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Abstract 
Hunger during pre-harvest lean seasons is widespread in the agrarian areas of Asia 
and Sub-Saharan Africa.  We randomly assign an $8.50 incentive to households in 
rural Bangladesh to out-migrate during the lean season.  The incentive induces 22% 
of households to send a seasonal migrant, their consumption at the origin increases 
significantly, and treated households are 8-10 percentage points more likely to re-
migrate 1 and 3 years after the incentive is removed.  These facts can be explained 
qualitatively by a model in which migration is risky, mitigating risk requires 
individual-specific learning, and some migrants are sufficiently close to subsistence 
such that failed migration is very costly. We document evidence consistent with 
this model using heterogeneity analysis and additional experimental variation, but 
calibrations with forward-looking households that can save up to migrate suggest 
that it is difficult for the model to quantitatively match the data.  We conclude with 
extensions to the model that could provide a better quantitative accounting of the 
behavior.    
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1 Introduction 

This paper studies the causes and consequences of internal seasonal migration in 

northwestern Bangladesh, a region where over 5 million people live below the 

poverty line, and must cope with a regular pre-harvest seasonal famine (The Daily 

Star, 2011). This seasonal famine – known locally as monga – is emblematic of the 

widespread lean or “hungry” seasons experienced throughout South Asia and 

Sub-Saharan Africa, in which households are forced into extreme poverty for part 

of the year.1  The proximate causes of the famine season are easily understood – 

work opportunities are scarce between planting and harvest in agrarian areas, and 

grain prices rise during this period (Khandker & Mahmud, 2012).  Understanding 

how a famine can occur every year despite the existence of potential mitigation 

strategies is, however, more challenging.  We explore one obvious mitigation 

option – temporary migration to nearby urban areas that offer better employment 

opportunities.  We randomly assigned a cash or credit incentive (of $8.50, which 

covers the round-trip travel cost) conditional on a household member migrating 

during the 2008 monga season.  We document very large economic returns to 

migration.  To explore why people who were induced to migrate by our program 

were not already migrating despite these high returns, we build a model with risk 

aversion, credit constraints and savings.   

The random assignment of incentives allows us to generate among the first 

experimental estimates of the effects of migration. Estimating the returns to 

migration is the subject of a very large literature, but one that has been hampered 

1 Seasonal poverty has been documented in Ethiopia (Dercon & Krishnan, 2000), where poverty and 
malnourishment increase 27% during the lean season, Mozambique and Malawi (Brune et al., 2011) – where 
people refer to a “hungry season”, Madagascar, where (Dostie et al., 2002) estimate that 1 million people fall 
into poverty before the rice harvest, Kenya, where (Swift, 1989) distinguishes between years that people died 
and years of less severe shortage, Francophone Africa (the soudure phenomenon), Indonesia (Basu & Wong, 
2012)  (‘musim paceklik’ or ‘famine season’ and ‘lapar biasa’ or ‘ordinary hunger period), Thailand (Paxson, 
1993), India (Chaudhuri & Paxson, 2002) and inland China (Jalan & Ravallion, 2001). 
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by difficult selection issues (Akee, 2010; Grogger & Hanson, 2011).2  Most closely 

related to our work is a small number of experimental and quasi-experimental 

studies of the effects of migration, many of which are cited in McKenzie and Yang 

(2010) and McKenzie (2012).  These studies often exploit exogenous variation in 

immigration policies to study the effects of permanent international migration.3 

Migration induced by our intervention increases food and non-food 

expenditures of migrants’ family members remaining at the origin by 30-35%, and 

improves their caloric intake by 550-700 calories per person per day.  Most 

strikingly, households in the treatment areas continue to migrate at a higher rate in 

subsequent seasons, even after the incentive is removed.  The migration rate is 10 

percentage points higher in treatment areas a year later, and this figure drops only 

slightly to 8 percentage points 3 years later. 

These large effects on migration rates, consumption and re-migration raise 

an important question: why didn’t our subjects already engage in such highly 

profitable behavior?  This puzzle is not limited to our sample: according to 

nationally representative HIES 2005 data only 5 percent of households in monga-

prone districts receive domestic remittances, while 22 percent of all Bangladeshi 

households do.  Remittances under-predict out-migration rates, but the size and 

direction of this gap is puzzling.  The behavior also mirrors broader trends in 

international migration.  The poorest Europeans from the poorest regions were the 

ones who chose not to migrate during a period in which 60 million Europeans left 

for the New World, even though their returns from doing so were likely the 

highest (Hatton & Williamson, 1998).  Ardington et al (2009) provide similar 

evidence of constraints preventing profitable out-migration in rural South Africa.  

2 Prior attempts use controls for observables (Adams, 1998), selection correction methods (Barham & 
Boucher, 1998), matching (Gibson & McKenzie, 2010), instrumental variables (Brown & Leeves, 2007; 
McKenzie & Rapoport, 2007; Yang, 2008; Macours & Vakis, 2010), panel data techniques (Beegle et al., 2011) , 
and natural policy experiments (Clemens, 2010; Gibson et al., 2013) to estimate the causal impact of migration. 

3 A related literature studies the effects of exogenous changes in destination conditions on remittances, 
savings and welfare at the origin (Martinez,Claudia A.,Yang,Dean, 2005; Aycinena et al., 2010; Chin et al., 2010; 
Ashraf et al., forthcoming).     
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To interpret our experimental findings, the second part of our paper 

provides a simple benchmark model in which experimenting with a new activity is 

risky, and rational households choose not migrate in the face of uncertainty about 

their prospects at the destination.  Given a potential downside to migration (which 

we show exists in our data), households may fear an unlikely but disastrous 

outcome in which they pay the cost of moving, but return hungry after not finding 

employment during a period in which their family is already under the threat of 

famine.  Inducing the inaugural migration by insuring against this devastating 

outcome (which our grant or loan with implied limited liability managed to do) 

can lead to long-run benefits where households either learn how well their skills 

fare at the destination, or improve future prospects by allowing employers to learn 

about them.  Such frictions may be part of what keeps workers in agriculture 

despite the persistent productivity gap between rural agriculture and urban non-

agriculture sectors (Gollin et al., 2002; Caselli, 2005; Restuccia et al., 2008; Vollrath, 

2009; Gollin et al., 2011; McMillan & Rodrik, 2011).   

Experimentation is deterred by two key elements: (a) individual-specific 

risk, and (b) the fact that individuals are close to subsistence, making migration 

failure very costly.  The model is related to the “poverty as vulnerability” view 

(Banerjee, 2004) – that the poor cannot take advantage of profitable opportunities 

because they are vulnerable and afraid of losses (Kanbur, 1979; Kihlstrom & 

Laffont, 1979; Banerjee & Newman, 1991).  A model with these elements may also 

shed light on a number of other important puzzles in growth and development.  

Green revolution technologies led to dramatic increases in agricultural 

productivity in South Asia (Evenson & Gollin, 2003), but adoption and diffusion of 

the new technologies was surprisingly slow, partly due to low levels of 

experimentation and the resultant slow learning (Munshi, 2004).  Smallholder 

farmers reliant on the grain output for subsistence may not experiment with a new 

technology with uncertain returns (given the farmer’s own soil quality, rainfall and 
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farming techniques), even if they believe the technology is likely to be profitable.  

This is especially true in South Asia where the median farm is less than an acre, 

and therefore not easily divisible into experimental plots (Foster & Rosenzweig, 

2011).4  Similarly, to counter the surprisingly low adoption rates of effective health 

products (Kremer et al., 2009; Meredith et al., 2011; Miller & Mobarak, 2013), we 

may need to give households the opportunity to experiment with the new 

technology (Dupas, 2010), perhaps with free trial periods and other insurance 

schemes.  Aversion to experimentation can also hinder entrepreneurship and 

business start-ups and growth (Hausmann & Rodrik, 2003; Fischer, 2013).   

In the third part of the paper, we return to our data to assess whether 

empirical relationships are consistent with some of the qualitative predictions of 

the model.  Much of the evidence supports our structure.  We show that 

households that are close to subsistence – on whom experimenting with a new 

activity imposes the biggest risk – start with lower migration rates, but are the 

most responsive to our intervention.  The households induced to migrate by our 

incentive are less likely to have pre-existing network connections at the 

destination, and exhibit learning about migration opportunities and destinations in 

their subsequent choices on whether and where to re-migrate.   

We also conduct a new round of experiments in 2011 to test some further 

predictions of the model.  We show that migration is more responsive to incentives 

(e.g. credit conditional on migration) than to unconditional credit, because the latter 

also improves the returns to staying at home.5  We also implement another new 

treatment providing insurance for migration, and this offer induces just as many 

4 The inability to experiment due to uninsured risk has been linked to biases towards low risk low-return 
technologies that stunt long-run growth (Yesuf et al., 2009), and to reduced investments in agricultural inputs 
and technologies such as new high-yield variety seeds and fertilizer (Rosenzweig & Wolpin, 1993; Dercon & 
Christiaensen, 2011). 

5 One might think that this is a simple rationality requirement, but it is not implied by a model in which 
households fail to migrate because they are liquidity constrained.   
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households to migrate.  Further, they respond to the insurance program design as 

if the environment is risky, and they are risk averse.    

Results of these tests notwithstanding, it is still somewhat puzzling that the 

households we induced were not experimenting with migration in years in which 

their income realization was high, or that they did not save up to experiment.  To 

explore, the fourth part of this paper calibrates the model allowing for buffer stock 

savings, and show that quantitatively, our model does not offer a fully satisfying 

explanation for the migration phenomena.  Once agents in our model are allowed 

to save up to migrate, the level of risk aversion required to quantitatively account 

for our data appears to be implausibly high.  This leads us to consider departures 

from full information and rationality and other market imperfections (such as 

savings constraints).  We conclude that our experiment demonstrates that the 

ingredients of subsistence, risk aversion and learning that we outline in our model 

are important parts of any story, but some other extension to this basic setup is 

required to fully account for the experimental results.  We therefore advocate care 

in interpreting our model: because we show that the model is not a complete 

description, any additional element that is needed to match the data may change 

or even reverse conclusions from our baseline model.  

The next two sections describe the context and the design of our 

interventions. We present results on program take-up and the effects of migration 

in Section 4. These findings motivate the risky experimentation model in Section 5. 

We use the model to frame further discussion of the data in Section 6, calibrate the 

model and discuss its ability to rationalize the experimental results in Section 7, 

discuss some extensions to the baseline model in Section 8 and offer conclusions 

and some tentative policy implications in Section 9. 
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2 The Context: Rangpur and the Monga Famine 

Our experiments were conducted in 100 villages in two districts (Kurigram and 

Lalmonirhat) in the seasonal-famine prone Rangpur region of north-western 

Bangladesh. The Rangpur region is home to roughly 7% of the country’s 

population, or 9.6 million people.  57% of the region’s population (or 5.3 million 

people) live below the poverty line.6  In addition to the higher level of poverty 

compared to the rest of Bangladesh, the Rangpur region experiences more 

pronounced seasonality in income and consumption, with incomes decreasing by 

50-60% and total household expenditures dropping by 10-25% during the post-

planting and pre-harvest season (September-November) for the main Aman rice 

crop (Khandker & Mahmud, 2012).  As Figure 1 indicates, the price of rice also 

spikes during this season, particularly in Rangpur, and thus actual rice 

consumption drops 22% even as households shift monetary expenditures towards 

food while waiting for the Aman rice harvest. 

The lack of job opportunities and low wages during the pre-harvest season 

and the coincident increase in grain prices combines to create a situation of 

seasonal deprivation and famine (Sen, 1981; Khandker & Mahmud, 2012).7  The 

famine occurs with disturbing regularity and thus has a name: monga. It has been 

described as a routine crisis (Rahman, 1995), and its effects on hunger and 

starvation are widely chronicled in the local media. The drastic drop in purchasing 

power between planting and harvest threatens to take consumption below 

subsistence for Rangpur households, where agricultural wages are already the 

lowest in the country (Bangladesh Bureau of Statistics, 2011). 

6 Extreme poverty rates (defined as individuals who cannot meet the 2100 calorie per day food intake) were 
25 percent nationwide, but 43 percent in the Rangpur districts. Poverty figures are based on Bangladesh 
Bureau of Statistics (BBS) Household Income and expenditure survey 2005 (HIES 2005), and population figures 
are based on projections from the 2001 Census data. 

7 Amartya Sen (1981) notes these price spikes and wage plunges as important causes of the 1974 famine in 
Bangladesh, and that the greater Rangpur districts were among the most severely affected by this famine. 
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Several puzzling stylized facts about institutional characteristics and coping 

strategies motivate the design of our migration experiments. First, seasonal out-

migration from the monga-prone districts appears to be low despite the absence of 

local non-farm employment opportunities. According to the nationally 

representative HIES 2005 data, it is more common for agricultural laborers from 

other regions of Bangladesh to migrate in search of higher wages and employment 

opportunities.  Seasonal migration is known to be one primary mechanism by 

which households diversify income sources in India (Banerjee & Duflo, 2007). 

Second, inter-regional variation in income and poverty between Rangpur 

and the rest of the Bangladesh have been shown to be much larger than the inter-

seasonal variation within Rangpur (Khandker, 2012). This suggests smoothing 

strategies that take advantage of inter-regional arbitrage opportunities (i.e. 

migration) rather than inter-seasonal variation (e.g. savings, credit) may hold 

greater promise. Moreover, an in-depth case-study of monga (Zug, 2006) notes that 

there are off-farm employment opportunities in rickshaw-pulling and construction 

in nearby urban areas during the monga season. To be sure, Zug (2006) points out 

that this is a risky proposition for many, as labor demand and wages drop all over 

rice-growing Bangladesh during that season. However, this seasonality is less 

pronounced than that observed in Rangpur (Khandker, 2012). 

Finally, both government and large NGO monga-mitigation efforts have 

concentrated on direct subsidy programs like free or highly-subsidized grain 

distribution (e.g. “Vulnerable Group Feeding,”), or food-for-work and targeted 

microcredit programs. These programs are expensive, and the stringent micro-

credit repayment schedule may itself keep households from engaging in profitable 

migration (Shonchoy, 2010). There are structural reasons associated with rice 

production seasonality for the seasonal unemployment in Rangpur, and thus 

encouraging seasonal migration towards where there are jobs appears to be a 

sensible complementary policy to experiment with. 
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3 The Experiment and the Data Collected 

The two districts where the project was conducted (Lalmonirhat and Kurigram) 

represent the agro-ecological zones that regularly witness the monga famine. We 

randomly selected 100 villages in these two districts and first conducted a village 

census in each location in June 2008. Next we randomly selected 19 households in 

each village from the set of households that reported (a) that they owned less than 

50 decimals of land, and (b) that a household member was forced to miss meals 

during the prior (2007) monga season.8  In August 2008 we randomly allocated the 

100 villages into four groups: Cash, Credit, Information and Control. These 

treatments were subsequently implemented on the 19 households in each village in 

collaboration with PKSF through their partner NGOs with substantial field 

presence in the two districts.9  The partner NGOs were already implementing 

micro-credit programs in each of the 100 sample villages. 

The NGOs implemented the interventions in late August 2008 for the 

monga season starting in September. 16 of the 100 study villages (consisting of 304 

sample households) were randomly assigned to form a control group. A further 16 

villages (consisting of another 304 sample households) were placed in a job 

information only treatment. These households were given information on types of 

jobs available in four pre-selected destinations, the likelihood of getting such a job 

and approximate wages associated with each type of job and destination (see 

Appendix 1 for details). 703 households in 37 randomly selected villages were 

offered cash of 600 Taka (~US$8.50) at the origin conditional on migration, and an 

additional bonus of 200 Taka (~US$3) if the migrant reported to us at the 

destination during a specified time period.  We also provided exactly the same 

8 71% of the census households owned less than 50 decimals of land, and 63% responded affirmatively to 
the question about missing meals. Overall, 56% satisfied both criteria, and our sample is therefore 
representative of the poorer 56% of the rural population in the two districts. 

9 PKSF (Palli Karma Sahayak Foundation) is an apex micro-credit funding and capacity building 
organizations in Bangladesh. It is a not-for-profit set up by the Government of Bangladesh in 1990. 

 8 

                                                 



information about jobs and wages to this group as in the information-only 

treatment.  600 Taka covers a little more than the average round-trip cost of safe 

travel from the two origin districts to the four nearby towns for which we 

provided job information.  We monitored migration behavior carefully and strictly 

imposed the migration conditionality, so that the 600 Taka intervention was 

practically equivalent to providing a bus ticket.10  

The 589 households in the final set of 31 villages were offered the same 

information and the same Tk 600 + Tk 200 incentive to migrate, but in the form of a 

zero-interest loan to be paid back at the end of the monga season.  The loan was 

offered by our partner micro-credit NGOs that have a history of lending money in 

these villages.  There is an implicit understanding of limited liability on these loans 

since we are lending to the extremely poor during a period of financial hardship. 

As discussed below, ultimately 80% of households were able to repay the loan. 

In the 68 villages where we provided monetary incentives for people to 

seasonally out-migrate (37 cash + 31 credit villages), we sometimes randomly 

assigned additional conditionalities to subsets of households within the village.  A 

trial profile in Figure 2 provides details.  Some households were required to 

migrate in groups, and some were required to migrate to a specific destination.  

These conditionalities created random within-village variation, which we will use 

as instrumental variables to study spillover effects from one person to another. 

3.1 Data 

We conducted a baseline survey of the 1900 sample households in July 2008, just 

before the onset of the 2008 Monga.  We collected follow-up data in December 

10 The strict imposition of the migration conditionality implied that some households had to return the 600 
Taka if they did not migrate after accepting the cash. We could not provide an actual bus ticket (rather than 
cash to buy it) for practical reasons: if that specific bus crashed, then that would have reflected poorly on the 
NGOs.  Our data show that households found cheaper ways to travel to the destination: the average roundtrip 
travel cost was reported to be 450 Taka. The 150 Taka saving can cover about 5 days of food expenditure for 
one person at the origin.   
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2008, at the end of the 2008 Monga season.  These two rounds involved detailed 

consumption modules in addition to data on income, assets, credit and savings.  

The follow-up also asked detailed questions about migration experiences over the 

previous four months.  We learnt that many migrants had not returned by 

December 2008, and therefore conducted a short follow-up survey in May 2009 to 

get more complete information about households’ migration experiences.  To 

study the longer-run effects of migration, and re-migration behavior during the 

next Monga season, we conducted another follow-up survey in December 2009.  

This survey only included the consumption module and a migration module.   We 

conducted a new round of experiments to test our theories in 2011, and therefore 

collected an additional round of follow-up data on the re-migration behavior of 

this sample in July 2011. In summary, detailed consumption data was collected 

over 3 rounds: in July 2008 (baseline), December 2008 and December 2009. 

Migration behavior was collected in December 2008, May 2009, December 2009 and 

July 2011, which jointly cover three seasons in 2008, 2009 and 2011. 

Table 1 shows that there was pre-treatment balance across the randomly 

assigned groups in terms of the variables that we will use as outcomes in the 

analysis to follow.  A Bonferroni multiple comparison correction for 27 

independent tests requires a significance threshold of α=0.0019 for each test to 

recover an overall significance level of α=0.05.  Using this criterion, no differences 

at baseline are statistically meaningful. 

4 Program Take-up and the Effects of Seasonal Migration 

In this section we describe the main results of our initial (2008) experiment.  

Section 4.1 provides results on migration behavior.  We first document the impact 

of the incentive on migration during the 2008 monga season (the season for which 

the incentive was in place).  We then document the ongoing impact of the incentive 
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on migration in 2009 and 2011 (one and 3 years, respectively, after the incentive 

was removed).  In Section 4.2 we look at the effect of the treatment on consumption 

at the origin (both in the short-run: 2008 and the long-run: 2009).  We first provide 

both intent-to-treat and LATE estimates for consumption in December 2008 and 

then also look at the ongoing impact of the incentives on consumption in 2009.  In 

Section 4.3 we look at migration income and savings at the destination. 

4.1 Migration and Re-migration 

Table 2 reports the take-up of the program across the four groups labeled cash, 

credit, information and control.  We have 2008 migration data from two follow-up 

surveys, one conducted immediately after the monga ended (in December 2008), 

and another in May 2009.  The second follow-up was helpful for cross-checking the 

first migration report,11 and for capturing the migration experiences of those who 

left and/or returned later.  The two sets of reports were quite consistent with each 

other, and Table 2 shows the more complete migration rates obtained in May 2009.   

In Table 2 we define a household as having a seasonal migrant if at least one 

household member migrated away in search of work between September 2008 and 

April 2009. This extended definition of the migration window accounts for the 

possibility that our incentive merely moved forward migration that would have 

taken place anyway.  This window captures all migration during the Aman 

cropping season and, as a consequence, all the migration associated with Monga.    

About a third (36.0%) of households in control villages sent a seasonal 

migrant.12  Providing information about wages and job opportunities at the 

11 Since an incentive was involved, we verified migration reports closely using the substantial field presence 
of our partner NGOs, by cross-checking migration dates in the two surveys conducted six months apart, by 
cross-checking responses across households who reported migrating together in a group, and finally, by 
independently asking neighbors.  The analysis (available on request) shows a high degree of accuracy in the 
cross reports and, importantly, that the accuracy of the cross reporting was not different in incentivized 
villages.    

12 In a large survey of 482,000 households in the Rangpur region, 36.0% of people report using “out-
migration” as a coping mechanism for the Monga (Khandker et al., 2011).  Our result appears very consistent 
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destination had no effect on the migration rate (the point estimate of the difference 

is 0.0% and is tightly estimated).  Either households already had the information 

that we made available to them, or the information we made available was not 

useful or credible.  With the $8.50 (+$3) cash or credit treatments, the seasonal 

migration rate jumps to 59.0% and 56.8% respectively.  In other words, incentives 

induced about 22% of the sample households to send a migrant.  The migration 

response to the cash and credit incentives are statistically significant relative to 

control or information, but there is no statistical difference between providing cash 

and providing credit – a fact that our model will later account for.  Since 

households appear to react very similarly to either incentive, we combine the 

impact of these two treatments for expositional simplicity (and call it “incentive”) 

for much of our analysis, and compare it against the combined information and 

control groups (labeled “non-incentive”). 

The lower panel of Table 2 compares re-migration rates in subsequent years 

across the incentive and non-incentive groups.  We conducted follow-up surveys 

in December 2009 and in July 2011 and asked about migration behavior in the 

preceding lean seasons, but we did not repeat any of the treatments in the villages 

used for the comparisons in the top half of Table 2.  Strikingly, the migration rate 

in 2009 was 10 percentage points higher in treatment villages, and this is after the 

incentives were removed.  Section 6.3.1 will show that this is almost entirely due to 

(a subset of) migrants who were induced in 2008 re-migrating.  In other words, 

migration appears to be an “experience good”.    The July 2011 survey measured 

migration during the other (lesser) lean season that coincides with the pre-harvest 

period for the second (lesser) rice harvest. Even two and a half years later, without 

any further incentive, the migration rate remains 8% higher in the villages 

with the large-sample finding.  Interestingly, survey respondents who qualified for government safety-net 
benefits were no more likely to migrate than households that did not.  
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randomly assigned to the cash or credit treatment in 2008.13  The re-migration rates 

in 2009 and 2011 were significantly higher (relative to control) in the cash and 

credit groups separately.  

We learn two important things from this re-migration behavior.  First, the 

propensity to re-migrate absent further inducements serves as a revealed 

preference indication that the net benefits from migration were positive for many, 

and/or that migrants developed some asset during the initial experience that 

makes future migration a positive expected return activity.14  Second, the 

persistence of re-migration from 2009 to 2011 (without much further decay after 

the four potential migration seasons in between) suggests that households learnt 

something valuable or grew some real asset from the initial migration experience.  

This persistence makes it unlikely that some households simply got lucky one year, 

and then it took them several tries to determine (again) that they are actually better 

off not migrating.  It also reduces the likelihood that our results are driven by a 

particularly good migration year in 2008.   

This strong repeat migration also suggests that migration is an absorbing 

state, at least for some portion of the population.  As we discuss further in Sections 

6 and 8 this makes it hard to understand how our initial incentive was successful in 

inducing so much migration. 

4.2 Effects of Migration on Consumption at the Origin 

We now study the effects of migration on consumption expenditures amongst 

remaining household members during the monga season. Consumption is a broad 

13 Overall in our sample, 953 out of 1871 sample households sent a migrant in 2008 (and 723 of them 
traveled before our December 2008 follow-up survey), and 800 households sent a seasonal migrant during the 
2009 monga season.  The overall migration rate in 2011 was 40.8%. 

14 All socio-economic outcomes we measure using our surveys will necessarily be incomplete, since it is not 
possible to combine the social, psychological and economic effects of migration in one comprehensive welfare 
measure.  The revealed re-migration preference is therefore a useful complement to other economic outcomes 
that we use in the analysis below. 
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and useful measure of the benefits of migration, aggregating as it does the impact 

of migrating on the whole family (Deaton, 1997), and takes into account the 

monetary costs of investing (although it neglects non-pecuniary costs).  

Consumption can be comparably measured for migrant and non-migrant families 

alike, and it overcomes the problems associated with measuring the full costs and 

benefits of technology adoption highlighted in Foster and Rosenzweig (2010).  Our 

consumption data are detailed and comprehensive: we collect expenditures on 318 

different food (255) and non-food (63) items (mostly over a week recall, and some 

less-frequently-purchased items over bi-weekly or monthly recall), and aggregate 

up to create measures of food and non-food consumption and caloric intake.   

We first present pure experimental (intent-to-treat) estimates in Table 3 with 

consumption measures regressed on the randomly assigned treatments: cash, 

credit and information for migration.   Our regressions take the form 

 𝑌𝑖𝑣𝑗 = 𝛼 +  𝛽1𝐶𝑎𝑠ℎ𝑖𝑣𝑗 +  𝛽2𝐶𝑟𝑒𝑑𝑖𝑡𝑖𝑣𝑗 + 𝛽3𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑖𝑣𝑗 +  𝜑𝑗 +  𝜐𝑖𝑣𝑗  

whereYivj is per capita consumption (money spent on food, non-food, total calories, 

protein, meat, education, etc in turn) for household i in village v in sub-district j in 

2008, and , φj are fixed effects for sub-districts.  Standard errors are clustered by 

village, which was the unit of randomization (and this will be true for all our 

analysis). The first three columns in Table 3 show 𝛽̂1, 𝛽̂2 and 𝛽̂3 – the coefficients on 

cash, credit and information – and each row represents a different regression on a 

different dependent variable.  The dependent variables are household averages 

using the set of people reported to be living in the household for at least 7 days at 

the time of the survey as the denominator.  We discuss the appropriate choice of 

denominator in more detail below.   

Both the cash and credit treatments – which induced 21-24% more migration 

– result in statistically significant increases in food and non-food consumption. 

Consumption of food and non-food items increased by about 97 Taka per 
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household member per month in the ‘cash’ villages, which represents about a 10% 

increase over consumption in the control group.  The increase in credit villages 

was 8%.  The information treatment, which did not induce any additional 

migration, does not result in any significant increases in consumption. Calories per 

person per day increase by 106 under the ‘cash’ treatment, and consumption of 

protein increases significantly, especially from meat and fish.  For the Bangladesh 

context, this reflects a shift towards a higher quality diet, as meat and fish are 

considered more attractive, “tasty” sources of protein.  Educational expenditures 

on children also increase significantly. 

Since both cash and credit treatments led to greater migration (Table 2), 

column 4 reports the intent-to-treat estimates for these two incentive treatments 

jointly. Average monthly household consumption increases by 68 Taka in these 

incentive villages (7% over control group), and this results in 142 extra calories per 

person per day. Column 5 indicates that these effects are generally robust to 

adding some controls for baseline characteristics. 

Next we show the local average treatment effect (LATE), the consumption 

effect of migration for those households that were induced to migrate by our 

intervention.  This is a well-defined and policy relevant parameter in our setting: 

programs providing credit for migration and even incentivizing migration seem to 

be of direct policy interest, and we think it unlikely that any households were 

dissuaded from migrating by our incentive.  We calculate this effect by estimating: 

 𝑌𝑖𝑣𝑗 = 𝛼 +  𝛽 𝑀𝑖𝑔𝑟𝑎𝑛𝑡𝑖𝑣𝑗 +  𝜃 𝑋𝑖𝑣𝑗 +  𝜑𝑗 +  𝜐𝑖𝑣𝑗 

where Migrantivj  is a binary variable equal to 1 if at least one member of household 

migrated during Monga in 2008 and 0 otherwise, and Xivj is a vector of household 

characteristics at baseline that we sometime control for.  The endogenous choice to 

migrate is instrumented with whether or not a household was randomly placed in 

the incentive group: 
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 𝑀𝑖𝑔𝑟𝑎𝑛𝑡𝑖𝑣𝑗 =  𝜆 +  𝜌 𝑍𝑣 + 𝛾 𝑋𝑖𝑣𝑗 + 𝜑𝑗 + 𝜀𝑖𝑣𝑗  

where the set of instruments Zv  includes indicators for the random assignment at 

the village level into one of the treatment (cash or credit) or control groups.  First 

stage results in Appendix Table 1 verify that the random assignments to cash or 

credit treatments are powerful predictors of the decision to migrate.   

The intervention may have changed not only households’ propensity to 

migrate on the extensive margin, but also who within the household migrates, how 

long they travel, the number of migration episodes on the intensive margin.  Such 

changes may affect the interpretation of the IV estimates. Appendix Table 2 shows 

that the treatment does not significantly alter whether the household sends a male 

or female migrant, or the number of trips per migrant, or the number of migrants 

or trips per household (on the intensive margin, conditional on someone in the 

household migrating once).  The effects are concentrated on the extensive margin, 

inducing migration among households who were previously not migrating at all.15  

However, the treatment does make it more likely that older, heads of households 

become more likely to migrate.        

 IV estimates using treatment assignment are always larger than OLS 

estimates.  This likely reflects the fact that rich households at the upper end of our 

sample income distribution are not very likely to migrate (income has a negative 

coefficient in the first stage regression in Appendix Table 1).  In the IV 

specification, per capita food, non-food expenditures, and caloric intake among 

induced migrant households increase by 30% to 35% relative to non-migrant 

households.  This is very similar to the 36% consumption gains from migration 

estimated by Beegle et al (2011) for Tanzania. Finally, none of the results discussed 

above are sensitive to changes in baseline control variables.  

15 The migrant is almost always male (97%), and often the household head (84% in treatment villages and 
76% in control), who is often the only migrant from that household (93%).  Migrants make 1.73 trips on 
average during the season, which implies that migrants often travel multiple times within the season.  The first 
trip lasts 42 (56) days for treatment (control) group migrants. They return home with remittance and to rest, 
and travel again for 40 (40) days or less on any subsequent trips. 
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In terms of magnitude of effects, monthly consumption among migrant 

families increase by about $5 per person, or $20 per household due to induced 

migration.   Our survey only asked about expenditures during the second month 

of monga, and the modal migrant in our sample had not yet returned home (which 

includes cases where they may have returned once, but left again).  We therefore 

expect the effects to persist for at least another month, and the total expenditure 

increase therefore easily exceeds the amount of the treatment ($8.50).  Furthermore, 

if households engage in consumption smoothing, then some benefits may persist 

even further in the future.  In any case, the $8.50 is spent two months prior to the 

consumption survey on transportation costs. 

It is not straightforward to evaluate the returns to migration based on these 

estimates, and the precise value will depend on assumptions about the period over 

which the consumption gains are realized, and how to treat the cost that some 

migrants choose to incur to return home and take a second trip.  Under a 

reasonable assumption that the consumption gains are realized over the 2 months 

of the monga period, households consume an extra Tk. 2840 (Tk. 355 per capita per 

month estimated in Table 3 * 4 household members * 2 months) during the monga 

by incurring a migration costs of Tk. 1038 (Tk.600/trip*1.73 trips).  This implies a 

gross return of 273%, ignoring any disutility from separation.      

Since the act of migration increases both the independent variable of interest 

and possibly reduces the denominator of the dependent variable (household size at 

the time of interview), any measurement error in the date that migrants report 

returning can bias the coefficient on migration upwards. We address this problem 

directly by studying the effects of migration in 2008 on consumption in 2009 

(where household size is computed using a totally different survey conducted over 

a year later).  Table 4 shows that 2009 effects are about 60-75% as large as the 

consumption effects in 2008 across both ITT and LATE specifications, but still 

statistically significant.  Migration is associated with a 28% increase in total 
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household consumption which is still substantial.  The LATE specification for 2009 

is more difficult to interpret: many of those induced to migrate in 2008 were 

induced to re-migrate a year later, but they could have also re-invested their 2008 

earnings in other ways that leads to long-run consumption gains.  

Since the migration decision is serially correlated, measurement error in 

2009 migration dates can also bias our estimates. We therefore conduct a number 

of other sensitivity checks on the consumption results by varying the definition of 

household size (the denominator).  These results are shown in Appendix Table 3.  

We conservatively assume that household members present in the house on the 

day of the interview were present for the entire prior month to consume the 

reported expenditures, since this variable is least likely to suffer from 

measurement error and coding problems.  We compute this household size based 

on different questions in the survey (“who currently lives in the household” as 

opposed to “who is present on the interview date”).  Both ITT and IV results 

remain statistically significant, but slightly smaller (e.g. 130 or 125 calories rather 

than 142) in some specifications.  Finally, even with the very conservative 

assumption that migrants never left, migration is estimated to increase 

consumption by 1169 calories per household (or 292 calories per person) per day in 

the IV or 194 calories per household per day in the ITT.  However, this last result, 

shown in panel E, is no longer statistically significant. 

4.3 Income and Savings at the Destination 

Next we examine the data on migrants’ earnings and savings at the destination to 

see whether the magnitude of consumption gains we observe at the origin are in 

line with the amount migrants earn, save and remit.  Information on earnings and 

savings at the destination were only collected from migrants (non-migrants 

skipped over this section of the survey), and these are not experimental estimates; 

they merely help to calibrate the consumption results.  Table 5 shows that migrants 
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in the treatment group earn about $105 (7451 Taka) on average and save about half 

of that.  The average savings plus remittance is about a dollar a day.  Remitting 

money is difficult and migrants carry money back in person, which is partly why 

we observe multiple migration episodes during the same lean season.  Therefore, 

joint savings plus remittances is the best available indicator of money that becomes 

available for consumption at the origin.  The destination data suggest that this 

amount is about $66 (4600 Taka) for the season.  The “regular” migrants in the 

control group earn more per episode, save and remit more per day relative to 

migrants in the treatment group.  This is understandable, since the migrants we 

induce are new and relatively inexperienced in this activity.   

We can compute experimental (ITT) estimates on total income (and 

savings), by aggregating across all income sources at the origin and the 

destination. Income is notoriously difficult to measure in these settings, with 

income realized from various sources – agricultural wages, crop income, livestock 

income, enterprise profits – parts of which are derived from self-employment or 

family employment where a financial transaction may not have occurred. 

Appendix Table 4 shows ITT and IV estimates. Households in the treatment group 

have 585 extra Taka in earnings, and hold 592 extra Taka in savings.  In the IV 

specification, migration is associated with 3300 extra Taka in earnings and savings. 

We also examine effects on an anthropometric measure we collected – each child’s 

middle-upper-arm-circumference (MUAC).  The IV specifications suggest that 

migrants’ children’s MUAC grew an extra 5-11 mm, but the result is not 

statistically significant. MUAC was measured in December 2008, soon after the 

initial inducement to migrate.        

Table 6 is a purely descriptive table that breaks down the number of 

migration episodes and average earnings by sector and by destination.  Dhaka (the 

largest urban area) is the most popular migration destination, and a large fraction 

of migrants to Dhaka work in the transport sector (i.e. rickshaw pulling).  Many 
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others work for a daily wage, often as unskilled labor at construction sites.  At or 

around other smaller towns that are nearer to Rangpur, many migrants work in 

agriculture, especially in potato-growing areas that follow a different seasonal crop 

cycle than in rice-growing Rangpur.  Migrants earn the most in Dhaka and at other 

“non-agricultural destinations”: about 5100 Taka or $71 per migration episode, 

which translates to $121 per household on average given multiple trips.  Those 

working for daily wages in the non-agricultural sector (e.g. construction sites, brick 

kilns) earn the most.     

It is difficult to infer the income these migrants would have received had they 

not migrated.  Observed average migrant earnings at the destination (100 Taka per 

day) do compare favorably to the earnings of the sub-sample of non-migrants with 

salaried employment at the origin (65 Taka per day) and to the profits of 

entrepreneurs at the origin (61 Taka per day).  There is heterogeneity around that 

average, which introduces some risk, and we will discuss this in Section 6.  

5 Theory 

In this section we develop a simple model that is inspired by the three key facts we 

documented above: (1) A large number of households were motivated to migrate 

in response to the 600 Taka incentive, (2) There were positive returns to the 

induced migration on average, indicating that households were not migrating 

despite a positive expected profit, and (3) A large portion of the households that 

were incentivized to migrate continued to send a seasonal migrant in subsequent 

years.  Given the first two facts, our model incorporates both risk aversion and a 

credit constraint.  Furthermore, any attempt to identify the frictions that prevent 

households from engaging in an apparently beneficial activity will have to 

confront the possibility that households could save up to migrate. We therefore 

allow for savings, both for migration and to buffer against income shocks.    

 20 



We first use the model to frame a deeper discussion of the data in Section 6. 

We will show several patterns in the data are qualitatively consistent with our 

simple framework.  Second, Section 7 will ask whether the model can make sense 

of the data, quantitatively. To do this, we calibrate the model and then ask how 

risk averse a potential migrant would have to be for our model to generate our 

experimental results.   

5.1 Baseline Model 

We consider the migration and consumption choices of an infinitely lived 

household in discrete time. In each time period, a state of the world 𝑠 ∈ 𝑆 is drawn 

according to the distribution μ and the household receives income ys.16 We refer to 

this as background income and assume the process is iid.17 A household that enters 

the period with assets A and receives background income y has cash on hand x = 

A+y. We assume that the household can save at a gross interest rate R, but cannot 

borrow for consumption purposes.18  Therefore, consumption is less than cash on 

hand (𝑐 ≤ 𝑥) in any period. 

The household is uncertain about whether it will be good at migrating. With 

probability 𝜋𝐺  the household is type G – good at migrating – and receives a 

16 We assume that all households face the same distribution of background income.  This is a strong 
simplifying assumption.  In practice there are likely to be poorer and wealthier households.  Our model 
suggests that those that are very poor will not migrate because it is too risky.  Those that are very rich will 
likely not migrate because they do not need to supplement income and those that are in the middle migrate 
because they can afford to and benefit from doing so.  This is consistent with a slightly altered version of the 
model presented here in which migration truncates the distribution of earning from below.  We have explored 
this alternative model, but find that it leads to similar quantitative results.  We do not pursue this approach in 
the main text as the model is more complicated – because cash on hand is not a sufficient state variable it is 
also more computationally expensive to use for simulations. 

17 See Deaton (1991) for a discussion of the impact of relaxing this assumption. We think it is a reasonable 
assumption in our setting and maintain it throughout. 

18 Households have access to microfinance from a range of sources, however, we believe limitations on 
microfinance borrowing imply that we should think of these households as credit constrained.  First, most 
lending is specifically for women and specifically for entrepreneurial activity.  To the extent these requirement 
are binding, microfinance is not useful for consumption smoothing or migration.  Second, typical credit 
contracts require borrowing on a set loan schedule and require immediate repayment.  Again, this means 
microfinance is very hard to use for smoothing or migration. 
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positive (net) return to migrating of m. With probability (1 − 𝜋𝐺) the household is 

type B – bad at migrating – and receives no return to migrating, but faces a cost F if 

it does choose to migrate. We think of type as being a household specific 

parameter, and not something that can be easily learned or transferred over from 

other households in the village. We further assume that this uncertainty resolves 

after one period of experimentation with migration. Migration is, therefore, to be 

thought of as an experience good.19 This assumption is motivated by reports that 

migrants need to find a potential employer at the destination and convince that 

employer to trust them.  Once this link is established it is permanent, but some 

migrants will not be able to form such a link.  A leading example from our data is 

convincing the owner of a rickshaw that you can be trusted with his valuable asset. 

Below, we discuss further reasons for modeling risk in this way. 

A household that knows it is bad at migrating will never migrate and is 

essentially a Deaton (1991) buffer stock saver. With cash on hand x, such a 

household solves  

𝐵(𝑥) = max
𝑐≤𝑥

�𝑢(𝑐) + 𝛿 � 𝐵�𝑦𝑆 + 𝑅(𝑥 − 𝑐)�𝑑𝜇(𝑠)
𝑆

� , 

 

where u is a standard strictly increasing, strictly concave utility function and δ is 

the household's discount factor. A household that knows it is good at migrating 

will always migrate and solves a similar problem, but with a higher income. With 

cash on hand x a household that is a good migrator has value  

  

𝐺(𝑥) = max
𝑐≤𝑥+𝑚

�𝑢(𝑐) + 𝛿 � 𝐺�𝑦𝑆 + 𝑅(𝑥 + 𝑚 − 𝑐)�𝑑𝜇(𝑠)
𝑆

� . 

 

With this formulation we are assuming that the household can migrate before it 

19 We thank an anonymous referee for clarification on this point and also the term experience good. 
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makes its consumption decision, this means that a households that knows that it is 

a good migrator can always migrate regardless of credit constraints.  

We are interested in the behavior of a household that has never migrated 

before. In each period, such a household chooses both whether to migrate and 

consumption/savings. If it migrates it discovers that it is a good migrator with 

probability 𝜋𝐺  and has value G(x). If, however, the household migrates and 

discovers that it is a bad migrator, then it has paid a cost F and receives value B(x-

F).  We think of 𝜋𝐺  as the probability of finding a connection at the destination 

within a reasonable search time. We think of the cost F as being the cost of 

transport and lost income while the migrator searches for work. The household 

will choose to migrate if the expected utility of migration is greater than that of not 

migrating. Therefore, a household that has never migrated before, and has cash on 

hand x, solves  

 

𝑉(𝑥) = 𝑚𝑎𝑥 �𝑚𝑎𝑥
𝑐≤𝑥

�𝑢(𝑐) + 𝛿 � 𝑉�𝑦𝑠 + 𝑅(𝑥 − 𝑐)�𝑑𝜇(𝑠)
𝑆

� ,𝜋𝐺𝐺(𝑥)

+ (1 − 𝜋𝐺)𝐵(𝑥 − 𝐹)� .  

Migration is risky in this model. A household that turns out to be a bad migrator 

pays a cost F but receives no benefit.  This has two implications. First, the 

household is credit constrained and will have to forego consumption in the current 

period. Second, the household may face a bad shock in the next period, but will 

have no buffer stock saving to smooth consumption. Hence, the model has a role 

for background risk which, given the assumptions we make about the utility 

function, implies that the riskier the background income process, the less likely is 

migration for any particular level of cash on hand.20  

20 See Eeckhoudt et al. (1996) and the literature cited there for a discussion of when background risk leads to 
a reduction in risk taking. 
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Throughout our discussion we assume that the household faces a 

subsistence constraint. We model this by assuming that 𝑢(𝑐) = 𝑢�(𝑐 − 𝑠) with 

lim𝑥→0 𝑢�′(𝑥) = ∞, lim𝑥→0 𝑢�(𝑥) = −∞, and lim𝑥→0
𝑢�′′(𝑥)
𝑢�′(𝑥) = ∞.  That is, there is a level 

of consumption s at which the household is unwilling to consider decreasing 

consumption for any reason, and the household becomes infinitely risk averse. We 

think of s as a point at which survival requires the household to spend all its 

current resources on food, with the implication that household members face a 

threat of serious illness or death if they do not consume at least s. The possibility 

that consumption is close to this point in our data is highlighted by the fact that the 

monga famine regularly claims lives. We also show below that many households’ 

expenditure seems to fall below what would be required for a minimal subsistence 

diet. We believe it reasonable to assume that a household that has such a low 

consumption level would not be willing to take on any risk. For our simulations 

we use a fairly standard utility function that incorporates a subsistence point: 

𝑢(𝑐) = (𝑐−𝑠)1−𝜎

1−𝜎
. 

The model is related to Deaton's buffer stock model, several models from 

the poverty trap literature (e.g. Banerjee, 2004), and the entrepreneurship literature 

(e.g. Buera, 2009; Vereshchagina & Hopenhayn, 2009). We now describe the 

behavior of agents in this model using the value functions, policy functions and 

simulated time series of choices. Figure 3 provides plots of two value functions, 

both for households that have never migrated before. The first function shows the 

value to a household that is forced to migrate in this period: 

 

𝑉𝑀(𝑥) = 𝜋𝐺𝐺(𝑥) + (1 − 𝜋𝐺)𝐵(𝑥 − 𝐹). 

 

The second function shows the value to a household that decides not to migrate in 

this period:   
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𝑉𝑁(𝑥) = max
𝑐≤𝑥

�𝑢(𝑐) + 𝛿 � 𝑉�𝑦𝑠 + 𝑅(𝑥 − 𝑐)�𝑑𝜇(𝑠)
𝑆

�. 

 

As is generally the case, 𝑉𝑀 crosses 𝑉𝑁 once from below. This implies a cutoff level 

of cash on hand 𝑥�: for cash on hand below 𝑥� the household does not migrate, for 

cash on hand greater than 𝑥� the household does migrate. Because the two value 

functions cross, the value V is not convex, which implies that the household would 

be risk loving at levels of cash on hand close to 𝑥�. We do not allow households any 

kind of randomization that would help them take advantage of this non-convexity 

– this is a feature of most poverty trap models. These issues are explored in detail 

in Vereshchagina and Hopenhayn (2009). 

Our cash incentive treatment is easy to incorporate into the model: the 

payment increases cash on hand by 600 Taka in either the good or bad state of the 

world. This has the effect of moving 𝑉𝑀 up, lowering 𝑥� to 𝑥�′. Those households that 

had cash on hand in the interval [𝑥�′, 𝑥�] are induced to migrate.  Other interventions 

and policy prescriptions can be analyzed in a similar fashion. 

Figure 4 displays typical policy functions – consumption as a function of 

cash on hand – for the model. The first policy function shows consumption for a 

household that knows it is bad at migrating (𝑐𝐵), and the second for a household 

that has never migrated, but that we restrict to not migrate in the current period 

(𝑐𝑀). At low levels of cash on hand, both policy functions lie on the 45 degree line – 

the household spends all that it can. As cash on hand rises, the household that 

knows it is a bad migrator begins to buffer, consuming less than cash on hand and 

saving some money to smooth later consumption. This is the standard result 

following Deaton (1991). Initially, the household that can migrate does the same 

thing and the two policy functions lie on top of each other. As cash on hand 

approaches 𝑥�, however, 𝑐𝑀 falls below 𝑐𝐵: the household that can migrate begins to 
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save up for migration. Thus, the saving of a potential migrator can be divided into 

two parts: buffering, and saving up for migration.  The figure shows that, for some 

parameter values, consumption is not a monotone function of cash on hand, a 

result that is consistent with the findings of Buera (2009). As cash on hand rises 

past 𝑥�, 𝑐𝑀 continues to lie below 𝑐𝐵: we have constrained the household not to 

migrate in this period so it continues to save in the hope of migrating next period. 

Finally, there is a level of cash on hand past which 𝑐𝑀 > 𝑐𝐵 – the household that 

has never migrated knows that it can migrate next period and it is consequently 

richer (in expectation) than the household that knows it is bad at migrating.  

We are not interested in general results as 𝑡 → ∞ but rather in the behavior 

over real world time periods. This behavior is inherently stochastic and best 

understood by looking at simulations. Figure 5 shows simulations of cash on hand 

and consumption for two households with different starting levels of cash on hand 

(wealth).   Both households are assumed to be good migrators.  The panel on the 

left shows cash on hand and the right shows consumption.  The cash on hand 

simulation shows that the wealthier household quickly saves enough to cross the 

migration threshold, 𝑥�.  After crossing the threshold, cash on hand spikes as the 

household discovers that it is a good migrator.   The poorer household never 

migrates.  The consumption simulations shows that the wealthier households 

consumes less initially – as it saves up – but after crossing the migration threshold 

has a higher consumption level.  In general, our simulations show that households 

with a lower mean income �𝐸𝜇𝑦� or with a lower starting cash on hand are less 

likely to cross the threshold for any finite time period, indicating a kind of poverty 

trap. It is this poverty trap that can potentially explain our experimental results: a 

portion of households are stuck in a low income situation in which they cannot 

migrate, but a small intervention can push them to experiment with migration, 

with potentially high returns.  
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We can also use the model to consider other comparative statics. Risk 

aversion appears intuitively linked to aversion to experimentation, but the model 

suggests that the relationship is more complicated. Simulations show that an 

increase in risk aversion has three effects. First, increasing risk aversion increases 

the cost of experimenting with migration and tends to increase 𝑥� and thus reduce 

the propensity to migrate.  Second, as risk aversion increases, the return to 

migration increases because migration can be seen as a risk mitigation strategy.  

Third, for many utility functions (including the one we use for simulations), 

absolute prudence increases with risk aversion.21 As a consequence, as risk 

aversion increases the household engages in more buffer stock saving, implying 

that the household is more likely to cross any given threshold level of cash on 

hand. We have not sought a general characterization of which effect dominates, 

but do observe all three effects in our simulations. Similar effects apply to an 

increase in the riskiness of income. On the one hand a riskier income means more 

background risk and, therefore (for specific utility functions) effectively an increase 

in risk aversion. On the other hand, more risk means more buffer stock savings. 

6 Qualitative Evaluation of the Model’s Assumptions and 
Central Implications 

 

In this section we provide some descriptive and some experimental evidence in 

favor of the main assumptions and implications of the model. 

6.1 Descriptive Evidence on Income Variability and Buffering 

A key assumption of the model is that the income process is stochastic.  To verify 

whether this describes our setting, we study the inter-temporal variability in the 

21 The coefficient of absolute prudence is defined as 𝑢
′′′(𝑥)
𝑢′′(𝑥) . See Kimball (1990) for a definition of prudence 

and the relationship to precautionary savings and concepts of risk aversion including decreasing absolute risk 
aversion. 
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three rounds of consumption data collected at baseline (July 2008), December 2008 

and December 2009.  We conservatively use consumption data rather than income 

data because income is measured with more error in these settings (Deaton, 1997) 

and this would artificially inflate variability, and because income is more variable 

due to seasonality and consumption smoothing.   

Even with the conservative measure, we see that average variability in per-

capita consumption is high. Mean absolute deviation in weekly consumption in 

our sample is 307 Taka between rounds one and two and 368 Taka between rounds 

two and three. The standard deviation of the absolute deviation in income is 635 

and 508 Taka respectively. By way of comparison, average per-capita consumption 

levels in the control group were 1067, 954 and 1227 Taka in the three surveys. In 

Appendix Figure 1 we plot histograms of second round consumption separately 

for each of the 10 deciles of first round household consumption. Visual inspection 

suggests that there is no real permanence in the income distribution - those that 

were in the lowest decile in the first round do not appear to have a significantly 

different draw in the second period from those that were in the middle decile. We 

verify this by regressing consumption in later rounds on in earlier rounds 

consumption in Appendix Table 5.  Every extra dollar of consumption measured in 

July 2008 is associated with only 10.2 cents extra consumption in December 2008, 

and 6.7 cents in December 2009.  One dollar extra in December 2008 is associated 

with 45 cents more consumption in December 2009. The R-squared in these 

regressions are between 0.02-0.13: current consumption does not predict future 

consumption well.   Although measurement error is probably very important in 

explaining these results, we think it is reasonable to conclude that background 

income is also very variable. 

The reported yearly variation in income and consumption dwarfs the size of 

our 600 Taka incentive, and thereby poses a significant challenge to the model’s 

ability to rationalize the data. Our model suggests a cutoff point of cash on hand 
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that would trigger migration. Our incentive presumably works, in part, by 

increasing cash on hand. But, the data suggests that income (and, therefore, cash 

on hand) will be higher by the size of the incentive regularly, just by pure chance.   

This fact is primarily why we do not think that a pure liquidity constraint – the 

complete inability to raise the bus fare – provides a good description of the setting.  

We return to this issue below. 

Background risk also has important implications for behavior.  If 

households are prudent (i.e. 𝑢′′′ > 0) and impatient (𝛿 > 𝑅), both of which seem 

likely in our setting,22 then high income-variability should lead to buffer stock 

savings.  Appendix Table 6 describes savings behavior in our sample. Although 

our households are poor, they have a reasonably high level of savings. Conditional 

on being a saver, the mean holding in cash is 1400 Taka, which is about 35% of 

monthly expenditure for the household. This is a relatively high 

savings/expenditure ratio, even compared to the United States.  For the full 

sample (not conditioning on people with positive savings), average cash savings is 

745 Taka, and average value of cash plus other liquid assets (e.g. jewelry and 

financial assets) held by all households is 1085 Taka.  This level of savings is not 

inconsistent with the observation that households in our sample are often close to 

subsistence. Buffering implies that in each period some households will have zero 

savings and be consuming hand to mouth, but those same households will have 

high savings in other periods. Indeed, the data bears this out quite well. 53% of 

households held cash savings at baseline, and this fraction varies a lot across 

rounds (57% in December 2008 and 34% in June 2011).  The share of households 

holding liquid assets varies from 42% to 59% to 81%.  The standard deviation of 

savings is also about two times mean savings which is consistent with savings 

being variable, as it would be in a buffer stock model. 

22 The existence of savings constraints in developing countries (Dupas & Robinson, 2013a) makes 𝛿 > 𝑅 
reasonable. There are by now many theoretical and empirical arguments suggesting that prudence is a 
reasonable assumption for the utility function. 
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6.2 Descriptive and Experimental Evidence on Migration Risk 

Our model assumes both that migration is risky, and that risk takes a particular 

form: risk is assumed to be idiosyncratic.  We begin by discussing evidence on 

migration risk, and will turn to the specific form of the risk in Sections 6.3 and 6.4.  

Figure 6 provides a clear depiction of the migration risk.  We take the 

monthly consumption per household member in December 2008, and subtract the 

value of the incentive from households that chose to take it.  This gives a measure 

of the possible outcome if the cost of migration had to be born within one month 

by the household, not subsidized by our incentive program.  In panel A, we 

subtract the histogram for distribution of consumption in the control (non-

incentive) villages from this histogram for the distribution of consumption in the 

treatment (incentive) villages, less the value of the migration incentive paid out.  

The results show significant amounts of risk: while the treatment moved many 

poor households from extreme poverty (consuming 500-900 Taka per month) to a 

less poor (1300 Taka per month) category, many other households would shift to 

100-300 Taka per month (which, as discussed below, corresponds to caloric intake 

at or below subsistence) without the payment to migrate.  Panel B shows that the 

risk disappears when we account for the program’s migration incentive payment 

for those who took the money.  This suggests that households at greatest risk were 

the ones induced to migrate by our incentive, a result we will explore more 

precisely below by creating a measure of subsistence.    

6.2.1 Experiments on Migration Insurance 

Motivated by our first two years of findings and the model, we also designed a 

new experiment to directly test whether households perceive migration to be risky.   

We returned to our sample villages in 2011 and offered a new set of treatments.  

Appendix 2 describes the sampling frame and intervention design. To study risk, 
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the specific treatment was to offer a 800 Taka loan up-front conditional on 

migration, but the loan repayment requirement is explicitly conditional on 

measured rainfall conditions.  Excessive rainfall is an important external event that 

adversely affects labor demand and work opportunities at the destination. Rain 

makes it more difficult to engage in skilled wage work at outdoor construction 

sites (e.g. breaking bricks), it both increases the cost of pulling rickshaws and lower 

the demand for a rickshaw transport.   In terms of the model above, we think of 

high rainfall as reducing the likelihood of finding a connection at the destination 

(because job opportunities that allow you to display your skills to a potential 

employer are scarce), as well as reducing the return to migration, m. 

Appendix 3 develops a simple model of index insurance with basis risk to 

clarify how this treatment is linked to household perceptions of migration risk.  

Following Clarke (2011), we formalize basis risk as the probability that income is 

low, but that rainfall is also low, so that the insurance does not pay out.  In terms of 

the above model, this would be the event of not finding a job connection during 

your search (i.e. finding out you are a bad migrator) but still being forced to repay 

the loan.  Appendix 3 shows that our formalization implies that the portion of 

people induced to migrate by the index insurance is decreasing in basis risk, if and 

only if migration is risky and households are risky averse. We assume that 

households that migrate to Bogra face lower basis risk, and farmers, for whom 

high rainfall is usually beneficial, face greater basis risk.23  

Table 7 shows results of regressing the 2011 migration rate on our 2011 

treatments, and interactions of the insurance treatment with an indicator for 

previous migration to Bogra, and an indicator for farmers.  Column (1) shows that 

the rainfall insurance contract induced migration, and that the effect is similar in 

size as the effect of the simple (conditional) credit contract.  Columns (2) and (3) 

23 We use the basis risk variation to test for riskiness because our insurance is valuable even without risk, 
because also includes a credit element. 
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show that those with a propensity to travel to Bogra (i.e. lower basis risk) are more 

affected by the insurance, while farmers (greater basis risk) find the insurance 

contract less appealing. The farmer-insurance interaction is statistically significant 

with 99% confidence, but the Bogra interaction is not significant at conventional 

levels.  Finally, column (4) shows that when we control for farmers, the Bogra 

effect is much stronger (p-value of 0.15).  For non-farming households who had a 

preference for Bogra, the rainfall insurance contract induces 45% more migration in 

2011.  We see this set of results as reasonable strong evidence in favor of our 

assumption that migration is risky, and households behave as though they are risk 

averse. 

6.3 Learning and Idiosyncratic Risk 

Our model makes the assumption that migration risk takes a specific form: that it 

is individual-specific (idiosyncractic), and resolved after one period of migration 

(i.e, there is something to learn, or a connection to make.).  Our motivation for 

making this assumption is the strong and consistent repeat migration seen in the 

data – half of all induced migrants migrate again, and this number is stable over 3 

years. This result is very hard to drive without learning or accumulation of a 

connection. Even if households earn a very large return on the investment F, the 

impact will dissipate quickly because of the variability in base income.  

6.3.1 Is Risk Idiosyncratic in this Setting?  

We first examine whether migration risk is idiosyncratic, and try to identify the 

nature of the risk from our data, before turning to evidence on learning. Our 

information intervention – which provided general information on wages and the 

likelihood of finding a job – has a precisely estimated zero impact on migration 

rates. This is consistent with the assumption that risk is idiosyncratic, but may also 

reflect the fact that this kind of information is not credible.  
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We next examine the determinants of 2009 re-migration to study directly 

whether households are able to learn from others.  As discussed above, our 2008 

experiments contained several sub-treatments where additional conditions were 

imposed: some households were required to migrate to specific destinations, some 

were required to form groups, etc.  This variation is within village and implies that 

we have exogenous variation in the number of a household’s friends that migrated.  

We also collected data at baseline on social relationships between all our sample 

households to identify friends and relatives within the village.  To test for learning 

we run regressions of the form 

 𝑦𝑖 = 𝛼 + 𝛽𝑀𝑖 + 𝛾𝐹𝑖 + 𝜖𝑖  

where 𝑦𝑖 is an indicator for second round migration, 𝑀𝑖 is an indicator for first 

round migration and 𝐹𝑖 is a measure of how many of a household’s friends 

migrated. We instrument 𝑀𝑖 and 𝐹𝑖 with all our treatments (incentives and 

conditions on the migrant, and incentives and conditions on his friends), and 

report OLS and IV results in Table 8.   If there is learning from others we expect to 

see  𝛾� > 0, because of the strong positive returns to migration.  Table 8 shows 

strong persistence in own migration: that inducing migration in 2008 with the 

randomized treatments leads those same induced migrants to re-migrate in 2009.  

However, friends’ migration choices the previous year have no impact on 2009 

migration decisions, and this is a reasonably precisely estimated zero effect. This 

suggests that people learn from their own experience, but do not learn from the 

experiences of others. This provides strong support for the assumption that risk is 

idiosyncratic as implied by the model. 

Why is learning so individual-specific? The 2011 follow-up survey provides 

a strong hint: Of the 2011 migrants provided incentives in 2008, 60% report going 

back to work for the same employer at the same destination.  Appendix Table 7 

shows that being treated in 2008 leads to a 5 percentage point greater likelihood of 

re-migrating and working for the same employer.   A likely source of uncertainty 
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in the returns to migration thus appears to be the (potential) employer’s 

incomplete information about the characteristics of specific migrants – are they 

reliable, honest, hard-working? The typical employer in Dhaka is a rickshaw 

garage owner who has to trust a migrant with his valuable asset.  Research in India 

has documented that migrants sometimes abandon the rented rickshaws at the 

train or bus station (Jain & Sood, 2012).  This would make it difficult for migrants 

to “learn” from other villagers to resolve the uncertainty.24  

 Furthermore, migrants who were provided incentives in 2008 and who 

continue working for the same employer in 2011 are significantly more likely to 

have formed a connection to that specific employer in 2008, when they were 

originally induced to go.  Specifically, treatment group migrants are 16% more 

likely to report forming the job connection to their current (2011) employer in 2008 

instead of 2007, relative to “regular” migrants in the control group.25  This is again 

strongly suggestive that the migrants who were induced to migrate by our 

treatments formed an asset (a connection to an employer) at the destination, which 

continued to provide value three years later. 

Finally, among households that migrated in 2008 (in both incentive and 

control groups), we asked whether these households knew someone at the 

destination, or whether they had a job lead at the destination. These measures can 

be thought of as proxies for whether the household’s type has been revealed – 

households that have a connection have already determined their status while 

those that do not have not, or know that they are bad at migrating.26 Our model 

implies that the incentive will only have an impact on those that do not know their 

24 Friends and relatives could potentially vouch for each other with employers, but this need not be 
believed.  Further, making such a referral could be quite costly, it may put the referrers own job in danger, or 
require the referrer to look after a new migrant, perhaps providing some risk sharing and sharing housing. 

25  Appendix Table 8 shows the results of the t-tests. Results are statistically significant at conventional levels 
for the difference tests (e.g. 2007 vs 2008), but not for the difference-in-difference (e.g. 2007 vs 2008, treatment 
vs control) tests.   

26 According to our model, those that have migrated and know they are bad should not be in this sample 
that is entirely made up of migrators. 
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status and so we expect to see more migrators without a connection in the 

incentive group. Table 9 shows that migrants in the control group are much more 

likely to know someone at the destination, and to have a job lead, than are those in 

the incentive treatment. This suggests that our treatment induced migrants among 

those that had not already determined their status, as implied by the model.  

6.3.2 Evidence on Learning 

 The fact that learning should be destination specific – a connection in 

Dhaka, for example, is not useful when migrating to Bogra – allows us to test more 

directly for learning effects using experimental variation induced by our 

treatments.  One of our treatments assigned a specific destination city (Bogra, 

Dhaka, Munshigonj or Tangail) as a condition of receiving the migration incentive, 

and creates exogenous variation in the destination choices in 2008.  Learning or 

creating a job connection implies that migrants assigned to a specific location 

should be more likely to return to that particular location in 2009 than to any other.  

Let 𝐷𝑖 be an indicator taking value 1 if household i migrated to destination 

D in 2009, and 𝐷𝑖08 be an indicator taking value 1 if household i migrated to 

destination D in 2008.   We run regressions of the form 

 𝐷𝑖 = 𝛼 + 𝛽𝐷𝑖08 + 𝜖𝑖  

for each of four destinations.  The 2008 migration destination choice is 

instrumented with the location randomly assigned to the household: 

𝐷𝑖08 = 𝜆 + 𝜌𝑇𝐷𝑖08 + 𝜂𝑖 , 

where 𝑇𝐷𝑖08 is an indicator taking on value one if the households was assigned to 

location D in 2008.  Appendix Table 9 shows these first stage estimates to establish 

that initial destination assignment had a strong effect on destination choices in 

2008.  The hypothesis of destination specific learning implies that there should be 

more than one significant coefficient in the second stage estimates displayed in 
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Table 10.27  We see that all coefficients, instrumented with our location 

requirements, are positive and that two are significant at the 10% level (Dhaka and 

Munshigonj). The coefficients also imply quantitatively important stickiness. 

Households randomly assigned to migrate to Munshigonj in 2008 are 30% more 

likely to re-migrate to Munshigonj in 2009 than to any other location. We take this 

as evidence in favour of location specific learning or the accumulation of 

connections at the destination as being an important driver of migration behavior. 

Our model also suggests that some induced migrants should discover that 

they are bad migrators, while some discover that they are good.  Among regular 

migrants, however, our model predicts no such effects – only households that 

know they are good at migrating should migrate in the control group.  Figure 7 

shows evidence consistent with this.  In the treatment groups (credit or cash) those 

that chose to re-migrate in 2009 had a significantly better migration experience in 

2008 than those who chose not to re-migrate.  In the control group, however, we 

see no such effect.   

6.4 Subsistence 

Our model postulates that households may not migrate because they are 

close to subsistence, and risk falling below subsistence if they have a bad migration 

outcome.  We can study the distribution of expenditures and caloric intake to 

examine whether this setup is warranted.   

The Bangladesh Bureau of Statistics classifies a person as ultra-poor if they 

consume less than 1605 calories, and it is usually thought that something between 

27 There may be inherent differences in profitability of each location, and just showing that those assigned to 
migrate to Dhaka are more likely than others to re-migrate to Dhaka is consistent with Dhaka simply being the 
most profitable place to migrate, and re-migration simply reflecting initial success. We overcome this issue by 
observing that only one destination can be the most profitable, and examining re-migration propensities for all 
4 of our assigned destination. We will need to show that migration assignment leads to destination-specific re-
migration to at least two different cities. Note that location specific learning does not imply that all regressions 
would have positive coefficients -- some locations may just be really bad placed to migrate. 
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600 and 1000 calories are required just to survive. Based on the prices collected in 

our baseline survey, and assuming very basic calorie composition, we estimate that 

it would cost about 660 Taka per person per month to meet the ultra-poor level, 

450 taka to consume 1000 calories and 250 Taka to consume 600 calories. 

Comparing these figures to the distribution of per-capita expenditures in our 

sample presented in Appendix Figure 1, we see that a substantial portion of 

households are close to subsistence.  Appendix Figure 2 shows directly the 

histogram of calories per person per day in the control group in our December 

2008 follow-up.  Many households in the control group can be characterized as 

“close to subsistence” in terms of caloric intake.  Comparing the treatment and 

control histograms, we again see that our treatment moved many people from a 

subsistence level of consumption (of 800-1300 calories per person per day) to a 

comfortable level exceeding 2000 calories per person per day. 

Our model suggests that if aversion to the risk of falling below subsistence 

is an important deterrent to migration, then: (a) people close to subsistence should 

not be migrating in the control group, and (b) our treatment should have the 

largest effect on households that are close to subsistence: they should be the ones 

induced to migrate by our incentive.  The three panels in Figure 8 show strong 

evidence in favor of these two claims graphically and in a regression. We measure 

subsistence as the proportion of total household expenditures devoted to food. The 

regression and the graphs show that those closer to subsistence are significantly 

less likely to migrate in the control group, and their migration decisions respond 

most strongly to the treatment.  

6.5 Does the Model Rationalize Responses to all Treatments? 

The model allows us to understand the impact of specific treatments designed to 

help households accumulate sufficient cash on hand to engage in profitable 
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migration. In this section we compare the impacts of several potential policies on 

which we have collected data. 

First, as noted above our initial treatments included both a cash and a credit 

incentive. In practice these two incentives have approximately the same impact on 

the migration rate. Here we argue that this finding is consistent with the model, if 

credit is seen as incorporating a limited liability aspect. An assumption of limited 

liability is consistent with the fact that only 80% of households repaid the loan. 

We can capture the limited liability effect of credit by noting that 

households have to have a reason to repay their loans. Let 𝑀(𝑥) = 𝐵(𝑥 − 𝐹) if the 

household is a bad migrator a 𝑀(𝑥) = 𝐺(𝑥) if the houshold is a good migrator, and 

consider a household that has a loan of value L and is required to repay Z. The 

household will repay the loan iff 

  

𝑀(𝑥 − 𝑍) ≥ 𝑀(𝑥 + 𝐿) − 𝑃, 

  

where P is a utility cost of punishment by the lender. P is assumed to be state 

independent as the punishment should reflect the long run value of credit to the 

household. With this formulation there is 𝑥�𝐵 and 𝑥�𝐺  such that the loan will be 

repaid by a bad migrator if 𝑥 ≥ 𝑥�𝐵and by a good migrator if 𝑥 ≥ 𝑥�𝐺 . It is easy to 

show that 𝑥�𝐵 < 𝑥�𝐺  and that a bad migrator will always default on the loan if the 

cost of migration, F, is large enough. Further, because utility becomes infinitely 

negative when consumption approaches subsistence, to a first approximation, 

𝑀(𝑥�𝐵 + 𝐿) ≈ 𝑀(𝑥�𝐵 + 𝐿) − 𝑃 for a bad migrator for whom  𝑥 − 𝐹 is close to 

subsistence.  This implies that the utility cost P need not have a large impact on the 

ability of the credit contract to provide insurance. 

To incorporate these observations into the above model, assume that 

𝑥�𝐵 < 𝑥� < 𝑥�𝐺 . This assumption implies that a first time migrator that discovers it is 

a bad migrator will not repay the loan, but a first time migrator that is good, will 
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repay the loan. As discussed above, the decision to migrate is determined by the 

intersection between the curves 𝑉𝑀 and 𝑉𝑁, if 𝐵′(𝑥�) is large and positive and 𝐺′(𝑥�) 

is small, then the impact of credit and cash will be, approximately, the same. 

Consequently, the model can capture the idea that credit and cash will have the 

same impact. Obviously from a policy perspective, credit is a much less costly 

intervention. Interpreted in the light of this analysis, the fact that credit and cash 

treatments have a similar impact on migration rates again suggests that risk, which 

is mitigated by the limited liability aspect of the loan, is important in explaining 

our data. 

Second, as noted above, we returned in 2011 and implemented new 

treatments. One of these treatments was an unconditional credit contract of the 

same size at the conditional credit transfer. Our motivation for this experiment was 

to rule out the possibility that households were merely cash constrained. Our 

model implies that the credit incentive should have a larger impact as it moves 

only the 𝑉𝑀 curve, while the unconditional credit raises the 𝑉𝑁 curve as well. This 

is an implication of any model in which a household weighs the returns to 

migration relative to other possible uses of the money, but is not an implication of 

a model where the household knows that migration is profitable, but simply 

cannot afford it. The results of this experiment are shown in Table 7, and show 

that, consistent with our model but inconsistent with the cash constraint model, the 

unconditional transfer has a smaller impact than the conditional transfer.28 

6.6 Summary of Qualitative Tests 

In summary, both descriptive and experimental analyses of the data indicate 

that our model accurately captures many key aspects of the environment: 

background income is volatile, migration is risky, savings is high and migration is 

28 Although we presented the products in a similar way, if household perceptions of repayment requirements 
varied between the conditional and unconditional loans, that may also lead to differential take-up.   
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an experience good. The model also rationalizes most of the data coming from our 

experiment:  the fact that credit and cash have similar sized impacts, the fact that 

the incentive was most effective for those that are close to subsistence, the relative 

impacts of unconditional and conditional transfers, and the response to the 

insurance treatment.  What remains to be seen, however, is whether the model 

brings all of these ingredients of the migration decision together in a way that can 

quantitatively account for the magnitude of the experimental effects.  

7 Quantitative Calibration of the Model 

Our quantitative exercise will use the data to calibrate all the free parameters 

of the model except risk aversion.  We then ask what level of risk aversion would 

be required to match key aspects of the data. Table 11 shows the parameters we 

use for the quantitative exercise.  In all cases we have erred on the side of allowing 

the model to generate the experimental estimates.  This choice reflects the fact that 

we will ultimately argue that the model in its basic form is not able to rationalize 

the experimental estimates.  

Three choices deserve special mention.   First, we assume that there are two 

opportunities to migrate each year (or two time periods per year): one after each 

planting season.  This means that a time period for the purpose of the model 

should be thought of as half a year.  Second, we assume that the cost of migration, 

F, must be borne over 1 month, so that consumption when migration is bad is very 

low.  This reflects the fact that most households earn money during the monga 

season and use it to pay for consumption.  Credit constrained households will have 

to pay for migration out of this income.  This choice is obviously quite extreme but 

could be justified by arguing that the extremely low consumption for a one-month 

period would have a large effect on utility relative to the remaining months in the 

monga period with a higher consumption level.  Third, we assume that income at 
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home is distributed 𝑁(700,70).  This is an attempt to estimate the income 

distribution of the lowest 50% of households in the sample.  We argue that the 

results of the full model are not sensitive to this choice. 

We undertake two different exercises.  First, we use the model to determine 

four cutoff points – 𝑥�, 𝑥�𝐼 , 𝑥�𝐶 and 𝑥�𝑈𝐶𝑇 – the amount of cash on hand required to 

migrate with no intervention, with our cash incentive, with a credit incentive and 

with an unconditional cash transfer, respectively.  We then match these levels of 

cash on hand to the histogram of consumption levels in the control group and ask 

what portion of the distribution lies between the relevant bounds to estimate the 

set of migrants that our treatments are predicted to induce.  For example, we 

consider the density of households consuming between 𝑥𝐼�  and 𝑥� to estimate the 

portion of households that would be induced to migrate by our incentive.  This 

exercise essentially ignores the repeat migration effect and learning.  

Our second exercise is to ask what portion of households can still be 

induced to migrate after t periods.  A household is “induceable” in period t if it has 

never migrated before. In the model, only such households will be affected by our 

migration incentive, as other households will have already determined their status 

as good or bad migrators.   For this exercise, we make use of the assumed 

background income distribution to determine the probability of a household 

crossing the migrating threshold  𝑥� in each period.  If the number of induceable 

households is very low after only a small number of time periods, then the model 

cannot rationalize the experimental results.29  

We undertake these two exercises under three different sets of assumptions.  

First, we consider a completely static model, where households do not save for 

migration and do not consider the benefits of ongoing migration when they make 

their initial migration choice – i.e. they are myopic past the current migration 

29 In fact, in all the results presented below we depart slightly from the above model and assume that 
households that migrate and are determined to be bad migrators are also induceable.  This errs on the side of 
allowing the model to fit the data. 
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period.   Figure 9 shows results for this static model: the left panel shows the 

portion of migrants that would be induced assuming no repeat migration and the 

right panel shows the number of induceable migrants as a function of the time 

period.  Consider first the left panel.  The model predicts that with a risk aversion 

level of 𝜎 ≈ 1.15 the incentive would induce about 20% of households to migrate – 

consistent with our experimental findings.  Further, the cash and credit incentives 

have the same effect, again consistent with our experimental findings.  However, 

the UCT and incentive treatments have similar effects for low levels of risk 

aversion, and this is not consistent with our results.  

The right panel shows that we need to assume a slightly higher risk 

aversion level to rationalize the data if we account for repeat migration.  With a 

risk aversion level of about 1.65, 40% of the population are induceable after 8 

seasons (or 4 years), which corresponds to a 20% treatment effect if the model 

applies to the poorest half of the sample.  If we allow 10 prior years of migration 

activity, the model suggests that 𝜎 ≈ 1.7 would be required to rationalize our 

treatment effect.30   

For our second calibration, we continue to assume that there is no savings, 

but allow households to be forward looking.  This has a strong impact on the 

propensity to migrate. The left panel of Figure 10 shows the results for the fraction 

of households induced to migrate by different treatments.  Comparing this Figure 

to the left panel of Figure 9 shows that for low levels of risk aversion our incentive 

is actually better at inducing migration when we account for forward looking 

behavior.  This is because, without the repeat migration effect our incentive does 

not induce all households to migrate.  At higher levels of risk aversion this 

difference is no longer relevant and the repeat migration incentive leads to higher 

levels of baseline migration and a smaller impact of our incentive. The hump shape 

30 This result is very sensitive to the assumption about the distribution of background risk.  If we have 
underestimated the background risk, then greater risk aversion would be needed to rationalize the data. 
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occurs because, as risk aversion increases, the value of migration as a risk 

mitigation activity increases.  The figure shows that at some point this effect 

dominates the other impact of risk aversion, which is to make experimenting with 

migration less tolerable.  The figure suggests that a risk aversion level of 1 is 

required to rationalize the data if we do not consider the repeat migration effect. 

The right panel of Figure 10 shows the fraction of induceable migrants when 

households are forward looking, but cannot save up.  The hump in the portion of 

induced migrants in the left panel implies that we need not consider risk aversion 

levels above about 7 – as 𝜎 increases past this point risk aversion in fact reduces the 

propensity to migrate.31  After 4 years, 40% of the sample will be induceable if risk 

aversion is as high as 5.  If we consider longer time horizons such as 10 years, then 

the figure implies that no level of risk aversion is high enough to allow for a large 

number of induceable migrants.    

The results in Figure 10 may, however, overestimate the importance of 

migration.  Because we do not allow savings, households are unable to buffer, and 

the value of migration as a risk mitigation strategy is increased.  Figure 11 shows 

the results for the full model, where we allow for both buffer stock savings, and for 

the agent to save up for migration.  The left panel confirms the intuition that 

savings reduces the value of migration.  The right hand panel, however, shows 

that the ability to save up dominates: once we allow for savings we would need a 

risk aversion of 11.5 to replicate our treatment effects allowing 4 years of migration 

activity, and if we allow 10 years of migration activity, even a risk aversion level of 

20 is insufficient to rationalize the results.32   

31 The hump in the left panel is based on the empirical distribution of consumption levels.  For the 
simulations shown in the right panel we make use of our assumed distribution which leads to a maximal effect 
of the incentive at a risk aversion level of 7. 

32 These results assume that households begin time with no assets and the lowest possible income shock.  
We use the model to generate policy functions as well as cutoff values.  We then simulate the model for 10,000 
households and ask what portion of those 10000 households have not migrated after t periods. 
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The results allowing for savings suggest a sense in which our main 

conclusions are robust to our assumption regarding the distribution of income.  We 

have simulated the right panel of Figure 11 for standard deviations in from 40 to 

140 and the results are almost identical.  As discussed above there are several 

impacts of increasing the degree of background risk, and the simulations suggest 

that, given our calibrations, these effects cancel each other out. 

We can also use the full model to ask whether the observed level of savings 

is consistent with the model.  For a risk aversion level of 0.5 the model predicts a 

household will hold, on average 1500 Taka in savings, which is roughly in line 

with what we see in the data.  For higher levels of risk aversion, however, the 

model predicts far more savings than we observe: at a risk aversion level of 5, 

predicted average savings is close to 3000 Taka and at 𝜎 = 10 we predict savings of 

nearly 5000 Taka.  It is not possible to match both the level of savings and the 

responses to the migration treatments at any given level of assumed risk aversion. 

8 Extensions 

While the qualitative evaluation of the model had shown that households 

do save, that they respond to migration incentives in ways predicted by the model, 

and that they perceive migration to be risky, the calibration exercise suggests that 

to match the magnitudes of responses and household behaviors, we have to extend 

the model in some ways.  It could be that households under-estimate the benefits 

of migration, or they fail to actively save up for migration, or they are insufficiently 

forward-looking.  In this section we discuss extensions to our baseline model that 

would allow us to better accommodate the data. In all cases, we do not have the 

data to determine conclusively which extensions are the most important.  We 

therefore see this section more as an extended call for more work.  We provide 

some suggestive evidence from our data of approaches that are unlikely to work. 
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In part, we offer a great number of possibilities to highlight the uncertainty and the 

need for additional experimentation before moving to policy prescriptions. 

8.1 Alternative Specifications of the Returns to Migration 

It seems clear that the migration process is risky, and m is likely stochastic 

even for good migrators.  To assess the importance of this possibility, we re-

simulated the model with the assumption that m was normally distributed around 

the mean of 550, with a standard deviation of 100. This additional risk does not 

appreciably alter the results presented in Figure 10 above. 

We also explored a slightly different model, in which migration truncates 

the distribution of income below, rather than adding to it.  We draw on Figure 6 to 

assume that migration truncates the distribution at around 1100 Taka per 

household member per month.  This model does not perform very differently from 

our baseline model: it explains the data better if we ignore savings, but once 

savings is accounted for the results are similar.   

8.2 Very High Levels of Risk Aversion 

If we allow σ to be very high, then the model can rationalize most of the data. The 

literature has not arrived at a consensus on “reasonable” values for σ:  Holt and 

Laury (2002) state that someone with σ >1.37  should “stay in bed”, while papers in 

the equity premium literature (e.g. Kandel & Stambaugh, 1991) argue that values 

as high as 30 may be reasonable. In our model, households are much more risk 

averse than implied by their 𝜎 because they become infinitely risk averse as 

consumption approaches the subsistence point.  In circumstances analogous to 

ours, Chetty and Szeidl (2007) show that agents even in developed countries 

become more risk averse with commitments for consumption.  In future research, 

it would be worth exploring at what point risk aversion might be considered to be 
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a “mistake” that a policy maker should seek to address.  If extreme risk aversion is 

akin to a behavioral bias, then adding conditions to transfers may improve a 

migrator’s utility over unconditional cash transfers. 

8.3 Lowering the Discount Factor 

Lowering the discount factor decreases both the willingness to save up for 

migration, and the extent to which future migration outcomes affect the current 

choice to migrate.  Figure 12 shows the set of induceable migrants using the full 

model and setting 𝛿 = 0.8.  The figure shows that if we are willing to assume a risk 

aversion level of about 7 we can rationalize the data even with a time horizon of 10 

years.  Lowering the discount factor even more would allow us to match the 

experimental results for any level of risk aversion.  A similar effect can be achieved 

if we allow for depreciation in the status of being a good migrator due, for 

example, to random breakdowns of connections at the destination. However, if we 

bound the depreciation rate to allow for the small drop in migration rates that we 

observe between 2008 and 2011, it is still the case that very high levels of risk 

aversion are required to rationalize the data.  

8.4 Dis-utility from Migration 

Seasonal migration is probably a somewhat unpleasant experience, because it 

requires migrants to be separated from family, and share more congested space 

with other men in cities, often in or around slums with poor access to public 

services.  If this utility cost of migration (not captured in our consumption and 

earnings data) is high enough, it could explain the initial reluctance to migrate. To 

assess this possibility we asked 1600 households in our sample a stated preference 

question in 2011: “Would you prefer to stay at home and earn 70 Taka per day, or 

to migrate and earn x Taka”. We asked for 𝑥 ∈ {90,110,130,150}, and the fraction of 
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respondents who stated they were willing to migrate were {58, 77, 83, 91} 

respectively.  Their responses imply that for every Taka increase in earnings per 

day at the destination, migration probability increases by 0.5 percentage points.  

Extrapolating, the respondents would have to be compensated Tk. 15,000 to induce 

them to migrate for 75 days (which is the average length of migration).33  These 

results suggest quite a high utility cost of migration.34  To incorporate these figures 

into our quantitative analysis we take a very simple approach: we reduce the 

return to migration to m/2 – an assumption consistent with 70 Taka at home being 

worth 140 away, towards the high end of the answers we received.  The results do 

not change drastically in the full model (with savings) under this assumption. 

Migration continues to be a good way to mitigate risk and households will want to 

save up for it.   

8.5 Incorrect Beliefs 

In our calibration above we assumed that households were correct in their beliefs 

about 𝜋𝐺, m and F. If households have incorrect beliefs then it would be much 

easier to rationalize our empirical observations. Beliefs could be incorrect for two 

conceptually distinct reasons. First, beliefs may be correct on average, but some 

households have optimistic beliefs while others are pessimistic. In such a model 

optimistic households would migrate and the pessimistic would not.  Then non-

33 We also estimate this “demand curve for staying at home” with a revealed preference approach, using the 
fact that re-migration in 2009 was strongly responsive to migration earnings in 2008.  That analysis suggests 
that re-migration probability increased by 1.7 percentage points for every 1000 Taka increases in migration 
earnings. Under some mild assumption, this implies that migrants induced by our treatment in 2008 would 
have to be compensated Tk. 21,700 to induce them to re-migrate in 2009.    

34 Banerjee and Duflo (2007) arrive at a similar conclusion while describing the lives of the poor – “Why 
Don’t the Poor Migrate for Longer…given that they could easily earn much more by doing so?” “The ultimate reason 
seems to be that making more money is not a … large enough priority to experience several months of living alone and 
often sleeping on the ground somewhere in or around the work premises.”   
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migrators would appear to be systematically biased (Spinnewijn, 2012). Second, it 

may be that beliefs are systematically pessimistic.35 

To test whether biased beliefs are important, we asked all migrants in both 

treatment and control groups about how their migration experience, in terms of 

time it took to find work and their earnings at destination, compared to their 

expectations prior to migration.  For either interpretation of bias – systematic or on 

average correct – we would expect that those in the control group, who were 

already migrating and had had a chance to learn, would have roughly correct 

beliefs, while those in the treatment group would have beliefs biased toward the 

overly pessimistic.36  Results presented in Table 12 are not consistent with biased 

beliefs: treatment group migrants do not have significantly different beliefs from 

control group migrants.  

8.6 Heterogeneity 

Heterogeneity does not seem to be a particularly attractive way to accommodate 

the data. For example, if we imagine that some households have a high m and 

some a low m, this helps us to rationalize the lack of migration for the low m 

households, but makes it even more difficult for the high m households. 

8.7 Savings Constraints 

The slightly different character of our results for the model with and without 

savings points to the possible conclusion that it is savings behavior in our setting 

that is the real anomaly (why are people not saving up to migrate?).  Our sample 

households may be savings-constrained due to sharing norms (Jakiela & Ozier, 

35 This could be because non-migrators have access to incorrect information.  McKenzie et al. (2007) argue 
that migrant households provide incorrect information because they do not want to have to share resources, or 
job connections and accommodation at the destination.  

36 To be clear, it is not evidence of incorrect beliefs that some people found the experience worse than 
anticipated, this is perfectly consistent with an ex-post statement about an ex-ante risky event.  The prediction 
of biased beliefs is that those in the treatment should be more likely to have done better than expected. 
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2012), or they may simply be no safe place to store things.  This conclusion is 

consistent with recent research that demonstrates very large impacts of simple 

interventions that relax savings constraints (e.g. Dupas & Robinson, 2013b).  Two 

caveats should be mentioned, however.  First, before citing savings constraints as 

the key issue, it is necessary to understand why households are able to buffer, but 

not to save up a lump-sum amount for migration.  Second, the right panel of 

Figure 10, in which we consider a forward looking household that cannot save, 

suggest that there is a need to understand more than just savings constraints, we 

must also understand why households act as though they are not aware of the full 

benefits of migration. 

  Another related avenue to consider may be the need to share risk and solve 

public goods problems in general. Risk sharing networks not only constrain 

savings; they may also deter profitable investments (e.g. Lewis, 1955).  Migrating 

away may undermine network ties, and this may be a hidden cost of migration 

(Munshi & Rosenzweig, 2009).  We lack the data necessary to explore this channel. 

8.8 Behavioral or Psychological Explanations 

Many models that fall under the rubric of behavioral economics could be used to 

explain the results. In this area we are particularly wary of making 

pronouncements without data, as there are many different possible explanations of 

this type. Here we mention just two models that have been applied to developing 

country contexts.  First, the quasi-hyperbolic discounting model of Laibson (1997) 

can likely to applied to rationalize the data for some values of 𝛽.   The version of 

this model discussed in Duflo, Kremer and Robinson (2011) provides an 

explanation for low savings.  The version of this model discussed in Banerjee and 

Mullainathan (2010) can explain why households do not undertake profitable 

investments.  Their model also suggests that commitment devices could be useful 
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policy interventions.  Second, Koszegi and Rabin (2006)’s model of reference 

dependence can likely rationalize the data. That model provides a non-self control 

based explanation for the fact that household find themselves to be perpetually 

without the money they need to invest: households adjust their expected 

consumption in response to shocks and then assess the costs of investments 

relative to this expected consumption level. 

 In summary, there are numerous avenues that could be pursued to get a 

better quantitative accounting of the data generated by our experiment. We have 

noted just a few. We are currently working on isolating which factors are most 

relevant in other settings where seasonal migration is relevant. 

9 Concluding Remarks 

We conducted a randomized experiment in which we incentivized 

households in a famine-prone region of Bangladesh to send a seasonal migrant to 

an urban area. The main results show that a small incentive led to a large increase 

in the number of seasonal migrants, that the migration was successful on average 

(in terms of improving consumption by around 30%), and that households given 

the incentive in one year continued to be more likely to migrate in future years.  

These results bolster the case made by Clemens et al (2008), Rosenzweig (2006), 

Gibson and McKenzie (2010), Clemens (2011), Rodrik (New York Times, 2007) and 

Hanson (2009) that offering migration opportunities has large effects on welfare, 

even relative to other promising development interventions in health, education, 

trade or agriculture.  The literature largely focuses on international migration, and 

we show that the returns to internal migration – a much more common, but under-

studied phenomenon37 – are also large.    

37 There were 240 times as many internal migrants in China in 2001 as there were international migrants 
(Ping, 2003), and 4.3 million people migrated internally in the 5 years leading up to the 1999 Vietnam census 
compared to only 300,000 international migrants (Anh, 2003).   
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We argue that the results are qualitatively consistent with a simple (rational) 

model of a poverty trap where households that are close to subsistence face a small 

possibility that migrating will turn out badly, leaving household consumption 

below subsistence.  The model helps us to understand the types of situation in 

which we would expect incentive and insurance policies to lead to long-term 

benefits as observed in our experiment. We should look for situations in which the 

investment is risky, that risk is individual-specific, and where the utility cost of the 

downside risk is large (e.g. the household is close to subsistence). These 

predictions also provide an answer to the puzzle that motivated the entire project: 

why does Rangpur – the poorest region of the country that regularly faces a 

seasonal famine - have a lower out-migration rate compared to the rest of 

Bangladesh?  This can also explain other peculiar migration patterns noticed in the 

literature – the lower out-migration rate among poorer Europeans (Hatton & 

Williamson, 1998) and poorer South-Africans (Ardington et al., 2009).   

Our quantitative work implies that we cannot provide a fully satisfying 

explanation for why people in Rangpur had not saved up to migrate.38  We are 

therefore hesitant to draw policy implications from our research.  However, it is 

clear that the migration support programs we implement help some Rangpur 

households cope with the Monga famine, and appear more cost-effective than 

subsidizing food purchases on an ongoing basis, which is the major anti-famine 

policy tool currently employed by the Bangladesh government (Government of 

Bangladesh 2005; Khandker et al., 2011).  Two important caveats are that our 

research does not capture long-term psychological and social effects of migration, 

and the scale of our experiment does not permit us to analyze potential adverse 

38 Several other papers document very high rates of return to small capital investments in developing 
countries (Udry & Anagol, 2006; de Mel et al., 2008; Bandiera et al., 2011; Duflo et al., 2011; Fafchamps et al., 
2011), and this literature must also confront the same question of why households do not save to invest in 
these high-return activities.   
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general equilibrium effects in destination labor markets if the government were to 

contemplate scaling up such a program.39   

If there are net efficiency gains, this is likely because our intervention 

mitigates the spatial mismatch between where people live, and where jobs are 

during the pre-harvest months. This approach may be of relevance to other 

countries that face geographic concentrations of poverty, such as northern Nigeria, 

eastern islands of Indonesia, northeast India, southeast Mexico, and inland 

southwest China (Jalan & Ravallion, 2001).  More generally, providing credit to 

enable households to search for jobs, and aid spatial and seasonal matching 

between employers and employees may be a useful way to augment the 

microcredit concept currently more narrowly focused on creating new 

entrepreneurs and new businesses.40  The potential efficiency gains raise an 

interesting question of why private sector entities do not profit by developing 

mechanisms that link migrants to employers in the city. To understand this, we 

interviewed several employers in Dhaka.  The employers reported that there are in 

fact “labor sardars” who bring migrant workers to Dhaka, but the process is 

fraught with uncertainty and risk. Migrants have to be paid the one-way bus ticket 

and some salary in advance, but it is difficult to enforce any long-term contract if 

they disappear and choose to go work elsewhere after the transit cost is paid.    

  

39 There is mixed evidence in the literature on whether these effects are substantial (Ottaviano & Peri, 
(forthcoming); Borjas, 2003; Borjas & Katz, 2007; Card, 2009).  Moreover, general equilibrium effects may be 
positive in net, if spillover benefits at the origin exceed external costs at the destination.  Migrants form a much 
larger part of the village economy at the origin compared to the destination urban economy. 

40 With credit contracts, it may be difficult to collect regular repayment from migrants who move away, but 
one of the world’s largest micro-credit NGOs, BRAC, has recently introduced credit programs to finance even 
international migration.  
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Diff  I v NI  P‐value
Cash Credit Control Info

Consumption of Food 805.86 813.65 818.68 768.64 15.84 0.638
(19.16) (40.91) (31.76) (18.00) (33.57)

Consumption of Non‐Food 248.98 262.38 248.4 237.35 12.23 0.278
(5.84) (6.74) (9.28) (7.99) (11.20)

Total Consumption 1054.83 1076.03 1067.08 1005.99 28.06 0.465
(21.11) (42.08) (34.55) (22.77) (38.29)
2081.19 2079.51 2099.3 2021.31 20.25 0.585
(20.34) (22.76) (30.44) (32.56) (36.99)
45.66 45.3 46.26 44.75 ‐0.01 0.992
(0.54) (0.57) (0.77) (0.85) (0.92)

Consumption of Meat Products 25.04 18.24 27.13 20.71 ‐1.97 0.594
(2.58) (2.0) (3.24) (2.90) (3.69)

Consumption of Milk & Eggs 11.74 9.77 9.96 10.77 0.48 0.675
(0.79) (0.80) (1.12) (1.19) (1.13)

Consumption of Fish 42.17 39.86 41.36 45.98 ‐2.56 0.496
(1.83) (1.79) (2.76) (2.89) (3.74)

Consumption of Children's Education 24.14 27.14 22.31 16.95 6.01 0.016**
(1.75) (2.31) (2.34) (2.1) (2.44)

Consumption of Clothing and Shoes 37.31 38.8 39.24 38.35 ‐0.80 0.693
(0.79) (0.90) (1.41) (1.30) (2.02)

Consumption of Health for Male 52.39 52.9 63.72 47.45 ‐2.86 0.696
(5.14) (5.23) (8.15) (6.48) (7.28)

Consumption of Health for Female 37.34 52.5 39.36 49.75 ‐0.31 0.961
(3.52) (5.75) (5.68) (7.51) (6.26)
1345.55 1366.37 1418.29 1611.05 ‐160.56 0.255
(97.54) (121.26) (135.04) (185.56) (140.09)

HH size 3.93 3.98 3.99 4.05 ‐0.07 0.473
(0.05) (0.05) (0.08) (0.08) (0.10)

HH Head Education  1=Educated  0.25 0.24 0.25 0.22 0.01 0.628
(0.02) (0.02) (0.02) (0.02) (0.03)

Number of Males  Age>14  1.19 1.22 1.18 1.18 0.03 0.515
(0.02) (0.02) (0.03) (0.03) (0.04)

Number of Children   Age<9  1.01 1.05 1.08 1.15 ‐0.09 0.093
(0.03) (0.04) (0.05) (0.05) (0.05)

Household has pucca walls  0.29 0.32 0.27 0.30 0.02 0.55
(0.02) (0.02) (0.03) (0.03) (0.04)

Literacy score  average  3.37 3.40 3.48 3.30 ‐0.01 0.84
(0.04) (0.04) (0.05) (0.06) (0.06)
78.79 78.62 78.38 75.72 1.66 0.47
(0.77) (0.88) (1.15) (1.35) (2.32)
58.53 60.82 58.38 57.40 1.68 0.41
(1.07) (1.21) (1.64) (1.61) (2.04)
52.53 52.90 52.42 51.15 0.91 0.70
(1.13) (1.25) (1.78) (1.72) (2.40)
0.77 0.75 0.77 0.77 ‐0.01 0.21

(0.003) (0.09) (0.01) (0.004) (0.01)
6.53 6.49 6.24 6.20 0.27 0.24
(0.05) (0.27) (0.07) (0.07) (0.23)
0.03 0.04 0.04 0.04 ‐0.00 0.75
(0.01) (0.004) (0.01) (0.01) (0.01)
0.68 0.65 0.70 0.60 0.02 0.55
(0.02) (0.02) (0.03) (0.03) (0.04)

Migration to Bogra in round 1 0.11 0.10 0.16 0.12 0.03 0.30
(0.01) (0.01) (0.02) (0.02) (0.03)

Table 1. Randomization Balance on Observables at Baseline
Incentivized Non‐Incentivized

Notes. First four columns show the mean of the corresponding variables; fifth column shows the difference between the means of incentivized and non‐incentivized 
groups. Standard errors are reported in parentheses.  P‐values are derived from testing the difference between the means of incentivized  cash and credit  and 
control  control and info  groups; linear regression is used where the dependent variables are the variables of interest and the only control is incentivized, a binary 
variable  equal to 1 if treatment group and 0 otherwise ; robust standard errors clustered at the village level are reported. All expenditure categories are monthly 
totals, reported on per capita basis   based on the size of the household . 

Subjective expectation: Will get social 
network help in Dhaka

Ratio of food expenditure over Total 
Consumption in round 1

Average skill score received by network

Received credit from NGO, family and 
friends, or money lender

Calories from Protein (per person per 
day)

Subjective expectation: Monga 
occurrence this year

Subjective expectation: Can send 
remittance from Dhaka

Appled and refused for credit  or didn't 
apply because of insufficient collateral 

Total Calories (per person per day)

Total Saving in Cash (conditional on 
positive savings)



Migration Rate in 2008
Cash 59.0%

(1.87)
Credit 56.8%

(2.06)
Info 35.9%

(2.80)
Control 36.0%

(2.76)
Incentivized Cash Credit Not Incentivized Diff (I‐NI)

58% 59.0% 56.8% 36% 22***
(1.4) (1.87) (2.06) (1.96) (2.43)
47% 45% 49% 37% 10***
(1.41) (1.92) (2.12) (2.0) (2.46)
44% 40% 50% 36% 8***
(1.33) (3.04) (3.04) (1.51) (2.0)

Migration Rate in 2008

Migration Rate in 2009

Migration Rate in 2011

Table 2: Program Take‐up Rates

The P‐value is obtained from the testing difference between migration rates of incentivized (Cash and Credit) and non‐incentivized households (Info and 
Control), regardless of whether they accepted our cash or credit. No incentives were offered in 2009. For re‐migration rate in 2011,  we compare 
migration rates in "pure control" villages that never received any incentives to villages that only received incentives in 2008 and never again. 



Dependent Variable

Cash Credit Info

61.876** 50.044* 15.644 48.642** 44.183* 280.792** 260.139** 102.714***
(29.048) (28.099) (40.177) (24.139) (23.926) (131.954) (128.053) (17.147)
34.885*** 27.817** 22.843 20.367** 16.726* 115.003** 99.924* 59.085***
(13.111) (12.425) (17.551) (9.662) (9.098) (56.692) (51.688) (8.960)
96.566*** 76.743** 38.521 68.359** 60.139** 391.193** 355.115** 160.696***
(34.610) (33.646) (50.975) (30.593) (29.683) (169.431) (158.835) (22.061)
106.819* 93.429 ‐85.977 142.629*** 129.901*** 842.673*** 757.602*** 317.495***
(62.974) (59.597) (76.337) (47.196) (48.057) (248.510) (250.317) (41.110)
2.852* 2.588 ‐0.509 2.977** 2.657** 17.442** 15.573** 6.777***
(1.557) (1.571) (2.089) (1.287) (1.273) (7.064) (6.830) (0.992)
12.325** 6.577 8.163 5.618 5.599 31.857 34.302 3.905
(5.489) (5.402) (6.667) (3.755) (3.726) (21.549) (21.399) (3.923)
8.979* 12.618** 8.977 6.297 5.193 34.652 28.775 8.901**
(4.743) (5.998) (6.076) (4.407) (4.142) (24.941) (22.909) (3.778)
6.146* 7.658** 1.546 6.110** 4.299* 30.848** 21.487 ‐3.677
(3.297) (3.441) (3.938) (2.485) (2.405) (14.144) (13.536) (2.355)

Sub‐district Fixed Effects? yes yes yes yes yes yes yes yes
Additional controls no no no no yes no yes no

Table 3: Effects of Migration before December 2008 on Consumption in 2008 Amongst Remaining Household Members

Robust standard errors in parentheses, clustered by village. *** p<0.01, ** p<0.05, * p<0.1. Each row is a different dependent variable (in column 1). In the IV columns, these dependent variables are 
regressed on "Migration", which is a binary variable equal to 1 if at least one member of the household migrated and 0 otherwise. The last column reports sample mean of the dependent variable in the 
control group. All consumption (expenditure) variables are measured in units of Takas per person per month, except Caloric Intake which is measured in terms of calories per person per day.  Some 
expenditure items in the survey were asked over a weekly recall and other less frequently purchased items were asked over a bi‐weekly or monthly recall. The denominator of the dependent variable 
(household size) is the number of individuals who have been present in the house for at least seven days. Additional controls included in columns 5 and 7 were: household education, proxy for income (wall 
material), percentage of total expenditure on food, number of adult males, number of children, lacked access to credit, borrowing, total household expenditures per capita measured at baseline, and 
subjective expectations about Monga and social network support measured at baseline. 

Consumption of Fish 67.3

Consumption of Children's 
Education

14.5

Total Calories (per person per 
day)

1976.1

Calories from Protein (per 
person per day) 44.0

Consumption of Meat Products 24.2

Consumption of Food 689.9

Consumption of Non‐Food 260.9

Total Consumption 950.8

Mean
ITT

OLSITT ITT IV IV



Dependent Variable

Cash Credit Info

31.437 16.047 ‐37.521 42.691** 33.108* 225.232** 183.990** ‐26.029*
(23.587) (23.226) (28.255) (17.073) (16.849) (100.891) (92.927) (14.855)
3.471 30.840* ‐4.411 18.514 11.997 98.188 59.937 ‐2.369

(16.629) (17.871) (21.943) (13.034) (13.080) (72.243) (70.778) (10.865)
34.908 46.887 ‐41.932 61.205** 45.105* 323.420** 243.927* ‐28.398
(31.113) (33.736) (40.345) (24.655) (24.668) (144.313) (134.898) (21.342)
77.706 1.832 ‐91.558 87.148** 73.146* 466.907** 412.931** ‐33.656
(54.683) (60.426) (55.842) (37.337) (37.850) (217.023) (206.676) (28.901)
1.341 ‐0.062 ‐2.396* 1.862** 1.472* 9.898** 8.301* ‐0.891
(1.213) (1.280) (1.314) (0.822) (0.827) (4.778) (4.484) (0.713)
‐4.164 4.615 ‐4.090 1.980 1.630 9.572 7.376 ‐4.513
(5.048) (5.151) (6.109) (3.152) (3.177) (17.267) (17.148) (2.880)
5.090 ‐4.495 ‐3.045 2.083 1.519 11.072 9.998 2.600
(4.926) (5.037) (5.936) (3.513) (3.642) (19.095) (19.492) (2.670)
‐0.156 ‐0.585 ‐3.828 1.546 0.140 7.660 1.057 ‐5.635***
(2.742) (2.774) (2.976) (1.768) (1.615) (8.861) (7.910) (1.680)

Sub‐district Fixed Effects? yes yes yes yes yes yes yes yes
Additional controls no no no no yes no yes no
Robust standard errors in parentheses, clustered by village. *** p<0.01, ** p<0.05, * p<0.1. Each row is a different dependent variable (in column 1). In the IV columns, these dependent variables are regressed 
on "Migration", which is a binary variable equal to 1 if at least one member of the household migrated and 0 otherwise. The last column reports sample mean of the dependent variable in the control group. All 
consumption (expenditure) variables are measured in units of Takas per person per month, except Caloric Intake which is measured in terms of calories per person per day.  Some expenditure items in the 
survey were asked over a weekly recall and other less frequently purchased items were asked over a bi‐weekly or monthly recall. The denominator of the dependent variable (household size) is the number of 
individuals who have been present in the house for at least seven days. Additional controls included in columns 5 and 7 were: household education, proxy for income (wall material), percentage of total 
expenditure on food, number of adult males, number of children, lacked access to credit, borrowing, total household expenditures per capita measured at baseline, and subjective expectations about Monga 
and social network support measured at baseline. 

Consumption of Fish 66.45

Consumption of Children's 
Education

16.89

Total Calories (per person per 
day) 2057.67
Calories from Protein (per 
person per day) 46.49

Consumption of Meat Products 26.56

Consumption of Food 913.98

Consumption of Non‐Food 326.99

Total Consumption 1240.97

Table 4: Effects of Migration in 2008 on Consumption in 2009 Amongst Remaining Household Members
ITT

ITT ITT IV IV OLS Mean



All Migrants Incentivized Not Incentivized Diff Obs

Total Savings by household 3,490.47 3,506.59 3,434.94 71.65 951
(97.22) (110.83) (202.80) (232.91)

Total Earnings by household 7,777.19 7,451.27 8,894.40 ‐1443.129** 952
(244.77) (264.99) (586.14) (583.83)

Savings per day 56.76 56.46 57.79 ‐1.33 905
(1.15) (1.29) (2.56) (2.77)

Earnings per day 99.39 96.09 111.15 ‐15.06** 926
(1.75) (1.92) (4.0) (4.2)

Remittances per day 18.34 16.94 23.33 ‐6.39** 927
(1.06) (1.19) (2.28) (2.55)

Travel Cost per Episode 264.55 264.12 266.00 ‐1.88 953
(3.41) (3.80) (7.62) (8.16)

Table 5. Migrant Earnings and Savings at Destination (Data for Migrants Only; Non‐

*** p<0.01, ** p<0.05, * p<0.1. The "Diff" columns tests statistical differences between incentivized and non incentivized groups. Standard errors are 
reported in parentheses. The measures for total savings and earnings, and savings and earnings per day do not include outliers (Less than 20,000 for 
total savings and 120000 for earnings, individuals savings per day less than 500 and individuals ernings per day less than 700). Travel cost refers to the 
cost of food and travel to get to the destination. Average migration duration 76 days.



Sector Dhaka Mushigonj Tangail  Bogra Other
Total 

earnings
Agriculture 17.54 75.00 91.15 89.62 46.83 3230.52

(1.71) (2.50) (1.89) (2.26) (2.26) (77.68)
Non‐ag day laborer 20.56 9.00 5.75 3.83 19.02 6039.72

(1.82) (1.66) (1.55) (1.42) (1.78) (317.52)
Transport 40.93 11.00 1.33 1.09 15.34 4993.81

(2.21) (1.81) (0.76) (0.77) (1.63) (203.12)
Other 20.97 5.00 1.77 5.46 18.81 5645.98

(1.83) (1.26) (0.88) (1.68) (1.77) (321.72)

Number of migration 
episodes 496 300 226 183 489 1,694

5005.06 3777.30 2897.88 2491.07 5160.60
(185.92) (156.0) (145.72) (123.19) (188.69)

Table 6: 2008 Migrant Characteristics by Destination and by Sector 

Notes: Standard errors are in parentheses. Shows the proportion of workers in each occupation by destination, average total earnings by sector across 
destinations, and average total earnings by destination across sectors. Based on migration for work episodes between September 1, 2008 to April 13, 
2009. Occupation at the destination is based on the question, "In which sector were you employed (agriculture, industry, etc)?"  Bogra and Tangail, 
which employ most migrant workers in the agriculture sector, are potato‐growing areas which do not follow the same crop and seasonal cycle as rice‐
growing Rangpur. 

Total earnings at 
Destination



Dep. Var.: Migrated in 2011 (1) (2) (3) (4)
0.156*** 0.170*** 0.172*** 0.180***
(0.077) (0.075) (0.073) (0.072)
0.139*** 0.149*** 0.228*** 0.224***
(0.056) (0.055) (0.055) (0.056)
0.099 0.102 0.135*** 0.134***
(0.065) (0.062) (0.062) (0.061)

0.180*** 0.149***
(0.042) (0.080)

0.172*** 0.159***
(0.027) (0.029)

0.083 0.223
(0.103) (0.137)

‐0.120*** ‐0.106***
(0.044) (0.046)

‐0.015
(0.088)
‐0.203
(0.153)

District Fixed Effects? Yes Yes Yes Yes
0.214*** 0.197*** 0.126*** 0.120***
(0.064) (0.061) (0.063) (0.061)

Observations 2,051 2,050 2,043 2,043
R‐squared 0.041 0.053 0.065 0.072
p‐value for F‐test: Conditional credit = Rainfall Insurance 0.842
p‐value of Responsive to Rainfall Insurance for those going to 
Bogra 0.0275

p‐value of Responsive to Rainfall Insurance for non‐farmers 0.0825
p‐value of Responsive to Rainfall Insurance for non‐farmers going 
to Bogra

0.00145

p‐value of Responsive to Rainfall Insurance for farmers not going 
to Bogra

0.0577

p‐value of Responsive to Rainfall Insurance for farmers going to 
Bogra

0.382

Table 7. Treatment Effects in 2011 Accounting for Basis Risk in the Insurance Program

Robust standard errors in parentheses. *** p<0.1, ** p<0.05, * p<0.01. The dependent variable is migration in 2011, equal to 1 if at least one household 
member migrated and 0 otherwise. Omitted category is a control group that never received any treatment. Impure control includes households that are 
control households in 2011 but received cash or credit in 2008. "Went to Bogra before baseline" is a binary variable equal to 1 if household reported 
sending a migrant to Bogra prior to baseline.

Constant

Farmer at Baseline x Rain Insurance

Identified as Farmer at Baseline

Went to Bogra before x Rain insurance

Went to Bogra x Farmer

Went to Bogra before Baseline

Went to Bogra x Farmer x Rain

Conditional Credit

Rainfall Insurance

Unconditional Credit



Dep. Var.: Migration in 2009 OLS IV OLS IV OLS IV OLS IV

0.392*** 0.410*** 0.392*** 0.464*** 0.393*** 0.436*** 0.392*** 0.476***
(0.02) (0.145) (0.02) (0.133) (0.021) (0.132) (0.02) (0.13)

0.007 ‐0.006
(0.01) (0.022)

‐0.012 ‐0.048
(0.025) (0.049)

0.01 0.007
(0.011) (0.027)

0.097*** 0.088 0.095** 0.062 0.098*** 0.078 0.095** 0.052
(0.037) (0.083) (0.038) (0.078) (0.037) (0.076) (0.038) (0.077)

Observations 1818 1818 1818 1818 1797 1797 1797 1797
R‐squared 0.207 0.206 0.207 0.201 0.208 0.206 0.209 0.202

Table 8. Learning from Own Experience and Othersʹ Experiences in 2009 Re‐migration Decision

*** p<0.01, ** p<0.05, * p<0.1 Robust standard errors in parentheses.

Did any member of the household migrate in 
2008?

Number of friends and relatives who migrated

Number of friends who migrated

Number of relatives who migrated

Constant



Incentive Non incentive Diff
First Episode  47% 64% 17***

(1.85) (3.30) (3.8)
Any Episode 55% 62% 6.3*

(1.80) (3.23) (3.70)

Incentive Non incentive Diff
First Episode  27% 44% 17***

(1.64) (3.41) (3.55)
Any Episode 31% 44% 12.8***

(1.67) (3.30) (3.56)

Incentive Non incentive Diff
First Episode  30% 32% 1.6

(1.70) (3.20) (3.6)
Any Episode 37% 37% 0.44

(1.75) (3.20) (3.65)

Table 9. Differences in Characteristics Between Migrants in 
Treatment and in Control Group

Panel A: Percentage of Migrants that Know Someone at Destination

Panel B: Percentage of Migrants that had a Job Lead at Destination

Panel C: Percentage of Migrants Traveling Alone

*** p<0.01, ** p<0.05, * p<0.1. Standard errors are in parentheses.



Table 10. Destination Choices of Re‐Migrants

OLS IV OLS IV OLS IV OLS IV

0.413*** 0.679*
(0.052) (0.348)

0.333*** 0.051
(0.061) (0.177)

0.463*** 0.108
(0.057) (0.184)

0.233*** 0.304*
(0.050) (0.185)

0.317*** 0.213 ‐0.014 ‐0.002 0.027 0.073 0.059 0.038
(0.068) (0.148) (0.012) (0.008) (0.050) (0.054) (0.037) (0.060)

Observations 589 589 589 589 589 589 589 589
R‐squared 0.195 0.132 0.205 0.032 0.305 0.081 0.155 0.085
1st F‐test 1.139 4.338 2.116 0.980
1st pvalue 0.345 0.000166 0.0412 0.456
1st partial R2 0.0119 0.0561 0.0616 0.0217
Hansen J0 4.272 7.142 8.882 3.920
R2 overall 0.132 0.0317 0.0814 0.0849

OLS IV OLS IV OLS IV OLS IV

0.327*** 0.655**
(0.055) (0.318)

0.280*** 0.068
(0.061) (0.166)

0.376*** 0.285
(0.092) (0.265)

0.275*** 0.108
(0.059) (0.236)

0.248*** 0.127 0.076 0.098 0.079 0.098 0.138 0.182
(0.070) (0.126) (0.097) (0.085) (0.175) (0.174) (0.096) (0.120)

Observations 480 480 480 480 480 480 480 480
R‐squared 0.179 0.067 0.127 0.032 0.181 0.117 0.220 0.061
1st F‐test 0.986 4.649 2.706 1.781
1st pvalue 0.452 8.24e‐05 0.0100 0.0905
1st partial R2 0.0166 0.0775 0.0554 0.0354
Hansen J0 7.374 4.322 16.50 4.131
R2 overall 0.0668 0.0319 0.117 0.0611

Dep. Var.: Migrated in 
2011 to:

Migrated in 2008 to 
Munshigonj

Constant

*** p<0.01, ** p<0.05, * p<0.1 Robust standard errors in parentheses. Each coefficient entry in the table comes from a separate regression where migration 
to a specific destination in 2009 is regressed on migration to that same destination in 2008. The dependent variable is equal to one if at least one household 
member migrated to the destination specified in the first column (Dhaka, Bogra, Tangail or Munshigonj) in 2009 (rows 1‐4), or in 2011 (rows 5‐8). The 
independent variable whose coefficient is reported is a binary variable equal to 1 if at least one member of the household migrated to that destination in 
2008 and 0 otherwise. The second column reports instrumental variables specifications where migration in 2008 to a particular destination is instrumented by 
the random assignment to cash and credit treatments, and the individual level treatments (see figure 2), including the requirement to travel to a specific 
destination (omitted category is self‐chosen destination). Sub‐district fixed effect are included but not reported. The sample includes only households that 
sent a migrant in both 2008 and 2009.

2011 ‐ Bogra 2011 ‐ Tangail 2011 ‐ Munshigonj

Migrated in 2008 to 
Dhaka
Migrated in 2008 to 
Bogra
Migrated in 2008 to 
Tangail

2011 ‐ Dhaka

2009 ‐ Munshigonj

Migrated in 2008 to 
Bogra
Migrated in 2008 to 
Tangail
Migrated in 2008 to 
Munshigonj

Constant

Migrated in 2008 to 
Dhaka

Dep. Var.: Migrated in 
2009 to:

2009 ‐ Dhaka 2009 ‐ Bogra 2009 ‐ Tangail



Table 11. Parameters Used for Calibration 
 

Parameter Calibration Notes 

u(c) (𝑐 − 𝑠)1−𝜎

1 − 𝜎
 HARA utility function. 

s 
250 Taka per hh member 

per month 

Enough for about 600 Calories 

per hh member per month 

𝜋𝐺  0.5 
The portion of induced migrants 

that remigrate 

F 
250 Taka per hh member 

per month 

600 Taka for bus fare, plus 6 

days of foregone labor at 60 

Taka per day.  Spread over 4 hh 

members 

m 
550 per household member 

per month 

Solution to: 

𝜋𝐺  (𝑚 + 𝐼) =  350  

where 350 is our LATE estimate 

and I is the size of our incentive. 

𝜇(𝑦) 
𝑁(700,7) per household 

member, per month 

Designed to look like the 

distribution of the bottom half of 

the population 

Time Period 6 months 

We assume the choice to migrate 

can be made after planting for 

either of the agricultural 

seasons. 

𝛿 0.99  

I (incentive 

size) 

200 Taka per household 

member 
Assumes a households size of 4 

 



Incentivized Not incentivized Diff

Expectations about finding a job
0.18 0.14 0.05
(0.01) (0.02) (0.03)
0.24 0.27 ‐0.03
(0.02) (0.03) (0.03)
0.58 0.59 ‐0.01
(0.02) (0.03) (0.04)

Expectations about earnings at the destination
0.42 0.39 0.03
(0.02) (0.03) (0.04)
0.26 0.27 0.00
(0.02) (0.03) (0.03)
0.32 0.34 ‐0.02
(0.02) (0.03) (0.04)

Expectations about the Severity of Monga
78.71 77.05 1.04
(0.58) (0.89) (1.66)

Table 12. Expectations about finding a job and earnings (Non‐experimental: Asked of 
2008 migrants)

Monga (1‐100 scale)

Standard errors in parentheses. 

As expected

Too optimistic (job search took more time than 
expected)

Too pessimistic (job search took less time than 
expected)

As expected

Too optimistic (earned less than expected)

Too pessimistic (earned more than expected)



Figure 1. Seasonality in Consumption and Price in Rangpur and in Other Regions of Bangladesh
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Agricultural Season Survey Experimental Design
Jul., 2008 Baseline Survey – July, 2008

2008 Planting of Aman Rice  Aug., 2008 • 1900 households, 100 villages
• Household roster, assets , economic activities, agricultural production, 

ti d dit dit d i

First Experiment – August, 2008

S 2008

Figure 2. Trial Profile and Timeline

consumption and expenditures, credit  and savings use
• Previous migration experience, expectations about migration

Monga

Sep., 2008

Oct., 2008 Follow‐up Survey, Consumption Data – Oct.‐Nov., 2008
Nov., 2008 • 1900 households, 100 villages

• Assets, economic activities, agricultural production,  consumption and 
expenditures, credit and savings use2008 Aman Rice Harvest Dec., 2008

Households (Villages)
Cash 703 (37)
Credit 589 (31)
Information 304 (16)
Control 304 (16)
Total 1900 (100)

May, 2009 Follow‐up Survey, Migration Data – May, 2009
Jun., 2009 • 1900 households, 100 villages

• Detailed migration and remittance data from Sept. 2008‐Apr. 2009

2009 Planting of Aman Rice  Aug., 2009
Sep 2009

Group Formation Requirement
Individual 476

Assigned Group 408

Self‐Formed Group 408
Destination is assigned for half the 

l i h d i d t

Monga
Sep., 2009
Oct., 2009
Nov., 2009 Follow‐up Survey, Round 3 – Nov., 2009

2009 Aman Rice Harvest
Dec., 2009 • 1900 households, 100 villages

• Employment, consumption
• Migration episodes since April, 2009Jan., 2010

sample in each group, randomized at 
the household level

Jan., 2011 Baseline Survey – Jan., 2011
2011 Planting of Boro Rice Feb., 2011 • 627 households, 33 villages

• (Same as 2008 baseline, but for newly added households)
Second Experiment – February, 2011

Mar., 2011
Households (Villages)

Pre‐harvest 
mini Monga season

Apr., 2011
May, 2011
Jun., 2011

2011 Boro Rice Harvest Jul., 2011 Follow‐up Survey, Round 4 – July, 2011
• 2527 households, 133 villages
• Household composition, assets, economic activities, agricultural

Households (Villages)
Rainfall Insurance 456 (24)
Rice Price Insurance 456 (24)
Unconditional Credit 285 (15)
Conditional Credit 285 (15)
Control 665 (35)
Total 2147 (113)

Household composition, assets, economic activities, agricultural 
production, consumption and expenditures, financial assistance 
received, savings

• Migration between Feb. 2011 and June 2011
• Psychological cost of migration



Figure 3. Value functions of migrating and non‐migrating households



Figure 4. Policy functions (consumption as a function of cash on hand) for households bad at 
migrating and households restricted from migrating



Figure 5. Simulated Cahs on Hand and Consumptions for Varying Levels of Wealth
Panel A Panel B



Figure 6. Distribution of Consumption in Control Villages subtracted from 
Distribution of Consumption in Treatment Villages

Panel A. Risk: If the Migration Incentive was not paid out, and the migration cost had to be 
borne by the household

Panel B. Treatment minus Control Distribution (not subtracting migration incentive)
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Figure 7. Migration experience in 2008 by re‐migration status in 2009.



Figure 8. Heterogeneity in Migration Responsiveness to Treatment by Subsistence Level

‐0.252
(0.185)

‐0.870***
(0.204)

0.567**
(0.240)
0.412*
(0.227)

Observations 1860
R‐squared 0.189
Robust standard errors in parentheses, clustered by village. *** 
p<0.01, ** p<0.05, * p<0.1. The dependent variable is 
"Migration" , a binary variable equal to 1 if at least one member 
of the household migrated and 0 otherwise. Additional 
treatment variables included but not shown were: random 
assignment into individual or group migration and random 
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Panel B: Migration Decision as a Function of 
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Subsistence Level in Round 1 by Treatment

Panel C: Migration Rates across the Distribution of Food 

Panel A: Migration Rates and Baseline Subsistence Level (by Treatment Status)

assignment by migration destination. Additional controls were 
number of adult males at the baseline, number of children at the 
baseline, past migration dummy, lacked access to credit, 
borrowing, total household expenditures per capita measured at 
baseline,  and social network support measured at baseline. 
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Figure 9. Static Model with Myopic Agents
Panel A Panel B



Figure 10. Forward‐looking Agents, but no Savings
Panel A Panel B



Figure 11. Full Model with Buffer Stock Savings and Possibility of Saving up for Migration
Panel A Panel B



Figure 12.
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Appendix 1 : Description of 2008 Treatments 

Out of the 100 villages selected to participate in the study, 16 (304 households) 

were assigned to the control group, while the remaining 84 villages (1596 households) 

were assigned to one of three treatments: 

Information (16 villages/304 households): Potential migrants were provided 

with information on the types of jobs available in each of four areas: Bogra, Dhaka, 

Munshigonj and Tangail.  In addition, they were told the likelihood of finding such a 

job, and the average daily wage in each job.  This information was provided using the 

following script: 

“We would like to give you information on job availability, types of jobs available and 

approximate wages in four regions – Bogra, Dhaka, Munshigonj and Tangail. They are not 

in any particular order. NGOs working in those areas collected this information at the 

beginning of this month.  

Three most commonly available jobs in Bogra are: a) rickshaw pulling, b) construction 

work, c) agricultural labor. The average wage rates per day are Tk. 150 to 200 for rickshaw 

pulling, Tk.120 to 150 for construction work, and Tk. 80 to 100 for agricultural laborer. The 

likelihood of getting such a job in Bogra is medium (not high/not low).   

Three most commonly available jobs in Dhaka are: a) rickshaw pulling, b) construction 

work, c) day labor. The average wage rates per day are Tk. 250 to 300 for rickshaw pulling, 

Tk.200 to 250 for construction work, and Tk. 150 to 200 for day laborer. The likelihood of 

getting such a job in Dhaka is high.  

Three most commonly available jobs in Munshigonj are: a) rickshaw pulling, b) land 

preparation for potato cultivation, c) agricultural laborer. The average wage rates per day 

are Tk. 150 to 200 for rickshaw pulling, Tk.150 to 160 for land preparation, and Tk. 150 to 

160 for agricultural laborer. The likelihood of getting such a job in Munshigonj is high.  

Three most commonly available jobs in Tangail are: a) rickshaw pulling, b) 

construction work, c) day laborer in brick fields. The average wage rates per day are Tk. 

200 to 250 for rickshaw pulling, Tk.160 to 180 for construction work, and Tk. 150 to 200 for 

brick field work. The likelihood of getting such a job in Tangail is medium (not high/not 

low).  

Based on the above information, would you/any member of your family like to any of 

the above location during this monga season? If so, where do you want to go? Note that the 

job market information given above might have changed or may change in the near future 

and there is no guarantee that you will find a job, and we’re just providing you the best 
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information available to us. Note also that we or the NGOs that collected this information 

will not provide you with any assistance in finding jobs in the destination.” 

 

Cash (37 villages/703 households): Households were read the same script on job 

availability as given above, and were also offered a cash grant of Taka 600 conditional 

on migration. This money was provided at the origin prior to migration, and was 

framed as defraying the travel cost (money for a bus ticket).  Migrants had an 

opportunity to receive Taka 200 more if they reported to us at the destination.  

Credit (31 villages/589 households): Households were read the same script on 

job availability as given above, and were also offered a zero interest loan of Taka 600 

conditional on migration. This money was provided at the origin prior to migration, 

and was framed as defraying the travel cost (money for a bus ticket).  Migrants had an 

opportunity to receive Taka 200 more if they reported to us at the destination. 

Households were told that they would have to pay back the loan at the end of the 

Monga season.   
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Appendix 2 : Description of Treatments in 2011 

In 2011 we conducted one more round of randomized interventions in the same 

sample  of  1900  households  (in  100  villages),  plus  247  new  households  in  13  new 

randomly  selected villages  from  the  same  two districts  (Kurigram  and Lalmonirhat).   

The treatments (most of which encouraged migration,  like the 2008 experiments) were 

randomized at  the village  level.   They were offered  in February, 2011,  just before  the 

onset of the 2011 “mini‐Monga season,” which is the pre‐harvest lean season associated 

with the lesser of the two annual rice harvests. The treatments were therefore designed 

to  encourage migration during  this  lean  season. The  same  organization  as  in  2008  – 

PKSF, and their local NGO partners – implemented the treatments.  We collected follow 

up data on all households in 133 villages in July‐August 2011.  

Controls: All 16 Control villages  from  the 2008 experiments were retained as a 

control group  in 2011.   We also  chose not  to  intervene again  in 19 villages  that were 

offered the credit treatment in 2008.  These 19 villages are labeled “Impure Control” in 

the  regression  table,  and  they  allow  us  to  study  the  long‐run  effects  of  offering 

migration credit in 2008. 

Credit conditional on migration: Sample households in 15 villages received the 

same  zero‐interest  loan  conditional  on  a  household member migrating,  as  offered  in 

2008.  The credit amount was raised to Tk.800 (~US$10.8) to reflect inflation in the cost 

of  travel  since 2008. Households were  required  to pay back  in a  single  installment  in 

July, at the end of the lean season.  

Unconditional credit: To test one of the implications of our model, we offered an 

unconditional zero‐interest loan of Tk.800 to sample households in 15 villages. The loan 

repayment  terms were  the  same  as  the  conditional  credit,  and no  conditionality was 

attached to the loan.  



5 

 

Conditional Credit with destination  rainfall  insurance: Sample households  in 

24 villages were offered the same zero interest Tk.800 (~US$10.8) credit conditional on 

migration,  but  the  repayment  terms  were  conditioned  on  rainfall  outcomes  in  one 

popular migration  destination:  Bogra.  Too much  rainfall  (and  flooding)  is  a  risk  in 

Bangladesh,  and  can  lower  migrant  earnings,  particularly  for  outdoor  work  like 

rickshaw‐pulling and  construction  site work. We purchased 10 years of daily  rainfall 

data from the local meteorological department, imputed the probability distribution of 

rainy days during the pre‐harvest migration period, and calculated the actuarially fair 

insurance premium and payoff amounts. Our  loan contract specified  that  if rainfall  in 

Bogra  for March/April  2011  remained  “normal”  (4 days or  less),  the migrants would 

have  to  pay  back  Tk.  950  (~US$12.83).  For  5‐9  days  of  rainfall,  the  repayment 

requirement would be Tk.714 (~US$9.64). For 10 or more days of rainfall, the repayment 

requirement was Tk.640 (~US$8.64).   The amounts were chosen to make the  insurance 

contract actuarially fair, given historical rainfall data.   

Note  that  this  is a  loan contract, but  the repayment rules  introduce a  feature of 

index insurance against too much rainfall.1 The treatment design takes advantage of the 

fact  that  the  contract  offers  differential  basis  risk  for  households  that  differ  along 

identifiable baseline characteristics: those who had a propensity for traveling to Bogra, 

and non‐farmers.  Basis risk from the index contract is lower for these two groups.   

All  treatments  described  above  were  proportionally  balanced  across  the 

Information, Cash  and Credit  treatments  from  2008  (and Control  villages  from  2008 

were retained as long‐term controls as described above).  In some other sample villages 

from  2008,  we  conducted  other  treatments  that  are  not  relevant  for  the  analysis 

conducted in this paper, and we therefore do not discuss those treatments here. 

                                                 
1 Note that the contract can be explained to borrowers like a standard credit contract, and the insurance feature is only introduced 

because the credit repayment is state contingent. This helps to avoid confusion about the concept of insurance (Gine and Yang 2009). 
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Appendix 3 : Risk Aversion, Insurance and Basis Risk  

This appendix provides a simple model of basis risk based on Clarke (2011) and 

uses  it  to  argue  that  our  2011  insurance  experiment  can  be  used  to  test  whether 

migration is risky and migrants are risk averse.2 

There are two payoff relevant states {L,H} which lead to income at the destination 

௅ݕ ൑  ு. Weݕ assume  ሻܪሺݎ݌ ൌ  .௬ߨ There  are  two  rainfall  states  ሼܴ௅, ܴுሽ  and  rainfall 

insurance makes a payment of p in state ܴு and costs c in state ܴ௅. We denote ݎ݌ሺܴ௅ሻ ൌ

,௅ܴܮோ. This setup leads to four possible states of the world ሼߨ ,ுܴܮ  ுሽ. Followingܴܪ,௅ܴܪ

Clarke we parameterize basis risk with a variable ݎ ൌ  ௅ሻ – that is, the probabilityܴܮሺݎ݌

that income is low but that the insurance contract does not payout and is in fact costly.3  

This implies that the remaining probabilities are 

൛ݎ݌ሺܴܮுሻ ൌ 1 െ ோߨ െ ;ݎ ௅ሻܴܪሺݎ݌ ൌ ோߨ െ ;ݎ ுሻܴܪሺݎ݌	 ൌ ௬ߨ െ ோߨ ൅  ൟݎ

We assume that r depends on the characteristics of the migrator. In particular, we 

assume: 

1. Basis risk is larger for farmers than for non‐farmers ݎி ൐  ேி; andݎ

2. Basis risk is smaller for those that are more likely to migrate to Bogra: ݎ஻ ൏  .ே஻ݎ

We make the first assumption because the insurance contract pays in a high rain 

situation. High rain is likely to reduce income of day laborers who work, for example, 

pulling  rickshaws.  For  agricultural  laborers,  however,  high  rain  is  potential 

advantageous as it is likely to increase work. We make the second assumption because 

the rainfall data is collected in Bogra and will be less accurate in other destinations. This 

leads to the possibility that we record high rainfall, but there is in fact low rainfall in, for 

                                                 
2 See also Bryan (2012) for an application of the model presented here. 
3 Recall that our insurance project pays out in the high rainfall state. 
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example, Dhaka. We make no assumption about the relative basis risk for those that are 

farmer going to Bogra versus non‐farmers that are not going to Bogra. 

We are interested in deriving the relative impact of the provision of insurance on 

the migration  rate.  To  do  so, we  suppose  that  potential migrators  all  face  the  same 

(expected)  income  given  migration  (i.e.  there  is  no  heterogeneity  in  the  migration 

process  except  for  r),  but  that  potential migrators  are  heterogeneous with  respect  to 

their returns to remaining at home.4  In particular, we assume that the expected utility 

of  remaining  at  home  is migrator  specific  and  given  by  ݄௜ which we  assume  to  be 

distributed according to F.  

Given these assumptions, the portion of potential migrators that migrate without 

insurance is given by 

ܨ ቀߨ௬ݑሺݕ௛ሻ ൅ ൫1 െ  ,௅ሻቁݕሺݑ௬൯ߨ

and with insurance by 

ܨ ቀݑݎሺݕ௅ െ ܿሻ ൅ ሺ1 െ ோߨ െ ௅ݕሺݑሻݎ ൅ ሻ݌ ൅ ሺߨோ െ ுݕሺݑሻݎ െ ܿሻ ൅ ൫ߨ௬ െ ோߨ ൅ ுݕሺݑ൯ݎ ൅  ሻቁ݌

If F does not depend on  the  type of migrator  except, perhaps,  through purely 

horizontal  shifts,  then  the  change  in  the probability of migration  (or  equivalently  the 

portion of the population migrating) is proportional to 

ቀݑݎሺݕ௅ െ ܿሻ ൅ ሺ1 െ ோߨ െ ௅ݕሺݑሻݎ ൅ ሻ݌ ൅ ሺߨோ െ ுݕሺݑሻݎ െ ܿሻ ൅ ൫ߨ௬ െ ோߨ ൅ ுݕሺݑ൯ݎ ൅ ሻቁ݌ െ

ቀߨ௬ݑሺݕுሻ ൅ ൫1 െ  .௅ሻቁݕሺݑ௬൯ߨ  

Given this setup, we say that migration is risky if ݕு ൐  ௅. The model implies theݕ

following: 

                                                 
4 This is easily generalized and our regressions presented in the main text allow for differences in the return to 

migration for farmers, non-farmers and those that are going to Bogra. 
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Proposition  1  (Basis  risk  is  only  relevant  if migration  is  risky).   The  portion  of 

people  induced to migrate by  insurance  is decreasing  in r  if and only  if migration  is risky and 

migrators are risk averse. 

Proof.   The  “only  if”  follows because  r drops out of  (1) when migration  is not 

risky. The “if” follows because an increase in r is a mean preserving spread, so the left 

hand side of (1) must be decreasing in r so long as migrators are risk averse. 

This  proposition,  combined with  our  assumptions  on  r  leads  to  the  following 

joint test: 

Hypothesis  1  (Basis  risk  implies migration  is  risky).  If migration  is  risky,  then 

rainfall insurance will increase migration rates more for those that are migrating to Bogra and 

more for non‐farmers. 

The nature of this hypothesis is that, if the model of basis risk is correct, and our 

assumptions about the relative amounts of basis risk are correct, then we can infer that 

migration itself is risky from the results of our insurance experiment. 
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Cash 0.191*** 0.192***
(0.049) (0.045)

Credit 0.177*** 0.174***

(0.048) (0.045)
Info 0.001 0.003

(0.056) (0.052)

Sub‐district fixed effects? yes yes
Additional controls? no yes

Observations 1,870 1,826
R‐squared 0.086 0.130
1st F‐test 12.633 14.424
1st pvalue 0.000 0.000
1st partial R2 0.028 0.029

Migration in 2008

Robust standard errors in parentheses, clustered by village. *** p<0.01, ** p<0.05, * 
p<0.1. The dependent variable is a binary variable equal to 1 if at least one member 
of household migrated.  Additional controls included in columns 2 and 4 were: 
household education, proxy for income (wall material), percentage of total 
expenditure on food, number of adult males, number of children, lacked access to 
credit, borrowing, total household expenditures per capita measured at baseline, 
and subjective expectations about Monga and social network support measured at 
baseline. 

Appendix Table 1. First Stage: Migration as a Function 
of Treatments in 2008



2008 2009 2011

0.378*** 0.047** 0.024*
(0.0700) (0.021) (0.014)
0.188*** 0.020* 0.021**
(0.0348) (0.010) (0.010)

Changes on Intensive Margin
0.108 0.106 ‐0.015
(0.104) (0.068) (0.046)
‐0.0172 ‐0.009 0.013
(0.0231) (0.018) (0.015)
0.125 0.106 ‐0.031

(0.0980) (0.067) (0.037)
‐8.245** ‐2.625 2.793**
(4.118) (3.383) (1.400)
0.0154 ‐0.004 ‐0.010**
(0.0150) (0.007) (0.004)
2.637** 0.144 ‐0.213
(1.108) (1.003) (0.796)
0.0674** ‐0.021 0.017
(0.0318) (0.028) (0.020)

Robust standard errors in parentheses, clustered by village. *** p<0.01, ** p<0.05, * p<0.1. Each coefficient entry in the 
table comes from a separate regression where the dependent variable (in column 1) is regressed on "incentivized" (cash 
and credit groups in 2008 and 2009; conditional, unconditional credit, cash or rainfall insurance in 2011).

Appendix Table 2. Intensive and Extensive Margin Changes due to Incentive 
(Cash or Credit) Treatment

Total number of migration episodes per 
household (among migrant households)

Total number of migrants per household (among 
migrant households)

Total number of episodes per migrant

Days away per migrant per episode

Male

Age

Migrant is head of household

Total number of migration episodes per 
household

Total number of migrants per household



Dependent Variable
Cash Credit Info

49.674** 48.292** 20.427 39.033* 222.288* ‐7.835
(23.752) (23.015) (36.787) (21.745) (124.365) (15.422)
35.320** 28.121** 20.817 21.721** 122.929* 32.930***
(14.941) (14.046) (18.860) (10.348) (63.274) (8.621)

104.162*** 86.081*** 41.620 75.234** 429.585** 61.339***
(32.672) (31.318) (49.635) (30.031) (176.462) (20.343)
120.927** 111.339** ‐66.444 148.964*** 869.842*** 102.951***
(54.673) (51.398) (68.194) (42.735) (243.784) (38.129)

50.506* 46.669* 5.063 46.219* 267.336** 67.936***
(26.961) (26.185) (38.967) (23.648) (133.310) (17.226)
29.778** 25.690* 18.536 18.774* 106.119* 45.519***
(13.686) (13.495) (18.144) (9.917) (59.272) (9.152)
80.085** 71.211** 23.634 64.328** 368.937** 112.357***
(31.663) (31.784) (49.575) (29.958) (171.948) (22.179)
69.645 77.571 ‐117.409 130.875*** 775.485*** 218.266***
(65.251) (62.278) (76.655) (48.946) (274.635) (41.640)

56.019* 49.215* 21.065 42.498* 243.791* 80.573***
(28.385) (27.493) (40.053) (24.070) (132.883) (16.898)
32.313** 27.335** 25.281 17.586* 98.361* 49.524***
(13.170) (12.594) (17.941) (9.593) (56.223) (8.738)
88.138** 75.440** 46.380 59.440* 337.769** 129.019***
(34.016) (33.216) (51.202) (30.518) (170.467) (21.769)
90.556 91.954 ‐69.585 125.294*** 737.107*** 252.609***
(60.478) (56.772) (75.689) (46.656) (249.228) (40.847)

Appendix Table 3. Effects of Migration in 2008 on Consumption in 2008; Sensitivity to Changes 
in Definition of Household Size

ITT
ITT IV OLS

Panel A: number of household members is based on question Q7 in R2 follow-up survey ("status of household 
members")

Panel B: number of household members is based on Q9 in R2 follow-up survey ("currently present members")

Panel C: household size is based on the total number of household members at the time of the interview

Total Calories (per person 
per day)

Consumption of Food

Consumption of Non‐Food

Consumption of Food

Consumption of Non‐Food

Total Consumption

Total Consumption

Consumption of Food

Consumption of Non‐Food

Total Consumption

Total Calories (per person 
per day)

Total Calories (per person 
per day)

Robust standard errors in parentheses, clustered by village. *** p<0.01, ** p<0.05, * p<0.1. 



Dependent Variable
Cash Credit Info

65.320** 52.001* 16.532 50.952** 294.218** 114.443***
(29.708) (29.165) (40.476) (24.395) (130.921) (17.779)
37.317*** 28.879** 22.655 22.246** 126.026** 63.824***
(13.105) (12.307) (17.403) (9.709) (56.518) (9.154)

102.441*** 79.753** 39.221 72.541** 415.549** 177.147***
(35.327) (34.650) (51.050) (30.846) (167.430) (22.851)
115.229* 97.084 ‐83.808 147.739*** 872.820*** 350.271***
(65.440) (63.041) (77.209) (48.055) (243.244) (41.971)

68.356 58.472 ‐29.407 78.084 454.672 ‐22.104
(125.876) (126.579) (171.409) (104.435) (584.120) (59.784)
81.562* 53.790 60.009 39.126 219.877 41.280
(41.239) (40.458) (48.636) (31.682) (179.086) (25.780)
149.230 108.306 30.727 114.917 660.329 15.572
(143.280) (145.175) (203.232) (125.865) (701.793) (74.566)
‐9.354 ‐21.278 ‐426.987 193.855 1,169.733 22.695

(279.707) (274.067) (342.132) (225.931) (1,245.768) (166.249)

Consumption of Food

Consumption of Non‐Food

Robust standard errors in parentheses, clustered by village. *** p<0.01, ** p<0.05, * p<0.1. 

Consumption of Food

Consumption of Non‐Food

Total Consumption

Total Calories (per person 
per day)

Total Calories (per person 
per day)

Continued: Appendix Table 3: Effects of Migration in 2008 on Consumption in 2008; Sensitivity 
to Changes in Definition of Household Size

ITT

Total Consumption

ITT IV OLS

Panel D: household size is based on the total number of household members present in the last 14 days 

Panel E: Total monthly consumption per household; no adjustment to household size



Dep. Var.: 

ITT IV ITT IV ITT IV ITT IV

591.617*** 585.653 1.929 0.744

(170.718) (708.002) (1.315) (0.951)

3,287.602*** 3,281.877 11.059 4.474

(869.377) (3,773.748) (7.944) (5.348)

Controls? No No No No No No No No

Observations 1,851 1,851 1,851 1,851 1,854 1,854 1,836 1,836

R‐squared 0.052 0.285 0.026 0.103 0.031 ‐0.034 0.017 ‐0.005

Mean of Control 2272 2272 14244 14244 205.2 205.2 ‐3.971 ‐3.971

Appendix Table 4. Effects of Migration in 2008 on Savings, Earnings and Changes in Childrenʹs Middle Upper Arm Circumference 
(MUAC)

Migration (before Dec 2008), 
instrumented by treatment

Total Savings by household Total Earnings by household MUAC (mm) Change in MUAC (mm)

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 Total earnings include earnings from migration and earnings at the origin from all sources, 
including (1) total earnings for daily wage‐earners and in‐kind; (2)  self‐employment; (3) livestock; fishery; forestry.

Incentives (Cash or Credit) 
Treatment



Consumption per capita in R1 0.102*** 0.067***
(0.014) (0.012)

Consumption per capita in R2 0.445***
(0.027)

Constant 881.546*** 765.099*** 1,094.635***
(18.215) (25.513) (15.676)

Sub‐district FE? no no no
Observations 1,855 1,782 1,798
R‐squared 0.027 0.131 0.017
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Consumption in R2 Consumption in R3 Consumption in R3

Appendix Table 5. Covariance of income per capita across rounds.



Mean St.dev Mean St.dev Mean St.dev Mean St.dev

Share with positive current savings 0.53 0.50 0.57 0.50 0.34 0.48 0.49 0.50

Total value of current cash savings for all HHs 745.45 1,629.28 787.04 1,616.97 768.33 2,280.19 798.83 1,885.58

Total value of current cash savings for HHs with 
reported savings

1,416.36 2,023.58 1,385.29 1,942.77 2,233.72 3,442.41 1,624.94 2,427.08

Share with liquid assets 0.42 0.49 0.59 0.49 0.81 0.39 1,556.14 3,018.54

Total value of liquid assets for all HHs 339.35 1,154.88 494.58 1,292.40 1,390.12 3,115.53 0.60 0.49

Total value of liquid assets for HHs with reported 
assets

812.05 1,676.18 844.30 1,599.04 1,709.12 3,374.84 1,269.59 2,712.63

1 if purchased assets in last 12 months (all HHs) 0.01 0.09 0.01 0.09 0.20 0.40 757.45 2,185.75

Value of purchased assets in the last 12 months 6.26 89.65 9.37 195.36 122.89 1,476.58 0.07 0.26

Total savings (current + liquid assets) for all HHs 1,084.80 2,057.72 1,281.62 2,185.67 2,157.30 4,028.99 41.36 549.42

Total savings (current + liquid assets) for HHs with 
reported savings or assets

1,547.39 2,307.55 1,588.02 2,330.90 2,530.66 4,254.20 1,979.27 3,279.01

Obs

Cash savings are the total of any cash holdings by all household members (held in any location). Liquid asset value is the reported value of all non‐property assets, 
including stocks, bonds, other financial assets and jewelry.

Follow‐up 2011 Total

Appendix Table 6. Summary Statistics on Households Savings

1900 1871 2413 5777

Baseline Follow‐up 2008



Full sample

Incentivized in 2008 0.047*
(0.027)

Constant 0.266***
(0.020)

Observations 2,771
R‐squared 0.003

Appendix Table 7. Going Back to the Same 
Employer in 2011

Notes. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * 
p<0.1. The dependent variable in "Full sample" is equal to 1 if a 
respondent reports going to the same employer in 2011 as before; 0 
otherwise. The dependent variable in "Migrant only" is equal to 1 if a 
respondent reports going to the same employer in 2011 as before; it is 
equal to 0 if a migrant reports going to a different employer as before (of 
migrants who travelled to the same place as before).



2007 2008 Difference P‐value Obs
0.42 0.58 ‐0.17 0.0941 103
(0.05) (0.05)

2006‐7 2008‐9 Difference P‐value Obs
0.43 0.57 ‐0.13 0.0567 201
(0.04) (0.04)

Not Incentivized Incentivized Difference P‐value Obs
0.50 0.58 ‐0.08 0.2589 189
(0.05) (0.05)

Not Incentivized Incentivized Difference P‐value Obs
0.54 0.57 ‐0.03 0.5672 363
(0.04) (0.04)

Standard errors in parentheses. This table shows the proportion of all migrants from 2008 who re‐migrated in 2011, returned to the 
same place and met their employer between 2006 and 2009. 

First met employer in 2006‐7 
vs 2008‐9

First met employer in 2007 vs 
2008 

Appendix Table 8a. Proportion of 2011 migrants who first met employer before or after 
migration incentive (2006‐2007 vs 2008‐2009), Incentivized in 2008 only  [Migrant Only 
Sample; Non‐experimental]

Standard errors in parentheses. This table shows the proportion of migrants who were incentivized in 2008, who re‐migrated in 2011, 
returned to the same place and met their employer between 2006 and 2009. 

Appendix Table 8b. Proportion of 2011 migrants who first met employer before or after 
incentivization (2006‐2007 vs 2008‐2009), Full Sample  [Migrant Only Sample; Non‐
experimental]

First met employer in 2008 
(rather than 2007)

First met employer in 2006‐07 
rather than 2008‐09



Dep. Var.: Migrated in 2008 to: Dhaka Bogra Tangail Munshigonj

‐0.032 0.125** ‐0.052 0.010
(0.088) (0.051) (0.075) (0.083)
0.035 0.085* 0.017 ‐0.056
(0.088) (0.048) (0.077) (0.083)
0.009 0.052 0.016 0.019
(0.102) (0.049) (0.088) (0.094)
‐0.045 0.022 ‐0.022 ‐0.011
(0.046) (0.053) (0.054) (0.051)
‐0.001 0.053 ‐0.041 0.008
(0.058) (0.057) (0.051) (0.049)
‐0.048 ‐0.018 0.059 0.054
(0.050) (0.052) (0.066) (0.072)
‐0.020 ‐0.059* ‐0.078* ‐0.007
(0.044) (0.033) (0.045) (0.037)
0.054
(0.068)

0.234***
(0.066)

0.305***
(0.084)

0.163**
(0.080)

0.427*** ‐0.075* 0.142* 0.295
(0.148) (0.043) (0.072) (0.187)

Observations 589 589 589 589
R‐squared 0.092 0.103 0.197 0.097

Appendix Table 9. First stage of Instrumental Variables Regression for Destination 
Choices

*** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in parentheses.

Constant

Cash

Credit

Info

Group formation ‐ self‐formed

Group formation ‐ assigned

Group formation ‐ two people

Destination assigned

Assigned to Dhaka

Assigned to Bogra

Assigned to Tangail

Assigned to Munshigonj



Appendix Figure 1. Distribution of consumption per person per month by 
baseline consumption decile

Consumption reflects total expenditures per person per month. 



Appendix Figure 2. Distribution of Calories per Person per Day in 2008
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