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THE FRONTIER PRODUCTION FUNCTION:
A TOOL FOR IMPROVED DECISION MAKING

Richard A. King

INTRODUCTION

A frontier production function may be thought of as a “best
practice” production function (Fgrsund and Jansen) or a function
that expresses the maximum product obtainable from various
combinations of factors given the existing state of technical
knowledge. It is the theoretical counterpart to farm enterprise
budgets or processing plant budgets derived by economic
engineering methods to describe the best possible production
processes.

Professor Leontief has suggested that a production function be
visualized as the shape of a sheet thrown over an array of hat pins
whose locations identify particular input combinations and whose
heights represent the levels of output which result. Given data fora
sample of firms, it is understandable that not all pins will touch the
sheet. If we remove these “short™ pins, the result will be a frontier
production function. Most econometric procedures use both short
and long pins to produce an average production function rather
than a frontier production function which would represent the best
practice input-output relationship.

An efficient unit isoquant can be used to represent a frontier
production function. A unit isoquant is simply the relationship
between one or more inputs which are measured in terms of a ratio
to the level of output. Variables are of the form X; divided by Y
rather than expressing Y as a function of the X/’s. It is my intent to
convince you that the unit isoquant representation of a frontier
production function can be a very useful tool for teachers,
researchers and extension folk.

THE UNIT ISOQUANT

The notion of an efficient unit isoquant (EUI) developed by
Farrell in 1957 was introduced to the profession at the Western
Farm Economics Association meeting in Los Angeles in 1966
(Boles, Bressler, and Seitz) and at the Southern Agricultural
Economics Association in 1967. Although it has been used
sporadically since then, there is much to be gained by more general
use. In my opinion it standsalongside supply and demand curves as
an analytical device.

By transforming absolute levels of input to the form of input per
unit of output, it is possible to examine the substitutability between
any pair of inputs and to demonstrate the impact of changes in
relative input prices on cost-minimizing factor combinations. The
unit isoquant offers a way of comparing the performance of
individual farms or marketing firms by the use of a simple scatter
diagram. Used in this way, it can be a valuable addition to the kit of
tools carried by our extension folks.

The unit isoquant is also convenient for comparing the shape of
alternative functional forms that might be estimated, including the
effects of size of unit as well as factor-factor tradeoffs. A unit
isoquant completely captures all the information provided by a
Cobb-Douglas function, which assumes no scale effects.

There is a sense of panic that comes over some students when
asked to think about a production function that has more than a
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single input. Computer programs are available for plotting three
dimensional diagrams for the student, but there is something to be
said for providing a comprehensible graphic technique that the
student can readily master to complement the efficient, but often
mysterious computer package.

As an analytical tool there is much to be said for the EUIL
Technical change can be seen as a drift of the frontier toward the
origin. Using statistical methods to estimate an average function
from a scatter of observations, it is not possible to distinguish a
shift that has been brought about through the exit of less efficient
firms from the industry from a shift that comes from a general
movement toward the origin of many firms in an industry. It is
possible to contrast the factor combinations that characterize
recent entrants into an industry with the combinations of older
members of the industry. In short, the efficient unit isoquant has a
variety of uses that have yet to be fully exploited.

FARRELL’S DEFINITION OF FIRM EFFICIENCY

How does one measure the relative efficiency of different firms in
an industry? One answer is to construct simple input-output ratios
such as labor used per unit of output or capital investment per unit
of output. The difficulty with simple ratios of this type is that while
a firm may rank high in efficiency when measured in terms of
output per unit of labor, it may do this only at the cost of a large
amount of capital per unit of output. That is to say, the firm with a
low labor/output ratio may have a high capital/output ratio and
vice versa. It is clear that some method is needed by which all of the
important inputs can be considered simultaneously.

Figure | illustrates the two-input, single output case and is a
reproduction of Figure 1 in the Farrell paper. The two axes
represent the rate of use of each input per unit of output. The curve
SS’ is to be regarded as the efficient unit isoquant. This curve
represents the smallest quantity of factor | which can be used to
produce one unit of output as the amount of factor 2 used is varied.
All points on this line and those more distant from the origin are
attainable while all points between the line SS’ and the origin are
not attainable.

Now consider a firm represented by point P. We draw line OP
from the origin to that observation. This line intersects the efficient
unit isoquant at point Q. The length QP then is a measure of the
excess use of the two factors relative to what is technically feasible,
represented by the length OQ. We measure technical efficiency as
the ratio of the length OQ to the length OP. Thus, all points on the
efficient unit isoquant are 100 percent technically efficient and all
points lying above the isoquant are less than 100 percent efficient.

Let the relative prices of factor | and factor 2 be represented by
the slope of line AA” which is tangent to the efficient unit isoquant
at point Q'. It is clear that while point Q lies on the efficient unit
isoquant, the resources required at this point are more costly than
the resources which would be required at point Q". (This is true
because any factor line parallel to the line AA” but fartherfrom the
origin represents a larger outlay for the factors F, and F».) The
length RQ is a measure of the price inefficiencyassociated with the
selection of the technically efficient, but more costly, point Q as
compared with the minimum outlay point Q’. We construct the
index of price efficiency by forming the ratio OR/OQ.



We may now combine these two indexes to obtain a measure of
economic efficiency. This is the ratio OR/OP. This ratio turns out
to be equivalent to the product of technical efficiency and price
efficiency,

0Q ., OR
oP 0Q

In summary then, given the efficient unit isoquant, the relative
prices of the factors, and any observed position of a firm either on
that isoquant orabove and to the right ofthe isoquant, it is possible
to form an index of technical efficiency, an index of price efficiency
and the product of the two, an index of economic efficiency for that
firm.
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FIGURE 1.
The efficient unit isoquant (Farrell [1957], p. 254)

ESTIMATING THE EFFICIENT UNIT ISOQUANT

We turn now to the problem of empirically estimating an
efficient unit isoquant. Suppose that for our two-input, single-
output world we have data on the quantity of each input used by
each firm and the quantity of output derived from those inputsina
specified time period. Think of each firm (P) as being represented
by a hatpin located in the Xi, X: plane, the height of the pin
representing quantity of output. We can take the suggestion of
Farrell and divide each input by output, thereby collapsing the
three dimensional Y, Xi, X, space to a two dimensional plane in
Xi/Y and X,/Y as in Figure 2.

One procedure for describing these data points would be to
estimate a regression line for the scatter of observations using least-
squares or some comparable procedure. A serious weakness of
doing this is simply that at best it describes the average of all firms
rather than providing information about the most efficient firms.!
It leaves in all the “short” pins. :

The proposal made by Farrell is that we describe the relationship
by constructing an envelope-type curve that passes through the
points nearest the origin, i.e., through the observations for the

'For a contrary view see Marc Nerlove (1965, Chapter 5). Estimates of
average production functions are reported in Binswanger, Nerlove (1965,
1967), Ringstad, and Zellner and Revankar.
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most efficient plants. In Figure 2 the efficient unit isoquant is
drawn through the observations for firms a, b, ¢, and d. Firm a lies
furthest to the left of all observations, indicating that it uses least of
factor 2. The isoquant is therefore drawn vertically from point a.
Similarly, firm d uses least of factor | per unit of output so the
isoquant is drawn horizontally to the right of this observation.
Between these two points the curve consists of a series of line
segments connecting the four firms a through . Alternative
schemes are proposed by Aigner er al. and Timmer.

Rate of use of Factor | (F/X)

Rate of use of Factor 2 (FZ/X)

FIGURE 2.
Hypothetical example of the “pessimistic” estimate of the
efficient unit isoquant—two inputs (Bressler [1967], p. 5)

You will recall that the technical efficiency of firm e which does
not lie on the efficient unit isoquant is found by drawing a line to
this point from the origin. The line oe crosses the efficient unit
isoquant at point ¢’ which lies on the line segment ¢d. Technical
efficiency is measured by the ratio oe’/oe as suggested earlier.

Two choices are open for estimating price efficiency. One
procedure is to use the tangent representing market prices of the
factors. However, if there is reason to believe that substantial
differences exist among firms in the relative prices paid for the
factors, it is possible to substitute a factor price line representing
“own” prices for the line representing “market” prices of factors.

Bressler (see Bressler and King, p. 406) shows that economic
efficiency is equivalent to the inverse ratio of average cost. The
envelope curve to economic efficiency observations is strictly
equivalent to the envelope curve to average cost observations. Note
that both economic efficiency and average cost indexes are
independent of proportional changes in factor prices but in general
are not independent of changes in relative factor prices.

SCALE AND EFFICIENCY

Of particular interest to economists is the relationship between
efficiency and scale of operation. Individual firm data can be
sorted by size group and efficient unit isoquants constructed for
each group as outlined above for the industry asa whole. It is often
possible to separate the efficiency index of each firm into
components associated with its performance relative to other firms
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in its size group as well as with the performance of one size group
relative to other groups.

Figure 3 may be helpful in visualizing the insights provided by
the Farrell approach. In Figure 3a, we have a two-input, single-
output production function with levels of output Y1, Yiand Y.
The slope of these isoquants represents the marginal rate of
substitution. If the production function is linear homogeneous,
such as the Cobb-Douglas form, alog transformation of the inputs
results in linear isoquants as shown in Figure 3b. In the constant
returns to scale case, illustrated in Figure 3c, there is little difficulty
in empirically verifying whether or not the observations are

MRS

FIGURE 3a.
Production function

log
(F, /)

0 log (Fp/Y)

FIGURE 3c.
Unit isoquant, constant returns

satisfactorily represented by a single linear unit isoquant.

In the event that constant returns to scale is not a satisfactory
representation, we find two alternatives in Figure 3d. For one case
we label these unit isoquants from low output to high output
moving away from the origin thus reflecting decreasing returns to
scale (by +b2<1). In the event that increasing returns to scale exist,
these unit isoquants are labeled from high output to low as we
move away from the origin (b; + b, < 1). With cross section data
and shift variables for size group we should be able to handle the
matter of scale reasonably wellin our two factor world, a necessary
step if we are to separate scale effects from inefficiencies.

log

0 log Fo

FIGURE 3b.
C-D production function, inputs in logarithms

log (F2/Y)

FIGURE 3d.
Unit isoquant, varying returns to scale



PRODUCTION FUNCTION—COST FUNCTION
RELATIONS

Selection of an appropriate functional form can be a
complicated piece of business. Following the example set in “How
the Grinch Stole Christmas” we will start out slow. Panel A in
Figure 4 depicts the usual textbook expansion path derived from
the points of tangency between isoquants and lines representing the
ratio of the prices of factors, Xiand X;. Panel B depicts the total
cost function that uses these tangency points to produce a
minimum cost function BB’ which corresponds with the expansion
path AA’ in Panel A.

* There are several classes of production function that we need to
identify. These are illustrated in Figure 5. The most general form is
a nonhomothetic production function. This is one with a “wiggly”
expansion path. This means that the slopes of successive isoquants
are not parallel as we move out along a given ray drawn through
the origin. (Such a ray connects points having a constant ratio of
the inputs i and j.) Least cost proportions, Xi/ X, thusdepend both
on the ratio of factor prices, Pi/ P, and on the level of output, Y.

A more restrictive form is the homothetic production function
shown in Panel B. Here we see a linear expansion path which tells
us that, for any given set of factor prices, the relative amounts of X;
and X; used to minimize total costs are unaffected by the level of
output selected.

More restrictive still is a homogeneous function. Such a function
is appropriate where a one percent increase in the inputs used will
produce a given proportional increase in output. Finally, a linear
homogeneous production function is one in which a one percent
increase in all inputs will produce a one percent increase in
output—a Cobb-Douglas production function, for example.

Xiﬁ

Factor price A'
ratio
Pj / P;
Expansion path
A
(0) —=
() X

A. Expansion path
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Returning to a point made earlier, a unit isoquant will
completely describe a linear homogeneous production function.
Thus, if we plot our observed data pointsin terms of inputs per unit
of output, we can immediately visualize whether or not such a
function is an appropriate representation of the underlying
production function. As we will show later, a scatter diagram of
this type can be helpful in identifying the presence of economies of
scale or technical change over time.

A FAMILY OF COST FUNCTIONS

At the risk of seeming to go off the deep end for a few moments,
let me try to clarify some of the terminology that one encounters in
the production and cost function literature by referring to a recent
paper by Berndt and Khaled. Using a generalized Box-Cox
function they demonstrate how various cost functions can be
generated by placing appropriate restrictions on that function.
Both nonhomothetic and homothetic alternatives can be produced
(Figure 6).

An initial set of restrictions'leads to a generalized Box-Cox
function that is linear homogeneous with respect to input prices. It
makes good sense to use a function in which a given proportional
increase in all input prices will lead to a similar increase in total
costs (see Frisch, for example). In this nonhomothetic cost function
the term A can take a variety of values. If A =2, then a generalized
square-root quadratic function emerges. If A= 1, then a generalized
Leontief function is produced. As A approaches zero, a translog
function appears.

If all ¢i are set equal to zero, in addition to the restrictions that
were imposed initially to produce the general nonhomothetic

Minimum cost
function

0 —
0 Y

B. Total cost function

FIGURE 4.
Relation between factor price ratio, expansion path and cost
function
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A. Nonhomothetic

B. Homothetic X2

X2

C. Homogeneous

\.-

FIGURE 5.
Alternative functional forms

D. Linear homogeneous

Nonhomothetic

FIGURE 6.
Generalized Box-Cox family of cost functions (Berndt and
Khaled)

function, the result is an homothetic function in which variable
scale elasticities are allowed (nonhomogeneous). Recall that
homotheticity means that the expansion path must be linear. If 8=
0 as well,a homogeneous function results in which scale elasticity is
constant. Finally, if 8 = | then we generate a constant returns to
scale or linear homogeneous production function of the Cobb-
Douglas type. (See mathematical appendix for detailed
explanation.)

The beauty of the formulation used by Berndtand Khaled is that
it is possible to apply statistical tests to determine whether or not
the indicated restrictions are justified. Using data from the U.S.
manufacturing sector for the period 1947-71 they find that the
homotheticity restrictions which would lead to one of the forms in
the second column of Figure 6 are decisively rejected. That is to
say, the expansion path for U.S. manufacturing is not linear.

However, should one elect a model in the second column they
found little basis for choosing one over another among that set of
homothetic functional forms.

Using unit isoquants we can see the changes measured by Berndt
and Khaled more easily than by interpreting the parameters of the
equations. In the following figures we find inputs per unit of output
displayed for each of three pairs of inputs. In Figure 7 we can
observe a drift toward the origin in the use of capital and labor per
unit of output. This is a mixture of the effects of technical change
and economies of scale. Similarly in Figure 8 we observe a drift to
the left in energy and intermediate material inputs. In contrast to
these two, however, Figure 9 shows the complementarity between
capital and energy use. These inputs behave like cagesand layers in
egg production!

66
K/7Y

62 -

58 |-

54 |- /

50

46 1 1 1 1 1 1 1 1 1 1 1

FIGURE 7.
Capital-output and labor-output ratios, U.S. manufacturing,
1947-1971 (Berndt and Khaled)

Esy
42
40
‘47
- Tl
38
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M/Y
FIGURE 8.

Energy-output and intermediate materials-output ratios, U.S.
manufacturing, 1947-1971 (Berndt and Khaled)
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FIGURE 9.
Capital-output and energy-output ratios, U.S. manufacturing,
1947-1977 (Berndt and Khaled)

The statistical measures reported indicate that technical change
has been capital and energy using but labor and intermediate
material saving. Prices of the former two inputs increased less than
the others during the time period studied. It would be interesting to
see what has happened during the 1970’s when energy prices have
moved up rapidly relative to other input prices. (See Berndt, p. 267,
for price and quantity indexes.)

Productivity gains were largely explained by the exploitation of
economies of scale while little disembodied technical change was
measured. Homotheticity, homogeneity, and constant returns to
scale are all rejected. Neutrality of technical change is rejected less
decisively. The generalized square-root and translog forms of the
Box-Cox model were rejected, but not the generalized Leontief
form. The complementarity of energy and capital was strong in all
models, as suggested by our diagram. It would be interesting to
compare the results of a similar analysis using a frontier
production function in place of the average production function
employed by Berndt and Khaled.

As a passing note, Lopez reported in the February 1980 AJAE
that his study of Canadian agriculture during the period 1946-1977
also led to the conclusion that homothetic production functions
were not appropriate, that economies of scale were present and
that there was no evidence of factor augmenting technical change,
unless constant returns to scale was imposed on the model.

SOME APPLICATIONS TO AGRICULTURE

Having disgressed to provide a broad view of alternative
functional forms that may be encountered in the literature, we
move to the final section in which we examine some uses of the unit
isoquant in agricultural applications. First we look at a simple
interpretation of the hog production data reported in the AJAE by
George Ladd and Craig Gibson.

The usual measures of performance of hog and cattle feeding
trials are (1) pounds of feed per pound of gainand (2) rate of gainin
pounds per day. Have you ever attempted to plot these two
measures together? The unit isoquant format offers an easy
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solution. We can plot pounds of feed percwt of live hog against the
reciprocal of rate of gain, that is, the number of days on feed per
cwt of live hog produced (Figure 10).

It is now possible to form the ratio of feed price to the time price
of capital invested in the enterprise and use this relative price line to
locate the minimum cost point on the unit isoquant. This point
indicates the least-cost weight at which to market hogs. When the
price of capital rises relative to the price of feed, the cost-
minimizing market weight increases. When the price of feed rises
relative to interest rates, the cost-minimizing weight decreases.
This entirely reasonable result may go undetected when the usual
measures of performance are examined.

Technical change that moves the isoquant toward the origin is
easily demonstrated. Changes that reduce feed inputs can be
separated from those that shorten the feeding period by observing
the new shape of the isoquant. Performance of hogs of varying
genetic backgrounds can also be readily compared. If the value of
hogs varies with market weight or backfat, it would be possible to
adjust the isoquant to represent a “standardized” (e.g., a 200#
animal) output measure. Comparisons of performance of different
herds are easily displayed.

370
260 #
£
5
360 |
g
-
g. -
g
k]
§ 350 |- Market weight
]
&
1804
340 |
-~
1 1 1 i L 1 1 1 1 1 1 1
56 58 60 62 64 66

Number of days per 100 Ib. grain

FIGURE 10.
Feed-output and time-output ratios for hogs of varying market
weights (Ladd and Gibson)

A more complicated example is encountered in the
interpretation of a turkey feeding experiment conducted at North
Carolina State University. Again using the unit isoquant format we
find four feeding systems compared in Figure 1 1. Each observation
refers to aggregate feed intake and aggregate weight of the birds as
they grow older. First of all, it is immediately apparent that larger
quantities of all inputs are needed per pound of live turkey as they
grow to heavier weights. Unless heavier birds bring a higher price
per pound, there would be no incentive to feed turkeys past the
earliest possible slaughter weight. A second observation, not as
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dramatic but equally of interest, is the change in curvature of the
unit isoquant as the age of the bird increases. It seems clear that it
would be inappropriate to select a functional form (homothetic)
that requires a linear expansion path, given this evidence that the
least-cost calorie/ protein ratio changes as bird weight increases.

In a recent issue of Econometrica, F¢rsund and Hjalmarsson
report on their experience in estimating frontier production
functions for Swedish milk processing plants. They selected a
functional form that allows for variable scale elasticity, that is, a
homothetic, nonhomogeneous production function. This
contrasts with earlier studies by Aignerand Chu, Seitzand Timmer
in which only homogeneous frontier production functions were
used. Technical progress was analyzed by introducing trends in all
parameters of the production function.

Trial | Trial 3 Trial 4

KC /4

FIGURE 11.

Calorie-output and protein-output ratios, turkey feeding trials,
NCSU, week 4 through week 21 (courtesy M. K. Wolgenant
and R. K. Perrin)

The findings reported in this study can be illustrated as in Figure
12 using the approach suggested by Salter. Factor use in the base
period is represented by the point P and in the later period by the
point Q. Improvement in technical efficiency (neutral) is measured
by the ratio OQ/OP and improvement in price efficiency by the
ratio OR/OQ. Biased technical change favoring a larger
labor/capital ratio is suggested by the length RQ’. Estimated
trends in the scale elasticity function suggest a doubling of the
optimal size of plant during the study period from 1964 to 1973.
The authors provide dramatic diagrams showing upward shifts in
the production function and in the scale elasticity function and a
rapid drift toward the origin of the efficiency frontier. Input
coefficients in 1973 were roughly 40 percent of those in 1964,
reflecting rapid technical advance and great structural change in
the milk processing industry of Sweden.

What about Extension uses of the frontier production function?
It is possible that this would be an effective form in which to
summarize the experiences of dairy or poultry farms as gathered
annually in farm record projects. Feed/labor input combinations
or alternative roughage/concentrate systems could be easily
displayed in unit isoquant form, identifying individual farms in a
fashion that would make comparisons with other farms more
understandable than the usual tabular form. It would also serve to

|
K/Y
t
t+1 P
Q
R
QI
0 >
0} Lra
FIGURE 12.

Components of technical advance (adapted from F¢rsund and
Hjalmarsson, p. 894)

1. OQ/OP technical efficiency

2. OR/OQ price efficiency

3. RQ’ biased technical change

P is base period, Q' is later period, faster prices constant.

emphasize the fact that focusing on a single input is not
appropriate when making choices among alternative farm
adjustments.

Extension applications to marketing firms have been quite
successful in some work done at N.C. State (Mathia and
Hammond). While the estimation of the underlying production or
cost function may be useful as a research activity, it is likely that
businessmen are able to relate more easily to graphic
demonstrations of the variability among similar firms in a given
year or to changes in their own operations over time.

Household accounts can be analyzed using this general format
to provide comparisons among families in the relative size of their
expenditures in various categories. In the same way it would be
feasible to compare individual diets in terms of the substitutability
among food sources or the nutrient content of alternative menus.

To summarize, the use of Farrell’s unit isoquant representation
of input-output relationships is appropriate for a wide variety of
topics that interest agricultural economists. Researchers may gain
insights that would otherwise go unnoticed and find clues to
appropriate models for analysis. Whether the process is that of
raising livestock, growing crops, feeding families, operating town
governments or measuring the performance of an industry over
time the frontier production function can be readily understood. It
can provide the basis for a productive conversation that is often
difficult when heavy reliance is placed on mathematical
formulations alone.
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MATHEMATICAL APPENDIX

DERIVATION OF GENERALIZED BOX-COX FAMILY
OF COST FUNCTIONS!

1. GBC = [1 + 1 [og + T 4;Py(A) + 1/2 Eygy Py(3) Py (1)11'/2
i ij

yB(Y,P)

o ©)
where B(Y,P) = B + 7 InY +Z.4; 1n Pi

and Pi(k) = (P], A/Z_])/)\/Z

and RNoIN=R0
Then (1) becomes (2)
2. GBC = Linear Homogeneous in Factor Prices

NHT=[2/A 3 % v, P, M2 p M271/2 yBY.P)
i J 163] 1 1)

If A =2
'Berndt and Khaled.

Then (2) becomes (3)
3. Generalized Square Root Quadratic

1/2
GSRQ= [L & Y330 P pj] yB(Y,P)
iJ

If A =1

Then (2) becomes (4)
4. Generalized Leontief

P
GL= 213 y;j p;1/2 p.1/2 y8(Y:P)
ij J
If A+ 0

Then (2) becomes (5)
5. Translog

TLOG=0LO+20‘1' In P]. +]/ZZZY1-J- n P.i In Pj +
81nY+%(1nY)2+Z¢:i In P; In ¥
If ol =0y B e g

Then (2) becomes (6)
6. Homothetic Nonhomogeneous

HILE I & v e, M2 p)/291/% B + 0/2 1n ¥
]

If @'=10
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Then (6) becomes (7) GS)NELEOG: “inict = % LR NPk

7. Homogeneous of Degree 1/ st !
A/2
HG [2/2 Lz i P P_A/Z]ll)\ v8 /2 1% Yi In Pi In Pj +
i J J )
f B =1 BInY +2 (In¥)2+2 ¢; InPyinY
1'

Then (7) becomes (8)

8. Constant Returns to Scale GBC: C=1[1+2G (p)]”2 YB(Y’P) oT(t,P)

CRTS = [2/2 T £ v; p]_A/Z p.M271/x y
J J where G (P) = ag + I a; Py (A) +
i

/28Ty SRS () S P (7))
BERNDT-KHALED MODEL, U.S. MANUFACTURING, ot g J
1947-71 0
B(Y,P) =B+ =1InY +3Z ¢. 1n P,
Economic Model: 2 sl 1
Production " Y = f(K, L, E, M) T(t,P) =t (t+Z 1, InP.)
(1) Continuously twice differentiable 1k L
(2) Strictly monotone
(3) Strictly quasi-concave P Pi)‘/2 =7
! 22

Cost f" C = g (Y, PkPLPePy)
(4) Y is exogenous (perfectly inelastic product supply)

(5) Piare exogenous (perfectly elastic input supplies) GBC' Ele
Math Model for Cost f" General form:
(1) GBC:  C = [1 + ag (P)]'/2 yB(YP) cESRL Ny areD
= = {4 A2 p AJ2
where  G(P) = a * '1[. o Pi()‘)_+ where A= X '12 § Yi; P]. Pj
/28 58 5y 0P () P () = +@'| Y
1,‘]_1‘]1 j B Bin Zq)i]nP]_
B(Y,P)zs+91nY+e¢ilnPi D=t (t+Z < InP.)
2 i el i
/2
PR ON= i , _ ;
1 N2 Estimated GBC|LHP function for U.S. manufacturing, 1947-71
@ GBC: C=[2Azzy, P2 p M271/2 B(Y,P) >
r i
LHP fidh el J AV/A = [3.2852 3 % Yis paadlat Pj-3°44]]'642
(3)GSRQ: C=[zI¢% Yig Pi PJ.]1/2 y8(Y,P)
vd B = .8693- .00451nY +Z ¢; InP,
(4) GL: C=272 5y, P.l/2p /2 yB(Y,P)
1Ry . D = t(.0005 + % t,In P;)

1
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Calculated values1

Vo Gy =ty. )
iy SHSE| ji LY .
5 K L ] [ ? IR A ¢
K 10588 =, 1503 .0401" =.0609: =.0392 . .0011 . =.2299 R Z 5557
L SONAT 102 S 97301~ 0360w =, 0004 =1 0909 NN, 2986
E —0AZ54e—.0231 -.0292 - .0006 .0937 .3078
M J4042  .1044 -.0013 . 0463 .1521
L - = - - 0 0 & -.5940
A = .6088 0 =-.0090
8 = .8693 . = .0005
@, = 2.6183 PL(A) = 3.2852 '(p, 205517
X a
it Gl i 3
L Yij =5 ui T ui =1+ A a



