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Abstract. A new Stata command, simsum, analyzes data from simulation studies.
The data may comprise point estimates and standard errors from several analysis
methods, possibly resulting from several different simulation settings. simsum can
report bias, coverage, power, empirical standard error, relative precision, average
model-based standard error, and the relative error of the standard error. Monte
Carlo errors are available for all of these estimated quantities.
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1 Introduction

Simulation studies are an important tool for statistical research (Burton et al. 2006), but
they are often poorly reported. In particular, to understand the role of chance in results
of simulation studies, it is important to estimate the Monte Carlo (MC) error, defined
as the standard deviation of an estimated quantity over repeated simulation studies.
However, this error is often not reported: Koehler, Brown, and Haneuse (2009) found
that of 323 articles reporting the results of a simulation study in Biometrics, Biometrika,
and the Journal of the American Statistical Association in 2007, only 8 articles reported
the MC error.

This article describes a new Stata command, simsum, that facilitates analyses of
simulated data. simsum analyzes simulation studies in which each simulated dataset
yields point estimates by one or more analysis methods. Bias, empirical standard error
(SE), and precision relative to a reference method can be computed for each method. If,
in addition, model-based SEs are available, then simsum can compute the average model-
based SE, the relative error in the model-based SE, the coverage of nominal confidence
intervals, and the power to reject a null hypothesis. MC errors are available for all
estimated quantities.

c© 2010 StataCorp LP st0200
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2 The simsum command

2.1 Syntax

simsum accepts data in wide or long format.

In wide format, data contain one record per simulated dataset, with results from
multiple analysis methods stored as different variables. The appropriate syntax is

simsum estvarlist
[
if
] [

in
] [

, true(expression) options
]

where estvarlist is a varlist containing point estimates from one or more analysis meth-
ods.

In long format, data contain one record per analysis method per simulated dataset,
and the appropriate syntax is

simsum estvarname
[
if
] [

in
] [

, true(expression) methodvar(varname)

id(varlist) options
]

where estvarname is a variable containing the point estimates, methodvar(varname)

identifies the method, and id(varlist) identifies the simulated dataset.

2.2 Options

Main options

true(expression) gives the true value of the parameter. This option is required for
calculations of bias and coverage.

methodvar(varname) specifies that the data are in long format and that each record
represents one analysis of one simulated dataset using the method identified by
varname. The id() option is required with methodvar(). If methodvar() is not
specified, the data must be in wide format, and each record represents all analyses
of one simulated dataset.

id(varlist) uniquely identifies the dataset used for each record, within levels of any
by-variables. This is a required option in the long format. The methodvar() option
is required with id().

se(varlist) lists the names of the variables containing the SEs of the point estimates.
For data in long format, this is a single variable.

seprefix(string) specifies that the names of the variables containing the SEs of the
point estimates be formed by adding the given prefix to the names of the variables
containing the point estimates. seprefix() may be combined with sesuffix(string)

but not with se(varlist).
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sesuffix(string) specifies that the names of the variables containing the SEs of the
point estimates be formed by adding the given suffix to the names of the variables
containing the point estimates. sesuffix() may be combined with seprefix(string)

but not with se(varlist).

Data-checking options

graph requests a descriptive graph of SEs against point estimates.

nomemcheck turns off checking that adequate memory is free. This check aims to avoid
spending calculation time when simsum is likely to fail because of lack of memory.

max(#) specifies the maximum acceptable absolute value of the point estimates, stan-
dardized to mean 0 and standard deviation 1. The default is max(10).

semax(#) specifies the maximum acceptable value of the SE as a multiple of the mean
SE. The default is semax(100).

dropbig specifies that point estimates or SEs beyond the maximum acceptable values
be dropped; otherwise, the command halts with an error. Missing values are always
dropped.

nolistbig suppresses listing of point estimates and SEs that lie outside the acceptable
limits.

listmiss lists observations with missing point estimates or SEs.

Calculation options

level(#) specifies the confidence level for coverages and powers. The default is
level(95) or as set by set level; see [R] level.

by(varlist) summarizes the results by varlist .

mcse reports MC errors for all summaries.

robust requests robust MC errors (see section 4) for the statistics empse, relprec, and
relerror. The default is MC errors based on an assumption of normally distributed
point estimates. robust is only useful if mcse is also specified.

modelsemethod(rmse | mean) specifies whether the model SE should be summarized as
the root mean squared value (modelsemethod(rmse), the default) or as the arith-
metic mean (modelsemethod(mean)).

ref(string) specifies the reference method against which relative precisions will be cal-
culated. With data in wide format, string must be a variable name. With data in
long format, string must be a value of the method variable; if the value is labeled,
the label must be used.
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Options specifying degrees of freedom

The number of degrees of freedom is used in calculating coverages and powers.

df(string) specifies the degrees of freedom. It may contain a number (to apply to all
methods), a variable name, or a list of variables containing the degrees of freedom
for each method.

dfprefix(string) specifies that the names of the variables containing the degrees of
freedom be formed by adding the given prefix to the names of the variables containing
the point estimates. dfprefix() may be combined with dfsuffix(string) but not
with df(string).

dfsuffix(string) specifies that the names of the variables containing the degrees of
freedom be formed by adding the given suffix to the names of the variables containing
the point estimates. dfsuffix() may be combined with dfprefix(string) but not
with df(string).

Statistic options

If none of the following options are specified, then all available statistics are computed.

bsims reports the number of simulations with nonmissing point estimates.

sesims reports the number of simulations with nonmissing SEs.

bias estimates the bias in the point estimates.

empse estimates the empirical SE, defined as the standard deviation of the point esti-
mates.

relprec estimates the relative precision, defined as the inverse squared ratio of the
empirical SE of this method to the empirical SE of the reference method. This
calculation is slow; omitting it can reduce run time by up to 90%.

modelse estimates the model-based SE. See modelsemethod() above.

relerror estimates the proportional error in the model-based SE, using the empirical
SE as the gold standard.

cover estimates the coverage of nominal confidence intervals at the specified level.

power estimates at the specified level the power to reject the null hypothesis that the
true parameter is zero.

Output options

clear loads the summary data into memory.

saving(filename) saves the summary data into filename.
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nolist suppresses listing of the results and is allowed only when clear or saving() is
specified.

listsep lists results using one table per statistic, giving output that is narrower and
better formatted. The default is to list the results as a single table.

format(string) specifies the format for printing results and saving summary data. If
listsep is also specified, then up to three formats may be specified: 1) for results
on the scale of the original estimates (bias, empse, and modelse), 2) for percentages
(relprec, relerror, cover, and power), and 3) for integers (bsims and sesims).
The default is the existing format of the (first) estimate variable for 1 and 2 and
%7.0f for 3.

sepby(varlist) invokes this list option when printing results.

abbreviate(#) invokes this list option when printing results.

gen(string) specifies the prefix for new variables identifying the different statistics in
the output dataset. gen() is only useful with clear or saving(). The default is
gen(stat) so that the new identifiers are, for example, statnum and statcode.

3 Example

This example is based on, but distinct from, a simulation study comparing different
ways to handle missing covariates when fitting a Cox model (White and Royston 2009).
One thousand datasets were simulated, each containing normally distributed covariates
x and z and a time-to-event outcome. Both covariates had 20% of their values deleted
independently of all other variables so the data became missing completely at random
(Little and Rubin 2002). Each simulated dataset was analyzed in three ways. A Cox
model was fit to the complete cases (CC). Then two methods of multiple imputation using
chained equations (van Buuren, Boshuizen, and Knook 1999), implemented in Stata as
ice (Royston 2004, 2009), were used. The MI LOGT method multiply imputes the missing
values of x and z with the outcome included as log(t) and d, where t is the survival time
and d is the event indicator. The MI T method is the same except that log(t) is replaced
by t in the imputation model. The results are stored in long format, with variable
dataset identifying the simulated dataset number, string variable method identifying
the method used, variable b holding the point estimate, and variable se holding the SE.
The data start like this:

(Continued on next page)
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dataset method b se

1. 1 CC .7067682 .14651
2. 1 MI_T .6841882 .1255043
3. 1 MI_LOGT .7124795 .1410814

4. 2 CC .3485008 .1599879
5. 2 MI_T .4060082 .1409831
6. 2 MI_LOGT .4287003 .1358589

7. 3 CC .6495075 .1521568
8. 3 MI_T .5028701 .130078
9. 3 MI_LOGT .5604051 .1168512

They are then summarized thus:

. summarize

Variable Obs Mean Std. Dev. Min Max

dataset 3000 500.5 288.7231 1 1000
method 0

b 3000 .5054995 .1396257 -.1483829 1.004529
se 3000 .1375334 .0183683 .0907097 .2281933

simsum produces the following output:

. simsum b, se(se) methodvar(method) id(dataset) true(0.5) mcse
> format(%6.3f %6.1f %6.0f) listsep
Reshaping data to wide format ...

Starting to process results ...

Non-missing point estimates

CC MI_LOGT MI_T

1000 1000 1000

Non-missing standard errors

CC MI_LOGT MI_T

1000 1000 1000

Bias in point estimate

CC (MCse) MI_LOGT (MCse) MI_T (MCse)

0.017 0.005 0.001 0.004 -0.001 0.004

Empirical standard error

CC (MCse) MI_LOGT (MCse) MI_T (MCse)

0.151 0.003 0.132 0.003 0.134 0.003



I. R. White 375

% gain in precision relative to method CC

CC (MCse) MI_LOGT (MCse) MI_T (MCse)

. . 31.0 3.9 26.4 3.8

RMS model-based standard error

CC (MCse) MI_LOGT (MCse) MI_T (MCse)

0.147 0.001 0.135 0.001 0.134 0.001

Relative % error in standard error

CC (MCse) MI_LOGT (MCse) MI_T (MCse)

-2.7 2.2 2.2 2.3 -0.4 2.3

Coverage of nominal 95% confidence interval

CC (MCse) MI_LOGT (MCse) MI_T (MCse)

94.3 0.7 94.9 0.7 94.3 0.7

Power of 5% level test

CC (MCse) MI_LOGT (MCse) MI_T (MCse)

94.6 0.7 96.9 0.5 96.3 0.6

Some points of interest include the following:

• Table 3: CC has small-sample bias away from the null.

• Tables 4 and 5: CC is inefficient compared with MI LOGT and MI T.

• Comparing tables 4 and 6 shows that model-based SEs are close to the empirical
values. This is shown more directly in table 7.

• Table 8: Coverage of nominal 95% confidence intervals also seems fine, which is
not surprising in view of the lack of bias and good model-based SEs.

• Table 9: CC lacks power compared with MI LOGT and MI T, which is not surprising
in view of its inefficiency.

If different formatting of the results is required, the results can be loaded into mem-
ory using the clear option and can then be manipulated.
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4 Formulas

Assume that the true parameter is β and that the ith simulated dataset (i = 1, . . . , n)

yields a point estimate β̂i with SE si. Define

β =
1

n

∑

i

β̂i

Vbβ =
1

n− 1

∑

i

(
β̂i − β

)2

s2 =
1

n

∑

i

s2i

Vs2 =
1

n− 1

∑

i

(
s2i − s2

)2

Performance of β̂: Bias and empse

Bias is defined as E(β̂i) − β and estimated by

estimated bias = β − β

MC error =
√
Vbβ/n (1)

Precision is measured by the empirical standard deviation SD

(
β̂i

)
and is estimated by

empirical standard deviation =
√
Vbβ

MC error =
√
Vbβ/2(n− 1)

assuming β̂ is normally distributed, as then (n− 1)Vbβ/var
(
β̂
)
∼ χ2

n−1.
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Estimation method comparison: relprec

In a small change of notation, consider two estimators β̂1 and β̂2 with values β̂1i and
β̂2i in the ith simulated dataset. The relative gain in precision for β̂2 compared with β̂1

is

relative gain in precision = Vbβ1

/Vbβ2

MC error ≈
2Vbβ1

Vbβ2

√
1 − ρ2

12

n− 1

where ρ12 is the correlation of β̂1 with β̂2.

The MC error expression can be proved by observing the following: 1) var
(
log Vbβ1

)
=

var
(
log Vbβ2

)
= 2/(n − 1); 2) var

{
log
(
Vbβ1

/Vbβ2

)}
= 4(1 − ρV )/(n − 1) where ρV =

corr
(
Vbβ1

, Vbβ2

)
; and 3) ρV = ρ2

12. Result 3 may be derived by observing that Vbβ ≈

1/n
∑

i

(
β̂i − β

)2

so that under a bivariate normal assumption for
(
β̂1, β̂2

)
,

n cov
(
Vbβ1

, Vbβ2

)
≈ cov

{(
β̂1 − β1

)2

,
(
β̂2 − β2

)2
}

= cov

{(
β̂1 − β1

)2

, E

[(
β̂2 − β2

)2 ∣∣∣ β̂1

]}

= cov

{(
β̂1 − β1

)2

, ρ2
12Vbβ2

/Vbβ1

(
β̂1 − β1

)2
}

= 2ρ2
12Vbβ1

Vbβ2

where the third step follows because
(
β̂2 − β2

) ∣∣∣ β̂1 is normal with mean

ρ12

√
Vbβ2

/Vbβ1

(
β̂1 − β1

)
and constant variance.

Performance of model-based SE si: modelse and relerror

The average model-based SE is (by default) computed on the variance scale, because
standard theory yields unbiased estimates of the variance, not of the standard deviation.

average model-based SE s =
√
s2

MC error ≈
√
Vs2/4ns2

using the Taylor series approximation var (X) ≈ var
(
X2
)
/4E(X)2.
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We can now compute the relative error in the model-based SE as

relative error = s/
√
Vbβ − 1 (2)

MC error ≈
(
s/
√
Vbβ

)√
Vs2/

(
4ns4

)
+ 1/2(n− 1) (3)

assuming that s and Vbβ are approximately uncorrelated and using a further Taylor
approximation.

However, if the modelsemethod(mean) option is used, the formulas are

average model-based SE s =
1

n

∑

i

si

MC error =

√
1

n

∑

i

(si − s)
2

with consequent adjustments to equations (2) and (3).

Joint performance of β̂ and si: Cover and power

Let zα/2 be the critical value from the normal distribution, or (if the number of degrees
of freedom has been specified) the critical value from the appropriate t distribution.
The coverage of a nominal 100(1 − α)% confidence interval is

coverage C =
1

n

∑

i

1
(
| β̂i − β | < zα/2si

)

MC error =
√
C(1 − C)/n

where 1(·) is the indicator function. The power of a significance test at the α level is

power P =
1

n

∑

i

1
(
| β̂i | ≥ zα/2si

)

MC error =
√
P (1 − P )/n

Robust MC errors

Several of the MC errors presented above require a normality assumption. Alternative
approximations can be derived using an estimating equations method. The empirical

standard deviation,
√
Vbβ , can be written as the solution θ̂ of the equation

∑

i

{
n

n− 1

(
β̂i − β

)2

− θ̂ 2

}
= 0
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The relative precision of β̂2 compared with β̂1 can be written as the solution θ̂ of

∑

i

{(
β̂1i − β1

)2

−
(
θ̂ + 1

)(
β̂2i − β2

)2
}

= 0

The relative error in the model-based SE can be written as the solution θ̂ of

∑

i

{
s2i −

(
θ̂ + 1

)2 (
β̂i − β

)2
}

= 0

provided that the modelsemethod(rmse) method is used. (If modelsemethod(mean) is
specified, it is ignored in computing robust MC errors.) Ignoring the uncertainty in the
sample means β, β1, and β2, each estimating equation is of the form

∑

i

{
Ti − f

(
θ̂
)
Bi

}
= 0

so the sandwich variance (White 1982) is given by

v̂ar
{
f
(
θ̂
)}

≈
∑

i

{
Ti − f

(
θ̂
)
Bi

}2
(∑

i

Bi

)−2

and using the delta method,

v̂ar
(
θ̂
)
≈ v̂ar

{
f
(
θ̂
)}

/f ′
(
θ̂
)2

Finally, as an attempt to allow for uncertainty in the sample means, we multiply the
sandwich variance by n/(n − 1). A rationale is that this agrees exactly with (1) if the
method is applied to the MC error of the bias. However, most simulation studies are
large enough that this correction is unimportant.

5 Evaluations

Most of the formulas used by simsum to compute MC errors involve approximations, so
I evaluated them in two simulation studies.

5.1 Multiple imputation, revisited

First, I repeated 250 times the simulation study described in section 3. The data have
the same format as before, with a new variable, simno, identifying the 250 different
simulation studies. I ran simsum twice. In the first run, each quantity and its MC error
was computed in each simulation study:

. simsum b, true(0.5) methodvar(method) id(dataset) se(se) mcse by(simno)
> bias empse relprec modelse relerror cover power nolist clear

Reshaping data to wide format ...
Starting to process results ...
Results are now in memory.
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The data are now held in memory, with one record for each statistic for each of the
250 simulation studies. The statistics are identified by the values of a newly created
numerical variable statnum, and the different simulation studies are still identified by
simno. The variables bCC, bMI LOGT, and bMI T contain the analysis results for the three
methods. MC errors in variables are suffixed with mcse. In the second run, these values
are treated as ordinary output from a simulation study, and the average calculated MC

error is compared with the empirical MC error.

. simsum bCC bMI_LOGT bMI_T, sesuffix(_mcse) by(statnum) mcse gen(newstat)
> empse modelse relerror nolist clear

Warning: found 250 observations with missing values
Starting to process results ...
Results are now in memory.

The 250 observations with missing values refer to the relative precisions, which are
missing for the reference method (CC). Average calculated MC errors for each statistic are
compared in table 1 with empirical MC errors. The calculated MC errors are naturally
similar to those reported in the single simulation study above (some values have been
multiplied by 1,000 for convenience). Empirical MC errors are close to the model-based
values. The only exception is for coverage, where the model-based MC errors appear
rather small for methods CC and MI LOGT. This is likely to be a chance finding, because
there is no doubt about the accuracy of the model-based MC formula for this statistic.
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5.2 Nonnormal joint distributions

In a second evaluation, I simulated 100,000 datasets of size n = 100 from the model
X ∼ N(0, 1), Y ∼ Bern(0.5). I then estimated the parameter β in the logistic regression
model

logit P (Y = 1 |X) = α+ βX (4)

in two ways: 1) β̂LR was the maximum likelihood estimate from fitting the logistic

regression model (4), and 2) β̂LDA was the estimate from linear discriminant analysis
(LDA), fitting the linear regression model

X |Y ∼ N
(
γ + δX, σ2

)

and taking β̂LDA = δ̂/σ̂2.

The 100,000 datasets were divided into 100 simulation studies each of 1,000 simu-
lated datasets. The quantities described above and their SEs were calculated for each
simulation study, except that power for testing β = 0 was not computed because this
null hypothesis was true. Finally, the empirical MC error of each quantity across simula-
tion studies was compared with the average MC error estimated within each simulation
study.

Results are shown in table 2. The calculated MC error is adequate for all quantities
except for the relative precision of LDA compared with logistic regression, for which the
calculated SE is some three times too small. This appears to be due to the nonnormal
joint distribution of the parameter estimates shown in figure 1. The robust MC errors
perform well in all cases.
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Table 2. Simulation study comparing LDA with logistic regression: Comparison of
empirical with average calculated MC errors for various statistics

Quantity Method Mean MC error

Empirical Average calculated

Normal Robust

Bias × 1000 Logistic 0.41 6.79 6.71 .
LDA 0.41 6.66 6.57 .

Empirical SE × 1000 Logistic 212.00 4.78 4.74 5.07
LDA 207.86 4.69 4.65 4.97

% gain in precision Logistic . . . .
LDA 4.027 0.124 0.048 0.131

Model SE × 1000 Logistic 207.32 0.51 0.51 .
LDA 203.12 0.48 0.47 .

% error in model SE Logistic −2.16 2.13 2.20 2.26
LDA −2.23 2.18 2.20 2.30

% coverage Logistic 95.36 0.60 0.66 .
LDA 94.70 0.64 0.71 .
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Figure 1. Scatterplot of the difference β̂LDA− β̂LR against the average
(
β̂LDA + β̂LR

)
/2

in 2,000 simulated datasets
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6 Discussion

I hope that simsum will help statisticians improve the reporting of their simulation
studies. In particular, I hope simsum will help them think about and report MC errors.
If MC errors are too large to enable the desired conclusions to be drawn, then it is
usually straightforward to increase the sample size, a luxury rarely available in applied
research.

For three statistics (empirical SE, and relative precision and relative error in model-
based SE), I have proposed two approximate MC error methods, one based on a normality
assumption and one based on a sandwich estimator. The MC error should only be taken
as a guide, so errors of some 10–20% in calculating the MC error are of little importance.
In most cases, both MC error methods performed adequately. However, the normality-
based MC error was about three times too small when evaluating the relative precision of
two estimators with a highly nonnormal joint distribution (figure 1). It is good practice
to examine the marginal and joint distributions of parameter estimates in simulation
studies, and this practice should be used to guide the choice of MC error method.

Other methods are available for estimating MC errors. Koehler, Brown, and Haneuse
(2009) proposed more computationally intensive techniques that are available for im-
plementation in R. Other software (Doornik and Hendry 2009) is available with an
econometric focus.

7 Acknowledgment

This work was supported by MRC grant U.1052.00.006.

8 References

Burton, A., D. G. Altman, P. Royston, and R. L. Holder. 2006. The design of simulation
studies in medical statistics. Statistics in Medicine 25: 4279–4292.

Doornik, J. A., and D. F. Hendry. 2009. Interactive Monte Carlo Experimentation in
Econometrics Using PcNaive 5. London: Timberlake Consultants Press.

Koehler, E., E. Brown, and S. J.-P. A. Haneuse. 2009. On the assessment of Monte Carlo
error in simulation-based statistical analyses. American Statistician 63: 155–162.

Little, R. J. A., and D. B. Rubin. 2002. Statistical Analysis with Missing Data. 2nd
ed. Hoboken, NJ: Wiley.

Royston, P. 2004. Multiple imputation of missing values. Stata Journal 4: 227–241.

———. 2009. Multiple imputation of missing values: Further update of ice, with an
emphasis on categorical variables. Stata Journal 9: 466–477.

van Buuren, S., H. C. Boshuizen, and D. L. Knook. 1999. Multiple imputation of missing
blood pressure covariates in survival analysis. Statistics in Medicine 18: 681–694.



I. R. White 385

White, H. 1982. Maximum likelihood estimation of misspecified models. Econometrica
50: 1–25.

White, I. R., and P. Royston. 2009. Imputing missing covariate values for the Cox
model. Statistics in Medicine 28: 1982–1998.

About the author

Ian R. White is a program leader at the MRC Biostatistics Unit in Cambridge, United Kingdom.
His research interests focus on handling missing data, noncompliance, and measurement error
in the analysis of clinical trials, observational studies, and meta-analysis. He frequently uses
simulation studies.




