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MULTICOLLINEARITY: EFFECTS, SYMPTOMS, AND REMEDIES 

Cleve E. Willis and Robert D. Perlack, et al. 

ABSTRACT 

Multicollinearity is one of several problems confronting 
researchers using regression analysis. This paper examines the 
regression model when the assumption of independence among 
Ute independent variables is violated. The basic properties of the 
least squares approach are examined, the concept of multi­
collinearity and its consequences on the least squares estimators 
are explained. The detection of multicollinearity and alternatives 
for handling the problem are then discussed. The alternative 
approaches evaluated are variable deletion, restrictions on the 
parameters, ridge regression and Bayesian estimation. 

It is probably safe to conclude that while the proportion of 
the readership of this Journal which would claim mastery of 
econometric theory is relatively low, most of us in the 
Northeast make at least occasional use of least squares 
procedures for estimating relations of interest. It is a healthy 
sign that , led by the increasing accessibility of easily under­
stood software packages for regression analysis, applied re­
searchers have adopted least squares and other regression 
techniques en masse as an important research tool. This trend 
is accompanied, however, by the growing danger that users of 
the technique may unwittingly introduce bad information in 
the form of misinterpretation of results arising from un­
detected violations of the (at least implicit) assumptions 
behind the analysis. Although said in reference to another 
topic, Bellman's [p. 15] words are cogent here as well, "The 
fault of so many mathematical studies of this type is not so 
much in sinning as in the lack of realization that one is sinning, 
or even a lack of acknowledgment of any conceivable type of 
sin." 

In what follows, we have attempted to synthesize some of 
the literature on multicollinearity and to reorganize and 
present this material in a less technical form and, hopefully , in 
a way more understandable to many applied researchers. Our 
approach will emphasize readability for the occasional user of 
econometric methods, and where this is at odds with technical 
completeness, the latter will be relegated to "footnote status." 
This paper should be regarded less as a dispositive treatment of 
~e subject than as a "guided tour" through some of the 
unportant concepts relevant to the applied economist. 

As the title suggests, we shall focus on describing the 
consequences of multicollinearity, on methods for detecting 
Its p~esence, and on methods for reducing its level and its 
associated adverse consequences. The section immediately 
below provides the background for this undertaking. It sets 
out the linear model, the usual assumptions made, and the 
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properties which result. The subsequent section defmes the 
condition of multicollinearity, summarizes consequences sug­
gests ways of detecting it, and lists methods which have been 
advanced for overcoming multicollinearity difficulties. Since 
the methods generally introduce bias while reducing variance, 
a criterion is needed for comparing these alternatives. The 
mean square error criterion is described in the subsequent 
section. The alternative methods are then described in some 
detail in the following section, and finally comparisons are 
made and conclusions are drawn. 

LEAST SQUARES APPROACH 
In this section, we set out the general linear mode 1 and the 

assumptions usually made in using this model- this combined 
specification is termed the "maintained hypothesis". The least 
squares technique is then described and, following this, the 
properties of least square estimators, given the usual assumpt­
ions, are reviewed. 

Maintained Hypothesis 

For present purposes, assume we are interested in learning 
about a single relation given by: 

( 1) Yi = f31 + f32 ~i + f33 x3i + '' '+ f3k xki + f.li' 

where: 
Yi is the value of the dependent variable for the ith obser­

vation, i = 1, ... , n, 
xji is the value of the jth independent variable for the ith 

observation, 
{J's are the unknown parameters which give the expected 

impact of a small unit change in that particular X on 
Y, and 
is the value of the ith error or disturbance. J.li 

In words, the value of some dependent variable (Y) is 
presumed to be influenced by a set of independent variables 
(X's). But this relation is not exact or "deterministic". Even if 
you knew all the (3's and the ith values of each of the X's, you 
would not necessarily know the exact value of Yi. For a 
variety of reasons (errors of measurement, neglected data, etc.) 
Y may differ from what you might expect it to be given 
particular values of the X's and of the (3 parameters. This 
difference for the ith observation is the random variable lli· 

Further assumptions about (1) are that the disturbances 
have an expected value of zero (any observation has a positive, 
zero, or negative J.li' this value is as likely to be positive as 
negative; and if we were to average a sufficiently large number 
of these random variables, this mean would be zero), and a 
variance which is some constant and hence which is inde­
pendent of the values of the X's. In the occasionally mystical 
parlance of the econometricians, this assumption of constant 
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variance is called homoscedasticity. The disturbance terms are 
also assumed to be independent of, or uncorrelated 1 with, one 
another- violation of this assumption is called autoco"elation. 
Finally, the X's and lli are presumed independent (uncorre­
lated) and the X's are independent of one another in the sense 
that there is no way to express the data (n observations) on 
x

2
, for example, as a linear combination of one or more of the 

other X's. Violation of this assumption is termed multicol­
linearity, and results in a breakdown of the least squares 
procedures. We return to this topic in the next section. 

Least Squares Approach 

Referring back to relation (1), the (3's and the lli (and its 
constant variance) are never known. Ultimately, we wish to 
use what is known (the Y's and the X's) to estimate these (3's, 
to make inferences based on probabilities about these (3's and 
perhaps to predict values of Y given values of the X's. 

Since relation (1) is unknown, let us replace it by: 

(2) yi = bl + b2 x2i + b3 x3i + ... + bk xki + ei 

The b's are just numbers we choose to replace the {3's and ei is 
the difference between the ith value of Y and the sum of the 
b's times the ith values of the X's. This ei is often called the 
residual for fairly obvious reasons. We are free, of course, to 
select the b's (our estimates of {3) any way we like. It might 
make sense, however, to select the b's, given the X andY data, 
in such a way as to make the values of those e's in our sample 
small. The least squares criterion says to select the set of b's so 
as to make the squared values of ei summed over all sample 
observations as small as possible. 

Mechanically, the least squares method for estimating b's is 
quite simple. If we move all terms other than ei in (2) to the 
left side of the equation, square both sides and sum over the 
sample, we have the sum of squares we seek to minimize 
expressed in terms of X's, Y's, and b's. The X's and Y's are 
given data and the b's are variables. It is a straight-forward 
matter to solve for a set of equations for the b 's in terms of 
the X's and Y's which minimize the sum of squares of the 
residuals. These equations, called normal equations, are 
obtained by calculus procedures. It is then simply a matter of 
substituting the X and Y data into these equations and solving 
for the least squares estimators of {31, . . . , {3k - namely, 
b 1, ... , bk. Other information, liked standard deviations 
(synonymously, standard errors) of the b 's, is routinely 
produced by computer programs in the process. 

Properties of Least Squares Estimators 

As a fmal part of this section, the properties of least squares 
estimators, given the assumptions made earlier, are briefly 
described. These become relevant in comparing alternative 
procedures for reducing the effects of multicollinearity below. 

Least squares estimators are often cryptically described as 
BLUE. These letters stand for best linear unbiased estimators. 
Several defmi tions are in order: 

1Technically, statistical independence is a stronger assumption than 
uncorrelated. For present, we use the terms interchangeably to 
facilitate exposition. 
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i) Unbiased-If we regard the X's as a set of ftxed 
numbers2 and we could repeatedly draw samples of sets 
of X's and Y's, where the X's remain the same and the Y's 
vary due to the different disturbances (lli), then we could 
find, ~epeatedly, different estimators (b 's) of the ~~ 
Som~ of these would be too high, some too low, and, as i~ 
Goldilocks and the Three Bears, some would be just right 
The problem is that we don't repeatedly sample-thai 
would be prohibitively expensive. It can be shown 
however, that if we were to do so, given the assumption; 
made earlier, the average of all the b2 's, for example 
would be the unknown f32 This is the essence of th~ 
unbiased ness property. What consolation does this 
property provide us? Merely that while the b2 which is 
estimated from our sample of Y and X's may be greater or 
less than the real but unknown f32 , it had an equal chance 
of being above or below f32- The same cannot be said for 
estimators which are biased. 

ii) Linear- The least squares estimators of the P's are 
linear estimators in the sense that the normal equations 
express the b's as linear coml;>inations of the Y's. The 
constants . or weights in expressing these linear 
combinations are formed from the fixed X values. The 
import of this is that the b's are easy to calculate and to 
interpret relative to nonlinear estimators. 

iii) Best-This term refers to the minimum variance of 
the b 's property. If one considers again the paradigm of 
repeatedly drawing samples of Y and X's and re-estimating 
the b's each time, then the b's are random variables with 
expected values of the {3's (given the unbiased property) 
and with some variance for each of the b's. While we don't 
repeatedly draw samples in practice, it is possible to derive 
unbiased estimates of these variances from a single sample. 
The square roots of these variances, generally termed 
standard errors, are often reported in parentheses below 
the estimated values of the b's. 

In brief the BLUE properties of least squares estimators, 
given the usual assumptions, state that of the set of estimators 
which are both unbiased and simple linear functions of theY 
data, are least squares estimators having variances which are 
minimum. 

MULTICOLLINEARITY 

One of the requirements made in the previous section was 
that the explanatory variables, the X's, be independent of (not 
perfectly correlated with) one another. The opposite situation, 
where the X's are linearly dependent and hence can be 
expressed as linear combinations of one another, is called 
perfect multicollinearity. In this sense, the condition ~f 
perfect multicollinearity is either existent or non-existent If ~t 
exists, the least squares procedure simply breaks down and IS 

incapable of estimating the {3's. If multicollinearity does not 
exist in this sense, there may still be problems stemming from 
high, but not perfect, correlation among the X's. 

It seems more useful, then, to speak in terms of the 
multicollinearity problem's severity rather than its existence. 
A case of perfect multicollinearity is rare , as is a. zero 
correlation among explanatory variables (X's). Accordm~y, 
multicollinearity will be defmed here in terms of departures 
from independence , or from non-correlation, of the X's with 
one another. 

2We need not make this strong as assumption. However, for pre:nt 
purposes the gains from making a weaker assumption are m~re 
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offset by the costs of increasing the complexity of this discusston. ee 
Johnston. 
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Having defined multicollinearity in a relative rather than an 
absolute sense, we must face the increased problem of 
de'tection. There are no longer standard test statistics which 
permit statements of differences from hypothesized values of 
parameters; as, for example, the Durbin-Watson statistic for 
rejecting hypothesized zero autocorrelation. Nevertheless, 
rules of thumb for detection of "serious" levels of 
multicollinearity are imp0rtant , and some of these are 
suggested in the second part of thl3 section below. Once severe 
multicollinearity is diagnosed, its resolution requires the 
generation of additional information. The form of this 
additional information should depend upon the specifics of 
tl1e particular problem. The fmal part of this section briefly 
describes the more common forms of additional information 
and a later section shows how the problems specifics should 
guide choice of information form. But fust, we summarize the 
consequences of high degrees of multicollinearity. 

Consequences 

The limiting case of perfect linear dependence within the 
set of explanatory variables leads to a completely 
indeterminate set of parameter estimates (b's). In its "brute" 
and "tactless" way, as Farrar and Glauber [1967, p. 93] put 
it, the mathematics " .. . tells us that explained variance can be 
allocated completely arbitrarily between linearly dependent 
members of a perfectly co"elated set of variables, and almost 
arbitrarily between members of an almost perfectly 
correlated3 set." 

ln a sense, the investigator whose set of explanatory 
variables is perfectly correlated may be more fortunate than 
one whose variables are nearly so. The former's problems are 
soon discovered by the mechanical inability to derive b's 
while the latter's problems may never be fully understood. Fo; 
the latter, multicollinear explanatory variables will result in 
large variances (and standard errors) on regression coefficients· 
indicating the low information content of data observed and 
hence the low quality of the resulting parameter estimates. 

The presence of multicollinearity alone does not lead to 
bias in esti~ating the parameters, and this is perhaps a major 
factor leadmg to complacency on the parts of investigators. 
However , investigators are sometimes led to incorrectly delete 
explanatory variables because their coefficients are not 
statistically _different from zero . The true situation may be not 
that the vanable has no irlfluence on Y, but that the particular 
set of sample data does not enable us to detect it. Thus, to the 
extent that multicollinearity leads to a rnisspecification of the 
model, least squares estimators will be biased. 

A fmal_ consequence of multicollinearity is that estimates 
of coefficients become particularly sensitive to given sets of 
sample data. Often the addition of several observations on 
the_se explanatory variables can yield dramatic changes in 
estimated coefficients. 
. ~_sum, the primary consequence of multicollinearity is an 
mabihty to distinguish the separate contributions of 
~x~l~ato~y variables which exhibit little truly independent 
anatwn tn explaining variance of the dependent variable. If 

our .P~rpose is less in explaining separate influences as in 
pfr; dlctmg values of the dependent variable however these 
e 1ects ' ' are not so severe, provided the values of the 

3 
GI bTh'e expressions in italic have been substituted for Farrar and 

au er s more technical expression, singular. 

ex~lanatory variables for which we wish to predict dependent 
vanables are correlated in the same way as the sample of X's. 

Detection 

Si_nce . we. have chosen to deal with degrees of 
~ulticollmeanty. rather than existence, tests are made 
difficult. The . S!IDplest, and admittedly arbitrary, rule of 
th~mb wou~d mvolv_e d~fming "harmful" multicollinearity to 
eXl~t when s1mple prurWJse correlations between the exogenous 
van~bles exceed, say, r = .8 . This would help avoid the most 
~bVlous form of pairwise interdependence , although correla­
ti~ns _of a more_ complicated form may be severe, even while 
pairWise correlatiOns are slight. 

A more elaborate defmition is suggested by Klein [1962, p. 
101] ~ who defines harmful multicollinearity to exist when the 
magrutude of pairwise correlation between two explanatory 
variables is _as large as, or larger than, the coefficient of multi­
ple correlation between the dependent variable and the set of 
expl~ato~y ~ariables. Again, a set of X data passing inspection 
by this cntenon may still be highly correlated in a more com­
plex way than pairwise. A classic and an aggravatingly 
common :~ample has been termed by Johnston [1972, p. 
178] , the dummy variable trap". 

_Farrar and Glauber extend the concept of simple corre­
la~on b~t~een explanatory variables to include multiple corre­
lation Within a set of explanatory variables. The test of multi­
collinearity they provide is based on the F distribution and is 
summarized in Johnston [1972, pp. 163-4] . Essentially, it in­
vol~es regressing, irl turn, each of the explanatory variables 
aga1nst the remaining set of explanatory variables and ob­
serving the coefficient of multiple determination (R 2) for each 
regression. If it is high, then the explanatory variables are 
closely related in some linear way and vice versa . While the 
formal test will nearly always reject the null hypothesis of 
independence of the X' s, at least the values of the test 
statistics may provide an indication of which explantory vari­
ables are most affected by multicollinearity, and where to 
begin the search for better data. 

A fmal note on diagnosis of "harmful" multicollinearity 
derives from the first sympton mentioned above-viz., the re­
sulting inordinately large standard errors of the b's. It would 
be a good bet that multicollinearity is present if, for example, 
all standard errors were larger than their corresponding esti­
mated b's, while the coefficient of multiple determination was 
high. 

Alternatives 

As indicated earlier, whe~ severe conditions of multicolline­
arity within the sample data on the explanatory variables are 
diagnosed, the usual econometric prescription is acquisition of 
additional information, although this information can take 
many forms. The most common procedure adopted, however, 
is deletion of variables. Some of these approaches are briefly 
sketched below, and expanded upon in a subsequent section. 

1. Variable Deletion 
The simplest approach to resolving the problem of severe 
multicollinearity is to simply drop from the analysis ex­
planatory variables which appear to be highly correlated. 
While this may resolve the multicollinearity problem, the 
general result is misspecification of the model and biased 
estimation. Stepwise regression procedures are formal tech­
niques which achieve roughly the same thing. 
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2. Restrictions 
An alternative which is sometimes used is to impose addi­
tional information in the form of restrictions on a value of 
b or some combination of regression coefficients. The re­
strictions may be exact or of the inequality form. In either 
form, as will be seen below, these restrictions can be used 
to reduce the effects of multicollinearity. 
3. Principal Components 
Another appoach involves the generation of "artificial" new 
variables (principal components) which are truly inde­
pendent of one another, but which explftin as much of the 
variation of the dependent variable as possible. These new 
variables are formed as weighted combinations of the ex­
planatory variables. 
4. Ridge Regression 
Ridge regression involves a mechanical augmenting of, es­
sentially, the matrix c..f correlations of the explanatory vari­
ables used in calculating the b's. In the process, precision is 
improved (standard errors are reduced). 
5. Bayesian Estimation 
Bayesian estimation involves combining (prior) information 
about the b's, in the form of probability distributions, with 
the sample data to obtain posterior estimates of the b's. 
This information is combined in a well-defmed mathema­
tical way which weights each source of information in­
versely with its variance. 

CLEVE E. WILLIS AND ROBERT D. PER LACK, ET. AL 

Each of the approaches indicated above may be useful in 
reducing the standard errors of the estimators and hence in 
estimating the parameters more precisely. Unfortunately, the 
unbiasedness property of least squares is generally sacrified in 
the process. If we are to compare these procedures to decide 
which is better, we need a criterion of "better" which con. 
siders both bias and precision. The discussion below offers one 
such criterion to be used in the comparisons made in the final 
two sections. 

Mean Square Error 

As indicated, the alternatives above can be regarded as add· 
ing additional information by imposing restrictions in the esti. 
mation process. For example, in choosing to delete a variable 
one is in effect restricting the {3 parameter corresponding t~ 
the deleted variable to be zero. If these restrictions are true 
precision will be improved (standard errors lowered) and th~ 
estimators remain unbiased. In the more usual situation in 
which these restrictions are not exactly true, imposing them 
still reduces standard errors, but at the expense of introducing 
some bias. Thus, the premise behind the alternative biased 
estimators discussed here is that the introduction of a small 
amount of bias may be a reasonable price to pay in order to 
achieve a major reduction in variance. Visually, biased esti· 
mator b in Figure 1 may be preferred to unbiased estirnatorp, 
since we are more likely to be "closer" to {3 with estimator b 
than with~· 

Figure 1 

Probability 

of B, b 
Distributions of Estimators 

B Value of ~. b 
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Thi notion of a reasonable trade-off between variance and 
b' ~course, remains nebulous until we defme "reasonable". 
~as, 0 

square error (MSE) criteria have been most commonly 
eanli d for this purpose. For the case of a single estimator, 

app e · 4 Th d" thi MSE is variance plus the btas squru:ed. ~s, accor _mg_to s 
·t ·on switching from an unbtased estimator (like~) to a 

en en ' " bl " ·f th f th 
b. d estimator (like b) is reasona e 1 e square o e 
tase d .. · ( f bias introduced is less than the re uctwn m vanance square o 

the standard error) achieve~ . . . . . 
A problem with this cntenon IS that 1t 1s dependent upon 

the value of the unknown parameter ~, such that for some 
alues of ~ a particular estimation procedure may be better 
~an another in the MSE sense, while for other values of~, t~e 

Verse may be true. This does not mean that the MSE cntena 
re al . . t 
are useless. Rather, it suggests that the ternatlve est1ma ors 
discussed here will out-perform each other and ordinary least 
squares in some circumstances an~ not i? others._ The section 
to follow describes these alternative esttmators m somewhat 
more detail and outlines the existing evidence regarding the 
circumstances favoring each method in the presence of 
multicollinearity. 

ALTERNATNES 

The alternative procedures which might be employed in the 
presence of multicollinearity, which were listed in the second 
section above, are: deleting variables; principal components; 
restrictions on linear combinations of parameters; ridge re­
gression; and Bayesian estimation. 

Variable Deletion 

Easily the most common approach to "resolving" situations 
in which multicollinearity is present is to delete variables 
which were included in the original model specification. This 
deletion is often at the arbitrary discretion of the investigator, 
where high correlations, low significance, or both, are used as 
the basis for such a decision. Other times a more formal pro­
cedure, the leading example of which is the use of stepwise 
regression programs to add or drop regressors, is followed . 
Whether formal or informal procedures are followed, whenever 
the same set of data is used to specify the final model as well 
as to estimate the parameters of this specification, the process 
is termed "pretest" or "sequential estimation". In an excellent 
survey article on the subject, Wallace [1977] describes the 
consequences of pretesting and compares these with the conse­
quences of using OLS on the original specification and the 
alternative of applying restrictions on the original specification 
(restricted least squares RLS) before estimation is undertaken. 
Since pretest and RLS estimators are biased in general, the 
MSE criterion was used for comparison. Wallace's results show 
that for very accurate prior information (restrictions), RLS is 
best, OLS is worst, and pretest is in between. For bad priors, 
the ordering is reversed, and in all cases pretest (deletion) esti­
mators are inferior to the best of OLS or RLS by the MSE 
criterion. While Wallace's survey was not written expressly for 
the situation of multicollinearity, the results are instructive. 

Freund and Debertin [1975] provide additional insight into 
the consequences of pretesting. They use Monte Carlo experi­
ments to make the consequences of variable deletion more 
graphic. In ·brief, a host of irrelevant variables were subjected 

4 
See WaUace for a fuller discussion of the MSE criteria. 

to stepwise regression and as predicted an overly large pro­
portion of these appeared to be statistically significant by the 
usual procedure (the t-test). The demonstration verifies the 
analytical result that in the presence of pretest estimation, the 
usual tests do not provide valid indicators of significance. 
Their conclusion is not that sequential estimation should never 
be used, but rather that when exploratory data analysis is 
used , the results should be clearly labeled as such so as not to 
mislead the user of this information. 

Principal Components 

Principal Components (PC) techniques are sometimes used 
when the number of regressors is so large as to severely limit 
degrees of freedom and/or when these regressors are highly 
intercorrelated. Essentially, PC transforms a set of highly cor­
related regressors into a set of uncorrelated variables, 5 where 
each new PC is an artificial variable expressed as some linear 
combination of the original regressors. These new variables 
(components) can now be tested with greater accuracy since 
there is no distortion due to multicollinearity among these 
PC's. 

Since the PC's are artificial constructs, it is usually not 
possible to attach an economic meaning to the effect of any 
particular component. To surmount this difficulty, principal 
components regression can be used. This involves deleting one 
or more of the PC's6 and then solving back for the implied 
effects of the separate original regressors. 

The PC estimator has a smaller variance than the OLS esti­
mator and for some values of the true parameters will have 
smaller MSE. In particular , McCallum's work concludes that 
the PC estimator out-performs the OLS estimator the higher is 
the regressor correlation, the smaller is the number of obser­
vations, and the more alike are the parameters. 

Restrictions 

Economic theory or previous empirical studies may provide 
an investigator with some information concerning: 

i) a specific value7 of some of the regression parameters, 
ii) proportional relationships between a set ~f the para­

meters, including a specific value of some linear com-
bination of parameters,s and . . 

iii) relations in which individual coeffictents or_ ~ear 
combinations lie within some bounds such that restnctwns 
of an inequality type can be expressed . 

In this case, exact restrictions (i and ii) and inequality re­
strictions (iii) can be used to incorporate this information. 

In the former case, the RLS procedure discussed earlier can 
be used. The variance of this estimator will always be smaller 
than for the OLS estimator, although the estimates are biased 
except when the restrictions are precisely correct. Whether the 
RLS estimator is better in MSE than OLS depends upon how 
inaccurate these restrictions are. 

5See Johnston or Kendall for a more detailed description of this 
technique. 

6see Mittlehammer and Baritelle. 

7ln this Journal, an example of this procedure is provided by Lind­
say and Willis. 

8For example, in the Cobb-Douglas production function, linear 
homogeneity requires that parameters sum to one. 
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If, on the other hand, the prior information about the para­
meters is less complete and exists in linear inequality form as 
in case (iii) above, then we may combine the information with 
the sample data to obtain better estimates of the parameters. 
However, this estimation procedure involves the use of quad­
ratic programming (Judge and Takayama [1966] ). This techni­
que can handle both the equality and inequality restrictions 
together in the estimation of the p..uameters. 

Ridge Regression 

Ridge regression attacks the principal multicollinearity 
symptom, high estimator variance, by systematic data mani­
pulation. Specifically, this procedure involves the addition of 
successively larger constant terms to the matrix of correlations 
among the explanatory variables used in calculating the para­
meter coefficient estimates. Each addition is followed by the 
derivation of a set of estimates. Brown and Beattie [1975] 
experimentally suggest that the variance reduction potential of 
this process is an increasing function of the magnitude of the 
constant term. Their experiment both provides the general 
range of ridge regression usefulness and, given usefulness, 
offers an intuitive technique for optimum constant term 
selection. 

Ridge regression can confidently be used when the true 
values of the estimators are known to be of the same sign and 
roughly the same magnitude. Additionally, this procedure is 
preferable to others in this situation if the number of re­
gressors is small and all should be retained. The Brown and 
Beattie experiment demonstrates large MSE reductions for all 
ridge regression applications , regardless of the true nature of 
the estimates. However, artificial augmentation of the explana­
tory variable correlation matrix introduces bias into the esti­
mation process. Bias is extreme for situations which do not 
fulfill the true estimator sign and magnitude criteria. 

Bayesian Estimation 

Sometimes the prior information available can more nearly 
be regarded as stochastic, or subject to a probability distri­
bution, than as exact or inequality restrictions. These cases 
lend themselves well to Bayesian estimation. In brief, Bayesian 
estimation involves combining sample data with a prior pro­
bability distribution in a well-defined mathematical way. It 
often involves numerical integration and can become in­
creasingly difficult as the number of parameters increases. The 
offsetting advantages include the explicit formulation of 
stochastic side conditions on parameters and the incorporation 
of these priors with the sample data to produce "posterior" 
distributions on these estimates,9 as well as the fact that Baye­
sian estimates are expressed in terms of a specific probability 
distribution, including means and variances. 

Clearly, Bayesian estimation is most appropriate when the 
number of parameters is small and side conditions on some or 
all of these parameters are readily expressible as probability 
densities. Zellner, and Tiao and Zellner can be used for general 
background, while Rausser, et al. and Chowdhury, et al serve 
as illustrative applications. 

For present purposes, the Chowdhury article is most inter­
esting. Preceding their work, the various production function 
estimations of a Cobb-Douglas form had been fairly unsuc-

9Essentially, the Bayesian method for combining priors and sample 
information weights each inversely proportional to its variance. 
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cessful. Some of the investigators were baffled ; others re. 
cognized that the intuitively unsatisfactory results were the 
result of multicollinearity. Finally, Doll discovered that if the 
conditions generally assumed by economists regarding the pro­
duction function were true, then multicollinearity would be 
the logical consequence. Indeed , exact multicollinearity would 
result from these economic conditions being met. Rather than 
being discouraged by the presence of conditions of multi· 
collinearity, Doll (p. 558) comments, the investigators 
" ... should be pleased because the presence of multicolli· 
nearity serves as a verification of their economic model." 

Chowdhury's work involves using the data from one of 
these previous studies which produced counter-in tuitive results 
and estimating the production function using Bayesian pro· 
cedures. As expected, the Bayesian estimates were consistent 
with prior knowledge about the parameters. 

SUMMARY 

The sections above described the condition of multi· 
collinearity, its detection , and its effects. Some alternative pro­
cedures were described which lead to a reduction in variance 
of the estimators. Since these alternatives are not unbiased, a 
trade-off between bias and variance reduction is involved. MSE 
was advanced as one means of evaluating this trade-off. 

The alternatives considered here include: variable deletion 
(and stepwise regression); principal components regression; 
RLS and quadratic programming procedures for inequality re· 
strictions on parameters ; ridge regression; and Bayesian 
analysis. None of these alternatives is best in all situations-a 
summary of the situations which favor each is provided. 

Variable deletion procedures should generally be reserved 
for situations characterized as exploratory data analysis. The 
results should be clearly labeled as such and statistical tests 
should not be made with the results, since the tests will be 
misleading. 

Principal components regression and ridge regression pro· 
cedures are suitable candidates as alternatives to OLS in cases 
in which the parameters are expected to be of similar sign and 
roughly similar magnitude. Principal componen ts is best in 
cases of high correlations, large number of regressors, and few 
observations. To the contrary, ridge regression is at its best 
when the number of regressors is small. For cases of a large 
number of regressors, parameters of opposite sign and d1s· 
similar size, ridge regression estimators are subject to extre~e 
bias. Software packages for both techniques are easy to obtalll 
and use. 

If information about specific values of parameters or linear 
combinations is known with fair precision, RLS is a useful 
approach, being clearly superior to OLS in an MSE context. 
Likewise, when inequality information is present (e.g., a para· 
meter lies between zero and one), qua?ra~ic program~& ca~ 
be used . RLS software programs are ubiquitous ; adaptations 0 

quadratic programming for the second case are not. .. 
If the prior information can be expressed as a probabili.tY 

density, Bayesian estimation is feasible. It is capable of .m· 
corporating more information than the quadratic prograrnmmj 
procedure above and exhibits an intuitively pleasing meth.o? 0 

combining information. It is at its best when side conditiOns 
can be expressed by probabilities and the number of para· 
meters is small. Unfortunately, there are not general ~oftw~;t 
packages and application will involve some sophisiticatJOn WI 

1 

statistical methods. 
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We conclude with two comments. First, there are glaring 
gaps in this presentation. This is not necessarily bad-if this 

ticle proves useful for some of the readers, follow-ups on 
:~pies not covered may be as well . Second, the discussion of 
alternatives may be academic if software packages for their use 
are not available. At least one new program, called SHAZAM, 
is available which provides, among many others , OLS, RLS, 
Prin cipal Components regression, and Ridge regression 
options. The user'~ man~al i_s aicgtable upon request from 
Kenneth White at Rice Uruvers1ty. 
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