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Contemporary Production Theory, Duality,
Elasticities of Substitution, the Translog
Production Funetion and Agricultural Research
David L. Debertin and Angelos Pagoulatos
Thé purpose of this publication is explore some of the implications
of reéént work dealing with duality, elasticities of substitution, and
transloglspecifications of production functions for agricultural
reseafﬁh. Thegse theoretical developments have a broad-based
applicability to research in production economics and demand analysis
for agricultural problems at varying levels of aggregation. The duality
principles can be illustrated using simple multiplicative functions of
the Cobb-Douglas type (Beattie and Taylor, Chapter 6). However, the
specific focus in this paper is on the development of empirical
estimates of elasticities of substitution by making use of contemporary
production theory, and functional forms more complex than the Cobb-
Douglas type are needed. In this publication, the highly flexible
translog cost and production functions introduced within the economics
literature by Chrisﬁensen, Jorgenson, and Lau in the early 1970's are

used to provide estimates of elasticities of substitution between major

input categories for U.S. agriculture.

This publication makes use of two papers from a book "Production
Economics: a Dual Approach to Theory and Application" edited by Fuss
and McFadden and published in 1978. These papers provide a detailed
presentation of contemporary production thought and its relationship to
neoclassical theory in a highly readable farm. The authors also rely

on some journal articles by agricultural economists who have applied



contemporary thought in an agricultural setting.

Applications of contemporary thought have been made to specific
problems within tﬁe agricultural economics literaturé. Ball and Chambers
did a study for meat packing plants at the firm as the observation level
of aggregation, Aoun estimated a translog cost function from time
series data for all of U.S. agriculture, as a basis for obtaining
elasticities of substitution between input pailrs reported in this
publication. Furtan and Gray conducted a similar atudy for a Canadian
Province. Hoque and Adelaja and Grisley and Gitu used the approach in

conjunction with studies conducted for dairy farms.

The approaches outlined in this paper have applications to studies
conducted for entire regions or countries, but are also applicable to
studies conducted on data from farm records for individual firms. Census
data on small groups of farms that have been c¢lassified according to
major enterprises constitutes another possible data and aggregation
level for such research. Approaches outlined in this publication are
useful in situations where cost and input price data relating to
agriculturai enterprises are avallable, regardleas of the aggregation

level.

Fundamental duality concepts are presented. Some basic aigebraic
concepts relating‘to elasticities and logarithms are reviewed, and the
concept of the elasticity of substitution between input pairs is
developed in its various forms. The basic assumptions of contemporary
produétion theory are outlined. Linkages between the translog functions
and earlier functional forms are developed. Finally, a contemporary

translog model designed to estimate elasticities of substitution bstween




input pairs is introduced and empirical results for U.S. agriculture are
presented.
Fundamentals of Duality

Agricultural ecconcmists are perhapé most familiar with the concept
of duality as it relates to linear programming models, Within a linear
programming context, duality refers to the fact that any linear
programming problem can be expressed either as a maximization problem or
a corresponding minimization problem subject to appropriate constraints.
The primal problem may be either a maximization or a minimization
problem. If the primal is a maximization problem, the corresponding dual
will be a minimiéation problem, and, conversely, if the primal is a

minimization problem, the correasponding dual will be a maximization

problem,

The key characteristic of the dual relationship, as illustirated by
a linear programming problem, 1is that all of the information about the
solution to the primal can be obtained from the corresponding duail, and
all of the information with respect tc the solution of the dual can be
obtained from the corresponding primal. Either the maximization or the
minimization problem may be solved as the primal, and all information
regarding the solution to the dual is obtained without resclving the

problem,

Production functions have corresponding dual cost functions or
perhaps correspondences. The term dual used in this context means that
all of the information needed to obtain the corresponding cost function
is contained in the production function, and, conversely, tThe cost
function contains all of the information needed to derive the underlying

production funetion. A simple example is the single input production



function:
[1] vy = £(x)

If f(x) is monotonically increasing, and the inverse function exists,
the corresponding dual cost function expressed in physical terms is the
inverse of the production function:
23 x = £7(y)
where;

£~1 = the inverse of f
A simple example i3 the production funetion y = xb. The corresponding
dual cost function expressed in physical terms is x = y1/b. All of the
information with respect to the parameters of the production function is
obtained from the corresponding dual cost function. Cost functions are
usually expressed in dollar, rather than phyéical terms. The cést

function expressed in dellar terms under the constant input price

agsgsumption is :

1

[37 pyx = pyef (y)

where:

L

Py the price of the input x.

Not all functions can be inverted. In general, a production function can
be inverted to genefate the corresponding dual cost function only if the
original production functlon is monotonically increasing or decreasing.
For example, 1f the production function is the familiar neoclassical
three stage production function, the resultant dual is a correspondence,

but not a function, for two values of x are assigned to at least some

values for vy,

sSingle input cost functions are not normally thought of as arlising
from an optitization procedure. However, 1t is well known that any point

on.a single irput production funcetion represents a technical maximumn



on a single input production function represents a technical maximum
output {y) for the specific 1ével of input use (%) associated with the
point., Each point on the inverse cost function is optimal in the sense
that it represehts the lowest cost method of producing the specific
amount of'output associaéed with.the chosen point, (However, if the
underlying production function is not always monotonically increasing,
and as a result, the dﬁal is a correspondence, & point on the dual cost
correspondence i1s not necessarily a least cost point for the chosen

level of output.)

In a multifactor setting, the duality oflthe production function
and the corresponding cost functlion becomes somewhat more complicated.
Suppose that'a productiﬁn function for an output yris given by y =
£(x), wherelk = a vector of inputs treated as variébie. Under a
specific set of conditions, the'corresponding dual cost function exists
(McFadden, 1978, pp. 8-9). These conditions are:

(1) Marginal products of the inputs are non—negative. The non-negativity
implies free disposal of inputs. This assumption implies that if there
is some input vector dencoted as x' which can produce some output vector
called y', then if there exists a second bundle called x™ which is at
least as 1arge as x' in every input, then x"™ can also produce y. One
implication of this assumption is that isoguant maps consisting of
coneentric rings are ruled out, and that positive slopes on isoquants

are not allowed.

(2) Margina) rates of substitution between input pairs are non-—
increasing. In the two factor case, this implies that dldxy/dxy)/dx, is
non—-positive, This implies that each isoquant i3 weakly convex to the

erigin {regions of constant slope are allowed, and thus the isogquant



need not have continuously turning tangents.)

If conditions (1) and (2) are met, the production possibilities set
satisfying assumptions {1} and (2) is termed input conventional
(McFadden, 1978, pg. 10). Figure 1 illustrates some examples of isoquant
maps fulfilling and violating conditions (1) and (2). Note that the ring
isogquant maps sometimes used in courses in agricultural production

economics are ruled out.

The cost function that corresponds to the production function is
ely;p) = min[p'x:f(x)2y]l. If conditions (1) and (2) are met, then this
minimum cost funection that corresponds to the production function:

(a} exists. This is true because any continuous functioﬁ defined on a
closed and bounded set achieves its minimum within the set.

(b) is continuous.

{c} is non-decreasing for each price in the input price vector,

(d} is homogeneous of degree one in all variable input prices. This
implies that if all input prices double, 80 also will total variable
cost, and

(e) is concave in each input price for a given level of output {(y¥*).

Detailed proofs of (a)-(e) can be found in McFadden, 1978, pp. 10~
13. The 1isoguant maps needed for the existence of a corresponding dual’
cost function are not necessarily more plausible in an applied setting
than other isoquant maps, but rather are a matter of mathematical
convenience. For example, the Cobb-Douglas, CES and Translog production
functions discussed in this publication all generate iscoquant maps

consistent with these assumptions, under the usual parameter



restrictions, while the Transcendental does not.

Consider a particular class of production functicns known as
homothetic production functions, which include both homogeneocus
production functions and monotonic transformations of homogeneous
production functions. A key characteristic of the homothetic production
functions ls that a line of constant slope drawn from the origin of the
corresponding isoquant map will connect points of constant slope.
Hence, homothetic production functions have linear expansion paths.
Moreover, any isocline drawn from the origin will have a constant slope.
An isocline of constant slope represents all poiqts in which the ratic
of the inputs remalins fixed or constant, and can be referred Lo as a

factor beam (Beattie and Taylor p. -42).

Now consider the factor beam for the homothetic production function
representing the expansion path, or least cost combination of inputs.
The production surface arising above the expansion path represents the
production function for the use of the optimal bundle as defined by the
least cost combination of inputs according to expansion path conditions.
Therefore, every point on the production surface directly above the
expansion path is optimal in that it represents the minimunm cost of
producing a given level of output. The production function represented
by the expansion path conditions along the factor beam in an n input
setting can be written as:

[4] Y* = f(x1*s-'~lxn*)

where:

xi*,...,xn* the leaat cost quantities of ST



y* = output at each polnt associated with the expansion path conditions.

The cost function that is dual to {4] can be obtained by making use of

the expansion path conditions.

For example, suppose that the production function is given by:

” B B
(5] y = AxyP1 x,P2
The input cost function is:

L6l C=pyxy * ppXp

where A, B4 and B, are parameters, X4 and X, are inputs, and Pt and p,

are the respective prices on Xy and X5

The dual cost function for a Cobb-Douglas type production function
is found using the following procedure. First, the equation for the
expansion path is found by partially differentiating the production
function with respect to Xy and x,, to find the marginal products. The
negative ratio of the marginal products is the MRSx1x2. The MRSx(x, 1s

equated to the inverse input price ratio. The result can be written as:

{71 BoPyXy = BqPoXp

Equation [7] defines the points of least cost combination along the
expansion path.
Equation [7] is solved for Xy to yield:
[81 x; = Byppxa8y by
Equation [8] is inserted into equation [6] and x, is factored out:
[91 C = X2(319252—1 t Pyl
Equation [9] defines the quantity of x, that is used in terms of cost

(C) and the parameters of the producticn funection:




[101 x, = C/(ByppBy " + py)
Similarly, for input Xq3
[11] Xy = C/(32P181~1 . D;)
Inputé X1 and X, ére now defined totally in terms of cost C, the input
prices (p1 and pa) and the parameters of the production function.
Inserting equations [10] and [11] into the original production function
(equation [5]) and rearranging, results in:
(121 y = c®1*B20a0a,p8, 77 + p)7B1 (8ypp8yT! ¢ pp) B2
Solving equation [12] for C in terms of y, the production function
parameters and the input prices ylelds the optimal total cost function
defined in terms of the expansion path conditions:
[131 c* = yL1/(B4*B2) T al-1/(y+85)] (31—182p1+ pi)[81/(31+82)] .
(82—38;p2 + pz)[82/(83+83)3
= a7/ (B1%82) (g,rp, + 1)B1/(B1*B2) (g /g, + 1)B2/(B1*B2).
g1/ (B*82) . B1/(81¥82) | 8o/ (81+8,)
= D, yT/(B1+82) p181/(81+82) p282/(81**82)
= yL17(8y+82)1 4
C¥ = the least cosf method of prodhcing the specific ocutput level y as
defined by the expansion path conditions.

Equation [13] represents the total cost function that is dual to
the production function defined along the expansion path faector beam.
Any point on the dual cost function representing a particular quantity
of output designated as y° ig optimal in the sense that it represents:
the minimum cost, or least cost combination of inputs needed to produce
y°. However, at most only one point on the dual cost function represents
global optimality, where the marginal cost of producing the incremental
unit of output using the least cost combination of factors is exactly

equal to the marginal revenue obtained from the sale of the incremental



unit of vy.

For the Cobb-Douglas case, y is raised to the power 1 over the
degree of homogeneity of the original production funetion. The value of
Z treated as a constant, since 1t is dependent only on the assumed
constant prices of the inputs and the assumed constant parameters of the
production function. If prices for inputs are available and constant,
all of the information needed to obtain the corresponding dual cost
function can be obtained from the production function. The coefficients
or parameters of a Cobb-Douglas type production function uniquely define

a corresponding dual cost function C¥,

Marginal cost associated with the expansion path factor beam (least
cost marginal cost)} is:
[14] MC¥ = dC*/dy = [1/(py+B,) IyL1/(B1*B2)"11 g
The slope of MC¥* 1s positive if the sum of the individual partial
production elasticities or function coefficient is leas than 1. If the
individual production elasticities sum to a number greater than 1, then
MC* 1s declining. MC¥ has a zero slope when the production elasticities
sum exactly toc 1. The least cost supply functicn for a firm with a
Cobb-Douglas type production function can be found by equating marginal
cost {(equation [14]) with marginal revenue or the price of the product

and golving the resultant equation for y.

Average cost assoclated with the least cost factor beam is:
[15] ac* = c*/y = yl[1/(B1*82)-11 7
Since Z is positive, average coat decreases when the partial production

elasticities sum to a number greater than 1. Average cost inereases if

10



the partial production elasticities sum to a number less than 1. If the
production function is a true Cobb~Douglas then total cost is given by:
[16] C*¥ = yZ

In the true Cobb-Douglas case, both marginal and average cost are
given by the constant Z, and therefore both MC* and AC* have a zero
slope. For a Cobh-Douglas tyﬁe production function, MC¥ and AC* never
intersect, except in the instance where the funetion coefficient (or the

cost elastieity) is 1, in which case MC and AC are the same everywhere,

The ratio of marginal to average cost along the least cost factor
beam, or the dual cost elasticity (¢*) that applies to the expansion
path conditlons is:

(171 (9*)

[T/(ET*‘ﬂg)}

1/E, where E i3 the returns to scale parameter, or function

coefficient for the underlying production funetion for the output
arising from the least cost combination of inputs along the expansion

path factor beam.

If total product along the expansion path is increasing at a
decreasing rate, then costs are increasing at an increasing rate, If
total product along the expansion path is increasing at an increasing
rate, than costs are increasing at a decreasing rate, If total product
along the expansion path is increasing at a constant rate (the true
Cobb-Douglas} then costs are alsoc increasing at a constant rate. If the
product sells for a fixed price, that price is a constant marginal
revenue (MR). Marginal revenue (MR) can be equated to the least cost
marginal cost (MC¥) only if MC¥ is increasing. With fixed input prices

and elasticities of production, this can happen only if the coat

11



elasticity is greater than one, which means that the function
coefficlent for the underiying production function is strictly less than

1.

The profit function representing the least cost method of
generating a specific amount of profit, and corresponding to the dual
cost function can be written as :
[18] I* = TR - C¥
If output price (8) Is constant:
[19] 7% = sy - zy(!/E)
where E 13 the function coefficient,

Maximum proflts ceccur if:
[20] dn*/dy = s - (1/E)yL(1I/E)=1] _ g

MR ~ MC¥*¥ = O

and:
[21] d2m#/dy? = ~ (1/B)«[(1/E)-13yL(17E)72] ¢

E is positive, The only way the second derivative can be negative
is for E to be smaller than 1, This implies that MC¥ is increasing. If E
is equal tc one, the second derivative of the profit function is zero,
and that MC¥ is constant. If E iIs greater than 1, the second derivative

of the profit function is positive, and MC is decreasing.

buality Theorems
The two most famous theorems relating to duality are Hotelling's-
lemma and Shephard’'s lemma., Both are specific applications of a
mathematical theorem known as the envelcpe theorem. The proofs of the
envelope theorem, Shephard's lemma, and Hotelling's lemma are adapted

from those found in Beattie and Taylor (Chapter 6). More detailed and

12



rigorous proofs can be found in McFadden, 1978, pp. 14~15 and

appendices.

The Envelope Theorem
Consider a function z to be maximized with respect to each Wit
[22] z = g(w1,..f,wn, a)
where: -
z = a value to be maximized
w; = variables
o = a vector of parameters
First order conditions require that for each LI
[23] Bg/dw; = 0
for a maximum.
Now define the optimal wvalue for ecach W; as Wi* in terms of the
parameter vector a. That is:
[23] wi* = wi¥(a)
for all i = 1,...n
The optimal value for equation [22] is:

[24] z2¥ = g(w1*,...,wn*,a)

The envelcope theorem states that the rate of change in z* with respect
to a change in a, if all Wy are allowed to adjust, is equal to the
change in g with respect to the change in the parameter g when all Wy
are assumed to be constant (Beattie and Taylor, pg 228). That is :

[25] 8z*/3w;* = 38/3a

In order to prove that equation [25] holds, first find the partial
derivative of [24] with respect to the parameter vector a:

[261 dz*/30 = £(Bg/dw;*)(3w;*/3a) + dg/da

13



However, if the first order conditions from equation [23] are to hold,
then 9g/3w;* must be equal to zero for all { = 1,..,n and equation rz2s]

holds.

Shephard's Lemma

Shephard's lemma (1953) is =a specific application of the envelope
theorem to the cost function representing the least cost way of
producing a particular level of output, as in eqguation [13].
Suppose that a cost function with characteristics (a)-(e) listed above
exists. Then its corresponding first derivative with respect to the ith
variable input is 3C¥/9p;. Shephard has shown that {1) this derivative
is equal to the level of xy (xi*) that minimizes total cost for a given
level of output, and (2) that if x;¥ exists as thé minimum level of x;

for a given level of output, then BC*/api also exists.

Suppose the cost minimizing Lagranglan; {

(271 L = Ipyx; + ALy®~f(xq,..0hx,]

The corresponding first oraer conditions are:

(28] 8L/3x; = py = ALy

for all i = 1,...,n

The indirect cost function, representing the least cost method of

production is:

[29] C*¥ = Zp;x;¥

where the xi* represent the quantities of inputs defined by the

expansion path factor beam,

Partially differentiating [29] with respect to the ith factor price
|

yields: i

[30] oC*/3p; = Ipy dx;*/3py + k¥

14



Substituting equation [28] into equation [30]:

[3j3 3C*/8py = IAf; 9x;*/3p; + x;¥

Now suppose that the original production function is defined at the cost
minimizing level of input use:

[32] y = f(x1*,f..,xn*)

Maximizing thé production functioﬁ with respect to a change in the ith
input price:

[33) 8y/8p; = £y ox;*/9p; = 0O

for all 1 = 1,...,n

Substituting equation [33] into equatidn [31] evaluated at the cost
minimizing level of input use:

[34] 8C*/3p; = A (0) + x;¥ = x; used in the léast cost combination
solution

for all I =1,...,n

Equation [34] is Shepﬁard's lemma. Shephard's lemma thus states that the
change in cost for the cost function arising from the expansion path
conditions with respect to the change in the price of the ith factor,
evaluated at any particular point {output level) on the least cost total
cost function, 18 equal to the least cost quantity of the ith Factor

that is used.

Hotelling's Lemma

Hotelling's lemma makes use of the envelope theorem with respect to:
profit, rather than cost functions. Consider the case of a firm using n
different inputs in order to produce m different outputs. Total revenue
(R} is defined as:
£35] R = ESij

where:

15



¥1see+s¥y = Outputs

33 = the price of the jth ocutput
Total cost is given as:
[36] C = Epixi
The output expansion path defines the revenue maximizing combination of
outputs for the fir@, in much the same manner as the expansion path
defines the least cost combination of inputs. The indirect revenue
function represents the optimal allocation of outputs to maximize
revenue, and can be specified as:
[38] R* = Esjyj* |
The corresaponding indirect cost function is:
[39] C¥ = Epixi
Indirect profit is the difference between revenue and cost according to
the output and input expansion path conditions:
(401 n* = R¥ -~ C¥

= Zsjyj* - IPj¥y
The profit maximlizing production function transforming inputs into
outputs is written in its implicit form as:

[41] By *, oo, yg®ixg %, x,%) = 0

The Lagrangian for maximizing profit subject to the constraint imposed

by the production Tunction ia:

fhel L = ISgyy ~ Ipjx; * NLECY 10 0e e YiXisenrxy) = O]

First order conditions on the product side require that:

for all j = 1,...,m. The optimal Vi is yj*.

16




First order conditions on the factor side require that:

[44] BL/3x; = p; ~ ndF/3x; = 0

for all i = 1,...,n. The optimal x5 is xi*.

Now differentiate equation [4807 with respect to the kth product price:
[45] Bm*/3s), = y * + zsj(ayj*/ask) ~ Ip; (3x;*/3s;)

Equations [43] and [44] are then substituted into [45] for the product

and factor prices to yileld:

[46] 3l*/3s), = y, * + n{(EBF/ayj*)(ayj*/ask) ~ (ZOF/9x;*) (8x;*/8s,)}

Differentiate equation [41]1 with respect to the kth product price:

[47] 3(0)/3s), = 0 = Z(BF/ByJ*)(Byj*/ask) + X(BF/axi*)(sxi*/ask)

Substitute [87] into [46]:

[48] 8M*/3s, = ¥ *

Equation [48] is Hotelling's lemma as applied to product supply. The
lemma states that the change in the indifect profiﬁ functioﬁ arising
from the output expansion path with respect to the kth product price is

equal to the optimal quantity of the kth output that is produced.

Hotelling's lemma can also be applied to the factor side.
Differentiate the indirect profit function with respect to the kth
input price:

[49] an*/3p, = Esj(ayj*/apk)—ipi(axi/apk) ~ X

Again substitute equations [U43] and [44] for the product and input
prices:

(501 am*/3p) =n{L(3F/3yy*) By 4*/8p )~L(BF/0x;¥) (8x*/3py )} = x %

Differentiate equation [#1] with respect to the kth input price

17



£51] 3(0)/8p, = O = E(QF/3y.*)(3y. */dp,) + L(3F/3x;%*)(ox;*/3p,)
k J J K i i Kk

Substitute [51] into [50]:

[52] am*/3p, = - x.*

Equation [52] is Hotelling's lemma applied to the factor demand side,
The lemma states that the change in the indirect profit function with
respect to a change in the kth factor price is equal to the negative of
the optimal quantity of the kth input as indicated by the expansion path

conditiona.

Hotelling's and Shephard's lemmas are of considerable importance
for empirical research. If the firm is operating according to the
assumptions embodied in the expansion path conditions on both the
factor and product sides, then product supply and factor demand
equations can be obtained without any need for estimating the production
function from physical input data. For example, equation [13] is the
indirect (minimum)‘cost function arising from a two input Cobb-Douglas
type production function., The conditional factor demand function for
input Xy can be found by partially differentiating {13] with respect to
Py treating y as constant, and setting the partial derivative equal to

xj* from Shephard’'s lemma.

Rewriting equation [13]:

- ) & 8
{53] ¢c¥ = Doy 1 By 2 5] 3

The choice of a Cobb-Douglas type production function to represent
a production process within agriculture is primarily one of mathematical

convenience, A Cobb~Douglas type cost function may also be appropriate

18



s0 long as certain assumptions with regard to the parameters are met.

Indirect cost functions should be homogeneous of degree one in all
factor prices., A doubling of all factor prices should exactly double
cost., Only relative prices enter the factor allocation. Since, from
Shephard's lemma the factor demand function for each input is the first
derivative of the indirect c¢ost function, then the factor demand
equation for each Input should be homogeneous of degree zero in all
factor prices. The symmetry condition follows from Young's theorem, andl
implies that the elasticity of demand for the ith input with respect to
the jth input price should equal the elasticity of demand for the jth

input with respect to the ith Input price.

Indirect profit functions conforming to a Cobb-Douglas type might

also be assumed. An example is:

[541 ™ = G,3,%1 p,%2 p,%3

Indirect profit functions should be homogeneous of degree one in all
prices, and therefore, a doubling of all prices will double profit. The
corresponding produect supply and factor demand equations based on
Hotelling's lemma will be homogeneous of degree zero in all prices,
Restrictions regarding the indirect profit, cost, factor demand and
product supply functions can be readily incorporated within the

estimation procedures found in many regréssion packages.

The Elasticity of Substitution

Any elasticity might be written as the derivative of one natural
log with reapect to another. For example, the elasticity of demand for

good g can be written as:

19



[55] Eq = dln q4/din p

where:
g = the quantity of the good demanded
p = the price of the good

This is true, because if:

[56] z = 1n qq
then:

{573 dz/dgy = 1/q4
and :

[58] dz = dq4/q4

Similarly, if:

[59] r = 1in p
[60] dar/dp = 1/p
and:

[61] dr = dp/p
Hence:

[62] Eq = dqg/dp p/qq = dln g4/dln p

The elasticity of substitution is a pure number that indicates the
extent to which one input substitutes for anoﬁher ahd hence indicates
the éhape of an isoquént according to the "usual definition (Henderson
and Quandﬁ}. The elasticity of substitution can be represented by the
ratio of two percentages. Suppose that there are two inputs, xy and Xye

The elasticity of substitution between x, and x, is usually defined as:

[63] ¢ = % change in (x5/%4)/% change in MRSxyx,
Many approximately equivalent expressions for the elasticity of

20



substifution between two input pairs exlst. For example, it is possible
to calculate a point or an arc elasticity of substitution. The
expression :

[64] 04 = [A(x5/%9)/(x5/%1)1/LA(MRSX x5/ MRS X5) ]

could be thought of as an aﬁc elastiéity of substitution in that it
represents the proportionate percentage change in the input ratio
€X2/XT) relative to the percentage change in the Marginal Rate of
Substitution as one moves downward and £o the right along an isoquant
from point P, to point P2 (Figure 2). As one moves along an isoquant
from point Pi to point P2, two things happen. First, the ratio of the
inputs (x2/x1} changes. Second, the slope of the lsoquant as measured by
MRSXTXZ at point P5 is different from that at point PT. The ratio of

these two changes In percentage terms is the arce elasticity of

substitution.

A point elasticity of substitution can be defined by the formula:
[65] o = [d{x,/%q)/(x5/%¢)1/LdMRSx x5/ MRSX %, ]
or with the equivalent definition (Henderson and Quandt, p. 62):
[661 o = [d(xp/xq)/(xo/x)I/LA(E1/E,)/(81/85)]
where f1 and f2 are the marginal products of X4 and X5, respectively.
Now define the input ratio (xa/x1).as x. Then the elasticity of
substitution ¢ is given as:

[67] o

1]

[dx/x}/[dMRSxTx2/MRSx1x2]

dln x/d In MRSx1x2

The elasticity of substitution is a very important parameter of a
production process involving a pair of inputs, As a pure number, it
provides an important indication of the shape of an isoguant, By this

definition, isoquants forming right angles (the classic example is
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tractors and tractor drivers) have zerc elasticities of substitutiocn,
while diagonal isoquants have an elasticity of substitution approaching
infinity. Of course, if there is truly no change in the marginal rate of
gubstitution between points PI and P2, then the percentage change in the
marginal rate of substitﬁtion is zero, and the elasticity of

substitution is undefined.

The inverse factor price ratio (p1/p2) measures the marginal rate
of substitution of x, for x, (dx2/dx1} at the point of least cost
combination in compefitive equilibriﬁm. Therefore, if competitive
equilibrium is assumed, the elasticity of substitution in the two
factor case at the point of least cost combination on the isoquant may
be rewritten as:

[68]  [d(xy/%y)/d(py/(pp) 3/ (pq/Pp)/ (X57%;)]

or as d In (xa/xi)/d in {py/po’
= (d 1n x5, = d 1In %7)/{d 1ln py =~ d 1n p,)

Equation [68] is the definition attributed to Hieks (See also Varian,
pp. 44-45), Notice, however, that p1/pp is equal to the MRSx;x, only in
competitive equilibrium.

A large elasticity of substitution indicates that the entrepreneur
{such as a farmer) has a high degree of flexibility in dealing with
input price variation. If there existed a large elasticity of
substitution between a pair of factors, the farmér would quickly adjust
the input mix in response to changing relative prices. However, if the
elasticity of substitution were small, the input mix would be hardly
altered even in the face of large relative shifts in prices. The extent
to wnich a farmer adjusts the input mix to changing relative prices thus

indicates the magnitude of the elasticity of substitution between input
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pairs.

In the two factor case, the elasticity of substitution will lie
between zerc and plus infinity. However, if there are more than two
inputs, some input pairg may be complements with each other, thus
leading to a potential negative elasticity of substitution for some of
the input pairs., The definition of an elasticity of substitution in an
n factor case is further complicated because a series of specific
assumptions must be made with regard to the prices and input levels for
those factors of production not directly involved in the elasticity of
substitution caleulation, and the elasticity of substitution between

inputs {1 and j will vary depending on these assumptions,

The definition of the elasticity of substitution attributed to
Hicks can be generalized to the n factor case such thast:

[69] o0;5 = [d In (x3/x)1/[{d 1n (p;/p;)]

ij
(d 1In X5 = d ln x;)/(d Inp; - d In pj)

Equation [68] is sometimes referred to as the two input - two
price or TTES, elasticity of =substitution, or the "usual" definition of
the elasticity of'substitution in the n factor‘case {Fuss, McFadden and
Mundlak, p. 241, Ball and Chambers). However, when n is greater than

two, specific assumptions for the calculation need to be made with

regard to prilces and quantities of inputs other than i and Jj.

Moreover, a number of alternative definitions for the elasticity of-
substitution are possible. The one input one price elasticity of
substitution (OOES) is proportional to the c¢ross price input demand
elasticlity evaluated at constant output:

[70] 915 = B(d In x;)/(d 1n py)
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The two input one price form (TOES) involves two input quantities
but only one input price:

(711 wij = {d in x;

5T d In x;)}/(d 1n py)

Furthermore, each definition can be evaluated based on constant
output, cost, or marginal cost (Fuss, McFadden, and Mundlak, p. 241).
Each of these alternative definitions can be evaluated assuming the
prices on the remaining inputs other than i and j are held constant.
The quantities of inputs other than i and j can also be held constant or
allowed to vary as p; and pj vary which generates short and long run

elasticlty of substitution measures,

Allen (1938) uses the Hicks definition of the elasticity of
substitution (p. 341}, but Alien also develops an alternative measure
of his own, which is linked to the own and cross price constant output
factor demand elasticity (See also Hicks and Allen)., This definition of

the elasticity of substitution attributable to Allen (pg. 504) is:

; A
[72J Oij = Sjgij
where:

S‘j = the share of tofal cost attributable to the jth input, or
xS0
prJ/C
Eij = {d In x{)/¢d 1In pj) evatluated at constant output. (This is

in reality the cross price factor demand elasticity.)

This elasticlty of substitution has been dubbed the Allenl
Elasticity of Substitution (or AES), and ig of the OOES form, since oniy
one price (i) and one input (j) are involved (Ball and Chambers),.
Notice, also, that an Allen own price elasticity of substitution can be

dafined as:
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H

,f{ A
ETB} ) 0% = SjEjj

_ Jd. :

where: . -

85 m pjxj/C*lthe cost share represented by the jth input
Ejji= (djln Xj)/d in Py

THefAES_concept forms the basis for still other elasticity of
substitution concepts. For example, the Morishima elasticity of
substitution (Koizumi) is an example of a TOES elasticity of
substitution and is defined in terms of the AES as:

Moo s.(6h, - oh,
[731 Gl\} = SJ(GIJ UJJ)

= By " Eyy
This elasticity 18 the difference between the c¢ross and own price
elasticity of fagtor demand evaluated at constant oulput. This
elasticity of substitution is TOES since:
L7ul Ejy = Eyy = (d1n x; - d 1n x;)/(d 1n py)
Notice that the Morishima elasticity of substitution is not symmetriec,
that is:
[751] (d Inx; - d 1In xj)/(d In pj) £ {d 1n xj =~ d 1n x4)/{d In p;)
and therefore GTJ# “?i

The Shadow Elasticity of Substitution {(McFadden, 1963) is an
example of a TTES, and is therefore closer to the original Hicks
definition than Is the Morishima or Allen definitions. The ShadoQ
Elasticity of Substitution allows all inputs not involved in the
calculation to vary, and thus can be thought of as a long run elasticity
of substitution, The shadow elasticity can be expressed in terms of the

Allen measure as;



S A A _ A
Thus, if the AES and input cost share data are available, the Shadow

Elasticity of Substitution can be readily calculated.

£lasticities of Substitution
and the Cobb-Douglas Specification

Specific production functions used by researchers in empirical
analysis frequently embody assumptions that come along with the
functional form. Fuss, McFadden and Mundlak refer to these assumptions
as maintained hypotheses. These maintained hypotheses frequently are not
explicitly recognized by the researcher, but do impose constraints on

the possible outcomes that can be generated by the analysis,

An excellent example of a maintained hypothesis is the assumption
with regard to the Hicksian elasticity of substitution that exists
between input pairs when a Cobb~ Douglas (CD) type functional form is
chosen to represent the production process. Consider, for example a CD
type specification with no imposition of a particular sum on g8, + B,.
£771 y = A x1B? x232 .

The marginal raté of substitution of Xy for x, is given by:
[78] MRSX %, = (B4/B2)(x5/%4) |

or

£79] MRSxyx, = 8x

where

B = BT/BZ’ and X = X2/x1

Henderson and Quandt {(Chapter 3) provide a somewhat messy proof
that the TTES elasticity of substitution for any functional form of the
CD type is 1 as a maintained hypothesis. A simple proof is:

EBOJ MRSXixz = BX
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[81] In MRSxqx, = In x + 1n B

faz] In x = in MRSx1x2 - 1ln B

£83] o = din x/dln MRSXi%, =1

Equation [83] holds even if the production function is not linearly
homogeneous, and the partial production elasticities sum to a number
other than 1. Moreover, it can be easily shown that the relationship

holds for any factor pair if the function contains more than two inputs.

A maintained hypothesis that the elasticity of substitution between
labor and capital is 1 may be tolerable ina 1928 study dealing with a
production process representing the output of a society and utilizing
capital and labor as inputs, As will be emplrically shown, it is clearly
intolerable in a study conducted in the 1980's dealing with the

substitutability between energy and machinery within U.S. agriculture,

Subsequent to the Hicks and Allen publications, the maintained
hypothesis regarding the elasticity of substitution between labor and
capital became an issue of some discussion. Economists have devoted
considerable effort aimed at remaking the original Cobb - Douglés

article.

The CES, or Constant Elasticity of Substitution Specification

The CES or Constant Elasticity of Substitutipn production function
(Arrow et al.) was an effort to remake the original CD article without
the maintained hypothesis regarding the elasticity of substitution. &
specification for the CES function (without linear homogeneity imposed )
is:

[B4]  y = ALByx, P + Box, P371/P



Suppose that the marginal rate of substitution from some unknown
production function is given by:
[85] MRSX»EX2 W BXT+p

Where:

B a constant

#

X x2/x1

Taking logs:

[86] In MASx4%, = 1n 8 + (1+p)in x
(871 In x = [1/(1+p)]1n MRSx %, - [1/(1+p)31n 8
[88] dln x/dln MRSX,X, = 1/(1+p) = g

The elasticity of substitution is given by the power to which the input
ratio is raised. In general, for any production function whére the
marginal rate of substitution is given by:

(891 MRS = px¢

where:

[90] X = Xo/X4

The elasticity of substitution (Hicks) 1s given by 1/8. It is easily

shown that the MRS for the CES is of this form:

L

[911 £, = ~1/pAlByx; P + Boxy, P77H/P 7 1 [~pp,x,7P71]

I

[92] £, = ~1/pALByx; P + Box, P17H/P ™ 1 [~pa oy, 7P 1]

[933 dxp/dx, = [Byx, P 1/0Bx, P 1]

(81/8,) (xy/x) 3P

- 6X(1+p)

Henderscn and Quandt {(Chapter 3} prove that the Cobb-Douglas
production function is a speclal case of the CES when p = 0. This proof

requires L'Hopital's Rule. However, it 1s easily seen here that when p
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assumes a value of 0, 1+p = 1 and the MRSx?x2 = %, the exact same form
as occurs under the Cobb?bouglas type production function. Debertin,
Pagoulatos and Bradford {(1977b, pp. 10-11), Debertin {Chapter 12) and
Henderson and Quandt (pp. 87-88) provide detailed discussions of the

relationship of the value of p and the shape of the isoquants.

The CES produotiod function was an appropriate improvement if the
interest centered on the elasticity of substitution within a production
process that used only two inputs, such as capital and labor. However,
if the function were extended to the n input case, there remained but
one parameter p and, as a result a maintained hypothesis was that the
same elasticity of substitution applied to.every input pair (see
Revankar and Sato for extensions). Agricultural economists are usually
interested in disaggregating input categories into more than two inputs.
Thus the CES never was extensively used in agricultural economics
research, A more flexible functional form was clearly needed for

agricultural economics research,

The Transcendental Production Funetion and ¢

Halter, Carfer and Hoeking (1957) proposed a transcendental
production function to depiect the three stage production process as
represented by the neoclassical theory familiar to any undergraduate
agricultural economics student. The transcendental production function
is actually a variable élasticity of substitution production function.
With proper assumptions with respéct to the parameters, the isoquant map
for the transcendental produection function, and the variant proposed by

Debertin, Pagoulatoes, and Bradford (1977a, 1977b, p. 8), generate
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isoquants consisting of concentric rings. This map is gquite unlike
anything possible with the CES or Cobb~Douglas specifications, which

produce isoquants that are everywhere downward sloping.

The HCH transcendental ia:
[947 y = x4 x,%2 o{Y1%1¥V2%p)
The Allen elasticity of substitution for the HCH transcendental is:
[951 0 = [lap*Yyxq)(ay+¥oxy) 170 (ap) (o +Y,%,)2 + (ay) (ap+¥,x,)2]
Morishima and Shadow elasticitieslcan be calculated from the Allen
measure. This function is readily estimable with data from agricultural
production processes {Halter and Bradford). The discussion in Debertin

(Chapter 11) links parameter values to the shape of the function.

Despite some recognition of the HCH functiocnal form in the general
economics literature (e.g. Fuss, McFadden and Mundlak, pg. 242), the HCH
function is not widely used by economists. Its strength, that it can
depict the neoclassical three atage production function, is also.its
weakness, The fact that, at least for certain parameter values, the
function i3 not monotonically increasing means that the inverse or dual
cost curve associated with it is a correspondence, not a funetion., As a
result, parameters of the production process represented by the
transcendental cannot be readily derived from the corresponding cost
data, Contemporary production theory Iinvelves choosing a functional
form to represent the production process that is monotonically
increasing, and can be readily inverted, such that parameters can be

derived from either the cost or the physical input data.

Many agricultural economists continue to emphasize the three stages

of the necclassical production process in undergraduate classes, and
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continue to be fascinated with stage three, where output declines as
incremental units of the variable input are added. In order to take
advantage of ﬁhé duality theorems, contemporary theorists have all but
abandoned:stage three and therefore the usual assumption made by

conteﬁporaby théorists is free disposal.

Assuggng positive factor prices, no economic conditions could cause
the firm to épply units of a variable input beyond the point where
output is maximum. Beattie and Taylor (p. 91) indicate negative factor
prices couid exist, for example, if a farmer were paid to remove a waste
product which could be used as a fertilizer. They further contend that
a farmer could operate in stage three if a factor price were negative.
However, if the factor price were negative, under no circumstances would
it be more profitable for the farmer to apply additional units to the
crop beyond the point of output maximium, than to dump the waste product

consistent with the free dispesal assumption.

If fertilizer were free, the farmer would be better off to dump
units than to apply it to a ecrop, if in so doing, yields would be
reduced. Again, the free disposal assumption is critical. Contemporary
production functiona typically increase but at a decreasing rate
throughout fhelr range for each varlable input, The Cobb-houglas
production might be thought of in this regard as contemporary, rather
than neoclassical, but this 1s also true for the CES and Translog
specifications developed mueh later. The duality concepts are ciosely
linked to the maintained hypothesis of free disposal, and the marginal
products that are correspondingly everywhere positive throughout the

range of the function,
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Linear in the Parameters Functional Forms
and the Translog Production Function

Diewert introduced the concept of linear in the parameters
functional forms., While Diewert reﬁognized that advances in computing
technology made it possible to estimate functional forms that were non
linear in the parameters, little if any new information would be gained
about the production process by the use of more complex and

computationally burdensome functional forms.

In addition, Diewert recognized the close linkages that exist
between various functional forms. One way of looking at various
functional forms is in terms of Taylor's series expansions. For example,
the Cobb-Douglas type production function could be written as a first
order Taylor's series expansion of 1In y in ln Xg3
[96] lny =a, + £8; 1n X4
The CES is a first order Taylor's series expansion of yP in xip (Fuss,
MgFadden and Mundlak, p. 237). Similarly, the CES could be writfen in
a multiple input setting as:

[97] yP = ag * EBixip

The Translog production function was introduced in 1971 by
Christensen, Jorgenson and Lau, and was the logical choice given the
difficulties posed by other functional forms. The translog production
function is simply a second order Taylor's series expansionof lny in
1n X4, whereas the Cobb-Douglas is a first order expansion. The
production function as a Taylor's Series expansion can be written as:

E98] In Yy = ao + }:Bi In Xi + Eiﬁijln xi in XJ'
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The function had a number of other virtues, in addition to its
close linkage to the Cobb-Douglas. It is linear in the parameters, which
makes parameter estimation simple. It is normally monotonically
increasing with respect to the use ol each input under the usual
parameter assumptions. However, results depend upon the units in which

the X are measured, If 0<xi<1, In x; < 0, and under certain positive

i
parameter combinations, the function may not be increasing with respect
to the ith input. That the function does not depict the neoclassical

three stage production process is viewed as a virtue, not a vice, for

fundamental concepts of duality aré applicable.

Moreover, there is no maintainéd hypothesis about the elasticity of
substitution between input pairs, and the various elasticity of
substitution measures can be derived either directly from the production
funection, or aé is now comnmon, from a dual cost functicon of the translog
- form. Thus, it is the production function of choice for agricultural
economists who seek to estimate elasticities of substitution between
input pairs with little information about the production process other
than cost data available to them. If there are both fixed and variable

inputs, the translog production function ls given as:

[99] ¥ = EB;lraxy + Zxﬁijlnxilnx +2ZBizlnx§lnz§ + IB,lnzp

J
where:

The zﬁ represent fixed inputs. The Bi, represent the assumed
interaction between levels of fixed and variable input use and the

assumed constant level of fixed inputs. The ternm EBlnzﬁ is a constant

intercept term that performs a role similar to A in a Cobb-Douglas type
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specification.

Alternately, one might instead rely on duality, and begin with a
dual cost function of the translog form. The translog cost function
expresses cost as a function of all input prices and the quantity of
output that is produced. For a given level of output y¥, the
corrasponding point on the cost function is assumed to be the minimum

cost of producing y¥*¥ arising from the expansion path conditions.

The least cost translog cost function is:
[1001 in C* = g, + I8y ln p; + L8 | in p; 1n Pj

+8,1ny + IL 8;, 1n p; In zg + I8, Iny In zﬁ

¥ ¥z
0 0 o
+2283k in Z3 in z, + I8, 1ln z, + EByi In y ln p;
where:
p = (py,.-.,P,) the vector of input prices

l

z° = (zqﬁu,zn) the vector representing levels of the fixed inputs

¥ output

8 the parameter vector to be estimated

Equation [100] is normally estimated from cost share equations which are

derived as follows.

The elasticity of total cost with respect to a change in the ith
input price is given by:
[101] 31nC*/31np; = dC¥/dpy py/C* = &4
Hence:

(102] g; = ®; + 2835 1n py + T8;, Inzp + 6,y Iny

ij
It was not until the translog production and cost functions were

introduced in the early 1970's that the Importance of Shephard's Lemma
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for empirical work became apparent..ﬁecognize that gi can be written as:
[103] 8C*/9p; p;/C*.

Buﬁ, since Shephard's lemma states thaﬁ:

[104] 3C*/8p, = x;¥*

Then:

£?05] E; = X;¥%p;/C*¥

Notice also, that xi*pi = the total expenditures on input Xy according

]

to the expansion path conditions. Thus, the expression xi*pi/c* =&
Si where Si is the cost share associated with the i th input. The series
of cost share equations thus beoomes:

[106]

Iny

—
f

= 61 + ZB1J in p.j + 2612 in Zk + BY?

S{ =8; ¢ Zeij In Pj * 168;, In z, + Gyiln y

Sn = 8, * zenj In Pj L L R in Zye * eynlp y
The cost share equations are empirically estimated, and include price
and output variables and levels of fixed inputs that would normally be
readily available from farm records or even census data, If data on the

level of fixed inputs are not available, their combined impact is

eatimated as part of the intercept term.

Restrictions and Other Estimation Problems
Economic theory imposes a number of restrictions on the estimation
process. First, Total Cost = [ Si' Thus, given total cost and any n-—1
cost shares, the remaining cost share 1s known with certainty.

Therefore, one equation is redundant, and mechanically, the choice of



the equation to he omitted is arbitrary, but the empirical results may
not be invariant with respect to the choice of the omitied equation
unliess an iterative estimation procedure is used (e¢f. Humphrey and

Wolkowitz; Moroney and Toevs; and Berndf and Wood),

As indicated earlier, any total cost function should be homogeneous
of degree 1 in input prices. This restiriction can be imposed by
restriciing 6; = 1 and 3913 = 0, Since ¥oung's theorem states that the
order of the differentiation makes no difference and the eij are in
reality partial derivatives, a symmetry restriction must also be imposed

such that 8; for all 1 and J inputs. Both restrictions can be

i= %
imposed via the standard RESTRICT procedure in SAS., Finally, the cost
share for the ith input is not unrelated to the cost share for the Jth
input, and a Seemingly Unrelated Regressions approach is the usual

choice for esatimation of the cost share equations. This can be handied

with a SYSTEM card in SAS,

Elasticities of Substitution for U.8. Agriculture
From the parameter estimates of the cost share equations, the
corresponding Allen Elasticities of Substitution between input pairs and
the related measures can be derived. Brown and Christensen derive the
constant output partial static equilibrium cross price elasticity of

factor demand as:

Lo A
(1071 B55 = Sjoi;

where:
A _
074= { i%j3

* 8i55)/58485" . o
is the Allen Elasticity of Substitution..” . ~
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The AES estimate is readily derived from the parameter estimates of
the cost share equation., The usual approach is to insert the mean of the
¢cost shares (§i) for each input category in the data for the sample
period in order to obtain the Allen estimates. Once the Allen estimates
are obtained, the corresponding Morishima and Shadow Elasticities of
Substitution can then be obtained from equations [73] and [76]. Again,
the mean of the factor shares for the sample data is introduced into the
formulas along with the estimated Allen measure, The Shadow Elasticity
of Substitution estimate obtained from this model, that is perhaps the
closest to the Hicks' definition, 1is not guite the long run measure
envisioned by McFadden. Inputs in the x vector other than i and j are
treated as variable in the shadow measure. However, inputs in the =z
vector are treated as fixed. The true long run measure suggested by
McFadden could be obtained if all input categeries were treated as part

of the x vector.

An Empirical Illﬁstration

The empirical illustration of the application of theory presented
in this publiecation is from Aoun, who was concerned with the potential
changes In elastlicities of substifubions between agricultural inputs
over time, particularly energy and farm machinery, Fuss, McFadden, and
Mundlak refer to technological change which impacts the partial
elasticities of substitution between input pairs as substitution

augmenting technological change,

Substitution augmenting technological change that increases the
elasticity of substitution befween input pairs is desirable in that the

producer 1s given additional flexibility in dealing with changes in the
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relative prices of the inputs that might occur due to shocks within the
factor markets. For example, suppose that the elasticity of substitution
between capital and labor within an economy were near zeroc. The firm
would be faced with a situation in which capital and labor would be used
in nearly fixed proportions to each other irrespective of relative price
levels. Moreover, the firm owner would have little flexibillty for

dealing with short run variability in input prices over time.

Estimates of elasticities of substitution among input pairs must
necessarily rely on data series for a number of years. If there exist
shifts in elasticities of substitution over time due to technological
change, then the data series for a long period of fime can not be relied
upon to measure these shifts., If the data series are too short, degrees
of freedom problems, multicollinearity between input vectors and
instability of regression coefficlents upon which the elasticity

estimates are derived become issues.

Theoretical Derivation

Aoun used a Translog cost function specified as:
[108] 1InC* = ay * aylny +Eqay lnpy + Syy(lny)2

+ Y, Ziﬁjﬁijlnpilnpj * EYyylnylnp; + ¢t

+ Y pyt? + gyt Iny + Ti0¢;tlnp;
where:

C¥ = minimum total cost

i, J =n,l,m,t,e

¥ = output
n = land
1 = labor



m = machinery

f = fertilizer

e = energy

t = annual time trend varlable

Pis» Pj = input prices onn, 1, m, f, and ef
The translog éost function 1s assumed to be continuous, monotonically
increasing, concave and homogeheous of degfee one with respect to factor
prices. Following the analysis by Brown and Christensen, an assumption
is made that the translog cost function represents a constant returns to

seale technology. This implies the following restrictions:

[109] o, = 1

y
[110]  EY,; = 0 for i = 1,5
[111] BYY = 0
[112] ¢ty = ()

Partially differentiating {108] with respect to the ith input price,
assuming that restrictions [109]-[112] hold:
i=1,5

Invoking Shephards lemma:

[114] 31nC*/3inp; = 3C*/3p; py/C¥ =(x;p;)/C* =

I
[£2]
[

Wwhere:

$; = the cost share for the ith input i = 1,5
and:

Sy =ay t1 Bij lnp‘j + Yyilny * pit

i=1,5

The restrictions imposed on the estimation were:
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[115] To: = 1

[116] LB = ZBji = Zﬁﬁij = 0

i]
(1171 Iy = 0
[118] Ehpi = O
{11937 Bij = BlnC*/(Blnpilnpj) = Bji = alnC*/(alnpjlnpi)

The Allen measure 13 derived from the parameter estimates of the
cost share equation. The approach used in Aocun is to insert the mean of
the cost shares (§i) for each inpu£ category in the data for the sample
period into [107] order to cobtain the the Allen estimates. Once the
Allen estimates are obtained, the corresponding Morishima and Shadow
Blasticities of Substitution can then be obtained. Again, the mean of
the factor shares for the sample data 1s introduced into the formulas

along witnh the estimated Allen measure.

Empirical Results

Estimates of Elasticities of Substitution for the Allen, Morishima,
and Shadow {McFadden) measures were obtalined for U.S5. agriculture for
the three distinet decades 1950-59, 1969-69 and 1970-79, and for the
entire period comprising 31 years from 1950-1980 (Aoun). Restricted
Three Stage Least Squares was the method of eatimation, The standardu
U.5.D.A price indexes for the various input categories was used, except
for land, where the index was consatructed. A detailed discussion of the
sources of data and computational procedures can be found in Aoun. Allen
Elasticities are reported for the three distinct decades (Table 1) and
the Morishima and Shadow elasticities are reported for the period 1970-
79 (Tables 2 and 3). Estimates of the Shadow elasticity of subatitution
for most input pairs differed significantly from 1, suggesting that the

appropriate production function to represent U.S5, agriculture is not
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Cobb-Douglas.

Moreover, the Allen elasticities varieé rather substantially from
one decade to the next. 0f paﬁtieular intérest were the estimates of the
elasticities of substitution-ﬁetweeﬁ machinefy (including traétors) And
energy for the three distinct decades. The Allen estimates went from
-13.240 for 1950-59, to "0.1187 for 1960-69 to +13.583 for 1970-79.
The remarkable conclusion is that energy and maohihery were complements
'in the 1950's butf substitutes during the 1970's according to the Allen
measure. The substitution between energy and machinery for the 19%70-79
decade was further confirmed by the estimated value of 2.808 for the
shadow measure (Table 2), and 1.052 or 5.613'for the nonsymmetric
Morishima measure (Table 3). There has been a clear increase in the
substitutability between energy and machinery over the three pericds for

which the estimates are bhased.

Other changes over the three decades, although perhaps not quite as
profound, are also of interest. For example, the elasticity of
substitution between labor and energy is clearly trending downward
according to the Allen measure, from + 5.120 (substitute) for .1950-59 to
~10.313 for 1970-79 (complement). Labor and ferfilizer, a complement in
1950-59 (-7.95G) is clearly a substitute for 1970-79 (+2.125) according
to the Allen measure. The sligns are in agreement with those for the

Morishima and Shadow measures.
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TABLE 1. ESTIMATES OF ALLEN CROSS ELASTICITIES OF
SUBSTITUTION FOR THE THREE DISTINCT DECADES
1950-59, 1960-69 and 1970-79
{standard errors in parentheses)

gNL oNM agNF oNE oLM
1950-59 ~1.737%* + 3,789% +8.552%% ~2.000 - .327
( .687) ( 1.852) (1.745) {(1.457) { .791)
1960-69 ~1. 450 + 8.327 +2,565 -~ .366 + 3,865
(2.073) { 5.558) (2.308) (2.209) {(4.510)
1970-79 - .07 + 1,484 ~1.083% - .350 +10,962%%
(1.268) { 1.833) ( .686) { .999) (2.146)
gLF oLE oMF . oME gFE
195059 ~7.950%% + 5.120%% -5, 950 %# ~13.240%%  + 2 188
(.919) { .565) (2.823) (1,705} (1.762)
1960-69 ~1.333 + 4, 586%% +1.316 - 118 - 867
(1.780) ( 1.750) {4.207) (3.669) (1.700)
1970~79 +2,125%% ~10,313%% -1.278% +13.583*% + U455
( .745) ( 1.210) ( .811) (1.665) ( .935)
land “ij>0 = » factor i and factor § are substitutes
labor 01j<0 = > factor i and factor j are complements

machinery ¥ V10 significance level by a one-tailed t-test
fertilizer *¥,05 significance level by a one-tailed t~test
energy

=5 Jien e -4
BEowonton 8
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TABLE 2,MORISHIMA ELASTICITIES OF SUBSTITUTION FOR THE DISTINCT

DECADE OF 1970~7T9 (standard errors in parentheszes)

Input Land Labor Machinery Fertilizer Energy
Land 0 1.315 3.949 ~.356 ~.152
(.608) (.840) (.211) (:201)
Labor -, 007 -0 5.285 .063 ~1.018
(1.009) (.684) (.076) (.120)
Machinery LT06 2.945 0 ~.378 1.052
(1.241) (.335) (.199) (.168)
Fertilizer -~ U464 1.286 3.567 0 -.080
(.672) (.402) (.652) - (.107)
Energy ~.138 ~.999 5,613 - -152 0
{.902) (.385) (.513) {.045)
TABLE 3. SHADOW ELASTICITIES OF SUBSTITUTICN FOR THE DISTINCT
© DECADE OF 1970-79 (standard errors in parentheses)
Input Land Labor Machinery Fertilizer Energy
Land 0 .629 319 -.380 -.150
' (.654) (.819) (.280) {.286)
L.abor 0 4,278 5TH ~1.012
(.447) (.163) (.132)
Machihery G 1.540 | 2.808
(.355) (.199)
Fertilizer 0 -.109
(.030)
Energy | G
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.ConcludingCQmments

Contemporary production theory focuses on the duallty that exlsts
between the production functionfand the cost function along the
expansion path, Although not developed for that purpose, the Cobb-
Douglas production function can be thought of as one of the first forms
consistent with the required assumptions for the development of the dual
cost funetion. But it had important disadvantages with respect to the
maintained hypotheses witﬁ respect to the substitutability of inputs.
The CES and Translog specifications represented relaxations of these

maintained hypotheses,

The concept of an elasticity of substitution is highly complex.
From the basic and familiar two input definition, a number of
alternative concepts have been presented., At the same time, this concept
is perhaps the most important in all of production economics, and is
particularly useful in an agricultural setting. For exampie,
technologleal change which increases the elasticity of substitution
between input pairs would give farmers additional fiexibility in dealing

with input price variation.

Folliowing the general theoretical approach outlined in this paper,
the Aoun study provided some intriguing results with respect to
elasticities of substitution between input pairs for U.5. agriculture.
The elasticity of substitution between energy and machlnery within tLS.
agriculture has changed markedly over the three decades from the 1950's
Lo the 1970's. Energy which was a complement for machinery in the 1950's
was a substitute by the 1970's. The results provide empirical evidence
that the form of technoclogical change within agriculture which ilncreases

the slasticity of substitution over time, as suggested by McFadden, has

by



indeed taken place within U.S. agriculture,

»

This publication has attempted to show that the premisea of
contémporary proauction theory are important to and do have applicétion
to problems in agricultural production. What is required is a somewhat
different approach than has traditionally been used used in research in
agricultural production, Instead of the estimation of a Cobb-Douglas
type specification on physical input data, a contempcrary approach
frequently involves the estimation of the factor share equations from
the cost data;lBut this is an advantage for much agricultural economics
research in that the cost data is usuallf more readily available than
the physical input data, and is perhaps.more reliable as well, The
approach should be applicable to studies conducted using data from
individual farm Pegords, census data representing small groups of
farmers, as well as aggregated studles conducted at a regional or

national level.
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(1) holds (1) fails

(2) fails (2) holds

Figure 1. Assumptions (1} and (2) and the Isoguant Map(adaptedfrom McFadden)
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Figure 2. A Graphical Representation of the Elasticity of Substitution
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