5.26c/KWH. Total electricity transmission losses are assumed at 2.4 percent as per ICE data. 

The rainy season follows the same pattern of production as in the dry season except that 

now there is surplus water flow available for electricity generation. The availability of water is 

no longer a constraint and electricity is produced to meet demand at any given instant. The daily 
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operating time in hours for each of the three plants is a function of the demand for electricity and 

the total electricity produced in the rainy season. The model utilizes the plants in order of 

increasing average cost of producing power. The annual profit function for electricity generation 

is the sum of profits from the dry and rainy seasons. The discounted profit function for a given 

model time horizon is obtained by summing up profits from each year. 

 

The Arenal-Tempisque Irrigation District 

The water district maximizes profits from agricultural production. The irrigation agency 

SENARA distributes water to farmers at flat rate prices. Farmers use water and chemical inputs 

to grow crops that are then sold at competitive prices. However, both the chemicals and the 

volume of water used in irrigation affect the wetlands downstream of the irrigation project. Thus 

the model needs to account for the water and the chemicals used at the farm level. Because of the 

difference in water availability and cropping patterns across seasons, the dry and rainy seasons 

are considered separately. 

The irrigated acreage is 20,000 ha. The major crops grown are rice with 50 percent of the 

total acreage, sugarcane with 38 percent and fruits, particularly melons, which has a small 

acreage (0.03 percent) but is expected to grow as marketing and other infrastructural constraints 

to melon exports are removed over time. Other crops occupy the remaining 12 percent of the 

irrigated land. In the future, SENARA expects rice acreage to go down from 50 percent to 40 

percent and sugarcane area to decrease from 37 percent to 14.3 percent. Fruits including melons 

are expected to go up to 15.8 percent of the total, while other crops make up the remaining 30 

percent. For the expanded project covering 40,000 ha, we adopt these expected acreages for our 

analysis.  

Bird damage from the wetlands to the rice fields located upstream is modeled by 

assuming that rice fields in the immediate proximity of the wetlands are the most affected. We 

do not distinguish between individual rice fields but assume that an average area of 7,000 

hectares of rice is affected by bird attacks from the wetlands. This figure approximates the area 

of rice fields in the neighborhood of the wetlands (McCoy, et el, 2000). Some rice fields could be 

more prone, while others in more remote locations may be less affected, but we abstain from 

such consideration. The birds eat rice seedlings and farmers use a variety of methods to control 

damage from birds (mainly waterfowl) including fireworks, hiring workers to scare away birds at 
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night and using detonators during the critical first 2─3 weeks of the planting season. According 

to the data, most of the bird damage occurs during this critical period. The cost of scaring birds is 

used as an estimate of bird damage.  

Total damage days from birds was taken to be 20 days for each rice-growing season. The 

damage to rice fields is approximated by the incremental cost of preventing bird damage through 

hiring of labor to drive away the birds, estimated to be $15 per day. Under SENARA’s   

expansion plans, irrigated area will increase to 40,000 ha and the corresponding area affected by 

bird damage will double to 14,000 ha. The profits from irrigation are computed net of bird 

damage. 

Dry season: The production function per unit area for any given crop is assumed to be a 

function of water and chemicals used. A simple Cobb-Douglas production function is used. It 

suggests that the contribution of pesticides and fertilizers to yield increase at a decreasing rate. 

For simplicity, the output price of agricultural product of the crop is assumed constant. The 

aggregate quantity of chemicals used in agriculture in the dry season is a three-dimensional 

vector, representing the aggregate amount of nitrogen, phosphorus and chlorides used. Chemicals 

used per hectare are aggregated over the crop acreage. The water tariff is a flat land tax.  

We have only considered irrigated agriculture in the dry season, since the proportion of 

area in rainfed farming is likely to be small, as also the degree of chemical use. The profit from 

farming in the dry season is the total revenue from farming minus the variable costs of water and 

chemicals and the fixed costs of farming. The aggregate amount of water used in irrigation in the 

dry season is the water used by each crop summed over its acreage taking into account losses in 

the system due to evaporation, seepage and percolation. If this number is larger than the water 

released by ICE in the dry season, it will imply water scarcity in the irrigated area.    

Data on water requirements, chemical application and the cost of production for the 

major crops was used to estimate the Cobb-Douglas production function. For sugarcane, costs 

are adjusted depending on whether it is a new or established crop. 

Rainy season: Profits from irrigated farming in the rainy season are computed in the 

same manner as above with price, cost and production data for crops grown in the rainy season. 

The present value of profits from irrigation is written as the discounted sum of annual profits 

from dry and wet season agriculture.  
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The Palo Verde Wetlands  

Studies have shown that wetlands and mangroves are not only habitats for wildlife and 

sources of recreation but help recharge groundwater aquifers and reduce flooding. In the Palo 

Verde area, there is a large amount of anecdotal evidence that upstream water pollution caused 

by irrigated agriculture has had a negative impact on the environmental services provided by 

wetland and mangrove systems. Observers have on several occasions noticed cracked bird 

eggshells in the wetlands, suggesting possible adverse environmental conditions. This is of 

serious concern since Palo Verde is the major bird sanctuary in Central America and is host to 

thousands of migratory birds flying between the north and south. Because of a critical lack of 

quantitative information, we do not have any way of measuring the precise impact of chemical 

pollution from agriculture on the wetland system. We therefore consider two different scenarios: 

low and high chemical damage. Since there is almost no separate data available for mangroves in 

the Palo Verde area, and the environmental services from the mangroves are not distinguishable 

(at least, statistically) from those of the wetlands, we have included the area under mangroves as 

part of the wetlands system.  

If the contaminated water is treated before it runs into the wetlands, then the 

concentration of chemicals in the water may be low enough that the residual chemicals could 

degrade in the wetlands without affecting the environmental services from the wetland system. In 

that case, the environmental damage would be zero. The value of wetland services in any given 

year are assumed to be the total acreage under wetlands times the estimated annual value of 

wetland services per hectare. 

If the water quality entering the wetland is lower than the threshold value below which 

the wetland is not affected, then a positive degree of damage will occur. According to some 

analysts (Celis, 1999), nitrates, chlorides and phosphates are the main agro-chemicals that cause 

significant damage to the Palo Verde wetlands. The sediment load and the volume of runoff from 

irrigation will also affect the pH balance of the wetland. Therefore, we specify the damage to 

wetland services as a function of the chemical concentrations and the sediment load in the 

irrigation runoff.  

The above specification does not include the capacity of the wetland to purify water. We 

assume that when the contaminated water enters the wetland, part of the chemicals will be 

degraded by the wetland, another part will accumulate in the wetland and over time diminish its 
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cleansing capacity, and part of the chemical load will pass through the wetlands and into the 

downstream ecosystem. Each of the chemical contaminants are measured per year and then 

aggregated over time to yield cumulative damage concentrations.   

The damage to the wetlands is formulated in terms of a reduction in effective area of the 

wetlands. This allows us, in the absence of any quantitative data, to model low and high damage 

scenarios under which the effective area of wetland services is reduced through pollution to a 

smaller or larger degree, respectively. The wetlands are totally damaged when its effective area 

is reduced to zero. The effective life of the wetlands under alternative damage and irrigated area 

assumptions are calculated by the model. The net present value of wetland services is computed 

as before. Wetland services can be disaggregated by season if seasonal variations are found to be 

significant.  

The wetland area is assumed to be 20,000 ha. Social benefits from the Palo Verde 

wetlands are hard to compute so we have used reasonable benefit values of wetlands from the 

literature, estimated to be $200 per hectare per year (Ruitenbeek, 1994 and Costanza et al, 1989). 

The cleansing effect of the wetlands is modeled as follows: Suppose, x kilograms of chemicals 

are applied in the irrigation project annually, then only 0.3x of the chemicals accumulate in the 

wetlands and an additional 0.3x goes to the Nicoya Gulf. The remaining 0.4x are lost through 

cleaning by the wetlands. The low damage scenario assumes that the residual 0.3x damages 10 

percent of the aggregate wetland area each year. The high damage scenario assumes that 50 

percent of the wetlands are damaged annually. This year’s residual chemicals (0.3x) are then 

added to next year’s inflow (say y) and the total inflow is given by 0.3x+y. So in year 2, 0.3 of 

(0.3x+y) remains in the wetlands. The damaged area of the wetlands is assumed to provide no 

benefits while the undamaged area provides full social benefits. The mangrove area is treated as 

being part of the wetlands. The variable x represents the aggregate chemicals used in the base 

year. When the acreage is doubled under the expansion phase, then the impacts under low and 

high damage are correspondingly doubled. Although the sediment load also affects wetlands 

services and is included in the model specification, it is left out of the actual calculations because 

of a lack of data.  
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Fishery 

Water pollution due to agricultural chemical use tends to reduce the stock of fish and thus 

increase the cost of fishing. At the same time, it decreases the demand for fish, because the water 

pollution affects the quality of fish. Increased pollution loads in the water will decrease water 

quality. The fisheries in the Nicoya Gulf are divided into three distinct zones. Zone I is closest to 

the wetlands, and zone III is the farthest. The effect of pollution may be most significant in zone 

I, with the least impact in zone III. The fishery is partitioned into three zones because that is the 

way catch and value data were made available for the case study. 

We assume that agricultural chemicals are the only source of pollution. In other words, 

water quality is decided by the amount of chemicals used in irrigation that accumulate in the 

fisheries after passing through the wetlands. As done for the wetlands, we can calculate the 

residual chemical and sediment concentration that accumulates in the Gulf after passing through 

the wetlands each year. Then water quality in the Gulf is a function of each of the chemical 

concentrations, modeled exactly as in the case of the wetlands. Again, we consider two damage 

scenarios that account for low and high impacts on fisheries output from the gulf. The low and 

high damage scenario is the same as in the wetlands, except that the incoming flow of chemicals 

is 0.3x in the base case (see previous section). The low (high) damage case is assumed to equal a 

10 (50) percent damage to the value of fish catches from the Nicoya Gulf. 

Annual net benefits from each zone are computed and summed over all zones and years 

to give the present value of net benefits from the fishery. 

 
The Objective function 

The total present value of net benefits from the system is computed by adding up the net 

benefits from all the five components of the system over an infinite planning horizon. The model 

computes the maximum benefit for each module. For example, it calculates the discounted net 

benefits from land use in the catchment area and the discounted benefits from power generation 

in the hydroelectric complex. It is a model that is calibrated to current land use and other 

parameters in the watershed and is therefore not an optimization model. That is, the constraints 

governing land use and technology choice determine the private economic solution as if each 

stakeholder is operating independently of the others. Thus, the model does not internalize the 

externalities. In some cases, as discussed later, the value of the externality imposed may be 

greater than the benefit accruing from the action causing the externality. The value of dairying 
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may be lower than the externality it imposes on power generation. A model that computes the 

social optimum will reduce dairying to zero. The model proposed here works with an implicit 

equality constraint that treats dairying acreage as a parameter whose value is exogenously given.   

The integration of the model components allows us to examine the systemwide effects of 

policy changes. In particular, it helps in the measurement of gains and losses to stakeholders 

from changes in parameter values within any particular module. For instance, increased dairying 

activities in the upstream will lead to a faster siltation of the Santa Rosa reservoir, which in turn 

will force ICE to switch power generation to the more expensive Arenal and Sandillal plants. 

Thus, while increased area to dairying will increase net benefits in the catchment, it will decrease 

net benefits to ICE by raising the cost of power generation. In the next section we discuss the use 

of a payoff matrix to separate out the own sector impacts (e.g., benefits from dairying and 

ranching) from the externality impacts (e.g., cost of siltation to ICE). Similarly, higher chemical 

use in agriculture will mean reduced wetland services, which in turn will mean less cleansing of 

the pollution that enters the Gulf fishery. On the other hand, reduced wetlands acreage will mean 

lower bird populations, and reduced bird damage to upstream rice farms. In the following, these 

effects are estimated quantitatively under alternative damage scenarios.  

Furthermore, although not attempted here, policy makers could quantify their goals (e.g., 

introduce green objectives) by according increased weights to certain stakeholders (e.g., 

wetlands) based on philosophical or equity considerations. Such alterations could be handled in 

the model in a straightforward fashion, possibly in future work. 

 

 THE MODEL RESULTS 
 

Magnitude of Externality Damages 

The baseline results are consolidated in the payoff matrix shown in Table 4.1. These 

figures are discounted net benefits from an infinite horizon model, using a discount rate of 6 

percent. This scenario assumes a three percent rate of growth per year in dairying acreage, 

20,000 ha of irrigated farming and the low damage case for impact of chemicals on the wetlands 

and fisheries. Diagonal elements show potential private benefits for each sector when no 

externality impacts are imposed upon it.  Off-diagonal elements are externality costs imposed by 

the column sector upon the row actor. Row sums give realized benefits for each sector, i.e., 

potential benefit adjusted for all externality costs and benefits that affect that sector. 
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TABLE 4.1—Baseline payoff matrix (in present values) 
 
 
 

 
Forest 

 
Dairy & Ranching  

 
ICE 

 
Irrigation 

 
Wetlands 

 
Fishermen 

 
Realized Benefits 

 
Forest 

 
39.7 

      
           39.7 

 
Dairy and Ranching 

  
              38 

     
           38 

 
ICE 

  
           -703.1 

 
1821.6 

    
       1118.5 

 
Irrigation 

    
   195.0 

 
 -20.1 

  
         174.9 

 
Wetlands 

    
   -51.6 

 
  70.7 

  
           19.1 

 
Fishermen 

   
  

 
 -111.6  

 
   16.9 

 
    121.2 

 
            26.5 

 
Net Benefit 

 
39.7 

 
           -665.1 

 
1821.6 

 
     31.8 

 
   67.5 

 
    121.2 

 
        1416.7 

(3 percent growth in dairying, high damage, 20000 ha irrigation)
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Column sums give the net benefit contributed by each sector, i.e., its potential benefit adjusted 

for all externality costs and benefits that are generated by the sector.  

For the region as a whole, the total potential benefits are $2286.2 million, which is the 

sum of the diagonal terms. The total externality costs and benefits equal $869.5 million of which 

the big ticket items are erosion damages imposed by dairy and ranching on ICE ($703.1 million) 

followed by those imposed by irrigation on the fisheries and wetlands. The wetlands have 

positive externality effects on fisheries because of their pollution cleansing functions, and 

negative bird damage effects on upstream farmers. Note that except the positive externality of 

the wetlands on fisheries, all other externality (off-diagonal) impacts are negative. Subtracting 

the externalities from the total potential benefits gives us the total realized benefits of $1416.7 

million, shown on the bottom right hand corner of the table. These externalities do not include 

any corrective actions taken by the affected stakeholders. 

ICE and irrigation are the main sources of potential and realized benefits, together 

accounting for 88 percent of potential benefits and 91 percent of realized benefits. Dairy and 

ranching produce negative net benefits equal to $665.1 million because of their high externality 

costs. From a strictly economic efficiency point of view, these activities should not be 

undertaken in this watershed. Irrigated farming also has large externality costs because of 

chemical pollution of water affecting the wetlands and the fishing grounds. Net benefit from 

irrigation is only 16 percent of potential benefit. 

Total externality costs ($869.5 million) amount to $0.38 per dollar of potential benefit in 

the region, and to $0.61 per dollar of realized benefit. This is an enormous cost burden on the 

region. Another way to look at it is that the region’s total social welfare could be increased by a 

whopping 61 percent if these externalities could be avoided.  

The most serious externalities are caused by deforestation by dairy farmers and ranchers, 

and chemical pollution by irrigated farmers. The big losers are ICE (which bears 81 percent of 

total damage), the fishermen (who bear 11 percent), and the wetlands (which bear about 6 

percent). 

Note that the payoff matrix not only shows the extent of damage to different 

stakeholders, but also which stakeholders the losers need to negotiate with to resolve 
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externalities and who their natural allies should be. This will be analyzed in more detail in 

Chapter 7. 

 
The Choice of a Discount Rate 

How does the discount rate affect these key results, particularly the ratio of externality 

costs to potential benefits and the relative importance of deforestation and chemical pollution? 

Table 4.2 summarizes the main results under three alternative choices of the discount rate.  

 
Table 4.2—Benefits and externality costs under alternative discount rates 
 
 

 
 

Discount 
1 percent 

Discount 
6 percent 

Discount 
12 percent 

 
Potential benefits 
 

 
       14577.9 

 
        2286.2 

 
        1101.3 

Externality costs:    
Total          7808.9           869.5           290.3 
   percent deforestation              86.3             80.9             72.6 
   percent chemicals              13.3             16.8             21.8 
Realized benefits          6705.0         1416.7           811.0 
Damage/$ realized benefit               1.16               0.61               0.36 
Damage/$potential benefit               0.54               0.38               0.26 

 
 (3 percent dairy growth; 20,000 ha irrigation; and low chemical damage) 

 
As the discount rate increases, benefits from power generation, which dominate the 

results, are more heavily discounted. Thus upstream externality costs, which are directly 

dependent on siltation of the reservoirs and the increased costs of power generation, decrease as 

a fraction of aggregate benefits. However, even at a high 12 percent rate of discount, externality 

damages are still 26 cents per dollar of potential benefit.  

  
Effect of Upstream Deforestation on Power Generation 

Given the high externality costs imposed by dairy farmers and irrigated farmers on ICE, 

it is important to discuss the sensitivity of the results to key model assumptions, and explore 

scenarios for reducing these costs. The impact of alternative sedimentation rates on power 

generation can be understood by examining the architecture of the Arenal reservoir system. 

Recall that the Corobicí power plant is the most profitable because it generates power at the 
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lowest unit cost. However, it also has the smallest reservoir (Santa Rosa) of the three units, with 

a size that is a fraction of the other two reservoirs. This reservoir gets silted the quickest, while 

increases in sediment loads (say, from increased dairying) do not affect the larger Arenal 

reservoir. The Sandillal reservoir is the most expensive of the three and is primarily used to 

ensure constant flow of water to the irrigation system.  

Since Lake Arenal is the first reservoir in the series followed by Santa Rosa and 

Sandillal, respectively, and its storage capacity is 2.0 billion cubic meters relative to 5.15 million 

cubic meters for Sandillal and 0.14 million cubic meters for Santa Rosa, we make the 

conservative assumption that 90 percent of the sediment load in Lake Arenal is dead storage and 

the remaining 10 percent is live storage. Thus, suppose for simplicity that 100 tons of sediment 

enter Lake Arenal. Then 90 tons is dead storage and 10 tons is live storage which then enters 

Santa Rosa. Half of this 10 tons (5 tons) accumulates in Santa Rosa as dead storage and the 

remaining passes into Sandillal and accumulates there. Santa Rosa is the weak link in the chain 

and is likely to get silted first. The usable volume of Lake Arenal is over 14,000 times that of 

Santa Rosa, and there is no danger of Lake Arenal being silted even in 500 years. It is important 

to understand these numbers because the upstream externalities in the model are driven by the 

rapid siltation of Santa Rosa. Fig 4.1 shows the siltation of the Santa Rosa reservoir under 

assumptions of constant upstream land use and an increase in dairying acreage.  
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Figure 4.1—Sediment accumulation in the Santa Rosa Reservoir 
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Scenario 1:  Upstream pastures (includes dairy farms and ranchers) have an erosion rate of 5 tons per ha per yea
an erosion rate of 15 tons per ha per year, while forests have no erosion. Dairy farm acreage increas
per year. 

Scenario 2: Scenario 1 with dairy farm acreage constant over time. 

Note: The reservoir will be totally silted in 17 (20) years under Scenario 1(2).  

 

The total usable volume of the reservoir is 0.11 million cubic meters and it silts compl

17-20 years under the two scenarios. A high rate of siltation or serious adverse land us

upstream could cause the reservoir to silt in 5-10 years depending on the precise erosio

assumptions.  

With increased siltation, production moves from low cost Corobicí to high cos

and thus ICE’s profits are reduced. This situation of course does not take into account 

possibility that ICE could dredge the reservoirs at reasonable cost. Table 4.3 shows the

profits from electricity generation for the same two erosion scenarios.  

Years 

Million 
m3 

0              5              10            15             20 
rio 1

rio 2

 

r; farmland has 
es at 3 percent 

etely in 

e changes 

n 

t Arenal, 

the 

 annual 



 

 

62 

 

Table 4.3—Effect of a 3 percent growth in dairying acreage 
 

Net Benefits 
Dairying Grows at 

3 percent per Annum 
No Dairy 

Expansion 

 
Forest                 39.7                   61.4 
Dairy and Ranching              -665.1                -642.6 
ICE             1821.6               1821.6 
Irrigated Farms                 31.8                   31.8 
Wetlands                 67.5                                             67.5 
Fisheries               121.2                 121.2 

Total             1416.7               1460.9 

 
(low damage) 
 

The differences are significant but not huge. Benefits from forestry decrease with dairy 

growth because of the assumed encroachment of dairy and forage cropland into forestland. The 

added negative impact through increased siltation is valued at $22.5 million, which is the cost to 

ICE of the increased siltation of the Santa Rosa. Total net (and realized) benefit for the region 

decreases by about 3.0 percent with growth in dairying. This comparison suggests that current 

rates of erosion and their externality costs are already significant and further erosion will only 

magnify the impact. On the flip side, there may be significant benefits from a sharp reduction in 

upstream erosion. The results also suggest a relatively straightforward and possibly cost effective 

alternative solution: repeated dredging of the Santa Rosa reservoir.  

Figure  4.2 shows the average cost of electricity generation, which increases with 

increased dairying. Siltation of the Santa Rosa forces ICE to move power generation from 

Corobicí to the more expensive Arenal plant.  
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Figure 4.2—Average cost of electricity generation 
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Scenario 1:  Upstream pastures (includes dairy farms and ranchers) have an erosion rate of 5 tons per ha per yea
an erosion rate of 15 tons per ha per year, while forests have no erosion. Dairy farm acreage increas
per year. 

Scenario 2: Scenario 1 with dairy farm acreage constant over time. 

Note: With increased siltation from dairy expansion, the cost of electricity generation increases under Scenario 1
faster siltation of the Santa Rosa reservoir. Both costs converge when Santa Rosa is completely silted. 

 
 

However, the cost curves do not diverge until about 5 years when the siltation begins t

the capacity of Corobicí to produce the electricity units demanded. These results assum

percent annual growth in electricity demand, as specified earlier. The mix of electricity

generation from the three power plants is shown in Figure 4.3. 
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Figure 4.3  Electricity generation mix over time  
 
 

In the beginning Corobicí produces 50 percent of the power, Arenal 42 percent followed by 

Sandillal  (8 percent). In 20 years, Arenal produces 83 percent, while Sandillal produces the 

remaining 17 percent and Corobicí is completely silted, unless dredging or other measures are 

taken.  

  
Downstream Impacts of Chemical Pollution from Agriculture 

Table 4.4 shows the same baseline payoff matrix shown in Table 4.1 but under 

assumptions of high damage from chemicals on the wetlands and fisheries. Notice that the 

numbers do change but not drastically. The benefits and externality costs upstream of the 

irrigated agriculture are obviously the same as before. Realized benefits from the whole system 

decline by about $21 million. High chemical damage further reduces the social benefit of 

irrigation net of externalities to only about $6 million. The social benefit from wetlands increases 

marginally because of their cleansing services. Negative impacts of farming upon the wetlands 

increase from $51.6 to $67.8 million, but the magnitude of bird damages also decreases from 

$20.1 to $3.1 million since the wetlands die faster in this high damage scenario.  
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Table 4.4—Baseline payoff matrix under high chemical damage 
 
 
 

Forest Dairy & Ranching  ICE Irrigation Wetlands Fishermen Realized Benefits 

 
Forest 

 
39.7 

      
           39.7 

 
Dairy and Ranching 

  
              38 

     
           38 

 
ICE 

  
           -703.1 

 
1821.6 

    
       1118.5 

 
Irrigation 

    
   195.0 

 
   -3.1 

  
         191.9 

 
Wetlands 

    
   -67.8 

 
 70.7 

  
             2.9 

 
Fishermen 

    
-121.2 

 
   4.2 

 
    121.2 

 
             4.2 

 
Net Benefit 

 
39.7 

 
           -665.1 

 
1821.6 

 
      6.0 

 
   71.8 

 
    121.2 

 
        1395.2 

 
(3 percent growth in dairying, high damage, 20000 ha irrigation) 
 
Table 4.5 shows the payoff matrix for high damage when the irrigation area 
is extended to 40,000 ha. 
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Table 4.5—Payoff matrix under 40,000 ha of irrigated farming and high chemical damage 
 
 Forest 

 
Dairy & 

Ranching 
ICE Irrigation Wetlands Fishermen Realized 

Benefits 
 
Forest 

 
     39.7 

      
       39.7 

 
Dairy & Ranching 

          
        38 

     
       38 

 
ICE 

     -703.1     1821.6        1118.5 

 
Irrigation 

        369.7       -1.5      368.2 

 
Wetlands 

         -69.9      70.7          0.8 

 
Fishermen 

       -121.2        1.3        121.2         1.3 

 
Net Benefit 

    39.7     -703.1     1821.6      178.6      70.5        121.2   1566.5 

(3 percent growth in dairying, high damage, 40,0000 ha irrigation)
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This may be thought of as the worst-case scenario. Notice that the potential benefits from 

irrigation increase from 195 million in the baseline case to 370 million and the realized benefits 

from the region increase by about $150 million relative to the baseline case. However, the 

realized benefits from wetlands and fishing are nearly zero. The effects on the ecosystem are 

better explained when the effective life of the wetlands and fisheries under the alternative cases 

is examined below. 

The results of sensitivity analysis with low and high damage scenarios and the planned 

expansion of irrigated area from 20,000 ha to 40,000 ha are summarized in Table 4.6 below.  

 
 
Table 4.6—Downstream impacts of chemical pollution 
 

Scenario Irrigated Farms Wetlands 
 
Irrigated area 20,000 ha; Low damage 
Potential benefit 
Externality costs: 
 Irrigated farms 
 Wetlands 
 Fishermen 
 Total 
Net benefit 

 
 
 195.0 
 
 - 
  -51.6 
 -111.6 
 -163.2 
 31.8 

 
 
 70.7 
 
 -20.1 
 - 
 16.9 
 -3.2 
 67.5 

Irrigated area 20,000 ha; High damage 
Potential benefit 
Externality costs: 
 Irrigated farms 
 Wetlands 
 Fishermen 
 Total 
Net benefit 

 
 195.0 
 
 - 
 -67.8 
 -121.2 
 -189.0 
 6.0 

 
 70.7 
 
 -3.1 
 -  
 4.2 
 1.1 
 71.8 

Irrigated area 40,000 ha; Low damage 
Potential benefit 
Externality costs: 
 Irrigated farms 
 Wetlands 
 Fishermen 
 Total 
Net benefit 

 
 369.7 
                
 - 
 -58.3 
 -116.9 
 -175.2 
 194.5 

 
 70.7 
 
 -26.0 
 - 
 12.7 
 -13.3 
 57.4 

Irrigated area 40,000 ha; High damage 
Potential benefit 
Externality costs: 
 Irrigated farms 
 Wetlands 
 Fishermen 
 Total 
Net benefit 

 
 369.7 
                           
 - 
 -69.9 
 -121.2 
 -191.1 
 178.6 

 
 70.7 
 
 -1.5 
 - 
 1.3 
 -0.2 
 70.5 

 (constant dairy area) 
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The externality costs of irrigated farming are obviously higher under 40,000 ha but not by 

a significant margin. Benefits from increased crop production from acreage expansion equal 

$174.8 million. However, comparing the top and bottom cases, externality damages on wetlands 

increases by $18.3 million, and on fisheries by $9.6 million. Thus system benefits are much 

larger with expansion of irrigation. That is, the increased revenue from crop production 

outweighs the added environmental damage. Since the model does not have demand side effects, 

the benefits could be overestimated. It is possible that the output effect may reduce crop prices 

and reduce farm profits. On the other hand, this may also lead to added consumer surplus from 

lower food prices, which is not captured here.  

The major impact of the chemicals can be seen from the estimated life of the wetlands 

and the coastal fisheries under these alternative scenarios, shown in Table 4.7. Additional runs 

were performed to see the effect of a 50 percent reduction in chemical use─because of Integrated 

Pest Management programs or other instruments such as taxes or quotas–on the life of the 

wetlands and fisheries ecosystems.  

 
Table 4.7—Effective life of the wetland and fisheries in years 
 

Scenario Wetlands Fisheries 

Irrigated area 20,000 ha; Low damage 
Reduced Chemical Use (50 percent) 

 65 
 135 

 48 
 99 

Irrigated area 20,000 ha; High damage 
Reduced Chemical Use (50 percent) 

 9  
 23 

 5 
 16 

Irrigated area 40,000 ha; Low damage 
Reduced Chemical Use (50 percent) 

 38  
 81 

 28 
 59 

Irrigated area 40,000 ha; High damage 
Reduced Chemical Use (50 percent) 

 2 
 12 

 2 
 8 

 
Moving from low to high damage under 20,000 ha irrigation, the effective life of the 

wetlands declines from 65 years to 9 years and the fisheries from 48 to 5 years. Reduced 

chemical use under IPM and other alternative practices will increase wetland longevity from 65 

to 135 years under the low damage case and 9 to 23 years under the high damage case. Under the 

planned expansion of irrigated area and assuming the high damage scenario holds, the wetlands 

die completely in 2 years. Even with reduced chemical use, it will last for only 12 years. The 
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fisheries too survive for a much longer period (99 years) under reduced chemical use than in the 

business as usual scenario (48 years). Under high damage they survive for 8 years instead of 2 

years. 

The root cause of this divergence between the monetary and physical impacts from the 

model is the modest valuation we place on wetlands services at $200 per hectare. Higher 

valuations such as $2,000/ha will cause huge differences in the monetary payoffs from irrigation 

expansion or reduced chemical use. On the other hand, if the complete loss of the wetlands and 

coastal ecosystem in the near future is a socially unacceptable outcome, then the model suggests 

that immediate policy measures are necessary. The dollar estimates of benefits and costs 

obviously do not tell the whole story. 

Table 4.8 shows the monetary impacts of policies that lead to a reduction in chemical use 

for 20,000 ha of irrigated farming. The base case is compared to two policies: a 40 percent tax on 

agricultural chemicals and IPM programs that reduce chemical use by 50 percent.  
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Table 4.8─Impacts of reduced chemical use (irrigated area, 20,000 ha) 
 
Scenario Irrigated Farms Wetlands Total 

Irrigated area 20,000 ha; Low damage; 
No agro-chemical tax 
Potential benefit 
Externality costs: 
 Irrigated farms 
 Wetlands 
   Fishermen 
   Total 
Net benefit 

 195.0 
 
 - 
 -51.6 
 -111.6 
 -163.2 
 31.8 

 70.7 
 
 -20.1 
 - 
 16.9 
 -3.2 
 67.5 

 265.7 
 
 -20.1 
 -51.6 
 -99.7 
 -166.4 
 99.3 

 
Irrigated area 20,000 ha; Low damage; 
40 percent  agro-chemical tax 
Potential benefit 
Tax  revenue 
Externality costs: 
Irrigated farms 
 Wetlands 
 Fishermen 
 Total 
Net benefit 

 
 
 
 156.7 
 31.2 
 
 - 
 -44.8 
 -105.4 
 -150.2 
 6.5 

 
 
 
 70.7 
 - 
 
 -27.2 
 - 
 -20.7 
 -6.5 
 64.2 

  
 
 
 227.4 
 31.2 
 
 -27.2 
 -44.8 
 -84.7 
 -156.7 
 70.7 

 
Irrigated area 20,000 ha; Low damage; IPM 
Potential benefit 
Externality costs: 
 Irrigated Farms 
 Wetlands 
  Fishermen 
 Total 
Net benefit  
 

 
 
 195.0 
  
 - 
 -39.8 
 -100.2 
 -140.0 
 55.0 

 
 
 70.7 
 
 -32.5 
 - 
 -23.2 
 -9.3 
 61.4 

 
 
 265.7 
 
 -32.5 
 -39.8 
 -77.0 
 -149.3 
 116.4 

 

Chemical taxes will reduce profits from irrigation by raising the cost of inputs. With a 40 

percent chemical tax, net benefits from irrigation fall by $38.3 (from $195 to $156.7 million). 

Wetlands and fisheries benefits increase from reduced agro-chemical damage by $21.8 million 

but this is partly offset by an increase in bird damage on irrigated farms ($3.9 million). Adding 

up the change in net benefits and taxation revenue, there is a positive net economic benefit of 2.6 

million. This gain arises because part of the externality cost of agro-chemical use has been 

successfully internalized under the taxation policy 

We have assumed that IPM and other chemical reduction programs are costless, i.e., the 

government or the public sector bears all the costs of the programs. The table suggests that total 
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gain in net benefit from IPM is $17.1 million ($116.4─$99.3 million). This estimate also gives 

an upper bound in terms of public funds that can be spent on a chemical reduction program. 

The worst-case scenario to consider would be the 40,000 ha irrigated area with high 

chemical damage, shown in Table 4.9. 

 

 Table 4.9—Impacts of reduced chemical use (irrigated area, 40,000 ha) 
 

Scenario Irrigated Farms Wetlands Total 

 
Irrigated area 40,000 ha; High damage; 
No agro-chemical tax 
Potential benefit 
Externality costs: 
 Irrigated farms 
 Wetlands 
 Fishermen 
 Total 
Net benefit 

 
    

 
369.7 

 
- 

-69.9 
-121.2 
-191.1 
178.6 

    
 
 

70.7 
 

-1.5 
- 
1.3 

- 0.2 
70.5 

 
 
 
 440.4 
 
 -1.5 
 -69.9 
 -119.9 
 -191.3 
 249.1 

 
Irrigated area 40,000 ha; High damage; 
40 percent agro-chemical tax 
Potential benefit 
Tax  revenue 
Externality costs: 
 Irrigated farms 
 Wetlands 
 Fishermen 
 Total 
Net benefit 

 
 
 

    262.9 
84.3 

 
- 

-68.1 
-121.2 
-189.3 

73.6 

 
 
 

70.7 
 
 

-5.4 
- 
3.7 

- 1.7 
69.0 

 
 
 
 333.6 
 84.3 
 
 -5.4 
 -68.1 
 -117.5 
 119.0 
 142.6  

 
Irrigated area 40,000 ha; High damage; IPM 
Potential benefit 
Externality costs: 
 Irrigated farms 
 Wetlands 
 Fishermen 
 Total 
Net benefit 

 
 

369.7 
 

- 
-66.6 

-121.2 
-187.8 
181.9 

 
 

70.7 
 

-8.7 
- 
5.8 

- 2.8 
67.8 

 
 
 440.4 
 
 -8.7 
 -66.6 
 -115.4 
 -190.6 
 249.7 

 

Here the benefits of chemical reduction are less pronounced. This is because the 

externalities are so severe that reducing chemical use produces little benefit. Recall the earlier 

discussion of the impact of chemical use on the life of the wetlands in the high damage case. 

With taxation, irrigated farm profits go down by $106.8 million, and downstream benefits show 

a very small change. Even with tax revenues, system benefits under taxation decrease by $22.2 

million. IPM programs increase overall benefits by only $0.6 million. These numbers of course 
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hide the negative impacts on the ecosystem as measured by the life of the wetlands and fisheries 

discussed earlier.   

 

Limitations of the Model 

This chapter provides a simple framework for estimating economic values from pollution 

and sedimentation that can be coupled to a monitoring system for policy analysis for timely 

evaluation of trade-offs from policies that aim to control environmental degradation. The model 

has several limitations and may be sensitive to certain parameter values. For example, it is really 

not very clear what the precise effect of the siltation is on the life of each of the reservoirs. In 

particular, we need to better understand how silt moves in serially connected dams over time. 

The model is also sensitive to the assumed changes in land use patterns in the catchment area, 

but to a much lesser degree. For instance, as seen in the previous section, the 3 percent annual 

growth in dairying does not produce dramatically different results than an assumed continuation 

of the status quo. The model is quite sensitive to the low and high damage specifications for 

chemical use in the agriculture sector, especially in relation to the estimated life of the wetland 

and fisheries ecosystems. Under high damage scenarios, these services go to zero over a 

relatively short time horizon. This is in spite of the fact that we have allowed for self-cleansing 

of the wetland. Higher values of wetland services will increase the magnitude of environmental 

damages but not change the nature of results fundamentally. For instance, the externality impacts 

downstream of the dam may begin to approach those upstream of the dam, but even with 

relatively modest values for wetland services, the matrix of externality costs in the Gulf are 

significant enough to call for urgent policy attention.   

The model results may be somewhat more sensitive to assumptions regarding the effect 

of pollution from the Tempisque river on the Nicoya Gulf. It is quite plausible that other sources 

of pollution such as from industrial wastes are more damaging than the chemicals flowing out of 

the wetlands. To that extent, the externalities may be overestimated. All these factors point to the 

severe data limitations of the study and suggest the need for collection of reliable time series data 

on the state of the resources in the watershed, which would be part of the monitoring system of 

which the model is but one component. However, the model is constructed in such a way that 

each module can be de-linked and upgraded or revised with new information over time. 
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 IMPLICATIONS FOR THE MONITORING SYSTEM 

 

The above numbers suggest that urgent steps need to be taken to monitor and control 

chemical use in the agricultural sector. Pending proposals for SENARA to increase the irrigated 

area are likely to have a serious adverse effect on the ecosystem. Measures need to be taken to 

develop indicators that isolate individual chemicals used in farming and rank the most damaging 

ones used in the region. These chemicals could be monitored on a periodic basis for information 

on any likely changes in their use patterns.  

These model results also suggest the need for looking into technological fixes, such as 

adapting new pest resistant varieties of crops such as rice or more efficient spray methods, in lieu 

of the current inefficient method of spraying from the air.  

What do the model results tell us about the monitoring system? In both the upstream and 

downstream reaches of the watershed, externalities impose very high costs. In both cases— 

siltation from the watershed and chemical use in farming—current activities need to be closely 

monitored for signs of worsening conditions and policies need to be developed for reduction in 

externality damages. In the watershed, policies that could make ranching and dairying less 

attractive would increase economic benefits. Technological fixes such as dredging of the 

reservoir or even building of additional reservoirs to take the silt load may be viable options.  

In the downstream part of the watershed, policies must be adopted for farming with low 

chemical use. The need to consider such policies will lead to the possible development of new 

indicators for monitoring. Some possible indicators may involve monitoring the following 

activities: (i) grazing practices of upstream cattle (ii) prices of dairy products (iii) types of 

chemicals used in farming (iv) seed varieties and their fertilizer and pesticide requirements, and 

(v) inventory and measurement of biological prey and predators to pests. In Chapter 7, we revisit 

the model and explore in some detail, through a hypothetical illustration, how the model could be 

an integral part of the monitoring system.  
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Appendix 1: 

LIST OF VARIABLES 
 
The Catchment system 
 
Af   Catchment area under forestry 
Bf   Aggregate social benefit per hectare of forest 
Cf   Cost of maintaining each hectare of forest area 
Sf   Weight (in tons) of sediment emissions per hectare of forestland per year 
πf   Net benefit from the upstream forests 
πfj   Net benefit from the upstream forests in the jth year 

 
Ad   Land area allocated to dairy operations 
Cd   Annualized expenditure in the maintenance of each hectare of dairy farm 
CHd   Chemicals emitted per hectare of dairy farming 
Rd   Revenue from each hectare of dairy farm  
Sd   Sediment emission per hectare of dairy farming  
πd   Profits from upstream dairying operations  
πdj   Profits from upstream dairying operations in the jth year 

 
 
Ar   Land area devoted to cattle ranching  
Cr   Cost of maintaining each hectare of ranchland  
CHr   Chemicals emitted per hectare of cattle ranching  
Rr   Revenue from each hectare of cattle ranching 
Sr   Sediment emission per hectare of cattle ranching 
πr   Profits from upstream cattle ranching 
πrj   Profits from upstream cattle ranching in the jth year 
 
πu   Present value of profits from upstream land use 
 
 The ARCOSA hydroelectric complex 
 
b     Aggregate transmission losses in the grid 
C i Unit production cost for the ith power plant 
Cj 

i  Unit production cost for the ith power plant in the jth year 

n   Assumed life of the hydroelectric facility 
Pe  Price of   electricity 
Pej Price of   electricity in the jth year 
Qe

i Quantity of electricity produced by ith power plant  
r   Discount rate 
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W 
i Water flow per second through the ith power plant where i=1,2 and 3 represent 

the Arenal, Corobicí and Sandillal power plants 
πe The present value of aggregate profits from electricity generation  
(a) Dry season 

 
Qed

i  Aggregate electricity produced in the dry season by ith power plant 
Qedj 

i  Aggregate electricity produced in the dry season by ith power plant in the jth year 
Nd

i
   Average number of operating days in the dry season for the ith power plant 

W id  Water flow through turbines of the ith power plant in the dry season 

W idj Water flow through turbines of the ith power plant in the dry season in the jth year 
πedj  Profits from electricity generation in the dry season in the jth year 

 
 
(b) Rainy season 
 

Der  Demand of electricity in the rainy season 
Nr

i   Number of days the ith plant is operated in the rainy season 
Nrj 

i   Number of days the ith plant is operated in the rainy season in the jth year 
Qer

i   Aggregate electricity produced in the rainy season by ith power plant 
Qerj

i  Aggregate electricity produced in the rainy season by ith power plant in the jth year 
T 

i   Daily operating time of the ith power plant in rainy season 
T 

i
j  Daily operating time of the ith power plant in rainy season in the jth year 

W ir  Water flow through turbines of the ith power plant in rainy season 
W irj Water flow through turbines of the ith power plant in rainy season the jth year 
πerj  Profits from electricity generation in the rainy season in the jth year 

 
The Arenal-Tempisque irrigation district 
 
Di   Demand function for the ith crop 
Pw   Water tariff per ha of land area 
Pwj   Water tariff per ha of land area in the jth year 
πi  The present value of  profits from irrigation area 
 
(a) Dry season 
 
Aid  Area planted to the ith crop in the dry season  
Aidj  Area planted to the ith crop in the dry season of the jth year 
Cid  Quantity of chemicals used per ha of the ith crop in the dry season 
Cidj  Quantity of chemicals used per ha of the ith crop in the dry season of the jth year 
CTd  The aggregate amount of agro-chemical used in the dry season 
Fid   Average cost of planting the ith crop in the dry season, excluding the cost of water 

and chemicals  
Fidj   Average cost of planting the ith crop in the dry season of the jth year, excluding the 

cost of water and chemicals  
kd  Types of crops planted in the dry season 
kd 

j  Types of crops planted in the dry season in the jth year  
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Pcid   Price per dose of chemicals used for the ith crop in the dry season  
Pcidj  Price per dose of chemicals used for the ith crop in the dry season of the jth year 
Qidj  Production of the ith crop in the dry season of the jth year  
Wi d  The volume of water used per ha of the ith crop in the dry season 
πidj  Profits from irrigation in the dry season in the jth year 

 
(b) Rainy season 

 
Air   Planted area for the ith crop in the rainy season  
Airj   Planted area for the ith crop in the rainy season of the jth year 
Cir  Quantity of chemicals used per ha of the ith crop in the rainy season 
Cirj Quantity of chemicals used per ha of the ith crop in the rainy season of the jth year 
CTr   The aggregate amount of agro-chemical used in the rainy season 
Fir  Average cost of planting the ith crop in the rainy season, excluding the cost of 

water and chemicals  
Firj  Average cost of planting the ith crop in the rainy season of the jth year, excluding 

the cost of water and chemicals 
kr

    Types of crops planted in the rainy season 
kr

 j   Types of crops planted in the rainy season of the jth year  
Pcir   Price per dose of chemicals used in the ith crop in the rainy season 
Pcirj  Price per dose of chemicals used in the ith crop in the rainy season of the jth year 
Qirj  Production of the ith crop in the rainy season of the jth year  
Wi r  Volume of water used per ha in the ith

 crop in the rainy season 
πirj Profits from irrigation in the rainy season in the jth year 
 
 
 The Palo Verde wetlands 
 
Aw   Area of the wetland system  
Dw  Damage to wetland services 
Dwn  Aggregate damage to the wetlands in the nth year 
eCL

 Normalized CL concentrations that pass through the wetlands and enter the 
Nicoya Gulf 

eN
  Normalized N concentrations that pass through the wetlands and enter the Nicoya 

Gulf 
ep Normalized P concentrations that pass through the wetlands and enter the Nicoya 

Gulf 
eS Normalized sediment concentrations that pass through the wetlands and enter the 

Nicoya Gulf 
hw  Damage parameter for wetland services 
CLwn  Quantity of CL in recharge in year n 
Nwn  Quantity of N in wetland recharge in year n 
Pwn  Quantity of P in recharge in year n 
Swn  Quantity of sediment in recharge in year n 
oCL Normalized CL concentrations that decays in the wetland  
oN Normalized N concentrations that decays in the wetland  
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op Normalized P concentrations that decays in the wetland  
oS  Normalized sediment concentrations that decays in the wetland  
qCL  Normalized CL concentrations that remain in the wetland 
qN Normalized N concentrations that remain in the wetland 
qP  Normalized P concentrations that remain in the wetland 
qS  Normalized sediment concentrations that remain in the wetland 
Uwe  Estimated annual value of wetland services per ha without chemical pollution in 

wetland water 
Vwn  Value of wetland services in the nth year   
Vw  Net present value of the wetland  
WWn  Aggregate Volume of water entering the wetland in the nth year  
 
 
The Nicoya Gulf 
 
Dfi  Demand of fish from the ith zone 
Hi 

j  Harvest per year in zone i in the jth year  
CLTi

j  CL concentration in the ith zone in the jth year 
NTi

j   N concentration in the ith zone in the jth year 
PTi

j   P concentration in the ith zone in the jth year 
STi

j   S concentration in the ith zone in the jth year 
Pfi   Price of fish caught in the ith zone 
SRfi 

j  Social returns to fishery from the ith zone in the jth year 
SRf  

j  Social returns to fishery from the gulf in the jth year 
SRf  Net present value of social returns to fishery from the gulf 
tCL  Normalized CL concentrations that remain in the gulf 
tN  Normalized N concentrations that remain in the gulf 
tP  Normalized P concentrations that remain in the gulf 
tS  Normalized sediment concentrations that remain in the gulf 
Wq  Water quality in the gulf  
Wqi

j  Water quality in the ith zone in the jth year 
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Appendix 2: 
MODEL STRUCTURE AND EQUATIONS 

 
Objective function: 
 
 The objective is to compute the discounted total benefits and costs of the system 
given by the discounted aggregate net benefits from each of the five modules: the 
upstream catchment, electricity generation, irrigated agriculture, wetlands and fisheries. 
These are given as (for notation and model description, please refer to Appendix 1 and 
the text, respectively) 
 

}max{ SRVu fWie
++++ πππ  

   
The profit from forestry operations is given by the net benefit per hectare times the area 
under forestry: 
 

πf  = (Bf -Cf)* Af 
 
Similarly the profit from dairy farming and cattle ranching are given as follows: 
 

πd = (Bd –Cd)* Ad,   and  
 
πr = (Rr –Cr)* Ar  

 
The present value of aggregate benefits from land use in the catchment area is then given 
by 
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The production function for electricity produced in the dry and rainy seasons are given by  
 

 

 
The main difference between the above specifications is that in the rainy season 

water is abundant and power plants do not need to operate 24 hours per day while in the 
dry season they do. The profits from electricity generation in the dry season are the total 
production in the three power plants times the output price of electricity net of 
transmission losses and the cost of power generation: 
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Similarly, the profits from electricity generation in the rainy season are  
 

The present value of profits from electricity generation are given as the discounted sum 
of profits from both seasons over the entire planning horizon: 
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The production function per hectare of the ith crop in the rainy season is given by  

 
where  Gir (Cir is the damage abatement function which suggests that the contribution of 
pesticides to yields increases at a decreasing rate. The production function F is assumed 
to be a Cobb-Douglas function. The dry season equations are similar. 
  
The profit from irrigation in the rainy season is obtained by summing up the per hectare 
total revenue minus the costs of farming for each of the major crops times the area: 
 

 
Dry season profits are computed analogously.  
 
The present value of profits from irrigation are summed over both seasons: 

 
The aggregate damage to the wetlands in the nth year is computed as a function of the 
chemicals accumulating in the system net the portion diluted in the wetlands and the 
volume that flows into the Gulf:   
  

  
The economic value of the wetlands in the nth year is given by the value of the wetlands 
per hectare times the effective area of the wetlands, which is the aggregate area net the 
area damaged by chemical pollution: 
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The present value of the wetlands is the discounted sum of wetland services over time: 
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The net benefits from fisheries in the ith zone in the jth year is given by 

  
Finally, the present value of the social surplus from fishery is obtained as follows: 
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5. INDICATORS FOR A POLICY RELEVANT MONITORING SYSTEM 
 

Lisa Segnestam 
 
 

 INTRODUCTION 
 

This chapter develops appropriate indicators for monitoring the environmental health of 

the Arenal-Tempisque watershed. The indicators are intended to inform a policy relevant 

monitoring system for the watershed. As discussed in chapter 2, there are three types of 

indicators and they play a crucial role in a policy relevant monitoring system. Most of the time, 

only a small set of alarm indicators need to be monitored on a routine basis to check for any 

important changes in the environmental health of the watershed. As soon as any of the alarm 

indicators sound, a set of more detailed diagnostic indicators are activated to provide additional 

insights into the nature of the problem and its causes. 

The diagnostic indicators also inform the model and the associated Payoff Matrix which 

can be used to more fully assess the consequences of the observed changes, and to explore 

alternative strategies for correcting the problem. Once the model and the Payoff Matrix have 

been used to compare the costs and benefits of alternative corrective actions, the relevant 

stakeholders are required to agree on a plan of corrective action. Again, the Payoff Matrix 

indicates which stakeholders should be involved in the discussions—either because they create 

the externality or because they are affected by externalities. Response indicators then come into 

play in monitoring whether the desired actions have been successfully implemented and whether 

these actions are having their intended impact. Following sections discuss possible indicators for 

each of these three functions, followed by discussion of data collection issues.  

 

 PROPOSED ALARM INDICATORS 
 

Alarm indicators must be routinely monitored to detect important changes in the 

watershed. Ideally, they need to provide early warning of important changes so that decision-

makers have adequate time to react to problems before serious damage occurs. Alarm indicators 

also need to be simple and relatively inexpensive if they are to be frequently monitored. Frequent 
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monitoring is desired to reduce the amount of time taken between the occurrence of a problem 

and the implementation of an appropriate response. 

For alarm indicators to be meaningful, they must have established baselines against 

which monitored values can be compared. Baselines for indicators are best determined through 

the monitoring of an “unspoiled” part of the watershed, or even another comparable but 

unspoiled watershed. For example, the status of the indicator proposed for the monitoring of 

agro-chemical use in the downstream areas—benthic macro-invertebrates—can be monitored in 

the irrigation canals above the irrigated areas. In doing so, unaffected benthic macro-

invertebrates can be compared with the ones living in the polluted water downstream of the 

irrigated areas. 

It is also necessary to establish thresholds for each alarm indicator, otherwise there is no 

way of knowing when the alarm should sound. Thresholds for some of the indicators suggested 

below can be based on previous research conducted within the Arenal-Tempisque watershed or 

in similar areas elsewhere. However, there are a few indicators for which such thresholds are not 

known and they would need to be established before the proposed indicators could become 

meaningful. Thresholds should be based on desired rather than existing standards of 

environmental health, otherwise current levels of environmental damage are likely to be 

institutionalized through the monitoring system even if they are already high. We turn now to a 

discussion of relevant alarm indicators for different segments of the watershed. The proposed 

alarm indicators are also summarized in Table 5.1. 
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Table 5.1—Summary table of alarm indicators 

Issue and main impact Proposed alarm indicator 

Soil erosion in upstream areas 

-  declining profits from electricity production 

-  declining productivity on dairy and cattle farms 

Land use changes planned by farmers in catchment area vs. appropriate land use (geo-
referenced) 
Area forested vs. cleared land 

 

Water availability in upstream areas 
-  declining profits from electricity production 

Land use changes planned by farmers in catchment area 
Area forested vs. cleared land 

Water availability in downstream areas 
-  declining profits from Tilapia, agricultural, and seafood 

production 
-  damage to wetlands and loss in biodiversity 

Water released by ICE 
Recommended (needed) water use for the different areas vs. actual water availability 

Soil salinization in downstream areas 
-  declining land productivity in irrigated areas 

Electrical conductivity of the water 

Bird infestation 
-  crop damage in the irrigated areas 

Hectares affected by feeding birds 

Agro-chemical use in the irrigated agricultural areas 
-  declining profits from seafood production 
-  health impacts (agricultural areas and Nicoya Gulf) 
-  loss in biodiversity in the wetlands and gulf 

Condition of benthic macro-invertebrates in water channels 
 

Soil erosion in irrigated areas 
-  declining productivity of agricultural land 
-  loss in biodiversity in the wetland and gulf 

Levels of sedimentation at various points in the areas adjacent to the Palo Verde National 
Park 
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Catchment area and the Hydroelectric Power Complex 

Soil erosion from the upstream areas. The modeling analysis in Chapter 4 has shown 

that soil erosion in the upper catchment area is potentially a serious problem because it leads to 

siltation of the reservoirs feeding the power plants, reducing ICE’s power generation and profits. 

In the long term, soil erosion may also affect the productivity of dairy and cattle farmers in the 

catchment area. Further deforestation and increases in the area of more erosive crops planted by 

dairy and cattle farmers need to be monitored carefully. 

An obvious alarm indicator is the amount of forest lost each year or the area of land put 

into more erosive uses (e.g. forage crops rather than pasture for more intensive dairy production). 

However, monitoring actual land use changes may not provide adequate warning time for 

decision makers concerned with slowing or preventing further soil erosion. A better approach 

that gives some early warning is to interview farmers located in the reservoir’s watershed on a 

regular basis about any land use changes they are planning. Since the rate of soil erosion on 

agricultural land varies with the type of crop, soil depth, topography, type of soil, and other key 

characteristics, then threshold values for land use indicators need to be based on “appropriate” or 

“non-erosive” land uses, possibly for different locations within the catchment area. Planned land 

use changes could be geo-referenced (mapped) to show if and where serious amounts of 

additional soil erosion are likely and to facilitate scaling up of the total amount of additional silt 

that can be expected.  

The required land use data could be collected through small sample surveys at relatively 

low cost. A potential problem, however, is that the dairy and cattle farmers may be reluctant to 

provide the required data if they think this will lead to corrective but uncompensated policies that 

reduce their farm incomes. Incentive issues are addressed in Chapter 6. 

Water availability in the upstream areas. Lake Arenal is the main supplier of water for 

electricity production. At the moment, the lake seems to be adequately replenished on average 

(see Chapter 3) so water shortages have not been included as a constraint in the model. However, 

discussions with relevant stakeholders revealed growing concerns about water availability in the 

future, especially as national demand for electricity grows. It is, therefore, useful to think about 

relevant alarm indicators that might later be included in the monitoring system. The ARCOSA 

hydroelectric power complex and the irrigated farming system are both vulnerable to water 

shortages should the average water level in Lake Arenal eventually decline. The problems for 
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irrigated farmers will also be aggravated by the planned extension of the irrigation scheme from 

20,000 to 40,000 ha.  

Since the recharge of Lake Arenal, and the amount of sediment entering the lake, both 

depend to a considerable extent on land use patterns in the catchment area, then the same alarm 

indicator can be used as for monitoring soil erosion, i.e. land use changes planned by farmers in 

the catchment area. 

Although at present water shortages in Lake Arenal are not a management problem, it is 

possible that in the future annual demand for water from the reservoir might be more than annual 

replenishment and thus become an economically binding constraint. In that case, the reservoir 

catchment may need to be managed to maximize water production, rather than sediment control.  

Although the literature on this issue is mixed, some work in the Arenal watershed (Aylward and 

Echeverria, 2000) indicates that the value of increased water production associated with 

decreased forest cover may be greater than the soil erosion associated with the same decrease in 

forest cover. In any case, whether or not the watershed is managed to reduce soil erosion and 

sedimentation to the reservoir, or to maximize water inflow into the reservoir, appropriate alarm 

indicators can serve a valuable function in alerting analysts to important changes in the 

ecosystem. Threshold values for this indicator would need to be based on appropriate land uses 

for either sediment control or water production. 

 

ARCOSA and the Irrigation District 

Water availability in the downstream areas. Water users downstream of the ICE 

power complex are also dependent in the long run on the sustainable management of Lake 

Arenal. But more immediately, their access to water is controlled by ICE. ICE releases water 

when it generates electricity, and this leads to seasonal and hourly patterns of release that are not 

ideal for many downstream users. To monitor this problem would ideally require monitoring the 

amount of water entering key parts of the downstream watershed during periods of their greatest 

need. But this would not be easy. For example, there is no specific entry point through which 

water enters the Palo Verde wetlands, and neither does an unambiguous monitoring station for 

water supply exist for the Nicoya Gulf. A practical  and low-cost  indicator is the amount of 

water released by ICE to the irrigation canals, since these releases provide the lion’s share of the 
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water received in downstream areas. ICE already records this information on a routine basis, so 

no new data collection is necessary.  

A more informative water availability indicator could also be developed for water 

planning purposes. One simple development would be to compare the water released by ICE to 

the recommended (or needed) water use for each area. The ratio of “recommended (needed) use 

to actual water availability” would reveal any potential inefficiencies in the use of water within 

the system. If the water released by ICE is more than the downstream areas need to function 

optimally, then the ratio becomes <1, showing that there are efficiency gains to be had in saving 

water in Lake Arenal for future use. If, on the other hand, the water released by ICE is not 

enough to meet current needs, then the ratio becomes >1, making it necessary for ICE to release 

more water if the downstream areas are to function optimally. Note, however, that the ratio may 

vary according to the time of day as well as by season since ICE releases water to the 

downstream agricultural areas on seasonal and hourly schedules driven by the demand for 

electricity generation. During peak-hours for electricity generation, the ratio may very well be <1 

(that is, more water is released into the system than needed downstream), while during off-peak 

hours the ratio may be >1 (downstream needs are greater than releases). This feature makes it 

necessary not only to monitor the indicator at different times of the year, but also at different 

times of the day. 

Information on recommended or needed water use may not exist for many of the 

downstream areas of concern. It is more easily obtained for the tilapia farm and irrigated farming 

system than for the wetlands and the gulf, since the water management needs of these activities 

have been widely studied.  

 

The Irrigation District 

Soil salinization in downstream areas. There is considerable evidence to show that 

irrigation often leads to increasing levels of salinity in soils (Umali, 1993). This in turn has a 

negative impact on crop yields. Although not yet a serious problem in the irrigated areas of the 

Arenal-Tempisque watershed (and hence is not included in the current version of the model), it 

may yet become so in the future. As such, it is useful to include a relevant alarm indicator in the 

monitoring system. We suggest the electrical conductivity of the water as a fairly straightforward 

indicator that gives an early warning before yields are negatively affected. It is also a quicker and 
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more accurate way of measuring salinity than ion concentration methods (Cordero, 1999). 

SENARA already plans to monitor this indicator at five data collection points: at the exit point 

from the Sandillal power plant and before the water enters the irrigation canals; at two different 

places in the canals; and at two different places in the Río Cañas.   

 

The Irrigation District and Palo Verde National Park 

Bird damage. Damage to rice crops by birds coming from the wetlands to feed has 

become a serious problem for farmers located near the park. Monitoring the number of birds 

feeding in the rice paddies would be impractical and instead it would be simpler to rely on rice 

farmers to provide estimates of the amount of crop damage that they have incurred from birds. 

There are two stages in the crop season when rice crops are vulnerable to bird damage; for 2-3 

weeks after seeding when the birds eat part of the seed, and later when the crop is maturing but 

before harvest. Farmers could be interviewed after these critical periods about the number of 

hectares that have been damaged or even perhaps about the estimated value of their losses. The 

former would be easier to verify, which could be important if farmers have incentive to 

exaggerate their losses in the hope of receiving compensation. 

 

The irrigation district, Palo Verde National Park and the Gulf of Nicoya 

Agro-chemical use in irrigated agriculture.  Agro-chemical pollution of water is a 

major problem in the irrigated farming areas of the watershed, and as shown in the model results, 

has serious and negative impacts on the wetlands and the Gulf of Nicoya. It is also a potential 

hazard to human health through contact through spraying and, to a lesser extent, through 

contaminated water supplies. Because of the diversity of agro-chemicals used (different types of 

fertilizers, pesticides and herbicides) and their different impacts on the environment, direct 

monitoring would require frequent and extensive chemical tests at key points in the watershed. 

Even then, by the time threshold levels of particular chemicals are observed, it may be too late to 

prevent extensive damage. 

Fortunately, a simpler and more practical alarm indicator can be based on the 

composition and health of benthic macro-invertebrates in the water, as demonstrated by 

researchers from the University of Costa Rica who have undertaken tests in the water channels of 

the Arenal-Tempisque watershed (Martinez Ocampo, 1998). The benthic macro-invertebrates are 
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a large group of organisms, individual members of which are sensitive to different types of 

contamination (e.g. from pesticides, or fertilizers). They can be divided into groups according to 

how sensitive they are to pollution—very sensitive, sensitive, regular, tolerant, and very tolerant. 

These groupings provide a useful way to establish thresholds. Martinez-Ocampo (2000) suggests 

that when the ‘sensitive’ benthic macro-invertebrates constitute less than 15 percent of the total 

community then the threshold has been reached and the alarm should sound. Another attractive 

feature of this indicator is that it provides an early warning for negative impacts on birds, shrimp 

and fish.  

It should be noted that SENARA is discussing the construction of a number of oxidation 

ponds between the irrigation district and Palo Verde National Park.  If constructed, these ponds 

would help reduce the impact that agro-chemical pollution has on the wetlands, and thus reduce 

the need to monitor for benthic macro-invertebrates (see chapter 6). 

Soil erosion in irrigated agricultural areas. Current soil management practices in the 

irrigated farming areas result in serious soil sedimentation in both the Palo Verde National Park 

and the Gulf of Nicoya. Current levels of soil loss must also eventually have a negative impact 

on agricultural productivity in the irrigated areas, although it is not clear if this has already 

happened. A suitable alarm indicator is the estimated sediment level at representative sites 

downstream of the irrigated farming areas. SENARA is already proposing to monitor sediment 

loads at ten different points, of which four are in areas adjacent to the Palo Verde National Park 

(Pineda Cordero, 1999). 

Another soil monitoring method involves the placement and observation of erosion pins. 

Pins are driven into the soil so that the top of the pin gives a baseline from which changes in the 

soil surface level can be compared. The main advantage of this method is that it is cheap and 

simple, facilitating measurement at a larger number of sites within the irrigated area. Moreover, 

the method only requires modest skill levels and little maintenance (Hudson, 1993).  

  

 PROPOSED DIAGNOSTIC INDICATORS 
 

Diagnostic indicators are needed to provide additional insights into the severity of 

emerging problems when an alarm indicator goes off, and to help determine the causes of the 

problem both in terms of identifying behavioral changes that have occurred (e.g. changes in land 
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use) and the underlying factors that have led to the behavioral change (e.g. changes in market 

conditions). They also provide the data needed to conduct new simulations with the model to 

predict the likely consequences of emerging problems and the types of corrective action that may 

be needed.  

Diagnostic indicators are likely to be more costly and difficult to measure than alarm 

indicators, and are therefore less suitable for routine monitoring. The choice of diagnostic 

indicators also needs to remain flexible since each emerging problem will likely have some 

unique characteristics. This may be in terms of the changes in behavior observed (e.g. 

introduction of a new type of crop or pest management approach) or in the underlying factors 

causing that behavioral change (e.g. it may be technologically driven on one occasion and market 

driven on another). In many ways, the collection of diagnostic indicators should be seen more as 

a process of investigation than a simple data collection exercise, and it may involve the 

sequential collection of different types of data as the investigation proceeds. 

As with alarm indicators, we discuss relevant diagnostic indicators for different segments 

of the watershed. The proposed diagnostic indicators are summarized in Table 5.2.
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Table 5.2—Summary table of diagnostic indicators 

Issue and main impact Proposed diagnostic indicator 

Soil erosion in upstream areas 
-  declining profits from electricity production 
-  declining productivity on dairy and cattle farms 

Interviews with dairy and cattle farmers 
Market conditions for important farm and forest products 
Changes in farm technologies and practices 
Changes in agricultural and forest policies  

Water availability in upstream areas 
-  declining profits from electricity production 

As above 

Water availability in downstream areas 
-  declining profits from Tilapia, agricultural, and seafood 

production 
-  damage to wetlands and loss in biodiversity 

Land use practices in upper catchment area (see above) 
Electricity generation (annual and seasonal) 
Interviews with ICE and irrigated farmers 
Changes in irrigated area, cropping patterns, water management practices, etc 
Changes in market conditions and agricultural policies   

Soil salinization in downstream areas 
-  declining land productivity in irrigated areas 

More spatially dispersed measurements of electrical conductivity and ion concentration 
to locate problem areas. 
Interviews with irrigated farmers 
Changes in cropping patterns and water management 
Changes in market conditions and agricultural policies 

Bird infestation 
- crop damage in the irrigated areas 

Changes in bird populations, feeding sources and bird scaring practices 
Interviews with irrigated farmers and park managers 

Agro-chemical use in the agricultural areas 
-  declining profits from seafood production 
-  health impacts (agricultural areas and Nicoya Gulf) 
-  loss in biodiversity 

More spatially dispersed measurements of benthic macro-invertebrates and chemical 
tests to locate source of problem and type chemical 
Interviews with farmers and spraying firms 
Changes in cropping patters, crop varieties, cultivation and pest management practices, 
chemicals used, water management, spraying methods, etc 
Changes in market conditions and agricultural policies 

Soil erosion in agricultural areas 
-  declining output from agricultural lands 
-  loss of biodiversity in wetland and gulf 

More spatially dispersed measurements of sedimentation and soil movement to locate 
source of problem 
Interviews with irrigated farmers 
Changes in cropping practices, cultivation practices and water management 
Changes in market conditions and agricultural policies 
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Catchment Area and ARCOSA 

Soil erosion and water availability in the upstream areas. If the recommended alarm 

indicator (planned land use changes by farmers) exceeds a threshold level, then additional 

information will be needed about the reasons for these planned changes. One source of 

information should be participatory discussions with a sample of farmers about the reasons for 

their planned changes in land use. Other useful indicators would include changes in market 

conditions (e.g. changes in market access and product collection, changes in prices for milk, 

cattle, coffee and timber, and changes in interest rates), changes in dairy farming technology, and 

changes in government policies affecting forestry and dairy and cattle farming.  

 

ARCOSA and the Irrigation District 

Water availability in the downstream areas. Should future water scarcities emerge in 

the downstream areas, then it will be important to determine whether the problem is due to 

insufficient recharge of Lake Arenal, or to the water release polices of ICE. If the former, then 

ICE itself will be affected, and this should be easy to determine. The problem may then be 

because ICE is required to generate more power than can be sustained by the watershed, or 

because land use changes in the catchment area are reducing the amount of water reaching the 

lake. Relevant diagnostic indicators should therefore include seasonal observations on Lake 

Arenal’s depth, annual and seasonal data on electricity generation, and the same indicators 

described above for diagnosing the extent and causes of land use changes in the upper catchment 

area.   

If the water shortages are not caused by shortages in the catchment area and Lake Arenal, 

then possible causes could be changes in ICE’s own water release policies, expansion of the 

irrigated area, a switch to crops requiring more water, less efficient water management practices, 

increased water losses from canals, etc. In this case, interviews with ICE management and 

irrigated farmers will be appropriate, as well as collection of information on changes in 

electricity generation and water release patterns, changes in cropping patterns and water use 

practices, on any changes in the engineering structures, and on causal variables such as changes 

in key crop and farm input prices (fertilizer and chemical prices, wages, interest rates, etc), and 

changes in agricultural policies that impact on the irrigated farms. 
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The Irrigation District 

Soil salinization in downstream areas. If the alarm indicator (electrical conductivity) 

flags a problem, then it will be important to first locate the areas that are most affected. This may 

require more widespread testing (electrical conductivity or ion concentration readings) in the 

irrigated farming areas. These results can be mapped in a GIS framework to facilitate 

interpretation. Diagnosing the cause would require collecting information about changes in 

cropping patterns and water management practices, using participatory interviews with farmers 

and some of the same indicators as mentioned in the previous paragraph.  

 

The Irrigation District and Palo Verde National Park 

Bird infestation. If bird damage to crops reaches critical levels then it will be important 

to determine whether this is due to more birds, loss of alternative food sources, increased area of 

rice near the park, or to less diligent bird scaring practices. Participatory interviews with park 

managers and farmers should quickly resolve these issues.  

The Irrigation District, Palo Verde National Park and the Gulf of Nicoya 

Agro-chemical use in the agricultural areas. If the levels of agro-chemicals in the 

water is increasing, as monitored by the benthic macro-invertebrates indicator, then it would be 

important to identify the farming areas from which these additional chemicals are coming and 

the types of chemicals involved. Water testing at more sites around the irrigated farming system 

would be an obvious first step, using both the bethnic macro-invertebrates indicator and chemical 

tests to identify individual chemical pollutants. 

Additional diagnostic indicators may be needed to determine the cause of the increased 

chemical use. Participatory interviews with farmers and professional spraying firms would help, 

combined with information about changes in cropping patterns (for example, fruits and 

vegetables demand more chemicals than rice), crop varieties, cultivation and pest management 

practices, water management and spraying technologies. Additional information about changes 

in crop and chemical prices and agricultural policies that impact on irrigated farming practices 

may be useful for identifying underlying causes. 

Soil erosion in agricultural areas. As with agro-chemical runoff, once an increase in 

soil sedimentation from irrigated farming has reached threshold levels, it would be important to 
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pinpoint more precisely the area from which the sedimentation is emanating. This may require 

additional measurements of soil movement and sedimentation at a larger number of sites in the 

irrigated farming area, perhaps using GIS techniques to map the data to facilitate interpretation. 

Participatory interviews with the farmers concerned would be helpful in pinpointing underlying 

causes, as well as information on changes in cropping and cultivation practices, water 

management and the like. 

 

 PROPOSED RESPONSE INDICATORS 
 

Response indicators are used to determine whether corrective actions agreed amongst the 

stakeholders for resolving a problem have been successfully implemented, and whether those 

actions have had their intended impacts. It is only after the response indicators show that a 

problem has been solved that the monitoring system can revert back to the routine monitoring of 

the alarm indicators. If the problem is not solved, then data on the response indicators can help 

guide further corrective actions, and provide valuable feedback for improving the system in the 

future (see Chapter 7). 

As with diagnostic indicators, the selection and collection of response data needs to be 

flexible to adapt to the specifics of a particular problem. No two situations are likely to be 

identical, even if the same environmental problem occurs more than once in time or space.  

Monitoring the implementation of agreed actions by stakeholders can be done through 

participatory means (e.g. direct interviews with farmers who have agreed to refrain from certain 

land use or chemical use practices, or follow-up meetings with all the key stakeholders at which 

each reports on their progress). This approach is intrusive but can help create peer pressure for 

stakeholders to honor their commitments. It also allows for some flexibility in stakeholder 

responses when there are alternative ways of achieving the same goal (e.g. erosive land use 

practices might be suitably modified through ridge plowing or tree planting along contours to 

reduce soil erosion without having to revert to less profitable land uses). Allowing individual 

stakeholders to figure out the best strategy for meeting their promised goals can be more efficient 

and sustainable than trying to impose uniform solutions on all. 

Another and less direct approach is to simply monitor whether the promised changes 

have occurred (e.g. observe whether land use practices have changed as promised, or whether 

“banned” chemicals are still sold and used). This approach also goes part way to monitoring the 
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impact of the agreed action. Unlike the participatory approach, this method is more rigid in its 

view of successful implementation. It may also inadvertently contribute to a mind set in which 

stakeholders do not feel they have to follow through on their commitments. 

Monitoring the impact of corrective actions requires use of some of the same alarm and 

diagnostic indicators discussed earlier. For example, agreed actions to reduce agro-chemical 

pollution would need to be followed up with additional monitoring of water quality (using the 

bethnic macro-invertebrate indicator or specific chemical tests) until the readings fall below their 

threshold values. Similarly, agreed actions by dairy and cattle farmers to reduce soil erosion in 

the catchment area may need to be monitored through observation of land use practices and 

perhaps measurement of the silt loads entering Lake Arenal and the hydro-electric power 

complex.  

Table 5.3 provides examples of plausible response indicators for some of the major 

problems found in the Arenal-Tempisque watershed. But it is impossible to give a definitive list 

of indicators because of uncertainties about the appropriate actions that might be agreed for 

meeting particular problems. In most cases there will a wide choice of possible actions, including 

perhaps the introduction of new technologies, changing incentives through price, tax or subsidy 

policies, and direct attempts to educate and change the behavior of certain individuals or 

stakeholder groups. The model can help analyze the more cost effective ways of solving 

important environmental problems, but as indicated above, enough flexibility should be left for 

individuals to work out the best strategies for own situations.  
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Table 5.3—Examples of response indicators 
 

Issue and possible corrective actions  Examples of response indicators 

Soil erosion in upstream areas 
- Constraints on land use 
- Soil conservation investments 
- Subsidy for retained forest 
- Tax on milk and beef produced in the catchment area  

Interviews with farmers on changes they have made 
Monitoring of land use changes and soil conservation investments from the air or via 
ground inspection of sample farms and/or along sample intercepts in the catchment area 
Monitor subsidies paid for retained forest and whether sample of farmers who receive 
them are retaining agreed forest. 

Water availability in upstream areas 
- Constraints on land use 
- Subsidy for retained forest 

See above. 

Water availability in downstream areas 
- Minimum water flows agreed with ICE 
- Volumetric water charges for irrigated farms 
- Investments in drip irrigation and other water saving 

technologies 
- Tax on high water using crops 

Water released by electricity company (quantities and timing) 
Revenue from water charges. 
Interviews with irrigated farmers on changes they have made, supplemented by 
inspections on sample of farms 

Soil salinization in downstream areas 
-  See above 

See above 

Bird infestation 
- Investments in bird scaring technologies 
- Develop alternative feed sources in wetland 

Interviews with irrigated farmers near park and with park managers 
Ground inspection of bird scaring equipment in place and of alternative feed sources 

Agro-chemical use in the agricultural areas 
- Introduce more pest resistant varieties 
- Introduce Integrated pest management 
- Tax on helicopter spraying 
- Tax on selected agro-chemicals 
- Construct oxidation ponds for treating irrigation drainage water 

before it enters wetland 

Interviews with farmers and spraying firms on changes they have made, supplemented 
by inspections on sample of farms 
Monitor sales of selected chemicals that are being taxed or which farmers and spray 
firms have agreed to reduce or eliminate. 
Monitor quality of water at selected points through bethnic macro-invertebrate counts 
and chemical testing 
Check progress on construction oxidation ponds 

Soil erosion in agricultural areas 
- Laser leveling of paddy fields 
- Improved land preparation techniques  

Interviews with farmers on changes they have made, supplemented by inspections on 
sample of farms 
Monitor sedimentation loads in water at selected points 
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COLLECTION OF DATA 
 

The data needed for the indicators can be collected different ways. For example, external 

companies or institutions specializing in resource monitoring could be contracted, or 

organizations representing stakeholder interests could be involved using their vested interests as 

an incentive, or schoolchildren could participate as part of their education, or the local population  

—farmers, residents, researchers, fishermen—could be encouraged to take part as a way to 

promote their interest and responsibility in the social, environmental, and economic health of 

their surroundings. 

Using an external company or institution is likely to be the more expensive option, and 

may best be limited to specific and more technically demanding functions such as chemical 

testing of water. Involving local stakeholders is not only likely to be cheaper, but can be an 

important way of obtaining their participation in, and ownership of, the monitoring system. This 

in turn is crucial for sustaining the system over time and for obtaining agreement on corrective 

actions when required. Developing appropriate incentives for stakeholders to participate is 

important for the success of a policy relevant monitoring system.  

Figure 5.1 shows how three sets of the proposed indicators map into the Payoff Matrix. 

This is a useful exercise for understanding a) which stakeholders have incentive to participate in 

monitoring specific environmental problems and which ones do not, and b) the feasibility of 

stakeholder participation from a spatial perspective. For example, the first column of Figure 5.1 

shows that land use indicators need to be monitored in the catchment area where soil erosion 

originates, but because the costs of soil erosion occur downstream, then dairy and cattle farmers 

have little incentive to participate. ICE’s power system, on the other hand, is adversely affected 

by soil erosion in the catchment area hence ICE should want to participate in land use 

monitoring. Since ICE also has a presence in the catchment area (e.g. through its control of 

rivers, Lake Arenal and watershed protection areas), it is also well placed to participate in land 

use monitoring.  
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Figure 5.1—Links between indicators and the Payoff Matrix. 
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Credibility 

In order for the indicators to play their role in the policy relevant monitoring system, then 

the data collected must be credible to all concerned. This implies that the stakeholders involved 

in the collection of data must also be credible. If the results are not credible, either explicitly 

(because of poor quality data) or implicitly (because the data are collected by a stakeholder with 

vested interests) then the data is unlikely to be acceptable. 

There are two aspects to credibility that come into play: trustworthiness and capacity. It 

is important that even though a stakeholder has, by definition, a stake in what happens in the 

project area, they can non the less be trusted by other affected groups to provide reliable and 

accurate data. But even if indicators are monitored by a trustworthy agency, the results may still 

be misleading if that agency does not have the capacity to undertake the job properly. In many 

cases, the best approach is to create “monitoring teams” consisting of one agency that collects 

the data, and another that undertakes quality control. In this way, it is possible to achieve trust 

and capacity, even in cases where one single agency does not possess both characteristics. 

 

Cost Effectiveness 

Cost-effectiveness is important if the monitoring system is to be socially attractive and if 

the resources to sustain it over time are to be found. In addition to choosing relatively simple and 

low cost indicators, two other factors can contribute to maintaining a low cost system: 

participation of the local population and building on existing monitoring efforts. 

Participation of the local population. A couple of the proposed alarm indicators— 

benthic macro-invertebrates and hectares damaged by feeding birds—are best collected in a 

participatory manner. Even though the actual analysis of the chemical loads in the macro-

invertebrates needs to be done in a laboratory, the collection of samples is simple enough to be 

carried out in a participatory manner. School children can be involved, farmers can be asked to 

collect samples while working in the fields, or the National University (UNA) could be hired to 

do the work since it already has experience in developing and applying these methods. One 

option could be to contract the university to teach a group of local farmers or schoolteachers in 

the methods for collecting and analyzing samples, and then they could organize school children 

and/or farmers to undertake part of the work. Since some external expertise is needed to 
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undertake supporting tests in laboratories, then the same external experts could also provide 

quality control for the data collection.  

The alarm indicator for monitoring bird infestation—hectares damaged by feeding 

birds—is most easily and cheaply obtained by asking farmers to report this information. 

SENARA, which represents the interests of irrigated farmers is well placed to collect and 

compile this information. A representative from the national park could also be involved to help 

ensure that the results of the monitoring are credible, and to provide useful diagnostic 

information about changes in bird populations or other sources of feed for the birds.  

Once an alarm indicator has flagged a problem and the monitoring system has moved into 

a diagnostic phase, the participation of local stakeholders will often be important for achieving a 

proper understanding of the causes of the problem. Participatory interviews with groups of 

farmers, for example, will be important for understanding why land uses, cropping patterns and 

farming practices are changing. Interviews with ICE managers may be important for 

understanding why water releases to the lower watershed are changing, and interviews with 

spraying firms may help explain changes in pesticide runoff.  

Existing monitoring efforts. Some of the indicators that have been proposed are already 

being monitored by various organizations in the Arenal-Tempisque watershed, or there are plans 

afoot to monitor them in the future. These indicators include actual water availability in Lake 

Arenal and in the downstream area (water released by ICE), electricity generation, estimated 

sediment levels at various points in the areas adjacent to the Palo Verde National Park, and the 

electrical conductivity of the water. In these cases the interest and resources are already in place, 

and as long as the developers of those indicators are reliable and trusted by the other 

stakeholders, then there is no reason to start developing the same indicators within a different 

organization.  

Some other indicators require information that is already collected for other purposes. For 

example, indicator data on changes in cropping patterns in the irrigated areas can probably be 

obtained from SENARA because this is basic information that they need for their own planning 

purposes. Credibility should not be an issue in this case since there is no reasons for SENARA to 

report false numbers. 
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Filling Knowledge Gaps 

Any comprehensive monitoring system for the Arenal-Tempisque watershed must 

inevitably begin with less than perfect information about the problems to be monitored, and 

suitable threshold values for key indicators. These knowledge gaps can be filled over time as the 

monitoring system generates new data and experience in tracking and correcting problems. Some 

key areas where improved knowledge is required are as follows.  

Soil erosion in the upstream areas. Available estimates about the severity of the 

siltation problems affecting the hydropower complex vary widely, particularly estimates of the 

useful life of Lake Arenal. To arrive at more precise knowledge about these issues will require 

further research on the current rate of siltation and links to land use and farming practices in the 

upper watershed. 

Water availability in the catchment area. Although not currently a problem, there is 

growing concern that changing land use patterns in the catchment area will affect the amount of 

water recharging Lake Arenal each year, and hence the prospects for future water shortages for 

ICE and the irrigation system. There is conflicting evidence about these relationships. Some 

researchers are suggesting that deforestation increases the amount of available water (Aylward 

and Echeverria, 2000). But this result may depend on whether deforested land is planted to 

permanent pasture or to forage crops for dairying. Additional research is required to resolve 

these issues, and to quantify the relationships between water and silt flows for different land 

uses. 

Agro-chemical use in the agricultural areas. At present it is difficult to determine 

meaningful threshold values for agro-chemical contamination in the irrigation drainage canals  

because there has been too little research to quantify the relationships between this 

contamination and human sickness in the watershed, damage to the wetland park and the wildlife 

in it, and damage to the shrimp and fishing grounds in the gulf.   

Soil erosion in agricultural areas. There is also insufficient knowledge at present about 

the rates of soil sedimentation moving into wetlands and the gulf from the Arenal-Tempisque 

watershed, and the damage that it causes to mangroves, navigation, and fish and shrimp 

production. Nor is much known about the impact of this soil erosion on agricultural productivity 

in the irrigated areas.  
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As the monitoring system progresses, new knowledge gaps are likely to become apparent 

about existing and future problems and their causes. The monitoring system will need to have the 

flexibility to adapt to new environmental problems in the watershed and to changes in the 

economic environment that impact on stakeholders’ behavior. It will also need to have sufficient 

resources to develop and test appropriate indicators to handle these changes. 

 
 CONCLUSIONS 
 

This chapter has discussed relevant alarm, diagnostic and response indicators that would 

be needed by a policy relevant monitoring system for the Arenal-Tempisque watershed. These 

indicators would be informative in their own right, but many also provide input to the regional 

model and the Payoff Matrix which have a key role to play in assessing the consequences of 

observed changes in key indicators and in developing appropriate corrective actions. The way in 

which the indicators and model would interact is discussed in some detail in Chapter 7. It is 

important to involve local stakeholders in the collection and use of the monitoring data to 

encourage them to take ownership of the monitoring system and to use it to improve their 

combined management of the watershed. This will require that there be an appropriate system of 

incentives in place. This issue is taken up in the next chapter. 
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6.  INSTITUTIONAL FRAMEWORK FOR A RESOURCE MONITORING SYSTEM IN 
THE ARENAL-TEMPISQUE WATERSHED 

 
Rafael Celis and Peter Hazell 

 
 

 INTRODUCTION  
 

The modeling analysis in Chapter 4 shows the high economic and environmental costs 

associated with the way the Arenal-Tempisque watershed is currently being managed. Soil 

erosion, sedimentation, and pollution of soil and water, are the most visible manifestations of a 

trend initiated in the early eighties. The Payoff Matrix shows explicitly how these impacts 

translate into economic costs affecting many of the stakeholders in the watershed. Yet, despite 

growing awareness of these problems amongst key stakeholders, and despite pressure from 

bilateral and multilateral development agencies and from local and international environmentalist 

groups, these trends appear to continue unchecked.  

Because of the large number of assumptions that have had to be made for this analysis, 

these findings should be considered as “indicative results” and interpreted with caution. 

Nevertheless, the preliminary findings reported in Chapter 4 indicate that these environmental 

costs have now reached an astonishing $0.61 per dollar of realized social benefits. Part of this 

cost is avoided in practice because ICE dredges the silt from its smaller reservoirs on a regular 

basis, but there is still ample room for stakeholders to explore, negotiate and undertake remedial 

actions to their mutual benefit. Why has this not happened and what can be done to bring about 

such action? These are key questions that this chapter attempts to address, and the answers leads 

into a discussion of the kinds of institutional structure that might be needed to develop and 

manage a policy relevant monitoring system for the watershed. 
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INSTITUTIONAL ISSUES 

Market and Institutional Failures  

Environmental problems of the type encountered in the Arenal-Tempisque watershed 

arise from classic externality problems. The agents who cause the environmental damage do so 

because their actions are profitable and because they do not have to bear or pay for the 

downstream costs resulting from their actions. Moreover, since they do not bear the downstream 

costs, then the prices at which they are willing to sell their outputs do not reflect the true costs to 

the watershed. These are fundamentally market failure problems, and they lead to inferior social 

welfare outcomes for the watershed and the nation. The externalities are identified and quantified 

in the off-diagonal elements of the Payoff Matrix—and they are found to be pervasive and often 

large in absolute amounts. 

There are several possible reasons for the existence and continuance of these kinds of 

market failures. One is the offsite nature of the damage; it does not occur on the property of the 

people who cause the damage. This problem is aggravated by spatial separation from those who 

are affected. With sufficient distance, those who cause the damage may not even be aware of the 

costs they impose on others, or they may feel little social pressure to do anything about it. 

Stakeholders may also be separated in time; for example future generations of Costa Ricans 

cannot make their voice heard to change the behavior of any of the stakeholders whose actions 

are putting the watershed at risk. There are also instances in which the affected party cannot be 

properly represented at the bargaining table; this is the case of many plant and animal species in 

the watershed whose future depends on how successful environmentalist are in voicing their fate.  

In theory, if appropriate property rights systems could be defined over the different 

natural resources in the watershed and if transactions costs are not too high, then the different 

stakeholders might be able to negotiate market solutions to these environmental problems (Coase 

1960). “With well-defined property rights and no transactions costs, there is a market and a price 

for everything. All externalities are automatically internalized” (Law and Clemens, 1998). 

Unfortunately, defining appropriate property rights can be quite elusive in the presence of 

externalities (e.g. the right to “clean” water, not just water), and the transactions costs of 

negotiating solutions can also be formidable. It is not therefore surprising that adequate solutions 

to these problems have not yet been found in the Arenal-Tempisque watershed, as is the case in 

many other watersheds around the world. In addition to property rights, information is needed on 
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what is happening if informed decisions are to be made. This aspect highlights the importance of 

a monitoring system and information disclosure for effective action. 

Past Experience with Institutional Arrangements 

In terms of institutional development, the Arenal-Tempisque watershed has been one of 

the most dynamic areas in Costa Rica. Institutions developed in response to the dramatic changes 

that have taken place there in the last 20 years. The driving forces behind that institutional 

evolution range from modest private production and conservation initiatives that have 

consolidated and expanded over time, to the need to create government entities to undertake and 

administer large investment projects. Examples of the first are the Cheese factory and the Monte 

Verde Conservation League; examples of the latter are ICE and SENARA. 

In the initial stages, the creation of institutions responded to specific management needs 

in different sections of the watershed. Lack of communication infrastructure and poor knowledge 

about the links among those sections contributed to the creation of a culture of “institutional 

territories” that has proven difficult to overcome and hinders any serious attempt to manage the 

entire watershed in a more integrated way. This is still true, despite the fact that communications 

and knowledge have improved, and a new generation of institutions—like the National System 

of Conservation Areas (SINAC), has emerged that are aimed at fostering institutional 

coordination and cooperation.  

Despite these problems, some attempts have been made by different stakeholders to 

cooperate and improve the overall management of key resources in the Arenal-Tempisque 

watershed. Some of these efforts have been successful and some have not. For instance, the 

Monteverde Conservation League (MCL) and the Monteverde Dairy Producers Association 

(MDPA) agreed on the need to prevent soil deterioration and deforestation. Using funds from 

international donors, plus their own technical capabilities and labor, they embarked on an 

agroforestry project to plant windbreaks. The windbreaks can be seen everywhere; but when the 

external funding ended no more trees were planted. Another example of stakeholder negotiation 

is the agreement between ICE/SENARA and Aquacorporación, the tilapia farm. ICE agreed to 

continuously release at least the minimum of water that is essential for the survival of the fish, 

even at times when ICE is not generating electricity (and hence when the water has a direct 

opportunity cost to ICE and the nation). In this case, Aquacorporación lobbied successfully to 

make the agreement possible, and has expanded to become the largest aquaculture operation of 
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its kind in the Western Hemisphere. Critics of the agreement contend that tilapia prices should 

reflect the cost of all electricity production lost as a result of these minimum water releases; 

something that should be part of future negotiations. 

The negative environmental impacts caused by institutional and policy failures have 

prompted other positive reactions from key stakeholders. For instance, SENARA jointly with 

other stakeholders has established an environmental commission. This was the result both of 

their own initiative and in response to loan conditions imposed by the Interamerican 

Development Bank (IDB), the main financial source for construction and maintenance of 

irrigation infrastructure. Similarly, private farms, like Taboga and Pelón de la Bajura, have 

created environmental departments in charge of devising and implementing programs to recycle 

plastics and to reduce agro-chemical pollution. Smallholder associations in the settlement areas 

have also developed education campaigns to increase awareness of environmental problems. 

 

 OPTIONS FOR NEGOTIATING SOLUTIONS 
 

While some of these past developments are encouraging, the fundamental problem of 

negotiating successful solutions to the major environmental problems in the watershed still 

remains. In this section we explore the nature of these negotiation problems in more detail, and 

suggest possible solutions.  

The Payoff Matrix in Table 6.1 is a condensation of the Payoff Matrices discussed in 

previous chapters. It combines a verbal description of the meaning of the coefficients in each cell 

and their dollar values as derived from the model’s baseline solution.  

The clustering of environmental costs in the matrix shows that there are really two sub-

problems in the watershed, and that because the stakeholders involved are different in each 

problem, then they can for most practical purposes be conceived as separate negotiating 

problems. These two problems are soil erosion in the catchment area and agro-chemical pollution 

in the irrigated areas and below. We discuss them in turn.  
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Table 6.1—Payoff matrix of stakeholder interests. 
 

 

Forest 
Reserves 

Dairy/ 
Cattle 
Farms ICE 

Irrigated 
Farms Wetland 

 
Fishermen 

Realized 
Benefit 

Forest Reserves Maximize 
forest area 

(39.7) 

 

   

 

 
(39.7) 

Dairy/Cattle Farms 
 

Maximize 
dairy & cattle 

income 
(37.5)    

 

 
(38.0) 

ICE 

 

 
Siltation of 
reservoirs 
(-703.1) 

Optimize 
electricity 
production 
(1,821.6)   

 

 
(118.5) 

Irrigated Farms 
 

 
 

 

Maximize crop  
income 
(194.9) 

Bird damage to 
crops 

(-20.1) 

 

 
(174.9) 

Wetland 
 
 

 

 

Agro-chemical 
pollution and soil 

runoff 
(-51.6) 

Maximize 
conservation 

(70.7) 
 

 

(19.1) 

Fishermen 

 

 
 

 

Agro-chemical 
pollution and soil 

runoff 
(-111.6) 

Reduced Agro-
chemical  and 

soil runoff 
(16.9) 

Maximize fish 
income 
(121.2) 

 

 
 

(26.5) 

Net Benefit (39.7) (-665.1) (1,821.6) (31.8) (67.5) (121.2) (1416.7) 

Note: NA means not applicable 
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Erosion in the Catchment Area 

Soil erosion in the catchment area is caused by dairy and cattle farmers and it already 

imposes externality costs on ICE because of the silting of the small reservoirs that feed the 

Corobicí and Sandillal hydroelectric power plants. Siltation also reduces the useful life of Lake 

Arenal which will have much more serious consequences for all downstream users in the long 

term (current estimates give the lake a useful life of another 500 years). Expansion of forage crop 

production for dairying may also reduce the amount of water recharging Lake Arenal, and this 

may eventually impact on ICE and irrigated farmers though it is not yet perceived to be an 

important issue. The model ignores water scarcity issues and, while the impacts of siltation on 

the useful life of Lake Arenal is considered the damage is too far in the future to affect the 

discounted benefit streams today. But even without factoring in the costs of future water 

scarcities, the externality costs imposed on the system through siltation by the dairy and cattle 

farmers are enormous ($703.1 million) and it is all borne by ICE. This cost far exceeds the 

economic value of dairy and cattle production. Given that the two activities together only 

generate income of $38 million, then their net social benefit is negative, $-665.1 million. On 

strict economic grounds, there is no justification for dairy and cattle farming to be practiced in 

the catchment area, at least if they continue with current land use management practices.  

The payoff matrix also suggests that the negotiating partners for solving the soil erosion 

problem in the catchment area should be ICE vs. the dairy and cattle farmers. The forest 

preserves do not contribute to the problem, nor are they negatively affected. But the managers of 

the forest preserves cannot be expected to remain neutral since they appreciate the environmental 

benefits that they bestow on downstream users through the soil erosion that they prevent by 

retaining primary forest. Moreover, since they have to continuously find the funds to protect their 

preserves, it is no secret that they are interested in seeking financial compensation from ICE for 

part of the environmental benefits they generate. The preserve managers would undoubtedly 

consider it very unfair if the dairy and cattle farmers received compensation for adopting less-

erosive land uses if they did not also receive compensation for protecting forest. 

The model results in Chapter 4 suggest that the current levels of soil erosion in the 

catchment area are now so high that any further increase will have little impact on ICE’s current 

siltation problem. This is because it is the silting of the smaller, downstream reservoirs that feed 
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the individual power plants that is causing the current problems for ICE, and these already fill up 

on a frequent basis. In order to change the situation, it is necessary to substantially reduce 

erosion on existing agricultural land in the catchment area, not just to contain any further forest 

conversion.  

There are several options for approaching the problem. The easiest is for ICE to invest in 

more dredging equipment and to simply keep cleaning the small reservoirs that feed the power 

plants. They are already doing this on a regular basis. But this is an incomplete solution to the 

problem because a) it is costly to undertake on a regular basis; b) it does not deal with the 

increasing severity of soil erosion as more land in the catchment area is put into erosive uses, c) 

it does not address the longer-term silting problem that is affecting the useful life of Lake Arenal, 

and d) it does not address the associated water catchment problem; more forage crop land in the 

catchment area may mean that less water will be captured in Lake Arenal leading to eventual 

downstream water shortages.  

More effective solutions to the problem need to focus on reversing the decline in the 

forested area, and in getting cattle and dairy farmers to adopt non-erosive land uses and farming 

practices. 

Banning any further deforestation through government fiat would be difficult to legislate 

and enforce given that most of the land is privately owned. A better solution might be for ICE to 

buy up more of the most critical parts of the catchment area and to manage these as protected 

areas, but this would have to be a long term strategy. Another strategy that could have broader 

and quicker impact is for ICE to compensate holders of forest land by paying a per hectare 

subsidy. Compensation might also be paid for new land that is put back into forest, though 

perhaps at a reduced rate until the trees have fully grown (e.g. payments could be tied to the 

estimated amount of total carbon that is standing in the forest in similar vein to the payment for 

environmental services that is already practiced under provisions of the Kyoto Protocol by the 

Costa Rican Office for Joint Implementation). At the same time, it would be necessary to 

implement changes that reduce soil erosion on agricultural land. This requires promotion of 

technology and land use practices for dairy and cattle farms that are less erosive. Some types of 

agroforestry (e.g. coffee) are non-erosive and can be quite profitable. Permanent pasture also 

causes little erosion if properly managed and if cattle tracks are protected against soil erosion. On 

the other hand, frequent plowing and soil exposure associated with forage crop production can be 
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very erosive, especially in these hilly landscapes. Farmers could be compensated financially for 

adopting environmentally sound land use practices that are less profitable. With some initial 

technical assistance and training and help in accessing new markets, these alternatives might 

even prove to be more profitable in the long run, and the financial compensation could be phased 

out. For this strategy to work, it would also be necessary to ensure that agricultural policies do 

not inadvertently subsidize or favor inappropriate land use practices (e.g. through credit, 

exchange rate misalignments or forest, milk or beef pricing policies). The Ministry of 

Agriculture would have to be a partner to some of the negotiations. 

ICE would have to raise additional revenue to buy additional protected areas or to pay for 

compensation to farmers and the forest preserves. There are two obvious ways of doing this. One 

is for ICE to charge more for its electricity (essentially adding an environmental cost). But 

electricity prices are regulated by the Government and may be difficult to change. ICE could also 

consider charging SENARA and/or the irrigated farmers a volumetric water fee (this would also 

help address emerging water scarcity issues). But again ICE does not have the authority to 

charge for water without the government’s agreement (in this case, it would require approval 

from Congress and the MINAE and the oversight of the Regulatory Authority of Public Services, 

ARESEP). Because preserved forest bestows environmental benefits that extend well beyond the 

watershed (e.g. conservation of unusual biodiversity in the cloud forest and carbon sequestration 

offer national and international benefits) it may be appropriate for the government to contribute 

to the levels of compensation paid. This would reduce the burden on ICE and other downstream 

beneficiaries. 

ICE seems to be the natural stakeholder for initiating a solution to the catchment area 

problems. It has strong incentive, and is large and powerful enough to organize and bring 

considerable pressure and resources to bear on the problem, including perhaps some supporting 

government action. But ICE cannot afford to commit itself to paying financial compensation 

without first raising the additional revenue. Before entering into negotiations ICE needs to 

determine whether it can a) obtain approval from ARESEP to charge higher electricity prices, b) 

charge SENARA and/or the irrigated farmers for water, c) recover part of the costs of protecting 

the catchment area directly from the government, and d) buy up larger parts of the catchment 

area for itself. ICE also needs to obtain some bargaining leverage over the managers of the forest 

preserve and the dairy and cattle farmers to keep any agreed compensation levels at reasonable 
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levels. The managers of the forest preserve should in general be expected to identify with and 

support ICE’s objectives in any negotiations, but at the same time they will want to negotiate a 

level of compensation for themselves. The irrigated farmers currently are not yet affected by land 

use changes in the catchment area, and undoubtedly they would not want to pay more for their 

water. Eventually, if the land use problems in the catchment area are not resolved, then water 

may become more scarce, and SENARA and the irrigated farmers would have more incentive to 

join ICE in negotiating with stakeholders in the catchment area. At that time they might also be 

willing to contribute to paying for the higher effective cost of supplying water.  

A fundamental problem in this negotiating problem is that ICE (and all other down 

stream stakeholders for that matter) has very little leverage over the managers of the forest 

preserve or the dairy and cattle farmers. As the payoff matrix in Table 6.1 shows, these groups 

do not depend on ICE and other downstream users in any way, but at the same time their actions 

do affect ICE and other downstream users. If soil erosion eventually proves costly to dairy and 

cattle farmers because their own land productivity falls, then it may be in their own self-interest 

to correct the problem. This would open up opportunities for “win-win” strategies, whereby 

improved land management practices would be beneficial to these farmers and ICE. But there is 

no evidence that such win-win opportunities currently exist. So ICE’s only effective bargaining 

chip is to pay compensation.  

Under these circumstances, how can one get the negotiations off the ground? ICE is 

reluctant to initiate action because it cannot afford to offer any compensation to upstream 

stakeholders without first securing additional revenue to pay for it. ICE is also rightly concerned 

that without some leverage over these stakeholder groups, then the amounts of compensation that 

they could demand would be unrealistic. Somehow the process needs to be kicked started from 

outside. One possibility would be for the government, perhaps acting through MINAE, to 

introduce land use regulations for the catchment area, and to implement these through 

inspections and fines. The mere threat of such an intervention may be enough to bring the 

relevant parties to the table to negotiate more reasonable and less costly solutions to the erosion 

problem. Finding and orchestrating the appropriate “threat” would be a prime function for any 

institution managing a policy relevant monitoring system for the Arenal-Tempisque watershed. 
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Agro-Chemical Pollution in the Irrigated Area 

Agro-chemical pollution of the water leaving the irrigated area is a major problem for the 

wetlands and the fishing industry in the Gulf. As the payoff matrix in Table 6.1 shows, these 

costs amount to $51.6 million for the wetlands and $111.6 million for the fishermen. The total 

cost of these externalities is equivalent to 84 percent of the realized income generated by the 

irrigated farms. This large environmental cost is also likely to worsen in the future if the planned 

expansion of the irrigation system is undertaken without any change in pest and cultural 

management practices.  

The payoff matrix suggests that the negotiating partners for this problem should be 

SENARA and the irrigated farmers vs. the wetland park managers (including MINAE and 

supporting environmentalists) and the fishermen and the Costa Rican Fisheries and Aquaculture 

Institute (INCOPESCA).  

The model results in Chapter 4 show that it will take more than a minor adjustment of 

current farming practices to make a big impact on the discounted value of the environmental 

damage caused, but even moderate changes should lengthen the expected life of the wetlands. 

One solution is for SENARA to build oxidation ponds at the edge of the wetland to treat the 

water coming out of the irrigation drainage ditches. This could solve part of the problem but is 

unlikely to be sufficient, particularly if the irrigation project is expanded. The ponds would also 

become silted quite quickly because of the level of soil sedimentation carried in the drainage 

canals under existing rice cultivation practices. (At the time of writing,  SENARA had already 

built two one-hectare by 1.8 meter deep oxidation ponds in the vicinity of the park, but their 

design appears to have created some controversy and MINAE has sued SENARA alleging 

damage to the park).  

Another solution is to change the technology and management practices of irrigated 

farmers, through offering better technologies or changing incentives. There is good news in that 

the current technologies (especially the rice varieties grown and pest control practices) are old 

and inefficient and modernization could bring real cost savings to farmers as well as significant 

reductions in agro-chemical use. This situation seems to stem from the demise of the public 

agricultural research and extension system in the 1990s as a result of cutbacks in public 

expenditure and policy reforms. Even modest investments in adaptive agricultural research and 

training and extension might reverse this perverse situation. Encouragingly, one of the largest 
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rice producers, Pelón de la Bajura, has already made it’s own private investment in developing 

new varieties. And some other rice farmers are experimenting with alternative methods of weed, 

pest and disease control and fertilization. 

Changing incentives is also a viable option. Compensation is not appropriate in this case 

because it is a classic “polluter pays” problem. If farmers were compensated for not polluting 

then they would have an open invitation to threaten further pollution if they are not paid more 

money. Some existing agricultural policies need to be reformed to remove perverse incentives. 

For example, banks credit for farmers is still tied to the adoption of the old technological 

package and to compulsory crop insurance. To make matters worse, the insurance company (a 

state-owned monopoly) only indemnifies farmers in the event of a serious yield loss if they can 

demonstrate that they followed the calendar of activities and applied the chemicals and cultural 

practices indicated in the old technological package. The Ministry of Agriculture, the banking 

system, and the insurance company would need to be party to any negotiations aimed at 

resolving the agro-chemical pollution problem so that they could rectify these disincentives. But 

even these changes may not be enough to fully solve the problem, and there may still be need for 

the government to legislate water quality standards and to impose fines on farmers when they 

exceed these limits. 

As with the previous negotiation problem in the catchment area, there is a fundamental 

imbalance in the negotiations because the fishermen and environmentalists do not have any 

bargaining leverage over the irrigated farmers who are causing the problem. As the payoff matrix 

in Table 6.1 shows, the only reverse impact is bird damage to rice fields. Unfortunately, the 

damage increases with the health of the wetlands, and hence works in exactly the wrong 

direction to provide any useful leverage to the wetland park managers. 

SENARA would seem to be best positioned to take the lead in negotiating a solution. It is 

large and powerful enough to marshal the required resources and influence, and it already has a 

track record in initiating such action. On the negative side SENARA does represent the interests 

of the irrigated farmers but it is also accountable to the Ministry of Agriculture and to the donors 

(e.g. the Interamerican Development Bank) who finance the irrigation scheme. Environmental 

groups could also bring pressure to bear on SENARA. The fishermen are seriously affected by 

agro-chemical pollution from the Arenal-Tempisque watershed, but they are not very effective 

negotiators. They are poorly organized for this purpose and anyway have to contend with several 
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other major sources of pollution in the Nicoya Gulf which diffuses their efforts. However, 

INCOPESCA, which represents their interests should be a negotiating partner. 

How can the negotiations be initiated? Again, there needs to be some kind of bargaining 

“threat” to SENARA and the irrigated farmers. If the government, perhaps through MINAE, 

were to legislate water quality standards and to fine SENARA and/or farmers who violate them 

then they might have incentive to negotiate less costly local solutions to the problem. Again, 

finding and orchestrating a credible “threat” would be a prime function for any institution 

managing a policy relevant monitoring system for the Arenal-Tempisque watershed. 

 

 INSTITUTIONAL DESIGN FOR THE PRMS 
 

As we have seen, there are currently two distinct environmental problems in the 

watershed that need solving. In both cases the chances of a successful negotiation among 

stakeholders within the watershed is hampered because those who suffer from the environmental 

damage do not have any real bargaining leverage over those who cause the damage. There needs 

to be a higher level intervention that can create a “threat” to the polluters if they do not sit down 

and negotiate a local solution to the problem. This implies that any institution mandated to 

manage a PRMS for the Arenal-Tempisque watershed must have strong government support as 

well as the participation of the local stakeholders.  

There are a number of institutional options that might work for this watershed, but we 

illustrate with only one. This option would entail the creation of a single watershed management 

committee (hereafter called the Watershed Management Committee, or WMC) comprising 

representatives of all the important local stakeholders (managers of the forest preserves, dairy 

and cattle farmers, ICE, SENARA, irrigated farmers, the wetland park managers, 

environmentalists, INCOPESCA and fishermen). Moreover, since strong government support is 

needed, both MINAE and the Ministry of Agriculture could be full members of the WMC. The 

WMC would have five major functions:  

1. To setup and manage the monitoring system in a participatory way. This might involve 

having ICE lead the monitoring of the catchment area, SENARA lead the monitoring of 

the irrigation area, and the park managers lead the monitoring of the wetland and gulf 

areas. Leadership would entail making sure that all appropriate data are collected and 

made available at the right times, but a lead organization would not necessarily collect all 
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the data themselves. As discussed in Chapter 5, it is often desirable to involve other 

stakeholders or groups of stakeholders in data collection in a participatory way. Farmers 

and school children might be involved, for example, in monitoring water quality within 

the irrigated areas, or research organizations working in Palo Verde National Park (e.g. 

the University of Costa Rica, the National University and the Organization for Tropical 

Studies (a consortium of over 50 national and US organizations that conduct training and 

research within the park) could be involved. Some more specialized data collection work 

(e.g. chemical testing of water) could be contracted to specialized agencies or private 

firms. The upkeep and operation of the model could be undertaken by ICE after some 

staff training, or perhaps it could be contracted out to a local university. 

2. To organize meetings of relevant stakeholders to negotiate solutions to environmental 

problems as they arise. Given that most environmental problems only involve a subset of 

all the stakeholders involved in the watershed, then negotiations for corrective actions 

might best be delegated to sub-committees of the relevant stakeholders. However, all 

decisions might need to be endorsed by the full WMC to give them legitimacy and to 

help ensure that they are implemented. 

3. To monitor the implementation of agreed corrective actions and their impacts and to 

make sure that the problem is finally resolved. The same leadership structure as indicated 

above might be relevant, though having a professional WMC staff member oversee the 

process may be necessary to assure all participants of the objectivity and credibility of the 

process. 

4. To make recommendations to the government as needed about electricity and water 

pricing in the watershed, land use regulations and fines in the catchment area, fines on 

agro-chemical pollution in the irrigated farming area, and other policy changes that 

require governmental action.  

5. To educate people living and working in the watershed about the linkages between their 

actions and the health and stability of the entire watershed, and the need for improved 

collective management. 

The WMC would need to be given realistic level of resources to do its job, including at 

least one full time professional staff member with relevant technical and managerial skills. While 

the government might reasonably pay part of the cost, greater ownership by and participation of 
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local stakeholders is more likely if they are also required to help cofinance its operations. The 

WMC would need to be legally empowered and accountable to some appropriate national entity. 

This might require that it be authorized by the Congress or MINAE.  

 

 CONCLUSIONS 
 

This chapter has used the Payoff Matrix to identify the clusters of stakeholders who are 

impacted by each major environmental problem in the Arenal-Tempisque watershed, and to 

identify potential coalitions of gainers and losers who would share common objectives in any 

negotiations to resolve these problems. The Payoff Matrix provides both qualitative and 

quantitative insights that are valuable for resolving these issues. Qualitatively it identifies the 

gainers and losers in each problem and the more obvious coalition partners for negotiations. 

Quantitatively it provides information about the dollar value of each stakeholder’s interests, and 

shows where their largest gains and losses arise and hence which problems and coalitions most 

merit their attention.  

Environmental problems flow downstream with the water in a watershed, hence the 

damage caused by agents upstream tends to affect only on those further downstream. In the 

Arenal-Tempisque watershed, for example, soil erosion caused by dairy and cattle farmers in the 

catchment area adversely affect the hydro-electric power system downstream, and chemical use 

in irrigated agriculture adversely affects the wetlands and gulf at the end of the irrigation 

drainage system. The lack of reverse feedbacks creates perverse incentive problems that bedevil 

attempts to negotiate solutions. The agents who cause damage and do not suffer its consequences 

have little if any economic incentive to take corrective action. At the same time, the agents who 

must bear the cost of the damage have little if any effective bargaining leverage over the agents 

upstream who cause the problem. Under these conditions, the chances that solutions can be 

negotiated purely by local stakeholders are not favorable, as indicated by the poor track record 

that has been achieved to date in the Arenal-Tempisque watershed. An institutional framework 

that is to resolve these problems will not only have to involve all the key local stakeholders, but 

it will also have strong support from government and the active participation of key Ministries 

like Agriculture and the Environment that can bring new pressures to bear on those who cause 

the damage. A possible institutional structure for a policy relevant monitoring system for the 

Arenal-Tempisque watershed has been proposed that incorporates these key features.  
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7. OPERATIONALIZING THE MONITORING SYSTEM FOR THE ARENAL-
TEMPISQUE WATERSHED  

 
Ujjayant Chakravorty and Peter Hazell 

 
 
 INTRODUCTION 
 

In this chapter, we provide an integration of the main pieces of the Policy Relevant 

Monitoring Systems (PRMS) for the Arenal-Tempisque watershed and demonstrate through a 

hypothetical example, how it might work in practice. These pieces involve the system of alarm, 

diagnostic and response indicators, the economic model, and the institutional and decision-

making structure described in previous chapters.  

We begin with the operational cycle of the monitoring system described in Chapter 3. 

Recall from Figure 3.1 that the cycle begins from the top and goes clockwise. At the top of the 

cycle are the alarm indicators. These give an early warning when a problem arises. If there is no 

alarm, then the monitoring agency continues to monitor on a routine basis. However, if an alarm 

indicator crosses a key threshold, then the monitoring agency activates a set of diagnostic 

indicators to enable more in-depth analysis of the causes of the alarm. Once information from the 

diagnostic indicators is available, this provides input into the model which is then used to 

generate information about the impact of the problem on the watershed and, if the threatened 

damage is high enough to warrant action, to help identify and evaluate appropriate corrective 

actions.  

The model has limited capacity to undertake causal analysis since it takes land uses, 

cropping patterns, technology choices, etc., as given. In many cases, the source of a new problem 

might have originated from changes in some of these exogenous parameters and relationships, in 

which case they cannot be explained by the model. While the model could be extended to make 

more decisions endogenous, this would add to its cost and complexity, making it harder to use 

and maintain. However, given diagnostic data on changes in key model parameters, the model 

can be used to undertake an assessment of their effects, including providing dollar values for 

economic benefits and costs as well as estimates of the future economic services from the 

ecosystem, such as the future value of wetland services and its economic life. These numbers can 

then help determine whether corrective action is worthwhile and provide upper and lower bounds 

for the costs that society could bear to provide a solution. Model runs can be informed through 
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participatory interviews with affected stakeholders. For example, this would provide information 

on whether they will behave in the way expected if proposed corrective policies change their 

incentive structures.  

The next step in the cycle calls for dialogue among the key stakeholders leading to an 

agreed plan of corrective action. The institutional structure plays a key role in promoting this 

dialogue, especially when there are conflicting interests among different stakeholders, as 

highlighted in Chapter 6. The model can also play an important role in helping to evaluate 

alternative courses of action, providing detailed information about their likely effects and the 

costs and benefits to different stakeholders (as revealed in revised Payoff Matrices).  

Once a plan of corrective action has been agreed and implemented, then appropriate 

response indicators are activated to monitor its impact and to determine whether it has 

successfully corrected the initial problem. If the impact is successful, then the monitoring agency 

resorts back to the routine tracking of alarm indicators as a precaution against any future 

problems. But if the impact is not successful in correcting the problem then the monitoring 

agency engages in a learning process. This involves evaluating why the expected response did 

not occur and making any necessary corrections to the institutional structure or the indicators and 

model to avoid the same problem in the future. This phase of the monitoring cycle will disclose 

whether the monitoring system is properly designed or whether there are changes to be made in 

order to achieve the expected results in the future. The expected impact may not have been 

realized because one or more stakeholders did not follow through on the agreed plan of action, or 

because the expected response was incorrectly identified through the diagnostic and modeling 

frameworks. Once the cause of the unexpected response has been identified, appropriate 

modification to the indicators, model or institutional structure may be required. This built in 

learning process should, over time, lead to continuous refinement in the data collected at the 

alarm and diagnostic stages, more accurate specifications of the biophysical and economic 

relationships in the model, and to strengthening of the institutional process for effecting 

corrective actions. 

 

 ILLUSTRATION OF THE OPERATIONAL CYCLE OF THE MONITORING SYSTEM  
 

The Operational Cycle can be illustrated with a hypothetical example for the Arenal-

Tempisque watershed. Let us assume that a monitoring system is already in place and alarm 
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indicators with established baselines are being monitored on a regular basis for the various 

components of the watershed, as described in Chapter 5. In particular, the composition and 

health of the benthic macro-invertebrates are being measured periodically. As suggested by 

Martinez Ocampo (2000), assume that during one such monitoring exercise it was discovered 

that the sensitive benthic invertebrates consisted of only 10 percent of the total community, 

which is below the threshold level of 15 percent. As shown in Figure 7.1, which is the 

operational cycle of Chapter 2 adapted to this hypothetical example, the alarm bells sound off 

and a host of diagnostic indicators kick in as we move clockwise from the top right hand corner. 

The alarm suggests that the wetland ecosystem may be subject to stress from chemical pollution, 

possibly from the agricultural sector. However, the alarm could be false, say due to measurement 

error, or episodic, because of some localized or temporary adverse conditions (e.g., a chemical 

spill in the area or a low probability storm runoff event) or some other factor. The task of the 

diagnostic indicators will be to develop more reliable and detailed information on the state of the 

wetlands, verify whether the problem is indeed serious and attempt to establish the cause of the 

change. The term “attempt” is used here because for some changes, no cause may immediately 

be found and an elaborate expert consultation and research effort may be necessary.  

A combination of several diagnostic indicators could be activated at this stage. Further 

readings of the macro-invertebrates may need to be taken at other sites in the wetlands and 

irrigation drainage canals to identify the extent of the problem and the areas from which 

additional agro-chemical pollution may be originating. Use of GIS mapping  
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Let us assume for simplicity, that one possible cause discussed in the above dialogue was 

a recent increase in rice prices in the world market and a possible switching of cropped area from 

sugar  to rice because of a change in relative prices. Participants in the dialogue pointed out that 

they had interviewed farmers during extension visits and several had increased or were 

considering an increase in their rice acreage at the expense of sugarcane. They were also 

planning to grow more rice during the rainy season on non-irrigated land. The participatory 

dialogue upon further deliberation, developed a consensus estimate for the possible model 

simulations that could be done with rice acreage. The participants wanted to know how the 

wetland and fisheries environmental services would be impacted if indeed there is a trend 

towards increased rice production in the area at the expense of sugarcane. What would be the 

magnitude of externality damages and how would this new development affect the effective life 

of the downstream ecosystem?  

The dialogue concluded that they would like to see the results for a model run with an 

increase of rice acreage by 10 percent a year for the next 5 years. The Watershed Management 

Committee (WMC) obtained new model runs for this scenario shown in Table 7.1. This table 

shows the payoff matrix with annual values (in million dollars), assuming a rice area increase of 

10 percent per year for 5 years in a row. The table compares two scenarios: scenario 1 in which 

rice area displaces sugarcane at the rate of 10 percent a year for 5 years and scenario 2 which 

provides the business-as-usual case of rice area remaining constant. Notice that these numbers 

are annual values for the first five years, since the discounted present values aggregate over an 

infinite horizon and may not really capture the short-run shock to the system. 
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Table 7.1—Annual irrigation, wetland and fishery benefits when rice area displaces 
sugarcane (million dollars) 
 

Year 1 Year 2 Year 3 Year 4 Year 5 

Scenario Scenario Scenario Scenario Scenario 

 

1 2 1 2 1 2 1 2 1 2 
Profit from 
Irrigation 11.5 9.1 12.0 9.4 12.3 9.6 12.8 9.8 13.3 10.0 

Benefit from 
Wetland 

3.6 3.6 3.1 3.1 2.6 2.7 2.2 2.3 1.8 2.0 

Profit from 
Fishery 

6.2 6.2 5.1 5.2 4.1 4.2 3.2 3.4 2.4 2.7 

Scenario 1. Rice output price increase by 10% leading to rice acreage expansion by 10% per year for 5 
years, substituting into sugarcane. 

Scenario 2.  Baseline case: rice output price and area remain constant. 

  
 
 

The table shows that there is a clear a divergence between the two scenarios that shows 

up in higher annual benefits from the second year on with the increasing rice acreage. The model 

also computes the reduction in the effective life of the ecosystem from this 5-year shock. 

Wetland services will decrease to zero in 52 years under the shock relative to 65 years in the base 

case. Similarly, fishery benefits will decline to zero in 38 years, relative to 48 years in the base 

case. Once again, these numbers reveal the importance of looking at longterm effects and not just 

the dollar values of ecosystem benefits.  

The model results suggest a clear need for corrective action in this case. We next move to 

the “Desired Action” phase of Figure 7.1. A whole range of policy measures can be considered 

to reduce the impact of increased rice production and pesticide use. These could be briefly listed 

as follows: (i) a tax on the output price of rice that restores the pre-shock relative price between 

rice and sugarcane; (ii) a tax on chemicals used in rice production;  (iii) a new program for 

Integrated Pest Management in rice; and (iv) develop new pest-resistant varieties of rice that 

could be grown without heavy application of chemicals. Options (i) and (ii) could be problematic 

since a tax on rice or chemicals in the Arenal region and not in other rice producing regions may 

be politically infeasible and create tension between regions. Option (iii) and (iv) raise the issue of 

who will pay for the IPM or plant breeding programs. Would the intended beneficiaries such as 

the wetlands and the fisheries sectors pay? Should public moneys be used, perhaps justified on 

the grounds that increased rice production has social benefits such as cheaper food prices for 
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urban consumers, and increased self-sufficiency and national food security? Does one apply the 

‘Polluter Pays’ principle in this context?   Other questions may also arise about options (iii) and 

(iv). How long will such programs take to produce results and what may be the cost? Who will 

undertake the plant breeding option? Does the country have the capacity for a scientific research 

program? Does it need external scientific assistance?  

Many other policy actions could be considered, although not discussed here. These 

alternatives could be discussed at length among the stakeholders, which may include the WMC, 

as well as any other parties that may have important information or could provide useful input in 

the discussions. For example, if one of the options is to develop or adapt pest-resistant varieties 

of rice, then plant breeders and agronomists from the international scientific community could be 

invited to provide input on the feasibility of the program or whether such rice varieties may 

already be available off the shelf.  

The model could be used to evaluate the most promising courses of action. The results 

would show the relative effectiveness of different approaches in correcting the pesticide runoff 

problem, and the associated costs and benefits to different stakeholders. The results would be 

used to inform the discussions among key stakeholders in deciding on their course of action. 

Table 4.8 in Chapter 4 shows, for example, the effect of introducing a pesticide tax on rice, and 

similar results could be obtained for the increasing rice area scenario. Some of these simulations 

may require some upgrading of the agriculture component of the model to better reflect 

technology and pest management choices as a function of the different varieties, fertilizers and 

pesticides used. The model may also need to allow for acreage responses to rice or pesticide 

taxes, as well as inter-regional responses. That is, if the taxed rice grown in the region cannot 

compete with rice grown elsewhere, rice production will shift to other regions, and farmers in the 

watershed may switch back to sugarcane or experiment with other crops. In short, examining this 

problem in all its dimensions may require a model with a more sophisticated specification of the 

farming sector. It is important to note that the model is a tool that is used only when stakeholders 

ask for answers. This avoids the problem of a monitoring system which is driven by the model, 

and the possibility of over-investing in the model, making it too complicated and cumbersome, 

and therefore opaque in terms of generating insights on key monitoring and policy questions. 

Let us assume that the stakeholders agree upon a common course of action involving the 

imposition of a pesticide tax in the region. From the circular flow diagram, the next step in the 
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monitoring cycle is ‘Implementation.’ The next stage involves developing response indicators to 

verify if the policy action is having the desired effect. In this case, participatory approaches 

could be undertaken to determine if rice growing has become less economically attractive as a 

result of the tax. It is quite possible that unintended consequences may occur, such as the illegal 

importation of cheap pesticides that may cause even greater damage on the downstream 

ecosystem. This also means that new alarm indicators may need to be developed, such as the 

precise type of chemicals rice farmers use. Since each pesticide or fertilizer may have differential 

impacts on the environment, the model could be upgraded by specifying separate damage 

functions for each major category of chemicals.  

If the expected response to the tax is the gradual decrease in chemical use, we expect to 

see a gradual resurgence in the number of sensitive macro-vertebrates in the wetlands. This may 

only happen slowly and the system may have to be on “red alert” for a period of time. Once the 

indicators see a drop in the value of the alarm indicators, the monitoring system can over time, 

go back into a periodic checking of the alarm indicators.  

If the expected response fails to occur, the monitoring system needs to trigger the 

feedback response to see what went wrong. There are many possible reasons for a mismatch 

between expected response and actual response. These may include incorrect assumptions used 

in the model, conditions and policies not captured by the diagnostic indicators; a failure in the 

implementation of the desired actions and a lack of capacity or knowledge within the relevant 

institutions and stakeholders. Another possibility is misconceptions or lack of knowledge about 

the causal links within the watershed. In that case, a learning or research component needs to be 

added to the monitoring program cycle. 

The feedback mechanism included in the policy relevant monitoring system also plays a 

role in detecting necessary changes in the assumptions and causal relationships in the model and 

the selection of relevant alarm and diagnostic indicators. For instance, after the above cycle, one 

may decide that the previous alarm indicator system needs strengthening. That is, the 

measurement of invertebrates is insufficient and needs to be supplemented by new alarm 

indicators that measure specific chemicals in the runoff and at strategic points in the area. If the 

originally selected alarm and diagnostic indicators are proved to be irrelevant, or insufficient, 

they could be replaced. 
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Concluding Remarks  

These same principles apply to other parts of the watershed such as soil erosion from the 

upstream areas and water availability in the upstream areas. The corresponding alarm indicators 

could be the land use changes that show an increase in land converted from forests to cultivated 

land, or an increase in forage crops that goes beyond the established threshold. The model is 

activated, analyzes what the damage is of the land use change, whether stakeholders should react 

to it or not considering the various costs (e.g. reduced electricity production) and benefits (e.g. 

increased profits from dairy farming), and in that case in what direction the actions should go. 

When the analysis has been carried out, the specific actions still need to be determined. For 

example, if the outcome of the analysis is that the planned land use change needs may impose 

serious externality costs on the downstream environment, several key questions need to be asked 

and answered, through a similar process of stakeholder dialogue and learning by doing. In this 

case, the modeling of the catchment may need to be upgraded with detailed specification of land 

use decisions.  
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8.  POLICY RELEVANT MONITORING SYSTEMS:  LEARNING LESSONS AND 
LESSONS LEARNED 

 
John A. Dixon 

 
 

The art of sustainable resource management is the art of identifying conflicts and trade-

offs, and taking decisions that balance the needs of the present generation against the future, and 

the gains to individuals against the gains to society at large. As demonstrated in this study, these 

issues are clearly seen in the management of watersheds and the competing demands from 

different users of the ecosystem’s resources, from the top of the watershed to the coastal and 

marine areas at the bottom. The complexity of these systems is multi-layered—from the physical 

links between the various components, to the economic interactions via the generation of 

externalities, to the institutional and social dimension that ultimately determines what changes 

(or compromises) are possible. 

As seen in this application to the Arenal-Tempisque watershed in Costa Rica, this type of 

resource system is one where normal market forces will lead to a sub-optimal outcome. Because 

most of the impacts of resource use decisions are unidirectional—and flow from top to bottom 

due to the force of gravity—externalities are common, and there is little or no incentive for the 

various stakeholders to work together. The rancher in the area above the reservoir has no 

incentive to take steps to control erosion or change patterns of water flow to benefit the various 

downstream users—including the power generating authorities, mid-level irrigated agriculture or 

tilapia fish farms, or the downstream coastal wetlands or coastal fishery. In fact, the coastal 

wetland and artisanal fishermen are potentially the most affected by all of the upstream actions, 

and yet have no economic (nor usually institutional) way to influence any of the decisions that 

affect their ecosystem, their wellbeing, and their wealth. 

Hence the importance of the linked environmental-economic analysis that is presented 

here, and the role for indicators to help monitor what is happening, and elicit policy responses, 

when problems arise. We call this a Policy Relevant Monitoring System (PRMS) and the 

intention is to both inform and empower the various stakeholders (and decision makers) within 

the watershed so that serious problems can be avoided, and the social welfare of the watershed as 

a whole can be maximized. Identification of potential problems, and their solutions, is only the 

first step. Implementation of new policies requires consultation and the coming together of 
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different parties (stakeholders), many of whom have no personal (nor economic) interest in co-

operating. Thus the importance of the role of Government or organized stakeholder or 

management groups. 

The analysis presented here of the application of this approach in the Arenal-Tempisque 

watershed in Costa Rica indicates both the potential for (and limitations of) this methodology. It 

is based on available data and our understanding of the functioning of the watershed and the 

various stakeholders. The process of developing the model and the associated indicators involved 

much learning and also highlighted the remaining areas of uncertainty. Hence, the results should 

not be seen as a concrete management proposal. Rather, the results are indicative of the types of 

answers this PRMS approach can produce, and identifies areas deserving of closer attention and 

additional work. 

Nevertheless, there are some important lessons that can de drawn from this study and that 

have wider applicability. The major findings of the application of the PRMS in the case of the 

Arenal-Tempisque watershed follow. 

 

Major Findings 

A strength of this approach is the explicit linking of the physical–economic–institutional 

systems within a single framework that uses indicators to transmit information and serve an early 

warning function. The analysis is simplified by the fact that this is a watershed where the force of 

gravity (and flowing water) means that most effects are unidirectional (from the upper watershed 

to the coast). The same approach can be used in other settings (such as an urban area, or within a 

marine environment); but will normally require additional work to clearly specify the nature, 

size, and direction of externalities. 

The associated economic model and the payoff matrix explicitly identify the winners and 

losses of any change in the management system, and the size and location of external effects (the 

economic externalities). In essence this allows both a traditional private analysis of actions 

(sometimes referred to as a financial analysis) as well as a social-welfare analysis (also called an 

economic analysis) of outcomes. The Payoff Matrix also provides a great deal of other useful 

information: 

• The diagonal elements of the Payoff Matrix represent the private (usually financial) 

perspective while the off-diagonal elements indicate the externalities associated with each 
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diagonal element. And the externalities can be either positive or negative. In essence, the 

diagonal elements show what the net benefit from any activity are estimated to be, and the 

off diagonal elements show how much externalities are affecting the bottom line. When 

summed across all activities in the watershed, the Payoff Matrix therefore represents the 

total social welfare of the ecosystem, and indicates where there are important 

opportunities for gains to be made. 

• The Payoff Matrix helps identify those impacts and links in the economic/ecosystem 

being studied, and this information helps inform the selection of alarm and diagnostic 

indicators for both monitoring and evaluating possible policy responses. This continuous 

learning process helps to more efficiently use scarce resources, both in identifying what to 

monitor (the important externalities in the Payoff Matrix), and how to do it (the alarm and 

diagnostic indicators). 

• The analysis of links and the use of the Payoff Matrix allow the identification of potential 

“partners” or natural allies in any negotiations between groups, and also identifies the 

monetary amounts at stake (especially from the private, financial perspective as seen in 

the diagonal elements) of any proposed management change. Although this information 

does not guarantee better outcomes, it definitely identifies those who should be involved 

in management discussions, and the likelihood for potential success. 

Since each diagonal element represents the private benefit obtained from an activity, 

then in the absence of enforceable property rights (or “rights to pollute/ create externalities”) the 

diagonal value also represents the MINIMUM that those involved in the activity will be willing 

to accept to stop carrying-out that activity. Similarly, the off-diagonal elements in each column 

represent the externalities created by the activity on the diagonal. (These off-diagonal elements 

in each column are usually negative, but in some cases may be positive.) The sum of these 

externalities, therefore, represents the collective MAXIMUM that others will be willing to pay to 

“buy-out” the activity on the diagonal, and thereby avoid these externalities. Depending on the 

relative size of the diagonal value versus the column values for the same diagonal activity, one 

can see whether or not social  welfare is increased by allowing any activity to continue at the 

present scale, or to reduce its scale or even completely eliminate it. (Of course, if an activity 

creates positive externalities, the socially desirable outcome is to increase the scale of the 

activity). 
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There is a parallel analysis of the activities on the diagonal and the values in the row 

associated with each diagonal activity. As before, the value on the diagonal represents the private 

benefit from the activity and these benefits are determined by both what goes on within the 

activity and by any externalities that affect the activity. The externalities that affect the diagonal 

activity are seen in the row associated with each diagonal element—and just as before, one can 

compare the value on the diagonal with the externality values in the row to see whether or not it 

pays for the activity on the diagonal to try to negotiate with, or prevent, other activities that 

affect net profitability. 

The Payoff Matrix clearly shows why people at the top of the system may have major 

impacts, for good or for ill, on others at all levels within the system (seen in the values in the 

column below the diagonal element), and yet these same stakeholders have little or no incentive 

to change their individual, profit-maximizing behavior, regardless of the size and sign of any 

externalities generated. Even though the Payoff Matrix clearly indicates the potential for a 

Coasian solution, institutional rigidities and information problems usually prevent this from 

happening.   

If the example of the Arenal-Tempisque watershed illustrates the potential for this 

approach, it also highlights a number of limitations: 

First, the approach is fairly data-intensive. A major contribution of the approach is the 

attempt to develop an efficient, and effective, monitoring system that is built around the concept 

of alarm—diagnostic—response indicators. Previous efforts to develop indicator systems for 

monitoring have often failed to make the link to policy responses, and have ignored the basic 

principle of cost-effectiveness and that often “less is more”. The approach presented here 

provides a way to identify different sets of indicators to monitor, and their explicit role in the 

analytical and policy response process. The “alarm” indicators are designed to be transparent, 

low cost and easy to monitor. If an alarm is sounded, then the more complex diagnostic 

indicators come into play, and later the policy response indicators are used to measure impact of 

the changes made. Still, considerable knowledge is often required to understand the causal links 

between actions and impacts in different parts of the watershed. 

Second, the analytical demands and complexity of the analysis increase dramatically with 

the scale of the area being studied. The larger the area included, the more the different types of 

users (stakeholders), the more different types of activities taking place within the watershed (or 
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system), the harder it is to understand the causal links, and identify and fill in the off-diagonal 

cells (the externalities) in the Payoff Matrix. 

Third, and perhaps most importantly, the identification of the externalities and the 

potential actions to correct or minimize them is an essential, but not sufficient step. Taking 

effective action so that the individual stakeholders will change their individual welfare-

maximizing behavior usually requires intervention by some higher authority that can force 

individuals to accept some modest private cost in the name of a larger social gain. To accomplish 

this requires information on the size of these potential costs and benefits (as derived from the 

Payoff Matrix) as well as political will to enforce the improved management pattern.  

The approach presented here can be a powerful tool for helping this process, and helping 

to inform the general public and the political process. This is not always easy to do, however, 

especially if some of the stakeholders, who are being asked to make these changes, are “rich and 

powerful”.  There may be a way around this problem, however.  One other potential outcome 

from the PRMS and Policy Matrix approach is that the various stakeholders in the system being 

studies (both large and small stakeholders) are themselves empowered by the information 

presented.  Even in the absence of government or other outside intervention, the fact that the 

principal actors have information on the size and direction of externalities opens up the 

possibility that coalitions can be formed, and negotiations can take place between the different 

groups, hopefully leading to an improved outcome.  The results of the analysis also highlight the 

interdependencies between different groups in the watershed (a farmer may also be a part-time 

fisherman and thus one activity [use of chemicals in agriculture] has direct effects on the other 

[the health and productivity of a downstream fishery].)  Recognition of these links helps promote 

a search for co-operative solutions. 

Both monitoring and economic data can thus help to reduce the “informational 

asymmetries” commonly found in such ecosystems.  While not guaranteeing a Pareto superior 

outcome, the increased level of information and transparency certainly can be powerful forces to 

get the various agents together “around the table” to seek ways to minimize externalities and 

thereby increase the generation of net benefits. These net benefits are then seen on the diagonal 

of the Policy Matrix, which serves a valuable feedback function as various management options 

are discussed. 
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 BROADER APPLICABILITY OF THE PRMS APPROACH 
 

 Although the example presented here is based on the study of one watershed in Costa 

Rica, the approach has much broader applicability. The basic elements can be used in most 

natural systems, whether they be temperate forests, African savannas, or Pacific coastal 

ecosystems. What is required is some “boundary of the analysis” that permits an understanding, 

and modeling, of an ecosystem. As seen here, it is important that one can identify and quantify 

the links between actors in the system, and in this way estimate the type, location and scale of 

externalities. The policy responsive monitoring system then flows from this understanding of the 

physical/ economic system. 

The same approach can also be applied in urban areas. This will be more challenging in 

many cases since the links between different actors may be quite complex and therefore creating 

a Payoff Matrix may require considerable scientific and technical information. Air pollution, for 

example, comes from many different sources, is “mixed” in the airshed, and has many different 

types of impacts. Water pollution, since the flows are easier to monitor and gravity does play an 

important role, may be easier to model. In either case, the application of this approach to an 

urban resource management problem will promote explicit consideration of the links between the 

major actors, the importance of externalities, and the indicators that are needed to monitor and 

manage the system. 

Scale is always an issue, but should not limit the application of the approach. Although 

smaller systems may be easier to model and the linkages between actors may be more 

transparent, there is conceptually no reason why this approach could not be applied at a broad 

geographic scale. In fact, there may be some global environmental issues ( ozone depleting 

substances, pollution of international waters, maybe even green house gas emission) where one 

could consider using this approach to construct a rough Payoff Matrix. 

In sum, the methodology illustrated here presents a roadmap to a better, more inclusive 

analytical approach to resource management by explicitly highlighting and quantifying the 

“stakes” involved in this process, and why improved resource management decisions (from a 

systems perspective) are always so difficult to implement. By quantifying the magnitudes of both 

the net benefits and the externalities, the Payoff Matrix highlights the potentials for 

improvements in overall social welfare. The explicit linking of indicators to issues of concern to 
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policy responses, is also an important contribution to improved resource management. However, 

political will is often ultimately needed to make improved resource management happen. 
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