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Labor-savings of Roundup Ready Maize: Impact on Cost and Input Substitution for 

South African Smallholders 

 

Abstract 

This study examines the impact of genetically modified maize on labor, cost, and 

input substitutability for smallholders in South Africa. Data was collected during the 2009-

2010 maize production season from 184 households with a total of 212 maize plots in two 

regions, Hlabisa and Simdlangetsha, located in KwaZulu-Natal, South Africa. Producers of 

Roundup Ready® (RR) maize use significantly less child, female, and male labor than non-

RR producers, resulting in lower costs in spite of significantly higher herbicide, seed, and 

fertilizer prices.  

An unrestricted cost function approach is used to evaluate the differences in cost 

between maize varieties, assuming that households use different input allocations to minimize 

cost while producing a fixed level of output. A treatment effects model used to control for 

selection bias shows that the entire cost advantage and more can be attributed to the Roundup 

Ready® technology. The treatment effects model reveals that RR maize producers have 

$102.44 (30%) lower costs per maize plot after taking into consideration the inverse Mills 

ratio, suggesting that the OLS model underestimated the cost-reducing effect of RR maize. 

Therefore, the entire cost advantage and more can be attributed to RR maize after isolating 

the effect of RR maize on total cost by disentangling the lower costs attributed to RR maize 

from those associated with farm and farmer characteristics. These results are confirmed using 

a nonparametric kernel density estimator.  Elasticities of factor substitution indicate strong 

substitutability among inputs; however, lack of statistical significance limits interpretation of 

results. 

 

Key words: cost function, elasticities of factor substitution, genetically modified, 

labor-saving, maize, nonparametric regression, Roundup Ready®, South Africa 

Introduction 

 In the face of challenges such as population growth, food price spikes, and climate 

change in Africa, the development of pertinent agricultural technology which boosts crop 

productivity for smallholders must be of upmost importance in the strategy for reducing 

hunger and poverty. Of all staple food crops in Africa, maize is the most prominent in terms 
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of production and consumption (Smale, Byerlee and Jayne 2011, Tumusiime, et al. 2010). 

The success of genetically modified (GM) maize is well-documented worldwide; for example, 

in 2010 GM maize added nearly $5 billion or 3.5 percent to the total value of global maize 

production (Brookes and Barfoot 2012). Therefore, the relevance of GM maize technology 

and the role that it plays in poverty reduction for smallholders is of particular interest. In this 

study, we use detailed maize production data to estimate the impact of GM maize on labor, 

cost, and input substitutability for smallholders in KwaZulu-Natal, South Africa. 

Previous research on GM maize reveals several benefits to smallholders in the 

Philippines and South Africa where smallholder adoption has been the highest, but many 

issues regarding the impact of GM maize on smallholders remain unexplored. Studies on 

insect resistant Bt maize in the Philippines show higher yields and net returns (Yorobe and 

Quicoy 2006), even after controlling for selection bias and censoring (Mutuc and Yorobe 

2007, Mutuc, et al. 2012). In South Africa, research shows that Bt maize has an output 

advantage which declines as pest pressure decreases, and net returns to Bt maize are often 

higher but they do not always outweigh the high cost of Bt seed (Gouse, Piesse and Thirtle 

2006, Gouse, Piesse and Thirtle, et al. 2009). Bt maize also reduces the use of expensive 

insecticides and minimizes plant exposure to fumonisin, a toxin associated with esophageal 

cancer and birth defects in humans and potentially fatal to livestock (Piesse and Thirtle 2008, 

Pray, et al. 2009). Herbicide tolerant Roundup Ready® (RR) maize, coupled with no-till 

practices, increases output, reduces labor, (Piesse and Thirtle 2008, Gouse, Piesse and Thirtle 

2006) has higher gross margins despite higher seed costs in most regions, (Gouse, Piesse, et 

al. 2009) and reduces smallholder net returns risk (Regier, Dalton and Williams 2012). An 

overview of the impact of GM maize on smallholders finds evidence of its advantage 

throughout several years of study (Gouse 2012).  

Data 

GM white maize became the first GM staple food crop when it was released to 

smallholders in South Africa in 2001; since then, adoption has been widespread, especially 

among commercial farmers and slower among smallholders (Gouse, Piesse, et al. 2009, 

James 2010). This study takes place in KwaZulu-Natal, a region of South Africa 

characterized by high land ownership by smallholders in contrast to a majority of South 

Africa where land is owned by commercial farmers (Department of Agriculture, Forestry and 

Fisheries 2011). The two regions within KwaZulu-Natal examined in this study are Hlabisa 

and Simdlangetsha, which lie within close proximity to each other and share many agro-
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ecological characteristics. The average rainfall is around 980 mm per year, much of it falling 

during the maize production season, but average maize yields is low (1500 kilograms/hectare) 

due to marginal land quality (Gouse, Piesse and Poulton, et al. 2008, Gouse, Piesse and 

Thirtle, et al. 2009).  

 Data was collected during the 2009-2010 maize production season from 184 

households with a total of 212 maize plots in two regions, Hlabisa and Simdlangetsha, 

located in KwaZulu-Natal, South Africa. Information was gathered by experienced 

enumerators supervised by researchers from the University of Pretoria on the timing, quantity, 

and prices of inputs and labor used during each stage of production, from land preparation 

until harvest during seven visits throughout the season in order to reduce recall bias (see 

Gouse 2012 for details). Other information was collected on demographics, education, 

experience using herbicide, access to extension and credit, household consumption habits, 

assets, expenses, and non-farm income.  

 A majority of the farmers in this study are relatively well-endowed with average 

assets of nearly $8,000, and 96% have access to either a bank account or informal credit.  The 

average age of producers is 55 years old, and slightly more than half of the respondents are 

female. The average household size is 6.2 people, with an average of 3.3 active household 

members, resulting in a dependency ratio1  of 0.84.  Close to half of respondents, especially 

those who have returned from jobs in the city to retire on their farms, claim that a monthly 

pension check from the government is their primary source of income. The majority of maize 

produced by the farmers is consumed within the farmers’ household. 

The mean farm size is 1.85 hectares and the average maize plot is 0.49 hectares, with 

farmers planting five primary types of maize. Two were improved hybrid varieties, referred 

to as Pannar and Carnia after the names of the seed companies which released these varieties. 

The other three were GM hybrid varieties; Bt which is insect resistant, RR which is herbicide 

tolerant, and BR, which is “stacked,” containing both Bt and RR traits.  

The 2009-2010 maize production season was a favorable one, with producers 

reporting good rainfall and minimal pest pressure on both GM and non-GM plots in both 

regions. Because of low pest pressure, no significant yield advantage was observed on Bt 

maize plots (see Gouse et al. 2009). Average maize yield was 1645 kilograms per hectare, 

with no particular maize type dominating in both regions. Of the RR maize plots, 71% are 

                                                            
1 The dependency ratio is defined in this study as the number of people ages 0 to 15 and 65 or older, divided by 

the working population ages 16 to 64. 
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planted to no-till compared to only 3% of non-RR plots. No-till significantly reduces labor 

requirements as herbicide application replaces weeding labor, resulting in significantly less 

child, male, female, and total labor for RR maize adopters (Table 1). These results are 

unchanged when data is disaggregated into regions. Although it appears that producers of Bt 

maize also use significantly less labor, 35 out of 53 Bt adopters are actually BR producers 

planting no-till; therefore, when BR producers are excluded there is no significant difference 

in labor use.  

Table 1. Family and Hired Labor by Seed Type (hours/hectare) 

 

Full 

sample (n 

= 212) 

Non-GM 

(n = 82) 

Bt 

(n = 18) 

RR 

(n = 77) 

BR 

(n = 35) 

Child 30 56 c,d 42 c,d 8 13 

Female 91 129 c,d 122 c,d 59 60 

Male 70 105 c,d 70 46 43 

Hired 98 101 93 95 103 

Total 291 391 c,d 327 c,d 207 219 
a, b, c, and d indicates significantly different labor use compared to Non-GM, Bt, RR, and BR 

respectively at the 0.05 level using Tukey’s HSD test. 

 

Previous literature indicates that KwaZulu-Natal has an abundant supply of land, but a 

constrained supply of labor due to urban migration of agricultural workers and a high 

HIV/AIDS infection rate (Gouse, Piesse, et al. 2009). If labor is constrained, then RR maize 

certainly seems like an attractive option for farmers, both those who are older and cannot 

handle the physical activity required for weeding as well as those taking advantage of the 

labor-saving potential of RR maize to expand onto additional land. The substitution effects of 

RR maize are examined later in this paper. 

The reduction in labor results in lower labor costs for both Bt and RR producers; 

however, most of the labor-savings of Bt maize can be attributed to the BR maize which is 

planted no-till (Table 2). Bt producers have significantly higher seed and oxen/tractor costs 

which outweighs the labor-savings advantage and results in total costs per hectare which are 

very similar to non-adopters. Producers of RR maize spent significantly less on oxen/tractor 

and labor than non-adopters, as a higher percentage of them planted the maize using no-till 

with pre-emergent herbicide and hand hoes. RR maize producers had much lower fertilizer 
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costs as well; as a result, total costs are significantly lower per hectare for adopters of RR 

maize.  

Table 2. Biochemical, mechanical, and labor costs (USD/hectarea) 

 
Full sample 

(n = 212) 

Non-GM 

(n = 82) 

Bt 

(n = 18) 

RR 

(n = 77) 

BR 

(n = 35) 

Labor 223 300 c,d 251 c,d 159 168 

Fertilizer 292 415 c,d 430 c,d 131  291 c 

Herbicide 131 85 124 171 a,b 153 a 

Seed 150 121 151 a 168 a 179 a,b 

Insecticide 6 13 c,d 0 1 0 

Oxen/Tractor 65 72 c,d 71 c 53 57 

Total 749 841 851 630 743 
aAll monetary units are converted from South Africa Rand to US dollars ($) at the constant 

exchange rate of 7.44 Rand per US dollar, based on 2009-2010 exchange rates. 
a, b, c, and d indicates significantly different labor use compared to Non-GM, Bt, RR, and BR 

respectively at the 0.05 level using Tukey’s HSD test. 

 

Cost Function Estimation 

An unrestricted cost function approach is used to evaluate the differences in cost 

between maize varieties, assuming that households use different input allocations to minimize 

cost while producing a fixed level of output. The benefit a cost function is that it uses input 

prices which can be considered exogenous, thus eliminating endogeneity which is a persistent 

issue in production functions (Binswanger 1974). First, we jointly estimate the impact of RR 

and Bt maize on total costs using Ordinary Least Squares (OLS), specified as 

ܥ  (1) ൌ ߙ  ߚ



ୀଵ

ݔ  ܫߜ    ߝ

where ܥ is the total cost for maize plot i, and ݔ is a set of all explanatory variables j on 

maize plot i (including dummy variables) except  ܫ, the binary variable for either RR or Bt 

maize with the scalar parameter ߜ measuring the impact of Bt or RR maize, and ߝ is a 

random error term. The OLS results show that RR maize has significantly lower costs than 

non-RR maize (Table 4). The entire value of ߜ cannot necessarily by attributed only to RR 

maize, however, since farmers who produce RR maize at low costs may be more skilled 
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farmers or plant RR maize on their best land. Failure to control for the farmer and plot 

selection bias may lead to an overestimation of the cost benefits of RR maize (Barrett, et al. 

2004). 

 To control for selection bias, we use the treatment effects model, a type of Heckman’s 

two-step estimation procedure (Greene 2003). The first step of the treatment effects model is 

the adoption decision model which controls for self-selection by estimating factors that 

influence RR adoption. It is estimated using the probit model 

(2)  ܴܴ
∗ ൌ ߛ



ୀଵ

ݓ    ݑ

where ܴܴ = 1 if ܴܴ
∗ > 0, and 0 otherwise, ݓ is a vector of explanatory variables that 

explain RR maize adoption,  ߛ is a parameter to be estimated, and ݑ is the error term. If the 

decision to plant RR maize seed is determined by unobservable variables as predicted, the 

error terms ݑ and ߝ (equations 1 and 2) are correlated.2 As a result, the expected impact of 

RR maize on total cost is determined by 

(3)  

|ܴܴܥሾܧ ൌ 1ሿ ൌ ߚ



ୀଵ

ݔ  ߜ  |ܴܴߝሾܧ ൌ 1ሿ

ൌߚ



ୀଵ

ݔ  	ߜ	  పߣߪߩ	  

 

where ߣప  is the inverse Mills ratio3 computed from the estimates of the probit model, ߛ 

(equation 2) defined as 

పߣ  (4) ൌ
߶ሺܽሻ
Φሺܽሻ

݂݅ ܴܴ ൌ 1  

where ߶ሺܽሻ is the probability density function, Φሺܽሻ is cumulative density function, and 

ܽ ൌ 	െ∑ ߛ

ୀଵ  . The second step of the treatment effects model is to run an ordinary leastݓ

squares model including the inverse Mills ratio, ߣప , in the estimation. If  ߣప  is significant, it is 

effectively controlling for selectivity bias, and correcting for biased estimators ߚ and ߜ in the 

OLS model (Maddala 1983, Greene 2003, Key and McBride 2003). 

                                                            
2 The error terms are also assumed to have normal distribution. 
3 The inverse Mills ratio is also called the Hazard rate in the treatment effects model. 
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The variables used to explain total cost are the input prices of labor, fertilizer, 

herbicide, and seed, land in hectares since no reliable price information was available, and 

maize output in kilograms (Table 3).4 Binary variables are included for location as well as 

maize type, represented by RR and Bt to capture the effects of the RR and Bt technologies, 

with BR maize included in both dummy variables since it contains both technologies. 

 

Table 3. Descriptive Statistics of Regression Variables  

 

Full 

sample (n 

= 212) 

Non-GM

(n = 82) 

Bt 

(n = 18) 

RR 

(n = 77) 

BR 

(n = 35) 

Total cost (US dollars)a 343 350 466 275 414 

 (156) (171) (136) (77) (189) 

Labor (USD/hour) .80 .79 .81 .82 .78 

 (.15) (.11) (.17) (.19) (.12) 

Fertilizer (USD/kilogram) .59 .57 .58 .61 .58 

 (.05) (.05) (.06) (.02) (.06) 

Herbicide (USD/liter) 13.8 10.7 9.4 16.3 17.8 

 (4.6) (2.9) (3.8) (2.7) (5.2) 

Seed (USD/kilogram) 9.0 6.8 8.9 10.6 10.6 

 (2.2) (1.6) (1.1) (.9) (1.0) 

Land Preparation (USD/hectare) 65 71 71 60 59 

 (19) (21) (18) (15) (17) 

Land (hectares) .48 .44 .56 .46 .58 

 (.23) (.25) (.20) (.17) (.26) 

Maize Output (kilograms) 754 630 775 845 831 

 (526) (626) (627) (397) (417) 

Hlabisa (1 = Hlabisa, 0 = Simdlangetsha)  .46 .18 .00 .87 .43 

 (.50) (.39) (.00) (.34) (.50) 

RR maize (1 = RR, 0 = non-RR) .47 0 0 1 1 

 (.50)     

                                                            
4 Due to difficulties of collecting accurate information on prices, labor price information is only available for only 40% of 

maize plots which used hired labor. Therefore, the average labor price was calculated for each region, averaging $0.79 and 

$0.81 per hour in Simdlangetsha and Hlabisa respectively. 
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Bt maize (1 = Bt, 0= non-Bt) .25 0 1 0 1 

 (.43)     

Additional variables used in probit model      

Education (1= Primary education or higher, 

0= No formal education) 

.67 .74 .78 .52 .77 

(.47) (.44) (.43 (.50 (.43) 

Experience Using Herbicide (years) 3.5 3.1 4.5 3.5 4.0 

 (2.0) (2.3) (1.3 (1.7 (2.1) 

Total household assets (2010 US dollars) 8031 7746 8309 7936 8761 

 (7999) (8510) (8088) (6673) (9564) 

Distance to maize plot (minutes) 8.5 11.4 15.7 3.6 9.2 

 (9.3) (10.5) (8.3) (4.6) (9.7) 

People in household (total number) 6.2 6.3 6.1 6.2 6.0 

 (2.1) (1.6) (1.2) (2.7) (2.2) 

Head of household age (1 = head of 

household above 60, 0 = below 60 years old)

.51 .39 .56 .68 .40 

(.50) (.49) (.51) (.47) (.50) 

Dependency ratio .84 .95 1.06 .64 .94 

 (.75) (.70) (.88) (.62) (.95) 

aAll monetary units are converted from South Africa Rand to US dollars ($) at the constant 

exchange rate of 7.44 Rand per US dollar, based on 2009-2010 exchange rates. 

*, **, and *** indicates significantly higher at the 0.10, 0.05 and 0.01 levels respectively 

using a one-sided t-test 

 

According to Table 3, producers of Bt maize have higher costs and pay significantly 

higher prices for herbicide and seed. They tend to farm larger plots, are better educated, and 

have more experience using herbicide than their non-Bt maize counterparts. RR maize 

producers, on the other hand, have significantly lower costs than non-RR producers in the 

midst of significantly higher fertilizer, herbicide, and seed prices, due in part to significantly 

lower labor costs. RR producers are less educated, but have a greater number of active 

household members as indicated by significantly lower dependency ratios. 

The first step of the Heckman two-step regression is a probit model, used to estimate 

the probability of RR maize adoption. Results of the probit indicate that the probability of 

adopting RR maize is both significantly and positively influenced by location (Hlabisa) and 
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experience using herbicide in years (Table 4).  The likelihood ratio chi-square is 98.91 (p = 

0.000) indicating that the model is statistically significant as a whole. 

 

Table 4. Probit Model Results (n = 212) 

Variable Coefficient Std. Err. 

Intercept -1.55*** 0.41 

Hlabisa dummy 1.95*** 0.30 

Assets 0.00 0.00 

Formal education 0.05 0.26 

Experience with herbicide 0.24*** 0.06 

Dependency ratio 0.04 0.14 

Distance to maize plot -0.02 0.01 

*, **, and *** indicates significantly different than zero at the 0.10, 0.05 and 0.01 levels 

respectively.  

 

Results of the regression equations show a great deal of similarities exists between the 

OLS and treatment effects models (Table 5). As expected, the coefficients on seed, land and 

output are positive and significant in both models, indicating that an increase in the price of 

seed, hectares of land, or kilograms of output will all increase total costs. In the treatment 

effects model, fertilizer and land are positive with negative squared terms. Both models 

suggest that farmers in Hlabisa can expect costs to be $187.44 and $156.81 lower per maize 

plot in the OLS and treatment effects models respectively. Similarly, farmers planting RR 

maize can expect costs to be $75.69 lower according to the OLS model. The inverse Mills 

ratio in the treatment effects model is positive and significant, indicating that the treatment 

effects model is correcting for selectivity bias as we predicted it might. However, the 

treatment effects model reveals that RR maize producers have $102.44 (30%) lower costs per 

maize plot after taking into consideration the inverse Mills ratio, suggesting that the OLS 

model underestimated the cost-reducing effect of RR maize. Therefore, the entire cost 

advantage and more can be attributed to RR maize after isolating the effect of RR maize on 

total cost by disentangling the lower costs attributed to RR maize from those associated with 

farm and farmer characteristics. The binary Bt variable is not significant in either regression, 

likely due to the fact that benefits from Bt maize are only realized when pest pressure is high 

as indicated previously.  
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Table 5. Regression Results 

WLS Treatment Effects 

 (n = 212) Coefficient Huber-White SE Coefficient Std. Err. 

Intercept -2841.48* 1571.70 -2390.88** 1142.86 

Labor 347.86 2024.07 85.18 1034.24 

 x labor -27.43 82.53 -44.50 100.50 

 x fertilizer -632.11 3755.69 -46.20 1829.96 

 x herbicide 9.89 29.61 2.79 15.72 

 x seed 10.25 19.97 12.82 26.33 

 x land prep 1.25 1.33 1.13 1.43 

 x land -104.02 171.94 -45.98 178.32 

 x output -0.05 0.09 -0.06 0.08 

Fertilizer 6383.41** 3014.75 5502.59** 2396.85 

 x fertilizer -2483.56*** 885.90 -2298.81*** 852.79 

 x herbicide 41.05 60.51 54.70 42.19 

 x seed -145.22* 74.62 -144.99** 60.81 

 x land prep -11.96 8.17 -11.28 6.98 

 x land -1094.87 734.94 -1103.73 736.08 

 x output -1.02** 0.43 -0.94*** 0.31 

Herbicide -42.67 43.13 -47.22* 26.17 

 x herbicide -0.01 0.15 0.02 0.10 

 x seed 2.65** 1.03 2.88*** 0.68 

 x land prep -0.04 0.11 -0.05 0.10 

 x land -6.82 10.24 -5.56 7.11 

 x output 0.00 0.00 0.00 0.00 

Seed 80.05* 45.14 74.55* 41.73 

 x seed -0.94 0.74 -0.89 0.76 

 x land prep -0.07 0.14 -0.04 0.13 

 x land -7.78 19.38 -11.18 13.55 

 x output 0.00 0.01 0.01 0.01 

Land Preparation 9.17** 4.35 8.60** 4.35 

 x land prep -0.01 0.01 -0.01 0.01 

 x land  -1.93 1.67 -1.65 1.79 

 x output 0.00 0.00 0.00* 0.00 

Land  1594.37*** 506.31 1531.21*** 494.08 

 x land -329.54** 131.22 -326.17*** 116.31 

 x output 0.24** 0.10 0.26*** 0.07 

Output 0.69** 0.28 0.65*** 0.20 

 x output 0.00 0.00 0.00** 0.00 
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Hlabisa  -187.44*** 26.80 -156.81*** 25.61 

RR  -75.69*** 16.30 -141.70*** 36.48 

Bt  3.88 10.69 5.62 10.55 

Inverse Mills Ratio or Hazard rate   39.26** 19.51 

R-squared 0.91    

F-value 103.16***    

Wald test statistic – χ2   1885.72***  

H0: squared and interaction terms = 0  3.64***  127.82***  

(Wald test)     

*, **, and *** indicates significantly different than zero at the 0.10, 0.05 and 0.01 levels 

respectively.  

 

The OLS model, using heteroscedasticity-robust Huber-White standard errors, is a 

good fit with an R-squared value of 0.91, and significant squared and interaction terms (p = 

0.000). The model rejects the Shapiro-Wilk W test for normality (p = 0.000), which does not 

suggest that the least squares estimates are still unbiased, only that it is not possible to run 

valid hypothesis testing (Chen, et al. 2003). In the treatment effects model, the Wald test 

statistic indicates that the model significantly explains the difference in total cost (p = 0.000) 

as well as significant squared and interaction terms (p = 0.003).  

Nonparametric Regression Estimation  

The results of the cost functions provide strong evidence that RR maize reduces cost 

for maize producers. However, a nonparametric function allows for a more general graphical 

comparison of RR and non-RR maize by depicting the relationship between average cost as 

maize output increases. Unlike parametric models which require strong assumptions about 

functional form, homoscedasticity, correlation and distribution, nonparametric models 

abandon most of these assumptions. Thus, although they provide less precise information 

such as statistical significance, the information they do provide is extremely robust (Just 

2000). Examining both parametric and nonparametric models provides different perspectives 

and produces a more robust analysis (Greene 2003). 

The nonparametric function is estimated with a kernel density estimator, the most 

common approach, by fitting a relationship between maize output,	ݕ, and average cost, ݔ. 

The relationship is local, meaning that separate fitted relationships are determined for 

different levels of ݔ. A bandwidth parameter is used for smoothing. With regard to the cost 

function, it is expected that as maize output increases, average cost decreases until it reaches 
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the optimal level of output. The relationship between ݕ and ݔ are represented by the 

nonparametric regression  

ݕ  (5) ൌ ሻݔሺߤ    ߝ

where ݕ represents the independent variable of observation i, and ߤሺݔሻ is an unspecified 

conditional mean function which allows nonlinearity (Cameron and Trivedi 2009, Greene 

2003). 

The predicted value of ߤሺݔሻ at ࢞ ൌ  is a ࢞ , whereݕ is a local weighted average of ∗ݔ

vector of all independent variables and ݔ∗ is the mean value of the independent variables at 

 ,, the individual independent variableݔ . A greater weight is placed on observations whereݕ

is close to ݔ∗ and little or no weight when ݔ is far from ݔ∗. The general form of the 

conditional mean estimating function, ߤሺݔሻ, is defined as 

ሻ∗ݔሺߤ̂  (6) ൌ ݓሺݔ, ,∗ݔ ݄ሻ



ୀଵ

  ݕ

where the weights ݓሺݔ, ,∗ݔ ݄ሻ sum over ݅ to one and decrease as the distance between ݔ and 

  .increases ∗ݔ

The Epanechnikov kernel weighted regression estimator is used to provide a smoother 

estimate of the conditional mean function. It is defined as 

,ݔሺߤ̂  (7) ,∗ݔ ݄ሻ ൌ
∑ 1

ܭ݄ 
ݔ െ ∗ݔ

݄ ൨
ୀଵ ݕ

∑ 1
ܭ݄ ቂ

ݔ െ ∗ݔ
݄ ቃ

ୀଵ

  

where ܭሾݖሿ ൌ .75ሺ1 െ |ݖ|	݂݅	ሻ/2.236	ଶݖ2.  5, 0 otherwise. The Epanechnikov kernel 

function, ܭሾݖሿ, creates a smoother estimation by explicitly defining a neighborhood of points 

that are close to ݔ∗ and weighting extreme observations as zero. The bandwidth parameter, 

which controls the width of the bin and thus the smoothness of the estimation, is defined by 

݄. As the bandwidth parameter ݄ increases, more weight is placed on observations where ݔ 

is closer to ݔ∗. This wider bandwidth creates more bias in the estimation, but it also creates a 

smoother function since it reduces variance (Cameron and Trivedi 2009, Greene 2003). No 

method exists for determining optimal bandwidth; therefore, a bandwidth of 100 was chosen 

since it allows for variation in the estimator without it becoming too smooth (Greene 2003). 
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Figure 1. Nonparametric Representation of Average Cost 

 

In order to estimate total cost nonparametrically, predicted values of total cost were 

first estimated from the split regression of RR and non-RR maize using the OLS quadratic 

regression (Table A-1). Average cost was then calculated by dividing the predicted total cost 

by maize output. The result of the nonparametric regression show that average cost decreases 

for both RR and non-RR maize as output increases, with RR maize costs lower across most 

levels of output (Figure 1). As seen in Figure 1, producers with an output of at least 1000 

kilograms of maize are able to minimize average cost. 

 

Elasticities of substitution 

 The cost function analysis shows that the labor-savings of RR maize significantly 

reduces cost, providing new insights into the impact of GM maize on smallholders. These 

results stand in spite of significantly higher prices that RR maize producers pay for seed, 

herbicide, and fertilizer and even when controlling for farm and farmer characteristics that 

may cause biased results. Although these results are useful in revealing the impact of RR 

maize on smallholders, they tell us little of the impact of GM maize on wages and rural 

employment, issues explored by Piesse and Thirtle (2008). The impact of the labor-savings of 

RR maize depends on input availability; if labor is abundant, labor incomes may fall and 

poverty increase, but if land is plentiful, planting area and output could increase, resulting in 
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higher labor use and higher wages. The authors suggest that South Africa has abundant 

marginal land and a constrained supply of labor; therefore, as long as producers are able to 

easily substitute land for labor, an increase in labor productivity should result in higher wages 

and maintained employment. In this surveys data from the 2009-2010 season, RR maize more 

than doubles labor productivity, from 4.11 kilograms of maize per hour labor to 9.46 

kilograms of maize suggesting upward pressure on wages.  

 In this section, we use factor elasticities of demand and elasticities of factor 

substitution, derived from an unconstrained cost function, to examine the substitutability of 

fertilizer, herbicide, seed, and land as the wage rate increases. Compensated derived input 

demands, conditional on output, can be estimated directly from the cost function using 

Shephard’s lemma; however, the response of derived-demands to changes in input prices, 

computed directly from the Hessian matrix of the cost function, is of greater interest 

(Chambers 1988, Capalbo and Antle 1988). The own and cross price elasticities of demand, 

measured as the percentage change in quantity demanded of input j, resulting from a one 

percent increase in the price of input i, provide the most intuitive results for understanding the 

response of derived demands to input price changes. They are defined as 

(8) ߳ ൌ
డ௫ሺ௪,௬ሻ

డ௪ೕ
	 ∙ 	

௪ೕ

௫ሺ௪,௬ሻ
 

where ݔ is the quantity of input i and ݓ is the price of input j (Chambers 1988). Because a 

majority of RR maize producers plant no-till, use more expensive seed and herbicide, and 

spend almost no time weeding, separate cost functions are estimated for both RR and non-RR 

maize plots (Table A-1).  

  The results show that a rise in the price of labor will have a different effect on input 

demand for producers of RR and non-RR maize (Table 5). On RR maize plots, producers will 

use more fertilizer and less labor, herbicide, and seed as wages rise. On non-RR maize plots, 

fertilizer, herbicide, seed, and land all have a complementary relationship with labor; 

therefore, none of these inputs are a good substitute for labor as wages increase. Own price 

elasticities are mostly negative as expected on both RR and non-RR maize plots, with 

producers especially sensitive to changes in herbicide prices.  
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Table 5. Price elasticities of demand 

RR adopters 

(n=112) 
Labor Fertilizer Herbicide Seed 

Land 

Preparatio

n 

Land 

Cost shares 0.25 0.19 0.26 0.26 0.05  

Labor -1.95 434.44*** -40.85** -21.05 -2.56 -4.21 

Fertilizer -39.67*** 35.92*** -5.43 -23.38* -34.69*** -6.51 

Herbicide -3.81** 5.55 -4.19*** -5.48*** -6.28*** -0.80 

Seed 7.68 -93.36* 21.42*** 8.08 2.83 -1.60 

Land preparation 0.29 -42.46*** 7.52*** 0.87 -1.15 -1.33**

Land -0.76 12.91 -1.56 0.79 2.15** -0.97 

Non-RR adopters (n=100) 

Cost shares 0.36 0.29 0.10 0.16 0.07  

Labor 1.87 10.86 -3.14 0.72 -1.91 -0.79 

Fertilizer 8.11 -9.43 0.76 -5.22 -3.89 -2.11 

Herbicide 6.10 -1.98 -4.75* 0.51 -1.80 0.07 

Seed 0.88 -8.55 -0.32 0.54 -0.81 0.52 

Land preparation 6.49 17.72 -3.16 2.26 0.99 4.34 

Land -0.41 -1.45 -0.02 0.22 -0.66 -0.79*

*, **, and *** indicates significantly different than zero at the 0.10, 0.05 and 0.01 levels 

respectively, estimated using the delta-method  

 

 The Morishema elasticity of substitution (MES) of input i for input j provides a direct 

measure of how the input ratio i, j responds to a change in w. It is simply the cross-price 

elasticity of demand minus the own-price elasticity of demand (Chambers 1988), defined as  

ߪ (9)
ெ ൌ 	

డ୪୬	ሺ௫
∗ሺ௪,௬ሻ/௫ೕ

∗ሺ௪,௬ሻሻ

డ୪୬	୵ೕ
ൌ ߳ െ	 ߳. 

The effect of varying the j th price is divided into two parts; ߳ is the effect of varying w on 

  (Dalton, Masters and Foster 1997). Input j isݔ , and ߳ shows the effect of varying w onݔ

a direct Morishima substitute for input i if ߪ
ெ  0 when increasing the jth price increases the 

optimal quantity of input i relative to the optimal quantity of input j; inputs i and j are 

complements if the inequality is reversed (Blackorby and Russell 1989). 
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 The results show much stronger relationships between inputs on RR maize plots, most 

of them complementary (Table 6). Results of the split regression (see Table A-1) used to 

derive the Morishima elasticities of substitution are quite messy; therefore, little confidence 

can be placed in these results. 

Table 6. Morishima elasticities of substitution 

RR adopters 

(n=112) 
Labor Fertilizer Herbicide Seed 

Land 

Preparatio

n 

Land 

Labor 0 398.52*** -36.66** -29.13 -1.42 -3.24 

Fertilizer -37.72*** 0 -1.25 -31.46** -33.55*** -5.54 

Herbicide -1.86 -30.37*** 0 -13.56 -5.13*** 0.17 

Seed 9.63 -129.28** 25.60*** 0 3.98 -0.62 

Land preparation 2.24 -78.37*** 11.71*** -7.21 0 -0.35 

Land 1.19 -23.01*** 2.63* -7.29 3.29* 0 

Non-RR adopters (n=100) 

Labor 0 20.28 1.61 0.18 -2.89 -0.002

Fertilizer 6.25 0 5.52 -5.76 -4.88 -1.32 

Herbicide 4.23 7.45 0 -0.03 -2.79 0.87 

Seed -0.99 0.88 4.43 0 -1.80 1.31 

Land preparation 4.62 27.15 1.59 1.72 0 5.13 

Land -2.28 7.97 4.73 -0.32 -1.64 0 

*, **, and *** indicates significantly different than zero at the 0.10, 0.05 and 0.01 levels 

respectively, estimated using the delta-method  

Conclusion 

Using an unrestricted and nonparametric cost function, this study uses detailed maize 

production data from the 2009-2010 season in KwaZulu-Natal, South Africa to provide 

insight into the labor-savings effects of Roundup Ready® maize. Although RR maize 

adopters pay significantly more for herbicide, seed, and fertilizer, summary statistics indicate 

that the labor-savings of RR maize significantly reduces cost for smallholders. To test this 

hypothesis, a Heckman two-step approach is used to control for selection bias by 

disentangling the lower costs attributed to RR maize from those associated with farm and 

farmer characteristics. We find that after controlling for selection bias, the entire cost 
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advantage and more can be attributed to the Roundup Ready® technology itself. The cost 

reducing benefits of RR maize are further confirmed across all levels of output using a 

nonparametric cost function. 

 Because of its labor-savings, RR maize increases labor productivity which leads to 

higher implicit wages. However, the impact of RR maize on real wages and rural 

unemployment are unknown since these are determined my multiple factors. Morishima 

elasticities of substitution, derived from a split unrestricted cost function, reveal that RR 

maize allows for much greater substitutability among inputs than non-RR maize, including 

land which is considered the most abundant resource. Therefore, RR maize allows producers 

to expand production area, resulting in higher income and reduced poverty. This research 

reveals that smallholders are able to take advantage of the labor-savings of Roundup Ready® 

maize through lower costs and greater substitutability between inputs. Bt maize provides no 

evident yield or cost benefit in this season, most likely due to low pest pressure. 
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Appendix 

Table A-1. Split Regression Results for RR and Non-RR Maize  

RR Non-RR 

 (n = 212) 

Coefficien

t 

Huber-White 

SE Coefficient 

Huber-White 

SE 

Intercept 

15426.03*

** 4903.40 -1172.53 2550.65 

Labor 

-

8874.76**

* 1878.46 -1774.05 1923.11 

 x labor -30.22 115.40 168.78 224.34 

 x fertilizer 

17655.18*

** 4214.07 4505.58 2926.72 

 x herbicide -59.88** 25.93 -61.99 41.66 

 x seed -49.68 78.17 51.78 82.50 

 x land prep -1.06 2.57 -5.67 3.58 

 x land -204.46 241.52 -268.14 519.07 

 x output -0.02 0.11 -0.17 0.33 

Fertilizer 

-

25206.54*

** 8231.33 2072.14 4785.31 

 x fertilizer 

-

10744.35*

** 3312.16 -1833.22 1850.04 

 x herbicide 115.69 107.62 25.73 94.98 

 x seed 802.26** 313.70 -237.91 164.32 

 x land prep 210.46*** 73.89 -13.32 12.58 

 x land 4749.86* 2784.06 -1225.69 1081.74 

 x output -2.20*** 0.77 -0.45 0.89 

Herbicide 203.27*** 54.67 -2.38 76.62 

 x herbicide -1.59*** 0.30 1.35 0.83 

 x seed -6.56*** 1.96 -0.42 2.04 

 x land prep -1.34*** 0.30 0.14 0.19 
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 x land -20.63 16.87 -2.20 14.28 

 x output 0.00 0.01 -0.01 0.01 

Seed -343.86* 196.34 105.24 126.85 

 x seed -1.87 3.38 0.63 1.10 

 x land prep -0.25 0.63 -0.17 0.26 

 x land 16.17 48.17 6.05 36.08 

 x output 0.06*** 0.02 0.01 0.01 

Land Preparation 

-

109.15*** 40.94 13.92 8.44 

 x land prep 0.03 0.03 0.00 0.02 

 x land  8.00** 3.46 -4.79 3.62 

 x output 0.00 0.00 0.00 0.00 

Land  -2722.25 1863.73 1841.72* 954.72 

 x land -215.02 219.42 -397.45* 220.71 

 x output 0.18 0.15 0.35** 0.14 

Output 0.90** 0.40 0.41 0.52 

 x output 0.00 0.00 0.00* 0.00 

Hlabisa  

-

228.76*** 22.71 -150.49*** 47.83 

R-squared 0.95 0.93 

F-value 165.92***  246.24***  

H0: squared and interaction 

terms = 0  
   

 

(Wald test) 15.68***  2.78***  

H0: normal distribution     

(Shapiro-Wilk W test) 0.99  0.98  

*, **, and *** indicates significantly different than zero at the 0.10, 0.05 and 0.01 levels 

respectively.  

 

 

 

 


