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PRINCIPAL COMPONENTS AND THE PROBLEM OF MULTICOLLINEARITY

Bernard J. Morzuch

Multicollinearity among independent variables within a
regression model is one of the most frequently encountered
problems faced by the applied researcher. In a recent article in this
Journal (Willis, er al.), a catalog of “remedies” for multicollinearity
was presented to assist in reducing its level and associated adverse
consequences.

One of these remedies—principal components—was suggested
as a method of transforming a set of collinear explanatory variables
into new variables that are orthogonal to each other with the first
few of these transformed variables accounting for the majority of
the variability in the original data set. In principal components
regression, a transformed variable is determined to be important
and included or unimportant and excluded in the regression model
depending upon the size of the characteristic root (eigenvalue)
associated with its corresponding characteristic vector
(eigenvector) (Massy), the statistical significance of its regression
coefficient (Mittelhammer and Baritelle), or some combination of
eigenvalue size and correlation with the dependent variable
(Johnson, et al.).

Unfortunately, this technique is widely abused and
misunderstood by the applied researcher. Confusion exists with
respect to (1) its relationship to other orthogonalization
techniques; (2) the meaning of the orthogonalized components and
the necessity of transforming the principal component estimators
back to the original parameter space; (3) the implications of
deleting components and the correspondence of this technique toa
particular type of restricted least squares estimator; (4) the proper
way to delete components and evaluate these implied restrictions;
and (5) actual implementation of this estimation procedure via
available computer routines.

The purpose of this note, therefore, is to place the technique of
principal components in perspective and to suggest a methodology
for implementing this technique correctly.

DEALING WITH MULTICOLLINEARITY

Multicollinearity is the result of a lack of selective variation
among the independent variables in a regression model. It is a
problem associated with passively generated data, i.e., data
obtained from some outside source over which the investigator has
no control or data characterized by lack of experimental design.
Consequently, the problem of multicollinearity can never be cured;
it can only be treated in an ad ho¢ manner.

The way to deal with multicollinearity is to introduce additional
sample information to hopefully increase the selective variation
among the independent variables. Such information is normally
added by way of restrictions on the parameters suggested by theory.
These restrictions may take the form of exact linear restrictions
(Goldberger, pp. 256-8), inequality restrictions (Judge and
Takayama), and stochastic restrictions (Theil and Goldberger).

In the absence of any theoretical basis for admitting restrictions
on the parameters, an alternative is to place restrictions on the
independent variables themselves. This can be accomplished by
transforming the original variables into artificial constructs and
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then retaining certain of these constructs in a regression model on
the basis of their contribution to variability in the original data,
while eliminating—placing zero restrictions on—those constructs
that contribute little or nothing to the variability in the original
data. This is precisely the focus of principal components.

COMPARISON WITH OTHER ORTHOGONALIZATION
TECHNIQUES

Principal components is one specific type of factor analysis. All
methods of factor analysis attempt to analyze the structure of
multivariate observations so as to reduce a set of data to a smaller
set of latent factors. Beyond this link, any other similarity between
principal components and the general body of techniques known as
factor analysis is rather limited.

Principal components analysis transforms a given set of
variables into a composite set of components that are orthogonal
to, i.e., totally uncorrelated with, each other. No particular
assumption about the underlying structure of the variables is
required. In this sense, it is merely a transformation rather than the
result of a fundamental model for covariance structure (Morrison,
p. 259).

Factor analysis assumes that the relationships among the
variables are the result of some underlying regularity in the data,
i.e., each observed variable is influenced by various determinants
which are common to other variables and by a component unique
to itself. The common determinants in turn are smaller in number
than the original variables themselves. It is looked upon as a
technique for explaining the covariances among the variables and
therefore as a fundamental model for covariance structure rather
than merely an orthogonalization technique.

Both principal components and factor analysis can be
appropriate methods for dealing with collinearity among
independent variables. However, when using factor analysis in
regression, the estimated coefficients on “important” factors can be
interpreted only in terms of linear combinations of the original
variables. Principal components on the other hand permits the
coefficients on the important components to be reparameterized in
terms of the original variables. This has real appeal in any economic
investigation.

PRINCIPAL COMPONENTS IN REGRESSION ANALYSIS

To appreciate its use in econometric analysis, consider the
model:
(L)EY =2 X3 e
where y is an n x | vector of observations, X is an n x k matrix of
observations of rank k, Bisa k x | vector of unknown parameters,
and € is an n x | vector of N(O,0?) independent and identically
distributed random disturbances. Assume also a high degree of
collinearity among the independent variables and little or no theory
to assist in placing restrictions on the parameters. These two
conditions justify using this technique.
The method of principal components involves the
transformations:
(2 y = XFF'B + ¢ = XFé+e = Pée ,
where F = (fi,f2,...fy) is a k x k matrix with columns fi being
characteristic vectors of X’X; FF’ = I, an identity matrix of rank k;
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F’B = 6, that is, 6 is a k x 1 vector and a linear combination of the
matrix of eigenvectors F and the parameter vector 3. Conversely, 8
= F§, that is, 6 can be transformed to the original parameter space
by making use of FF’ = I. Finally, XF= P, that is, the n x k matrix of
principal components is the product of the original data matrix and
matrix of eigenvectors. More specifically, let the characteristic
vectors be ordered to correspond to the relative magnitudes of the
characteristic roots of X’X. The n x k matrix of principal
componentsis P = (p1,pa,. . ., px) with pi= Xfibeing the ith principal
component of pipi = Aj, the ith largest characteristic root of X’X.
Johnson, er al. explain in greater detail the technique and the
statistical properties obtained by deleting one or more of the
variables p; in equation (2).

Briefly, the method involves partitioning F in equation (2) into
[FiF2] where Fiisa k x r matrix of “important” eigenvectors, Fzisa
k x s matrix of “unimportant” eigenvectors, and r+s = k. In light of
this information, equation (2) can be rewritten as:

(3) Y = X[FiF2]6é + e
Likewise, 6 can be appropriately redimensioned as[8))62]’ where 8,
is an r x | parameter vector associated with Fi, and d>isans x 1
parameter vector associated with Fa. Thus

(4) Y = XFi61 + XF26; + € = Pi6; + P26 + e
Principal component estimators are obtained by deleting the
“unimportant” set of components P, and applying OLS to the
resulting model. Since P is orthogonal to P, the estimatord; of 6,
will be unbiased, and the sample variance 4,4, will be smaller for
the retained set of components than for the entire set, i.e., qq.

REPARAMETERIZATION OF THE PRINCIPAL
COMPONENT ESTIMATOR

Many researchers are at a loss, however, once they have
performed the estimation suggested by equation (4). Their
inclination is to prescribe interpretations for di, the estimator of §;.
This is a difficult task because &, is a coefficient vector on P, which
itself consists of vectors that are linear combinations of the original
variables. Any interpretation on d, is clearly deficient in that each
element of d; cannot be associated with a particular independent
variable.

However, in making use of the information suggest by equation
(2), the principal component estimator can be used to generate an
estimator for B, i.e., Fid, = b*. Therefore, in combination with the
retained set of eigenvectors, the regression coefficients d; can be
translated back to the original parameter space.

The estimator b* is appealing in that it amounts to a particular
type of restricted least squares estimator. It is equivalent to
minimizing the sum of squared residuals (y-Xg)" (y-Xpf) in
equation (1) subject to the exact linear restrictions F58 = 0

(Johnson, er al.). The properties of this estimator are well
established (Goldberger, pp. 256-8).

DELETION OF COMPONENTS AND EVALUATION OF
RESTRICTIONS

A further complication results with respect to the optimal
number of components to delete. The tendency traditionally has
been to delete components associated with small eigenvalues, e.g.,
less than one. The limitation of this approach is that components
with small eigenvalues may be correlated very highly with the
dependent variable. Thus, a structural norm which simultaneously
considers the amount of variability accounted for by a particular
component and its correlation with the dependent variable has
greater appeal. A particular norm which accounts for these two
measures is the F test (Fisher). Components can be sequentially
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deleted until a new restriction, i.e., the deletion of an additional
component, causes no improvement with respect to the fit of the
equation.

One faces the choice regarding whether or not the restrictions are
consistent with the sample data, i.e., whether the restrictions are
true or involve some degree of inconsistency. Indeed, an
investigator never knows the truth or falsity of the implied
restrictions. Hence they can be analyzed by way of alternative
norms which account for each of these possibilities. Testing the
truth of the restrictions can be analyzed by way of the classical
(central) F test (with centrality parameter zero). Since restricted
least squares estimators may be baised, it is likewise appropriate to
test whether the imposed restrictions result in a reduction of some
measure of mean square error (MSE). A very workable criterion to
test for MSE improvement if the weak MSE criterion suggested by
Toto-Vizcarrondo and Wallace. The test statistic used is the non-
central F (with non-centrality parameter one-half). Quite a bit of
misunderstanding revolves around its implementation. It is used in
precisely the same manner as the central F, the difference being that
critical values for given degrees of freedom are different than the
central F due to the noncentrality parameter (see Wallace and
Toro-Vizcarrondo). Thus, depending upon the structural norm
employed, i.e., depending upon the intent of the researcher
regarding the truth or falsity of the restrictions, evaluation of sets of
restrictions may lead to different results.

LIMITATIONS INVOLVED WITH SEQUENTIAL
DELETION

The above procedures suggest a much more rigorous manner of
selecting and judging the appropriateness of restrictions than using
an arbitrary norm such as size of eigenvalues. However, statistical
properties of the ensuing estimators in the suggested framework
must be viewed with caution. As the same set of sample data is used
to sequentially test an additional restriction, i.e. the deletion of
another component, the resulting estimators are preliminary test
estimators. The tests suggested above to judge the restrictions thus
are merely rough guides as to the consistency of the restrictions
with the sample data (Wallace).

COMPUTER ROUTINES

Computer routines exist which conveniently perform all of the
manipulations required for principal components analysis.
Especially useful regression routines are available within the
SHAZAM computer package put out by Rice University and
Biomedical Computer Programs (BMDP) put out by the
University of California Press. The attractiveness of each of these
programs is that estimators on the deleted component regression
models are translated back to the original parameter space. All
pertinent summary information is supplied so that the restrictions
can be evaluated via a central or non-central F test.
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