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Abstract. Medical researchers frequently make statements that one model pre-
dicts survival better than another, and they are frequently challenged to provide
rigorous statistical justification for those statements. Stata provides the estat
concordance command to calculate the rank parameters Harrell’s C' and Somers’ D
as measures of the ordinal predictive power of a model. However, no confidence
limits or p-values are provided to compare the predictive power of distinct models.
The somersd package, downloadable from Statistical Software Components, can
provide such confidence intervals, but they should not be taken seriously if they are
calculated in the dataset in which the model was fit. Methods are demonstrated
for fitting alternative models to a training set of data, and then measuring and
comparing their predictive powers by using out-of-sample prediction and somersd
in a test set to produce statistically sensible confidence intervals and p-values for
the differences between the predictive powers of different models.

Keywords: st0198, somersd, stcox, estat concordance, streg, predict, survival,
model validation, prediction, concordance, rank methods, Harrell’'s C, Somers’ D

1 Introduction

Harrell’s C' and the equivalent parameter Somers’ D were proposed as measures of
the general predictive power of a general regression model by Harrell et al| (1982) and
Harrell, Lee, and Mark (1996), who focused attention on the case of a survival model
with a possibly right-censored outcome, which was interpreted as a lifetime. In the case
of a Cox proportional hazards regression model, both parameters are output by the
Stata postestimation command estat concordance (see [ST| stcox postestimation)m
However, because Harrell’s C' and Somers’ D are rank parameters, they are equally valid
as measures of the predictive power of any model in which the scalar outcome Y is at
least ordinal (with or without censorship), and in which the conditional distribution
of the outcome, given the predictor variables, is governed by a scalar function of the
predictor variables and the parameters, such as the hazard ratio in a Cox regression or
the linear predictor in a generalized linear model. If the assumptions of the model are
true, then such a scalar predictive score plays the role of a balancing score as defined
by Rosenbaum and Rubin (1983).

1. As of Stata 11.1, estat concordance provides two concordance measures: Harrell’s C' and Gonen
and Heller’s K. Harrell’s C' is computed by default or if harrell is specified.
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340 Comparing the predictive powers of survival models

Harrell’s C' and Somers’ D are members of the Kendall family of rank parameters.
The family history can be summarized as follows: Kendall’s 7, begat Somers’ D begat
Theil-Sen percentile slopes. This family is implemented in Stata by using the somersd
package, which can be downloaded from Statistical Software Components. An overview
of the parameter family is given in Newson (2002), and the methods and formulas are
given in detail in Newson (2006a,b,c).

Parameters in this family are defined by assuming the existence of a population of
bivariate data pairs of the form (X;,Y;) and a sampling scheme for sampling pairs of
pairs {(X;,Y;), (X;,Y;)} from that population. A pair of pairs is said to be concordant
if the larger of the X values is paired with the larger of the Y values, and a pair is
said to be discordant if the larger of the X values is paired with the smaller of the
Y values. Kendall’s 7, is the difference between the probability of concordance and
the probability of discordance. Somers’ D(X |Y) is the difference between the cor-
responding conditional probabilities, assuming that the two Y values can be ordered.
Harrell’s C(X |Y) is defined as {D(X |Y) +1}/2 and is equal to the conditional proba-
bility of concordance plus half the conditional probability that the data pairs are neither
concordant nor discordant, assuming that the two Y values can be ordered. In the case
where Y is an outcome to be predicted by a multivariate model with a scalar predictive
score, there is an underlying population of multivariate data points (Y;, Vi1,..., Vig)
where the V;, are predictive covariates and the role of the X; is played by the scalar
predictive score n(Vi1, ..., Vir). In this case, the Somers’ D and Harrell’s C' parameters
can be denoted as D{n(Vi,..., V%) |Y} and C{n(V4,...,Vi)|Y}, respectively. If the
model is a survival model, then the Y values are lifetimes, and there is the possibility
that one or both of a pair of Y values may be censored, which sometimes implies that
they cannot be ordered.

We often want to compare the predictive powers of alternative predictors of the same
outcome Y. Newson (2002, 2006b) argues that if there is an underlying population of
trivariate data points (W;, X;,Y;) and if any positive association between the Y; and
the X, is caused by a positive association of both of these variables with the W;, then
we must have the inequality D(X |Y) — D(W |Y) < 0 or, equivalently, C(X |Y) —
CW|Y)={D(X|Y)—D(W|Y)}/2 <0. This inequality still holds if the Y variable
may be censored, but not if the W or X variable may be censored. This implies that if
we have multiple alternative positive predictors of the same outcome, such as alternative
predictive scores from alternative multivariate models, then it may be useful to calculate
confidence intervals for the differences between the Somers’ D or Harrell’s C' parameters
of these predictors with respect to the outcome, and then to make statements regarding
which predictors may or may not be secondary to which other predictors. In Stata,
this can be done by using lincom after the somersd command, as demonstrated in
section 4.1 of Newson (2002).

Medical researchers frequently make statements that one model predicts survival
better than another. Statistical referees acting for medical journals frequently challenge
the researchers to provide rigorous statistical justification for these statements. The
Stata postestimation command estat concordance provides estimates of Harrell’s C'
and Somers’ D but provides no confidence limits for these, nor any confidence limits or
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p-values for the differences between the values of these rank parameters from different
models. This is the case for good reason: confidence-interval formulas do not protect the
user for finding a model in the same data in which its parameters are then estimated.
Used sequentially, the somersd and lincom commands provide confidence limits and p-
values for differences between the Somers’ D or Harrell’s C' parameters between different
predictors. However, not all medical researchers know how to calculate a confidence
interval (CI) when the predictors are scalar predictive scores from models, and fewer
still know how to do so in such a way that the confidence limits can be taken seriously.
In this article, T aim to explain how medical researchers can calculate CIs and preempt
possible queries that may arise in the process.

The remainder of this article is divided into four sections. Section 2 addresses
the queries that commonly arise when users try to duplicate the results of estat
concordance using somersd. Section 3 describes the method of splitting the data into
a training set (to which models are fit) and a test set (in which their predictive powers
are measured). Section 4 describes the extension to non-Cox survival models, such as
those described in [ST] streg. Finally, section 5 briefly explains how the methods can
be extended even further.

2 The Cox model: somersd versus estat concordance

I will demonstrate the principles using the Cox proportional hazards model, which is
implemented in Stata using the stcox command (see [ST] stcox). I also use the Stanford
drug-trial dataset, which is used for the examples in [ST] stcox postestimation.

Before I raise the issue of confidence limits, we need to see how somersd can pro-
duce the same estimates as estat concordance. This is done using predict after the
survival estimation command to define the predictive score, and then using somersd to
measure the association of the predictive score with the lifetime. Users who attempt
to use somersd to duplicate the estimates of estat concordance may face confusion
caused by these three issues:

1. The predict command, used after stcox, by default produces a negative predic-
tion score, in contrast to the positive prediction score produced by using predict
after most estimation commands.

2. The default coding of a censorship status variable for stcox is different from the
coding of a censorship status variable for somersd.

3. The treatment of tied failure times by estat concordance is different from that
used by somersd.
There are solutions to all of these problems, and I will demonstrate them, enabling

users to use somersd and estat concordance as checks on one another.

Let’s start the demonstration by inputting the Stanford drug-trial data, fitting a
Cox model, and calling estat concordance:
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. use http://www.stata-press.com/data/ril/drugtr
(Patient Survival in Drug Trial)

. stset
-> stset studytime, failure(died)
failure event: died != 0 & died < .

obs. time interval: (0, studytime]
exit on or before: failure

48 total obs.
0 exclusions

48 obs. remaining, representing
31 failures in single record/single failure data

744 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 39
. stcox drug age
failure _d: died
analysis time _t: studytime
Iteration O: log likelihood = -99.911448
Iteration 1: log likelihood = -83.551879
Iteration 2: log likelihood = -83.324009
Iteration 3: log likelihood = -83.323546
Refining estimates:
Iteration O: log likelihood = -83.323546
Cox regression -- Breslow method for ties
No. of subjects = 48 Number of obs = 48
No. of failures = 31
Time at risk = 744
LR chi2(2) = 33.18
Log likelihood =  -83.323546 Prob > chi2 = 0.0000
_t | Haz. Ratio  Std. Err. z P>|z| [95% Conf. Interval]
drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622
age 1.120325 .0417711 3.05 0.002 1.041375 1.20526

. estat concordance
Harrell’s C concordance statistic
failure _d: died

analysis time _t: studytime

Number of subjects (N) = 48
Number of comparison pairs (P) = 849
Number of orderings as expected (E) = 679
Number of tied predictions (T) = 15
Harrell’s C = (E + T/2) / P = .8086

Somers” D = .6172

The stset command shows us that the input dataset has already been set up as
a survival-time dataset that includes one observation per drug-trial subject as well as
data on survival time and termination modes, among other things (see [ST] stset).
The Cox model contains two predictive covariates, age (subject age in years) and drug
(indicating treatment group, with a value of 0 for placebo and a value of 1 for the
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drug being tested). We then see that, according to estat concordance, Harrell’s C' is
0.8086 and Somers’ D is 0.6172. The Somers’ D implies that when one of two subjects is
observed to survive another, the model predicts that the survivor is 61.72% more likely
to have a lower hazard ratio than the nonsurvivor. The Harrell’s C' is the probability
that the survivor has the lower hazard ratio plus half the (possibly negligible) probability
that the two subjects have equal hazard ratios, and this sum is 80.86% on a percentage
scale.

We will now see how to duplicate these estimates by using predict and somersd.
We start by defining a negative predictor of lifetime by using predict to calculate a
hazard ratio. We then derive an inverse hazard ratio, which we expect to be a positive
predictor of lifetime:

. predict hr
(option hr assumed; relative hazard)

. generate invhr=1/hr

This strategy addresses the first of the three sources of confusion mentioned before.

Addressing the second source of confusion, we need to define a censorship indicator
for input to the somersd command. The somersd command has a cenind() option
that requires a list of censorship indicators. These censorship indicators are allocated
one-to-one to the corresponding variables of the variable list input to somersd and must
be either variable names or zeros (implying a censorship indicator variable whose values
are all zero). Censorship indicator variables for somersd are positive in observations
where the corresponding input variable value is right-censored (or known to be equal to
or greater than its stated value), are negative in observations where the corresponding
input variable value is left-censored (or known to be equal to or less than its stated
value), and are zero in observations where the corresponding input variable value is
uncensored (or known to be equal to its stated value). If the list of censorship indicators
is shorter than the input variable list, then the list of censorship indicators is extended
on the right with zeros, implying that the variables without censorship indicators are
uncensored.

This coding scheme is not the same as that for the censorship indicator variable _d
that is created by the stset command, which is 1 in observations where the correspond-
ing lifetime is uncensored and is 0 in observations where the corresponding lifetime is
right-censored.

To convert an stset censorship indicator variable to a somersd censorship indicator
variable, we use the command

. generate censind=1-_d if _st==

This command creates a new variable, censind, which assumes the following values:
missing in observations excluded from the survival sample, as indicated by the variable
_st created by stset; 1 in observations with right-censored lifetimes (where _d is 0);
and 0 in observations with uncensored lifetimes (where _d is 1).
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We can now use somersd to calculate Harrell’s C' and Somers’ D, using the transf (c)
option for Harrell’s C' and the transf (z) option (indicating the normalizing and vari-
ance-stabilizing Fisher’s z or hyperbolic arctangent transformation) for Somers’ D:

. somersd _t invhr if _st==1, cenind(censind) tdist transf(c)

Somers” D with variable: _t
Transformation: Harrell's c
Valid observations: 48
Degrees of freedom: 47

Symmetric 95% CI for Harrell's c

Jackknife
_t Coef . Std. Err. t P>t [95% Conf. Intervall]
invhr .8106332 .0423076 19.16 0.000 .7255213 .8957451

. somersd _t invhr if _st==1, cenind(censind) tdist transf(z)
Somers” D with variable: _t

Transformation: Fisher's z

Valid observations: 48

Degrees of freedom: 47

Symmetric 95% CI for transformed Somers” D

Jackknife
_t Coef. Std. Err. t P>t [95% Conf. Intervall]
invhr .7270649 .1378034 5.28 0.000 .4498402 1.00429

Asymmetric 95% CI for untransformed Somers” D
Somers_D Minimum Maximum
invhr .62126643 .42176765 . 76338983

In both cases, we use the survival-time variable _t, the survival sample indicator
_st (created by stset), and the inverse hazard rate invhr (created using predict)
to estimate rank parameters of the inverse hazard ratio with respect to survival time
(censored by censorship status). In the case of Harrell’s C, the estimated parameter
is on a scale from 0 to 1 and is expected to be at least 0.5 for a positive predictor of
lifetime, such as an inverse hazard ratio. In the case of Somers’ D, the untransformed
parameter is on a scale from —1 to 1 and is expected to be at least 0 for a positive
predictor of lifetime.

However, we now encounter the third source of confusion mentioned before. If we
compare the estimates here to those produced earlier by estat concordance, we find
that the estimates for Harrell’s C' and Somers’ D are similar but not exactly the same.
The estimates are 0.8106 and 0.6213, respectively, when computed by somersd, and
0.8086 and 0.6172, respectively, when computed by estat concordance. The reason
for this discrepancy is that somersd and estat concordance have different policies
for comparing two lifetimes that terminate simultaneously when one lifetime is right-
censored and the other is uncensored. The estat concordance policy assumes that
the owner of the right-censored lifetime survived the owner of the uncensored lifetime,
whereas the somersd policy assumes that neither of the two owners can be said to have
survived the other. In the case of a drug trial, one subject might be known to have
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died in a certain month, whereas another might be known to have left the country in
the same month and has therefore become lost to follow-up. The estat concordance
policy assumes that the second subject must have survived the first, which might be
probable, given that this second subject seems to have been in a fit state to travel out
of the country. The somersd policy, more cautiously, allows the possibility that the
second subject may have left the country early in the month and died unexpectedly of
a venous thromboembolism on the outbound plane, whereas the first subject may have
died under observation of the trial organizers later in the same month.

Whatever the merits of the two policies, we might still like to show that somersd
and estat concordance can be made to duplicate one another’s estimates. This can
easily be done if lifetimes are expressed as whole numbers of time units, as they are
in the Stanford drug trial data, where lifetimes are expressed in months. In this case,
we can add half a unit to right-censored lifetimes only. As a result, right-censored
lifetimes become greater than uncensored lifetimes terminating within the same time
unit without affecting any other orderings of lifetimes.

In our example, we do this by generating a new lifetime variable, studytime2, that
is equal to the modified survival time. We then use stset to reset the various survival-
time variables and characteristics so that the modified survival time is now used. This
step is done after using the assert command to check that the old studytime variable
is indeed integer-valued; see [D] assert and [D] functions. We then proceed as in the
previous example:

. use http://www.stata-press.com/data/r11/drugtr, clear
(Patient Survival in Drug Trial)

. assert studytime==int(studytime)
. generate studytime2=studytime+0.5%(died==0)
. stset studytime2, failure(died)

failure event: died != 0 & died < .
obs. time interval: (0, studytime2]
exit on or before: failure

48 total obs.
0 exclusions

48 obs. remaining, representing

31 failures in single record/single failure data
752.5 total analysis time at risk, at risk from t
earliest observed entry t

last observed exit t

G N eNe]

(Continued on next page)
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. stcox drug age
failure _d: died

analysis time _t: studytime2

Iteration O: log likelihood = -99.911448
Iteration 1: log likelihood = -83.551879
Iteration 2: log likelihood = -83.324009

Iteration 3: log likelihood = -83.323546

Refining estimates:

Iteration O: log likelihood = -83.323546

Cox regression -- Breslow method for ties

No. of subjects 48 Number of obs
No. of failures 31

Time at risk = 752.5

48

33.18
0.0000

LR chi2(2)
Log likelihood =  -83.323546 Prob > chi2

t | Haz. Ratio  Std. Err. z P>|z| [95% Conf. Intervall]

drug .1048772 .0477017 -4.96 0.000 .0430057 .2557622
age 1.120325 .0417711 3.05 0.002 1.041375 1.20526

. estat concordance
Harrell”s C concordance statistic
failure _d: died

analysis time _t: studytime2

Number of subjects (N) = 48
Number of comparison pairs (P) 849
Number of orderings as expected (E) 679
Number of tied predictions (T) = 15

Harrell’s C = (E + T/2) / P .8086
Somers”™ D L6172

. predict hr
(option hr assumed; relative hazard)

. generate invhr=1/hr
. generate censind=1-_d if _st==

. somersd _t invhr if _st==1, cenind(censind) tdist transf(c)
Somers” D with variable: _t

Transformation: Harrell's c

Valid observations: 48

Degrees of freedom: 47

Symmetric 95% CI for Harrell’s c

Jackknife
t Coef. Std. Err. t P>t [95% Conf. Intervall]

invhr .8085984 .0425074 19.02  0.000 .7230845 .8941122
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. somersd _t invhr if _st==1, cenind(censind) tdist transf(z)
Somers” D with variable: _t

Transformation: Fisher's z

Valid observations: 48

Degrees of freedom: 47

Symmetric 95% CI for transformed Somers” D

Jackknife
_t Coef. Std. Err. t P>t [95% Conf. Intervall]
invhr .7204641 .1373271 5.25 0.000 .4441976 .9967306

Asymmetric 95% CI for untransformed Somers” D
Somers_D Minimum Maximum
invhr .6171967 .41711782 .76021766

This time, the model fit produces the same output as before, and the command
estat concordance produces the same estimates as it did before of 0.8086 and 0.6172
for Harrell’s C' and Somers’ D, respectively. But now the same estimates of 0.8086 and
0.6172 are also produced by somersd, at least after rounding to four decimal places.

It should be stressed that Harrell’s C' and Somers’ D, computed as above either
by somersd or by estat concordance, are valid measures of the predictive power of a
survival model only if there are no time-dependent covariates or lifetimes with delayed
entries. However, if somersd (instead of estat concordance) is used, then sensible
estimates can still be produced with weighted data, so long as those weights are explicitly
supplied to somersd.

3 Comparing predictive powers with training and test
sets

Another caution about the results of the previous section is that the confidence intervals
generated by somersd should not really be taken seriously. This is because, in general,
confidence intervals do not protect the user against the consequences of finding a model
in a dataset and then estimating its parameters in the same dataset. In the case of
Harrell’s C' and Somers’ D of inverse hazard ratios with respect to lifetime, we would
expect this incorrect practice to lead to overly optimistic estimates of predictive power
because we are measuring the predictive power of a model that is optimized for the
dataset in which the predictive power is measured.

We really should be finding models in a training set of data and testing the models’
predictive powers, both absolute and relative to each other, in a test set of data that
is independent of the training set. If we have only one set of data, we might divide
its primary sampling units (randomly or semirandomly) into two subsets, and use the
first subset as the training set and the second subset as the test set. Sections 3.1
and 3.2 below demonstrate this practice by splitting the Stanford drug-trial data into
a training set and a test set of similar sizes, using random subsets and semirandom
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stratified subsets, respectively. We will use the somersd policy, rather than the estat
concordance policy, regarding tied censored and noncensored lifetimes.

3.1 Completely random training and test sets

We will first demonstrate the relatively simple practice of splitting the sampling units,
completely at random, into a training set and a test set. We will fit three models to the
training set: model 1, containing the variables drug and age; model 2, containing drug
only; and model 3, containing age only. Next we will use out-of-sample prediction and
somersd to estimate the predictive powers of these three models in the test set. We
will then use lincom to compare their predictive powers, in the manner of section 5.2
of Newson (2006b).

We start by inputting the data and then splitting them, completely at random, into
a training set and a test set. We use the runiform() function to create a uniformly
distributed pseudorandom variable, sort to sort the dataset by this variable, and the
mod() function to allocate alternate observations to the training and test sets (see
[D] sort and [D] functions). We then re-sort the data back to their old order using the
generated variable oldord.

. use http://www.stata-press.com/data/ri1/drugtr, clear
(Patient Survival in Drug Trial)

. set seed 987654321

. generate ranord=runiform()
. generate long oldord=_n

. sort ranord, stable

. generate testset=mod(_n,2)
. sort oldord

. tabulate testset, m

testset Freq. Percent Cum.
0 24 50.00 50.00
1 24 50.00 100.00

Total 48 100.00

We see that there are 24 patient lifetimes in the training set (where testset==0)
and 24 in the test set (where testset==1). We then fit the three Cox models to the
training set and create the inverse hazard-rate variables invhrl, invhr2, and invhr3
for models 1, 2 and 3, respectively:
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. stcox drug age if testset==

failure _d: died
analysis time _t: studytime

Iteration O: log likelihood = -36.900079
Iteration 1: log likelihood = -30.207704
Iteration 2: log likelihood = -30.075862

Iteration 3: log likelihood = -30.075741
Refining estimates:
Iteration O: log likelihood = -30.075741

Cox regression -- Breslow method for ties
No. of subjects = 24 Number of obs = 24
No. of failures = 14
Time at risk = 370
LR chi2(2) = 13.65
Log likelihood =  -30.075741 Prob > chi2 = 0.0011
_t | Haz. Ratio Std. Err. z P>z [95% Conf. Intervall
drug .1302894 .085747 -3.10 0.002 .0358683 .473269
age 1.139011 .0678588 2.18 0.029 1.013482 1.280089
. predict hri
(option hr assumed; relative hazard)
. generate invhri=1/hri
. stcox drug if testset==0
failure _d: died
analysis time _t: studytime
Iteration O: log likelihood = -36.900079
Iteration 1: log likelihood = -32.692209
Iteration 2: log likelihood = -32.647379
Iteration 3: log likelihood = -32.647309
Refining estimates:
Iteration O: log likelihood = -32.647309
Cox regression -- Breslow method for ties
No. of subjects = 24 Number of obs = 24
No. of failures = 14
Time at risk = 370
LR chi2(1) = 8.51
Log likelihood =  -32.647309 Prob > chi2 = 0.0035
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Intervall
drug .1843768 .112761 -2.76  0.006 .0556069 .611341

. predict hr2
(option hr assumed; relative hazard)

. generate invhr2=1/hr2

(Continued on next page)
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. stcox age if testset==0
failure _d: died

analysis time _t: studytime

Iteration O: log likelihood = -36.900079
Iteration 1: log likelihood = -35.587135
Iteration 2: log likelihood = -35.58462
Refining estimates:
Iteration O: log likelihood = -35.58462
Cox regression -- Breslow method for ties
No. of subjects = 24 Number of obs = 24
No. of failures = 14
Time at risk = 370
LR chi2(1) = 2.63
Log likelihood = -35.58462 Prob > chi2 = 0.1048
_t | Haz. Ratio Std. Err. z P>z [95% Conf. Intervall
age 1.082178 .0526849 1.62 0.105 .9836912 1.190526

. predict hr3
(option hr assumed; relative hazard)

. generate invhr3=1/hr3

The variables invhr1, invhr2, and invhr3 are defined for all observations, both in
the training set and in the test set. We then define the censorship indicator, as before,
and estimate the Harrell’s C' indexes in the test set for all three models fit to the training
set:

. generate censind=1-_d if _st==1

. somersd _t invhrl invhr2 invhr3 if _st==1 & testset==1, cenind(censind) tdist
> transf(c)

Somers” D with variable: _t

Transformation: Harrell’s c

Valid observations: 24

Degrees of freedom: 23

Symmetric 95% CI for Harrell’s c

Jackknife
_t Coef. Std. Err. t P>t [95% Conf. Intervall]
invhri .8819444 .0490633 17.98 0.000 .7804493 .9834396
invhr?2 .7916667 .0330999 23.92 0.000 .7231944 .860139
invhr3 .6365741 .0831046 7.66 0.000 .4646592 .808489

We see that Harrell’s C' of inverse hazard ratio with respect to lifetime is 0.8819 for
model 1 (using both drug treatment and age), 0.7917 for model 2 (using drug treatment
only), and 0.6366 for model 3 (using age only). All of these estimates have confidence
limits, which are probably less unreliable than the ones we saw in the previous sec-
tion. However, the sample Harrell’s C' is likely to have a skewed distribution in the
presence of such strong positive associations, for the same reasons as Kendall’s 7, (see
Daniels and Kendall [1947]). Differences between Harrell’s C' indexes are likely to have
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a less-skewed sampling distribution and are also what we probably really wanted to
know. We estimate these differences with lincom, as follows:

. lincom invhril-invhr2

( 1) invhrl - invhr2 = 0

_t Coef. Std. Err. t P>t [95% Conf. Intervall]

(1) .0902778 .0350965 2.57 0.017 .0176751 .1628804

. lincom invhri-invhr3
( 1) invhrl - invhr3 = 0

_t Coef. Std. Err. t P>t [95% Conf. Intervall]

(1) .2453704 .0736766 3.33 0.003 .0929586 .3977821

. lincom invhr2-invhr3
( 1) invhr2 - invhr3 =0

_t Coef. Std. Err. t P>t [95% Conf. Intervall]

(1) .1550926 .0823647 1.88 0.072 -.0152917 .3254769

Model 1 seems to have a slightly higher predictive power than model 2 or (especially)
model 3, while the difference between model 2 and model 3 is slightly less convincing.
We can also do the same comparison using Somers’ D rather than Harrell's C, by using
the normalizing and variance-stabilizing z transform, recommended by Edwardes (1995)
and implemented using the somersd option transf(z). In that case, the differences
between the predictive powers of the different models will be expressed in z units (not
shown).

3.2 Stratified semirandom training and test sets

Completely random training and test sets may have the disadvantage that, by chance,
important predictor variables may have different sample distributions in the training
and test sets, making both the training set and the test set less representative of the
sample as a whole and of the total population from which the training and test sets were
sampled. We might feel safer if we chose the training and test sets semirandomly, with
the constraint that the two sets have similar distributions of key predictor variables in
the various models.

In our case, we might want to ensure that both the training set and the test set
contain their “fair share” of drug-treated older subjects, drug-treated younger subjects,
placebo-treated older subjects, and placebo-treated younger subjects. To ensure this,
we might start by defining sampling strata that are combinations of treatment status
and age group, and split each of these strata as evenly as possible between the training
set and the test set. Again, this requires the dataset to be sorted, and we will afterward



352 Comparing the predictive powers of survival models
sort it back to its original order. We sort as follows, using the xtile command to define
age groups (see [D] pctile):

. use http://www.stata-press.com/data/ri1l/drugtr, clear
(Patient Survival in Drug Trial)

. set seed 987654321

. generate ranord=runiform()

. generate long oldord=_n

. xtile agegp=age, nquantiles(2)
. tabulate drug agegp, m

Drug type
(0O=placebo 2 quantiles of age
) 1 2 Total
0 11 9 20
1 16 12 28
Total 27 21 48

. sort drug agegp ranord, stable
. by drug agegp: generate testset=mod(_n,2)
. sort oldord

. table testset drug agegp, row col scol

2 quantiles of age and Drug type (O=placebo)
1 2 Total
testset 0 1 Total 0 1 Total 0 1 Total
0 5 8 13 4 6 10 9 14 23
1 6 8 14 5 6 11 11 14 25
Total 11 16 27 9 12 21 20 28 48

This time, the training set is slightly smaller than the test set because of odd total
numbers of subjects in sampling strata. We then carry out the model fitting in the
training set and the calculation of inverse hazard ratios in both sets using the same
command sequence as with the completely random training and test sets, producing
mostly similar results, which are not shown. Finally, we estimate the Harrell’s C' indexes
in the test set:
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. generate censind=1-_d if _st==1
. somersd _t invhrl invhr2 invhr3 if _st==1 & testset==1, cenind(censind) tdist

> transf(c)

Somers” D with variable: _t
Transformation: Harrell's c
Valid observations: 25
Degrees of freedom: 24

Symmetric 95% CI for Harrell's c

Jackknife
_t Coef. Std. Err. t P>t [95% Conf. Interval]
invhri .7911392 .0674598 11.73 0.000 .6519091 .9303694
invhr2 .7257384 .049801 14.57 0.000 .6229542 .8285226
invhr3 .5780591 .0972101 5.95 0.000 .3774274 .7786908

The C estimates for the three models
completely random training and test sets.

. lincom invhrl-invhr2

(@Y

invhrl - invhr2

are not dissimilar to the previous ones with
Their pairwise differences are as follows:

_t Coef. t P>|t] [95% Conf. Intervall
(1) .0654008 1.33 0.196 -.0360202 .1668219
. lincom invhril-invhr3
( 1) invhrl - invhr3 = 0
_t Coef. t P>|t] [95% Conf. Intervall
(1) .2130802 2.79 0.010 .0555084 .3706519
. lincom invhr2-invhr3
( 1) invhr2 - invhr3 = 0
_t Coef. Std. Err. t P>t [95% Conf. Interval]
(1) . 1476793 .1080388 1.37 0.184 -.0753017 .3706603

Model 1 (with drug treatment and age) still seems to predict better than model 3
(with age alone). This conclusion is similar if we compare the z-transformed Somers’ D
values, which are not shown.

4 Extensions to non-Cox survival models

Measuring predictive power using Harrell’s C' and Somers’ D is not restricted to Cox
models, but can be applied to any model with a positive or negative ordinal predictor.
The streg command (see [ST] streg) fits a wide range of survival models, each of
which has a wide choice of predictive output variables, which can be computed using
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predict (see [ST] streg postestimation). These output variables may predict survival
times positively or negatively on an ordinal scale and may include median survival times,
mean survival times, median log survival times, mean log survival times, hazards, hazard
ratios, or linear predictors.

We will briefly demonstrate the principles involved by fitting Gompertz models to
the survival dataset that we used in previous sections. The Gompertz model assumes an
exponentially increasing (or decreasing) hazard rate, and the linear predictor is the log
of the zero-time baseline hazard rate, whereas the rate of increase (or decrease) in hazard
rate, after time zero, is a nuisance parameter. Therefore, if the Gompertz model is true,
then so is the Cox model. However, the argument of Fisher (1935) presumably implies
that if the Gompertz model is true, then we can be no less efficient, asymptotically, by
fitting a Gompertz model instead of a Cox model. We will use the predicted median
lifetime as the positive predictor, whose predictive power will be assessed using somersd.

We start by inputting the cancer trial dataset and defining the stratified, semirandom
training and test sets, exactly as we did in section 3.2. We then fit to the training
set Gompertz models 1, 2, and 3, containing, respectively, both drug treatment and
age, drug treatment only, and age only. After fitting each of the three models, we
use predict to compute the predicted median survival time for the whole sample,
deriving the alternative positive lifetime predictors medsurvl, medsurv2, and medsurv3
for models 1, 2, and 3, respectively:

. streg drug age if testset==0, distribution(gompertz) nolog
failure _d: died

analysis time _t: studytime

Gompertz regression -- log relative-hazard form
No. of subjects = 23 Number of obs = 23
No. of failures = 15
Time at risk = 338
LR chi2(2) = 20.62
Log likelihood =  -14.076214 Prob > chi2 = 0.0000
_t | Haz. Ratio  Std. Err. z P>|z| [95% Conf. Interval]
drug .0948331 .0594575 -3.76  0.000 .0277512 .3240694
age 1.172588 .0616365 3.03 0.002 1.057798 1.299836
/gamma .1553139 .0430892 3.60 0.000 .0708605 .2397672

. predict medsurvl
(option median time assumed; predicted median time)
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. streg drug if testset==0, distribution(gompertz) nolog
failure _d: died

analysis time _t: studytime

Gompertz regression -- log relative-hazard form
No. of subjects = 23 Number of obs = 23
No. of failures = 15
Time at risk = 338
LR chi2(1) = 11.02
Log likelihood =  -18.873214 Prob > chi2 = 0.0009
_t | Haz. Ratio  Std. Err. z P>|z| [95% Conf. Interval]
drug .153411 .0877048 -3.28 0.001 .0500295 .4704213
/gamma .1063648 .0361612 2.94 0.003 .0354901 .1772394
. predict medsurv2
(option median time assumed; predicted median time)
. streg age if testset==0, distribution(gompertz) nolog
failure _d: died
analysis time _t: studytime
Gompertz regression -- log relative-hazard form
No. of subjects = 23 Number of obs = 23
No. of failures = 15
Time at risk = 338
LR chi2(1) = 5.56
Log likelihood =  -21.606438 Prob > chi2 = 0.0184
_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Intervall
age 1.117255 .0516156 2.40 0.016 1.020536 1.223142
/gamma .088458 .0341184 2.59 0.010 .0215871 .1553288

. predict medsurv3
(option median time assumed; predicted median time)

Unsurprisingly, the fitted parameters are not dissimilar to the corresponding param-
eters for the Cox regression. We then compute the censorship indicator censind, and
then the Harrell’s C' indexes, for the test set:

(Continued on next page)
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. generate censind=1-_d if _st==1

. somersd _t medsurvl medsurv2 medsurv3 if _st==1 & testset==1, cenind(censind)
> tdist transf(c)

Somers” D with variable: _t

Transformation: Harrell's c

Valid observations: 25

Degrees of freedom: 24

Symmetric 95% CI for Harrell's c

Jackknife
_t Coef. Std. Err. t P>t [95% Conf. Interval]
medsurvl .7911392 .0674598 11.73 0.000 .6519091 .9303694
medsurv2 .7257384 .049801 14.57 0.000 .6229542 .8285226
medsurv3 .5780591 .0972101 5.95 0.000 .3774274 .7786908

We then compare the Harrell’s C' parameters for the alternative median survival
functions, using lincom, just as before:

. lincom medsurvl-medsurv2

( 1) medsurvl - medsurv2 = 0

_t Coef. Std. Err. t P>t [95% Conf. Intervall]

1) .0654008 .0491405 1.33 0.196 -.0360202 .1668219

. lincom medsurvl-medsurv3

( 1) medsurvl - medsurv3 = 0

_t Coef. Std. Err. t P>t [95% Conf. Intervall]

1) .2130802 .0763467 2.79 0.010 .0555084 .3706519

. lincom medsurv2-medsurv3

( 1) medsurv2 - medsurv3 = 0

_t Coef . Std. Err. t P>t [95% Conf. Intervall]

1 .1476793 .1080388 1.37 0.184 -.0753017 .3706603

Unsurprisingly, the conclusions for the Gompertz model are essentially the same as
those for the Cox model.
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5 Further extensions

The use of Harrell’s C' and Somers’ D in test sets to compare the power of models
fit to training sets can be extended further to nonsurvival regression models. In this
case, life is even simpler because we do not have to define a censorship indicator such
as censind for input to somersd. The predictive score is still computed using out-of-
sample prediction and can be either the fitted regression value or the linear predictor
(if one exists in the model).

The methods presented so far have the limitation that the Harrell’s C' and Somers’ D
parameters that we calculated estimate only the ordinal predictive power (in the pop-
ulation from which the training and test sets were sampled) of the precise model that
we fit to the training set. We might prefer to estimate the mean predictive power that
we can expect (in the whole universe of possible training and test sets) using the same
set of alternative models. Bootstrap-like methods for doing this, involving repeated
splitting of the same sample into training and test sets, are described in Harrell et al.
(1982) and Harrell, Lee, and Mark (1996).

Another limitation of the methods presented here, as mentioned at the end of sec-
tion 2, is that they should not usually be used with models with time-dependent co-
variates. This is because the predicted variable input to somersd, which the alternative
predictive scores are competing to predict, is the length of a lifetime rather than an
event of survival or nonsurvival through a minimal time interval, such as a day. A
predictor variable for such a lifetime must therefore stay constant, at least through that
lifetime, which rules out functions of continuously varying time-dependent covariates.

In Stata, survival-time datasets may have multiple observations for each subject
with a lifetime, representing multiple sublifetimes. Discretely varying time-dependent
covariates, which remain constant through a sublifetime, can also be included in such
datasets. somersd can therefore be used when these conditions are met: the model
is a Cox regression, the time-dependent covariates vary only discretely, the multiple
sublifetimes are the times spent by a subject in an age group, and each subject becomes
at risk at the start of each age group to which she or he survives. If the subject
identifier variable is named subid, and the age group for each sublifetime is represented
by a discrete variable agegp, then the user may use somersd with cluster(subid)
funtype (bcluster) wstrata(agegp) to calculate Somers’ D or Harrell’s C' estimates
restricted to comparisons between sublifetimes of different subjects in the same age
group. See Newson (2006b) for details of the options for somersd, and see [ST] stset
for details on survival-time datasets.

If the user has access to sufficient data-storage space, then the age groups can be
defined finely (as subject-years or even subject-days), and the discretely time dependent
covariates might therefore be very nearly continuously time-dependent. Any training
sets or test sets in this case should, of course, be sets of subjects rather than sets of
lifetimes.
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