
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


 
 

RISK AND SUSTAINABLE 
MANAGEMENT GROUP 
WORKING PAPER SERIES 

 
 

 

TITLE:  

Managing Option Trading Risk 
with Greeks when Analogy 
Making Matters 
 

 

AUTHOR:  

Hammad Siddiqi 
 

 

Working Paper: F13_2 
 

2011 

 

FINANCE 

 

 

 

Schools of 
Economics and 
Political Science 

The University of 
Queensland 

St Lucia 

Brisbane 

Australia 4072 

 

 

 

Web: 
www.uq.edu.au 

 2013 



1 
 

 

Managing Option Trading Risk with Greeks when Analogy Making Matters 

Hammad Siddiqi 

h.siddiqi@uq.edu.au 

There are various types of risk associated with trading options. Traders typically manage such risks 
with the help of various partial derivatives of option prices known as Greeks. Experimental and 
anecdotal evidence suggests that mental accounting matters in the valuation of options. Mental 
accounting changes the values of Greeks significantly with crucial implications for risk management. 
I show that for a call option, delta-risk is under-estimated, gamma risk is over-estimated, and the 
value-decay due to the passage of time is under-estimated. For a put option, all three types of risks 
are over-estimated. I also show that covered call writing is more profitable when mental accounting 
influences prices. 
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Managing Option Trading Risk with Greeks when Mental Accounting Matters 

 

Framing of assets into mental accounts has crucial implications for how they are perceived. Shefrin 

and Statman (1993) suggest that features of similarity play an important role in how assets are 

grouped into mental categories. A call option on the stock of X Company has two key features, one 

identifying it as a call option and the other identifying it as relating to the stock of the X Company. 

Investors are more likely to co-categorize the call option with a share of the X Company than with a 

share of another firm.   

In fact, many professional financial traders consider a call option to be a surrogate for the 

underlying stock and advise investors to consider replacing the underlying with the corresponding 

call option.1 It appears that they frame a call option in the same mental account as the underlying. 

Consequently, similar goals may be set for the two assets. In a series of laboratory experiments, it 

has been found that mental accounting matters for pricing financial options. The first such 

experiment in a binomial setting is Rockenbach (2004) who finds that the hypothesis of mental 

accounting of a call option with the underlying explains the data best, which implies that participants 

demand the same expected return from a call option as available on the underlying. Experiments 

reported in Siddiqi (2012) and Siddiqi (2011) explore this further and find that the mental accounting 

of a call option with its underlying is due to the similarity in payoffs between the two assets as 

adding a third risky asset with dissimilar payoffs has no effect. It appears that participants in 

laboratory markets consider a call option to be a surrogate for the underlying without receiving any 

coaching to this effect due to the similarity in their payoffs. Arguably, investors in financial markets 

are even more likely to consider a call a surrogate for the underlying as they receive such advice from 

professional traders. 

 In this paper, we investigate the implications of mental accounting for management of 

option trading risk. Framing a call option in the same mental account as the underlying due to 

similarity in their payoffs has crucial implications for risk management. Traders make us of various 

                                                           
1 As illustrative examples, see the following: 
http://ezinearticles.com/?Call-Options-As-an-Alternative-to-Buying-the-Underlying-Security&id=4274772, 
http://www.investingblog.org/archives/194/deep-in-the-money-options/, 
http://www.triplescreenmethod.com/TradersCorner/TC052705.asp, 
http://daytrading.about.com/od/stocks/a/OptionsInvest.htm 

http://ezinearticles.com/?Call-Options-As-an-Alternative-to-Buying-the-Underlying-Security&id=4274772
http://www.investingblog.org/archives/194/deep-in-the-money-options/
http://www.triplescreenmethod.com/TradersCorner/TC052705.asp
http://daytrading.about.com/od/stocks/a/OptionsInvest.htm
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option Greeks known as delta, gamma, theta, vega, and rho for managing risk that arises from 

trading options. I show how mental accounting changes the values of these Greeks. Mental 

accounting changes the values significantly, potentially leading to large losses due to incorrect 

hedging. So, if traders believe that mental accounting is influencing prices then they should use the 

updated values of the Greeks.  

 Mental accounting, a term coined in Thaler (1980), is a broad concept. Thaler (1999) defines 

mental accounting as a set of cognitive operations used by individuals to organize, evaluate and keep 

track of financial activities. There is no comprehensive theory of the set of restrictions people place 

on the creation of mental accounts. Following Shefrin and Statman (1993), I propose that features 

of similarity play a crucial role (see Tversky (1977)). To distinguish it from other types of mental 

accounting, I refer to mental accounting due to similarity judgment as analogy making   

The binomial model developed by Cox, Rubinstein, and Ross (1979) is a powerful tool for 

approximating option prices especially when closed-form solutions are not available. In this paper, I 

refer to this binomial model as the binomial Black Scholes model to differentiate it from the 

binomial approximation of the mental accounting model, which I call the binomial mental 

accounting model. The Greeks (delta, gamma, theta, vega, and rho) are crucial for professional 

traders as they are the tools used for hedging trading risks.  When analytical formulas are not 

available (for example, for American put options), these Greeks are typically numerically 

approximated via binomial trees. 

I illustrate the changes in the values of the Greeks caused by mental accounting through a 

binomial model of a European call option that does not pay dividends before expiry. As a closed-

form solution is also available for its price, I also provide updated analytical formulas for the Greeks 

adjusted for mental accounting. I also show that mental accounting via analogy making provides a 

new behavioral explanation for the popularity of covered call strategy (different from the 

explanation in Shefrin and Statman (1993), which relies on prospect theory and mental accounting).  

 Section 2 illustrates the different price predictions of the principle of no-arbitrage (basis for 

binomial and Black Scholes pricing) and the hypothesis of “mental accounting of call with 

underlying due to similarity judgment (analogy making)” through a simple example. Section 3 shows 

that the delta-hedging portfolios grow at different rates under the two cases. Section 4 shows how 

Greeks change with mental accounting in a binomial setting. Section 5 provides analytical formulas 
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for Greeks adjusted for mental accounting. Section 6 looks at the profitability of covered call 

strategy under mental accounting vs. no arbitrage pricing. Section 7 concludes. 

 

2. Mental Accounting via Analogy Making: A Simple Example 

To understand the role of analogy making in formation of a mental account and its consequences, 

consider an investor in a two state-two asset complete market world. The investor has initially put 

his money in the two assets: A stock (S) and a risk free bond (B). The stock has a price of $60 today. 

In the next period, the stock could either go up to $108 (the red state) or go down to $30 (the blue 

state). Each state has a 50% chance of occurring. The bond costs $60 today and it also pays $66 in 

the next period implying a risk free rate of 10%. Suppose a new asset “A” is introduced to him. The 

asset “A” pays $98 in the red state and $20 in the blue state. How much should the investor be 

willing to pay for it? 

 Finance theory provides an answer by appealing to the principle of no-arbitrage: identical 

assets should offer the same returns. Consider a portfolio consisting of a long position in S and a short 

position in 0.151515 of B. In the red state, S pays $108 and one has to pay $10 due to shorting 

0.151515 of B resulting in a net payoff of $98. In the blue state, S pays $30 and one has to pay $10 

on account of shorting 0.151515 of B resulting in a net payoff of $20. That is, payoffs from S-

0.151515B are identical to payoffs from “A”. Hence, according to the no-arbitrage principle, “A” 

should be priced in such a way that its expected return is equal to the expected return from (S-

0.151515B). It follows that the no-arbitrage price for “A” is $50.90909. 

 In practice, constructing a portfolio that replicates “A” is no easy task. When simple tasks 

such as the one described above are presented to participants in a series of experiments, they seem 

to rely on analogy-making to figure out their willingness to pay. See Rockenbach (2004), Siddiqi 

(2011), and Siddiqi (2012). So, instead of trying to construct a replicating portfolio which is identical 

to asset “A”, people find an actual asset similar to “A” and price “A” in analogy with that asset. That 

is, they rely on the principle of analogy: similar assets should offer the same returns rather than on the 

principle of no-arbitrage: identical assets should offer the same returns.  
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Asset “A” is similar to asset S. It pays more ($98) when asset S pays more ($108) and it pays 

less ($20) when asset S pays less ($30). Expected return from S is 1.15 �0.5×108+0.5×30
60

�. According 

to the principle of analogy, A’s price should be such that it offers the same expected return as S. 

That is, the right price for A is $51.30435. 

In the above example, there is a gap of $0.395 between the no-arbitrage price and the 

analogy price.  Rational investors should short “A” and buy “S-0.151515B”. However, if we 

introduce a small transaction cost of 0.5%, then the total transaction cost of the proposed scheme 

exceeds $0.395, preventing arbitrage. The transaction cost of shorting “A” is $0.2565 whereas the 

transaction cost of buying “S-0.1515B” is $0.345 so the total transaction cost is $0.6019. Hence, in 

principle, the deviation between the no-arbitrage price and the analogy price may not be corrected 

due to transaction costs even if we assume perfect replication. Note that asset “A” is equivalent to a 

call option on “S” with a strike price of 10. 

 

3. Binomial Mental Accounting Model vs. Binomial Black Scholes Model 

In this section, the difference between the binomial mental accounting model and binomial Black 

Scholes model is illustrated with a three period numerical example. In the same example, we show 

how the Greeks take different values in the binomial mental accounting model when compared with 

the binomial Black Scholes model.   

 Consider a binomial model with the following parameter values: Up factor=2, Down 

factor=0.5, no. of binomial periods=3, risk free interest rate per binomial period=0.01, there are no 

dividends. The objective is to price a European call option with a strike of 90. The probability of up 

movement is 0.5. The current stock price is 100. Hence, the expected (gross) return per binomial 

period on the stock is 1.25. 

 Figure 1 shows the binomial model and the call prices under the two approaches. The price 

of call under the binomial Black Scholes approach is denoted by Call-NA, whereas the price of call 

under the mental accounting approach is denoted by Call-MA. The expiration values are denoted by 

Call. Call-NA is calculated by using the portfolio replication argument and using backward 

induction. Call-MA is calculated by equating the expected return on call with the expected return on 



6 
 

the underlying and using backward induction. The position in the risk free asset is denoted by B. 

The delta of Call-NA is denoted by x-NA, whereas x-MA denotes the delta of Call-MA.  

Two things should be noted. 1) Call-MA is larger than Call-NA before expiry, if call prices are 

different from zero. 2) x-MA is larger than x-NA until one period before expiry when x-MA and x-

NA become equal to each other. 

 
 
Up 2 

        Down 0.5 
        Prob. Of 

Up 0.5 
   

Stock 400 Stock 800 
 Strike 90 

   
x-NA 1 Call 710 

 Interest 
Rate 0.01 

   
B -89.1089 

   Stock Price 100 
   

Call-NA 310.8911 
   E(Return) 1.25 

 
Stock 200 x-MA 1 

   
   

x-NA 0.912871 Call-MA 328 
   

   
B -53.7202 

  
Stock 200 

 
   

Call-NA 128.854 
  

Call 110 
 

 
Stock 100 x-MA 0.946667 Stock 100 

   
 

x-NA 0.775924 Call-MA 148.8 x-NA 0.733333 
   

 
B -26.0701 

  
B -36.3036 

   
 

Call-NA 51.52234 
  

Call-NA 37.0297 
   

 
x-MA 0.874667 Stock 50 x-MA 0.733333 

   
 

Call-MA 66.56 x-NA 0.493729 Call-MA 44 
   

   
B -12.221 

  
Stock 50 

 
   

Call-NA 12.46544 
  

Call 0 
 

   
x-MA 0.586667 Stock 25 

   
   

Call-MA 17.6 x-NA 0 
   

     
B 0 

   
     

Call-NA 0 
   

     
x-MA 0 Stock 12.5 

 
     

Call-MA 0 Call 0 
 

          Figure 1 
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Suppose one writes this call option. How can this position be hedged? If the binomial Black-Scholes 

model is correct, then the delta hedging portfolio, 𝑆 × 𝑥𝑁𝐴 − 𝐶𝑎𝑙𝑙𝑁𝐴, rebalanced every period 

leads to a risk-free return. The value of the delta-hedging portfolio at time-0 (when the stock price is 

100) is: 100 × 0.775924 − 51.52234 = 26.07006. In the next period, the stock price can either 

go up to 200 or go down to 50. If it goes up, the value of the delta-hedging portfolio created earlier 

becomes: 200 × 0.775924 − 128.854 = 26.3308. If it goes down, the value of the portfolio 

becomes: 50 × 0.775924 − 12.46544 = 26.3308. As 26.3308
26.07006� = 1.01, the delta-

hedging portfolio grows at a rate equal to the (gross) risk-free rate per binomial period. 

 Suppose the stock moves up in the next period, the relevant value of delta is now 0.912871. 

The value of the rebalanced delta-hedging portfolio is: 200 × 0.912871 − 128.854 = 53.7202. 

In the following period, the stock price can either go up to 400 or go down to 100. If it goes up to 

400, the portfolio value becomes: 400 × 0.912871 − 310.8911 = 54.2574. If it goes down, the 

portfolio value becomes: 100 × 0.912871 − 37.0297 = 54.2574.  54.2574
53.7202� = 1.01. 

Hence, once again, the portfolio grows at the risk-free rate per binomial period. 

It is easy to see that the delta hedging portfolio (rebalanced every period) grows at the risk 

free rate 𝑟 . Such dynamic hedging, in the continuous limit, leads to the Black Scholes option pricing 

formula.  

 If mental accounting determines prices then the relevant delta hedging portfolio is 𝑆 ×

𝑥𝑀𝐴 − 𝐶𝑎𝑙𝑙𝑀𝐴. The value of delta hedging portfolio at the start when the stock price is 100 is 

20.9067. This means that if an investor has written a call option for 66.56 and has shorted 0.874667 

units of the underlying, then the value of the portfolio is 20.9067. Suppose, in the next period, the 

stock price goes up to 200. What is the value of the delta-hedging portfolio created earlier? The 

value is 200 × 0.874667 − 148.8 = 26.1334. If the stock price goes down to 50 instead, then the 

value is 50 × 0.874667 − 17.6 = 26.1334. That is, regardless of which state of nature is realized 

in the next period, the delta-hedging portfolio created a period earlier grows to the same value of 

26.1334. Hence, the rate of growth of the delta hedging portfolio per period under mental 

accounting is 26.1334
20.9067� = 1.25, which is equal to the expected return on the underlying. 

This is no co-incidence. If mental accounting determines prices, then the delta-hedging portfolio 
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grows at a rate equal to the expected return on the stock throughout the binomial period (see Siddiqi 

(2013)). It has been shown that, if mental accounting determines call prices, then a new option 

pricing formula is obtained in the continuous limit (see Siddiqi (2013)).  

 What happens when delta-hedging is done while ignoring mental accounting? If mental 

accounting is influencing prices, then the true value of delta, at time-0, is 0.874667. If delta is 

incorrectly estimated to be 0.775924, then the value of the delta-hedging portfolio at time-0 is 

100 × 0.775924 − 66.56 = 11.0324. In the next period, if the stock price goes up to 200, the 

value becomes: 200 × 0.775924 − 148.8 = 6.3848. If the stock price goes down to 50, the value 

becomes: 50 × 0.775924 − 17.6 = 21.1962. So, under-hedging creates a potential for loss if the 

stock price moves up. 

 

4. Estimating Greeks in a Binomial Setting 

To illustrate how the Greeks change when mental accounting influences prices, delta, gamma, and 

theta are numerically approximated under both the binomial Black Scholes model and the binomial 

mental accounting model. The same binomial tree is used as in the previous section. Let’s denote an 

upward movement on a binomial tree with a superscript ‘+’ and the downward movement on a 

binomial tree with a superscript ‘-’. Consecutive movements are denoted with consecutive signs. 

That is, ‘+-+’ means an upward tick, followed by a downward tick, then an upward tick. It is well 

known that in the binomial tree considered here, the formulas for delta, gamma, and theta are: 

𝑑𝑒𝑙𝑡𝑎 =
𝐶+ − 𝐶−

𝑆+ − 𝑆−
                                                                                                                                        (1) 

𝑔𝑎𝑚𝑚𝑎 =
�𝐶

++ − 𝐶+−
𝑆++ − 𝑆+−� − �𝐶

+− − 𝐶−−
𝑆+− − 𝑆−−�

𝑆++ − 𝑆−−
2

                                                                                          (2) 

 

𝑡ℎ𝑒𝑡𝑎 =
𝐶+− − 𝐶

2∆𝑡
                                                                                                                                        (3) 
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The above formulas are used to calculate the values of respective Greeks and the results are reported 

in table 1.  

 

Table 1 

Numerically approximated Partial Derivatives 

Greeks Binomial Mental Accounting Binomial Black Scholes 

Delta 0.874667 0.775924 

Gamma 0.00048 0.00056 

Theta -11.325 -7.24632 

 

As table 1 shows, if mental accounting determines call prices and the binomial Black Scholes model 

is used to estimate the Greeks for hedging purposes, serious problems arise. As delta is 

underestimated, the naked call writing position would be under-hedged. The extent of time decay of 

the option is also significantly underestimated, whereas gamma is over-estimated.  

As gamma of the stock is zero, buying or selling the stock does not affect it. So, a trader, 

interested in hedging away gamma risk, has to take an appropriate position in other options, often 

on the wrong side of the market. That is, the trader may have to buy overpriced options or sell 

underpriced ones to hedge away gamma risk. If gamma is over-estimated, such positions may be 

more aggressive than what is required to create an effective hedge, adversely affecting profitability. 

Hence, over-estimating gamma may trigger unnecessary trade in options. 

If mental accounting is ignored, magnitude of theta is under-estimated. That is, the extent of 

time decay is under-estimated. So, a long position in a call option will lose value faster than what is 

anticipated with the passage of time. 
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5. Analytical Formulas for Greeks 

As seen in section 3, the delta-hedging portfolio grows at a rate equal to the expected growth rate of 

the underlying. Siddiqi (2013) shows that, in the continuous limit, this results in the following option 

pricing formulas for a European call with no dividends: 

𝐶 = 𝑆𝑁(𝑑1𝑀) −𝐾𝑒−(𝑟+𝛿)(𝑇−𝑡)𝑁(𝑑2𝑀)         (4) 

where 𝑑1𝑀 =
𝑙𝑛(𝑆/𝐾)+(𝑟+𝛿+𝜎

2

2 )(𝑇−𝑡)

𝜎√𝑇−𝑡
  

and 𝑑2𝑀 =
𝑙𝑛�𝑆𝐾�+�𝑟+𝛿−

𝜎2

2 �(𝑇−𝑡)

𝜎√𝑇−𝑡
 

S is the price of the underlying, K is the strike price, (T-t) is time to expiry, 𝜎 is the volatility of the 

underlying’s returns, r is the risk-free rate, and 𝛿 is the risk premium on the underlying. The only 

difference between the Black Scholes formula for European call and the above formula is the 

appearance of 𝛿 in the above formula. That is, if the risk premium on the underlying is zero, the 

above formula converges to the Black Scholes formula. 

 The price of a European put option with mental accounting can be obtained via put-call 

parity: 

𝐾𝑒−(𝑟+𝛿)(𝑇−𝑡)𝑁(−𝑑2𝑀) − 𝑆𝑁(−𝑑1𝑀)                                                                                        (5) 

The appearance of the risk premium on the underlying, 𝛿, is the only difference between mental 

accounting and Black Scholes formulas.  

 Analytical formulas for Greeks with mental accounting are obtained by taking the 

appropriate partial derivatives of the above formulas. 
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5.1. Delta Risk and Consequences of Under-estimating it 

Let C denote the price of a call option and let P denote the price of a put option. We use superscript 

M to denote mental accounting, and superscript B to denote pricing under Black Scholes 

assumptions. The following are the formulas for deltas under mental accounting: 

𝜕𝐶
𝜕𝑆

= 𝑁(𝑑1𝑀)            (6) 

𝜕𝑃
𝜕𝑆

= 𝑁(𝑑1𝑀) − 1 

Where 𝑑1𝑀 =
𝑙𝑛(𝑆/𝐾)+(𝑟+𝛿+𝜎

2

2 )(𝑇−𝑡)

𝜎√𝑇−𝑡
 

The formulas for deltas under Black Scholes assumptions are: 

𝜕𝐶
𝜕𝑆

= 𝑁(𝑑1𝐵)           (7) 

𝜕𝑃
𝜕𝑆

= 𝑁(𝑑1𝐵) − 1  

𝑑1𝐵 =
𝑙𝑛(𝑆/𝐾) + (𝑟 + 𝜎2

2 )(𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
 

As can be seen, the only difference between the two formulas is that the risk premium on the 

underlying appears in the mental accounting formulas. As long as the risk premium on the 

underlying is positive, mental accounting deltas are higher than the Black Scholes deltas (if we 

consider absolute values, then the delta of put under mental accounting is lower than the delta of 

put under Black Scholes). Consequences for individual options are immediate. For a call writing 

position, using Black Scholes delta leads to under-hedging as a smaller quantity of the underlying is 

bought. For a put writing position, using Black Scholes delta leads to over-hedging as a larger 

quantity of the underlying is shorted. 

 Often, traders are interested in portfolio deltas instead of individual deltas. The delta of a 

portfolio of option on the same underlying stock is equal to the sum of the deltas of each 

component option multiplied by the number of options held. A common market practice is to hold 

delta neutral portfolios  Delta neutral portfolios are those portfolios whose values are not affected 
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by a relatively small change in the underlying’s price. Incorrect estimation of delta has serious 

consequences for a typical strategy designed to take advantage of option mispricing.  

To illustrate the risks involved, suppose a trader has created a position as shown in table 2 to 

take advantage of perceived mispricing. He believes that A and C are under-priced, whereas B is 

over-priced. He has purchased 5 units of A, 10 units of C, and has written 25 units of B to take 

advantage of mispricing. Hopefully, in the near future, the prices will converge to their theoretical 

values resulting in a large profit for him. Table 2 also shows hypothetical deltas under Black Scholes 

and mental accounting. 

Table 2 

Delta Calculation for a Hypothetical Options Portfolio 

Option Type Quantity Held Delta (Black Scholes) Delta (Mental Accounting) 

A Call 5 0.6 0.63 

B Call -25 0.65 0.6825 

C Put 10 -0.4 -0.37 

𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑑𝑒𝑙𝑡𝑎 (𝐵𝑙𝑎𝑐𝑘 𝑆𝑐ℎ𝑜𝑙𝑒𝑠) = 5 × 0.6 − 25 × 0.65 + 10 × (−0.4) = −17.25 

𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑑𝑒𝑙𝑡𝑎 (𝑀𝑒𝑛𝑡𝑎𝑙 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔) = 5 × 0.63 − 25 × 0.6825 + 10 × (−0.37) = −17.6125 

 

The trader, in our example, faces significant risks. As the portfolio delta is negative, if the stock price 

moves up before the price discrepancy in options is corrected, he stands to lose a significant amount 

of money. Suppose, he decides to protect himself from such risk by buying the underlying stock in 

sufficient quantity so that the portfolio becomes delta neutral. If each option is over 100 units of the 

underlying, he needs to buy 1725 units of the underlying under the Black Scholes values, whereas he 

is required to buy 1761.25 units under mental accounting to make his portfolio delta neutral. If 

mental accounting is influencing prices, and he uses Black Scholes delta values then his delta risk is 

not eliminated by buying 1725 units of the underlying and he can lose a significant amount of money 

if the stock price moves up slightly. 
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5.2. Gamma Risk and Consequences of Over-estimating Gamma 

From put-call parity, it follows that the gammas for corresponding call and put options are the same. 

The formula for gamma under mental accounting is given by: 

𝛾 = 𝜕2𝐶
𝜕𝑆2

= 𝑁′�𝑑1𝑀�
𝑆𝜎√𝑇−𝑡

= 𝜕2𝑃
𝜕𝑆2

         (8) 

𝑑1𝑀 =
𝑙𝑛(𝑆/𝐾) + (𝑟 + 𝛿 + 𝜎2

2 )(𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
 

If 𝛿 = 0, then the mental accounting formula converges to the Black Scholes formula. If 𝛿 > 0 

then the gamma value under mental accounting is lower than the gamma value under Black Scholes. 

So, if mental accounting influences prices and the Black Scholes model is used to calculate gamma, 

the gamma values are overestimated. 

 Consider a hypothetical portfolio shown in table 3.  Suppose the portfolio has been made 

delta neutral by taking an appropriate position in the underlying.  

 

Table 3 

Gamma Calculation for a Hypothetical Options Portfolio 

Option Type Quantity Held Gamma (Black Scholes) Gamma (Mental Accounting) 

A Call -50 0.015 0.011 

B Call 25 0.013 0.009 

C Put -10 0.015 0.011 

𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝐺𝑎𝑚𝑚𝑎 (𝐵𝑙𝑎𝑐𝑘 𝑆𝑐ℎ𝑜𝑙𝑒𝑠) = −50 × 0.015 + 25 × 0.013− 10 × 0.015 = −0.575 

𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝐺𝑎𝑚𝑚𝑎 (𝑀𝑒𝑛𝑡𝑎𝑙 𝐴𝑐𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔) = −50 × 0.011 + 25 × 0.009− 10 × 0.011 = −0.435 

 

As can be seen from the table, portfolio gamma has been estimated as -0.575 under the Black 

Scholes model, whereas the mental accounting value is -0.435.  Even though the portfolio is delta  

neutral, there is gamma risk. As perceived by a risk manager using the Black Scholes gamma, if the 

stock price moves up slightly, the portfolio will be risk equivalently short by 57.5 stocks. If the stock 

price moves down slightly, the portfolio will be risk equivalently long by 57.5 stocks. Such a risk will 
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not be acceptable to a risk manager who has a tolerance for smaller units of stock equivalent risk. 

Hence, he may be forced to trade options on the wrong side of the market. That is, he may be 

forced to buy overpriced options and/or sell underpriced options adversely affecting profitability. 

 The underlying stock has a gamma of zero, so it cannot be used to eliminate gamma risk. 

Hence, one has little choice but to buy/sell expensive options to reduce gamma risk. Overestimating 

gamma may cause the risk to appear larger than what it actually is. This may result in unnecessary 

trade in expensive options in an attempt to reduce gamma risk. 

 

5.3 Theta Risk and Consequences of Under-Estimating Theta Risk 

The mental accounting formula for theta of a European call with no dividends is: 

𝜕𝐶
𝜕𝑡

= −𝑆𝑁′�𝑑1𝑀�𝜎
2√𝑇−𝑡

− (𝑟 + 𝛿)𝐾𝑒−(𝑟+𝛿)(𝑇−𝑡)𝑁(𝑑2𝑀)                                                                          (9) 

𝑑1𝑀 =
𝑙𝑛(𝑆/𝐾) + (𝑟 + 𝛿 + 𝜎2

2 )(𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
 

𝑑2𝑀 =
𝑙𝑛(𝑆/𝐾) + (𝑟 + 𝛿 − 𝜎2

2 )(𝑇 − 𝑡)

𝜎√𝑇 − 𝑡
 

The mental accounting formula for theta of a European put with no dividends is: 

𝜕𝑃
𝜕𝑡

= −𝑆𝑁′�𝑑1𝑀�𝜎
2√𝑇−𝑡

+ (𝑟 + 𝛿)𝐾𝑒−(𝑟+𝛿)(𝑇−𝑡)𝑁(−𝑑2𝑀)      (10) 

 Theta of a call option under mental accounting typically has a larger absolute value when 

compared with the Black Scholes theta, whereas, mental accounting theta of a put option is typically 

smaller (in absolute value) than the corresponding Black Scholes theta. Such miss-estimation leads to 

the following: 

1) Call options decline in value with the passage of time faster than their anticipated decline rate 

under the Black Scholes assumptions. So, more upward movement in the underlying stock is needed 

to overcome the effect of passage of time if a long call is held. In contrast, if a short position in a 

call is created, and the underlying is not expected to do much, then the portfolio value rises faster 

than anticipated. So, by under-estimating the effect of passage of time on call options, a long call 
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position falsely appears more attractive, whereas, a short call position incorrectly appears less 

attractive than what it actually is. 

2) For a put option, if mental accounting is influencing prices, then the time-decay is typically over-

estimated under Black Scholes. So, a long position is a put option incorrectly appears less attractive 

and a short position falsely appears more attractive then what it should be. In fact, for deep in-the-

money put options, there is a stronger chance that theta is positive than the corresponding chance 

under the Black Scholes model. 

3) Strategies that combine a long position in call with a short position in a put option lose value at a 

faster rate than what is expected under the Black Scholes world. The Black Scholes model under-

estimates the time decay in a call option and over-estimates the time decay in a put option so the 

strategy, Call – Put, incorrectly appears more attractive. Hence, a long synthetic (long call + short 

put with the same strike) loses value at a faster rate, especially in a sluggish market, than what is 

anticipated in the Black Scholes model. 

4) The fact that time-decay of a call option is theoretically under-estimated implies that strategies 

that involve a short position in a call option are more profitable in practice than what is theoretically 

expected, especially when the underlying stock does not do move much. Perhaps, this can partly 

explain the popularity of covered call strategy. A covered call involves combining a writing position 

in a call option with a long position on the underlying. Under mental accounting, return from 

covered call is larger than the expected return from covered call under the Black Scholes model. 

 

5.4 Vega and Rho Risks 

Under mental accounting, as in the Black Scholes model, vega for a call option is equal to the vega 

of a corresponding put option: 

𝜕𝐶
𝜕𝜎

= 𝑆√𝑇 − 𝑡 × 𝑁′(𝑑1𝑀) = 𝜕𝑃
𝜕𝜎

        (11) 

Where 𝑑1𝑀 =
𝑙𝑛(𝑆/𝐾)+(𝑟+𝛿+𝜎

2

2 )(𝑇−𝑡)

𝜎√𝑇−𝑡
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As long as 𝛿 > 0, vega under mental accounting is smaller than vega under the Black Scholes model 

with mental accounting vega converging to Black Scholes vega when 𝛿 = 0. 

 Under mental accounting, call and put option rhos are: 

𝜕𝐶
𝜕𝑟

= (𝑇 − 𝑡)𝑒−(𝑟+𝛿)(𝑇−𝑡)𝐾𝑁(𝑑2𝑀)        (12) 

𝜕𝑃
𝜕𝑟

= −(𝑇 − 𝑡)𝑒−(𝑟+𝛿)(𝑇−𝑡)𝐾𝑁(−𝑑2𝑀) 

Where 𝑑2𝑀 =
𝑙𝑛(𝑆/𝐾)+(𝑟+𝛿−𝜎

2

2 )(𝑇−𝑡)

𝜎√𝑇−𝑡
 

In practice, vega and rho are not very useful risk measures as it is illogical to expect that a change in 

interest rates or a change in volatility does not change the price of the underlying. 

 

6. The Profitability of the Covered Call Strategy 

Covered call writing is surely one of the most popular investment strategies (if not the most popular 

strategy), widely used by both institutional as well as individual investors. It involves combining a 

long position on the underlying with a short position on a call option on the underlying. According 

to Lakonishok, Lee, Pearson and Poteshman (2007), a large percentage of calls are written as part of 

covered call strategies.  

 In the Black Scholes context, the popularity of covered call writing is puzzling. Covered call 

writing typically reduces risk, which implies a lower expected return if markets are efficient.  Black 

writes, “it is not correct to say that an investor can increase his expected return by writing a call option. In fact, he 

reduces his expected return because he creates a position in which he will come out ahead only if the stock does not move 

much.” Black (1975, page 39). 

 Earlier empirical studies that investigated the profitability of covered call strategy found 

evidence confirming this view. See Booth et al (1985), Bookstaber and Clarke (1984), and Merton et 

al (1978). However, more recent studies have been more favorable to the covered call strategy and 

found that it can improve portfolio performance. See Morad and Naciri (1991), Whaley (2002), 

Feldman and Roy (2004), Constantinides et al (2008) among others. 
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 Mental accounting of call with its underlying, as discussed here, provides an explanation for 

the popularity of covered call writing. Under mental accounting, covered call writing is equivalent to 

generating liquidity without affecting expected returns. 

Figure 2 shows how the value of a covered call position changes along a binomial tree under 

mental accounting as well as under the no-arbitrage argument. Covered call under mental accounting 

is denoted by Ccall-MA, whereas covered call under no-arbitrage assumption is denoted by Ccall-

NA. The same binomial tree as shown in figure 1 is used to calculate these values. The expected 

return per binomial period under mental accounting from the covered call strategy remains equal to 

1.25 throughout the tree. Note that this is the same expected return as obtained from the buy and 

hold strategy in which only the underlying is bought. However, with covered call, less initial outflow 

is required, and the money saved can be invested elsewhere. So, a covered call strategy under mental 

accounting is equivalent to relaxing the liquidity constraint without affecting expected returns.  

 

  
        

      
Ccall-MA 90 

 
      

Ccall-NA 90 
 

    
Ccall-MA 72 

   
    

Ccall-NA 89.1089 
   

  
Ccall-MA 51.2 

  
Ccall-MA 90 

 
  

Ccall-NA 71.15 
  

Ccall-NA 90 
 Ccall-MA 33.44 

  
Ccall-MA 56 

   Ccall-NA 48.48 
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Ccall-NA 37.5 
  

Ccall-NA 50 
 

    
Ccall-MA 25 

   
    

Ccall-NA 25 
   

      
Ccall-MA 12.5 

 
      

Ccall-NA 12.5 
 

         Figure 2: Covered Call Strategy under Mental Accounting vs. No Arbitrage Pricing 
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In contrast, under the no-arbitrage argument of the Black Scholes type, the covered call strategy 

generates considerably smaller returns. In figure 2, the expected return from covered call under no-

arbitrage pricing varies from 1.01 to 1.25.  

To understand the difference in profitability across the two approaches, suppose a long 

position on one unit of underlying is combined with a short position on one unit of a call option on 

the underlying. Assume that the call is written on one unit of the underlying.  The value of such a 

covered call writing position at the time of its creation is given by: 

𝑉 = 𝑤1𝑆 − 𝑤2𝐶          (13) 

Where 𝑤1 and 𝑤2 are positive weights such that 𝑤1 > 1 and 𝑤1 − 𝑤2 = 1 

Under Black Scholes assumptions, equation 11 becomes:  

𝑤1𝑆 − 𝑤2�𝑆𝑁(𝑑1) − 𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2)� 

=> �𝑤1 − 𝑤2𝑁(𝑑1)�𝑆 + 𝑤2𝐾𝑁(𝑑2)𝑒−𝑟(𝑇−𝑡)      (14) 

To consider the impact of covered call writing in the Black Scholes world, initially assume 

that only the underlying is bought and held. This is equivalent to putting 𝑤1 = 1 and 𝑤2=0 in 

equation (14). Now, consider a situation in which a call option is also written on the underlying 

stock. As equation (14) shows, this amounts to reducing the weight of the stock and increasing the 

weight of the risk free asset in the portfolio. That is, the weight of the stock in the portfolio is now 

𝑤1 − 𝑤2𝑁(𝑑1) instead of 1, whereas the weight of the risk-free asset is now 𝑤2𝑁(𝑑2) instead of 0. 

The return on the risk-free asset is typically lower than the return on the stock, which means that the 

expected return from covered call writing should typically be lower than the expected return form 

just holding the underlying stock. With the passage of time and changes in the stock price, the 

respective weights of the underlying and the risk-free asset change, however, as long as there is a 

positive weight on the risk-free asset, the expected return from covered call should be lower than 

the expected return from just holding the underlying. As covered call writing is expected to reduce 

returns, the popularity and widespread use of covered call writing is quite puzzling in the Black 

Scholes context. 
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Under mental accounting, the formula for the price of a call option is given in equation (4). 

Substituting from (4) into (13) and simplifying leads to: 

�𝑤1 − 𝑤2𝑁(𝑑1𝑀)�𝑆 + 𝑤2𝐾𝑁(𝑑2𝑀)𝑒−(𝑟+𝛿)(𝑇−𝑡)      (15) 

 As equation 15 shows, under mental accounting, covered call writing is equivalent to 

reducing the weight on the underlying, and increasing the weight on a hypothetical risk-free asset 

that offers the same return as the expected return on the stock. With the passage of time and 

changes in the stock price, the weights change, however, the expected return from covered call 

always equals the expected return from the underlying. Hence, if mental accounting determines call 

prices, then the popularity of the covered call strategy is not puzzling as it provides liquidity without 

sacrificing expected return. 

 

7. Conclusions 

A call option is typically considered a surrogate for the underlying stock. Such consideration may 

result in a call option being framed in the same mental account as the underlying. Consequently, 

similar returns may be expected from the two assets. In this article, I investigate the implications of 

mental accounting of a call with its underlying for risk management. There are various types of risks 

associated with option trading. These risks are expressed in the form of various partial derivatives of 

option prices known as Greeks. I show that if mental accounting is influencing prices and the Black 

Scholes model is used, then call delta-risk in under-estimated, call gamma-risk is over-estimated, and 

call time-decay is under-estimated. For a put option, delta-risk is over-estimated, gamma-risk is over-

estimated, and put time-decay is over-estimated.   

The article also provides a new explanation for the popularity of covered call writing. Under 

the Black Scholes assumptions, adding a call writing position to a long position on the underlying, 

known as covered call writing, typically lowers expected returns. That is, covered call writing 

provides liquidity by sacrificing some returns. In this context, the popularity of covered call writing 

is quite puzzling. If mental accounting is influencing call prices, then covered call writing generates 

liquidity without sacrificing expected return. That is, covered call writing is a significantly better 

strategy if mental accounting is influencing prices.  
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