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Abstract. Sample skewness and kurtosis are limited by functions of sample size.
The limits, or approximations to them, have repeatedly been rediscovered over
the last several decades, but nevertheless seem to remain only poorly known. The
limits impart bias to estimation and, in extreme cases, imply that no sample could
bear exact witness to its parent distribution. The main results are explained in a
tutorial review, and it is shown how Stata and Mata may be used to confirm and
explore their consequences.
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1 Introduction

The use of moment-based measures for summarizing univariate distributions is long
established. Although there are yet longer roots, Thorvald Nicolai Thiele (1889) used
mean, standard deviation, variance, skewness, and kurtosis in recognizably modern
form. Appreciation of his work on moments remains limited, for all too understandable
reasons. Thiele wrote mostly in Danish, he did not much repeat himself, and he tended
to assume that his readers were just about as smart as he was. None of these habits
could possibly ensure rapid worldwide dissemination of his ideas. Indeed, it was not
until the 1980s that much of Thiele’s work was reviewed in or translated into English
(Hald 1981; Lauritzen 2002).

Thiele did not use all the now-standard terminology. The names standard deviation,
skewness, and kurtosis we owe to Karl Pearson, and the name variance we owe to Ronald
Aylmer Fisher (David 2001). Much of the impact of moments can be traced to these
two statisticians. Pearson was a vigorous proponent of using moments in distribution
curve fitting. His own system of probability distributions pivots on varying skewness,
measured relative to the mode. Fisher’s advocacy of maximum likelihood as a superior
estimation method was combined with his exposition of variance as central to statistical
thinking. The many editions of Fisher’s 1925 text Statistical Methods for Research
Workers, and of texts that in turn drew upon its approach, have introduced several
generations to the ideas of skewness and kurtosis. Much more detail on this history is
given by Walker (1929), Hald (1998, 2007), and Fiori and Zenga (2009).

c© 2010 StataCorp LP st0204
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Whatever the history and the terminology, a simple but fundamental point deserves
emphasis. A name like skewness has a very broad interpretation as a vague concept of
distribution symmetry or asymmetry, which can be made precise in a variety of ways
(compare with Mosteller and Tukey [1977]). Kurtosis is even more enigmatic: some
authors write of kurtosis as peakedness and some write of it as tail weight, but the
skeptical interpretation that kurtosis is whatever kurtosis measures is the only totally
safe story. Numerical examples given by Irving Kaplansky (1945) alone suffice to show
that kurtosis bears neither interpretation unequivocally.1

To the present, moments have been much disapproved, and even disproved, by math-
ematical statisticians who show that in principle moments may not even exist, and by
data analysts who know that in practice moments may not be robust. Nevertheless in
many quarters, they survive, and they even thrive. One of several lively fields making
much use of skewness and kurtosis measures is the analysis of financial time series (for
example, Taylor [2005]).

In this column, I will publicize one limitation of certain moment-based measures, in a
double sense. Sample skewness and sample kurtosis are necessarily bounded by functions
of sample size, imparting bias to the extent that small samples from skewed distributions
may even deny their own parentage. This limitation has been well established and
discussed in several papers and a few texts, but it still appears less widely known than
it should be. Presumably, it presents a complication too far for most textbook accounts.
The presentation here will include only minor novelties but will bring the key details
together in a coherent story and give examples of the use of Stata and Mata to confirm
and explore for oneself the consequences of a statistical artifact.

2 Deductions

2.1 Limits on skewness and kurtosis

Given a sample of n values y1, . . . , yn and sample mean y =
∑n

i=1 yi/n, sample moments
measured about the mean are at their simplest defined as averages of powered deviations

mr =

∑n
i=1(y − y)r

n

so that m2 and s =
√
m2 are versions of, respectively, the sample variance and sample

standard deviation.

Here sample skewness is defined as

m3

m
3/2
2

=
m3

s3
=
√
b1 = g1

1. Kaplansky’s paper is one of a few that he wrote in the mid-1940s on probability and statistics. He
is much better known as a distinguished algebraist (Bass and Lam 2007; Kadison 2008).
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while sample kurtosis is defined as

m4

m2
2

=
m4

s4
= b2 = g2 + 3

Hence, both of the last two measures are scaled or dimensionless: Whatever units
of measurement were used appear raised to the same powers in both numerator and
denominator, and so cancel out. The commonly usedm, s, b, and g notation corresponds
to a longstanding µ, σ, β, and γ notation for the corresponding theoretical or population
quantities. If 3 appears to be an arbitrary constant in the last equation, one explanation
starts with the fact that normal or Gaussian distributions have β1 = 0 and β2 = 3; hence,
γ2 = 0.

Naturally, if y is constant, then m2 is zero; thus skewness and kurtosis are not
defined. This includes the case of n = 1. The stipulations that y is genuinely variable
and that n ≥ 2 underlie what follows.

Newcomers to this territory are warned that usages in the statistical literature vary
considerably, even among entirely competent authors. This variation means that differ-
ent formulas may be found for the same terms—skewness and kurtosis—and different
terms for the same formulas. To start at the beginning: Although Karl Pearson in-
troduced the term skewness, and also made much use of β1, he used skewness to refer
to (mean − mode) / standard deviation, a quantity that is well defined in his system
of distributions. In more recent literature, some differences reflect the use of divisors
other than n, usually with the intention of reducing bias, and so resembling in spirit
the common use of n − 1 as an alternative divisor for sample variance. Some authors
call γ2 (or g2) the kurtosis, while yet other variations may be found.

The key results for this column were extensively discussed by Wilkins (1944) and
Dalén (1987). Clearly, g1 may be positive, zero, or negative, reflecting the sign of m3.
Wilkins (1944) showed that there is an upper limit to its absolute value,

|g1| ≤
n− 2√
n− 1

(1)

as was also independently shown by Kirby (1974). In contrast, b2 must be positive and
indeed (as may be shown, for example, using the Cauchy–Schwarz inequality) must be
at least 1. More pointedly, Dalén (1987) showed that there is also an upper limit to its
value:

b2 ≤ n2 − 3n+ 3

n− 1
(2)

The proofs of these inequalities are a little too long, and not quite interesting enough,
to reproduce here.

Both of these inequalities are sharp, meaning attainable. Test cases to explore the
precise limits have all values equal to some constant, except for one value that is equal
to another constant: n = 2, y1 = 0, y2 = 1 will do fine as a concrete example, for which
skewness is 0/1 = 0 and kurtosis is (1 − 3 + 3)/1 = 1.
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For n = 2, we can rise above a mere example to show quickly that these results are
indeed general. The mean of two distinct values is halfway between them so that the
two deviations yi − y have equal magnitude and opposite sign. Thus their cubes have
sum 0, and m3 and b1 are both identically equal to 0. Alternatively, such values are
geometrically two points on the real line, a configuration that is evidently symmetric
around the mean in the middle, so skewness can be seen to be zero without any calcula-
tions. The squared deviations have an average equal to {(y1 − y2)/2}2, and their fourth
powers have an average equal to {(y1 − y2)/2}4, so g2 is identically equal to 1.

To see how the upper limit behaves numerically, we can rewrite (1) as

|g1| ≤
√
n− 1 − 1√

n− 1

so that as sample size n increases, first
√
n− 1 and then

√
n become acceptable approx-

imations. Similarly, we can rewrite (2) as

b2 ≤ n− 2 +
1

n− 1

from which, in large samples, first n− 2 and then n become acceptable approximations.

As it happens, these limits established by Wilkins and Dalén sharpen up on the
results of other workers. Limits of

√
n and n (the latter when n is greater than 3)

were established by Cramér (1946, 357). Limits of
√
n− 1 and n were independently

established by Johnson and Lowe (1979); Kirby (1981) advertised work earlier than
theirs (although not earlier than that of Wilkins or Cramér). Similarly, Stuart and Ord
(1994, 121–122) refer to the work of Johnson and Lowe (1979), but overlook the sharper
limits.2

There is yet another twist in the tale. Pearson (1916, 440) refers to the limit (2),
which he attributes to George Neville Watson, himself later a distinguished contributor
to analysis (but not to be confused with the statistician Geoffrey Stuart Watson), and
to a limit of n − 1 on b1, equivalent to a limit of

√
n− 1 on g1. Although Pearson

was the author of the first word on this subject, his contribution appears to have been
uniformly overlooked by later authors. However, he dismissed these limits as without
practical importance, which may have led others to downplay the whole issue.

In practice, we are, at least at first sight, less likely to care much about these limits
for large samples. It is the field of small samples in which limits are more likely to cause
problems, and sometimes without data analysts even noticing.

2. The treatise of Stuart and Ord is in line of succession, with one offset, from Yule (1911). Despite
that distinguished ancestry, it contains some surprising errors as well as the compendious collection
of results that makes it so useful. To the statement that mean, median, and mode differ in a skewed
distribution (p. 48), counterexamples are 0, 0, 1, 1, 1, 1, 3, and the binomial

`

10

k

´

0.1k0.910−k, k =
0, . . . , 10. For both of these skewed counterexamples, mean, median, and mode coincide at 1. To
the statement that they coincide in a symmetric distribution (p. 108), counterexamples are any
symmetric distribution with an even number of modes.
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2.2 An aside on coefficient of variation

The literature contains similar limits related to sample size on other sample statistics.
For example, the coefficient of variation is the ratio of standard deviation to mean, or
s/y. Katsnelson and Kotz (1957) proved that so long as all yi ≥ 0, then the coefficient of
variation cannot exceed

√
n− 1, a result mentioned earlier by Longley (1952). Cramér

(1946, 357) proved a less sharp result, and Kirby (1974) proved a less general result.

3 Confirmations

[R] summarize confirms that skewness b1 and kurtosis g2 are calculated in Stata pre-
cisely as above. There are no corresponding Mata functions at the time of this writing,
but readers interested in these questions will want to start Mata to check their own
understanding. One example to check is

. sysuse auto, clear
(1978 Automobile Data)

. summarize mpg, detail

Mileage (mpg)

Percentiles Smallest
1% 12 12
5% 14 12

10% 14 14 Obs 74
25% 18 14 Sum of Wgt. 74

50% 20 Mean 21.2973
Largest Std. Dev. 5.785503

75% 25 34
90% 29 35 Variance 33.47205
95% 34 35 Skewness .9487176
99% 41 41 Kurtosis 3.975005

The detail option is needed to get skewness and kurtosis results from summarize.

We will not try to write a bulletproof skewness or kurtosis function in Mata, but we
will illustrate its use calculator-style. After entering Mata, a variable can be read into
a vector. It is helpful to have a vector of deviations from the mean to work on.

. mata :
mata (type end to exit)

: y = st_data(., "mpg")

: dev = y :- mean(y)

: mean(dev:^3) / (mean(dev:^2)):^(3/2)
.9487175965

: mean(dev:^4) / (mean(dev:^2)):^2
3.975004596

So those examples at least check out. Those unfamiliar with Mata might note that
the colon prefix, as in :- or :^, merely flags an elementwise operation. Thus for example,
mean(y) returns a constant, which we wish to subtract from every element of a data
vector.
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Mata may be used to check simple limiting cases. The minimal dataset (0, 1) may
be entered in deviation form. After doing so, we can just repeat earlier lines to calculate
b1 and g2:

: dev = (.5 \ -.5)

: mean(dev:^3) / (mean(dev:^2)):^(3/2)
0

: mean(dev:^4) / (mean(dev:^2)):^2
1

Mata may also be used to see how the limits of skewness and kurtosis vary with
sample size. We start out with a vector containing some sample sizes. We then calculate
the corresponding upper limits for skewness and kurtosis and tabulate the results. The
results are mapped to strings for tabulation with reasonable numbers of decimal places.

: n = (2::20\50\100\500\1000)

: skew = sqrt(n:-1) :- (1:/(n:-1))

: kurt = n :- 2 + (1:/(n:-1))

: strofreal(n), strofreal((skew, kurt), "%4.3f")
1 2 3

1 2 0.000 1.000
2 3 0.914 1.500
3 4 1.399 2.333
4 5 1.750 3.250
5 6 2.036 4.200
6 7 2.283 5.167
7 8 2.503 6.143
8 9 2.703 7.125
9 10 2.889 8.111

10 11 3.062 9.100
11 12 3.226 10.091
12 13 3.381 11.083
13 14 3.529 12.077
14 15 3.670 13.071
15 16 3.806 14.067
16 17 3.938 15.062
17 18 4.064 16.059
18 19 4.187 17.056
19 20 4.306 18.053
20 50 6.980 48.020
21 100 9.940 98.010
22 500 22.336 498.002
23 1000 31.606 998.001

The second and smaller term in each expression for (1) and (2) is 1/(n−1). Although
the calculation is, or should be, almost mental arithmetic, we can see how quickly this
term shrinks so much that it can be neglected:
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: strofreal(n), strofreal(1 :/ (n :- 1), "%4.3f")
1 2

1 2 1.000
2 3 0.500
3 4 0.333
4 5 0.250
5 6 0.200
6 7 0.167
7 8 0.143
8 9 0.125
9 10 0.111

10 11 0.100
11 12 0.091
12 13 0.083
13 14 0.077
14 15 0.071
15 16 0.067
16 17 0.062
17 18 0.059
18 19 0.056
19 20 0.053
20 50 0.020
21 100 0.010
22 500 0.002
23 1000 0.001

: end

These calculations are equally easy in Stata when you start with a variable containing
sample sizes.

4 Explorations

In statistical science, we use an increasing variety of distributions. Even when closed-
form expressions exist for their moments, which is far from being universal, the need
to estimate parameters from sample data often arises. Thus the behavior of sample
moments and derived measures remains of key interest. Even if you do not customarily
use, for example, summarize, detail to get skewness and kurtosis, these measures may
well underlie your favorite test for normality.

The limits on sample skewness and kurtosis impart the possibility of bias whenever
the upper part of their sampling distributions is cut off by algebraic constraints. In
extreme cases, a sample may even deny the distribution that underlies it, because it is
impossible for any sample to reproduce the skewness and kurtosis of its parent.

These questions may be explored by simulation. Lognormal distributions offer simple
but striking examples. We call a distribution for y lognormal if ln y is normally dis-
tributed. Those who prefer to call normal distributions by some other name (Gaussian,
notably) have not noticeably affected this terminology. Similarly, for some people the
terminology is backward, because a lognormal distribution is an exponentiated normal
distribution. Protest is futile while the term lognormal remains entrenched.
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If ln y has mean µ and standard deviation σ, its skewness and kurtosis may be
defined in terms of exp(σ2) = ω (Johnson, Kotz, and Balakrishnan 1994, 212):

γ1 =
√
ω − 1(ω + 2); β2 = ω4 + 2ω3 + 3ω2 − 3

Differently put, skewness and kurtosis depend on σ alone; µ is a location parameter for
the lognormal as well as the normal.

[R] simulate already has a worked example of the simulation of lognormals, which
we can adapt slightly for the present purpose. The program there called lnsim merely
needs to be modified by adding results for skewness and kurtosis. As before, summarize,
detail is now the appropriate call. Before simulation, we (randomly, capriciously, or
otherwise) choose a seed for random-number generation:

. clear all

. program define lnsim, rclass
1. version 11.1
2. syntax [, obs(integer 1) mu(real 0) sigma(real 1)]
3. drop _all
4. set obs `obs´
5. tempvar z
6. gen `z´ = exp(rnormal(`mu´,`sigma´))
7. summarize `z´, detail
8. return scalar mean = r(mean)
9. return scalar var = r(Var)
10. return scalar skew = r(skewness)
11. return scalar kurt = r(kurtosis)
12. end

. set seed 2803

. simulate mean=r(mean) var=r(var) skew=r(skew) kurt=r(kurt), nodots
> reps(10000): lnsim, obs(50) mu(-3) sigma(7)

command: lnsim, obs(50) mu(-3) sigma(7)
mean: r(mean)
var: r(var)
skew: r(skew)
kurt: r(kurt)

We are copying here the last example from help simulate, a lognormal for which
µ = −3, σ = 7. While a lognormal may seem a fairly well-behaved distribution, a quick
calculation shows that with these parameter choices, the skewness is about 8×1031 and
the kurtosis about 1085, which no sample result can possibly come near! The previously
discussed limits are roughly 7 for skewness and 48 for kurtosis for this sample size. Here
are the Mata results:

. mata
mata (type end to exit)

: omega = exp(49)

: sqrt(omega - 1) * (omega + 2)
8.32999e+31

: omega^4 + 2 * omega^3 + 3*omega^2 - 3
1.32348e+85

: n = 50
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: sqrt(n:-1) :- (1:/(n:-1)), n :- 2 + (1:/(n:-1))
1 2

1 6.979591837 48.02040816

: end

Sure enough, calculations and a graph (shown as figure 1) show the limits of 7 and
48 are biting hard. Although many graph forms would work well, I here choose qplot

(Cox 2005) for quantile plots.

. summarize

Variable Obs Mean Std. Dev. Min Max

mean 10000 1.13e+09 1.11e+11 1.888205 1.11e+13
var 10000 6.20e+23 6.20e+25 42.43399 6.20e+27

skew 10000 6.118604 .9498364 2.382902 6.857143
kurt 10000 40.23354 10.06829 7.123528 48.02041

. qplot skew, yla(, ang(h)) name(g1, replace) ytitle(skewness) yli(6.98)

. qplot kurt, yla(, ang(h)) name(g2, replace) ytitle(kurtosis) yli(48.02)

. graph combine g1 g2
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Figure 1. Sampling distributions of skewness and kurtosis for samples of size 50 from a
lognormal with µ = −3, σ = 7. Upper limits are shown by horizontal lines.

The natural comment is that the parameter choices in this example are a little
extreme, but the same phenomenon occurs to some extent even with milder choices.
With the default µ = 0, σ = 1, the skewness and kurtosis are less explosively high—but
still very high by many standards. We clear the data and repeat the simulation, but
this time we use the default values.
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. clear

. simulate mean=r(mean) var=r(var) skew=r(skew) kurt=r(kurt), nodots
> reps(10000): lnsim, obs(50)

command: lnsim, obs(50)
mean: r(mean)
var: r(var)
skew: r(skew)
kurt: r(kurt)

Within Mata, we can recalculate the theoretical skewness and kurtosis. The limits
to sample skewness and kurtosis remain the same, given the same sample size n = 50.

. mata
mata (type end to exit)

: omega = exp(1)

: sqrt(omega - 1) * (omega + 2)
6.184877139

: omega^4 + 2 * omega^3 + 3*omega^2 - 3
113.9363922

: end

The problem is more insidious with these parameter values. The sampling distri-
butions look distinctly skewed (shown in figure 2) but are not so obviously truncated.
Only when the theoretical values for skewness and kurtosis are considered is it obvious
that the estimations are seriously biased.

. summarize

Variable Obs Mean Std. Dev. Min Max

mean 10000 1.657829 .3106537 .7871802 4.979507
var 10000 4.755659 7.43333 .3971136 457.0726

skew 10000 2.617803 1.092607 .467871 6.733598
kurt 10000 11.81865 7.996084 1.952879 46.89128

. qplot skew, yla(, ang(h)) name(g1, replace) ytitle(skewness) yli(6.98)

. qplot kurt, yla(, ang(h)) name(g2, replace) ytitle(kurtosis) yli(48.02)

. graph combine g1 g2

(Continued on next page)
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Figure 2. Sampling distributions of skewness and kurtosis for samples of size 50 from a
lognormal with µ = 0, σ = 1. Upper limits are shown by horizontal lines.

Naturally, these are just token simulations, but a way ahead should be clear. If
you are using skewness or kurtosis with small (or even large) samples, simulation with
some parent distributions pertinent to your work is a good idea. The simulations of
Wallis, Matalas, and Slack (1974) in particular pointed to empirical limits to skewness,
which Kirby (1974) then established independently of previous work.3

5 Conclusions

This story, like any other, lies at the intersection of many larger stories. Many statisti-
cally minded people make little or no use of skewness or kurtosis, and this paper may
have confirmed them in their prejudices. Some readers may prefer to see this as an-
other argument for using quantiles or order statistics for summarization (Gilchrist 2000;
David and Nagaraja 2003). Yet others may know that L-moments offer an alternative
approach (Hosking 1990; Hosking and Wallis 1997).

Arguably, the art of statistical analysis lies in choosing a model successful enough
to ensure that the exact form of the distribution of some response variable, conditional
on the predictors, is a matter of secondary importance. For example, in the simplest
regression situations, an error term for any really good model is likely to be fairly near
normally distributed, and thus not a source of worry. But authorities and critics differ
over how far that is a deductive consequence of some flavor of central limit theorem or
a näıve article of faith that cries out for critical evaluation.

3. Connoisseurs of offbeat or irreverent titles might like to note some other papers by the same team:
Mandelbrot and Wallis (1968), Matalas and Wallis (1973), and Slack (1973).
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More prosaically, it is a truism—but one worthy of assent—that researchers using
statistical methods should know the strengths and weaknesses of the various items in
the toolbox. Skewness and kurtosis, over a century old, may yet offer surprises, which
a wide range of Stata and Mata commands may help investigate.
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