
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


The Stata Journal (2010)
10, Number 3, pp. 331–338

bacon: An effective way to detect outliers in
multivariate data using Stata (and Mata)

Sylvain Weber
University of Geneva

Department of Economics
Geneva, Switzerland

sylvain.weber@unige.ch

Abstract. Identifying outliers in multivariate data is computationally intensive.
The bacon command, presented in this article, allows one to quickly identify out-
liers, even on large datasets of tens of thousands of observations. bacon constitutes
an attractive alternative to hadimvo, the only other command available in Stata
for the detection of outliers.

Keywords: st0197, bacon, hadimvo, outliers detection, multivariate outliers

1 Introduction

The literature on outliers is abundant, as proved by Barnett and Lewis’s (1994) bibli-
ography of almost 1,000 articles. Despite this considerable research by the statistical
community, knowledge apparently fails to spill over, so proper methods for detecting
and handling outliers are seldom used by practitioners in other fields.

The reason is likely that algorithms implemented for the detection of outliers are
sparse. Moreover, the few algorithms available are so time-consuming that using them
may be discouraging. Until now, hadimvo was the only command in Stata available for
identifying outliers. Anyone who has tried to use hadimvo on large datasets, however,
knows it may take hours or even days to obtain a mere dummy variable indicating which
observations should be considered as outliers.

The new bacon command, presented in this article, provides a more efficient way
to detect outliers in multivariate data. It is named for the blocked adaptive computa-
tionally efficient outlier nominators (BACON) algorithm proposed by Billor, Hadi, and
Velleman (2000). bacon is a simple modification of the methodology proposed by Hadi
(1992, 1994) and implemented in hadimvo, but bacon is much less computationally in-
tensive. As a result, bacon runs many times faster than hadimvo, even though both
commands end up with similar sets of outliers. Identifying multivariate outliers thus
becomes fast and easy in Stata, even with large datasets of tens of thousands of obser-
vations.

c© 2010 StataCorp LP st0197



332 Multivariate outliers detection

2 The BACON algorithm

The BACON algorithm was proposed by Billor, Hadi, and Velleman (2000). The reader
who is interested in details is referred to that original article, because only a brief
presentation is provided here.

In step 1, an initial subset of m outlier-free observations has to be identified out of
a sample of n observations and over p variables. Any of several distance measures could
be used as a criterion, and the Mahalanobis distance seems especially well adapted.
It possesses the desirable property of being scale-invariant—a great advantage when
dealing with variables of different magnitudes or with different units. The Mahalanobis
distance of a p-dimensional vector xi = (xi1, xi2, . . . , xip)T from a group of values with
mean x = (x1, x2, . . . , xp)T and covariance matrix S is defined as

di(x, S) =
√

(xi − x)TS−1(xi − x) , i = 1, 2, . . . , n

The initial basic subset is given by the m observations with the smallest Mahalanobis
distances from the whole sample. The subset size m is given by the product of the
number of variables p and a parameter chosen by the analyst.

Billor, Hadi, and Velleman (2000) also proposed using distances from the medians
for this first step. This second version of the algorithm is also implemented in bacon.
Distances from the medians are not scale-invariant, so they should be used carefully if
the variables analyzed are of different magnitudes.

In step 2, Mahalanobis distances from the basic subset are computed:

di(xb, Sb) =
√

(xi − xb)TS−1
b (xi − xb) , i = 1, 2, . . . , n (1)

In step 3, all observations with a distance smaller than some threshold—a corrected
percentile of a χ2 distribution—are added to the basic subset.

Steps 2 and 3 are iterated until the basic subset no longer changes. Observations
excluded from the final basic subset are nominated as outliers, whereas those inside the
final basic subset are nonoutliers.

The difference in the algorithm proposed by Hadi (1992, 1994) is that observa-
tions are added by blocks in the basic subset instead of observation by observation.
Thus some time is spared through a reduction of the number of iterations. Neverthe-
less, it is important to note that the performance of the algorithm is not altered, as
Billor, Hadi, and Velleman (2000) and section 5 of this article show.

The reduction in the number of iterations is not the only source of efficiency gain.
Another major improvement lies in the way bacon is coded. When hadimvo was im-
plemented, Mata did not exist. Now, though, Mata provides significant speed enhance-
ments to many computationally intensive tasks, like the calculation of Mahalanobis
distances. I therefore coded bacon so that it benefits from Mata’s power.



S. Weber 333

3 Why Mata matters for bacon

The bacon command uses Mata, the matrix programming language available in Stata
since version 9. I explain here how Mata allows bacon to run very fast. This section
draws heavily on Baum (2008), who offers a general overview of Mata’s capabilities.

The BACON algorithm requires creating matrices from data, computing the distances
using (1), and converting the new matrix-containing distances back into the data. Op-
erations that convert Stata variables into matrices (or vice versa) require at least twice
the memory needed for that set of variables, so it stands to reason that using Stata’s
matrices would consume a lot of memory. On the other hand, Mata’s matrices are only
views of, not copies of, data. Hence, using Mata’s virtual matrices instead of Stata’s
matrices in bacon spares memory that can be used to run the computations faster.

Moreover, Stata’s matrices are unsuited for holding large amounts of data, their
maximal size being 11,000 × 11,000. Using Stata, it would not be possible to create
a matrix X = (x1, x2, . . . , xi, . . . , xn)T containing all observations of the database if
the n were larger than 11,000. One would thus have to cut the X matrix into pieces
to compute the distances in (1), which is obviously inconvenient. Mata circumvents
the limitations of Stata’s traditional matrix commands, thus allowing the creation of
virtually infinite matrices (over 2 billion rows and columns). Thanks to Mata, I am
thus able to create a single matrix X containing all observations to whatever n. I then
use the powerful element-by-element operations available to compute the distances.

Mata is indeed efficient for handling element-by-element operations, whereas Stata
ado-file code written in the matrix language with explicit subscript references is slow.
Because the distances in (1) have to be computed for each individual at each iteration
of the algorithm, this feature of Mata provides another important efficiency gain.

4 The bacon command

4.1 Syntax

The syntax of bacon is as follows:

bacon varlist
[
if
] [

in
]
, generate(newvar1

[
newvar2

]
)
[
replace

percentile(#) version(1 | 2) c(#)
]

4.2 Options

generate(newvar1
[
newvar2

]
) is required; it identifies the new variable(s) that will be

created. Whether you specify two variables or one, however, is optional. newvar2, if
specified, will contain the distances from the final basic subset. That is, specifying
generate(out) creates a dummy variable out containing 1 if the observation is
an outlier in the BACON sense and 0 otherwise. Specifying generate(out dist)



334 Multivariate outliers detection

additionally creates a variable dist containing the distances from the final basic
subset.

replace specifies that the variables newvar1 and newvar2 be replaced if they already
exist in the database. This option makes it easier to run bacon several times on
the same data. It should be used cautiously because it might definitively drop some
data.

percentile(#) determines the 1 − # percentile of the chi-squared distribution to be
used as a threshold to separate outliers from nonoutliers. A larger # identifies a
larger proportion of the sample as outliers. The default is percentile(0.15). If #
is specified greater than 1, it is interpreted as a percent; thus percentile(15) is
the same as percentile(0.15).

version(1 | 2) specifies which version of the BACON algorithm must be used to identify
the initial basic subset in multivariate data. version(1), the default, identifies the
initial subset selected based on Mahalanobis distances. version(2) identifies the ini-
tial subset selected based on distances from the medians. In the case of version(2),
varlist must not contain missing values, and you must install the moremata command
before running bacon.

c(#) is the parameter that determines the size of the initial basic subset, which is given
by the product of # and the number of variables in varlist . # must be an integer.
c(4) is used by default as proposed by Billor, Hadi, and Velleman (2000, 285).

4.3 Saved results

bacon saves the following results in r():

Scalars
r(outlier) number of outliers r(iter) number of iterations
r(corr) correction factor r(chi2) percentile of the χ2 distribution

5 bacon versus hadimvo

Let us now compare bacon and hadimvo considering two criteria: i) the set of observa-
tions identified as outliers and ii) the speed. We will see that both commands lead to
similar outcomes (providing some tuning of the cutoff parameters) but that hadimvo is
terribly slower. bacon thus outperforms hadimvo and should be preferred in any case.

First, let us use auto.dta to illustrate the similarity of the results obtained through
both commands:



S. Weber 335

. webuse auto
(1978 Automobile Data)

. hadimvo weight length, generate(outhadi) p(0.05)

(output omitted )

. bacon weight length, generate(outbacon) percentile(0.15)

(output omitted )

. tabulate outhadi outbacon

Hadi
outlier BACON outlier (p=.15)
(p=.05) 0 1 Total

0 72 0 72
1 0 2 2

Total 72 2 74

Both commands have identified the same two observations as outliers. The parame-
ter (in the p() and the percentile() options) was set higher in bacon than in hadimvo.
With a parameter of 5%, bacon would not have identified any observation as an outlier.
It is the role of the researcher to choose the parameter that is best adapted for each
dataset, but the default percentile(0.15) appears to bring sensible outcomes in any
case and could always be used as a first benchmark.

With two-dimensional data, it is helpful to draw a scatterplot such as figure 1 that
allows us to see where outliers are located:

. scatter weight length, ml(outbacon) ms(i) note("0 = nonoutlier, 1 = outlier")

0

00 0

00

000

0
0

0

0

0

0

0
0

0 0
0

00

0

0 0

0

0

0

0

00 0

0

00

0

0

0
0

0

0

0

0

0

0

0

0

0 0

00

0

0

0
00

0

0

0

0

0

0
0

0

0 0

0

0

0
0

0

0

1
1

2,
00

0
3,

00
0

4,
00

0
5,

00
0

W
ei

gh
t (

lb
s.

)

140 160 180 200 220 240
Length (in.)

0 = nonoutlier, 1 = outlier

Figure 1. Scatterplot locating the observations identified as outliers



336 Multivariate outliers detection

To compare the speeds of bacon and hadimvo, let us now use a larger dataset.
Containing about 28,000 observations, nlswork.dta is sufficiently large to illustrate
the point. Suppose we want to identify outliers with respect to the variables ln wage,
age, and tenure. If we did not have bacon, we would type

. webuse nlswork, clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. hadimvo ln_wage age tenure, generate(outhadi) p(0.05)

Beginning number of observations: 28101
Initially accepted: 4

Expand to (n+k+1)/2:

At this point, your screen will remain idle. You might become worried and think
your computer crashed, but in fact hadimvo is simply going to take some long minutes
to run its many iterations. Remember, there are “only” 28,000 observations in this
dataset. If you are patient enough, Stata will at last show you the outcome:

. hadimvo ln_wage age tenure, generate(outhadi) p(0.05)

Beginning number of observations: 28101
Initially accepted: 4

Expand to (n+k+1)/2: 14052
Expand, p = .05: 28081

Outliers remaining: 20

Thanks to bacon, you now have a faster alternative. If you type

. bacon ln_wage age tenure, generate(outbacon) percentile(0.15)

Total number of observations: 28101
BACON outliers (p = 0.15): 29

Non-outliers remaining: 28072

the solution appears in only a few seconds! Again we can check that the set of identified
outliers is pretty much the same in the two cases:

. tabulate outhadi outbacon

Hadi
outlier BACON outlier (p=.15)
(p=.05) 0 1 Total

0 28,072 9 28,081
1 0 20 20

Total 28,072 29 28,101

Given the time hadimvo needs and the similarities between the outcomes, it seems
clear that bacon is preferable.

Because there is no rule for the choice of percentile(), the practitioner might
legitimately be willing to test several values and decide after several trials which set of
observations to nominate as outliers. With hadimvo, such an iterative process is almost
impracticable, unless you are particularly patient and have enough time in front of
you. With bacon, on the other hand, completing the iterative process becomes readily
feasible.



S. Weber 337

bacon has a replace option precisely to give the possibility of running the algorithm
several times without having to add a new variable at each iteration. For the user
wanting to try several percentile() values, replace will prove convenient:

. bacon ln_wage age tenure, generate(outbacon) percentile(0.1)
outbacon already defined
r(110);

. bacon ln_wage age tenure, generate(outbacon) percentile(0.1) replace

Total number of observations: 28101
BACON outliers (p = 0.10): 6

Non-outliers remaining: 28095

. bacon ln_wage age tenure, generate(outbacon) percentile(0.2) replace

Total number of observations: 28101
BACON outliers (p = 0.20): 160

Non-outliers remaining: 27941

6 Conclusion

“The two big questions about outliers are ‘how do you find them?’ and ‘what do you
do about them?’” (Ord 1996). The bacon command presented here provides an answer
to the first of these questions. The answer to the second is beyond the scope of this
article and is left to the consideration of the researcher.

No doubt, bacon renders the process of detecting outliers in multivariate data easier.
Compared with hadimvo, the only other command devoted to this task in Stata, bacon
appears to identify a similar set of observations as outliers. In terms of speed, bacon
proves to be far faster. Hence, there is no apparent reason to use hadimvo instead of
bacon.

Even though the bacon command provides a fast and easy way to identify potential
outliers, a certain amount of judgment is always needed when deciding which cases to
nominate as outliers and what to do with those observations. Most researchers simply
discard outliers, but before you do so, keep in mind that something new and useful can
often be learned by looking at the nominated cases.

7 References
Barnett, V., and T. Lewis. 1994. Outliers in Statistical Data. 3rd ed. Chichester, UK:

Wiley.

Baum, C. F. 2008. Using Mata to work more effectively with Stata: A tutorial. UK

Stata Users Group meeting proceedings.
http://ideas.repec.org/p/boc/usug08/11.html.

Billor, N., A. S. Hadi, and P. F. Velleman. 2000. BACON: Blocked adaptive computa-
tionally efficient outlier nominators. Computational Statistics & Data Analysis 34:
279–298.



338 Multivariate outliers detection

Hadi, A. S. 1992. Identifying multiple outliers in multivariate data. Journal of the Royal
Statistical Society, Series B 54: 761–771.

———. 1994. A modification of a method for the detection of outliers in multivariate
samples. Journal of the Royal Statistical Society, Series B 56: 393–396.

Ord, K. 1996. Review of Outliers in Statistical Data, 3rd ed., by V. Barnett and T.
Lewis. International Journal of Forecasting 12: 175–176.

About the author

Sylvain Weber is working as a teaching assistant in the Department of Economics at the
University of Geneva in Switzerland. He is pursuing a PhD in the field of human capital
depreciation, wage growth over the career, and job stability.


