

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

MICROCSFY RESOLUTON TES? CHART

UNITED STATES DEPARTMENT OF AGRICUITURE WASHINGTON, D. C.

THE AIR SEASONING OF WOOD

Senior Fhginecr, Forcst Products Luboraiory, ${ }^{2}$ Branch of Resseareh, lrorest Scrtice

CONTENTS

	l'uge
Intratuction	!
Parpose of tho billoth	-
l^{2} urpumy of sonsonity	- 2
'rio smation of intivithan air-sorsotim	
Ifohboths	- 3
Moisture in wo	3
('ostapmation of sits)	3
Occursenct of molstaro	4
Parintion in amontt of modstare	+
Dutermiantion of mmisture eontent	1
Afrearatus for moisiture determination	5
Ninisturo and humblity.	0
Atpmatas for rehnive-lumidity doterntnation.	- 8
Muistare nnel slirinkatu.	1i
Monsture content and flual uso	12
Goneral prineiples of trying woud.	16
Mavement of misisture in wet	13
Appijeation to sir seasoning of the gengral	
principies of drying wand.........	- 18
donern conditions at tho inmber	18
'remperataro in the lamber file	20
Ifmmilty in tho danber pilo.	22
Cleculation in the lutrber pilo	$\underline{2}$
Seasoming dofeets and their cunses	2
Defects resalting from shathinge	$\underline{9}$
Other inpmartant dofects.	27
Klin dryind proliminaty to air spmanabs	31
Comanereind ancthods of pilizp beards, phanks, und other shapes of wool for air seasomiag. Gordes and manks.	. 32

Commercinl mathones of piling, otc.-Conted.
t)impusion stack-..
thth_... 13
kailway qrexshids..... 14

fonsts and cordwond. -4...-.-...... 48

8tertecr............ 48
Drying ruse and flma motsture coatent....- 49
Fitcet of climfte.-. .-. 4 -
Eficet of semson of year. 48
Effet of sperios of wood.......................- 47
Elfut of thichness... in
Efect of stpwood arat of hoart woot.... \quad So
Ftfect of locatily of growth................
Effect of yard locklion and marangenment.- 5t
sefection of the phling method..... Fti
special trentments.
Prelimainary stenuling.....
Dipping..... ...
storate of diry lamiver......................................

()jwn ybrts. 64

Shects....
5

Addillomi detaiks.... woditit of wowd.....-
Sperdite gravicy and weight of worn
in monso GHing rail transit.

Sf

INTRODUCILON

PURPOSE OF THE BULLETIN

The fullest utilization of our forest erop requives that the wood harvested from forests and wood lots be brought to a condition best suited to its ultimate usc. One of the essential steps in securing maximum utiligation is to satson the stock to the proper moisture

[^0]GIFT.
content, at the same time keeping waste and degrade to a minimum. Although the inherent propertics of the wood of a tree are determined initially by the species and growth conditions of the tree itself, they can be modified by proper methods of seatoning. It is evident, therefore, that salsoning is one of the important factors in the conservation of our forest resources. Realizing this fact, the Forest Products Laboratory has been studying the entire problem of seasoning for a number of years. The results of the investigations concerned with air seasoning are embodied in this bulletin.
The purpose of this bulletin is threefold: To present the general principles involved in the drying of wood, to show their application to air seasoning, and to offer suggestions for better air-seasoning practice. Better practice will reduce seasoning losses. decrease the drain on our forests, and give to the consumer material that is better suited to his needs.
A large number of studies of seasoning have been made by the Forest Service in various parts of the United States. ${ }^{3}$ These stadies have shown that the fundamental principles of air seasoning and of kiln drying are the sume. Consequently the results derived from kiln-drying investigations often help to solve problems that arise in air seasoning and convela! y, athough adequate recognition of any important differences in conditions is always necessary. This bulletin assembles the pertinent results of the Forest Service air-seasoning studies; it inchades especiatly the quantitative resuluts of the field stndies of air seasoning made in the West on sugar pine, western yellow pine, redwood, western white pine, and Douglas fir:

Complete data pertaining to the volume of wood products air seasoned in the United States are not arailable; however. more than half of such products are air seasoned for a time, even though some of them may subserpuently be kiln driect. Hence the importance of improvement in air-seasoning practice is obvious.

purpose of seasoning

Broadly the principal object in seasoning wood is to improve its suitability for the purpose for which it is to be employed. although in sme instances the reduction in transportation costs may be of paramount importance.

AIR SEASONING

Among the results accomplished by employing proper methods of air seasoning of wood are the following:

A reduction in weight, with a resulting reduction in shipping costs.
A redaction ia the shrinkage, checking, honeyconbing, and warping oceurring in service.

[^1]A decrease ilt the fendency for blue stain and for other forms of zom to Gevelof.

A rerluction in linbility to some forms of insect attack.
Au incroase in strengeth.
An improvement in lha ability of the stock to be pafnted or to be impresnated with a preservative.

KILN DRYING•
Among the atdrantages over air seasoning that may resuit from kitn trying are the following:
 the reduefions common for atir-sobsonded stock.

A rediction in doytar fime below that reptrime in atr seasonitg.
The killing of any statio ar derny limer ar insects that may be in the wond.

THE SOLUTION OF INDIVIDUAL AIR-SEASONING PROBLEMS

No single greneral rule is applicable to all sensoning problems; each individual problem requires its own sperial modifications of the genemal rules if satisfactory seasoning at mimimum cost is to be attained. The following fise distinct objectives must be borme constantly in mind in selecting the seasoming prowedure to be followed in cach instance: (1) Minmam deprecintion of stock. (ㅡ) rapid rate of drying, (3) low and uniform moisture rontent, (4) econony in operating cost, amb (5) low investment cost. Maximm attaimment of any one of these objectives may often predule full realization of the others.
Other complications al the seasoning problem should also be recognized. The vations species of wood athe the prates and sizes of stock requive individual consideration. Because of climatie and other differences, the sohntion for one somoning yard will not always hola! for another. Seammal weather variation mast likewise be met individually by each ratel.

It has therefore become brions that the solution of the air-seatsoning problem can not be fond in any set of fixed tales. Consequently the chief aim of this bulletin is the presentation of rather general principles, based on the detailed knowledge available, which ean be applied in a manner that will best mect specific conditions and problems.

To permit an orderly presentation of the information available, the major discussion is preceded by a brief review of the general principles of drying wood and by a statement of their application to the air-seasoning process.

MOISTURE IN WOOD

COMPOSITION OF SAP

The moisture in wood is commonly called "sap," although the use of this multipurposed term is oftern misleading. Sap in wood is chiefly water, but it also contains small percentages of soluble organic

[^2]and mineral matter. In the sapwood such materials are largely sugsurs, while in the heartwoor a considerable proportion of them may be tamins and coloring matter. For all practical purposes in the drying of wood, however, sap may be considered as water alone.

OCCURRENCE OF MOLSTURE

Moistnce (sup) in green or wet wood is held in two ways. It is contained within the cell cavities, and it is absorbed in the cell walls. The buik liguid is called "free" water, while the absorbed may be termed "inbibed" water.

VARIATION IN AMOUNT OF MOISTURE

Some free water is present in both the heartwood and the sapwool of most living trees, but the amounts in each differ greatly. Gupwood usually contains more moisture than heartwood does. Butt logs ordinarily have a higher moisture contend than top logs. Contrary to common opinion, the variation during the year in the amount of moisture in green wood is slight. Species and place of growth, l:owerer, have in important bearing upon the amount of moisture in the living tree.

Marked variation in the moisture content of trees was indicated by the many moisture-content determinations on green wook made in connection with air-seasoning investigations in the western part of the renited States. Differences among species were large. In all species, the select grades of green lumber contained more moisture than the common gracles becnuse of the grtater proportion of sapwood in the elearer stock. Variation resulting from place of growth was well ilhastrated by the moisture-content values of western yellow pine stock in California and of that in the Inland Empire. A usual range of moistare content for this species in the Inland Empire was from 80 per cent in the common grades to 115 per cent in the select grates, while in California the corresponding values were from 100 to 185 per cent. The following species showed moisturecontent values, averaging about as indicated, for common and for select grades, respectively: Western white pine, 75 and 84 per cent; sugar pine, 7 is and 190 per cent; white fir, 90 and 200 per cent; redwood, 70 and 200 per cent; coast Douglas fir, 32 and 53 per cent; and western hemlock, 28 and 120 per cent.

DETERMINATION OF MOISTURE CONTENT

The anount of moisture in wood, which is termed the moisture content, is ordinarily expressed as a percentage of the weight of oven-dry wood. Thus, if the moisture content of a green board is 71 per cent, there are by weight 71 parts of water to 100 parts of oven-dry wood. Again, should the moisture content of a board be exactly 100 per cent, the weight of the moisture and that of the oven-dry wood are equal; each is then half the total weight of the board. If the moisture content is 150 per cent, for example, the

[^3]moisture is thre--fifths and the oven-dry wood is two-fifths of the toral weight of the board.

The average moisture content of any lot of lamber may be determined in the tollowing manner:
(1) Select representative pleces, being enreful to Include typical amounts of hoth heartwood aml samwood, aud taking abont 1 out of every 100 pieces in the lot.
(2) Trim from one obl of ach piece n length of about 2 feet, making the cut at a phace fied from knots, rot, pitch strenks, and other defects. (The sextion must be fir enough thom the end to certaing avoid the effects of end drylng; in addition, however, it is desimble to phace the first cut so that the second one whll teare the remmining piece of Inmber suficient for some standard length.)
(3) From the frewhis exporexd ends of ench piece cut off a secton threefourth to 1 ind long in the direction of the gratm.
(t) Trim thl slivers off the sections.
(5) Weigh the individunl sectons immediately and carefully on a deffente bunce. bach reathig glves the original weight of a section.
(6) Hase the sectlonx in an oven heated to 212° F.. or, if an oven is not arainible, on hot stom phes, but do not scorch them; the maximum variation in the arying tomperature stoula be not more than 5° between limits.
(7) When the sections have reached a constant weight, a coudftion that can be determined by rebeated woighing, remove then from the oven. (After a little experionce the lime required to reach conshant weight can be estimuted whi sufficient nceuracy mal some reputed welghings may thus the avoidet. Twonty-fone hours is abont the maximum time necessary.) The final weight of n section is its oven-lry wetght.
(8) Subtract sach oven-try weight from the corvesponding original weight. Wach dherenee, when the work has been propery sone, is the luss in moisture of the section concerthet.
(1) Divide the diference just obtuined by the oven-dry weight aud matinity the result by 100 for cuch section. Each fam result is the perecatage of moisture contained in the wood of a section, bated on its oven-dry weight.
(10) Find the menn value of these fidividual percentages in order to obtan the average moistare content of ath the sections. The result is considered the aperage moistare contem of the tot of lamber that was sampled.

An example of the calculation for a typical moisture-determination section follows:

Original weight-584,5 grams.
Oven-ly whorlt $=180.2$ grams.
20.7 grams -150.2 grams= 70.5 grams of moisture lost.
(104.6 grams $\div 150.2$ grans) $\times 100=58$ ner cent molsture originally in the w\%ol.
For convenience and accuracy the gram is preferably used in moisture determination as the mint of weight, but other units, such as the ounce, may be employed. The scales customary in work on moisture-determination sections, however, are graduated in grams; a fraction of a gram is conveniently expressed as a clecimal.

APPARATUS FOR MOISTURE DETERMINATHON ${ }^{\circ}$

BALANCES

For weighing ordinary moisture-determination sections it is advantageons to use balances having a capacity of about 200 grams and sensitive to 0.1 gram. Several types are considered satisfactory: The ordinary analytical balance, the pans of which are suspended from a beam; the Harvard trip scale, which has the pans supported

[^4]on top of its main beam and is provided with a scale beam and rider of 10 grmms capacity; the torsion balance in which the beams are below tho pans; and the triple-beam balance, in which the pan is suspended from one end of a multiple beam. Sepurate brass weights are used with the frost three types, although the Harvard trip scale has also a small senle beam and rider. Bafance is accomplished with the fourth type by means of a separate riter on ead of the three umits of the multiple beam.

For weighiner larger samples or whole bonrds a platform seale having a capacity of 100 pounds or more and sensitive to 0.01 pound is quite sutistactory. Such a scale, although usum in type, is somewhat exceptional in quality, and only the better manufacturers make it.

ovens

Both steam and electric ovens are in common use for drying mois-ture-determination sections. A suitable steam oven can be made of qafranized slect iron, well insutated with mineral wool or equivalent material. It should be heated by menns of a steam coil piaced in the lower part, and ventilated by openings near the top and the bottom. Above the steam coil open shelves, usually of wire lattice or prating, should be provided for the sections. Steam ovens are generally home mude. Electric ovens in which the heating element is thermostatically controlled may be purchased from verious manufacturers. ${ }^{7}$
'The moisture-determination sections, with cither type of oven, shoukd be open piled in order to permit yood circulation of air around each piece and thas hasten drying. If some sections are dry and a laree number of very wet sections are then placed in the overi, the dey sections may absorb moisture. Care shomatherefore be taken to avod wrighing supposedly dry sections under such a condition. It would be far better to weigh the previously dry sections either before the green sections are placed in the oven or after the green sections have become dry.

MOISTURE AND RUMIDITY

Wood possesses the property of giving off or taking on moisture from the smrounding atmosphere until the moisture in the wood has come to a balance with that in the atmosphere. This action is illustrated by ligure 1 which, for example, shows that wood, kept in an atmosphere constantly at $70^{\circ} \mathrm{F}$. and 60 per cent relative humidity, will eventually come to a moisture content of about 11 per cent. The relative humidity of the sumounding air, therefore, is a very important factor in the seasoning of wood, and a feneral understanding of the retationship between hmidity and drying is essential in any consideration of seasoning problens.

Absolute humidity is the weight of the water vapor contained in a unit volume of space; it is usually expressed as the number of grains of moisture per cubic foot (7,000 grains $=1$ pound avoirdupois). It loes not indicate the drying capacity of the air, however, since the capacity of air to hold water, as illustrated by Table 1, varies greatly with temperature.

[^5]Table 1,- -Moisture capacity of air at different temperatares at normul atmospherio pressure

rempert thro	Weibit of ftomistaro al saturation
- ${ }_{\sim}^{r}$	Grains jber cubtie fout
20	1.29
80	5.8
80	18.1
100	20.0

RGLATIVE HUMIDITY

Air containing the total number of grains of water vapor that it can hold at its lemperature is saturated. 'The ability of air to dry

wood or any nther substance varies with the amount of additional moisture it can hold before becoming saturated. The amount of vapor actually in the air, expressed as it percentage of the amount it would hold at suturation, is called its "relative humidity." The relative humidities of two equal anounts of air at the same temperature indicate their comparative drying abilities. Low humidities represent dry air and high ones moist air.

Referring to Table 1, 1.2 grains of moisture will saturate a cubic foot of nir at 20° F.; the relative humidity of that air is then 100 per cent. If the air and its moisture are raised to a temperature of so". however, its relative humidity will decrease from 100 per cent to 11 per cent, thas:

$$
\frac{1.2 \text { grains }}{11.1 \text { grains }} \times 100=11 \text { per cent } .
$$

At 100 per cent relative hamidity air can not dry wood because it cam hold no more moisture. At 11 per eent relative hamidity, on the other hand, it may dry wool entirely too mpilly because of the great capacity for moisture it thea has. At 60° the same air, with a rehtive hamdity of about 21 per cent, perhaps wouk still dry wood more mpidly than is desirable. During the summer the relative humidities at representative points in the United States usually are between 40 and so per cent, although in very dry inland spots they may run as low as 20 per cent and on water fronts, especially on large bodies of water, they may go well above 00 per cent.

Assuming constant temperature and cireulation, the drying of a given piece of wood depends entirely upon the humidity of the atmosphere surrounding it. On the other hand, when a given piece of wood is subjected to a given humidity the rate at which it loses moisture depends upon its moisture content; the higher its moisture content the faster it loses moisture.

Changes in atmospheric humidity range from the usual daty fluctuations to marked seasonal variations. Thus wood, when exposed to ordinary atmospheric conditions, is practicaily always undergoing at least slighe changes in moisture content because of its Eendency to come to definite balance with the surrounding air. This action atcounts for the variation in final moisture content of thoroughly air-dry wood at different times of the year. The pick-up in moisture content of lumber left in a yard over the winter is likewise explained. Figure 1 shows the ultimate moisture content of wood when the wool is kupt under constant temperature and relative humidity conditions for a sufficient length of time.

apparatus for relative-humidity determination ${ }^{3}$

A very common method of determining relative humidity is by means of a wet-bulb and dry-bulb hygrometer. This instrument ronsists of two glass thermometers, the bulb of one of which is enveloped in a wick kept moist with clistilled water, supplied from a small reservoir athehed to the base of the instrument.

If the relative humidity is less than 100 per cent and a brisk air movement past the wick is taking place (it should be at least 15 feet per second), the reating of the wet-butb thermometer will be less than that of the dry-bub themometer as a result of the cooling effeet produced by the evaporation of moisture from the wick. The greater the differene between the two readinus, the lower is the relative hmmidity, other conditions remaining constant. Table 2, which is based on experimental data, shows the relationship between dry-halb temperature, the difference between wet-bulb and dry-bulb temperaturess and relative humidity.

[^6]Table 2.-Relative humidity table for use with uel-bulb and dry-bulb thernometers

1 Possible only at pressures higher than normal atmosphere.
2 Superheated steam, at normal atmospherie pressure, no air present, At lower humidities air is mixed with the water vapor.

MOISTURE AND SHRINKAGE

Shrinknge of wood takes place only in conjunction with a loss of moisture, and, conversely, swelling of wood is a result of the absorption of moisture. Some loss of moisture, however, is not accompanied by shrinkage. As wool dries it first gives up only its free water, leaving the moisture in the saturated cell walls undisturbed until the cell cavities have become empty, and wood does not start to shrink until the cell walls themselves begin to lose moisture.

FIBER-SATURATION POINT

The condition in which the cell cavities are entirely empty, with tho cell walls still saturated throughout, is thus an innportant point in drying. It is known ns the "fiber-saturation point." The moisture content at which this condition occurs varies from 20 to 35 per eent, but for most species it is between 25 and 30 per cent. In actual practice, of course, the cells near the surface of a piece of wood dry beiow the fiber-suturation point before those in the interior reach if. Then, ceven though the averuge moisture content of the whole piece many be above the fiber-saturation point, the outer portion tends to shrink, while the interior toes not; in fact, the interior resists the shrinkuge pressure of the outer portion. Such a state is often the cause of serious drying troubles.

GHARACTERISTIC SHRINKAGE VALUES

The recently revised figures in Table 3^{30} indicate the volumetric, radial, and tangential shrinkares of a number of species of commercinl importance. Volumetric shrinkage, as the name shows, is the reduction in thic volume of a picce as it dries below the fibersaturation point. Radial shrinkage, for example, is the reduction in width of a quarter-siwed board as it dries. (Fig. 2.) Tangential shrinkage similarly is the reduction in width of a fat-sawed board. The shrinkage values in the table, which are based on the green dimensions, are expressed as percentages. They represent the averages of measurements of 1 by 4 by 1 inch specimens in drying from the green condition to the oven-dried condition. To approximate the shrinkage from the green to an air-dry condition of 12 to 15 per cent moisture content, the tabular percentages should be multiplied by one-half. Likewise, the shrinkage from the green condition to a kiln-dried condition of 5 per cent moisture content may be estimated as about four-tifths of the tabular percentages. For example, the nverage tangential shrinkage of red gum is 9.9 per cent when it is dried from the green to the oven-dry condition. Thus an arerage 10 -inch plain-sawel green board would shrink about 1 inch if oven deried, about one-half inch if clried to 12 or 15 per cent moisture content, and about three-quarters of an inch if dried to approximately 5 per cent moisture content.

In using figures like those of Table 3 , it shonld be borne in mind that shrinkage is an extremely variable property, one that is in-

[^7]

Fieras 2 - Chametertste shrinkage abi distortion of flats, squares, nud rouncs as aftected by the dimethon of the manai rlags. Tangentini shtheage is about twice as great as tratal
fluenced by the density, the size, and the shape of the specimen and also by the drying conditions to which the specimen is exposed.

MOISTURE CONTENT AND FINAL USE

Tamie 3.-hequage shrinkages of clear wood of specics grown in the Uwited States, during drying from the green to the oven-dry condition, eapressedi in percentage of the green timensions, ${ }^{1}$ and tworage speciflearavity and weight calucs

MARDWOODS (BROAD-LEAVED SPECILS)

 thek, tinches wide, and 1 lnch along the grain; volumetric values are besed on pieces 2 by 2 inches in cross section ant 0 mehes boty.

Fraxizus bitmoreana, F. chadramaiata, \bar{H}, ponasylyanica lancolata, ani F. amerienna.

Thate 3.-htocrige shrinhages of clcar acood of specics frown in the United slates, etc-- Continued
HARDWOOIS (BROAD-LEAVED SPECIES)

('ommont wad botanical tinmes of speeles of wood	Slirinkago (mensured values)			$\begin{gathered} \text { Rntlo } \\ \text { of } \\ \text { tangen- } \\ \text { tinl to } \\ \text { mhina } \\ \text { shrink- } \\ \text { age } \end{gathered}$	Spesille gravity when ovendry based on volume when greod	Weight per catbie toot-	
	Voltimotric	Radial	'17angential			When green	$\stackrel{A t}{\text { about }}$ 12 ptr cent -10isturo con-
	Per cent	Per cent	Per cent				
Aspen, Inrgeteoth (Papulis granditantatta) ..-	11.8	3.3	7.9	2.30	0.35	Poands	27
	15.8	0. fj	9.3	1.41	. .32	41	20
	110.3	5.1	11.0	2.10	. 66	$5 \cdot 1$	45
	10.1	5. 7	11.4	2.00	. 58	53	48
	10.7 1.1 .7	6.5 5.2	9.9	1. 52	. 49	48	38
Direh, papor (Hetnit papyrifern)	10.9	¢. 3	8.6	1.37	.45 .48	46	35
11 treh, sweat (13eluln fenta) -....	15.15	6.5	6.5	1.31	. 00	57	40
Hireh, yellow (lsetuln luten)	10. 7	7.2	13.2	1. ${ }^{\text {2 }}$. 65	57	+3
Slackwool ((vicennit milita)	15.6	e. 2	9.7	1. 56	. 8	74	${ }_{58}$
Burdiuye, yellows (Aesculas octan	12.0	3.5	7.8	2.23	. 33	40	45
Butternut (Jublusis cimeren)....	10.2	3.5	\%. 1	1. 85	. 36	40	27
liatomwaod (Conocarpus erecta)	1.1.6	5.4	8.5	1. 57	. 69	64	50
Caselurn (Rhandus purshiann)..	7. 0	3.2	4. 6	1.4t	. 50	50	36
Cotalja, hardy (Catulpa specioma	7.3	2.5	4.9	1. 86	. 78	41	29
	11.5	3.7 3.8	7.1	1. 02	. 47	46	37
	11.6	3. 4	10.3	3. 08 1.07	+36 .40	33 55	28
('hintuapia, goltlen (C'ustanopsis chryso- 	13.2	4.8 4.0	0.1 7.4	1.07	.40 .42	50 61	30
Cottonwood, blatk (Fappilus trichocirje -	12.4	3.0	8. 6	2.39	- 32	40	24
Cotumwood, ensteris (Populus dieltoidas)	14.1	3.9	9.2	2.30	.37	45	28
	19.3	7.1	11.3	1. 59	. 64	04	51
	17.2	6.4	0.6	1. 50	. 88	55	45
Fher, bluelgars (Snmbiens coornlea)	15. 6	4.4	9.0	2.05	. 40	65	36
Nim, American (Ulinis nmericann)...	I. 4.0	4.2	9.5	2.26	. 46	54	36
Wim, rock (Llmms racemosa)	14.1	4. 8	8.1	1.60	- 57	54	4.1
Min, slipyory (5.Inus fulva)	13.8	4.9	8.9	1.82	. 48	50	37
Gum, black (Nyssn Sylvaticn) Gum,	13. 97	4.4	7.7	1.75	. 46	45	35
Gum, buo (Eucalyptus glohnits)	22.5	7.6	15.3	2. 01	. 62	70	52
Gum, ced (ligujdmmtrar styraclitu	15.0	5.2	9.9	1,90	. 44	50	52
	12. 8	4.2	7.0	1. 81	+ 46	50	35
linektorry (Coltis occidentalis).	8.6	2.3	3.6	1. 57	. 30	38	22
Hickery, bifteaf siagbork (fficorin lneinjoss)	13.8 18.2	4.8	8.9	1.85	-49	50	87
flekory, mockermiti (Tickoria nibn)	17.9	7.8 7.8	12.8 11.0	1.85 1.41	. 62	64	58
	17.9	7.2	11.5	1. 10	. 68	64	53
	18.7	7.0	10.5	1.50	. 64	64	51
Hijekories, beeun (averuge of four species s)	13, 6	4.6	K. 9	1.82	. 59	62	45
fickories, true (averago of four species 1) ilickurles, pecan amd Lrto (averabe of wight	17.9	7.3	11.4	1. 56	. 85	03	, 1
itickurles, pecan and trto (average of vight spectoss).	17.7	\%. 2	11.3	1.57	. 81	63	80
lally (llex npmea).	10.2	4.5	0.5	2.1	- 50	57	40
Mop-hornbeand (Ostrya virginiava)	15.6	8.2	9.8	I. 17	. 63	60	50
lukwood (Exothea panienfata) -....	18.8	0.1	10.9	1. 65	+ 73	71	5
Jronwoonl, black (Krupiodendron ferroum)	11. 0	6.2	8.0	1. 25	I. 01	86	80
Laurcl, blountain (Kalmia latifolka)-.-......	14.4	5.6	8.8	1. 67	. 68	62	48
	4.8	4.4	9, 0	1. 57	. 013	58	48
Lacust, huney (Chedisia irincuathos).......	10.5	4.2	6.6	1. 127	. 50	61	44
Anuroin (AJMatus menziesii) --...........	17.4	5.4	11.9	2.30	. 58	80	40
Magnolin, cucumber (Alagnolia neuminata)--	'! ${ }^{\text {b }}$	5.2	3.8	1. 60	. 44	19	34
Magnolin, orergreou (Magnolin grandiflorn).-	12.3	6.4	6. 6	1. 22	. 46	62	35
	13.0	4.4	7.5	1.70	. 40	47	31
Mangrovo (dhizophors mangle)-.-.	15.8	5.4			. 80	77	61
Mapio, bigleat (Acer nuatephydlum)	11.ti	3.7	7.1	1.92	. 44	47	34
Maple, black (Aeer migrum)	14.0	4. 8	9.3	I. 94	. 52	54	40
Maple, silver (Acer satharimum)	13.1 12.0	4.0	3. 29	2.05	-45	50	38
Maple, strifuet (Acer pendsjisanicim)	12.09 12.3	3. 3.2	8.2	2.40 2.69	. 44	45	33
Maple, sitgr (Acor saccharum).	14.0	4.9	9.8	1.94	. 37	3i	42

[^8]Table 3.-Average shrinkuges of clear wood of species grown in the United States, etc.-Continued

GARDWOOD (BROAD-LEAVED SFECILS)

Common und botanical names of species of wood	Shrinkage (measured values)			$\begin{gathered} \text { Ratio } \\ \text { of } \\ \text { tangen- } \\ \text { tial to } \\ \text { rudinl } \\ \text { shrink } \\ \text { nge } \end{gathered}$	Spe-ciftegravitywhenoven-drybasedonvolumewhengreen	Weight per cubic foot-	
	Volt mettic	Radjal	Tant sontin			When green	Abt 12 per cent moisture con- tent
	Per ctint	Pr cent	Per cent			Pounide	Pounais
Mastie (Skderorylon toetidissimmm) -.....--	11.7	6. 1	7. ${ }^{5}$	1.33	0.851	7	45
Ayrtlu, tregon (Vmbelfularin culifornem)---	11.9	2.8	8.1	2.80	- 51	54	39
	14.2	4.5	9.7	2. 10	. 54	03	43
Onk, batr (Quercus matrocarpar) -a.	127	4.4	8.8	2.00	. 56	62	45
Onk, Californja black (Quercus kellogiti)	12.1	3.6	${ }^{\text {¢ }}$, 6	1.83	. 51	60	40
Onk, caty ${ }^{\text {and }}$ live (Qusteus elrysolepís)..	10. 2	5.4	9.5	1.76	. 70	Fil	54
Qak, chestnut (Quereus monlanil).	19.7	5.5	9, 7	1. 76	. 57	01	48
Onk, harel (Quoreus Iamrifoliz) .. .	19.0	4. 0	9.9	2.48	. 58	65	44
Onk, live (Quercus virginiann)	14.7	6. 6	9.5	1,44	. 81	76	62
Ouk, Oregon whita (Querels garryana)	I2. 4	4.2	0.0	2.14	. 64	68	51
Onk, pin (Quercus palustris).	14.5	4.3	9.5	2.21	. 58	633	44
Onk, pest (Quercus stellate).	10. 2	5.4	9.5	1.81	. 00	03	47
Onk, red (tuercus borenlis) .--.......-.......	13.5	4.0	8.2	2.05	. 56	43	4
Onk, Rocky Mountain white (Quereus utnhensis).	12.5	4.1	$7+2$	1,76	. 62	62	51
Onk, scarlot (Querens coceinen) --...--------	13. 8	4.6	4.7	2. 11	. 80	82	47
Ouk, southern red (Quoreus rubra)-	185.3	4.5	8.7	1.93	. 32	62	41
Ouk, swamp red (Quercus rubra pagodue(olin)	16.4	5. 2	10.8	2.08	61	08	48
Onk, SWamp ehastmut (Quercus juinlts) -----	19.4	5.9	0.2	1. 50	, 10	65	47
	17.7	5.5	10.6	1. 93	. 64	69	50
Onk, water (Quercus tigra) --	18.4	4. 2	0.3	2. 21	. 50	63	44
Oak, white (Cuerets nlibs).	15.8	5. 3	0.0	1. 70	, 80	02	48
Onk, willow (Quercus phelon) ----.......--	18.9	5.0	9.6	1. 92	. 56	67	49
Onks, commercial red (avernge of 9 species b) -	14.8	4. 2	9.0	2.14	. 50	84	44
Onks, commaticial white (nveruge of 6 spactes i)-	10.0	3.3	9.3	1.75	+59	(13	47
Onks. commerciad red and white (avernge of 15 species") \qquad	13.3	4.7	9.1	1.04	. 57	03	45
Osage-nrange ('Coxylou vondifertmi) ---......	8.1				. 76	62	
Pultuetto, cabbage (Salar malmetto)	25.0				. 37	54	27
Parndise-tree (Simaroubo glatea).	8.6	2, 9	5.2	2.35	. 33	37	34
Pechn (ificoria pecanl)........	13.6	4. 9	8.9	1.82	. 60	61	47
Fersimmen (Diospyros tirgiuman)	18.3	7.5	10.8	1.44	. 64	03	52
	15.7	4.4	7.8	1.77	. 77	73	55
Paisonwood (Netopsiom toxifertur)	11.6	4.2	7.2	1.71	. 51	54	37
Poplar, baisum (Populus badinmmera) -a....-	10.5	3.0	7.1	2. 37	. 30	40	23
	12.3	4.0	7.1	1.78	. 38	38	28
Rhodorlatiden, great (Rhododendron minximutur)	16.2	6.3	8. 7	1.38	+ 50	62	40
	10.3	4.0	6.2	1.55	. 42	44	32
Serviceberry (*meianchter eanadensis) - -----	18.7	6. 7	10.8	1. 61	+66	61	52
Silverlell (Lnlesia carotina) .-......	12.0	3.8	7. 6	2.00	- 42	44	32
Sourwood (Oxsdendrum miborewni) --.......	¢กิ. 2	6.3	8.9	1.41	. 50	53	38
Stouper, ted (Fugenita confusa) -	13.3	6. 2	9. 1	1.47	. 83	73	61
Sucarberry (Celtis laevirnta).	12,7	5.0	7.3	1.48	$\cdot 17$	48	36
Sycamoro (platanus occidentalis)	14.2	5. 1	7.8	1.49	- 46	52	35
Wfinut, black (Juglans nigra) --	11.3	5.2	7.1	1.37	, 51	59	39
Winmut, little (luxhns rupestris)	10.7	4.4	4.6	1.05	+ 53	55	40
Willow, black (Salix nigrn) -....	13.8	2.5	7.8	3.12	. 34	50	48
Wiblow, western black (Salix losinndra)-...--	13.8	2.9	9.0	3. 10	+39	50 59	3 L
Witelrhazel (Eamamolis viginiana) --.---...	18.8				. 56	59	43

SOFTWOODS (CONIFERS)

Cedar Alaska (Chnmbecyparis nootka-							
	0.2	2.8	6. 0	2. 14	0.42	36	31
Cedar, incense (Libocedrus dectrrens)	7. ${ }^{\text {c }}$	3.3	5.7	1.73	. 35	45	28
Codar, Port Orford (Clammeyparis lavsoniaual	10. 1	4.6	6.9	1. 50	.40	33	29

[^9]23

Tabse 3.-Sveraye shrinkayes of clar wood of species grown in the United States, etc-Continued

SOFTWOODS (CONIEERS)

[^10]being placed in service is reduced, it is less subject to stain, mold, and insect attack, and the loss in weight results in lower freight charges and reduces other handling costs.
The fact that wood below the fiber-saturation point shrinks and swells with changes in moistare content makes it highly desirable, in the seasoning process, to oltain for the wood a final moisture content that will be suitable for the condition of ultimate use. In the past thic matter has been given too little consideration, but the necessity for attention to this phase of drying is becoming more and more apparent.

The moisture content of lumber dried ewen according to the best air-seasoning practice rarics somewhat. Neglecting this condition, which can be corrected by heated storage or simifar inteans, absolute attaimment of a proper final moistare content for all uses is not feasible in commerciat work, both on accomet of the diverse purposes for which wook is employed and the wide range of atmospheric conditions to which it is subjected. Wood thoroughly airdry at Galveston, Tex., for example. is likely to have a moisture content somewhat greater than that of air-dry wood in the general Middle West States and considesably greater than that customary for interior woolwork in heated buildings. Such conditions indicate clearly that the final moisture-content problem is a difficult one and also emphasize its importance. To solve the problem it is often necessary to kila-dry the wood instend of air-drying it, or in addition to air-drying it.

GENERAL PRINCIPLES OF DRYING WOOD

MOVEMENT OF MOISTURE IN WOOD

PRESENT KNOWLEDGE

Although the actual phomem of drying wood are not yet understood in all their detilis, there is considerable knowledge that bears on the partical seasoning problem. As stated before, wood upon drying first loses its free water and then that which is contained in the cell walls. The moisture in the interior of a piece of wood can come to the surface only as ab vapor moving along the capilary chanmels in the wook, after evaporating inside of the piece, or as a liquid moving either through the stme chanmels or through the cell walls. Regardless of whether such moisture moves outward as a vapor, or as a liquid, or as both, on account of the nature of woort structure the end grain of wood loses moisture more rapidly than the side grain does.

In a consideration of the air-seasoning process, a genera understanding of the movement of moisture in wood is sufficient. It can be assumed that the moistare tends to distribute itself evenly through the wood, moviny from the most regions to the drier ones. The really important fact. however, is that the temperature and the humidity of the atmosphere at the surface of the wood are controling factors, while circulation of the air is of extreme importance in maintaining and in modifying them.

EFFECT OF TEMPERATUXE

The temperature of the air surrounding wood affects seasoning in a number of ways. Heat is consmad when evaporation takes place, and the ease of transfer of the heat from the air to its point of consumption increases with increase in temperatare of the air entering the pile. The heat required for evaporation must be supphed by the air, adequate circulation of the air is reguired for such supply, and fargely because of increased cooling effects local circulation in the pile is likely to be better at high temperatures than at low: As afremby pointel out, an increase in the temperature of the air increases its capacity to hold moisture and thus hastens evaporation. Below the fiber-saturation point a certain amount of heat is requiped to separate water frem wood, the amount increasing as the wood becones drier; air at a high temperature hohds more heat, which it can rive up for this purpose, than the same air at a low tempremare.

The effects of the temperature of the surromding air upon the drying process cxplatin certain conditions encountered in air seasoning. For example, even during the cookest months of the year a comparatively rapid loss of moisture from bare wood occurs until a moisture content of about 30 per cent is reached. Then a rather abrupt decrease in the drying rate usatly takes plate.

EFFECT OF RELATIVE HUMIDITY

The relation of the relative humidity of the surrounding air to the meristure in wood has leen diseussed previously (p. 6). It was pointed out that this relationship detemines the extent to which wood dries. At a given temperature. the relative humidity determines also the rate of drying. In general, other factors remaining wonstant. the lower the relative hanidicy the faster will drying take place and. conversely the higher the relative humidity the slower will be the drying. This is true becane lowering the hamidity rethees the moisure comtent of the wood at the surfice. thus increasing the rate of movemont of moisture toward the surface and consequently hastening the drying.

EFFECT OF CIRCUlation

Circulation also plays a large part in the seasoning process. As wood dries, the evaporation looth uses up heat and increases the amount of moisture in the sumpunding air. Hence circulation is required to supply the heat necessary for araporation and also to remove the evaporated moisture. Circutation is that a prime factor in the drying of wood by any methon and is particularty important in air sasoning, beowase there it is the only essential factor that can be controlled to an apperinble extent. fouther, when the cirentation is slugrish, the atir in direct contact with a green board is likely to be at a hiogh relative hamidity, perhaps even ats high as 100 per cent. Obriously the relative hamidity of the fin of air immediately at the surfice of the board has a major effect on the drying rate of the word and, since this relative humidity is influenced directly by the rate of circulation, the importance of circulation is again evictent.

$$
\therefore(6)^{n}-30-3
$$

APPLICATION TO AIR SEASONING OF THE GENERAL PRINCIPLES OF DRYING WOOD

GENERAL CONDITIONS AT THE LUMBER PILE

Tho atir seasoning of lumber, like any process for drying wood, is dependent upon the temperature, himidity, and circuation of the sumbouming tir. Consequently the regional climatic conditions,

A- COMPASATIVE MONTHLY ATMOSPHERIC-TEMPERATURE AND RELATIVE-HUMDITY CONDITIONS; PLOTTED AVERAGES OF THE VALUES READ DAILY AT 4 P.M.

Frat.	Feb	war	Acr:	\%m					\%	\%.	20
150	1:20	100	100	90	75	50	75	225	225	225	0

B.-Aberage drying pentoos (in Days) Requited for Stock, Plled in the Months INOICATEO, ro REACH 15 PER CENT MOISTUAE CONTENT; LOCAL VARIATION IN CONDITIONS MAY GAUSE A CONSIDERAELE DIFFERENGE FROM THE AVERAGE PERIDC

Von	Feb	Mar	Apr	Apar		7elo	Uhy 1						Dec
20	20	18	15	14		412	2年	13	$1 / 4$	$1 / 5$	20	20	20

G-Approximate Moisture Content of Thorouchly Air-Dry Stock, EXPRESSED BY MONTHS AND IN PEREENTAGE OF WEICHT OF OVEN-DRY WGOD

	Feb.	Mar	Aor	May	TH			Am		Sep 7					
2	-	-	-	-	-		-	-		1	2		2	2	

D. - Average pick-up of Moisture by Yard Stock During Different Months,

 Expressed in Percentage of Weight of Oyen-Dry Wood chate is bused on avernge flgares covecing a perlod ot two years and reynessintthe tive gards drying $4 / 4$ hach weatern white phac and westarn yellow phe stoek.
 whe vartathon trom the average bat may obtain loentis at any speche lamber plant
affected as they are by local factors such as elevation, topography, drainage, and water bodies, constitute the primary infuences in air suasoning. Although eflicient air-seasoning practice is designed to exert sonce control upon the drying conditions within the lumber pile, there is some relationship between these conditions and those outside. No matter what the yard methods. a warm, dry, and windy climate will eause faster drying and lower final moisture content than will ool, damp, and caln climatic conditions.

Thero is considerable vurintion in geographic and climatic factors among the various lumber-producing regions and also among yards in the same region. The influence of such natural conditions upon tho air-seasoning process is illustrated in a broad way by the datas presenter in Figures 3 to 6, inclusive, which show the effect of different weather conditions upon actual seasoning in the western softwood regions. The moisture content for thoroughly air-dry

$$
\begin{aligned}
& \text { Active drying searont: } \\
& \text { A-COMPARATIVE HWNTHLY ATMOSPHERIC-TEMPERATURE AND RELATIVE-HMMD- } \\
& \text { ITY GONDITIONS; PLOTIED AVERAGES OF DAILY READINGS AT REPRESENTATIVE } \\
& \text { POINTS IN THE REGION }
\end{aligned}
$$

	Fet	\%	4or		Hay	kntel	Shlil	ghay	Scot				
120	90	70	70		60	55	50	45	160	160			

 in the mevths fivicated, to reach 15 Pen Cent Moisture content; local variation in Conomions may cause a considerable difference from the average period

	Fch	tar		5inu	qumb								
20	18	16	14	12	10	19	9	10	10	12	16		18

> C. - APPROXXATE MOISTURE COYTEAT OF THOFOUGHLY ALR-DRY STOCK, EXPRESSED OY MONTHS AND IN PERENTAGE OF WEICHT OF OYEN-DPY NOOD.

> D. - AvERAGE PICK-UP OF MOISTURE BY YARD STOCK DURING DIFFERENT MONTHS, EXPRESSED II PERGENTAGE OF WEIGHT OF OYEN-DRY WOOD

stock (C of figs. 3-6) indicated for each month is not to be considered as the equilibrim moisture content for the temperature and the relative humidity shown in the eneves of the smo chart (A of figs. 3-6), becuuse the temperature and the relative hmmidity readings for each day represent only two oberevations, which are not sufficient in number to give true averages. The enves adapted from Department Bulletin No. H2:, however, do show the general trend in tem-
peratare and relative humidity from month to month. Enen thourh these matural conditions must be largely accepted, a knowledge of them and recognition of their consequence in seasoning are essentinl in the intelligent selection of a yard site, in the proper laying out of the seasoning yard, and in the development of effective piling methots.

A. - Comparative Monthly atmospheric -Temperature and relative-humdity Conditions; Plotted Averages of Dilly Readinas at representative Points in the region

Jan	Feb	Mard	Wortsray		Iull	Wat	Lg					
180	1501	1501	1/201100	80	70	1100		250	220	20		180

> B-Ayeinag Drying Periods (in days) Requireo for $4 / 4$-INCH STOCK, PILED Int the Months Indicated, to reach 15 PER CENT MOISTURE CONTENT; LOCAL Vartation in Conditions may cause a considerable difference from the AVERAGE PERIOD

Wan	Fe2	Y/ar	AO		Hoy	Min	,	M		Sept			Nor		
24	25	122	20		18	16	15		15	16	17		19		21

6-APPFOXMATE MOISTURE CONTENT OF THOROUCHLY AIR-DRY STOCh; EXPRESSED BY
MONTHS AND IN PERCENTAGE OF WEICHT OF OVEN-DRY WOOD

		Mar	Apr	mat						Has.		
3	1	-	-	-		-	-	-	1	2	3	3

D. - Average pick-up of Monsture by Yard stock during different Months, Expressed in Pertentage of Weight of Oyen-Dry Wood

Fiouen B. - Graphle chare of major air-seasoning factors in the recivoot ragion,
 tybeal conditions for the regkon in general, fut does not show the wide varhation frum the avemge that may obtula locafly at any specille fumber plant

The aim of air-scasoning practice must be limited to employing the favorable natural elements to the greatest possible advantage and to minimizing the unfavorable factors as far as is practicable. The means for accomplishing this aim are brought out in the later and more detailed discussion of air-seasoning practice.

TEMPERATURE IN THE LUMBER PILE

Writhin the limits of existing climatic conditions, some indirect control of temperature in the lamber pile is possible. Through the
provision of adequate means for circulation both in the yard and in the pile, the air cooled by evaporation is replaced by warmer air from the outside, thas inceasing the temperature. Further, some heat is tranmitted to the lumber from the direct rays of the sun, which reach at least a part of the pite daring some fortion of the

		an											
$\begin{gathered} \text { To Reach } \\ \text { zoperecent } \\ \text { horsture } \\ \text { content } \end{gathered}$	\%	100	8 C	55	35	25	20	20	15	220	190	160	
	${ }_{\text {B }}{ }_{4}$	110	90	65	45	35	30	30	25	230			
To freach 15 Pre Cert Mosture Content	4	145	120	100	70	45	40	40	45	27	240	210	180
	14	16	140]	$1 / 5$	90	60	55	55	320	290	280	230	200

> 8. - AVERAGE DRYING PERIODS (IN DAYS) REQURED FOR STOCK, PILED W THE MOVIHS INDIGATED, TO REACH THE MOISTURE CONTENT SHOWN: LOLAL VARIATION IN CONDITIONS MAY CAUSE A DIFFERENCE OF 10 TO ZO OAYS FROM THE AVERAGE PERIOD

			hpr		,					Nor	
26	24	. 22	18	16	15	12	13	15	16	122	26

> C. - Approximate Molsture Content of Thoroughly alr-Dry $4 /$-NCH SToLh, Expressed by Monthis avo in Pericentace of Welaht of Dven-Dry Hood

> D.-AVERAGE PICK-UP OF MOISTLRE BY प-INCH YARD STOCK DURING DIFFERENT MONTHS, EXPRESSED IN PEGCEITAGE OF WEICHT OF OYEN-DRY WOOD
day. The extent of the pile surface that receives direct sunfight. as well as the length of the daty period during which it is received. can be controlled to some extent by varying the spacings around the pile and changing the direction of the openings between piles.

HUMIDITY IN THE LLMBER PILE

Control of humidity conditions within the pile, as far as it is possible, also can be aeconplished only by indirect means. Cirenlation, if it oceus, carries away the moist air resulcing from seasoning and replaces it with air from the outside that contains less moisture. The regulation of temperature mentioned in the preceding paratraph also affects the relative humidity, since an increase of temperature moms that the drying capacity of the air is inceased.

CIRCULATION W THE LEMBER PILE

The functions and the importance of circulation in air seasoning have been indieated in the disenssions of temperature and hamidity control. Cireulation is the only drying factor that is subject to direct methoyls of control.

The movement of air in a lumber pile is the resulant of two genmal types of cireutation. Iforizontal cirentation is cansed primarily by the local wind emrents. Vertical circuation. on the other hand. is an intemal movement prolued by eraporation and the resultagy differences in temperature throughont the gile.

Horizontal circutation com be regalated to some extent by variations in yard layout, in fondation construction, and in piling methots. The arrangement and spacing of man alleys and rear alleys and the intervals between piles on the sume alley affect the movement of the heal air currents to a hage extent. Likewise the cleatance under the pile fomdations excrts an appreciable influence. The actual inlet and ontlet of the wind currents to and from the pile are greatly affected by the methox of pile constraction. For example, an inercase in the thickness of the stickers materialy assists in buikling up positive horizontal cixulation.

Vertical circulation in a lumber pife is a seasoning factor of the utmost importance and hence should be thonoughly understood. As the green stock in a pile dries, the eraporation uses up heat, which is tiken from the air in contact with the stock. This air, thus becoming cooter and consequently heavier, tends to drop " gradually toward the botom of the pile. Methods of pile construction should therefore be designed to aill this natual movement, permitting as far as possible an mobstructed and contimons vertical flow of air. To secure the maximum benefits from vertical circulation, it must be adepuate, not only at a single point lut also entirely across the pile from one side to the other. This means that vertical air cbannels, well distributed, are essential.
The natura downam movement of cool, moist air in a lumber pile results in partial starmation and slow drying in the lower section miess proper means are provided to insure the removal of such air. Thus horizontal cireulation, particulary in the lower portion of the pile and beneath it. is a necessary adjunct to the vertical circulation. Such movement toward the outside of the pile results from external

[^11]wind curents absi to a less dergee from a natural outward flow in the lower portions of the pile, ratsed by the pressure of the downward movement. 'The outwat flow enn be aded materially by the control methods already distassed in connection with horizontal creulation.
There is much misconception as to the movemen of at in a lumber pile. If the natural temeney of the air to drop toward the bottom of the pile is not fully appreciated and adeptately recognized in the development of the entire arir-seasoming pracice, serisus drying trombles are ahost certain to develop. The drying in the lower

part of the pile will then lag behim that in the other parts. As a result, the arerage dering time will be lengthened, a portion of the stock may never remh a thoroughy air-dry condition, and the hability of the development of stain and decay will be increased. Such a lag in drying is illustrated by Figure 7, taken from Depart-
 different parts of a common type of lanber pile.

SMOKE MACHINE

In studying the effer of wind temperature and methorl of piling on the diwetion and the mate of air morement in a lumber pile, it, may be heffefl to use a smoke machime. This apmatus may consist of two glass sontaners eath about 11 inches in diameter and 5 inches long. one of which is lilled halfway with tmmonimm hydroxide (ammonia water: specific gravity 0.9) and the other with
hydrochlorie acid (specific gravity 1.19). The contaners are provided with 2 -hole rubber stoppers and are comected by a glass tube atoot one-fourth ind in outside dameter. By means of a rubber bulb air is blown into the upper part of one container, forcing the rapor there over to the similar space in the secome container, where it unites with the rapor above the other liquid, thus forming ammonium chloride. This salt emerges as a white smoke. When the smoke is relemed in a current of air it is carred along with the currat. thes making the air movement evident. For the salke of convenience the contamers may be supported in a small wood block drilled with holes of the proper size and provided with a short hamdle. In some eases it is adrantageons to connect several feet of \#-inch rabber hose to the discharge opening in the second rubber stopper, so that the smoke caa be directed to any desired point. If the tubing becomes elogged, the ammonium choride may be readily dissolved in water.

The Kiln Drying Hamdbook ' illustrates a smoke machine of similar construction.

SEASONING DEFECTS AND THEIR CAUSES

The defects responsible for the depreciation incident to air seasoning are definitely related to the drying process itself or to the time element of that prosess. An explanition of their catses will permit a better appreciation of the possibility and the means of preventing them. These defeets may be grouped as thase :rsintting from shrinkege and those cansed by the action of minute orgmisms dat helong to a bow form of plant life known as fungi.

In the first gronp are check. honeycomb, chi, bow, crook, twist, loosening of knots, and collapse. The secend group includes stains and decaly. Blace stain is the principal stain of eronomic importance in the air seasoning of many species, both hardwoods and sotwoors, although brown stain ($p .2$) is of some importance in certain softwools. On accomt of the general climatic conditions in the West and the drving periods usiably required there, deay need not be considered in air-seasoning defert in lamber in that region. In the South. on the other hand, both climatic and logging conditions are very conducive to the development of decay. All of the measures taken to reduce blue-stain development are also helpful in decay prevention.

DEFECTS RESULTING FROM SHRINKAGE

END AND SURFACE CIECKS

Tamber checks as a result of uneren shrinkage. Such shrinkare may be the to one or both of two cathes. uneven drying and the inherent difference in the amounts of modal and tangential shrinkage of wood.

There are three common canses of uneven drying: (1) The end grain of wood gives off moisture more rapidly than the side grain; (2) surface layers dry faster than those in the interior, especinlly during the early stages of drying: (3) a portion of a bourd fully

[^12]

[^13]

exposel to the drying effect of the air loses its moisture before an adjaremt section mot so exposed dries to the same extent.
Tangential shrinkyr, the shrinkare across the with of phansamed stock, is on an average about twice as geat as madial shimbalse. which is the shrinkage acress the width of quater-sawed stock. Table 3 gives the ratios of tangential to radian shmbenge for various commerchal species.

The end checking of hmber during air seasoning is largely due to the uneven shriakage caused by the exposed ends of the boards drythe more rapilly than the adjoining portions. Not only docs end grain give of th monture more rapidy than sude grain. but in adition portions of toth the major side-grain surfaces near or noxt to the ends, are kejt from diese contact with the drying effect of the air by the stickers that cover them. It follows that two artions are neressary to minimize ent checking: Ends of the stock shomb be shaded to decrease the mate of end drying. and the area of the board faces not exposed to the air should be reduced as tar as practable. As exphamed om page th. end conting may be ued insteal ot shathag in order to wedues end checking.

Season checks that appeser on the faces of the stork result both from uneran drying min from the diflerace between tangential and radial shrinkare. Checks cancel by une en drying may be dhe to ome of two combitions. With excessively mpid smface drying, the owter hayers become mod drier than those in the interior and tend to shmik betore the inside portion is dey enough to do so. The stresses thus set up in the pice may canse ehecking, which may become appment either immediately or when the stock is mun throngh the phaner. The other condition cansing checks obtains when a portiom of the phere is shat ofl from the air. The exposed portion begias to shrimk before the protected one is dry enongh to do so, and cherking ocrurs in the shanking portion bectuse of the westrant of the undmaged one. Stickets are often responsible for swef checks ia the stock. The checking in phan-sawed pieces for which the diterence betwen radial amd tangential shrinkage is responsible wrurs because the face of the piece that is closer to the heart is more mearly a radial thee than the other. Such a piece ulso tends to emp, hut bertuse if may be rextramed by the stickers the stresses set up may result in checking. The arodance of excessively rapid drying a mols to redued all forms of checking, while a deerense in the meat coremed by the sticker will materinly lower the amont of checking sesulting from differences in exposare to the air.

Tey wide fat-sawed boards and phats are liable to check. For this reason it is advisable to seasom lumber, particulaty ameraft stock, in the narrowest asable wilths, mess warping interferes.

HONETCOMB

The smface of a piere of green wood dries before the interior, and in conseguenee its shrinkage is opposed by the interior, which during the early stares of trymg remans above the fiber-satamtion point. Mumy these stages the ditherence in tendency to shrink rets up a tension in the surtice, which may wewte in cheeking, and a compresion in the interior: the tension and the compression ate

 has beomme ret in ath expanted condibom: that is, the strhere has

 fesults in a comprasime of the surgere ant a tension in the interior. The compresson may be sullerent to chose the surface cheres so

 bumidites cither in a the kila ne reserweres."
 Wook, mat consemently bay teat the interion fibers apate. If it does
 boneyembl involves metheds of pining that will retare the drying rate.

CASEIAADENANG

When the sumfere of a pieer of wood is set in an expmated condition, am? wonsquently is in eompresion, while the interior is in tomson, the piece is said to be asehardened. When surh a piece is
 is objectiomblo, it con be relieved by proper stemming methods in a dry kin. For most purpores for wheh stock in the aireseasmed comblition is to be med. howerer, sum a procedue is not requised.

CYI, WOW, CKOOK, ANO TWEST
Cupping, the transerse (eroswise) concavino of a pice of lumber, is cated in a manher of wass. The therence in shrinkage resulting from wheven drying is often reiponsinte. When stock is pibel with two hayes to the course, one lace of each piece dries more mpidty athl raches a lewer final mosisure content than does the other. This condition mat result in copping. Farther, a phain-sawed board, atthomph mitomp driah, may tond to enp becanse, as previously mentioned. the the that prew marer the center of the tree may be mow mexty a madial face than the opposite face. Such a condition promuces copping away hom the hearl. In genemal cupping may he hed to a minmman by allowing both faces of the stoek to dry wonly and hy moper stikering.

 the struetare of a piere of wood. Spimal, intertorked, or diagonal

[^14](PL. 2.) Minor distortional fefect may realt from uneven drying, and theo deferts catued primatily by the wood structure can be nggravaled in this maner. Peremite measures fonsist chefly in the une of piling methots that will holl the stock limby in promer alignment.

LOOSENING OF KNOTS

Knots are lowemod duriag somoning lecame of the drying of the cementing resins and guts and berame of dillerences in the shatheage of the koot and of the surrond bere wool. Sine the axis of a knot-loming brand is appoximately at right anghe to that of the

 extrat, "roswies al the bate Further, sume the shemkage in the thickues of the hoart (acros its grain) is greater than that of the knot in the sabre direction (atong it- own grain), knot are often

 canes it is harder than the wera amond it. The koorening of knots
 certain tepe of kiot is not diperty comemed with the wool suf-
 Suromadel with bark. Depreciation from knot kowning. howerer.

 Whan the kat is firmly intergrown with the surpounding wood it

combatsp

 occurs in the heartwoil of a few specion woth as wed gum abd swamp oak. Rows of cells collaper like a paratured rubler tire: and if the collapes has been at or wat the surfare the sarface of the wook then has a washemed mpeatanes: this apparane occurs in boards mather than in phaks. Collape is relatively uncommon in air seasoning.

OTIER MMPORTANI DEEECTS"

BLEE STAIN

In the ain semoning of wer aperies as sopthern and western yellow pime northern and wetern white pime red emm, sugar pine, basswook, and maple the prevention of hine tam is often the major drying poblem. This defect is a dicolomation of the sapwort that is dhe direetly to the frowth within the wood of therede of the blue-
 ment from the wow they inhabit. Perline mincipally uron the cell contents. As the fuagons therads grow. they pass frm one cell to another wathy though opening in the cell wath, bat orasionatly bowng thengh the wook itedf. (Figes a and 9.)

[^15]Blue stain, in its development, appears first in spots or streaks on the surface of the wood. Later, as the fungus penetrates deeply, the entire sippoot may be discolored. The blue-gray color of the stain appeats in the wool only after numeons very small threads of the fungus have reached a certain development within the wood cells. (Pls. 3 and t.) When these threads, feeding on the contents of the coll and to a slight extent on the cell walls, reach a certain stage of their growth, fruiting boties-comparable in some ways to the seed pools of a flowering plant-are moduced upon the surface of the wood. These fruitine bodies, which appear as tiny black speeks upon the bued wook. resemble small black hairs or bristles swollen at the base (Fig. 10, A.) Minute spores, which are comparable to seeds, are ejected from them. (Fig 10, B.)

These spores, when carred about by the wind or other means, canse new infections by germinating on bright Itmber green from

 fina stibn funens in the ceble uf a sortwhot, showing
 the bometread where duey pass throuth the walls. In the lower ornare ame thend is pissing through
 the sam or on other favorable places. Althouerh a blue-statin organisu may be present in cortain lors before the louss ate satwerd into lumber: the chief sounce of infection is that just mentioned. decordingly yatd satitation and diserimination in the repeated use of stickers are highly important measures in blue-stain prevention.

Blue stain does not materially afiect the strengril properties of wood; it is not an carly stage of decay. The stain, however, often lowers the value of the product for uses, sum an matural-finish surfaces, where the discolorations ate objectionable.
bloe-stain fungi require an abumbant food supply in the wood, a comparatively high moisture content of the wood, and warm weather. Blate stain is likely to oceur, espectally during rainy periods, in the warmer seasons of the gear when the air is humid and semsoning is correspondingly slow, partienhery if proper piling and storare methods are not dinployed.

It has been observed that blue-stain fungi grow best on substances that contain some acid: the acid of sour sap is very favorable for the devenoment of the bloe-stain and decay organisms. This fact indicates why sonfing or fementing of the sedpood is ofter atranced as the origin of the bhar-stain blemish and decay instend of the true canse, fungous development.

The blue-stain organisms ordinaridy do not attack the normal living tree. In wood products the blowd areas are usualify confined to the
sapwood, ending where the heartwood begins. The fact that some speciss of wood bue more readily than others has not been explained. Possibly the food or moisture conditions in the sap vary sufficiently among species to account for this selective action. Froin the investigative work conducted so far on the moisture reguirements of the blue-stain organisms it seems safe to assmme that there is little dhager of sap-stain development in wood that has a moistare content not exceding 20 per cent.
The rehation between the seasoning process and blue-stain fungi is obvions. The ocenrence of this defect is primarily the resalt of insantary yard conditions and of practices conducive to slow seasoning. Menares for minimizing it include stoming, chemical dips. yard samiation, and yard practices that will permit rapid seasoming, especinty in the initial stages of seasoning and in the lower thied of the hamber pile. Preliminary steaming and chemical dips are discussed on parges is and E 3.

HRONK かTAIN

Brown stains ocemr daring both air seasoning and kiln drying: consequently they are sometimes called Taci brown stain amd kiln brown stain. Yard brown stain apparss as a yellow to a dark-hrown discoloration. chiefly in air-seasoned sapwood and heartwod stock of sugne pine. westem yellow pine. and nothem white pine. Kila brown stain is nhso yellow to dark brown in eolor: it develops during kiln drying of the

 sosf worm clecomposing tho wood ray at it tim pohetrating tho bell walls at 13 and C. Enlatged
 hantwood and sapwoot stock in the species just mentioned, and also. for example, in hickory sapmood.

The brown stain that oceurs during air seasoning. while definitely known in some cases to be due to chemical action, in other cases may be due to fungous action. Kiln brown stain is of a chemical nature. The cause of chemical brown stain is not definitely known. but it is thought to be due to the defosition and subsequent oxidation of water-soluble materials an the wood dries. Sometimes the chemical stain appers on the surface of at rough board. Frequently. however. the water-solable substances appear to be concentrated just benath the surface, and the stam does not berome evident matil the board is planed.

No positive remedy for brown staining is yet known.

DECAY

What has been suid with reference to the cause of blae stain and the conditions condure to its growth is applicable likewise to wood-
dextrofing fung, with one important exeption, namely, blue-stan Fhage afoct the strength to only a minor degree it at all, whereas the wood-dentrying organisms use certain constituents of the cell walls of the wood for food, with the result that the cells may be broken down and the strength of the wood may be greatly reduced.

INSECT ATTACK

Certain woots are subject to insert attack in the green lumber, some in intaticiently somomed lomber, ami others in dry lumber. Some of the wood-destroying insects bore into sapwood and heartwood without discriminat-

 tion, whereas others conline thear eating to sapwood of eren to lnek. The sapwood of a few thlly sasoned hardwoods is attacked by an insect known as the powder-post beetle. This beetle lays its ergs in the pores of the wood, and the egess ate big enongrl to reguire large pores. Hence hickory, ash, and oak are most liable to its injury, but other species are also atlacked to some extent by this same beetle. The actual sestruction of the wood comes from the larve of this borer, as is asual with such insects. With some wood testroyers, however, either the adults alone or both the alults and the young do the damape.

On account of borer attack. seasoned hickory, ash. and onk in storture should be moved in rotation, old stock being used before new, so that none of it will remain in storare an exeessively long time. In addition all stored stoek should be examined recularly and with care. Any stock showing the slightest indication of attack should be reexamined, often by entting into it, and borerintested stock shoth either be heat steritized or destroyed. The powder-post beetle lays its eggs below the surfiace of the wood, usamlly entering the piece from the end, and the harae ordinarily work in-

[^16]ward, so that a piece of wood may be eaten to a shed before any (xdermal imbientions of the destrustion appear. Farther, the adult bere les, fly, whith makes intextation of atjacent stock meroly a mater of time if proper preventive menture are not taken.

Without mach curestion. eromonic considerations justity both constant isuperfion of stomes of the wowt most subjet to borer attack and also suitable heat sterilization of sach stock immediately before its femamiaderes Similar treatment is desimble for all seasoned womb whiger to the attare of any insert.

 pate of the woml with yamind or ghest oil, which will prevent the atuld beethe from laying its cergs in the wool.

Aboul $180^{\circ} \mathrm{F}$. is required to kill many of the bomers that infest wond, athongh ronsiderably lowey temperathes will sulfiee for some. When wom infested he heatemdarant borere, such as the Lyctus powder-post bereth, has not been subjected to a temperature of 180° or higher during the drying prowes. (he kin temperatme shoud be raised to $183^{\prime \prime}$ at the end of the ran and se held for a half hour or longre, the exact time depading upon the thickness of the stoxk. It the moisture roment of the word does not exceed IE per went. and it the rehative hmintity during the heating perion is combrolech so as to prewent any risible damage, it is improbable that subjecting the stock to tser lor two or three hours will injure the strength of the wool.

hiln drying preliulinary to ar seasoning

Sobjocting areen humber on relatively high temperatares accomplishos more than meroly kitiner the fungi mal inseds present. When stach temperatures are employed in conjunction with proper rehtive hamiditios, as in kilo drying. the provess offers also a means of minimizing wedking in reltactory hardwood boards during subspigent air trying. The prineijle involved may be mederstood by referting to the diextusion of loneyromb on page 2 a and by the folkowing considemtions: 1 haring the early stages of kiln drying, the rate of dyying. wher proper conditions. can be controlled so as to prevent checking. At some point in the drying process the stress in the surface of the bored dhages trom fonsion to compression. At this poim, which in norlhern red or white oak. for instance, may be at a mositure robitent of ahout 30 pre cent. the danger of checking is
 movisure ind then arain hase it comerpently the problen of min-
 liminary kiln drying for eneral days before the stock is piled in the gath. 'To make it porible for such dreing to momin effective, howerer, came mot be taken to protert the siode from min.

COMMERCIAL METHODS OF PILING BOARDS, PLANKS, AND OTHER SHAPES OF WOOD FOR AIR SEASONING

BOARDS AND PLANKS

FIAT PILKNG

Yart Site
While in some cases the location ot the seasoning yard is limited by such factors as a malability of the timber supply and means of transportation, when possible the site selected should be welf draned, and for speries that withstand rapid drying should be on high ground well exposed to the wind. Freedom trom debris, weds, and other regefation is essentiad if the development of blue stain and decay is to be kept at a mimmum.

Obviously the opportunity for movement of air aromed the piles shown in Plate \bar{b}, A, is much reater than for those in Plate $\overline{5}$, 13 .

Yabo Layolet
MAN ALIETS
To facilitate the tansportation and piling of lumber the man
 alleys have mo sarfaciner in others phanking is used, and occasionally alleys are surfaced with concrete.

MEAR ALAESS
In some instances the rear alleys are ned for unpiling the lumber. Evon theugh they may not be used for this purpose, they shonld be at least 8 feet wide it ragid ais mowement is needed. The advantage of the alleys shown in late $6, B$ and $(4$, as compared with that in Plate 6. $\mathrm{h}^{\text {, is evident. }}$

chiss Alleys

The alleys at ribhe merles to the man alloys should be spaced 200 or $3(0)$ feet ilum to lacilitate the mowement of lumber. If they are made wide enough, say 6 teet or more they will tend to limit the extent of a fire. These alleys. Hike the others, of course infuence the movement of ait throurh the yard.

TEAMENAYS

Becaume of ratations in the leve of a yard and also in order to permic highor piling without mechanieal efpipment. elevated wood ronways falled tramwas, are sometimes bailt in the man alleys. (Pl. $\overline{\mathrm{F}}, \mathrm{A}$) It has been found, however, that a tramway in front of a pile materially refards the drying ute in the lower part of the pile and increases the danser of depreciation from blue stain and decay to sud an extent that the apparent advantages ordinarily are outweighed by the disudrantages.

$\mathrm{M}:{ }^{*} \cdot \mathrm{~F} . \mathrm{F}$

 [10 ©
 ms.athengime it frokurl?

The principal requirements of satistactory supports for a lamber pile are limmess, durability, und a height sufficient to allow the air that has circulated through the lumber to escape radily, especially by allowing wind from any direction to blow beneath the pile. The minimm distance between the rround and the first layer of lumber shoukd be 18 inches. Firmness and durability are required to prevent sagging and consequent warping of the stock.

dNit FOLNDATIONS

Fonndations may consist of heary planks resting directly on the gromod and supporting piots and stringers. The unit type, as this construction is cated, is buitt the sume width ats the pile and separate from the adjoining fomdations. Such a fonndation permits defate alignment of the piles (p. 36) , is readily adjusted for different fengths of stock. and is ensly repaired. A disalloantage is the tendency of the wood in contact with the ground to decay.
cowrcome's forvormoss
The stringers of the contimous type of foundation are supported in a manoce simitar to that of the init type, but they extend from one cross alley to the moxt.

PIERS

Conerete piers, which we sometimes built as shown in Plate $7, B$, me very satisfatory. The low. solid toundations shown at the right in lpand 7 . (. are in mathed contmat with those near the midde of the ithastration; the solid ones should not be used because they prevent proper cireatation under the piles.

Sicofe

Rumardess of the type of foundation. the slope from front to rear should be approximatery 1 ineh to the foot of length of pile.

PRESEIMFATHE TRENTMENT

Timbers used in the construction of foundations for lumber piles shond be impregnated with ereosote, especially if they are of a nondurable speries of wood or the sapwood of any spectes. If the cost of the imprecriation process is not justified. the timbers shouk at leat be given two coats of hot creosote. or an equivalent treatment, on the surfaces that are to be in contact with other surfaces or with the frombi. I-boams and inverted railroad rails also make satisfactory stringers for such service.

Because of the marked differwere in the drying rates and in the soasoming degrodes of stock of varions species, grades and thichnesses, the separation of stods hhould in some cases be made at least on the basis of these thre factors. For instance tatinch sap gum requires mapid dryiner conditions to prevent bue stam, while $4 / 4$-inch southem lowhand red or white ouk shoukd he subjected to more moderate drying conditions, sinee it is wey liahe to check and to honeyeomb.
tpper-grade stock of coniferous species is clear, while the lowergrade stoek has knots which are liable to check and become leosened if subjected to the extreme dreing ronditions that the upper grades can withstand. Likewise the conclitions to which the heartwood of red wam shond be whbected are mone mitd than those proper for its sapwool. Thas in my spectes in which the drying rates of beartwool and of sapwood differ materially separation on this basis whontil be criven careful consisteration.

Thick stork of a triven species reduires a lomper drying perion than thin stock dons and is aho more liable to check. Further differuty is encontered when piese of mone than one thicknes are pibed in the same layer sine the stiekers then tail whot the thinmer pioes in position offectively and therefore permit warping. In addition, such thin pieces in a layer tail to support the stickers above them, a comilition that alway cense at least detommation of the unsupported stickers, with reabiant injury to the stock above them. and may canse breakere of the stickers, with still greater injury to the stock.

Fot nuly is it ancisable tosamate the stock with respect to suecies. grades (at least by groums) and theknesses, but proper piling will be Facilated and seasoning desuade will he redued if the separation is mader naso with revect to wirkh and length. Widh miform-with stock, staight flase of an desired width from bottom to top an be provided so that air morement will be reasonally uniform throughout the pile. When the lumber is separated as to length. piling so as to avod owrhanging and. which ame liable to check and warp, is simplifed.

For hardwoods. the distance betwen fues should ordinarily bo about 12 or 14 inches: too great a distance causes too slow drying. Boarls. inchuding thote of fandon width. may be gromped to obtain the proper distance: for example there 4 -ineh boards two 6 -inch, or one 4 -inch and one 8 -inch are all equivatent to one 12 -inch board.

For much softwood lmber the distanee between flaes shond be apmoximately the same as for hardwoods. Loxal conditions howpeer, always detemine the exact paciner that is proper the species of lumber is merely one of these conditions. Extremely high humidity and light winds. for instano might make correct a spacing betven thes of only s inches and on the other hand when the hoards are 30 inches wide the fhe spacing obviously can not be less than 30 inthes.

Types of Pless

Somelimes the separation of sork with respect to length is not feasible. T'ou often the result of piliner tandom-lencth stock withont sorthig is ats shown in late $6 . A$. Except for very low-grate mate-
rial. wich a mothod of piling shoukd never be used. since the conseguent deppeceistion in the value of the stock because of warping and checking is unnecessarily high; the loss in such depreciation will more than equal the additional cost of proper piling.

TGX 13LEES

If stock is piled without overhunging ends, as the lumber in Plate ©. 13 and (. is, the method is catled hox piling. In piling randomlongh stock for air sumonimge the longest boards or phanks should le phated in the two onter tiers; and if there is a sufficient namber of thene bomeds for additional tiers, such tiers should be uniformly distributed abrose the width of the pile. As far as possible the boand throughout aty tier shouk be of the same length. whatever that length may he. Whether the short boards should all be placed with these end: thash with the frent kace of the pite or whether atjareut short-hoard tiers should be flash with the front and the mar fates, repertively, tepems on the stickerine. Let us suppose. for example, that 12 -foot and 16 -foot boards are being piled and Han there tiers of wikers are alequate for the 16 -toot stock. If the shom-lengeth tiers of boards are all flush with the front fare of the pite om los bier of stickes to support the ends of the 12 -foot stork will be wepured than if the alternate method is used. On the other land. if the number of interior 16 -toot tiers is limited, saring one tion of stickers les such piling may result in too much sag in the rear the of stickers, which is athost certain to deform the homote resting on them. It five or more sticker tiens are required to kep the 16 -fowt stok from warping adjacent short-lenyth tiers of boads shembl he placed flush with the front and the read fares of the pile. repertivels. Such stagering of the short-length tiers is well ablapted to a pile in which there are no interior long-length tiere of hamels.

Minor monifinations. of the method of piling just deacribed are aloo callow box piling. For eximple, in proper Liln drying, with flat piling. the bins of longr bourds are grouped in the sides of the pile insead of being distributed over it. ind the tiers of short boards are alway- stagerem from end to end instead of sometimes being concentrated at oute end. This distribution of the sertical air channels at the ends of the shart tiers is repuired for proper circulation in the lomited space within a dry kiln. Again. in ar-seasoming practice the term "box piling " is sonetimes applied to properly piled boards of the emue length. either nominal or actual. The essential features of the box pile are accurate separation of the boave by length, the ase of long boards for the outer tiers, and proper support under rach end of every board. so that no ends orerhang.
specral plles
One intentional divergenee from an essential feature of the box pile is sometimes found in the piling of certain self-stickered softwoods. especialy with wite bourds. The rear stickers are set back 1s to 24 inches from the ends of the stock. perhaps with the idea that, wien the boards are not trimmed accurately to length, it is
impossible to have the stickers flush with their ents. When it is possible, however, placing the rear stickers so that they overhang the ends at least 1 ind is desirable, because then less end checking is likely to ocem.

Another divergence is the staggering of the middle and the rear fiers of stickers. This practice appenrs advantageous for the middle tier; it should decrease both the moistare content and the checking of the portions of the boards and stickers that are in direct contact. It the same time, if the stargering is not properly done, there is danger of waping. In such staggering one edge of each sticker is directly over the center line of the sticker below it, and successive stickers are offset in opposite directions.

Almost invariably boneds and planks are piled perpendicular to the main aley, as in the piles prevously illustrated. This methot is endwise piling. Ocasionally, however. the lumber is piled paralle to the alley; this pratice is sidewise piling. The sidewise methorl might be expected to afford more rapid drying than the endwise beanase the face of the sidewise pile next to the alley, is more open than that of the endwise pile. The condtasion from examimation of actual air-seasoning test piles in the southem yellow pine reason, however, was that the difference in drying rate letwen endwise and videwise piling was negrigible. It appened also that the difference in the amount of blue stain resulting from the two methods was negrigible, although the data on this point were not sufficient to be rondusive. Sidewise piling is more inconvenient than endwise piling and is probabily more costly.

hile Seactiges

In the rarious lamber regions the lateral spacing between yard phes varies from a fow inches to 6 Feet. This sparing is one of the most important factors affecting the nir movement around and throurh the piles. It is hardly possible to recommend the proper lateral spacing in all cases. Brombly, and by way of example, it may be stated that + feet for species such as the pines and that 0 fect for the sapwool of red gum mad for basswood are considered sutisfatory. A definte maswer in a given case depends upon how mapilly the lumber dries, the width of the pile, the lateral and also the rewteal sparing betwen aljoining boarts, whether checking or stain is likely to be the principal canse of dequade and climate.
Srespective of the lateral spacing it is alrantageons from the stambwint of the affect on graberl air novement through the yati to bave
 sometimes nsed is a "checkerboarl" layout as ilhustated in Plate s. 13. In this plan the piles on one silf of an alley are directly oppowite sames of the same width on the other side. In other words. onty half the usbal momber of piles is phacel on each sule of the alley, Athough the checkerboard arrangement umbobecoly has aldantages. the superionty of the checkerbond owe the more nanal hayon, when the usan hagont is given the same peoportion of tree space, has not yet been proved.

O casionally the piles are so disposed in a yard that there is some opportunity for selecting the fommations on which fresh stock is to be put. If a species like sap grum is to be seasoned, the piles should be placed as fia from other piles as possible in order to hasten the drying rate. On the other hand, if oak is to be seasoned, the stock shonde, if possible, be phaced between two piles of some other green stork to retard the drying rate and thus reduce checking and honeycombing.

Pre Wemris

The width of a pile aflects the rate of drying, and should therefore be given careful consideration before any particular dimension is adopted as permanernt.

In the sottwool regions the width of a pile is asually made equal to its lenuth. In the south the width of hardwool piles is generally (f feet, while in the North it is 12 to 16 teet. For sapwood buards of a species like red gutn a rary narmow pite is desimble, in order to hasien drying and to decrease bue stain. With ouk, on the other hand, the danger of checking amd honeycombing is very great, and from this standpoint extremely narrow piles are objectionable. At the satue time wide piles do noi fit in well with a sonthern hamdwood operation becanse of the large number of items and the relatively smath amomt of each item cot daily at the average sonthern mill. Consequently the wider the pile the more the stock is exposed to stan and rain before the root is provided, because the pite then is haift up more slowly. Prossibly it would be worth white for hardwood operators. especially in the South, to consider devising a form of ronf built in sections of consenient size and weight that could be phaced over ineompleted piles until additional stock is available.
The marked eflect of the wilth of the pile on the drying rate was imdieated by two piles of redwool. 8 and 10 feet wide, respectively, that were of the same class of stock amb erected at the same time. In 136 days the narrow pile reched a moisture content of 19 per cent, while the other pile dried only to 36 per cent. Although redwood. the speciess selected for this drying test, is not subject to blute stain, it is remonable to expeet that the faster drying rate obtained with the narrow pile wond reduce bhe-stain loss in species that are subject to such atterk. Namowing the pile unguestionably has somewhat the same result as opening up the pile, a matter that is ciscussed a little later under the headings "Stickers" and "Board spacings."

Phe Heght, Iften, and Shop:
In the western soft wood regions the height of piles averages probably 14 to 18 feet and in the somthern softwood regions about 12 to 10 . feet. except in rards with tramways or with mechanical piling equipment, where the height may be 20 feet or more. In the southern hardwool region the height averages about 12 feet and in the northcem hardwood region about 15 to 18 feet, although in northern yards having tramways the height is sonetimes 30 feet. Since the general trend of the air movement in a pite is clownward, it is obvions that the higher the pile the greater will be the difference in drying rate between the top and the bottom of the pile. No significant difference
has been fomm in a pile 10 feet high, but in a 20 -fout pile the difference is considerable. Thus the advantage of saving vad space by the use of high piles may be offect by retardation in the drying rate and resultant degrade in the lower part of such a pile.

The usual pitch of the front face of a pile toward the alley is about 1 inch to the foot of height. Such inclination permits the rain to drip from the front face, sn that the water is less likely to trickle through the pile. The slope of the pile from front to reat is usually about 1 ind to the foot of length, an amount that permits water entering the pile from the top or the sides to drain off.

Stickens

The strips or boards used for separating the layers in a pile are generally referred to as stickers, and sometimes as crossers. They are of two kinds: Stock stiekers and specinl stickers. As the name indicates, stock stickers are boards of the same kind as those being pilect. Speeina stiekers, on the other hand, may be of the same or of a different specties. The usual speciall sticker for softwoods is nominally 1 inch thick by 4 incles wide, and for hardwoods is nominally 1 inch thick ly $11 / 4$ inches wide. All stickers in the same layer should be of aniform thickness to minimize warping.

Where the prevention of checking or staining is important, special stickers should moquestionably be need. With low-grade stock. howeyer, the use of stock stickers is justified, not only because the ioss from depreciation is small but also becanse they permit more stock to be piled buth in a given space and in less time than when special stickers are userl.
Spectial stickers should at least be thoroughly ain-dry it not kilndry in order to minimize blue stain, decay, and checking in the lumber they support. If green stickers are used the portions of the boards in contach with then dry out more slowly than do the remaining portions, thus increasing the danger of fungus development and at the same time setting up shemkage stresses that may result in checking. Heartwood is preferable to sapwood for stickers because it does not blue stain and is more resistant to demy.

The number and the position of stickers may have an important bearing on degrade, and these factors, therefore, may vary with the species of the wood to be air-dried. For instance, a sulficient number of stickers is necessary to prevent warping, but too many sticker tiers may result in blue stain and consequently an unncessary deprectation. Usually three tiers of stickers are considered sufficient for 16 -foot western yellow pine boards, while nine tiers are required for red gum boacds" of the same length. It has been tound that if special stickers are placed so that their outer sides project beyond the ends of a pile of boards the drying rate of the wood covered by the stickers is retarded sufficiently to effect a material reduction in end checking; such stickers may be 2 inches wide instead of the customary $11 / 2$ inches. As a rule the stickers should be aligned so that the tiers are parallel to the front face of the pile, in order to minimize warping. Each tier of stickers should be supported directly by a foundation beam. (Pl. $8, \mathrm{C}$.)

Because of the common tenclency of the lower part of a pile to ary more slowly and to stain more than the upper part and because this
tembency is directly related to the air movement within the pile, studies lane been made of the effect on atrying conditions of using lhicker stickers in the lewer third or hatf of the pile. (PI. 9, A.) The reanlts obtained show a very befmite advantage for opening up part of the pile by this mems. On the other hand, if the thicker stickers were used in the upper part of the pile also, the more rapid drying resulting in that portion would in some instances be objectionable becanse of increased shinkage defeets.

Where the opeator does not wish to carry two sizes of stickers, the desired opening of the pile may be attained simply by donbling the stiekers, that is, by using two 1 -inch stickers, one on top of the other instend of one $\underline{\underline{L}}$-inch stieker. lurther increase in the area of horizontal openings to aid circulation within the pile may be provided, of course, by using still lhicker stickers, either solid or built up.

Boamb Siderios-Flues ave Curaneys

Mention has been made of the fact that in the main the air movewent in a pile of sensoning lumber is downward. Consequently if lle stock is separated as to width (p. 34). it can be piled with straight llues, which with aid cirembation. The width of late, which is the horizontal spacing betweon boards, can be varied to suit the conditions: that is. it the primeipal canse of degrade is stain, the spacing between boards should be increased. On the nther hand, if checking is the prituripal defeet. the spacing between boards shoutd be derensed. The disadsantage of this method is that it can be applied practically only to the entire pile.

Nore ur less arbitrarily, the space betwern two tiers of boards may be callol athe when it is less than 6 inches in width. If the space
 it then may be either st might or tapered. (PI. 9.13 and C.)

It ordinary random-width stork is to be piled, it is good practice to provide there or more straight chimneys about f inches wide and w place the boards in any layer between two chimneys so that adjawent elgers are in contact or nemrly su. In this way the edges of the boards on each side of a chimuey can be placed in approximately vertian alignment.

II' rery wide random-width stock is to be piled, it may be more practionhe to prowide one wide, tapered, central chimmey than aypral marrow chimneys.

Where desirable, it is possible, of course, to supplement the effect of the chimneys by providing increased horizontal openings in the lower part of the pile, as previonsly described.

Rows, Mrip foabds, and Shens
Except for pery low-grate stock, sone form of pile covering is athantarcous in decreasing depreciation from alternate exposure to stan and rain, which causes checking and warping. Roofs should :always be mathe of low-aratle material, in order to minimize costs. The boards in the first layer of the roof may be spaced about onehalf inch apart, and those in the top layer should then be placed divecty over the spaces between the boards in the lower layer. The roof, it it is tight. should slope about 1 inch to the foot; if it is
not tight the slope must be somewhat greater, perhaps 25 per cent greater, in order to provide for sat isfinctory man-off. The rout should project abont I foot at the front and 21,2 feet at the rear to atid in Keeping some amd min from the ends of the pile. To atford additionat protection, drip boards are sometimes used, as shown in Plate 6, ($:$ Where it is desibed to have the roof project in the manner desmibel without aning extratength stork, the sectional constracfon shown in llate 10, A, can be provided. However, more space than that shown betwen the root and the top layer at the rear would be atwisable. In any avent this space should be ample to allow penty of ate to enter the top of the pile. An averate of b inches is eonsidered sutherent for this purposse.

In a wimly location the roof should be fastened to the pile by wiring or equivalent means.

EN: I'kotection

Reterence has been mate to the fact that if special stickers are placed so that they project beyond the ends of the boards in the fayer below them. they will retard the drying mate in those ends and thas decrase ent-cherking. In thick stork the protection afforded by projecting stickers may be very inadequate, and in this event sun shiohls may be useful. Phate 10. B, illustrates the use of boards for sun protection. and a convenient type of portable sun shield is shown at the left in Pate l0. (?
(CO.1TEMGS
Coatings for rechecing changes in the moisture content of wood are another means of protection arainst end cherking. Such coatjngs should be applied before checking berins. Paraftime is one material that may be used for this parpose. It shond be melted so that the stock can be end-dipped in it and thas given a coating abont one thirty-second of an inch thick. Another coating material which may be applied with a brush and which is more convenient to use, since it noed not be heated, is filled hardened gloss oil. It is made up ly paint manafacturers. Yarions kinds of hardened gloss oid are on the market, some of which are not suitable for end coatings. Hardenel gross oil having a high degree of resistance to the passage of moisture consists of 100 parts. by weight of rosin. 8 parts of quicklime, and 56.5 parts of a thinner such as mineral spirits. Filled hardened gloss oil ${ }^{10}$ is made by mixing 25 parts. by weight. of fibrous tatc, 25 parts of barytes. and 100 parts of hardened gloss oil; the purpose of the inert pigment is to increase the moisture resistance.

END PILING

End piling for sensoning. which is illustrated in Plate 11. is ased to a limited cextent in piling sap grum in the drier sedtions of the southem hardwood rugion. Thich, clear lamber in the sugar-pine

[^17]
t. $4 \cdots 5 \%$ F

[^18]
Platel2

Ische thal 17.t i's. Deat, af Agrin altore
Plate 14

$\therefore 11 \cdot$

AF:159'F

region of California is also occasionally end piled under shelter. End-piled lumber in a scasoning yard is virtually the sume thing as lumber flat piled in the ordinary manner and then tipped up on end. Although the term "end piling" is also used in kiln drying, the piling method is different ${ }^{17}$ and, further, end piling in finish sheds is customarily done withont the stickers that are essential for green lumber. Just as its flat piling, care should be taken in placing the stickers for end piling so as to avoid warping and end checking, and in providing proper flues ot chimneys in the pile.

Some operators in the lower Mississippi Valley maintain that end piling permits the Iumber to dry faster than flat piling does. In a certrin yord the lumber is end piled for about 15 days, until the surface is dry enough to prevent the development of blue stain, and is then fat piled. In other Mississippi Valley yards the lumber is left end piled until dry. On the other hand, in a yard in which the drying conditions are typical of those in the Appalachian region, end piling was found so unsatisiactory that it hus been discarded in spite of the loss involved in tearing down the expensive supports it vequires.

END RACKING

There are two common methods of end racking yad lumber. One maty be designated as the X form and the other as the inverted-V form. (Pls. 11, C, and 12, A.) Less warping and end checking are likely to occur in the inverted-V form than in the other form and the inverted V is therefore preferred. Another advantage of this method is that stain, if it occurs, is most likely to be at the intersection of the boards, and a smaller loss from trimming results if this defect is near the end than if it is near the middle.

The upper support shown in Plate $12, \mathrm{~B}$, rests on posts braced longitiudinally and lateally, and the lower ends of the boards rest on planks on the ground. Better drying would probably be secured in the lower portions of the boards if they were supported a foot or more alsove the ground.

The statemends previonsly made (p. 33) concerning the firmness, durability, species, anti preservative treatment of wood foundations for that-piled lumber tupply likewise to the supports for the end racking or the end piling of lumber.

It is obvious that the air can circulate much more freely around end-racked thm around flat-piled lumber, especially in the vertical direction, and this fact accounts for the more rapid drying that oceurs with end racking. After being end racked for from two days to two weeks, stock is usually dry enough to prevent blue stain unless it again becomes wet. When the work is done properly end racking is desirable where stock is especially subject to blue stain. The total length of time that stock is end racked depends on the weather; 3 to 10 days is a usual range. It should be long enough to permit the dryine necessury to prevent blue stain and the stock should then be flat piled immediately to keep warping and checking to a mininum.

The species of wood most commonly end racked are sap giom, yellow poplar, and magnolia.

[^19]
CRIB PILING

Occasionally lumber is crib piled. Such a pile, which is in the form of a hollow triangle, permits rapid drying, but it has the disadvantage of requiring excessive space and the method is liable to result in considerable degrade because of checking, staining, and the warping that comes from lack of support.

DIMENSION STOCK

DEFINITION OF DMMENSION STOCIK

Dimension stock is the wood stock of the different sizes and shapes required by wood-using industries in the manufacture of fabricated articles, such as furniture and turnings. It varies in thickness from one-half to 6 inches, in width from one-halt to 8 inches, and involves lengths up to 8 feet. Most of the stock, however, consists of sizes less than 3 inches square, or the equivalent in cross-sectional area, and less than 4 feet in length.

To facilitate landling, it is more or less common practice to bundle the smaller sizes.

SOLID BUNDLES

A pile of solid bundles is shown in Plate 13, A. Although the sticks within each bundle are in close contact, the bundles are separated by stickers. This method of bundling is rapid, and it probably holds small squares straighter than when stickers are used within the bundles. If the stock is susceptible to stain, however, this defect is almost certain to develop.

STICKERED BUNDLES

Stickered bundles are shown in the upper part of Plate 13, B. In this type of bundle the air may circulate more freely over each stick so that the rate and uniformity of drying will be better than in a solid bundte. In some species and sizes, however, the tendency to warp is so marked that the resulting degrade is excessive; the amount of the loss involved seems to indicate that in such cases the stock might better be dried in the bourd or plank form; the lumber could then be recut to any desired size.

COB PILES

In a cob pile the stock is not bundled but is stickered with itself in about the same manner as that of the piles shown in Plate 14, except that the number of pieces in a layer is the same for all layers. Cob piling permits a larger amount of stock to be stored in a given space, but it is conducive to slow drying.

STOCK STICKERS OR SPECIAL STICKERS

The choice of the kind of sticker involves a compromise among economy of space, drying time, and degrade. Obviously, the thinner the sticker the more the stock that can be piled in a miven space. and within limits, the thicker the sticker the faster will be the dry-
ing rate. The most desirable drying rate will vary with the species of wood and the size of stock; it depends apon whether the dominant defect is likely to be checking or staining. The use of special stickers ofters a flexibility in piling, not only in different piles but also within the same pile, that may prove adrantageous at times. Further, speciat stickers can be previously dried, so that the sapwood in contact with the stickers will be less liable to blue stain.
Plate 14, A, is an example of good piling practice where selfstickering is required. The phacing of stickers at the ends of the stock and the vertical alignment of stickers are points to be particularly noted because of their tendency to reduce end checking and warping. With squares that are likely to surface cheek it may be advantageous to minimize this defect by phacing each piece so that the quarter-stwed surfaces are horizontal: that is, in direct contact with the stickers. The phain-sawed surfaces, of course, are then vertical, and the adfacent surfaces of all squares in the same layer are close together. By this mons the drying of the plain-sawed surfaces may be retardicd sufficiently to reduce checking. Ordinarily the danger of checking of cuarter-siawed surfaces is negligible.

dif plling

Phte 15, A. illustates a piling method sometimes used for flat stock. Each successive piece overlaps the one below it, so that only two tiens of stickers, one at ench end of the pile, are required.

SEASONING SHEDS

Even though stock of a miven species may not be subject to blue stain, it may. if exposed to the stan and the rain, become so badly wenther stained that the discoloration will not be taken off in machiming. With high-grade stock, therefore, seasoning in a shed such as that illastrated in Plate $15, \mathrm{~B}$, may be profitable. As with unsheltered lumber, the fomblations should be firm, durable, and high enough to afford adequate circulation of air under the piles.

LATH

Apparently one of the most satisfactory methods of piling lath for at seasoning consists in placing the bundles about 8 inches apart on 2 by 4 inch stickers. The lowest layer of bundles is supported about a toot above the ground, and a tight roof is provided. Such a method is not entirely satisfactory, however, for in damp weather the faths near the middle of a bundle, which usually consists of 50 , dry so slowly that they blue stain. In one instance, after air satsoning for $3: 2$ days in carly fall, the average moisture-content values of a lath from the outside and of one from the center of a withde were 17 and 182 per cent, respectively. The lath of high moisture content was heavily blue stained throughout its length; the other one was bright. The difficulty in preventing blue stain in lath is probably greater than with a timber of the same size as a bundle of lath, because, if the surface of the timber is dried quickly enough to prevent the stain from getting a foothold, the inside is likely to be free from attack. On the other hand, fungous spores can easily enter the interior of a bundle of lath.

Bhe stain in the air seasoning of lath may perhaps be reduced, possibly through a modification of the method of bundling or through chemical dips, but at present the only positive means known for preventing the development of blue stain in lath, as in lumber, is artificinl drying.

RAILWAY CROSSTIES

METHODS OF PILING

The general principles involved in preventing decay and checking of lumber are applicable likewise to railway crossties and other timbers. The tie problem, however, is somewhat more complicated than the lumber problem because of the larger size of the individual piece. Thas, the naturally slower drying rate of the interior of erosstics, as compared with that of boards and planks, is conducive to the develoment of decay in untreated ties. Further, the greater difference in drying rate between the inside and the outside of a crosstie tents to cususe a larger amount of checling. On the other hant, more checking is permissible in crossties than in lumber of the upper grades, and uniform drying throughout is not required, since in general only the outer part of the tie is treated with preservative, and the primary purpose in seasoning such timbers is to make them take a satisfactory preservative treatment.

Plate 16, A, illustrates the 11 by 11 method of solid-piling; the ties in each successive layer are at right angles to those in the layer beneath. With this method, surface checking is not so likely to occur, bectuse of the relatively slow deying resulting from very slow circulation of air through the pile. The method may be used safely only where there is practically no danger of decay, and in practice is used chiefly for treated ties.
Another type of pile, known as the 10 by 1 form, is shown in Plate $16, B$. Beause of the more open character of this pile, more rapid drying may occur, with an increased amount of checking and a decreased amonnt of decay resulting. Somewhat more rapid drying may be expected from still more open piling like the 7 by 2 , and simiar kinds.
Special stickers to separate the layers of crossties have been used in exceptional cases.
The particular method of piling best adapted to any given seasoning yaml depends upon such factors as speceses of wood, yard site, and weather conditions, and on whether the domimant defect is decay or checking. In one yard where drying conditions are especially favorable and the species of wood involved, lodgepole pinc, is not very refractory, surprisingly good results are said to be obtained by piling the ties in rows like cordwood, all pieces being parallel. At each end of each row a erib or a solid pile is erected.

The lowest layer of ties sometimes rests directly on the ground. This proctice generally is objectionable becuuse it is hable to result in slow drying and decay. To avoid this difficulty, it is advisable to pile the lowest layer on treated stringers a foot or more above the ground.

Crosstie piles may be 10 to 10 feet high, the spacing between aljacent ties varying from less than 1 inch up to 4 inches. A few
companies are erecting piles 30 feet high or more. Often the piles are arected in rows 30 or tho feet long, with practically no space between piles. The rows, however, are spaced 3 to 5 feet apart.

END COATINGS

Nthough the use of coatings to prevent the end checking of crossties has not been investigatel extensively, it seems quite possible that a moisture-retardant comthor, such as roofing pitch or as the filled hardened gloss oil referred to on page 40, may prove advantageous in the seasoning of erossties as weli as in that of lumber. To secure the maximam benefit the coating should be applied before the tie has begun to check. The foregoing relates to the problem from the stampoint of checking only. One operator reports satisfactory results from brash treating the ends of crossties with hot creosote in order to prevent decay: the spots where other ties cross a tie shouth also be brush treated.

ANTICHECKING IRONS

Two forms of irons designed to hold the ends of erossties intact arginst checking are in more or less common use: they are known respectively us crinkle irons and Sirons. Which of the two to use appears to be more or less a matter of individual preference.

SEASONING PERIODS

The seasoning time allowed for crossties by different operators varise considerably with the species of woon, as shown in Table 4. The methods of piting, ranging in some instances from 10 by 1 to 10 by 10 tor the same species in the same region, appear to vary with the persond preferee of the individual operator. The seasoning periods for the sume species also show considerable variation, even aler allowing for the natural diference between summer and winter rates of sentoning: Of comse differenes in local conditions, such as wind and humidity, often refuire great differences in seasoning periods, yet eren these factors fail to account for all the variations.
 for rathayty crosstics of warious spece's

[^20]Table 4.-Summary of wasoning periods employed by different trealing phans for sahtay crosstics of carions specicy-Continued

Spectes of wowl	Megion	Method of pillas	Time of scnsoning
Hemtock, westorn	Roeky Mo		
Larch, westere.			
	Atintic const	0 by	5 to 8 months.
Mmple.	Lake stmes	10 by	6 monilhs.
	-10.	----nto	8 to 12 mont
Onk, reth	-19	10.	8 momils.
Ouk, wilite.	atide West	.-.do	14 to i8 montis.
Iino, ledserole	Recky Monn	10 b	6 to 8 months. 12 motsths.
Ifte, southarn yellow	Athatic conci		3 to 4 month
	froeky Mountil	l0 toy	
P'the, westura yeltow			8 to 22 montas. 3 to 1 months.
e, Engelt	$\text { Y-. } 10$	10 b	4 months. 8 to 10 months.
	- tio		

POLES

METHODS OF PILING

In some cases wreen poles are piled so high and so close together that sensoning is reaty retarded, especially when the lowest hayer rests directly on the gromol. In order to hasten the drying rate one large protuce of poles has developed the method of piling shown in Plate 17. The piers and beams, whel are ereosoted, support the fowest layer of poles about 2 feet above the around. Suecessive layers of poles are sepamated by treated stickers about 4 inches thick. A chimmey 2 feet wide is left in the middle of the pile from bottom to top. The poles, in this case soulhern yellow pine, are seasoned ahout two months during the summer or four months during the winter, prior to preservative treatment; in some parts of the Inited States a seasoning period of four to six months or even more is considered desirable. The time permissible is determined largely by decay conditions.

SEASONING PERJODS

Table b gives the reported seasoning periods allowed for air seasoning of poles of several species from the green condition to the a veragr moisturesontent values indicated.

Tanle : T. Time allowed for air-seasoning poles of western red and northern white fedar and the finat moist wre-content values

Figure is shows air-sensoning curres for chestnut poles in a Maryland yard. In this case the finul moisture content, although satisfactory, was so high that only a negligible amount of shrinkage had oceurred.

TIMBERS

METHODS OF PILING

It has been common practice to bulk pile timbers unprotected, as shown in Plate 18, A. This practice has resulted in heary losses on aeconnt of stain and decay, especially if the timbers were exposed to rain for some time just before being loaded into vessels tor long oean shipment. Some operators. however, are now finding that the cost of properly storing timbers on stickers and under an open shed is well repaid; the timbers are so stored that they bave opportunity to dry considerably, at least on the surtace. (Pl. 18, B.)

End Coatings

As with hamber ant crossties, the use of moisture-retardant contings to prevent dhecks in timbers may be advantageous (p. 40).

DRYing data

The drying curves for 12 by 12 inch by 24 foot southern yellow pine and Doberas fie timbers, air seasoned in an open shed for two years at Madison, Wis., "ppene in Figures 12 and 13 ; these are species commonly used for structural timbers. The timbers were piled on 2 by tinch stickers and were spaced 2 to 3 inches apart. The retarding effect of winter wather conditions on the drying rate is very evident.

Dhring July, 1922, the precipitation was 53 per cent above normal, and the sumbline was 18 per cent below nomal. On the contrary, in October, 1922 , the precipitation was 73 per cent below normal and the sunshine was 33 per cent above. These conditions appear to be refected in the curves (fig. 12), which show more nearly uniform seasoning during the period Jnly to October than would ordinarily be expected. Likewise, the rehtively slow seasoning rate of the Doughas fir timbers during March, ines (ig. 12, B), is probably attributable to the fact that during that month the temperature was 19 per cent below normal and the precipitation was 87 per cent above.

POSTS AND CORDWOOD

Posts and cordwond ate often piled solidiy, all pieces being parallel. This method of course is most liable to produce decay and least liable to produce checking. More rapid chying is likely to result if the pieces are piled in the form of a hollow square, the so-called log"abin style. This method is liable to bring about an increase in the amount of checking, but with cordwood checking is not objectionable; the chief disudvantage of the method is that it requires a great deal of space. A modified log-abin piling gives almost as good results and occupies much less space. In the modified method the pile is self-stickered, each layer resting on single pieces at opposite enls of the pile. (Pl. 19, A.)

Iravas lit Ar-seasoning meves for southern yellow pine heartwoot thabers

COOPERAGE

staves

The piling of slaves in the form of a hollow square to secure rapid drying is shown in Plate 19, B. With this method of piling, 30 days is ordinarily required to air season 2 -inch staves satisfactorily. The staves are halt-lapped, so that the weight of the upper ones does not tend to change the desired curvature of those supporting weight.

heading

A method of open piling, which is particularly adapted to heading, is shown in Plate 20, A. Here the pieces are piled approximately in the form of a hollow cylinder. In sorue instances the top of the pile is built up in the form of a cone for the purpose of providing some protection against rain.

VENEER

Only ar relatively small amome of veneer is air seasoned. Most of it is dried either in standard dry kilns or in special mechanical criers.

 -ant:s:

Two methods of piling thick veneer for air seasoning are shown in Plate 20, B and C. In the first method the courses of veneer are stacked on end, separated by stickers, and are given some protection from sun and rain by a roof. One modification of this method was observed in which the stickers were vertical and the pieces of veneer were racked on edge. In the second method the vencer is flat piled on sticiers in a manner similar to that in which boards are commonly piled. A third method is to suspend the sheets.

DRYING RATES AND FINAL MOISTURE CONTENT

EFFECT OF CLIMATE

As already explained (p. 17), temperature and humidity affect both the drying rate and the equilibrium moisture content of wool. From this it follows that a hot, dry climate, such for example as

 luelt und the timhers in buel layer were spaced iz to is laches npart
that which prevails in the Southwest, is much more conducive to a rapid drying rate and lower final moisture content than, for instance, is the damp climate of the redwood region of California.

EFFECT OF SEASON OF YEAR

The influence of summer and of winter conditions on the drying rate and the final moisture content of wood is clearly shown in Figures 12 and 13 , which have been discussed previously. In another instance some 1 -inch birch boards were air seasoned from the green condition to a moisture content of 15 per cent in about six weeks during the summer, but during the fall they absorbed moisture, and by December 1 the moisture content had increased to 20 per cent.

EFFECT OF SPECIES OF WOOD

Some species of wood differ markedly in their rates of drying. In northern Wisconsin, for example, 1-inch basswood is reported to
dry in about one month less time than 1 -inch maple does. The maximum difference in the final moisture-content values of 1 -inch boards of the various common species, however, is probably not more than 2 per cent when the boards are subjected to the same air-seasoning conditions for a time suflicient to bring them to equilibrium conditions.

EFFECT OF THICKNESS

Some 2 -inch southern swamp white oak planking required 270 days to air season from 70 to 23 per cent moisture content at Madison, Wis. Under similar conditions the corresponding drying time for $41 / 2$-inch oak waron bolsters was 464 days. After 379 days of seasoning the final average moisture content of the 2 -inch plank was 16 per cent and after 710 days the corresponding moisture content of the $41 / 2$-inch bolsters was 19 per cent. Records for certain western softwoods indicate that 1 -inch stock may air season in half the time required by 2 -inch stock of the same species. An approximate rule appars to be that the rate of air seasoning for different thicknesses of stock of a given species ranges from the proportion

$$
\frac{R_{1}}{R_{2}}=\frac{T_{1}}{T_{2}}
$$

to the proportion

$$
\frac{R_{3}}{R_{\mathrm{i}}}=\sqrt{\frac{T_{3}}{T_{4}}}
$$

in which the T 's represent respective thicknesses and the R 's represent respectively the corresponding drying rates. The rule applies to thicknesses not less than 1 inch and not exceeding $41 / 2$ inches.
Data sufficient to show the effect of air seasoning on the equilibrium moisture content of stock of different thicknesses are not available. In a series of experiments on partially air-dry white ash, however, the pieces were exposed in a room at approximately $80^{\circ} \mathrm{F}$. and 90 per cent relative humidity. The 1 -inclis stock then absorbed moistare up to an average value of 23.8 per cent, while the $31 / 2$-inch stock reached a moisture content of 23.3 per cent under the same conditions. When the stock was dried in a chamber at 120° and 28 per cent relative humidity, the corresponding moisture-content values of the 1 -inch and the $31 / 2$-inch pieces were 5.8 and 6.5 per cent, respectively. So far as white ash is concerned, therefore, it appears from the foregoing that thickness has a neghigrible effect on equilibrium moisture content under the constant conditions noted. On the other hand, if the stock were exposed where the temperature and the humidity fluctuated through a considerable range and remained uniform only for brief periods, the effect on the moisture content of the interior of at thich piece might be reduced. Consequently, the average equilibrium moisture content of a thick piece might remain higher (or lower) than that of a thin piece of the same wood in localities where the weather changes frequently.

effect of Sapwood and of heartwood

The curves in Figure 14 indicate the change in moisture content of lobiolly pine cross arms, both sapwood and heartwood. Initially the sapwood cross arms had about twice as much moisture as the
heartwood, but at the end of five weeks both had reached the same moisture content. At the end of six months the moisture content of the sapwood was 23 per cent, while that of the heartwood was 31 per cent. If the experiment had been continued for another six months, it is probable that the difference in moisture content would have been much smallet. With some species the upper grades contain more sapwood than heartwood, and in order to secure the most rapid drying rate for such grades it may be advantageous to segregate them from the lower grades.

EFPECT OF LOCALITY OF GROWTH

Data covering the comparative air-seasoning rates of drying and the final moisture-content values of boards cut from trees of a given species, grown in different localities, are not available. In kiln

hrarma 1-T, Air-seasunins ewres for loblolly pithe cross arms of leartwood and of sinwood, $31 / 4$ by $41 / 4$ inchers by 10 feet
drying, however. it hats been found that southern swamp white onk dries much more slowly than northern highiand white oak does. It seems probable that a similar difference would exist if the two kinds of stock were air drid. and also that the difference in equilibrium moisture content would be of no practical importance.

EFFECT OF YARD LOCATION ANO ARRANGEMENT

In Louisiana are two hardwood yards owned by the same company and located about 10 miles apart. One is at a slightly lower elevation than the other and is surrounded with trees, which tend to reduce the air movement through it. This yard is approximately square, while the other one is relatively long and narrow, with its
long dimension across the direction of the prevailing wind. As woud be expected, the conditions in the square yard result in a stower drying rate than do those in the natrow one.
In another Louisiam hardwood yard piles of various lengths were located side by side under conditions the same except for pile length and relative position. It was noticed that where a 10 -foot pile was to leeward of a 16 -foot pile, the circulation through the short pile was retarded sufficiently by the obstructing pile to cause more blue stain in it than in the obstructing one. In acdition to the retarded circulation, the slower drying of the 10 -foot pile may in some measure have been caused by a higher humidity resulting from the moisture carried over from the windward pile. Althourh actual clata in this instance are not a vailable, it is probable that the final moisture content of the 10 -foot pile was appreciably higher than that of the 16 -foot pile.

Although the two cases just cited were in a particular locality, the factors mentioned are likely to have an important effect on the air seasoning of humber in other regions.

SELECTION OF the piling method

The effect of piling methods in reducing check. blue stain, and decay has been disenssed in a previons section. Further, the point has been made that a piling method that permits rapid drying is liable to cause checking, and also that too slow drying is conducive to the development of blue stain and deay. The rations factors that bear on the choice of a piling method are summarized in Table 6 .

Table 6.--Piting methots that minimize the ocenrence of the more common air-seasoning defeets

Lucation of defect	Procelure for reducing the occurrence of-		
	13ae stain and decay	Checking	Warping
	Raise the fourdations. lucrease the spaning between boarde and between piles. Provide one central finted	Lower the foundations. Decrease the spacing beLreen boards and between piles. Use thinner, narrower stick-	Use stickers of unform thickness, properly aligntel and supparted, atd sufficient in ntmber.
Throughout the jile	$\left\{\begin{array}{l}\text { chitrluey or a series of } \\ \text { marrow chimueys. } \\ \text { Use thicher, narrower stick- } \\ \text { ers. } \\ \text { Narrow the phes. }\end{array}\right.$	ers. Place the end stickers so that they froject beyond the ents of the wille. [se end coatings and antichecking itons.	
The lower part of tha pile only.			

SPECIAL TREATMENTS

PRELIMINARY STEAMING

The usual object of steaning lumber before it is piled in the yard is to heat the stock so that when it is nited outdoors the surface will dry rapidly to the point at which blue-stain fungi can not develop. This point, according to present information, is approxi-
mately 20 per cent moisture content. If the lumber is exposed to damp weather immediately after the steaning process, however, the desired drying em not ocenr, and consequently staim is likely to result. Sinilarly, the desired drying does not occur if the stock is handied improperly immeliately after the period of steaming; the stock must be open piled just as soon as it is cool enough. Preliminary steaming at $180^{\circ} \mathrm{F}$. and 100 per cent relative humidity for four hours per inch of thickness is effective also in killing auy fungi akeaty present in the green stock. ${ }^{23}$
Prefinimary steaming for the toregoing purposes is advantageous with the sapwoods of red gum, poplar, and magnolia. On the other hand, such steaning is very detrimental with such woods as cypress and onk, becanse of their matked tendency to check.
It is common practice to steam the sapwood of black walnut so that its color will be darkened and will more nearly resemble that of the heartwood.

DIPPING

Many sonthern yellow pine mills have equipenent for dipping green limber in a solution of a chemical, sach as soctium carbonate or sodimm bicarbonate, or a mixture of such chemicals. This treatment appons to reduce the danger of blue stain during subsequent air seasoning. The exact natare of the artion of the alkaline chemical is not definstely understood, but the alkali is supposed to counteract i.he wood acids that are favorable to the development of blue stain. In dey weather a 4 per cent water solution and in damp weather an os per cent water solution of sorium carbonate is considered satisfactory; the coresponding figures for sodim bicarbonate are b. 5 and 11 per cent, respectively. With either alkali the solution should be kept at $1.40^{\circ} \mathrm{F}$. The concentration and the temperature of the solution appear to be important factors in securing the best results; these factors may change materially during ase of the dip, and henee should be observed frequently. When necessary they should be returned to their proper values.

At some mills the green chains carry the boards to and from the dipping tank, while at others the boards are conveyed on dollies from the green chain to the dipping tank.

Both spraying and dipping are used also for southern yellow pine timber. Dipping only is occasional in several lumber regions.

STORAGE OF DRY LUMBER

GENERAL

Previons discussion in this bulletin has emphasized the importance of haring the moisture content of lumber suitable for the use requirements of the stock. Obviously the moisture content of stock as it is phaced in service is affected by the practice of the manufacturer, the wholesaler, the retailer, the fabricator, and the contractor. Any one of these five can undo to some extent the good work of the others. It wili avail little, for example, to have the first four fullow correct practice it the last one then nullifies their results by

[^21]subjecting such items as flooring, doors, window frames, and sash to weather conditions. Ordinary athospheric conditions canse an increase in the moisture content of lumber properly dried for interior use, and then shrakage ocens when the heating system of the completed building is put into operation. Cracks in floors and around windows and doors certainly are not an asset in maintaining satisfation in the ase of lamber, and neither are warped dhors.

On the other hamb, if the mamfardurer dries the Jomber improperly any or all of the others who hande it can improve the moistate condition of the stock considetably by means of heated starage. The retaiter or the fabricator, for instance, can largely and sometimes comphetely correct through heated storage any improper mostme tratment by the manafocture or the wholesater. Purchase specifientions, which shoud be employed, will place definitely the responsibility for final results that is now divided at random mong all those whe contribute to the finished procluct.

open yards

Since in most regions there is considerable difference between shmmer and winter valtoes of equilibrium mosture content, it may be advantageous in some cases to balk pile in the yard stock that has become thoromehly airedey during the summer, in order to prevent or to reduce the absorption of moisture during the winter. If, however, the locality under consideration is subject to heary nows or driving rains, a betler partive is to allow the stock to remain on stickers. In either ease a tight rout shouk be provided.

sfieds

Piling stock within a shelter obviousty afords it protection better than the best possille in an open yard. In Plate 21, A and B, are shown the exterioe and interior of a shed adapted to fat buk piang.
Some of the studies previonsly refered to in this bulletin have indicated the reasons tor variation in the moisture content of lumber when it is taken from the yard. Other studies have indicated the range in moisture content of alir-dried and of kiln-dried softwoods; when the average moisture content is the same, the range is greater for the kiln dried than for the air dried.

Additional data pertaining to certain softwood sawmills are availrble to show that, it the stock is bult piled in a closed storage shed, the mane in moisture conent am be materially reduced. For instance, numerous moistare-content values determined for certain grades of kitn-dper softwool flooring ranged from about 2 to 30 ber cent, with an arerage of 7.1 per cent. After being bulk piled for 30 days in partly open sheds the range was from about 2.5 to 16.5 per cent, with an average of 8.5 per cent. Further, the increase in moisture content of hanber in sheds may be less than it the stock is stored in yards. Tncidentally, an added advantage of balk piling in a closed shed is that the lumber is kept cleaner than when it is exposed to rain and clust.

HEATED STORAGE

If, after air seasoning or kiln drying, it is necessary to prevent in increase in moisture content, the desired result can be accomplished by buik piling or by open piling the stock in a heated building. The same means may be employed also to redace moisture content. When this result is desired the stock should be piled on stiekers rather than bulk piled, it the duration of the storage period is to be minimized. Such a method of drying is particularly suitable where dry Fins or skilled operators are not available. It is also advantageons where a high degree of refinement in the quality of the finished product is necessary. Such excellence is essential, for instance, in fine handwork and in instruments of precision. With articles like jewel loxes, level rods, and slide rules, for example, in which nicety of constroction, appearance, and service are prime requisites, the const of drying the material properly is negligible in comparison with the value of the finished protuct.

As an offeet to the saving in time that would be obtained by kiln drying, the simplicity of equipnent and operation of heated storage may in some cases prove an important consideration. Probably it is feasible to maintain or even to attain a considerable range of desired moisture-content values, corresponding to certain relative humidities, simply by controlling the temperature, which in most cases wouk probably be from 20° to $100^{\circ} \mathrm{F}$; the relative humidity of the air, and in consequence the mosisture content of the stock, would decrense as the temperature increased.

Gas-burning or oil-burning equipment is a convenient boiler accessory for heated storage, especially on those days when heat is requised to control the moisture content of the lumber and for no other purpose.
Plate 22 illastrates a portion of the interior of a heated brick building in use by a wholesale distributor of hardwood and softwood lumber. Plate 22, ©, shows the smangement of the wall radiators, and Plate 22, A and B, indicute the method of bulk piling hardwood floowng about 3 inches above the eoncrete floor and with an occasional hayer of stickers to stabilize the pile. If at all feasible to do so, it would be better to pile the stock at right angles to the position shown and several fect from the wall radiators. Such a change in the position of the pile would permit air to circulate more readily under the pile and toward the radiators, thus keeping the lower layers of stock drier and at the same time preventing overdrying of the ends of the boards. This building stores both air-dried and kin-dried stock; for a quality product, heated storage is desirable from every 1 oint of view.

ADDITIONAL DETAILS

SRECIFIC GRAVITY AND WEIGHT OF WOOD

In the last three columns of Table 3 are given the average specific gravity (bused on oven-dry weight and green volume) and the weight per cubic foot of green wood and of wool at about 12 per cent moisture content for clear samples of various species growing
in the Thited States. Because of variations in the actual size of pieces of lamber of the same nominal size and for other similar reasons the figures can not be used to calculate accurately the reduction in weight of humber during seasoning. They are useful, however, in making rough estimates of this factor.

Change in moisture content of lumber during rail TRANSIT

Stadies on carload shipments of air-dry western white pine and white fir from the Inland Empise ${ }^{10}$ to the Chicago territory have shown negligible changes in moisture content during transit. The moisture-content values at the time of shipnent ranged from 15 to 22 per cent and the changes in moisture content during transit ranged from a gain of 0.2 to a loss of 2.4 per cent, the change in most cases being less than" per cent. The conclusion was reached that it stock at at satisfactory moisture content is loaded into a tight box car, the stook will reach its destination in practically the same moisture condition.

LITERATURE CITED

	Fuhamat, S. Y., mb, Iohnson, H. M., ahl Hitl, C. I. 192S, fhe ah sfatoning of western softwod lumber. U. S. Dept. Agr. Bith. 1425,60 p., Hhas.
	TH,
	cheok hat of the fohest thees or the veifen states, theik
	Tebsbale, It. V.
	THE CONTROL OF stain, DECAY, AND OTHER REASONING DEFECTB IN grar. L. S. Dejt. Agr. Cire. 421,18 j., blus.
	tinl. 1 (95. E. S. Dept. Agr., 64 ph, illus.
	Tirlen, If. 1929). KiLs mbing havimook. II. S. Dent. Agr. Bul. 1136, 96 p., iltus.
	nitzo States Depabrment of Commerce Namonal Commitize on W [Thination.
	beasoning, handling, and care of lember (consumers' edtton). U. S. Dept. Com. Natl, Com. Wood Utilization Consumers' Subcom. Ryt. \&. 63 g., ilus.
	U. S. Dept. Com, Natl. Com. Wood Utilization Distributors' Subcom. Rint. (i, $\overline{4} 4$ b., illus.
	beakoning, havdling, and cabe of lumber (fabricators' emtton). I. S. Dept. Com, Natl. Com. Woorl Utilization Fabrieators' Subcom. Rpt. 7, 96 p., Mus.
	seagoning, handeing, anj came of humber (arave mos), I. S. Deft. Com. Natl. ('6m. Wood Util subeom. Rpt. 0, 120 f., illas.

[^22]

END

[^0]: members of the forest Servies, particularly the huthors of bepartmont hubleth No. 1425 .
 of the olllee of lorest products, Missobla, Mont, Herman M. Johnson, hastytant in forest
 Further, acknowledgetuent is also made to mamercut anber combandes and assochatlona, whose effective coopration was essential to the conduct of the havestigntious apon which this bahe in la mased.
 a Mnintalned nt Mratison, wis., in cooperation with the University of Wiscongh.

[^1]: The results of the general studes of kiln drying have been pablished in f . S . Dept
 She results of some speelal kiln-tirying studies in Teecimicat Bul. 16 . L . S. Tept. Agr, (\%), of the Wert have been reborted in wir seasonag mate in the principai lumbering regions mittee on word wilivation of the U. S. Dept. Ags. But, 145 (1). The nationnil cumb
 reports ontitled "seasovios, Fandling and Care of Lumber," which are designated editlon $(6,5,8,9)$.

[^2]: kin deyhat nod of mathers related finereto.

[^3]: s Northwestern Montana, Idsho north of the Snlmon River, Wamhagton enst of the Cnscade Mountafas, and the northeastern tip of Oreson,

[^4]: sher footnote 4.

[^5]: nstied by the Fortst l'rodiacts labomatory, Madison, Wis., upon refuett.

[^6]: s See frotnote 4

[^7]: DIn cammon rishye " molsinre" meins water, oftrin water linving small amounts of mbnergls or of reids la solation; this meating is suffetent far the present purpose.
 the namus of spectes of wood in the tadiles follawing are the siandiad commen nimes fiven In the Clack List of ine Fotrestrees of the Vuited States (3).

[^8]: 3 Hicoria cordiformis, Ha myristenoformis, IJ. aguatien, and H. pesan.

 ${ }^{5}$ Speeles under footnotes 3 and 4 combined.

[^9]: soniaua) -...
 10.1
 6.9 :

 1. 50

 * Quercus velutinn, Q. lnurifolta, Q. palustris, Q. borenlis, Q, coccinea, Q. rubra, Q. rubra pagodaefolia, Q. nierfi, and Q. phetas.
 i Quercus uneracarpa, Q. monlana, Q, stellata, Q. priams, Q. bicolor, and Q. alba.
 - Sjecefes under footnotes B and 7 combined.

[^10]: A bles gramdis, A, nobilis, A. amabilis, and A. concolor.
 to The reos on which these values are based were somewhat highar in density than the general averago For the sfecies. Hence it is very probabie that further tests, watch are aow under way, will slightly lower the jresent figures.
 it Pleen rubra, P. sltehonsis, and P. glauce.
 As previously mentioned, green wood is seasoned to remove a part of the moisture that it contains. It thus becomes better fitted for commercial use; the tendency to shrink, warp, and check after

[^11]:

 mos'rineat.

[^12]: : Sno [ootnote 4.

[^13]: ज

[^14]:

[^15]:

[^16]: Thi anther is meased to acthowledse the assistanter of the Bureat of Eutomology,

[^17]: Th t list of the densers from whon the componort haterials may be purchased can be obtamed. upola apmeallon, from the Furest lyedacts Laboratory.

[^18]:

 ! ! !n fッr!: い! at! X

[^19]: ${ }^{17}$ Ser footnotr 4.

[^20]: montlas.

[^21]: ${ }^{28}$ Further detalls are giren in Depertment Circular 421 (9).

[^22]: ${ }^{14}$ Sec rootnote 5.

