
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


The Stata Journal (2010)
10, Number 3, pp. 503–504

Stata tip 91: Putting unabbreviated varlists into local

macros
Nicholas J. Cox
Department of Geography
Durham University
Durham, UK

n.j.cox@durham.ac.uk

Within interactive sessions, do-files, or programs, Stata users often want to work
with varlists, lists of variable names. For convenience, such lists may be stored in local
macros. Local macros can be directly defined for later use, as in

. local myx "weight length displacement"

. regress mpg `myx´

However, users frequently want to put longer lists of names into local macros, spelled
out one by one so that some later command can loop through the list defined by the
macro. Such varlists might be indirectly defined in abbreviations using the wildcard
characters * or ?. These characters can be used alone or can be combined to express
ranges. For example, specifying * catches all variables, *TX* might define all variables
for Texas, and *200? catches the years 2000–2009 used as suffixes.

In such cases, direct definition may not appeal for all the obvious reasons: it is
tedious, time-consuming, and error-prone. It is also natural to wonder if there is a
better method. You may already know that foreach (see [P] foreach) will take such
wildcarded varlists as arguments, which solves many problems.

Many users know that pushing an abbreviated varlist through describe or ds is
one way to produce an unabbreviated varlist. Thus

. describe, varlist

is useful principally for its side effect of leaving all the variable names in r(varlist).
ds is typically used in a similar way, as is the user-written findname command (Cox
2010).

However, if the purpose is just to produce a local macro, the method of using
describe or ds has some small but definite disadvantages. First, the output of each
may not be desired, although it is easily suppressed with a quietly prefix. Second,
the modus operandi of both describe and ds is to leave saved results as r-class results.
Every now and again, users will be frustrated by this when they unwittingly overwrite
r-class results that they wished to use again. Third, there is some inefficiency in using
either command for this purpose, although you would usually have to work hard to
measure it.

c© 2010 StataCorp LP dm0051



504 Stata tip 91

The solution here is to use the unab command; see [P] unab. unab has just one
restricted role in life, but that role is the solution here. unab is billed as a programming
command, but nothing stops it from being used interactively as a simple tool in data
management. The simple examples

. unab myvars : *

. unab TX : *TX*

. unab twenty : *200?

show how a local macro, named at birth (here as myvars, TX, and twenty), is defined
as the unabbreviated equivalent of each argument that follows a colon. Note that using
wildcard characters, although common, is certainly not compulsory.

The word “unabbreviate” is undoubtedly ugly. The help and manual entry do also
use the much simpler and more attractive word “expand”, but the word “expand” was
clearly not available as a command name, given its use for another purpose.

This tip skates over all the fine details of unab, and only now does it mention the
sibling commands tsunab and fvunab, for use when you are using time-series operators
and factor variables. For more information, see [P] unab.

Reference

Cox, N. J. 2010. Speaking Stata: Finding variables. Stata Journal 10: 281–296.




