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.PRINCIPAL COMPONENTS AND THE PROBLEM OF MULTICOLLINEARITY 

Bernard J. Morzuch 

Multicollinearity among independent variables within a 
regress ion model is one of the most frequently encountered 
problems faced by the applied researcher. In a recent article in this 
Journal (Willis, e1 a/.) , a catalog of"remedies" for multicollinearity 
was presented to assist in reducing its level and associated adverse 
consequences . 

One of these remedies- principal components- was suggested 
as a method oftransforming a set of collinear explanatory variables 
into new variables that are orthogonal to each other with the first 
few of these transformed va riables accounting for the majority of 
the variability in the origina l data set. In principal components 
regression , a transformed variable is determined to be important 
a nd included or unimportant and excluded in the regression model 
depending upon the size of the characteristic root (eigenvalue) 
associated with its corresponding characteristic vector 
(eigenvector) (Massy), the statistical significance of its regression 
coefficient (Mittelhammer and Baritelle) , or some combination of 
eigenvalue size and correlation with the dependent variable 
(Johnson, et a/.) . 

Unfortunately, this technique is widely abused and 
misunderstood by the applied researcher. Confusion exists with 
respect to (I) its relationship to other orthogonalization 
techniques; (2) the meaning of the orthogonalized components and 
the necessity of transforming the principal component estimators 
back to the original parameter space; (3) the implications of 
deleting components and the correspondence of this technique to a 
particular type of restricted least squares estimator; (4) the proper 
way to delete components and evaluate these implied restrictions; 
and (5) actual implementation of this estimation procedure via 
available computer routines . 

The purpose of this note, therefore, is to place the technique of 
principal components in perspective and to suggest a methodology 
for implementing this technique correctly. 

DEALING WITH MULTICOLLINEARITY 

Multicollinearity is the result of a lack of selective variation 
among the independent variables in a regression model. It is a 
problem associated with passively generated data, i.e. , data 
obtained from some outside source over which the investigator has 
no control or data characterized by lack of experimental design. 
Consequently, the problem of multicollinearity can never be cured; 
it can only be treated in an ad hoc manner. 

The way to deal wi th multicollinearity is to introduce additional 
sample information to hopefully increase the se lective variation 
among the independent variables. Such information is normally 
added by way of restrictions on the parameters suggested by theory. 
These restrictions may take the form of exact linear restrictions 
(Goldberger, pp. 256-8), inequality restrictions (Judge and 
Takayama), and stochastic restrictions (Theil and Goldberger) . 

In the absence of any theoretical basis for admitting restrictions 
on the parameters, an a lternative is to place restrictions on the 
independent variables themselves. This can be accomplished by 
transforming the original variables into artificial constructs and 
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then retaining certain of these constructs in a regression model on 
the basis of their contribution to variability in the original data, 
while eliminating- placing zero re strictions on- those constructs 
that contribute little or nothing to the variability in the original 
data. This is precisely the focus of principal components. 

COMPARISON WITH OTHER ORTHOGONALIZATION 
TECHNIQUES 

Principal components is one specific type of factor analysis. All 
methods of factor analysis attempt to analyze the structure of 
multivariate observations so as to reduce a set of data to a smaller 
set of latent factors. Beyond this link, any other similarity between 
principal components and the general body of techniques known as 
factor analysis is rather limited. 

Principal components analysis transforms a given set of 
variables into a composite set of components that are orthogonal 
to, i.e., totally uncorrelated with, each other. No particular 
assumption about the underlying structure of the variables is 
required. In this sense, it is merely a transformation rather than the 
result of a fundamental model for covariance structure (Morrison , 
p. 259). 

Factor analysis assumes that the relationships among the 
variables are the result of some underlying regularity in the data , 
i.e., each observed variable is influenced by various determinants 
which are common to other variables and by a component unique 
to itself. The common determinants in turn are smaller in number 
than the original variables themselves. It is looked upon as a 
technique for explaining the covariances among the variables and 
therefore as a fundamental model for covariance structure rather 
than merely an orthogonalization technique. 

Both principal components and factor analysis can be 
appropriate methods for dealing with collinearity among 
independent var iables. However, when using factor analysis in 
regression, the estimated coefficients on "important" factors can be 
interpreted only in terms of linear combinations of the original 
variables. Principal components on the other hand permits the 
coefficients on the important components to be reparameterized in 
terms of the original variables. This has real appeal in any economic 
investigation. 

PRINCIPAL COMPONENTS IN REGRESSION ANALYSIS 

To appreciate its use m econometric analysis , consider the 
model: 

( l) Y = X{3 + E , 

where y is an n x l vector of observations, X is an n x k matrix of 
observations of rank k, {3 is a k x l vector of unknown parameters, 
and E is an n x l vector of N(O,a2) independent and identically 
distributed random disturbances. Assume also a high degree of 
collinearity among the independent variables and little or no theory 
to assist in placing restrictions on the parameters. These two 
conditions justify using this technique. 

The method of principal components involves the 
transformations : 

(2) y = XFF'/3 + f = XFo+E = PoE , 
where F = (f1.f2, . .. fk) is a k x k matrix with columns f, being 
characteristic vectors of X'X; FF' = I, an identity matrix of rank k; 
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F'/3 = o, that is, o is a k x I vector and a linear combination of the 
matrix of eigenvectors F and the parameter vector {3 . Conversely, {3 
= Fa, that is , o can be transformed to the original parameter space 
by making use of FF' =I. Finally, XF= P, that is, then x k matrix of 
principal components is the product of the original data matrix and 
matrix of eigenvectors . More specifically, let the characteristic 
vecto rs be ordered to correspond to the relative magnitudes of the 
characteristic roots of X'X. The n x k matrix of principal 
components is P = (p1,p2, .. . , Pk) with p; = Xf; being the ith principal 
component of p;p; = .\;, the ith largest characteristic root of X'X. 
Johnson, et a!. explain in greater detail the technique and the 
statistical properties obtained by deleting one or more of the 
variables p; in equation (2). 

Briefly, the method involves partitioning Fin equation (2) into 
[F 1: F2] where F 1 is a k x r matrix of"important" eigenvectors, F2 is a 
k x s matrix of"unimportant" eigenvectors, and r+ s = k. In light of 
this information, equation (2) can be rewritten as: 

(3) Y = X[F1!F2]o + ~. 

Likewise, o ca n be appropriately redimensioned as [81102]' where 81 
is an r x I parameter vector associated with F1, and 82 is an s x I 
parameter vector associated with F2. Thus 

(4) Y = XF181 + XF202 + ~ = P181 + P282 + ~. 

Principal component estimators are obtained by deleting the 
"un important" set of components P2 and applying OLS to the 
resulting model. Since P1 is orthogonal to P2, theestimatord1 of 01 
will be unbiased , and the sample variance ~u 1 u 1 will be smaller for 
the retained set of components than for the entire set, i.e., ~dd. 

REPARAMETERIZATION OF THE PRINCIPAL 
COMPONENT ESTIMATOR 

Many researchers are at a loss, however, once they have 
performed the estimation suggested by equation (4). Their 
inclination is to prescribe interpretations ford 1, the estimator of 01. 
This is a difficult task because 81 is a coefficient vector on P1 which 
itself consists of vectors that are linear combinations of the original 
variables. Any interpretation on d 1 is clearly deficient in that each 
element of d1 cannot be associated with a particular independent 
variable. 

However, in making use of the information suggest by equation 
(2), the principal component estimator can be used to generate an 
estimator for {3, i.e., F 1d 1 = b*. Therefore, in combination with the 
retained set of eigenvectors, the regression coefficients d 1 can be 
translated back to the original parameter space. 

The estimator b* is appealing in that it amounts to a particular 
type of restricted least squares estimator. It is equivalent to 
minimizing the sum of squared residuals (y- X/3)' (y- X/3) in 
equation ( I) subject to the exact linear restrictions F2/3 = 0 

(Johnson, et a!.). The properties of this estimator are well 
established (Goldberger. pp. 256-8). 

DELETION OF COMPONENTS AND EVALUATION OF 
RESTRICTIONS 

A further complication results with respect to the optimal 
number of components to delete . The tendency traditionally has 
been to delete components associated with small eigenvalues, e.g., 
less than one. The limitation of this approach is that components 
with sma ll eigenvalues may be correlated very highly with the 
dependent variable. Thus, a structural norm which simultaneously 
considers the amount of variability accounted for by a particular 
component and its correlation with the dependent variable has 
greater appeal. A particular norm which accounts for these two 
measures is the F test (Fisher). Components can be sequentially 
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deleted until a new restriction , i.e. , the deletion of an additional 
component, causes no improvement with respect to the fit of the 
equation. 

One faces the choice regarding whether or not the restrictions are 
consistent with the sample data, i.e. , whether the restrictions are 
true or involve some degree of inconsistency. Indeed , an 
investigator never knows the truth or falsity of the implied 
restrictions. Hence they can be analyzetl by way of alternative 
norms which account for each of these possibilities . Testing the 
truth of the restrictions can be analyzed by way of the classical 
(central) F test (with centrality parameter zero). Since restricted 
least squares estimators may be baised, it is likewise appropriate to 
test whether the imposed restrictions result in a reduction of some 
measure of mean square error (MSE). A very workable criterion to 
test for MSE improvement if the weak MSE criterion suggested by 
Toto-Yizcarrondo and Wallace. The test statistic used is the non­
central F (with non-centrality parameter one-half) . Quite a bit o f 
misunderstanding revolves around its implementation. It is used in 
precisely the same manner as the central F, the difference being that 
critical va lues for given degrees of freedom are different than the 
central F due to the noncentrality parameter (see Wallace and 
Toro-Vizcarrondo). Thus, depending upon the structural norm 
employed, i.e., depending upon the intent of the researcher 
regarding the truth or falsity of the restrictions, eva! uation of sets of 
restrictions may lead to different results. 

LIMITATIONS INVOL YED WITH SEQUENTIAL 
DELETION 

The above procedures suggest a much more rigorous manner of 
selecting and judging the appropriateness of restrictions than using 
an arbitrary norm such as size of eigenvalues. However, statistical 
properties of the ensuing estimators in the suggested framework 
must be viewed with caution. As the same set of sample data is used 
to sequentially test an additional restriction, i.e. the deletion of 
another component, the resulting estimators are preliminary test 
estimators. The tests suggested above to judge the restrictions thus 
are merely rough guides as to the consistency of the restrictions 
with the sample data (Wallace). 

COMPUTER ROUTINES 

Computer routines exist which conveniently perform all of the 
manipulations required for principal components analysis . 
Especially useful regression routines are available within the 
SHAZAM computer package put out by Rice University and 
Biomedical Computer Programs (BMDP) put out by the 
University of California Press. The attractiveness of each of these 
programs is that estimators on the deleted component regression 
models are translated back to the original parameter space. All 
pertinent summary information is supplied so that the restrictions 
can be evaluated via a central or non-central F test. 
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