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1 Introduction

In a statistical analysis, I usually want some basic descriptive statistics such as the mean,
standard deviation, extremes, and percentiles. See, for example, Pagano and Gauvreau
(2000). Stata conveniently provides these descriptive statistics with the summarize

command’s detail option. Alternatively, I can obtain percentiles with the centile

command. For example, with auto.dta, we have

. sysuse auto
(1978 Automobile Data)

. summarize price, detail

Price

Percentiles Smallest
1% 3291 3291
5% 3748 3299

10% 3895 3667 Obs 74
25% 4195 3748 Sum of Wgt. 74

50% 5006.5 Mean 6165.257
Largest Std. Dev. 2949.496

75% 6342 13466
90% 11385 13594 Variance 8699526
95% 13466 14500 Skewness 1.653434
99% 15906 15906 Kurtosis 4.819188

However, if I have missing values, the summarize command is not supported by mi

estimate or by the user-written mim command (Royston 2004, 2005a,b, 2007; Royston,
Carlin, and White 2009).

2 Finding means and percentiles when missing values are
present

For a general multiple-imputation reference, see Stata 11 Multiple-Imputation Reference
Manual (2009). By recognizing that a regression with no independent variables estimates
the mean, I can use mi estimate: regress to get multiply imputed means. If I wish to
get multiply imputed quantiles, I can use mi estimate: qreg or mi estimate: sqreg

for this purpose.
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I now create a dataset with missing values of price:

. clonevar newprice = price

. set seed 19670221

. replace newprice = . if runiform() < .4
(32 real changes made, 32 to missing)

The following commands were generated from the multiple-imputation dialog box. I
used 20 imputations. Before Stata 11, this could also be done with the user-written com-
mands ice and mim (Royston 2004, 2005a,b, 2007; Royston, Carlin, and White 2009).

. mi set mlong

. mi register imputed newprice
(32 m=0 obs. now marked as incomplete)

. mi register regular mpg trunk weight length

. mi impute regress newprice, add(20) rseed(3252010)

Univariate imputation Imputations = 20
Linear regression added = 20
Imputed: m=1 through m=20 updated = 0

Observations per m

Variable complete incomplete imputed total

newprice 42 32 32 74

(complete + incomplete = total; imputed is the minimum across m

of the number of filled in observations.)

. mi estimate: regress newprice

Multiple-imputation estimates Imputations = 20
Linear regression Number of obs = 74

Average RVI = 1.3880
Complete DF = 73
DF: min = 19.46

avg = 19.46
DF adjustment: Small sample max = 19.46

F( 0, .) = .
Within VCE type: OLS Prob > F = .

newprice Coef. Std. Err. t P>|t| [95% Conf. Interval]

_cons 5693.489 454.9877 12.51 0.000 4742.721 6644.258

From this output, we see that the estimated mean is 5,693 with a standard error
of 455 (rounded up) compared with the complete data value of 6,165 with a standard
error of 343 (also rounded up). However, we do not have estimates of quantiles. This
could also have been done using mi estimate: mean newprice (the mean command is
near the bottom of the estimation command list for mi estimate).
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We can apply the same principle using qreg. For the 10th percentile, type

. mi estimate: qreg newprice, quantile(10)

Multiple-imputation estimates Imputations = 20
.1 Quantile regression Number of obs = 74

Average RVI = 0.2901
Complete DF = 73
DF: min = 48.05

avg = 48.05
DF adjustment: Small sample max = 48.05

F( 0, .) = .
Prob > F = .

newprice Coef. Std. Err. t P>|t| [95% Conf. Interval]

_cons 3495.635 708.54 4.93 0.000 2071.058 4920.212

Compare the value of 3,496 with the value of 3,895 from the full data. We can use
the simultaneous estimates command for the full set:

. mi estimate: sqreg newprice, quantiles(10 25 50 75 90) reps(20)

Multiple-imputation estimates Imputations = 20
Simultaneous quantile regression Number of obs = 74

Average RVI = 0.6085
Complete DF = 73

DF adjustment: Small sample DF: min = 23.19
avg = 26.97
max = 31.65

newprice Coef. Std. Err. t P>|t| [95% Conf. Interval]

q10
_cons 3495.635 533.5129 6.55 0.000 2408.434 4582.836

q25
_cons 4130.037 237.1932 17.41 0.000 3642.459 4617.614

q50
_cons 5200.238 441.294 11.78 0.000 4292.719 6107.757

q75
_cons 6620.232 778.8488 8.50 0.000 5025.49 8214.974

q90
_cons 8901.985 1417.022 6.28 0.000 5971.962 11832.01

3 Comments and cautions

The qreg command does not give the same result as the centile command when
you have complete data. This is because the centile command uses one observation,
while the qreg command uses a weighted combination of the observations. It will have
somewhat shorter confidence intervals, but with large datasets, the difference will be
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small. A second caution is that comparing two medians can be tricky: the difference
of two medians is not the median difference of the distributions. I have found it useful
to use percentiles because there is a one-to-one relationship between percentiles if data
are transformed. In our case, there is plentiful evidence that price is not normally
distributed, so it would be good to look for a transformation and impute those values.

This method of using regression commands without an independent variable can
provide estimates of quantities that otherwise would be difficult to obtain. For example,
it is much faster than finding 20 imputed percentiles and then combining them with
Rubin’s rules, and it is much less onerous and prone to error.
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