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MULTICOLLINEARITY: EFFECTS,SYMPTOMS, AND REMEDIES

Cleve E. Willis and Robert D. Perlack, et. al.

ABSTRACT

Multicollinearity is one of several problems confronting
researchers using regression analysis. This paper examines the
regression model when the assumption of independence among
the independent variables is violated. The basic properties of the
least squares approach are examined, the concept of multi-
collinearity and its consequences on the least squares estimators
are explained. The detection of multicollinearity and alternatives
for handling the problem are then discussed. The alternative
approaches evaluated are variable deletion, restrictions on the
parameters, ridge regression and Bayesian estimation.

It is probably safe to conclude that while the proportion of
the readership of this Journal which would claim mastery of
econometric theory is relatively low, most of us in the
Northeast make at least occasional use of least squares
procedures for estimating relations of interest. It is a healthy
sign that, led by the increasing accessibility of easily under-
stood software packages for regression analysis, applied re-
searchers have adopted least squares and other regression
techniques en masse as an important research tool. This trend
is accompanied, however, by the growing danger that users of
the technique may unwittingly introduce bad information in
the form of misinterpretation of results arising from un-
detected violations of the (at least implicit) assumptions
behind the analysis. Although said in reference to another
topic, Bellman’s [p. 15] words are cogent here as well, “The
fault of so many mathematical studies of this type is not so
much in sinning as in the lack of realization that one is sinning,
or even a lack of acknowledgment of any conceivable type of
sin.”

In what follows, we have attempted to synthesize some of
the literature on multicollinearity and to reorganize and
present this material in a less technical form and, hopefully, in
a way more understandable to many applied researchers. Our
approach will emphasize readability for the occasional user of
econometric methods, and where this is at odds with technical
completeness, the latter will be relegated to “footnote status.”
This paper should be regarded less as a dispositive treatment of
the subject than as a “‘guided tour” through some of the
important concepts relevant to the applied economist.

As the title suggests, we shall focus on describing the
consequences of multicollinearity, on methods for detecting
its presence, and on methods for reducing its level and its
dsociated adverse consequences. The section immediately
below provides the background for this undertaking. It sets
out the linear model, the usual assumptions made, and the
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properties which result. The subsequent section defines the
condition of multicollinearity, summarizes consequences, sug-
gests ways of detecting it, and lists methods which have been
advanced for overcoming multicollinearity difficulties. Since
the methods generally introduce bias while reducing variance,
a criterion is needed for comparing these alternatives. The
mean square error criterion is described in the subsequent
section. The alternative methods are then described in some
detail in the following section, and finally comparisons are
made and conclusions are drawn.

LEAST SQUARES APPROACH

In this section, we set out the general linear mode 1 and the
assumptions usually made in using this model—this combined
specification is termed the “maintained hypothesis”. The least
squares technique is then described and, following this, the
properties of least square estimators, given the usual assumpt-
ions, are reviewed.

Maintained Hypothesis

For present purposes, assume we are interested in learning
about a single relation given by:

(1) Y; =8y +B8; Xp; +B3 X35 + = ca+ By Xy T a3

where:

Y; isthe value of the dependent variable for the ith obser-
vationyin=" 1 ien,

X s the value of the jth independent variable for the ith
observation,

Bs are the unknown parameters which give the expected

impact of a small unit change in that particular X on
Y, and

b is the value of the it error or disturbance.

In words, the value of some dependent variable (Y) is
presumed to be influenced by a set of independent variables
(X’s). But this relation is not exact or “deterministic”. Even if
you knew all the f’s and the ith values of each of the Xs, you
would not necessarily know the exact value of Y,. For a
variety of reasons (errors of measurement, neglected data, etc.)
Y may differ from what you might expect it to be given
particular values of the X’s and of the f parameters. This
difference for the it observation is the random variable x;.
Further assumptions about (1) are that the disturbances
have an expected value of zero (any observation has a positive,
zero, or negative u;, this value is as likely to be positive as
negative; and if we were to average a sufficiently large number
of these random variables, this mean would be zero), and a
variance which is some constant and hence which is inde-
pendent of the values of the X’s. In the occasionally mystical
parlance of the econometricians, this assumption of constant
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variance is called homoscedasticity. The disturbance terms are
also assumed to be independent of, or uncorrelated! with, one
another—violation of this assumption is called autocorrelation.
Finally, the X’s and #; are presumed independent (uncorre-
lated) and the X’s are independent of one another in the sense
that there is no way to express the data (n observations) on
X, for example, as a linear combination of one or more of the
other X’s. Violation of this assumption is termed rmulticol-
linearity, and results in a breakdown of the least squares
procedures. We return to this topic in the next section.

Least Squares Approach

Referring back to relation (1), the f’s and the u; (and its
constant variance) are never known. Ultimately, we wish to
use what is known (the Y’s and the X’s) to estimate these §s,
to make inferences based on probabilities about these s and
perhaps to predict values of Y given values of the X’s.

Since relation (1) is unknown, let us replace it by:

(2)Y;=b; +by X, +by X5 +...+b X te

The b’s are just numbers we choose to replace the §'s and e, is
the difference between the it" value of Y and the sum of the
b’s times the it! values of the X’s. This e; is often called the
residual for fairly obvious reasons. We are free, of course, to
select the b’s (our estimates of f) any way we like. It might
make sense, however, to select the b’s, given the X and Y data,
in such a way as to make the values of those e’s in our sample
small. The least squares criterion says to select the set of b’s so
as to make the squared values of e, summed over all sample
observations as small as possible.

Mechanically, the least squares method for estimating b’s is
quite simple. If we move all terms other than e in (2) to the
left side of the equation, square both sides and sum over the
sample, we have the sum of squares we seek to minimize
expressed in terms of X’s, Y’s, and b’s. The X’s and Y’s are
given data and the b’s are variables. It is a straight-forward
matter to solve for a set of equations for the b’s in terms of
the X’s and Y’s which minimize the sum of squares of the
residuals. These equations, called normal equations, are
obtained by calculus procedures. It is then simply a matter of
substituting the X and Y data into these equations and solving
for the least squares estimators of Bl, ... B, —namely,
bl e bk' Other information, liked standard deviations
(synonymously, standard errors) of the b’s, is routinely
produced by computer programs in the process.

Properties of Least Squares Estimators

As a final part of this section, the properties of least squares
estimators, given the assumptions made earlier, are briefly
described. These become relevant in comparing alternative
procedures for reducing the effects of multicollinearity below.

Least squares estimators are often cryptically described as
BLUE. These letters stand for best linear unbiased estimators.
Several definitions are in order:

1chhnically, statistical independence is a stronger assumption than
uncorrelated. For present, we use the terms interchangeably to
facilitate exposition.
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i) Unbiased—If we regard the X’s as a set of fiyy
numbers2 and we could repeatedly draw samples of g
of X’s and Y’s, where the X’s remain the same and the Ys
vary due to the different disturbances (x;), then we ¢y
find, repeatedly, different estimators (b’s) of the B
Some of these would be too high, some too low, and, sy
Goldilocks and the Three Bears, some would be just righ,
The problem is that we don’t repeatedly sample—thy
would be prohibitively expensive. It can be shoyy
however, that if we were to do so, given the assumptiong
made earlier, the average of all the by’s, for exampl,
would be the unknown B This is the essence of e
unbiasedness property. What consolation does this
property provide us? Merely that while the by which i
estimated from our sample of Y and X’s may be greater o
less than the real but unknown B3, it had an equal chance
of being above or below 5. The same cannot be said for
estimators which are biased.

ii) Linear—The least squares estimators of the f's are
linear estimators in the sense that the normal equations
express the b’s as linear combinations of the Y’s. The
constants - or weights in expressing these linear
combinations are formed from the fixed X values. The
import of this is that the b’s are easy to calculate and to
interpret relative to nonlinear estimators.

iii) Best—This term refers to the minimum variance of
the b’s property. If one considers again the paradigm of
repeatedly drawing samples of Y and X’s and re-estimating
the b’s each time, then the b’s are random variables with
expected values of the f’s (given the unbiased property)
and with some variance for each of the b’s. While we don’t
repeatedly draw samples in practice, it is possible to derive
unbiased estimates of these variances from a single sample.
The square roots of these variances, generally termed
standard errors, are often reported in parentheses below
the estimated values of the b’s.

In brief the BLUE properties of least squares estimators,
given the usual assumptions, state that of the set of estimators
which are both unbiased and simple linear functions of theY
data, are least squares estimators having variances which are
minimum.

MULTICOLLINEARITY

One of the requirements made in the previous section Was
that the explanatory variables, the X’s, be independent of (_nol
perfectly correlated with) one another. The opposite situation,
where the X’s are linearly dependent and hence can be
expressed as linear combinations of one another, is called
perfect multicollinearity. In this sense, the condition qf
perfect multicollinearity is either existent or non-existent. lfft
exists, the least squares procedure simply breaks down and is
incapable of estimating the f’s. If multicollinearity does not
exist in this sense, there may still be problems stemming from
high, but not perfect, correlation among the X’s.

It seems more useful, then, to speak in terms .Of the
multicollinearity problem’s severity rather than its faxlstence.
A case of perfect multicollinearity is rare, as is @ ZI0
correlation among explanatory variables (X’s). Accordinglys
multicollinearity will be defined here in terms of departu're;
from independence, or from non-correlation, of the X’s wit
one another.

2We need not make this strong as assumption. However, for Pfeﬂsfnl:
purposes the gains from making a weaker assumption are more sac
offset by the costs of increasing the complexity of this discussion. d¢
Johnston.
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Having defined multicollinearity in a relative rather than an
sbsolute sense, we must face the increased problem of
detection. There are no longer standard test statistics which
mit statements of differences from hypothesized values of
meters; as, for example, the Durbin-Watson statistic for
rejecting hypothesized zero autocorrelatiop. Nevertheless,
ules of thumb for detection of “serious” levels of
multicollinearity are importan-t, and some of these are
suggested in the second part of this section below. Once severe
multicollinearity is diagnosed, its resolution requires the
generation of additional information. The form of this
sdditional information should depend upon the specifics of
the particular problem. The final part of this section briefly
describes the more common forms of additional information,
and a later section shows how the problems specifics should
guide choice of information form. But first, we summarize the
consequences of high degrees of multicollinearity.

per
para

Consequences

The limiting case of perfect linear dependence within the
set of explanatory variables leads to a completely
indeterminate set of parameter estimates (b’s). In its “brute”
and “tactless” way, as Farrar and Glauber [1967, p. 93] put
it, the mathematics ‘. . .tells us that explained variance can be
allocated completely arbitrarily between linearly dependent
members of a perfectly correlated set of variables, and almost
arbitrarily between members of an almost perfectly
correlated® set.”

In a sense, the investigator whose set of explanatory
variables is perfectly correlated may be more fortunate than
one whose variables are nearly so. The former’s problems are
soon discovered by the mechanical inability to derive b’s,
while the latter’s problems may never be fully understood. For
the latter, multicollinear explanatory variables will result in
large variances (and standard errors) on regression coefficients;
indicating the low information content of data observed and
hence the low quality of the resulting parameter estimates.

The presence of multicollinearity alone does not lead to
bias in estimating the parameters, and this is perhaps a major
factor leading to complacency on the parts of investigators.
However, investigators are sometimes led to incorrectly delete
explanatory variables because their coefficients are not
statistically different from zero. The true situation may be not
that the variable has no influence on Y, but that the particular
set of sample data does not enable us to detect it. Thus, to the
extent that multicollinearity leads to a misspecification of the
model, least squares estimators will be biased.

A final consequence of multicollinearity is that estimates
of coefficients become particularly sensitive to given sets of
sample data. Often the addition of several observations on
thgse explanatory variables can yield dramatic changes in
estimated coefficients.

. In sum, the primary consequence of multicollinearity is an
inability to distinguish the separate contributions of
eXplanatory variables which exhibit little truly independent
Variation in explaining variance of the dependent variable. If
Our purpose is less in explaining separate influences as in
predicting values of the dependent variable, however, these

cffects are not so severe, provided the values of the

3 :
ol Th’e expressions in italic have been substituted for Farrar and
auber’s more technical expression, singular.
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exglanatory variables for which we wish to predict dependent
variables are correlated in the same way as the sample of X’s.

Detection

Since we have chosen to deal with degrees of
multicollinearity rather than existence, tests are made
difficult. The simplest, and admittedly arbitrary, rule of
thumb would involve defining “harmful” multicollinearity to
exist when simple pairwise correlations between the exogenous
variables exceed, say, r = .8. This would help avoid the most
obvious form of pairwise interdependence, although correla-
tions of a more complicated form may be severe, even while
pairwise correlations are slight.

A more elaborate definition is suggested by Klein [1962, p.
101], who defines harmful multicollinearity to exist when the
magnitude of pairwise correlation between two explanatory
variables is as large as, or larger than, the coefficient of multi-
ple correlation between the dependent variable and the set of
explanatory variables. Again, a set of X data passing inspection
by this criterion may still be highly correlated in a more com-
plex way than pairwise. A classic and an aggravatingly
common example has been termed by Johnston [1972, p.
178], the “‘dummy variable trap”.

Farrar and Glauber extend the concept of simple corre-
lation between explanatory variables to include multiple corre-
lation within a set of explanatory variables. The test of multi-
collinearity they provide is based on the F distribution and is
summarized in Johnston [1972, pp. 163-4]. Essentially, it in-
volves regressing, in turn, each of the explanatory variables
against the remaining set of explanatory variables and ob-
serving the coefficient of multiple determination (R2) for each
regression. If it is high, then the explanatory variables are
closely related in some linear way and vice versa. While the
formal test will nearly always reject the null hypothesis of
independence of the X’s, at least the values of the test
statistics may provide an indication of which explantory vari-
ables are most affected by multicollinearity, and where to
begin the search for better data.

A final note on diagnosis of “harmful” multicollinearity
derives from the first sympton mentioned above—viz., the re-
sulting inordinately large standard errors of the b’s. It would
be a good bet that multicollinearity is present if, for example,
all standard errors were larger than their corresponding esti-
mated b’s, while the coefficient of multiple determination was

high.
Alternatives

As indicated earlier, when severe conditions of multicolline-
arity within the sample data on the explanatory variables are
diagnosed, the usual econometric prescription is acquisition of
additional information, although this information can take
many forms. The most common procedure adopted, however,
is deletion of variables. Some of these approaches are briefly
sketched below, and expanded upon in a subsequent section.

1. Variable Deletion

The simplest approach to resolving the problem of severe

multicollinearity is to simply drop from the analysis ex-

planatory variables which appear to be highly correlated.

While this may resolve the multicollinearity problem, the

general result is misspecification of the model and biased

estimation. Stepwise regression procedures are formal tech-
niques which achieve roughly the same thing.
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2. Restrictions

An alternative which is sometimes used is to impose addi-
tional information in the form of restrictions on a value of
b or some combination of regression coefficients. The re-
strictions may be exact or of the inequality form. In either
form, as will be seen below, these restrictions can be used
to reduce the effects of multicollinearity.

3. Principal Components

Another appoach involves the generation of “artificial’” new
variables (principal components) which are truly inde-
pendent of one another, but which explain as much of the
variation of the dependent variable as possible. These new
variables are formed as weighted combinations of the ex-
planatory variables.

4. Ridge Regression

Ridge regression involves a mechanical augmenting of, es-
sentially, the matrix of correlations of the explanatory vari-
ables used in calculating the b’s. In the process, precision is
improved (standard errors are reduced).

5. Bayesian Estimation

Bayesian estimation involves combining (prior) information
about the b’s, in the form of probability distributions, with
the sample data to obtain posterior estimates of the b’s.
This information is combined in a well-defined mathema-
tical way which weights each source of information in-
versely with its variance.

CLEVE E. WILLIS AND ROBERT D. PERLACK, ET, 5|

Each of the approaches indicated above may be useful iy
reducing the standard errors of the estimators and hepge in
estimating the parameters more precisely. Unfortunately, g,
unbiasedness property of least squares is generally sacrifieg,
the process. If we are to compare these procedures to decige
which is better, we need a criterion of “better” which con-
siders both bias and precision. The discussion below offers oy
such criterion to be used in the comparisons made in the fiy;
two sections.

Mean Square Error

As indicated, the alternatives above can be regarded as adg.
ing additional information by imposing restrictions in the egt;.
mation process. For example, in choosing to delete a variab]e
one is in effect restricting the 8 parameter corresponding u;
the deleted variable to be zero. If these restrictions are trye
precision will be improved (standard errors lowered) and thé
estimators remain unbiased. In the more usual situation iy
which these restrictions are not exactly true, imposing then
still reduces standard errors, but at the expense of introducing
some bias. Thus, the premise behind the alternative biased
estimators discussed here is that the introduction of a small
amount of bias may be a reasonable price to pay in order to
achieve a major reduction in variance. Visually, biased esti-
mator b in Figure 1 may be preferred to unbiased estimator
since we are more likely to be “closer’ to f with estimator b
than with .

Figure 1

Probability
OB SD

Distributions of Estimators

: N

Value of B, b
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This notion of a reasonable trade-off between variance and
bias, of course, remains nebulpus until we define “‘reasonable’.
Mean square €rror (MSE) criteria have been most corr}monly
applied for this purpose. For the case of a single estimator,

. : 4 5 -
MSE is variance plus the bias squared. Thqs, accord‘mg.to this
criterion, switching from an unbiased estimator (likef) to a
biased estimator (like b) is “reasonable” if the square of the
bias introduced is less than the reduction in variance (square of
the standard error) achieved.

A problem with this criterion is that it is dependent upon
the value of the unknown parameter B, such that for some
values of B a particular estimation procedure may be better
than another in the MSE sense, while for other values of B8, the
reverse may be true. This does not mean that the MSE criteria
are useless. Rather, it suggests that the alternative estimators
discussed here will out-perform each other and ordinary least
squares in some circumstances and not in others. The section
to follow describes these alternative estimators in somewhat
more detail and outlines the existing evidence regarding the
circumstances favoring each method in the presence of
multicollinearity.

ALTERNATIVES

The alternative procedures which might be employed in the
presence of multicollinearity, which were listed in the second
section above, are: deleting variables; principal components;
restrictions on linear combinations of parameters; ridge re-
gression; and Bayesian estimation.

Variable Deletion

Easily the most common approach to “resolving’ situations
in which multicollinearity is present is to delete variables
which were included in the original model specification. This
deletion is often at the arbitrary discretion of the investigator,
where high correlations, low significance, or both, are used as
the basis for such a decision. Other times a more formal pro-
cedure, the leading example of which is the use of stepwise
regression programs to add or drop regressors, is followed.
Whether formal or informal procedures are followed, whenever
the same set of data is used to specify the final model as well
a to estimate the parameters of this specification, the process
is termed “pretest” or “‘sequential estimation”. In an excellent
survey article on the subject, Wallace [1977] describes the
consequences of pretesting and compares these with the conse-
quences of using OLS on the original specification and the
alternative of applying restrictions on the original specification
({estﬁcted least squares RLS) before estimation is undertaken.
Since pretest and RLS estimators are biased in general, the
MSE criterion was used for comparison. Wallace’s results show
that for very accurate prior information (restrictions), RLS is
best, OLS is worst, and pretest is in between. For bad priors,
the ordering is reversed, and in all cases pretest (deletion) esti-
mators are inferior to the best of OLS or RLS by the MSE
Cnte{ion. While Wallace’s survey was not written expressly for
the situation of multicollinearity, the results are instructive.

Freund and Debertin [1975] provide additional insight into
the consequences of pretesting. They use Monte Carlo experi-
ments to make the consequences of variable deletion more
gaphic. Tn'brief, a host of irrelevant variables were subjected

4
See Wallace for a fuller discussion of the MSE criteria.

to stepwise regression and as predicted an overly large pro-
portion of these appeared to be statistically significant by the
usual procedure (the t-test). The demonstration verifies the
analytical result that in the presence of pretest estimation, the
usual tests do not provide valid indicators of significance.
Their conclusion is not that sequential estimation should never
be used, but rather that when exploratory data analysis is
used, the results should be clearly labeled as such so as not to
mislead the user of this information.

Principal Components

Principal Components (PC) techniques are sometimes used
when the number of regressors is so large as to severely limit
degrees of freedom and/or when these regressors are highly
intercorrelated. Essentially, PC transforms a set of highly cor-
related regressors into a set of uncorrelated variables,® where
each new PC is an artificial variable expressed as some linear
combination of the original regressors. These new variables
(components) can now be tested with greater accuracy since
there is no distortion due to multicollinearity among these
PEist

Since the PC’s are artificial constructs, it is usually not
possible to attach an economic meaning to the effect of any
particular component. To surmount this difficulty, principal
components regression can be used. This involves deleting one
or more of the PC’s® and then solving back for the implied
effects of the separate original regressors.

The PC estimator has a smaller variance than the OLS esti-
mator and for some values of the true parameters will have
smaller MSE. In particular, McCallum’s work concludes that
the PC estimator out-performs the OLS estimator the higher is
the regressor correlation, the smaller is the number of obser-
vations, and the more alike are the parameters.

Restrictions

Economic theory or previous empirical studies may provide
an investigator with some information concerning:

i) a specific value? of some of the regression parameters,

ii) proportional relationships between a set of the para-
meters, including a specific value of some linear com-
bination of parameters,8 and

iii) relations in which individual coefficients or linear
combinations lie within some bounds such that restrictions
of an inequality type can be expressed.

In this case, exact restrictions (i and ii) and inequality re-
strictions (iii) can be used to incorporate this information.

In the former case, the RLS procedure discussed earlier can
be used. The variance of this estimator will always be smaller
than for the OLS estimator, although the estimates are biased
except when the restrictions are precisely correct. Whether the
RLS estimator is better in MSE than OLS depends upon how
inaccurate these restrictions are.

5gee Johnston or Kendall for a more detailed description of this
technique.

8gee Mittlehammer and Baritelle.

Tn this Journal, an example of this procedure is provided by Lind-
say and Willis.

8For example, in the Cobb-Douglas production function, linear
homogeneity requires that parameters sum to one.
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If, on the other hand, the prior information about the para-
meters is less complete and exists in linear inequality form as
in case (iii) above, then we may combine the information with
the sample data to obtain better estimates of the parameters.
However, this estimation procedure involves the use of quad-
ratic programming (Judge and Takayama [1966] ). This techni-
que can handle both the equality and inequality restrictions
together in the estimation of the parameters.

Ridge Regression

Ridge regression attacks the principal multicollinearity
symptom, high estimator variance, by systematic data mani-
pulation. Specifically, this procedure involves the addition of
successively larger constant terms to the matrix of correlations
among the explanatory variables used in calculating the para-
meter coefficient estimates. Each addition is followed by the
derivation of a set of estimates. Brown and Beattie [1975]
experimentally suggest that the variance reduction potential of
this process is an increasing function of the magnitude of the
constant term. Their experiment both provides the general
range of ridge regression usefulness and, given usefulness,
offers an intuitive technique for optimum constant term
selection.

Ridge regression can confidently be used when the true
values of the estimators are known to be of the same sign and
roughly the same magnitude. Additionally, this procedure is
preferable to others in this situation if the number of re-
gressors is small and all should be retained. The Brown and
Beattie experiment demonstrates large MSE reductions for all
ridge regression applications, regardless of the true nature of
the estimates. However, artificial augmentation of the explana-
tory variable correlation matrix introduces bias into the esti-
mation process. Bias is extreme for situations which do not
fulfill the true estimator sign and magnitude criteria.

Bayesian Estimation

Sometimes the prior information available can more nearly
be regarded as stochastic, or subject to a probability distri-
bution, than as exact or inequality restrictions. These cases
lend themselves well to Bayesian estimation. In brief, Bayesian
estimation involves combining sample data with a prior pro-
bability distribution in a well-defined mathematical way. It
often involves numerical integration and can become in-
creasingly difficult as the number of parameters increases. The
offsetting advantages include the explicit formulation of
stochastic side conditions on parameters and the incorporation
of these priors with the sample data to produce ‘“posterior”
distributions on these estimates.,? as well as the fact that Baye-
sian estimates are expressed in terms of a specific probability
distribution, including means and variances.

Clearly, Bayesian estimation is most appropriate when the
number of parameters is small and side conditions on some or
all of these parameters are readily expressible as probability
densities. Zellner, and Tiao and Zellner can be used for general
background, while Rausser, ef al. and Chowdhury, et al serve
as illustrative applications.

For present purposes, the Chowdhury article is most inter-
esting. Preceding their work, the various production function
estimations of a Cobb-Douglas form had been fairly unsuc-

9Essentially, the Bayesian method for combining priors and sample
information weights each inversely proportional to its variance.
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cessful. Some of the investigators were baffled; other It
cognized that the intuitively unsatisfactory results were
result of multicollinearity. Finally, Doll discovered that if the
conditions generally assumed by economists regarding the pro-
duction function were true, then multicollinearity woulq p,
the logical consequence. Indeed, exact multicollinearity ygy;
result from these economic conditions being met. Rather than
being discouraged by the presence of conditions of .
collinearity, Doll (p. 558) comments, the investigators
“...should be pleased because the presence of multicoj.
nearity serves as a verification of their economic mode].”

Chowdhury’s work involves using the data from one of
these previous studies which produced counter-intuitive regy
and estimating the production function using Bayesian pr.
cedures. As expected, the Bayesian estimates were consisten
with prior knowledge about the parameters.

SUMMARY

The sections above described the condition of mult
collinearity, its detection, and its effects. Some alternative pro-
cedures were described which lead to a reduction in variance
of the estimators. Since these alternatives are not unbiased, a
trade-off between bias and variance reduction is involved. MSE
was advanced as one means of evaluating this trade-off.

The alternatives considered here include: variable deletion
(and stepwise regression); principal components regression;
RLS and quadratic programming procedures for inequality re-
strictions on parameters; ridge regression; and Bayesin
analysis. None of these alternatives is best in all situations-a
summary of the situations which favor each is provided.

Variable deletion procedures should generally be reserved
for situations characterized as exploratory data analysis. The
results should be clearly labeled as such and statistical fesls
should not be made with the results, since the tests will be
misleading.

Principal components regression and ridge regression pro-
cedures are suitable candidates as alternatives to OLS in cases
in which the parameters are expected to be of similar sign and
roughly similar magnitude. Principal components is best in
cases of high correlations, large number of regressors, and few
observations. To the contrary, ridge regression is at its best
when the number of regressors is small. For cases of a large
number of regressors, parameters of opposite sign and dis
similar size, ridge regression estimators are subject to extreme
bias. Software packages for both techniques are easy to obtain
and use.

If information about specific values of parameters or linear
combinations is known with fair precision, RLS is a useful
approach, being clearly superior to OLS in an MSE context.
Likewise, when inequality information is present (e.g.,  par®
meter lies between zero and one), quadratic programming ca
be used. RLS software programs are ubiquitous; adaptations 0
quadratic programming for the second case are not. »

If the prior information can be expressed as a probability
density, Bayesian estimation is feasible. It is capable Of‘m‘
corporating more information than the quadratic programming
procedure above and exhibits an intuitively pleasing methf)fi of
combining information. It is at its best when side conditions
can be expressed by probabilities and the number of part:
meters is small. Unfortunately, there are not general §oftw«"1r€
packages and application will involve some sophisitication with
statistical methods.



MULTICOLLINEARITY: EFFECTS, SYMPTOMS, AND REMEDIES

We conclude with two comments. First, thpre are glan'n.g
gaps in this presentation. This is not necessarily bad—if this
article proves useful for some of the readers, folllow-u.ps on
topics not covered may be as well. Second, the d1scus319n of
Jternatives may be academic if software packages for their use
are not available. At least one new program, called SHAZAM,
is available which provides, among many oth?rs, OLS, RLS,
principal Components regression, and Ridge regression
options. The user’s manual is axll%ﬂable upon request from
Kenneth White at Rice University.
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