

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal (2010)
10, Number 3, pp. 458–481

Translation from narrative text to standard

codes variables with Stata

Federico Belotti
University of Rome “Tor Vergata”

Rome, Italy
federico.belotti@uniroma2.it

Domenico Depalo
Bank of Italy
Rome, Italy

domenico.depalo@bancaditalia.it

Abstract. In this article, we describe screening, a new Stata command for data
management that can be used to examine the content of complex narrative-text
variables to identify one or more user-defined keywords. The command is useful
when dealing with string data contaminated with abbreviations, typos, or mistakes.
A rich set of options allows a direct translation from the original narrative string
to a user-defined standard coding scheme. Moreover, screening is flexible enough
to facilitate the merging of information from different sources and to extract or
reorganize the content of string variables.

Editors’ note. This article refers to undocumented functions of Mata, meaning that
there are no corresponding manual entries. Documentation for these functions is
available only as help files; see help regex.

Keywords: dm0050, screening, keyword matching, narrative-text variables, stan-
dard coding schemes

1 Introduction

Many researchers in varied fields frequently deal with data collected as narrative text,
which are almost useless unless treated. For example,

• Electronic patient records (EPRs) are useful for decision making and clinical re-
search only if patient data that are currently documented as narrative text are
coded in standard form (Moorman et al. 1994).

• When different sources of data use different spellings to identify the same unit of in-
terest, the information can be exploited only if codes are made uniform (Raciborski
2008).

• Because of verbatim responses to open-ended questions, survey data items must
be converted into nominal categories with a fixed coding frame to be useful for
applied research.

These are only three of the many critical examples that motivate an ad hoc command.

Recoding a narrative-text variable into a user-defined standard coding scheme is cur-
rently possible in Stata by combining standard data-management commands (for exam-
ple, generate and replace) with regular expression functions (for example, regexm()).

c© 2010 StataCorp LP dm0050

F. Belotti and D. Depalo 459

However, many problems do not yield easily to this approach, especially problems con-
taining complex narrative-text data. Consider, for example, the case when many source
variables can be used to identify a set of keywords; or the case when, looking at different
keywords, one is within a given source variable but not necessarily at the beginning of
that variable, whereas the others are at the beginning, the end, or within that or other
source variables. Because no command jointly handles all possible cases, these cases
can be treated with existing Stata commands only after long and tedious programming,
increasing the possibility of introducing errors. We developed the screening command
to fill this gap, simplifying data-cleaning operations while being flexible enough to cover
a wide range of situations.

In particular, screening checks the content of one or more string variables (sources)
to identify one or more user-defined regular expressions (keywords). Because string vari-
ables are not flexible, to make the command easier and more useful, a set of options
reduces your preparatory burden. You can make the matching task wholly case in-
sensitive or set matching rules aimed at matching keywords at the beginning, the end,
or within one or more sources. If source variables contain periods, commas, dashes,
double blanks, ampersands, parentheses, etc., it is possible to perform the matching by
removing such undesirable content. Moreover, if the matching task becomes more dif-
ficult because of abbreviations or even pure mistakes, screening allows you to specify
the number of letters to screen in a keyword. Finally, the command allows a direct
translation of the original string variables in a user-defined standard coding scheme.

All these features make the command simple, extremely flexible, and fast, minimizing
the possibility of introducing errors. It is worth emphasizing that we find Mata more
convenient to use than Stata, with advantages in terms of time execution.

The article is organized as follows. In section 2, we describe the new screening

command, and we provide some useful tips in section 3. Section 4 illustrates the main
features of the command using EPR data, while section 5 details some critical cases in
which the use of screening may aid your decision to merge data from different sources
or to extract and reorder messy data. In the last section, section 6, we offer a short
summary.

2 The screening command

String variables are useful in many practical circumstances. A drawback is that they
are not so flexible: for example, in EPR data, coding CHOLESTEROL is different from
coding CHOLESTEROL LDL, although the broad pathology is the same. Stata and Mata
offer many built-in functions to handle strings. In particular, screening extensively
uses the Mata regular-expression functions regexm(), regexr(), and regexs().

(Continued on next page)

460 From narrative text to standard codes

2.1 Syntax

screening
[
if
] [

in
]
, sources(varlist

[
, sourcesopts

]
) keys(

[
matching rule

]

"string"
[
. . .
]
)
[
letters(#) explore(type) cases(newvar) newcode(newvar

[
, newcodeopts

]
) recode(recoding rule "user defined code"

[
recoding rule

"user defined code" . . .
]
) checksources tabcheck memcheck nowarnings save

time
]

2.2 Options

sources(varlist
[
, sourcesopts

]
) specifies one or more string source variables to be

screened. sources() is required.

sourcesopts description

lower perform a case-insensitive match (lowercase)
upper perform a case-insensitive match (uppercase)
trim match keywords by removing leading and trailing blanks

from sources
itrim match keywords by collapsing sources with consecutive

internal blanks to one blank
removeblank match keywords by removing from sources all blanks
removesign match keywords by removing from sources the following

signs: * + ? / \ % () [] { } | . ^ - _ # $

keys(
[
matching rule

]
"string" . . .) specifies one or more regular expressions (key-

words) to be matched with source variables. keys() is required.

matching rule description

begin match keywords at beginning of string
end match keywords at end of string

letters(#) specifies the number of letters to be matched in a keyword. The number
of letters can play a critical role: specifying a high number of letters may cause
the number of matched observations to be artificially low because of mistakes or
abbreviations in the source variables; on the other hand, matching a small number
of letters may cause the number of matched observations to be artificially high
because of the inclusion of uninteresting cases containing the “too short” keyword.
The default is to match keywords as a whole.

F. Belotti and D. Depalo 461

explore(type) allows you to explore screening results.

type description

tab tabulate all matched cases for each keyword within each source variable
count display a table of frequency counts of all matched cases for each

keyword within each source variable

cases(newvar) generates a set of categorical variables (as many as the number of key-
words) showing the number of occurrences of each keyword within all specified source
variables.

newcode(newvar
[
, newcodeopts

]
) generates a new (numeric) variable that contains the

position of the keywords or the regular expressions in keys(). The coding process
is driven by the order of keywords or regular expressions.

newcodeopts description

replace replace newvar if it already exists
add obtain newvar as a concatenation of subexpressions returned by

regexs(n), which must be specified as a
user defined code in recode

label attach keywords as value labels to newvar

numeric convert newvar from string to numeric; it can be specified only if
the recode() option is specified

recode(recoding rule "user defined code"
[
recoding rule "user defined code" ...

]
)

recodes the newcode() newvar according to a user-defined coding scheme. recode()
must contain at least one recoding rule followed by one user defined code. When you
specify recode(1 "user defined code"), the "user defined code" will be used to re-
code all matched cases from the first keyword within the list specified via the keys()
option. If recode(2,3 "user defined code") is specified, the "user defined code" will
be used to recode all cases for which second and third keywords are simultaneously
matched, and so on. This option can only be specified if the newcode() option is
specified.

checksources checks whether source variables contain special characters. If a match-
ing rule is specified (begin or end via keys()), checksources checks the sources’
boundaries accordingly.

tabcheck tabulates all cases from checksources. If there are too many cases, the
option does not produce a table.

memcheck performs a “preventive” memory check. When memcheck is specified, the
command will exit promptly if the allocated memory is insufficient to run screening.
When memory is insufficient and screening is run without memcheck, the command
could run for several minutes or even hours before producing the message no room

to add more variables.

462 From narrative text to standard codes

nowarnings suppresses all warning messages.

save saves in r() the number of cases detected, matching each source with each key-
word.

time reports elapsed time for execution (seconds).

3 Tips

The low flexibility of string variables is a reason for concern. In this section, we provide
some tips to enhance the usefulness of screening. Some tips are useful to execute the
command, while other tips are useful to check the results.

Most importantly, capitalization matters: this means that screening for KEYWORD is
different from screening for keyword. If source variables contain HEMINGWAY and you are
searching for Hemingway, screening will not identify such keyword. If suboption upper

(lower) is specified in sources(), keywords will be automatically matched in uppercase
(lowercase).

Choose an appropriate matching rule. The screening default is to match keywords
over the entire content of source variables. By specifying the matching rule begin or
end within the keys() option, you may switch accordingly the matching rule on string
boundaries. For example, if sources contain HEMINGWAY ERNEST and ERNEST HEMINGWAY

and you are searching begin HEMINGWAY, the screening command will identify the
keyword only in the former case. Whether the two cases are equivalent must be evaluated
case by case.

Another issue is how to choose the optimal number of letters to be screened. For
example, with EPR data, different physicians might use different abbreviations for the
same pathologies. And so talking about a “right” number of letters is nonsense. As
a rule of thumb, the number of letters should be specified as the minimum number
that uniquely identifies the case of interest. Using many letters can be too exclusive,
while using few letters can be too inclusive. In all cases, but in particular when the
appropriate number of letters is unknown, we find it useful to tabulate all matched cases
through the explore(tab) option. Because it tabulates all possible matches between
all keywords and all source variables, it is the fastest way to explore the data and choose
the best matching strategy (in terms of keywords, matching rule, and letters).

Advanced users can maximize the potentiality of screening by mixing keywords
with Stata regular-expression operators. Mixing in operators allows you to match more-
complex patterns, as we show later in the article.1 For more details on regular-expression
syntaxes and operators, see the official documentation at
http://www.stata.com/support/faqs/data/regex.html.

1. The letters() option does not work if a keyword contains regular-expression operators.

F. Belotti and D. Depalo 463

screening displays several messages to inform you about the effects of the specified
options. For example, consider the case in which you are searching some keywords con-
taining regular-expression operators. screening will display a message with the correct
syntax to search a keyword containing regular-expression operators. The nowarnings

option allows you to suppress all warning messages.

screening generates several temporary variables (proportional to the number of
keywords you are looking for and to the number of sources you are looking from). So
when you are working with a big dataset and your computer is limited in terms of
RAM, it might be a good idea to perform a “preventive” memory check. When the
memcheck option is specified and the allocated memory is insufficient, screening will
exit promptly rather than running for several minutes or even hours before producing
the message no room to add more variables.

We conclude this section with an evaluation of the command in terms of time ex-
ecution using different Stata flavors and different operating systems. In particular, we
compare the latest version of screening written using Mata regular-expression func-
tions with its beta version written entirely using the Stata counterpart. We built three
datasets of 500,000 (A), 5 million (B), and 50 million (C) observations with an ad hoc
source variable containing 10 different words: HEMINGWAY, FITZGERALD, DOSTOEVSKIJ,
TOLSTOJ, SAINT-EXUPERY, HUGO, CERVANTES, BUKOWSKI, DUMAS, and DESSI. Screening
for HEMINGWAY (50% of total cases) gives the following results (in seconds):

Stata flavor and Mata Stata
operating system A B C A B C

Stata/SE 10 (32-bit) and
0.66 6.67 na 0.93 9.24 na

Mac OS X 10.5.8 (64-bit)∗

Stata/MP 11 (64-bit) and
0.60 5.66 na 0.85 7.73 na

Mac OS X 10.5.8 (64-bit)∗

Stata/MP 11 (64-bit) and
0.37 3.70 37.22 0.70 7.06 70.59

Window Server 2003 (64-bit)+

∗ Intel Core 2 Duo 2.2 GHz (dual core) with 4 GB RAM
+ AMD Opteron 2.2 GHz (quad core) with 20 GB RAM

The table speaks for itself!

4 Example

To illustrate the command, we use anonymized patient-level data from the Health Search
database, a nationally representative panel of patients run by the Italian College of
General Practitioners (Italian Society of General Medicine). Our sample contains freely
inputted EPRs concerning the prescription of diagnostic tests.2 A list of 15 observations

2. The original data are in Italian. Where necessary for comprehension, we translate to English.

464 From narrative text to standard codes

from the “uppercase” source variable diagn test description provides an overview of
cases at hand:

. list diagn_test_descr in 1/15, noobs separator(20)

diagn_test_descr

TRIGLICERIDI
EMOCROMO FORMULA

COLESTEROLO TOTALE
ALTEZZA

PT TEMPO PROTROMBINA
VISITA CARDIOLOGICA CONTROLLO

HCV AB EPATITE C
COMPONENTE MONOCLONALE

ATTIVITA´ FISICA
PSA ANTIGENE PROSTATICO SPECIFICO

RX CAVIGLIA SN
FAMILIARITA´ K UTERO

TRIGLICERIDI
URINE ESAME COMPLETO
URINE PESO SPECIFICO

As you can see, this is a rich EPR dataset that is totally useless unless treated. If
data were collected for research purposes, physicians would be given a finite number of
possible options. There is much agreement in the scientific community that the cost to
leave the burden of inputting standard codes directly to physicians at the time of contact
with the patient is higher than the relative benefit: the task is extremely onerous, it is
unrelated to the physician’s primary job, and most importantly, it requires extra effort.
Therefore, the common view supports the implementation of data-entry methods that
do not disturb the physician’s workflow (Yamazaki and Satomura 2000).

From the above list of observations, it is also clear that free-text data entry provides
physicians with the freedom to determine the order and detail at which they want
to input data. Even if the original free-text data were complete, it would still be
difficult to extract standardized and structured data from this kind of record because
of abbreviations, typos, or mistakes (Moorman et al. 1994). Extracting data in the
presence of abbreviations and typos is exactly what screening allows you to do.

As a practical example, we focus on the identification of different types of cholesterol
tests. In particular, our aim is to create a new variable (diagn test code) containing
cholesterol test codes according to the Italian National Health System coding scheme.
Because at least three types of cholesterol test exist, namely, hdl, ldl, and total, our
matching strategy must take into account that a physician can input 1) only the types
of the test, 2) only its broad definition (cholesterol), or 3) both, without considering
abbreviations, typos, mistakes, and further details.

F. Belotti and D. Depalo 465

Thus we first explore the data by running screening with the explore(tab) option:

. screening, sources(diagn_test_descr, lower) keys(colesterolo) explore(tab)

Cases of colesterolo found in diagn_test_descr

colesterolo Freq. Percent Cum.

colesterolo totale 2,954 51.86 51.86
hdl colesterolo 1,854 32.55 84.41
ldl colesterolo 617 10.83 95.24
colesterolo hdl 117 2.05 97.30
colesterolo ldl 37 0.65 97.95
colesterolo tot 28 0.49 98.44

colesterolo 24 0.42 98.86
colesterolo hdl sangue 16 0.28 99.14

colesterolo totale sangue 16 0.28 99.42
colesterolo esterificato 4 0.07 99.49

colesterolo tot. 4 0.07 99.56
colesterolo hdl 90.14.1 3 0.05 99.61

colesterolo totale 90143 3 0.05 99.67
colesterolo libero 2 0.04 99.70
colesterolo stick 2 0.04 99.74

colesterolo tot hdl 2 0.04 99.77
colesterolo totale 90.143 2 0.04 99.81

ultima misurazione colesterolo 2 0.04 99.84
colesterolo hdl 1 0.02 99.86

colesterolo ldl 90.14.2 1 0.02 99.88
colesterolo non ldl 1 0.02 99.89

colesterolo t. mg/dl 1 0.02 99.91
colesterolo tot. c 1 0.02 99.93

colesterolo tot. hdl 1 0.02 99.95
colesterolo tot., 1 0.02 99.96

colesterolo totale h 1 0.02 99.98
rich,specialistica colesterolo trigl 1 0.02 100.00

Total 5,696 100.00

Here the lower suboption makes the matching task case insensitive. Apart from the
explore(tab) option, the syntax above is compulsory and performs what we call a
default matching, that is, an exact match of the keyword colesterolo over the entire
content of the source variable diagn test descr. The tabulation above (notice the
lowercase) informs you that the keyword colesterolo is encountered in 5,696 cases.
What do these cases contain? Because you did not instruct the command to match a
shorter length of the keyword, the only possible case is the keyword itself; all the cases
contain the keyword colesterolo.

Given the nature of the data, it might be convenient to run screening with a
shorter length of the keyword so as to find possible partial matching in the presence
of abbreviations or mistakes. The letters(#) option instructs screening to perform
the match on a shorter length:

(Continued on next page)

466 From narrative text to standard codes

. screening, sources(diagn_test_descr, lower) keys(colesterolo) letters(5)
> explore(tab)

Cases of coles found in diagn_test_descr

coles Freq. Percent Cum.

colesterolo totale 2,954 37.25 37.25
hdl colesterolo 1,854 23.38 60.62

coles ldl 1,343 16.93 77.56
hdl colest 853 10.76 88.31

ldl colesterolo 617 7.78 96.09
colesterolo hdl 117 1.48 97.57
colesterolo ldl 37 0.47 98.03
colesterolo tot 28 0.35 98.39

colesterolo 24 0.30 98.69
colesterolo hdl sangue 16 0.20 98.89

colesterolo totale sangue 16 0.20 99.09
colesterolemia 14 0.18 99.27

hdl colest. 5 0.06 99.33
colest.tot. 4 0.05 99.38

colesterolo esterificato 4 0.05 99.43
colesterolo tot. 4 0.05 99.48

azotemia glicemia colest 3 0.04 99.52
colest. hdl 3 0.04 99.56

colesterolo hdl 90.14.1 3 0.04 99.60
colesterolo totale 90143 3 0.04 99.63

colesterolo libero 2 0.03 99.66
colesterolo stick 2 0.03 99.68

colesterolo tot hdl 2 0.03 99.71
colesterolo totale 90.143 2 0.03 99.74

ldl colest. 2 0.03 99.76
ultima misurazione colesterolo 2 0.03 99.79

colest. ldl 1 0.01 99.80
colest. tot. 1 0.01 99.81

colest.tot 1 0.01 99.82
colester.tot.hdl, 1 0.01 99.84

colesterolo hdl 1 0.01 99.85
colesterolo ldl 90.14.2 1 0.01 99.86

colesterolo non ldl 1 0.01 99.87
colesterolo t. mg/dl 1 0.01 99.89

colesterolo tot. c 1 0.01 99.90
colesterolo tot. hdl 1 0.01 99.91

colesterolo tot., 1 0.01 99.92
colesterolo totale h 1 0.01 99.94
emocromo c. colester 1 0.01 99.95

glicemia colesterolemia- 1 0.01 99.96
got gpt colest / trigli/creat/emocromo 1 0.01 99.97

rich,specialistica colesterolo trigl 1 0.01 99.99
uricemia uricuria colest 1 0.01 100.00

Total 7,931 100.00

By specifying a five-letter partial match, screening detects 2,235 new cases of
cholesterol tests. By further reducing the number of letters, we get the following result:3

3. Because of space restrictions, we deliberately omit the complete tabulation obtainable with the
explore(tab) option. It is available upon request.

F. Belotti and D. Depalo 467

. screening, sources(diagn_test_descr, lower) keys("colesterolo") letters(3)
> explore(tab)

Cases of col found in diagn_test_descr

col Freq. Percent Cum.

colesterolo totale 2,954 23.45 23.45
col tot 2,034 16.15 39.60

hdl colesterolo 1,854 14.72 54.32
coles ldl 1,343 10.66 64.99
hdl colest 853 6.77 71.76

ldl colesterolo 617 4.90 76.66
urinocoltura coltura urina 326 2.59 79.25

v.ginecologica 161 1.28 80.52
eco tiroide eco capo e collo 150 1.19 81.71

colesterolo hdl 117 0.93 82.64

(output omitted)

colesterolo ldl 37 0.29 90.77
calcolo rischio cardiovascolare (iss) 35 0.28 91.04

coprocoltura coltura feci 33 0.26 91.31
colore 32 0.25 91.56

ecocolordoppler arti inf. art. 32 0.25 91.81
urinocoltura 32 0.25 92.07
colposcopia 31 0.25 92.31

colesterolo tot 28 0.22 92.54
reticolociti 28 0.22 92.76

ecodoppler a.inferiori ecocolor venosa 27 0.21 92.97
eco ginecologica 25 0.20 93.17

colesterolo 24 0.19 93.36
rischio cardio vascolare nota 13 23 0.18 93.55

rischio cardiovascolare % a 10 anni 22 0.17 93.72
ecodoppler a.inferiori ecocolor arter. 19 0.15 93.87

(output omitted)

col hdl 3 0.02 97.13
colest. hdl 3 0.02 97.16

colesterolo hdl 90.14.1 3 0.02 97.18
colesterolo totale 90143 3 0.02 97.21

conta batt.,urinocoltura, antibiogramma 3 0.02 97.23
eco cardiaca con doppler e colordoppler 3 0.02 97.25

eco color/doppl.car. ver 3 0.02 97.28
eco(color)dopplergrafia 3 0.02 97.30

ecocardiografia colordoppler 3 0.02 97.32
ecocolordoppler art.aa.inf. 3 0.02 97.35

ecocolordoppler arterioso arti inferior 3 0.02 97.37
ecocolordoppler tronchi sovraortici 3 0.02 97.40

ecocolordopplergrafia cardiaca 3 0.02 97.42
ecografia muscolotendinea 3 0.02 97.44

ecografia tiroide eco capo e collo 3 0.02 97.47
familiarita´ ev.cerebrovascol.(72m 74f 3 0.02 97.49

immunocomplessi circolanti 3 0.02 97.51
rx digerente (tenue e colon) 3 0.02 97.54

test broncodilatazione farmacologica 3 0.02 97.56
test cardiovascolare da sforzo con cicl 3 0.02 97.59
test sforzo cardiovascol. pedana mobile 3 0.02 97.61

urinocoltura atb+mic 3 0.02 97.63
urinocoltura con antibiogramma 3 0.02 97.66

urinocoltura identificazione batt.+ ab 3 0.02 97.68
che colinesterasi 2 0.02 97.70

col 2 0.02 97.71

468 From narrative text to standard codes

colangio rm 2 0.02 97.73
colesterolo libero 2 0.02 97.75
colesterolo stick 2 0.02 97.76

colesterolo tot hdl 2 0.02 97.78
colesterolo totale 90.143 2 0.02 97.79

(output omitted)

ldl colest. 2 0.02 98.11

(output omitted)

col tot 216 hdl 58 fibri 1 0.01 98.48
col=245ldl=193tr=91 1 0.01 98.48

colangiografia intravenosa 1 0.01 98.49
colecistografia 1 0.01 98.50

colecistografia per os c 1 0.01 98.51
colest. ldl 1 0.01 98.52
colest. tot. 1 0.01 98.52

colest.tot 1 0.01 98.53
colester.tot.hdl, 1 0.01 98.54
colesterolo hdl 1 0.01 98.55

colesterolo ldl 90.14.2 1 0.01 98.55
colesterolo non ldl 1 0.01 98.56

colesterolo t. mg/dl 1 0.01 98.57
colesterolo tot. c 1 0.01 98.58

colesterolo tot. hdl 1 0.01 98.59
colesterolo tot., 1 0.01 98.59

colesterolo totale h 1 0.01 98.60
colloquio psicologico 1 0.01 98.61

(output omitted)

hdl col 1 0.01 99.22

(output omitted)

visita specialistica colonscopia con bi 1 0.01 99.99
yersinia coltura feci 1 0.01 100.00

Total 12,595 100.00

Again screening detects new cases: 2,034 cases characterized by the abbreviation
col tot (that is, total cholesterol) that are impossible to identify without further re-
ducing the number of letters. The problem is that, among all matched cases (12,595),
there are also a number of unwanted cases, that is, cases containing the same spelling
of the keyword but related to another type of diagnostic test. Despite this incorrect
identification, we will show later in the section how to obtain a new “recoded variable”
by specifying the appropriate recoding rule as an argument of the recode() option.

The number of letters you match plays a critical role: specifying a high number
of letters may cause the number of matched observations to be artificially low due to
mistakes or abbreviations in the source variables; on the other hand, matching a small
number of letters may cause the number of matched observations to be artificially high
due to the inclusion of uninteresting cases containing the “too short” keyword.

F. Belotti and D. Depalo 469

As mentioned above, we are interested in the identification of three types of choles-
terol tests. To achieve this objective, in what follows we focus on a set of four keywords
(totale, colesterolo, ldl, hdl) with three identifying letters. We also specify the
newcode() option to generate a new variable recoding the observations that match the
specified keywords.

At this point, we describe more deeply the recoding mechanism of screening:

• If newcode() is specified, a new variable is generated, taking as values the position
of the keywords or regular expressions specified through the keys() option. The
coding process is driven by the order of keywords or regular expressions.

• If recode() is specified, the newcode() newvar suboption is recoded according to
the user-defined coding scheme.

Thus a first recoding of the source variable can be obtained as follows:

. screening, sources(diagn_test_descr, lower)
> keys("totale" "colesterolo" "ldl" "hdl") letters(3 3 3 3) explore(count)
> newcode(tmp_diagn_test_code)

Source Key Freq. Percent

diagn_test_descr tot 7304 29.47
col 12595 50.81
ldl 2015 8.13
hdl 2872 11.59

Total 24786 100.00

. tabulate tmp_diagn_test_code

tmp_diagn_t
est_code Freq. Percent Cum.

1 7,304 49.15 49.15
2 7,535 50.70 99.85
3 12 0.08 99.93
4 11 0.07 100.00

Total 14,862 100.00

The explore(count) option instructs screening to display a table of frequency
counts of all matched cases. The newcode() option creates tmp diagn test code, which
is a new variable that takes as values the position of the keywords or regular expressions
specified through the keys() option. The coding process is driven by the order of
keywords or regular expressions: the number 1 is associated with the 7,304 observations
matching the first keyword, tot; the number 2 is associated with the 7,535 observations
matching the second keyword, col; and so on. Hence, by specifying keys("totale"

"colesterolo" "ldl" "hdl") together with letters(3 3 3 3), tot takes precedence
over col in the recoding process. This means that if some observations are recoded
according to the first keyword match, they will not be recoded according to the following
keywords in the keys() list, even if they match.

470 From narrative text to standard codes

For this reason, the best recoding strategy is to first specify keywords that uniquely
identify the cases of interest. Because keywords hdl and ldl each uniquely identify a
cholesterol test, they must have priority in the recoding process over totale, which is
an extension common to other pathologies.

Indeed, when we reverse the order of the keywords and specify the replace suboption
in the newcode() option, screening produces

. screening, sources(diagn_test_descr, lower)
> keys("hdl" "ldl" "colesterolo" "totale") letters(3 3 3 3)
> newcode(tmp_diagn_test_code, replace)

WARNING: By specifying -replace- sub-option you are overwriting the -newcode()-
> variable.

. tabulate tmp_diagn_test_code

tmp_diagn_t
est_code Freq. Percent Cum.

1 2,872 19.32 19.32
2 2,015 13.56 32.88
3 7,731 52.02 84.90
4 2,244 15.10 100.00

Total 14,862 100.00

where the newcode() variable now identifies all hdl and ldl cases. Notice that here
we followed the correct approach, from specific to general. Moreover, as shown by the
following code, when we specify the newcode() suboption label, screening attaches
the specified keywords as value labels to the newcode() variable.

. screening, sources(diagn_test_descr, lower)
> keys("hdl" "ldl" "colesterolo" "totale") letters(3 3 3 3)
> newcode(tmp_diagn_test_code, replace label)

WARNING: By specifying -replace- sub-option you are overwriting the -newcode()-
> variable.

. tabulate tmp_diagn_test_code

tmp_diagn_t
est_code Freq. Percent Cum.

hdl 2,872 19.32 19.32
ldl 2,015 13.56 32.88

colesterolo 7,731 52.02 84.90
totale 2,244 15.10 100.00

Total 14,862 100.00

The last step toward recoding is achieved by using the recode() option. This option
allows you to recode the newcode() variable according to a user-defined coding scheme.
When you specify this option, the coding process is completely under your control.
The recode() option requires a recoding rule followed by a "user defined code" (the
"user defined code" must be enclosed within double quotes).

When we specify recode(1 "90.14.1" ...), the standard code "90.14.1" will
be used to recode all matched cases from the first keyword (hdl); when we specify

F. Belotti and D. Depalo 471

recode(... 2 "90.14.2" ...), the standard code "90.14.2" will be used to recode
all matched cases from the second keyword (ldl); and so on. The third and forth
keywords deserve special attention. totale (which was specified as the forth keyword,
hence position 4) is a common extension that we want to identify only when it is
matched simultaneously with colesterolo (which was specified as the third keyword,
hence position 3). Thus the appropriate syntax in this case will be recode(... 3,4

"90.14.3" ...). Finally, when we specify recode(... 3 "not class. tests"), the
code "not class. tests" will be used to recode all matched cases from the third
keyword (colesterolo) that are not classified because they do not contain any further
specification.

The final syntax of our example is

. screening, sources(diagn_test_descr, lower)
> keys("hdl" "ldl" "colesterolo" "totale") letters(3 3 3 3)
> newcode(diagn_test_code)
> recode(1 "90.14.1" 2 "90.14.2" 3,4 "90.14.3" 3 "not class. tests")

. tabulate diagn_test_code

diagn_test_code Freq. Percent Cum.

90.14.1 2,872 22.76 22.76
90.14.2 2,015 15.97 38.73
90.14.3 5,055 40.06 78.79

not class. tests 2,676 21.21 100.00

Total 12,618 100.00

As the tabulate command shows, the new variable diagn_test_code is created
according to the user-defined codes. Notice that only 5,055 cases are coded as “total
cholesterol” (90.14.3). A two-way tabulate command (below) helps to highlight that
2,244 cases have to be considered incorrect identifications—that is, cases containing the
same spelling of the keywords (totale) but related to other types of diagnostic tests4

—whereas 2,676 are incomplete because they contain only colesterolo without further
specification.

. tabulate diagn_test_code tmp_diagn_test_code if tmp_diagn_test_code !=., m

tmp_diagn_test_code
diagn_test_code hdl ldl colestero totale Total

0 0 0 2,244 2,244
90.14.1 2,872 0 0 0 2,872
90.14.2 0 2,015 0 0 2,015
90.14.3 0 0 5,055 0 5,055

not class. tests 0 0 2,676 0 2,676

Total 2,872 2,015 7,731 2,244 14,862

This example shows that screening is a simple tool to manage complex string vari-
ables. Once you have obtained structured data (in our example, a categorical variable
indicating cholesterol tests), you can finally start your statistical analysis.

4. Because of space restrictions, we deliberately omit the tabulation of such cases. It is available upon
request.

472 From narrative text to standard codes

5 Extensions

Although the main utility of screening is the direct translation of complex narrative-
text variables in a user-defined coding scheme, the command is flexible enough to cover
a wide range of situations. In section 5.1, we present an example of how to use the
command to facilitate the merging of information from different sources, while in sec-
tion 5.2, we show how to use screening to extract or rearrange a portion of a string
variable.

5.1 Merging from different sources

In applied studies, a classic problem comes from trying to merge information from dif-
ferent sources that use different codes for the same units. A recently released command,
kountry (Raciborski 2008), is an important step toward a solution.

The kountry command can be used to facilitate the merging of information from
different sources by recoding a string variable into a standardized form. This recoding is
possible using a custom dictionary created through a helper command.5 In this section,
we show an alternative way to merge information from different sources by using the
screening command.

As an example, we try to merge two Italian datasets, one provided by the National
Statistical Office (National Institute of Statistics in Italy) and the other provided by the
Italian Ministry of the Interior. The two datasets contain, for each Italian municipality,
the complete name and an alphanumeric code, the latter being different across sources.
In theory, with the (uniquely identified) name of each municipality, it should be easy to
merge the two datasets.

We first proceed by matching the two original datasets:

. use istat, clear

. sort comune

. merge m:m comune using ministero

(output omitted)

. tabulate _merge

_merge Freq. Percent Cum.

master only (1) 288 3.43 3.43
using only (2) 290 3.46 6.89

matched (3) 7,812 93.11 100.00

Total 8,390 100.00

5. See help kountryadd (if kountry is installed).

F. Belotti and D. Depalo 473

As you can see, there are 288 inconsistencies.6 When we tabulate the unmatched
cases, we would realize that unconventional expressions, like apostrophes, accents, dou-
ble names, etc., are responsible for this imperfect result:

. preserve

. sort comune

. drop if _merge==3
(7812 observations deleted)

. list comune _merge in 1/20, separator(20) noobs

comune _merge

AGLIE´ 2
AGLI 1

ALA´ DEI SARDI 2
ALBISOLA MARINA 2

ALBISOLA SUPERIORE 2
ALBISSOLA MARINA 1

ALBISSOLA SUPERIORE 1
ALI´ 2

ALI´ TERME 2
ALLUVIONI CAMBIO´ 2
ALLUVIONI CAMBI 1

ALME´ 2
ALM 1

AL DEI SARDI 1
AL 1

AL TERME 1
ANTEY-SAINT-ANDRE´ 2
ANTEY-SAINT-ANDR 1

APPIANO SULLA STRADA DEL 2
APPIANO SULLA STRADA DEL VINO 1

. restore

If you wish to recover all 288 unmatched municipalities, the proposed command is
a simple and fast solution. Indeed, when you take advantage of the available options,
you can (almost) completely recover unmatched cases with only one command. As an
example, we recover nine cases (it is possible to recover all cases with this procedure),
with a loop running on values of merge equal to 1 or 2, that is, running only on
unmatched cases:

6. The number of unmatched cases is different between the master (288) and the using (290) datasets
because of aggregation and separation of municipalities. Solving this kind of problem is beyond
the illustrative scope of this example.

474 From narrative text to standard codes

. forvalues i=1/2 {
2. preserve
3. keep if _merge==`i´
4.

. screening, sources(comune) keys("ALBISSOLA" "AQUILA D´ARROSCIA" "BAJARDO"
> "BARCELLONA" "BARZAN" "BRIGNANO" "CADERZONE" "CAVAGLI" "MARINA" "SUPERIORE")
> cases(cases) newcode(comune, replace)
> recode(1,9 "ALBISOLA MARINA" 1,10 "ALBISOLA SUPERIORE" 2 "AQUILA DI ARROSCIA"
> 3 "BAIARDO" 4 "BARCELLONA POZZO DI GOTTO" 5 "BARZANO´" 6 "BRIGNANO FRASCATA"
> 7 "CAVAGLIA" 8 "CADERZONE TERME")

5. if `i´==1 drop codice_ente
6. if `i´==2 drop codice
7. keep comune codice
8. sort comune
9. save new_`i´,replace
10. restore
11. }

(8102 observations deleted)

WARNING: By specifying -replace- sub-option you are overwriting the -newcode()-
> variable.
(note: file new_1.dta not found)
file new_1.dta saved
(8100 observations deleted)

WARNING: By specifying -replace- sub-option you are overwriting the -newcode()-
> variable.
(note: file new_2.dta not found)
file new_2.dta saved

. keep if _merge==3
(578 observations deleted)

. save perfect_match, replace
(note: file perfect_match.dta not found)
file perfect_match.dta saved

. use new_1, clear

. merge 1:1 comune using new_2

(output omitted)

. tabulate _merge

_merge Freq. Percent Cum.

master only (1) 279 49.03 49.03
using only (2) 281 49.38 98.42

matched (3) 9 1.58 100.00

Total 569 100.00

. append using perfect_match

. tabulate _merge

_merge Freq. Percent Cum.

master only (1) 279 3.33 3.33
using only (2) 281 3.35 6.68

matched (3) 7,821 93.32 100.00

Total 8,381 100.00

F. Belotti and D. Depalo 475

Because we deliberately recovered only nine cases, the number of unmatched cases
before the execution of screening is improved by nine cases, from 7,812 to 7,821 exact
matches.

5.2 Extracting a piece of a string variable

In this section, we show through three examples how screening can be used to extract
or rearrange a portion of a string variable.7

Example 1

Imagine you have the string variable address, and you want to create a new variable
that contains just the zip codes. Here is what the source variable address may look
like:

. list, noobs sep(10)

address

4905 Lakeway Drive, College Station, Texas 77845 USA
673 Jasmine Street, Los Angeles, CA 90024

2376 First street, San Diego, CA 90126
66666 West Central St, Tempe AZ 80068

12345 Main St. Cambridge, MA 01238-1234
12345 Main St Sommerville MA 01239-2345
12345 Main St Watertwon MA 01239 USA

To find the zip code, you have to use screening with specific regular expressions,
allowing it to exactly match all cases in the source variable address. Some examples
of specific regular expressions are the following:

• ([0-9][0-9][0-9][0-9][0-9]) to find a five-digit number, the zip code

• [\-]* to match zero or more dashes, - or - -

• [0-9]* to match zero or more numbers, that is, the zip code plus any other
numbers

• [a-zA-Z]* to match zero or more blank spaces and (lowercase or uppercase)
letters

Once the correct regular expression(s) is found, to use screening to create a new
variable containing the zip codes, you have to do the following:

7. The following examples have been taken from the UCLA website resources to help you learn and
use Stata. See http://www.ats.ucla.edu/stat/stata/faq/regex.htm.

476 From narrative text to standard codes

1. Use the newcode() option to create the new variable zipcode.

2. Combine the above regular expressions and use them as a unique keyword.

3. Use the regexs(n) function as a "user defined code" in the recode() option.
regexs(n) returns the subexpression n from the respective keyword match, where
0 ≤ n ≤ 10. Stata regular-expression syntaxes use parentheses, (), to denote
a subexpression group. In particular, n = 0 is reserved for the entire string
that satisfied the regular expression (keyword); n = 1 is reserved for the first
subexpression that satisfied the regular expression (keyword); and so on.

Hence, you may code

. screening, sources(address)
> keys("([0-9][0-9][0-9][0-9][0-9])[\-]*[0-9]*[a-zA-Z]*$")
> cases(c) newcode(zipcode) recode(1 "regexs(1)")

WARNING! You are SCREENING some keywords using regular-expression operators
> like ^ . () [] ? *

Notice that:
1) Option -letter- doesn´t work IF a keyword contains regular-expression operators
2) Unless you are looking for a specific regular-expression, regular-expression

operators must be preceded by a backslash \ to ensure keyword-matching
(e.g. \^ \.)

3) To match a keyword containing $ or \, you have to specify them as [\$] [\\]

. tabulate zipcode

zipcode Freq. Percent Cum.

01238 1 14.29 14.29
01239 2 28.57 42.86
77845 1 14.29 57.14
80068 1 14.29 71.43
90024 1 14.29 85.71
90126 1 14.29 100.00

Total 7 100.00

where recode(1 "regexs(1)") indicates that

1. 1 is the recoding rule; that is, the coding process is related to the first (and unique)
keyword match.

2. regexs(1) is used to recode. Indeed, it returns the string related to the first (and
unique) subexpression match.8

As a result, the new variable zipcode is created by using only one line of code.
Notice that screening warns you that you are matching a keyword containing one or
more regular-expression operators.

8. Remember that subexpressions are denoted by using (). In the considered syntax, the only subex-
pression is represented by ([0-9][0-9][0-9][0-9][0-9]). This means that, in this case, you cannot
specify n > 1.

F. Belotti and D. Depalo 477

Example 2

Suppose you have a variable containing a person’s full name. Here is what the variable
fullname looks like:

. list, noobs sep(10)

fullname

John Adams
Adam Smiths
Mary Smiths

Charlie Wade

Our goal is to swap first name with last name, separating them by a comma. The
regular expression to reach the target is (([a-zA-Z]+)[]*([a-zA-Z]+)). It is com-
posed of three parts:

1. ([a-zA-Z]+) to capture a string consisting of letters (lowercase and uppercase),
that is, the first name

2. []* to match with a space(s), that is, the blank between first and last name

3. ([a-zA-Z]+) again to capture a string consisting of letters, this time the last
name

The following is a way to proceed using screening:

. screening, sources(fullname)
> keys("([a-zA-Z]+)[]*([a-zA-Z]+)" "[]" "([a-zA-Z]+)[]*([a-zA-Z]+)")
> newcode(fullname, add replace) recode(1 "regexs(2)," 2 "regexs(0)"
> 3 "regexs(1)")

WARNING! You are SCREENING some keywords using regular-expression operators
> like ^ . () [] ? *

Notice that:
1) Option -letter- doesn´t work IF a keyword contains regular-expression operators
2) Unless you are looking for a specific regular-expression, regular-expression

operators must be preceded by a backslash \ to ensure keyword-matching
(e.g. \^ \.)

3) To match a keyword containing $ or \, you have to specify them as [\$] [\\]

. list fullname, noobs sep(10)

fullname

Adams, John
Smiths, Adam
Smiths, Mary

Wade, Charlie

478 From narrative text to standard codes

Notice the newcode() suboption add. It can be specified only when a regexs(n)

function is specified as a "user defined code" in the recode() option. The add suboption
allows for the creation of the newcode() variable as a concatenation of subexpressions
returned by regexs(n). In the example above,

1. recode(1 "regexs(2)," ... returns the second subexpression from the first
keyword match (the last name) plus a comma.

2. ...2 "regexs(0)" ... returns the blank matched by the second keyword;

3. ...3 "regexs(1)") returns the first subexpression from the third keyword match
(the first name).

As a result, the variable fullname is replaced (note the suboption replace) sequen-
tially by the concatenation of subexpressions returned by 1, 2, and 3 above.

Example 3

Imagine that you have the string variable date containing dates:

. list date, noobs sep(20)

date

20jan2007
16June06

06sept1985
21june04
4july90

9jan1999
6aug99

19august2003

The goal is to produce a string variable with the appropriate four-digit year for each
case, which Stata can easily convert into a date. You can achieve the target by coding
something like the following:

. generate day = regexs(0) if regexm(date, "^[0-9]+")

. generate month = regexs(0) if regexm(date, "[a-zA-Z]+")

. generate year = regexs(0) if regexm(date, "[0-9]*$")

. replace year = "20"+regexs(0) if regexm(year, "^[0][0-9]$")
(2 real changes made)

. replace year = "19"+regexs(0) if regexm(year, "^[1-9][0-9]$")
(2 real changes made)

. generate date1 = day+month+year

F. Belotti and D. Depalo 479

. list, noobs sep(10)

date day month year date1

20jan2007 20 jan 2007 20jan2007
16June06 16 June 2006 16June2006

06sept1985 06 sept 1985 06sept1985
21june04 21 june 2004 21june2004
4july90 4 july 1990 4july1990

9jan1999 9 jan 1999 9jan1999
6aug99 6 aug 1999 6aug1999

19august2003 19 august 2003 19august2003

Alternately, you can obtain the same result by using screening:

. screening, sources(date) keys("^[0-9]+" "[a-zA-Z]+" "[0][0-9]$" "[1-9][0-9]$")
> newcode(date1, add)
> recode(1 "regexs(0)" 2 "regexs(0)" 3 "20+regexs(0)" 4 "19+regexs(0)")

WARNING! You are SCREENING some keywords using regular-expression operators
> like ^ . () [] ? *

Notice that:

1) Option -letter- doesn´t work IF a keyword contains regular-expression operators
2) Unless you are looking for a specific regular-expression, regular-expression

operators must be preceded by a backslash \ to ensure keyword-matching
(e.g. \^ \.)

3) To match a keyword containing $ or \, you have to specify them as [\$] [\\]

. list date date1, noobs sep(10)

date date1

20jan2007 20jan2007
16June06 16June2006

06sept1985 06sept1985
21june04 21june2004
4july90 4july1990

9jan1999 9jan1999
6aug99 6aug1999

19august2003 19august2003

Also in this case, as in the previous example, we specify the newcode() suboption add

because we need to create the newcode() variable as a concatenation of subexpressions
from keyword matching. The same result can be obtained using the following syntax:

(Continued on next page)

480 From narrative text to standard codes

. screening, sources(date)
> keys(begin "[0-9]+" "[a-zA-Z]+" end "[0][0-9]" end "[1-9][0-9]")
> newcode(date1, add)
> recode(1 "regexs(0)" 2 "regexs(0)" 3 "20+regexs(0)" 4 "19+regexs(0)")

WARNING! You are SCREENING some keywords using regular-expression operators
> like ^ . () [] ? *

Notice that:
1) Option -letter- doesn´t work IF a keyword contains regular-expression operators
2) Unless you are looking for a specific regular-expression, regular-expression

operators must be preceded by a backslash \ to ensure keyword-matching
(e.g. \^ \.)

3) To match a keyword containing $ or \, you have to specify them as [\$] [\\]

. list date date1, noobs sep(10)

date date1

20jan2007 20jan2007
16June06 16June2006

06sept1985 06sept1985
21june04 21june2004
4july90 4july1990

9jan1999 9jan1999
6aug99 6aug1999

19august2003 19august2003

where the only difference is represented by the way in which the matching rule is spec-
ified: begin instead of ^ and end instead of $.

6 Summary

In this article, we introduced the new screening command, a data-management tool
that helps you examine and treat the content of string variables containing free, possibly
complex, narrative text. screening allows you to build new variables, to recode new
or existing variables, and to build a set of categorical variables indicating keyword
occurrences (a first step toward textual analysis). Considerable efforts were devoted
to making the command as flexible as possible; thus screening contains a rich set
of options that is intended to cover the most frequently encountered problems and
necessities. Because of this flexibility, the command can be used in many different
fields, like EPR data, data from different sources, or survey data. The execution of
screening is fast, thanks to Mata programming; its syntax is simple and common to
many other Stata commands, thus it is useful for all users regardless of their levels of
experience in Stata. We especially recommend that you use the explore() option; it
makes the command a useful data-mining tool. Nevertheless, expert users can exploit
a more complicated syntax that substantially eases the preparatory burden for data
cleaning.

F. Belotti and D. Depalo 481

Acknowledgments

We would like to thank Alice Cortignani, Rossana D’Amico, Andrea Piano Mortari,
and Riccardo Zecchinelli who tested the command, Vincenzo Atella who read an earlier
version of the article, Iacopo Cricelli who provided us with EPR data, and Rafal Raci-
borski for useful discussions. We are also grateful to David Drukker and all participants
at the 2009 Italian Stata Users Group meeting. Finally, the suggestions made by the
referee and the editor were useful to improve the command. We are responsible for any
remaining errors.

7 References

Moorman, P. W., A. M. van Ginneken, J. van der Lei, and J. H. van Bemmel. 1994. A
model for structured data entry based on explicit descriptional knowledge. Methods
of Information in Medicine 33: 454–463.

Raciborski, R. 2008. kountry: A Stata utility for merging cross-country data from
multiple sources. Stata Journal 8: 390–400.

Yamazaki, S., and Y. Satomura. 2000. Standard method for describing an electronic
patient record template: Application of XML to share domain knowledge. Methods
of Information in Medicine 39: 50–55.

About the authors

Federico Belotti is a PhD student in econometrics and empirical economics at the University
of Rome Tor Vergata.

Domenico Depalo is a researcher in the Economic Research Department of the Bank of Italy
in Rome. He received his PhD in econometrics and empirical economics from the University
of Rome Tor Vergata and was enrolled in a Post Doc program at the University of Rome La
Sapienza.

