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Much of the theory of the firm in produet space is not nearly as
well developed a8 the theory of the firm in factor spacc. For oxample,
both general and agricultursl economists have devoted considerable
effort to developing functionul forms represcuiting production processes
in factor space, but the companion effort in product space has been very
limitcd. The purpose of this papcr is to present some product-space
concepts analogous to those commonly used in factor space. Concepts not
specificslly cited in past rescarch, to the author's knowledge, are new.
While several of these concepts have appeared previously in cited
econiomics literatura, the usefulness to agricultural cconomics research
has not previously  been made clear. Moreover, the author is not aware
of any other single reference Lo these ldcas,

In factor space, an eqguation for o production process involving n

inputs and a single output is y = f(xy,...,¥ Y owith an  isoguant

n
representing a fixed constant output as y° = f(x1,...,xn). In praduct
space, the anslogous cguation linking the production of m outputs to the
use of o single input (or bundle of inputs), is x = h(yq,.., Vyg ), and
the product transformation function representing possible combinations
of the ¥ that can be produced from a fixed quantity of a single input
(or input bundle, with the quantities of cach input being held in fixed
proportion to each other) is x° = h{y,,..s, y,). Although a considerabie
effort has been devoted to the development of explict specifications for
production functions (Fuss, MeFadden and  Mundlak, Diewert, 1971),
attempts ut developing explicit product space counterparts have usually
been simplc modifications of produstion functions replacing the X3 with
¥is and substituting for the quantity of x in the product space
modsl, a single input (or input vactor X = {x%,...,x;} For y* in ihe
factor space model. Efforts to derive product space functions by making
assumptions about the specific form of the wunderlying production
functions brealk down if the undcerlying production functions are not

monotonic. Even if the underlying production functions are monotonic,



the competition between products for inputs are normally not adequately
represented with such an approach {Beattic wnd Taylor; Debertin) The
standard presentation of the ncoclassical theory of the firm usually
speeifies isoquants in factor space with 2 diminishing (or possibly
constant) marginal rates of substitution. The standard presentation in
product space specifies product transformation functions with an
increasing (or possibly constant} rate of product transformation. A
simple interchange of outputs and inputs may be inadequate, and the
parameters of and in some gases thoe explicit form of the product space
function (h) neceded to generate product transformation functions
consistent with neoclassical theory will be quite different from the
porameters and form of the factor space production function (f).
Duality in Product Space

In product space, fthe totcl revenue function can play a role
analogous to the cost function in factor spasce. Suppose that products
(a) are either supplemantal or competitive but not cowmplementary with
each other for the available resource bundle x°, and (b) rates of
product transformetion between output pairs are non-decreasing. These
assumptions in product space are analogous to the free disposal and non
increasing marginal rote of substitution assumpiions (McFadden, 19706,
pp. 8+-9) in factor space.

Given the product space funciion x = g(yﬁ,yg,...,ym), the
~corresponding  total revenue function that maximizes total revenue for a
given input bundle x° is r = moax{p'y;e(¥)<x®]. If conditions (a) and (b)
are met, then the revenue function exists, 1is continuous, 1is non-
decreasing in each price in the product price vecteor p, is linearly
homogeneous in all product prices {pi,..a,pm}' (and in all outputis
{y?,...,ym}) and is convex in each oubtput price for a given level of
input x° (Hanoch, p. 292).

The product transformation functions needed for the existence of a

corresponding dual revenue function are not rnecessarily more plausible



in an economic setting than other product transformation functions, but
are  rather a mathematical convenience., A Cobb-Douglas like funtion in
product space will not generate product iransfomation functions
consistent with {(a) and {b), while under certaln parameter assumptions,
a CES like or translog like function in product space will generate
product transformation functions consistent with these assumptions.
Cobb-Dougias Like Product Space

Consider first o Cobb-Douglas like analogy in  product spacc. A
Cobb-Douglas like two product one input model suggested by Just,
Zilberman and Hochman {p. 7T71) from Klein is y1y25 = hx, %1 k%2 x3“3.
¢

How suppese there is buf one input to the production process, and Ax
y1y26. Solving for input x = (1/4)1/% y1i/a1 yaé/“1. The parameters oy
and ¢ would normally bo non-negative, since additional units of Yy or oy,
can  only be produced with additicnal units of the input bundle, «nd
additional units on the inpul bundle produce additiconal units of outlputs
¥4 and Yoo

Rewriting in a slightly more general form, the produci space
function is z = 5y1¢1 yzﬁz. Aowever, wWith positive parameters, in no
case will this cguation generate product trensformatlon curves convex to
the origin, for the Cobb-Douglas like function is quasi-concave for any
set of positive paramcter values. A Cobb-Douglas 1like function in
product space cannot gencrate product transformation funcetions
consistent with neoclassical theory and  the usual constralined
cptimization rovenue maximizotion conditions.

CES Like Functions in Product Space

Just, Zilborman and Hochmon also suggest o possible CES  like
function in product space. A version of this function with cne input and
two outputs is x = Cliyy, "+ AZyZ“”]"1/“. The product transformation
functions generated from the CES like function in product space are
downsloping sc long as A1 and A2 arc positive, irrespective of the value

of the parameter n.



The curvature on the product transformation function is given by
the sign on d2y2/dy12 = —(1+n)(~A1/Az)y23+“ygh(2+n). Since yq, ¥Yp» Aqs
A2 > 0, the sign is dependent on the sign on ={1+n}. In fzctor space,
the values of p that are of interest are those that lie between -1 and
+o,  for these are the values that generate iscquants with @ diminishing
marginal ratc of substitution on the inputl side. If the value of n is
exactly -1, then the product transformation functions will be diagonal
lines of constant slope A1/A2 and products arc perfoct substitutes.

However, the CES like function cuan generate product transformation
functions with an increasing rate of product transformation. The five
CES cases outlined by Henderson and Quandt in factor space inciude only
values of p that lie between -1 wnd +=, [n product space, the values of
n  that lie between -1 and -« generate product transformation funciions
with an increasing rate of product zransformation, since the second
derivative is negative when n < -1. As n =+ -y the product
transformation functions approach right angles, concave Lo the origin.
Smzll negative values for n generate product transformation functions
with a slight bow away from ihe origin. As the valuc of n becomss mors
negative, the cutward bow becomes more extroeme. In the limiting case,
when n o+ o~y Yo 1s totally supplemental toO yq when ¥, exceads  ¥ij
conversaely ¥q is totally supplemental to ¥y, when Yo execeds ¥i- This is
egquivalent to the joint product (beef and hides) case. If n iz a fairly
large negaiive number (perhaps < -5) there ¢xist many combinations of y,
and ¥o where one of the products is Ynearly" supplemental to the other.
As mn » =1, ths products become more nearly competitive throughout the
possible combinations, with the diagonsl product transformation
functions when n = -1 the limiting oase. Regiocns of product
complementarity are not possible with a CES like product transformation
function. Product transformation functions exhibiting a constant or an
inereasing rete of product frunsformation must necessarily intersect the

y axes. Thus, there is no product space counterpart to the asymptotic



isoquants genecrated by o Cobb-Douglas type function in factor space.
Alternative Elasticity of Substitution Measures in Product Space

Diewert (19737 axtended the concept of an elasticity of
substitution (which he termed slasticity of transformation) to multiple
product-multiple input space. Hanoch also suggests that the clasticity
of  substitution in product space can be defined analogously to the
elasticity of substitution in factor space. In the case of product
spuce, revenue is maximized for the fixed input aquantity x°, is
substituted for minimization of costs sl @ fixed level of output y°( p.
292) in factor space. The elasticity of substitution in two product one
input spacs (Debortin) is defined us Egp = © change in the ratio Yolyy #
# change in the RPT or as ¢y, = Ld{y,/yy)/dRPTILRPT/(y,/y4) J.

Another way of looking at the elasticity of substitution in product
space is in terms of its linkage to the rate of product transformation
for CES like two-product space. Suppose that ¥ = yafyi, or the output
ratic. The rate of product transformation for CES like product space
is defined as RPT = Y(1+“}. The elasticity of substitution in product
space is then (dlog Y)/{dleg RPT), Taking the natural log of both sides
yields log BPT = (1+n) log ¥. Solving for log ¥ and logaorithmically
differentiating gives (dlog yi/(dlog RPT) = 1/{1+n}. Assuming that n <-
1, the elasticity of substitution in product space for a C(ES like
function is c¢learly negative, but - 0 as n » -w,

The concept of on elasticity of substitution in product space is of
considerable importance 0 agricultural cconomists, fof it is a2 pure
nupber that indicates the extent to which the agricultural products
whieh can be produced with the same input bundie <¢an be substitﬁted for
pach other, Assuming competitive equilibrium, the inverse product priée
ratio p:_,/p1 can be substituted for the RPT, and the elasticity of
substitution in produet space can be rewritien as @sp =
Ld(ya/yi)/d(pilpg)][(pifpa)/{y1/yE)J. As McFadden (1963) has indicated,

there is no natural generalization of the two input <c¢lasticity of



substitution when whe number of factors 1is greater than 2. The
elasticity of substitution will vary depending on what is assumed to e
held constant. However, the Allen, Morishima (Koizumi), =and Shadow
(MeFadden) elasticities of substitution in factor space all collapse
to the same number when n c¢quals 2. Similarly, there is no natural
generalization of product space elasticity of substitution when the
number of products exceeds fwo.

In the gase of farming, the elasticity of substitution in product
space  1s a pure number that indicates the extent to which the revenue-
maximizing farmer is able to respond to changes in relative product
prices by altering the product mix. An elasticity of substitution in
product space near zero would indicatoe that the farmer is almost totally
unable to respond to changes in product prices by aliering the mix of
products that are produced and is the joint-product case. An clasticlty
of substitution in product space of - « indicates that the farmer nearly
always would be specializing in the production of the commodity with
the favorable relative price. As relative prices change toward the other
commodity, a complete shift would be made to the other commodity.

For most agricultural commodities, the elasticity of substitution
in product space would be expected to lic between 0 and -«, indicating
that o a certain degree, farmers will respond to changes in relative
product prices by aitering the product mix. Commoditiecs which require
very similar inputs would be expected to have very large negative
elasticities of product substitubtion. Examples include Durum wheat
versus Hard Red Spring whzat in North Dakots, or corn versus soybeans in
the corn belt. Converscly, wo dissimilar commodities requiring very
different inputs would be cxpected to have clasticitiecs of substitution
approaching Zero, and s change in relative prices would not
significanily alter the output combination. In m product space, when
m>2, the elasticity of substitution is ey, = (dlog y), - dlog y;li/[dlog

py - dlog pk}. This mwasure is representative of a two output two price



(or TOTP) elasticity of product substitution analogous to the two input
two price (TTES) clasticity of substitution in factor space, with the
quantities of outputs other than 1 and k held constant.

The concept of an elasticity of substitution in product space is
one mechanism for resolving the problems with the joint and multiple
product terminology. The output elasticity of substitution is zero when
outputs must be produced in fixed proportions (joint) with cach other.
The output elasticity of substitution is -« when products are perfect
substitutes for each other.

Other clasticity of product substitution concepts can be defined,
aach of which is analogous to a similar concept in factor space. For
example, the one output one price (or 000P) concept is Allen like and

symmetric, or g =g{dlog yi)/(dlog py ). The one intput one price (or

5pa
ODES) concept in factor space is proportional to the eross price input
demand elasticity evaluated at constant output. Similarly, the 000P
concept is properticnal to the cross output price product supply
elasticity evaluated at a constant level of input usg. An own price 000P
can also be defined, thut is proportional to the own price elasticity of
product supply.

In factor space, the Allen elasticity of substitution is
proportional to the cross price input demand elasticity evaluated at
constant output. Hormally, as the price of the jth inpub increases, more
of the ith input, and less of the jth input would be used in the

production process, as input x. is substituted for input X evaluated

i g
at constant output. Thus, the sign on the Allen eclasticity of
substitution in factor space is normzlly positive If inputs substitute
for each other. Mowaver, in product space, the Allen like elasticity of
substituticon is proportional %to the c¢ross output price product
elasticity of supply evaluated at & constent level of input use.

Normally, as the price of the jth output increases, the amount of the

jth output produced would increase, and the amount of the ith output



produced would decrease, {he opposgite rcelationship from the normal case
in factor space. Thus, while the Allen elasticity of substitution in
factor space would normally have o positive sign, the Allen like
elasticity of substitution would normally have a negative sign in
product space. The negabtive sign is alsc consistent with the sign on the
product elasticity of substitution for the CES like function derived
garlier.

In the n input setting, Hanoch {(p. 290) defines the optimal {(cost
minimizing) share for input x. as a sharc of total variable cosis as

J

. = the price of the ith input, and output

J i

is constant. On the product side, define the revenue maximizing revenue

5. wW.x¥ Seelc) = )
S, waJ/C, where C lwixi, W

share (RE) for output y, treatving the input x® (or input veetor bundle
x%) constant @s R = p.yf/R, wherc p, = the price of the kih output, R =
Zpiyi, i=1,,,m; and y{ = the revenue maximizing quantity of output v
from the fixed input bundle x°. Invoking the revenue counterpart to
Shephard's lemma {Beattie and Taylor, p. 235) gives aR/9p), = yﬁ. The
share of total revenue for optimal gquantity of the kth output can then
be rewritten as Rk = dlog R/dliog P »

In the m output case, the Allen like elasticity of substitution (or
transformation) (Agk) in product spuce between input x; and x, evaluated

J
al a constant input price Wy is dof;ned as A?k= {1/Rk)(E§j), where Eg

j =
dlog yi/dlog Pys the cross price elasticity of supply for output Yy with
respect to  the kth product price. The Allen~like clasticity of
substitution may  be reowritien as A€j= dlog y,/dlog R = A = dlog
yk/dlog R, since :the inverse of the Hessian matrix for the underlying
function h in product space is symmetiric. In this context the Allen like
elasticity of substitution in product space 1s the clasticity of y;
with respect to total revenue R, for a change in anothoer price Py s
holding the'quantity of the input {or input bundle)} constant.

Yet. another way of looking at the Allen like elasticity of

substitution in product space 1s by analogy tc the Alien elasticity of



substitution defined i{n factor space defined in Gterms of the cost
function and its partial derivatives. The Allen elasticity of
substitution between the ith and jth input (Aig) in factor space can be
defincd as in terms of the cost funetion and its partial derivatives,

B;5 = (€01 {)/(CiCy), uhore Cohuy, ... up, ¥¥); C;

P = 3C/dwy; C

.j = BC/BW‘J;
3 e The corresponding revenue function definition in
product space is Ai? = (RRij)/(RiRj)' where R=h{pq,...,p,» X*}; R; -
oR/dw;; R

and Ci = QEC/awiaw

3 3R/3w3; and Rij = aeﬂlawiawj.
The  two outplUt one price {or TOOP) elasticity of product
substitution is analogous to the two ocutput one price Morishima or
TOES elasticity of substitution in factor spzce. The Morishima like
elasticity of substitution in product space (Koigzumi) is €spm = (dlog y;
~ dlog yk)/dlog Py« Like its factor-space counlerpart, the Morishima
like clasticity of substitution in product space is nonsymmetric. Fuss
and McFadden (p. 241) note that in factor space, cach elasticity of
substitution can be evaluated bascd on constant cost, oubtput or marginal
cost. In product spzece, the total revenue equation is analogous to the
cost equation in factor space. Hence, each elasticity of substitution in
factor space may bDe evaluated hased on constant total revenue, marginal
revenue, or level of input bundle usa, Generalization of the various
product elasticity of substitution measures to m outputs involves making
assumpiions with regard to the prices and/or quantities of outputs other
than the ith and jth output. A shadow like elasticity of substitution in
product space is, 1like its factor space counterpart (MeFadden), a long
run concept, but in this c¢ase, 1l quantities of outpuils othwer than i
and j are allowed to vary.
Transliog Like Functions in Product Space

The sccond ordcer Taylor's series expansion of log y in log x or

i’
translog production function (Christensen Jorgenson and Lau, 1971,1973),
has received widespread use as a basis for cost-share cquations used in

the empirical estimation of clasticities of substitution in factor



spacc. The slope and shape of the isoguants for the translog production
function arc dependent on both the estimated parameters of the function
and the units in which the inputs are measured. Given the {wo input
translog production function
y = Ak, x,%2 o¥12 108%(108%p, Yy (Logxy)® + Ypp(108X2)* e important
parameter in determining the convexlty of the iscquants is Yla‘ The
parameter Yqo is closely linked to the elasticity of substitution in
factor space. A two output translog function in product spacc can be
written as
x = Ay,P1yBa oP1p losYqlogy, + 0q4(logy)® + 0550008Y5)% 1y tue
product space; the paramcter 895 would normally be expected fto be
negative, just as in faestor space, o would bo expecied to be normally
positive. The indirect two output translog revenue function that
represents  the makimum amount of revehuc obtainable for & specific
guantisy of input 2%, allowing the size of Lhe input bundle to vary is
log R¥ = logD + &;logpy +6,logp, +8yy (log p1)2 + 85, {log p22)2
+3,o1ogpylogp, +ny,logby logx + n,, logpy logx +n, logk + nxx(logx)2
Beattie and Taylor {p. 235-06) derive the revenue counterpart to

Shephards lemma. They show that BR*/Bpj = y?. Thus, 1if the firm's
revenue function is known, systems of product supply equations can be
derived by differentiating the revenue function and performing the
indicated substitution. Fuctor prices are {reated as {ixed constants in
such an approach. Differentiesting with respecet to the jth product price,
say Py, yields dlogR*/dlogp1 =8y 25”10gp1 o8 logp, * Ny 1OBX.
Economic theory imposes a number of restirictions on the values that the
paraméters of such a function in the m ouipult case. These restrictions
are similar to those imposed on the parameters of cost share equations
in factor spuce. First, total revenue from the sale of m different
preducis is R = iHi i=1,.c0em. Thus, if the revenue from m—1 of the
revenue share equetions is known, the remaining revenue share is Known

with certainty, and one of the revenue share ecquations is redundant.
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Young's theorem holds in product just as it does in factor space. Thus,
6ij = sji’ which is the same as the symmetry restriction in factor
space. Any revenue function should be homogeneous of degrce one in  =all
product prices. This implies that }§, = 1, and {aij = 0. In product
space, Uhe assumption corresponding to constant returns to scale in
factor space 1s that there is a constant increase in revenue associated
with an increase in the size of the input bundle. This implilies dR%*/dx =
Gy = 1, zéix =0 for i = 1,...,n; and §,, = 0. These assumptions are as
plausible in product space as the analogous assumptions are with regard
to indirect cost functions in factor space.

Brown and Christensen derive the constant output Allen elasticities

of  substitution in factor space from Gij = (eij Sisj)/sisj’ where
51*53 = the cost shares attributed te factors i and j, respectively.
Bij = the restricted regression cosfficlent from the logrilogrj term in

the cost share equation. The analogous formula for deriving the Allen
like elasticities of substitution in product space is 9i5p = (613 +

Riﬂj)/R;R'- As indicated ecarlier, the parameter &8.. will usually be

ij
negative, and the Allen like elasticity of substitution in product
space {Uijp) for most commodities is negative.
Coneluding Comments
Many possibilities exist for empirical analysis linked to
agriculture based on the models developed in this paper. One of the
simplest approaches would be tec estimate estimate revenue share
equations for major commodities in U.S3. agriculture for selccted time
pericds (following ‘the approach used by Acun for éstimating cosi share
equations for agricultural inputs in factor space) and derive various
elasticity of substitution measures in product space. These revenue
share paramcter estimates would be used to estimate product elasticity
of substitution measures for the various major agricultural commodities
in the United States. Such an empirical analysis could stress the

implications for current ag policy in terms of determining how farmers

1



alter their product mix over time in the face of changing government
price support programs such as those contained in the 1985 farm bill.

Another possibility Is to estimate changes in the product space
elasticity of substituiion measures over time. Some thirty years ago
Heady and others discusscd the impacts of specialized versus flexible
faciliities using a product space model. One way of looking «t a facility
specialized for the production of =z specific commodity is that it
represents product space in which the elasticity of substitution is necar
zero. A flexible Tacility is represented by & product space elasticity
of substiitution that is strongly negative,

it is also possible to think in terms of an analogy to a Hicks'?
like technological c¢hange 1in product space. In product space,
tcehnological change occurring over time may faveor the production of one
commodity at the expense of another commodity. If, as the state of
technology improves over time, and no shift is obscrved in  the

proportions of the y, to yj over time, then the technology 1s regarded

i
as Hicks like neutral in product space. Technology thai over fLime shifts
the outpult cxpsnsion path toward the production of the j th commodity,
then the technolegy is regarded as Hicks like Tavoring for product yj;
If technological change causes the outpub expansion path to shift away
from the production of commodity Yy then the technological change could
be referrcd to as v inhibiting technological changse. As technological
change  occurs for a specific agricultural commodity, presumably that
commodity 1is favored reletive to others in a product space model. For
example, has technological change over the past thirty years tended to

2

Favor the production of soyheans relqtfive Lo other grains? Such an
approach might be useful in assessing the cconomic impacts of genetic

improvements in specific crops or ¢lasses of livestock.
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