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THE FRONTIER PRODUCTION FUNCTION: 
A TOOL FOR IMPROVED DECISION MAKING 

Richard A. King 

INTRODUCTION 

A frontier production function may be thought of as a "best 
practice" production function (F¢rsund and Jansen) or a function 
that expresses the maximum product obtainable from various 
combinations of factors given the existing state of technical 
knowledge . It is the theoretical counterpart to farm enterprise 
budgets or processing plant budgets derived by economic 
engineeri ng methods to describe the best possible production 
processes. 

Professor Leontief has suggested that a production function be 
visuali zed as the shape of a sheet thrown over an array of hat pins 
whose locat ions identify particular input combinations and whose 
heights represent the levels of output which result. Given data fora 
sample of firms , it is understandable that not all pins will touch the 
sheet. If we remove these "short" pins, the result will be a frontier 
production function . Most econometric procedures use both short 
and long pins to produce an average production function rather 
than a frontier production function which would represent the best 
practice input-output relationship. 

An efficiem unit isoquant can be used to represent a frontier 
production function . A unit isoquant is simply the relationship 
between one or more inputs which are measured in terms of a ratio 
to the level of output. Variables are of the form X; divided by y 
rather than expressing Y as a function of the X;'s. It is my intent to 
convince you that the unit isoquant representation of a frontier 
production function can be a very useful tool for teachers 
researchers and extension folk. ' 

THE UNIT ISOQUANT 

The notion of an efficient unit isoquant (EUI) developed by 
Farrell in 1957 was introduced to the profession at the Western 
Farm Economics Association meeting in Los Angeles in 1966 
(Boles, Bressler, and Seitz) and at the Southern Agricultural 
Economics Association in 1967. Although it has been used 
sporadically since then, there is much to be gained by more general 
use. In my opinion it stands alongside supply and demand curves as 
an ana lytical device. 

By transforming absolute levels of input to the form of input per 
unit of output, it is possible to examine the substitutability between 
any pair of inputs and to demonstrate the impact of changes in 
relative input prices on cost-minimizing factor combinations. The 
unit isoquant offers a way of comparing the performance of 
individual farms or marketing firms by the use of a simple scatter 
diagram . Used in this way, it can be a valuable addition to the kit of 
tools carried by our extension folks. 

The unit isoquant is also convenient for comparing the shape of 
alternative functional forms that might be estimated, including the 
effects of size of unit as well as factor-factor tradeoffs. A unit 
isoquant completely captures all the information provided by a 
Cobb-Douglas function, which assumes no scale effects. 

There is a sense of panic that comes over some students when 
asked to think about a production function that has more than a 
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single input. Computer programs are available for plotting three 
dimensional diagrams for the student, but there is something to be 
said for providing a comprehensible graphic technique that the 
student can readily master to complement the efficient, but often 
mysterious computer package. 

As an analytical tool there is much to be said for the E U I. 
Technical change can be seen as a drift of the frontier toward the 
origin. Using statistical methods to estimate an average function 
from a scatter of observations, it is not possible to distinguish a 
shift that has been brought about through the exit of less efficient 
firms from the industry from a shift that comes from a general 
movement toward the origin of many firms in an industry. It is 
possible to contrast the factor combinations that characterize 
recent entrants into an industry with the combinations of older 
members of the industry. In short, the efficient unit isoquant has a 
variety of uses that have yet to be fully exploited . 

FARRELL'S DEFINITION OF FIRM EFFICIENCY 

How does one measure the relative efficiency of different firms in 
an industry? One answer is to construct simple input-output ratios 
such as labor used per unit of output or capital investment per unit 
of output. The difficulty with simple ratios of this type is that while 
a firm may rank high in efficiency when measured in terms of 
output per unit of labor, it may do this only at the cost of a large 
amount of capital per unit of output. That is to say, the firm with a 
low labor/ output ratio may have a high capital / output ratio and 
vice versa. It is clear that some method is needed by which all of the 
important inputs can be considered simultaneously. 

Figure I illustrates the two-input, single output case and is a 
reproduction of Figure I in the Farrell paper. The two axes 
represent the rate of use of each input per unit of output. The curve 
SS' is to be regarded as the efficient unit isoquant. This curve 
represents the smallest quantity of factor I which can be used to 
produce one unit of output as the amount of factor 2 used is varied . 
All points on this line and those more distant from the origin are 
attainable while all points between the line SS' and the origin are 
not attainable. 

Now consider a firm represented by point P. We draw line OP 
from the origin to that observation. This line intersects the efficient 
unit isoquant at point Q. The length QP then is a measure of the 
excess use of the two factors relative to what is technically feasible, 
represented by the length OQ. We measure technical efficiency as 
the ratio of the length OQ to the length OP. Thus, all points on the 
efficient unit isoquant are 100 percent technically efficient and all 
points lying above the isoquant are less than 100 percent efficient. 

Let the relative prices of factor I and factor 2 be represented by 
the slope of line AA' which is tangent to the efficient unit isoquant 
at point Q'. It is clear that while point Q lies on the efficient unit 
isoquant, the resources required at this point are more costly than 
the resources which would be required at point Q'. (This is true 
because any factor line parallel to the line AA' but farther from the 
origin represents a larger outlay for the factors F 1 and F2.) The 
length RQ is a measure of the price inefficiency associated with the 
selection of the technically efficient, but more costly, point Q as 
compared with the minimum outlay point Q'. We construct the 
index of price efficiency by forming the ratio OR/ OQ. 
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We may now combine these two indexes to obtain a measure of 
economic efficiency. This is the ratio OR/ OP. This ratio turns out 
to be equivalent to the product of technical efficiency and price 
efficiency, 

OQ X OR 

OP OQ 

In summary then, given the efficient unit isoquant, the relative 
prices of the factors, and any observed position of a firm either on 
that isoquant or above and to the right oft he isoquant, it is possible 
to form an index of technical efficiency, an index of price efficiency 
and the product oJthe two, an index of economic efficiency for that 
firm. 
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FIGURE I. 
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The efficient unit isoquant (Farrell [1957], p. 254) 

ESTIMATING THE EFFICIENT UNIT ISOQUANT 

We turn now to the problem of empirically estimating an 
efficient unit isoquant. Suppose that for our two-input, single­
output world we have dati! on the quantity of each input used by 
each firm and the quantity of output derived from those inputs in a 
specified time period. Think of each firm (P) as being represented 
by a hatpin located in the X1, X2 plane, the height of the pin 
representing quantity of output. We can take the suggestion of 
Farrell and divide each input by output, thereby collapsing the 
three dimensional Y, X,, X2 space to a two dimensional plane in 
X1 / Y and X2 / Y as in Figure 2. 

One procedure for describing these data points would be to 
estimate a regression line for the scatter of observations using least­
squares or some comparable procedure. A serious weakness of 
doing this is simply that at best it describes the average of all firms 
rather than providing information about the most efficient firms.' 
It leaves in all the "short" pins. 

The proposal made by Farrell is that we describe the relationship 
by constructing an envelope-type curve that passes through the 
points nearest the origin, i.e., through the observations for the 

1 For a contrary _view see_ Marc Ner1ove (1?65, Chapter 5). Estimates of 
average productiOn functions are reported m Binswanger Ner1ove (1965 
1967), Ringstad, and Zellner and Revankar. ' ' 
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most efficient plants. In Figure 2 the efficient unit isoquant is 
drawn through the observations for firms a, b, c, and d. Firm a lies 
furthest to the left of all observations, indicating that it uses least of 
factor 2. The isoquant is therefore drawn vertically from point a. 
Similarly, firm d uses least of factor I per unit of output so the 
isoquant is drawn horizontally to the right of this observation . 
Between these two points the curve consists of a series of line 
segments connecting the four firms a through d. Alternative 
schemes are proposed by Aigner eta/. and Timmer. 
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FIGURE 2. 
Hypothetical example of the "pessimistic" estimate of the 
efficient unit isoquant- two inputs (Bressler [ 1967], p. 5) 

You will recall that the technical efficiency of firm e which does 
not lie on the efficient unit isoquant is found by drawing a line to 
this point from the origin. The line oe crosses the efficient unit 
isoquant at point e' which lies on the line segment cd. Technical 
efficiency is measured by the ratio oe' f oe as suggested earlier. 

Two choices are open for estimating price efficiency. One 
procedure is to use the tangent representing market prices of the 
factors . However, if there is reason to believe that substantial 
differences exist among firms in the relative prices paid for the 
factors, it is possible to substitute a factor price line representing 
"own" prices for the line representing "market" prices of factors . 

Bressler (see Bressler and King, p. 406) shows that economic 
efficiency is equivalent to the inverse ratio of average cost. The 
envelope curve to economic efficiency observations is strictly 
equivalent to the envelope curve to average cost observations . Note 
that both economic efficiency and average cost indexes are 
independent of proportional changes in factor prices but in general 
are not independent of changes in relative factor prices . 

SCALE AND EFFICIENCY 

Of particular interest to economists is the relationship between 
efficiency and scale of operation. Individual firm data can be 
sorted by size group and efficient unit isoquants constructed for 
each group as outlined above for the industry as a whole. It is often 
possible to separate the efficiency index of each firm into 
components associated with its performance relative to other firms 
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in its size group as well as with the performance of one size group 
relative to other groups. 

Figure 3 may be helpful in visualizing the insights provided by 
the Farrell approach. In Figure 3a, we have a two-input, single­
output production function with levels of output Y,, Yu and Y111. 
The slope of these isoquants represents the marginal rate of 
substitution. If the production function is linear homogeneous, 
such as the Cobb-Douglas form, a log transformation of the inputs 
results in linear isoquants as shown in Figure 3b. In the constant 
returns to scale case, illustrated in Figure 3c, there is little difficulty 
in empirically verifying whether or not the observations are 

satisfactorily represented by a single linear unit isoquant. 
In the event that constant returns to scale is not a satisfactory 

representation, we find two alternatives in Figure 3d. For one case 
we label these uni! isoquants from low output to high output 
moving away from the origin thus reflecting decreasing returns to 
scale (b , + b2 < I). In the event that increasing returns to scale exist , 
these unit isoquants are labeled from high output to low as we 
move away from the origin (b, + b2 < 1). With cross section data 
and shift variables for size group we should be able to handle the 
matter of scale reasonably well in our two factor world, a necessary 
step if we are to separate scale effects from inefficiencies. 

FIGURE 3a. FIGURE 3b. 

log 
(FI /Y) 

Production function C-D production function, inputs in logarithms 

FIGURE 3c. 
Unit isoquant, constant returns 
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FIGURE 3d. 
Unit isoquant, varying returns to scale 
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PRODUCTION FUNCTION-COST FUNCTION 
RELATIONS 

Selection of an appropriate functional form can be a 
complicated piece of business. Following the example set in "How 
the Grinch Stole Christmas" we will start out slow. Panel A in 
Figure 4 depicts the usual textbook expansion path derived from 
the points of tangency between isoquants and lines representing the 
ratio of the prices of factors X; and Xi. Panel B depicts the total 
cost function that uses these tangency points to produce a 
minimum cost function BB' which corresponds with the expansion 
path AA' in Panel A. 
·. There are several classes of production function that we need to 
identify. These are illustrated in Figure 5. The most general form is 
a nonhomothetic production function. This is one with a "wiggly" 
expansion path. This means that the slopes of successive isoquants 
are not parallel as we move out along a given ray drawn through 
the origin. (Such a ray connects points having a constant ratio of 
the inputs i and j.) Least cost proportions, X; / Xi, thus depend both 
on the ratio of factor prices, P; / Ph and on the level of output, Y. 

A more restrictive form is the homothetic production function 
shown in Panel B. Here we see a linear expansion path which tells 
us that, for any given set of factor prices, the relative amounts of X; 
and Xi used to minimize total costs are unaffected by the level of 
output selected . 

More restrictive still is a homogeneous function. Such a function 
is appropriate where a one percent increase in the inputs used will 
produce a given proportional increase in output. Finally, a linear 
homogeneous production function is one in which a one percent 
increase in all inputs will produce a one percent increase m 
output-a Cobb-Douglas production function, for example. 

A. Expansion path 

RICHARD A. KING 

Returning to a point made earlier, a unit isoquant will 
completely describe a linear homogeneous production function. 
Thus, if we plot our observed data points in terms of inputs per unit 
of output, we can immediately visualize whether or not such a 
func~ion is an appropriate representation of the underlying 
production function . As we will show later, a scatter diagram of 
this type can be helpful in identifying the presence of economies of 
scale or technical change over time. 

A FAMILY OF COST FUNCTIONS 

At the risk of seeming to go off the deep end for a few moments, 
let me try to clarify some of the terminology that one encounters in 
the production and cost function literature by referring to a recent 
paper by Berndt and Khaled . Using a generalized Box-Cox 
function they demonstrate how various cost functions can be 
generated by placing appropriate restrictions on that function. 
Both nonhomothetic and homothetic alternatives can be produced 
(Figure 6) . 

An initial set of restrictions' leads to a generalized Box-Cox 
function that is linear homogeneous with respect to input prices . It 
makes good sense to use a function in which a given proportional 
increase in all input prices will lead to a simila r increase in total 
costs (see Frisch, forexample).ln this nonhomotheticcost function 
the term A can take a variety of values. If A= 2, then a generalized 
square-root quadratic function emerges. If A= I, then a generalized 
Leontief function is produced. As A approaches zero, a translog 
function appears. 

If all 4>; are set equal to zero, in addition to the restrictions that 
were imposed initially to produce the general nonhomothetic 

0 
0 

B' 

Minimum cost 
function 

B. Toto I cost function 

y 

FIGURE 4. 
Relation between factor price ratio, expansion path and cost 

function 
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A. Nonhomothetic 

C. Homogeneous 

D. Linear homogeneous 

FIGURE 5. 
Alternative functional forms 

FIGURE 6. 
Generalized Box-Cox family of cost functions (Berndt and 

Khaled) 

function , the result is an homothetic function in which variable 
scale elasticities are allowed (nonhomogeneous). Recall that 
homotheticity means that the expansion path must be linear. If 9 = 
0 as well, a homogeneous function results in which scale elasticity is 
constant. Finally, if {3 = I then we generate a constant returns to 
scale or linear homogeneous production function of the Cobb­
Douglas type. (See mathematical appendix for detailed 
explanation.) 

The beauty of the formulation used by Berndt and Khaled is that 
it is possible to apply statistical tests to determine whether or not 
the indicated restrictions are justified . Using data from the U.S. 
manufacturing sector for the period 1947-71 they find that the 
homotheticity restrictions which would lead to one of the forms in 
the second column of Figure 6 are decisively rejected. That is to 
say, the expansion path for U.S. manufacturing is not linear. 

However, should one elect a model in the second column they 
found little basis for choosing one over another among that set of 
homothetic functional forms. 

Using unit isoquants we can see the changes measured by Berndt 
and Khaled more easily than by interpreting the parameters of the 
equations. In the following figures we find inputs per unit of output 
displayed for each of three pairs of inputs. In Figure 7 we can 
observe a drift toward the origin in the use of capital and labor per 
unit of output. This is a mixture of the effects of technical change 
and economies of scale. Similarly in Figure 8 we observe a drift to 
the left in energy and intermediate material inputs. In contrast to 
these two, however, Figure 9 shows the complementarity between 
capital and energy use. These inputs behave like cages and layers in 
egg production! 

66 
K/Y 

62 

58 

'71 

50 

46 
14 16 18 22 24 

UY 

FIGURE 7. 
Capital-output and labor-output ratios , U.S . manufacturing, 

1947-1971 (Berndt and Khaled) 
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FIGURE 8. 
Energy-output and intermediate materials-output ratios, U.S. 

manufacturing, 1947-1971 (Berndt and Khaled) 
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FIGURE 9. 

'47 
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Capital-output and energy-output ratios, U.S . manufacturing, 
1947-1977 (Berndt and Khaled) 

The statistical measures reported indicate that technical change 
has been capital and energy using but labor and intermediate 
material saving. Prices of the former two inputs increased less than 
the others during the time period studied. It would be interesting to 
see what has happened <1 uring the 1970's when energy prices have 
moved up rapidly relative to other input prices. (See Berndt, p. 267, 
for price and quantity indexes.) 

Productivity gains were largely explained by the exploitation of 
economies of scale while little disembodied technical change was 
measured. Homotheticity, homogeneity, and constant returns to 
scale are all rejected. Neutrality of technical change is rejected less 
decisively. The generalized square-root and translog forms of the 
Box-Cox model were rejected, but not the generalized Leontief 
form. The complementarity of energy and capital was strong in all 
models, as suggested by our diagram. It would be interesting to 
compare the results of a similar analysis using a frontier 
production function in place of the average production function 
.employed by Berndt and Khaled. 

As a passing note, Lopez reported in the February 1980 AJAE 
that his study of Canadian agriculture during the period 1946-1977 
also led to the conclusion that homothetic production functions 
were not appropriate, that economies of scale were present and 
that there was no evidence of factor augmenting technical change, 
unless constant returns to scale was imposed on the model. 

SOME APPLICATIONS TO AGRICULTURE 

Having disgressed to provide a broad view of alternative 
functional forms that may be encountered in the literature, we 
move to the final section in which we examine some uses of the unit 
isoquant in agricultural applications. First we look at a simple 
interpretation of the hog production data reported in the AJAE by 
George Ladd and Craig Gibson. 

The usual measures of perf~rmance of hog and cattle feeding 
trials are (I) pounds of feed per pound of gain and (2) rate of gain in 
pounds per day. Have you ever attempted to plot these two 
measures together? The unit isoquant format offers an easy 

RICHARD A. KING 

solution. We can plot pounds of feed percwt of live hog against the 
reciprocal of rate of gain, that is, the number of days on feed per 
cwt of live hog produced (Figure 10). 

It is now possible to form the ratio of feed price to the time price 
of capital invested in the enterprise and use this relative price line to 
locate the minimum cost point on the unit isoquant. This point 
indicates the least-cost weight at which to market hogs. When the 
price of capital rises relative to the price of feed, the cost­
minimizing market weight increases. When the price of feed rises 
~elative to interest rates , the cost-minimizing weight decreases. 
This entirely reasonable result may go undetected when the usual 
measures of performance are examined. 

Technical change that moves the isoquant toward the origin is 
easily demonstrated. Changes that reduce feed inputs can be 
separated from those that shorten the feeding period by observing 
the new shape of the isoquant. Performance of hogs of varying 
genetic backgrounds can also be readily compared. If the value of 
hogs varies .with market weight or backfat, it would be possible to 
adjust the isoquant to represent a "standardized" (e.g., a 200# 
animal) output measure. Comparisons of performance of different 
herds are easily displayed . 
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"' 360 
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340 

56 58 60 62 64 66 

Number of days per 100 lb. groin 

FIGURE 10. 
Feed-output and time-output ratios for hogs of varying market 

weights (Ladd and Gibson) 

A more complicated example is encountered in the 
interpretation of a turkey feeding experiment conducted at North 
Carolina State University. Again using the unit isoquant format we 
find four feeding systems compared in Figure II. Each observation 
refers to aggregate feed intake and aggregate weight of the birds as 
they grow older. First of all, it is immediately apparent that larger 
quantities of all inputs are needed per pound of live turkey as they 
grow to heavier weights. Unless heavier birds bring a higher price 
per pound , there would be no incentive to feed turkeys past the 
earliest possible slaughter weight. A second observation, not as 
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dramatic but equally of interest, is the change in curvature of the 
unit isoquant as the age of the bird increases. It seems clear that it K/Y 
would be inappropriate to select a functional form (homothetic) 
that requires a linear expansion path, given this evidence that the 
least-cost calorie / protein ratio changes as bird weight increases . 

In a recent issue of Econometrica, Fl(>rsund and Hjalmarsson 
report on their experience in estimating frontier production 
functions for Swedish milk processing plants. They selected a 
functional form that allows for variable scale elasticity, that is, a 
homothetic , nonhomogeneous production function. This 
contrasts with earlier studies by Aigner and Chu, Seitz and Timmer 
in which only homogeneous frontier production functions were 
used. Technical progress was analyzed by introducing trends in all 
parameters of the production function. 
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FIGURE 11. 

Triol3 Trlol4 

50 55 60 65 

Calorie-output and protein-output ratios, turkey feeding trials, 
NCSU, week 4 through week 21 (courtesy M. K. Wolgenant 

and R. K. Perrin) 

The findings reported in this study can be illustrated as in Figure 
12 using the approach suggested by Salter. Factor use in the base 
period is represented by the point P and in the later period by the 
point Q'. Improvement in technical efficiency (neutral) is measured 
by the ratio OQ/ OP and improvement in price efficiency by the 
ratio OR / OQ. Biased technical change favoring a larger 
labor/ capital ratio is suggested by the length RQ'. Estimated 
trends in the scale elasticity function suggest a doubling of the 
optimal size of plant during the study period from 1964 to 1973. 
The authors provide dramatic diagrams showing upward shifts in 
the production function and in the scale elasticity function and a 
rapid drift toward the origin of the efficiency frontier. Input 
coefficients in 1973 were roughly 40 percent of those in 1964, 
reflecting rapid technical advance and great structural change in 
the milk processing industry of Sweden. 

What about Extension uses of the frontier production function? 
It is possible that this would be an effective form in which to 
summarize the experiences of dairy or poultry farms as gathered 
annually in farm record projects. Feed/labor input combinations 
or alternative roughage / concentrate systems could be easily 
displayed in unit isoquant form, identifying individual farms in a 
fashion that would make comparisons with other farms more 
understandable than the usual tabular form . It would also serve to 

0 ~----------------------------~ 
0 L/Y 

FIGURE 12. 
Components of technical advance (adapted from Fl(>rsund and 

Hjalmarsson, p. 894) 
I. ~/OP technical efficiency 
2. OR/OQ price efficiency 
3. RQ' biased technical change 
P is base period, Q' is later period, faster prices constant. 

emphasize the fact that focusing on a single input is not 
appropriate when making choices among alternative farm 
adjustments. 

Extension applications to marketing firms have been quite 
successful in some work done at N.C. State (Mathia and 
Hammond). While the estimation of the underlying production or 
cost function may be useful as a research activity, it is likely that 
businessmen are able to relate more easily to graphic 
demonstrations of the variability among similar firms in a given 
year or to changes in their own operations over time. 

Household accounts can be analyzed using this general format 
to provide comparisons among families in the relative size of their 
expenditures in various categories. In the same way it would be 
feasible to compare individual diets in terms of the substitutability 
among food sources or the nutrient content of alternative menus. 

To summarize, the use of Farrell's unit isoquant representation 
of input-output relationships is appropriate for a wide variety of 
topics that interest agricultural economists. Researchers may gain 
insights that would otherwise go unnoticed and find clues to 
appropriate models for analysis. Whether the process is that of 
raising livestock, growing crops, feeding families , operating town 
governments or measuring the performance of an industry over 
time the frontier production function can be readily understood. It 
can provide the basis for a productive conversation that is often 
difficult when heavy reliance is placed on mathematical 
formulations alone. 
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3. Generalized Square Root Quadratic 
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If A+ 0 

Then (2) becomes (5) 
5. Translog 
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Then (6) becomes (7) 
7. Homogeneous of Degree 1/ {3 
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i j 1J J 

If B = 1 

Then (7) becomes (8) 
8. Constant Returns to Scale 
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BERNDT-KHALED MODEL, U.S . MANUFACTURING, 
1947-71 

Economic Model: 

Production f" Y = f(K, L, E, M) 
(I) Continuously twice differentiable 
(2) Strictly monotone 
(3) Strictly quasi-concave 

Cost f" C = g (Y, PKPLPEPM) 
(4) Y is exogenous (perfectly inelastic product supply) 
(5) P, are exogenous (perfectly elastic input supplies) 

Math Model for Cost f" 
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GBCI LHP: 

General form: 
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Estimated GBCI LHP function for U.S. manufacturing, 1947-71 
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Calc ulated values 1 
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