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Abstract. This article describes the new meta-analysis command metaan, which
can be used to perform fixed- or random-effects meta-analysis. Besides the stan-
dard DerSimonian and Laird approach, metaan offers a wide choice of available
models: maximum likelihood, profile likelihood, restricted maximum likelihood,
and a permutation model. The command reports a variety of heterogeneity mea-
sures, including Cochran’s Q, I2, H2

M , and the between-studies variance estimate
bτ2. A forest plot and a graph of the maximum likelihood function can also be
generated.
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1 Introduction

Meta-analysis is a statistical methodology that integrates the results of several inde-
pendent clinical trials in general that are considered by the analyst to be “combinable”
(Huque 1988). Usually, this is a two-stage process: in the first stage, the appropriate
summary statistic for each study is estimated; then in the second stage, these statis-
tics are combined into a weighted average. Individual patient data (IPD) methods
exist for combining and meta-analyzing data across studies at the individual patient
level. An IPD analysis provides advantages such as standardization (of marker values,
outcome definitions, etc.), follow-up information updating, detailed data-checking, sub-
group analyses, and the ability to include participant-level covariates (Stewart 1995;
Lambert et al. 2002). However, individual observations are rarely available; addition-
ally, if the main interest is in mean effects, then the two-stage and the IPD approaches
can provide equivalent results (Olkin and Sampson 1998).

This article concerns itself with the second stage of the two-stage approach to meta-
analysis. At this stage, researchers can select between two main approaches—the fixed-
effects (FE) or the random-effects model—in their efforts to combine the study-level
summary estimates and calculate an overall average effect. The FE model is simpler
and assumes the true effect to be the same (homogeneous) across studies. However, ho-
mogeneity has been found to be the exception rather than the rule, and some degree of
true effect variability between studies is to be expected (Thompson and Pocock 1991).
Two sorts of between-studies heterogeneity exist: clinical heterogeneity stems from dif-
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ferences in populations, interventions, outcomes, or follow-up times, and methodological
heterogeneity stems from differences in trial design and quality (Higgins and Green 2009;
Thompson 1994). The most common approach to modeling the between-studies variance
is the model proposed by DerSimonian and Laird (1986), which is widely used in generic
and specialist meta-analysis statistical packages alike. In Stata, the DerSimonian–Laird
(DL) model is used in the most popular meta-analysis commands—the recently up-
dated metan and the older but still useful meta (Harris et al. 2008). However, the
between-studies variance component can be estimated using more-advanced (and com-
putationally expensive) iterative techniques: maximum likelihood (ML), profile likeli-
hood (PL), and restricted maximum likelihood (REML) (Hardy and Thompson 1996;
Thompson and Sharp 1999). Alternatively, the estimate can be obtained using non-
parametric approaches, such as the permutations (PE) model proposed by Follmann
and Proschan (1999).

We have implemented these models in metaan, which performs the second stage
of a two-stage meta-analysis and offers alternatives to the DL random-effects model.
The command requires the studies’ effect estimates and standard errors as input. We
have also created metaeff, a command that provides support in the first stage of the
two-stage process and complements metaan. The metaeff command calculates for each
study the effect size (standardized mean difference) and its standard error from the
input parameters supplied by the user, using one of the models described in the Cochrane
Handbook for Systematic Reviews of Interventions (Higgins and Green 2006). For more
details, type ssc describe metaeff in Stata or see Kontopantelis and Reeves (2009).

The metaan command does not offer the plethora of options metan does for in-
putting various types of binary or continuous data. Other useful features in metan

(unavailable in metaan) include stratified meta-analysis, user-input study weights, vac-
cine efficacy calculations, the Mantel–Haenszel FE method, L’Abbe plots, and funnel
plots. The REML model, assumed to be the best model for fitting a random-effects
meta-analysis model even though this assumption has not been thoroughly investi-
gated (Thompson and Sharp 1999), has recently been coded in the updated meta-
regression command metareg (Harbord and Higgins 2008) and the new multivariate
random-effects meta-analysis command mvmeta (White 2009). However, the output
and options provided by metaan can be more useful in the univariate meta-analysis
context.

2 The metaan command

2.1 Syntax

metaan varname1 varname2
[
if
] [

in
]
, {fe | dl | ml | reml | pl | pe}

[
varc

label(varname) forest forestw(#) plplot(string)
]
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where
varname1 is the study effect size.
varname2 is the study effect variation, with standard error used as the default.

2.2 Options

fe fits an FE model that assumes there is no heterogeneity between the studies. The
model assumes that within-study variances may differ, but that there is homogeneity
of effect size across studies. Often the homogeneity assumption is unlikely, and
variation in the true effect across studies is to be expected. Therefore, caution is
required when using this model. Reported heterogeneity measures are estimated
using the dl option. You must specify one of fe, dl, ml, reml, pl, or pe.

dl fits a DL random-effects model, which is the most commonly used model. The model
assumes heterogeneity between the studies; that is, it assumes that the true effect
can be different for each study. The model assumes that the individual-study true
effects are distributed with a variance τ2 around an overall true effect, but the model
makes no assumptions about the form of the distribution of either the within-study
or the between-studies effects. Reported heterogeneity measures are estimated using
the dl option. You must specify one of fe, dl, ml, reml, pl, or pe.

ml fits an ML random-effects model. This model makes the additional assumption
(necessary to derive the log-likelihood function, and also true for reml and pl, below)
that both the within-study and the between-studies effects have normal distributions.
It solves the log-likelihood function iteratively to produce an estimate of the between-
studies variance. However, the model does not always converge; in some cases, the
between-studies variance estimate is negative and set to zero, in which case the
model is reduced to an fe specification. Estimates are reported as missing in the
event of nonconvergence. Reported heterogeneity measures are estimated using the
ml option. You must specify one of fe, dl, ml, reml, pl, or pe.

reml fits an REML random-effects model. This model is similar to ml and uses the same
assumptions. The log-likelihood function is maximized iteratively to provide esti-
mates, as in ml. However, under reml, only the part of the likelihood function that
is location invariant is maximized (that is, maximizing the portion of the likelihood
that does not involve µ if estimating τ2, and vice versa). The model does not always
converge; in some cases, the between-studies variance estimate is negative and set
to zero, in which case the model is reduced to an fe specification. Estimates are re-
ported as missing in the event of nonconvergence. Reported heterogeneity measures
are estimated using the reml option. You must specify one of fe, dl, ml, reml, pl,
or pe.

pl fits a PL random-effects model. This model uses the same likelihood function as ml

but takes into account the uncertainty associated with the between-studies variance
estimate when calculating an overall effect, which is done by using nested iterations
to converge to a maximum. The confidence intervals (CIs) provided by the model
are asymmetric, and hence so is the diamond in the forest plot. However, the model
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does not always converge. Values that were not computed are reported as missing.
Reported heterogeneity measures are estimated using the ml option because µ̂ and
τ̂2, the effect and between-studies variance estimates, are the same. Only their
CIs are reestimated. The model also provides a CI for the between-studies variance
estimate. You must specify one of fe, dl, ml, reml, pl, or pe.

pe fits a PE random-effects model. This model can be described in three steps. First, in
line with a null hypothesis that all true study effects are zero and observed effects
are due to random variation, a dataset of all possible combinations of observed
study outcomes is created by permuting the sign of each observed effect. Then, the
dl model is used to compute an overall effect for each combination. Finally, the
resulting distribution of overall effect sizes is used to derive a CI for the observed
overall effect. The CI provided by the model is asymmetric, and hence so is the
diamond in the forest plot. Reported heterogeneity measures are estimated using
the dl option. You must specify one of fe, dl, ml, reml, pl, or pe.

varc specifies that the study-effect variation variable, varname2, holds variance values.
If this option is omitted, metaan assumes that the variable contains standard-error
values (the default).

label(varname) selects labels for the studies. One or two variables can be selected
and converted to strings. If two variables are selected, they will be separated by a
comma. Usually, the author names and the year of study are selected as labels. The
final string is truncated to 20 characters.

forest requests a forest plot. The weights from the specified analysis are used for
plotting symbol sizes (pe uses dl weights). Only one graph output is allowed in each
execution.

forestw(#) requests a forest plot with adjusted weight ratios for better display. The
value can be in the [1, 50] range. For example, if the largest to smallest weight ratio
is 60 and the graph looks awkward, the user can use this command to improve the
appearance by requesting that the weight be rescaled to a largest/smallest weight
ratio of 30. Only the weight squares in the plot are affected, not the model. The CIs
in the plot are unaffected. Only one graph output is allowed in each execution.

plplot(string) requests a plot of the likelihood function for the average effect or
between-studies variance estimate of the ml, pl, or reml model. The plplot(mu) op-
tion fixes the average effect parameter to its model estimate in the likelihood function
and creates a two-way plot of τ2 versus the likelihood function. The plplot(tsq)

option fixes the between-studies variance to its model estimate in the likelihood
function and creates a two-way plot of µ versus the likelihood function. Only one
graph output is allowed in each execution.
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2.3 Saved results

metaan saves the following in r() (some varying by selected model):

Scalars
r(Hsq) heterogeneity measure H2

M
r(Q) Cochran’s Q value
r(df) degrees of freedom
r(effvar) effect variance
r(efflo) effect size, lower 95% CI
r(Isq) heterogeneity measure I2

r(Qpval) p-value for Cochran’s Q
r(eff) effect size
r(effup) effect size, upper 95% CI

In addition to the standard results, metaan, fe and metaan, dl save the following in
r():

Scalars
r(tausq dl) bτ2, from the DL model

In addition to the standard results, metaan, ml saves the following in r():

Scalars
r(tausq dl) bτ2, from the DL model
r(conv ml) ML convergence information
r(tausq ml) bτ2, from the ML model

In addition to the standard results, metaan, reml saves the following in r():

Scalars
r(tausq dl) bτ2, from the DL model
r(conv reml) REML convergence information
r(tausq reml) bτ2, from the REML model

In addition to the standard results, metaan, pl saves the following in r():

Scalars
r(tausq dl) bτ2, from the DL model
r(tausqlo pl) bτ2 (PL), lower 95% CI
r(cloeff pl) convergence information, PL effect size (lower CI)
r(ctausqlo pl) convergence information, PL bτ2 (lower CI)
r(conv ml) ML convergence information
r(tausq pl) bτ2, from the PL model
r(tausqup pl) bτ2 (PL), upper 95% CI
r(cupeff pl) convergence information, PL effect size (upper CI)
r(ctausqup pl) convergence information, PL bτ2 (upper CI)

In addition to the standard results, metaan, pe saves the following in r():

Scalars
r(tausq dl) bτ2, from the DL model
r(exec pe) information on PE execution
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In each case, heterogeneity measures H2
M and I2 are computed using the returned

between-variances estimate τ̂2. Convergence and PE execution information is returned
as 1 if successful and as 0 otherwise. r(effvar) cannot be computed for PE. r(effvar)
is the same for ML and PL, but for PL the CIs are “amended” to take into account the
τ̂2 uncertainty.

3 Methods

The metaan command offers six meta-analysis models for calculating a mean effect esti-
mate and its CIs: FE model, random-effects DL method, ML random-effects model, REML

random-effects model, PL random-effects model, and PE method using a DL random-
effects model. Models of the random-effects family take into account the identified
between-studies variation, estimate it, and usually produce wider CIs for the overall
effect than would an FE analysis. Brief descriptions of the models have been provided
in section 2.2. In this section, we will provide a few more details and practical advice in
selecting among the models. Their complexity prohibits complete descriptions in this
article, and users wishing to look into model details are encouraged to refer to the orig-
inal articles that described them (DerSimonian and Laird 1986; Hardy and Thompson
1996; Follmann and Proschan 1999; Brockwell and Gordon 2001).

The three ML models are iterative and usually computationally expensive. ML and PL

derive the µ (overall effect) and τ2 estimates by maximizing the log-likelihood function
in (1) under different conditions. REML estimates τ2 and µ by maximizing the restricted
log-likelihood function in (2).

logL(µ, τ2) = − 1

2

[
k∑

i=1

log
{
2π
(
σ̂2

i + τ2
)}

+
k∑

i=1

(ŷi − µ)
2

σ̂2
i + τ2

]
, µ ∈ ℜ & τ2 ≥ 0 (1)

logL′(µ, τ2) = − 1

2

[
k∑

i=1

log
{
2π
(
σ̂2

i + τ2
)}

+
k∑

i=1

(ŷi − µ̂)
2

σ̂2
i + τ2

]

− 1

2
log

k∑

i=1

1

σ̂2
i + τ2

, µ̂ ∈ ℜ & τ2 ≥ 0 (2)

where k is the number of studies to be meta-analyzed, ŷi and σ̂2
i are the effect and

variance estimates for study i, and µ̂ is the overall effect estimate.

ML follows the simplest approach, maximizing (1) in a single iteration loop. A criti-
cism of ML is that it takes no account of the loss in degrees of freedom that results from
estimating the overall effect. REML derives the likelihood function in a way that adjusts
for this and removes downward bias in the between-studies variance estimator. A use-
ful description for REML, in the meta-analysis context, has been provided by Normand
(1999). PL uses the same likelihood function as ML, but uses nested iterations to take
into account the uncertainty associated with the between-studies variance estimate when
calculating an overall effect. By incorporating this extra factor of uncertainty, PL yields
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CIs that are usually wider than for DL and also are asymmetric. PL has been shown to
outperform DL in various scenarios (Brockwell and Gordon 2001).

The PE model (Follmann and Proschan 1999) can be described as follows: First, in
line with a null hypothesis that all true study effects are zero and observed effects are due
to random variation, a dataset of all possible combinations of observed study outcomes
is created by permuting the sign of each observed effect. Next the dl model is used to
compute an overall effect for each combination. Finally, the resulting distribution of
overall effect sizes is used to derive a CI for the observed overall effect.

Method performance is known to be affected by three factors: the number of studies
in the meta-analysis, the degree of heterogeneity in true effects, and—provided there is
heterogeneity present—the distribution of the true effects (Brockwell and Gordon 2001).
Heterogeneity, which is attributed to clinical or methodological diversity (Higgins and
Green 2006), is a major problem researchers have to face when combining study results
in a meta-analysis. The variability that arises from different interventions, populations,
outcomes, or follow-up times is described by clinical heterogeneity, while differences in
trial design and quality are accounted for by methodological heterogeneity (Thompson
1994). Traditionally, heterogeneity is tested with Cochran’s Q, which provides a p-value
for the test of homogeneity, when compared with a χ2

k−1 distribution where k is the
number of studies (Brockwell and Gordon 2001). However, the test is known to be poor
at detecting heterogeneity because its power is low when the number of studies is small
(Hardy and Thompson 1998). An alternative measure is I2, which is thought to be more
informative in assessing inconsistency between studies. I2 values of 25%, 50%, and 75%
correspond to low, moderate, and high heterogeneity, respectively (Higgins et al. 2003).
Another measure is H2

M , the measure least affected by the value of k. It takes values in
the [0,+∞) range, with 0 indicating perfect homogeneity (Mittlböck and Heinzl 2006).
Obviously, the between-studies variance estimate τ̂2 can also be informative about the
presence or absence of heterogeneity.

The test for heterogeneity is often used as the basis for applying an FE or a random-
effects model. However, the often low power of the Q test makes it unwise to base a
decision on the result of the test alone. Research studies, even on the same topic, can
vary on a large number of factors; hence, homogeneity is often an unlikely assumption
and some degree of variability between studies is to be expected (Thompson and Pocock
1991). Some authors recommend the adoption of a random-effects model unless there
are compelling reasons for doing otherwise, irrespective of the outcome of the test for
heterogeneity (Brockwell and Gordon 2001).

However, even though random-effects methods model heterogeneity, the performance
of the ML models (ML, REML, and PL) in situations where the true effects violate the
assumptions of a normal distribution may not be optimal (Brockwell and Gordon 2001;
Hardy and Thompson 1998; Böhning et al. 2002; Sidik and Jonkman 2007). The num-
ber of studies in the analysis is also an issue, because most meta-analysis models (includ-
ing DL, ML, REML, and PL—but not PE) are only asymptotically correct; that is, they
provide the theoretical 95% coverage only as the number of studies increases (approaches
infinity). Method performance is therefore affected when the number of studies is small,
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but the extent depends on the model (some are more susceptible), along with the degree
of heterogeneity and the distribution of the true effects (Brockwell and Gordon 2001).

4 Example

As an example, we apply the metaan command to health-risk outcome data from seven
studies. The information was collected for an unpublished meta-analysis, and the data
are available from the authors. Using the describe and list commands, we provide
details of the dataset and proceed to perform a univariate meta-analysis with metaan.

. use metaan_example

. describe

Contains data from metaan_example.dta
obs: 7
vars: 4 19 Apr 2010 12:19
size: 560 (99.9% of memory free)

storage display value
variable name type format label variable label

study str16 %16s First author and year
outcome str48 %35s Outcome description
effsize float %9.0g effect sizes
se float %9.0g SE of the effect sizes

Sorted by: study outcome

. list study outcome effsize se, noobs clean

study outcome effsize se
Bakx A, 1985 Serum cholesterol (mmol/L) -.3041526 .0958199

Campbell A, 1998 Diet .2124063 .0812414
Cupples, 1994 BMI .0444239 .090661

Eckerlund SBP -.3991309 .12079
Moher, 2001 Cholesterol (mmol/l) -.9374746 .0691572

Woolard A, 1995 Alcohol intake (g/week) -.3098185 .206331
Woolard B, 1995 Alcohol intake (g/week) -.4898825 .2001602
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. metaan effsize se, pl label(study) forest

Profile Likelihood method selected

Study Effect [95% Conf. Interval] % Weight

Bakx A, 1985 -0.304 -0.492 -0.116 15.09
Campbell A, 1998 0.212 0.053 0.372 15.40
Cupples, 1994 0.044 -0.133 0.222 15.20
Eckerlund -0.399 -0.636 -0.162 14.49
Moher, 2001 -0.937 -1.073 -0.802 15.62
Woolard A, 1995 -0.310 -0.714 0.095 12.01
Woolard B, 1995 -0.490 -0.882 -0.098 12.19

Overall effect (pl) -0.308 -0.622 0.004 100.00

ML method succesfully converged
PL method succesfully converged for both upper and lower CI limits

Heterogeneity Measures

value df p-value

Cochrane Q 139.81 6 0.000
I^2 (%) 91.96
H^2 11.44

value [95% Conf. Interval]

tau^2 est 0.121 0.000 0.449

Estimate obtained with Maximum likelihood - Profile likelihood provides the CI
PL method succesfully converged for both upper and lower CI limits of the tau^2
> estimate

The PL model used in the example converged successfully, as did ML, whose convergence
is a prerequisite. The overall effect is not found to be significant at the 95% level,
and there is considerable heterogeneity across studies, according to the measures. The
model also displays a 95% CI for the between-studies variance estimate τ̂2 (provided
that convergence is achieved, as is the case in this example). The forest plot created by
the command is displayed in figure 1.

(Continued on next page)
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Overall effect (pl)

Woolard B, 1995
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Figure 1. Forest plot displaying PL meta-analysis

When we reexecute the analysis with the plplot(mu) and plplot(tsq) options, we
obtain the log-likelihood function plots shown in figures 2 and 3.
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Figure 2. Log-likelihood function plot for µ fixed to the model estimate
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Figure 3. Log-likelihood function plot for τ2 fixed to the model estimate

5 Discussion

The metaan command can be a useful meta-analysis tool that includes newer and, in
certain circumstances, better-performing models than the standard DL random-effects
model. Unpublished results exploring model performance in various scenarios are avail-
able from the authors. Future work will involve implementing more models in the
metaan command and embellishing the forest plot.
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