

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. HOREVSION OFGTHE HEH HORCD HEALQBUGS OF IHE GENUS RHR ZOECUS CHOROPTERA

START

Y , •••

R
 630
 Miss A REVISION OF THE NEW WORLD

 MEALYBUGS OF THE GENUS RHIZOECUS

 MEALYBUGS OF THE GENUS RHIZOECUS
 (HOMOPTERA: PSEUDOCOCCIDAE)

Technical Bulletin No. 1522

Agricultural Research Service
UNITED STATES DEPARTMENT OF AGRICULTURE

ACKNOWLEDGMENTS

The author is greatly indebted to the following individuals and institutions for the loan of type and other specimens: George W. Dekle, Bureau of Entomology, Division of Plant Industry, Florida Department of Agriculture, Gainesville; Roberto H. Gonzalez, Plant Protection Service, Plant Production and Protection Division, FAO, Rome; Michael Kosztarab, Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg; Raúl MacGregor, Instituto de Biologia, Ciudad Universitaria, Mexico, D.F.; Sueo Nakahara, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Beltsville, Md.; Robert O. Schuster, University of California, Davis; Hamlin H. Tippins, Division of Entomology, Experiment Station, Experiment, Ga.; Richard F. Wilkey, Arthropod-Side Mounts, Bluffton, Ind.; and Douglas \tilde{J}. Williams, Commonwealth Institute of Entomology, British Museum (Natural History), London.

Special thanks are extended to Douglass R. Miller and Louise M. Russell, Systematic Entomology Laboratory, A.gricultural Research Service, U.S. Department of Agriculture, Beltsville, Md., for their cooperation and assistance during these studies.

CONTENTS
Economic importance Page IHistory
2
Host plant relationships 2
Termin
Termin Terminology and distinguishing characters 3
Genus Rhizoecus Künckel d'Herculais 6
Key to the New World species of Rhizoecus 6
Descriptions of species 10
Summary 54
Literature cited 54
Index to host plants 55
Index to mealybugs 58

A REVISION OF THE NEW WORLD MEALYBUGS OF THE GENUS RHIZOECUS (HOMOPTERA: PSEUDOCOCCIDAE)

By Edson J. Hambleton, cooperating scientist, Systcmatic Entomology Laborctovy, Northeastem Region, Agricultural Research Service.

Rhizoecus Künckel d'Herculais is a cosmopolitan genus occurring most commonly in tropical, subtropical, and warm temperate areas. Distribution records for the Americas indicate the presence of the Rhizoecus species from southern Canada southward into the West Indies and South America. By far the largest number of species is reported from Mexico, California, and Florida, where extensive collecting has been done in recent years. Elsewhere in the United States no more than 5 species are known to occur in any of 20 additional States.

This study began when I was attempting to make a key to the Rhizoecus species of Florida. As a result of this study it was apparent that a reexamination of all North American species would be desirable. Because of a considerable amount of undescribed material, it was thought that a revision of the genus for the Western Hemisphere would be useful.

Descriptions and illustrations have been prepared for 52 species, of which 12 are described as new. Certain morphological characters generally omitted by workers greatly facilitate the separation of species and are included here. This bulletin gives a key to the Amarican species of Rhizoechs and records their host plants and distribution. The study is based entirely on adult females.

In the illustrations certain body structures are portrayed in detail. The dorsal and ventral halves of the body are not shown, because large outline illustrations of Rhizoocus lack sufficient detail to be practical in identifying species.

All illustrations were prepared with the use of an ocular grid and squared paper. The antennal segments, anal ring, and claws are of approximately the same magnification for all species, each about $\times 1,200$; the cephalic plate and rostrum, each about $\times 600$; the circuli, cerores, eyes, tubular ducts, and other structures are not always drawn to scale.

Types are located in collections of the following institutions hereafter abbreviated as shown: British Museum (Natural History), London (BM); California Academy of Sciences, Stanford (CAS) ; California State Department of Agriculture, Sacramento (CDA) ; Florida State Collection of Arthropods, Gainesville (FSCA) ; Instituto de Biorogia, Ciudad Universitaria, Mexico (IBM); University of California at Davis (UCD); University of Georgia, Experiment (UG); National Collection of Coccoidea, U.S. National Museum, Washington, D.C. (USNM); and Virginia Polytechnic Institute, Blacksburg (VPI).

ECONOMIC IMPORTANCE

Mealybugs have long been important as pests of farm crops and greenhouse, nursery, and ornamental plants. Their destructive role in American agriculture, particularly in Cali-
fornia, has been well summarized by McKenzie (1967).1
${ }^{1}$ The year in italic after an authors name indicates
the reference in Literature Cited, p. 54.

The soil-inhabiting mealybugs that feed on the roots of plants, although less well known than those feeding above ground, damage a wide variety of commercially grown, subtropical, ornamental plants. Consequently, much effort has been made in California and Florida to determine the presence of subterranean mealybugs, their host plants, and the extent of injury they cause. Several species belong to the genus Rhizoecus. In the United States, four of the six most injurious species of $R h i$ zoecus are of foreign origin. They are falcifer Künckel d'Ferculais, kondonis Kuwana, americanus (Hambleton), and simplex (Hambleton). The remaining two, floridanus Fambleton and pritchardi McKenzie, are considered endemic to Florida and California, respectively.

Of the 15 species now recognized in California, falcifer and kondonis are the best known. The former is a widely distributed pest capable of inflicting serious damage to many kinds of garden, nursery, and greenhouse plants. Its distribution in the United States is probably more widespread than records indicate. R. kondonis also has demonstrated its potential as a pest of alfalfa,
strawberries, and prunes in California, the only State in which it has been recorded.

The three most important species of $R h i$ zoecus in Florida are americanus, foridanus, and simplex, all widely distributed and economically important on a variety of nursery and greenhouse ornamentals. R. pritchardi, originally known only from California, is present in Florida, in five additional States, and in Canada. It is chiefly a greenhouse pest causing serious injury to African violets.

One of the important factors affecting coffee production in several countries of Central America and South America is directly related to the feeding of Rhizoecus and related mealybugs. Several species also have been reported attacking other important crops, such as cacao, citrus, cotton, and bananas.

Problems on the biology and control of mealybugs are complex and warrant further: investigation. Although some control of $R h i$ zoccus species has resulted from applying insecticides in sprays or drenching, the nature of the mealybug habitat and lack of pertinent data on their bionomics undoubtedly have limited progress in developing effective control procedures.

HISTORY

Cockerell (1894) described the first United States hypogeic mealybug of the tribe Rhizoecini and named it Ripersia maritima. J. D. Tinsley (in Cockerell, 1800) transferred this species to Ripersiella Tinsley, and Cockerell (1901) described a second species, Ripersiella leucosoma. For the next 45 years no additional Rhizoecini taxa were reported in North America except two introduced species, Rhizoecuts fulcifer Künckel d'Kerculais from Europe and R. hondonis Kuwana from Japan. I (1046a) published the first comprehensive paper on mealybugs of the Rhizoccus complex of genera. This article treated 22 New World species and 12 from Africa, Asia, and Europe that were included in 3 genera, Coccidella

Hambleton, Ripersiolla, and Rhizoecus. Ferris (19.53) synonymized Coccidella with Rhizoecus, transferred 12 North American species from Coccidella and Ripersiella to Rhizoecus, and described 2 new species from California. Mekenzie (1960-67) in a series of papers synonymized one of Ferris' species, and he described 13 new species from Arizona, California, and Mexico, 3 of which are here considered synonyms. Miller and McKenzie (19\%1) added a single new species from Mexico. Hambleton (1973) described a new species from Florida and Georgia, transferred two species from Ripersiella to Rhizoecus, and (1074) synonymized Ripersiella with Rhizoecus.

HOST PLANT RELATIONSHIPS

The American species of Rhizoccus display remarkable diversity in host plant selection. They are reported here from 62 plant fami-
lies. Records indicate a single host for a few species, but most injurious species, such as americomus, foridanus, and simplex, are
polyphagous. Food plant and distribution information on pest species has been greatly expanded owing to their frequent collection in nurseries and greenhouses. One can assume that nursery and greenhouse conditions favor the survival of Rhizoecus species on many unrelated plants. A similar pattern is indicated in open country in Virginia, where I have collected distinctus (Hambleton) on the roots of 10 different plants representing 6 families within a radius of 50 yards. Host acceptance by falcifer and kondonis in California is similar in diversity to that exhibited by the species just mentioned. The family Gramineae, with 19 Rhizoecu!s species, is the most commonly infested host family. A few other ac-
ceptable families of economic importance include the Gesneriaceae, Leguminoseae, Rosaceae. Rubiaceae, Rutaceae, and Sterculiaceae.

Our limited knowledge of this sechuded group of subterranean mealybugs is ample proof of their ability to adapt to raried ecological conditions. Species showing no particular host preference would seem to indicate that the most critical limiting factors in their establinment would be envirommental and not host selectivity. Successful dissemination resulting from the movement of living plant material, soil, and plant debris doubtless will lead to a more widespread distribution of these insects.

TERMINOLOGY AND DISTINGUISHING CHARACTERS

Most of the terminology in this bulletin is the same as in my (1046a) previous publication and some conforms to common usage. For clarity and uniformity, it is hoped that other workers will adopt the terminology used here. Improper use of the terms "pore" and "duct" should be corrected. Dimensions of the body are given in millimeters. All other measurements are in microns.

Body Shape and Size.-Most adult females of Rhizocous are elongate oval, though some are broad and others are narrow. Older specimens tend to become more rotund, whereas newly mature adults have not become distended and appear small when mounted. In the descriptions here the maximum and minimum lengths and widths of a species represent the ranges for the specimens at hand. Wide variation in dimensions may exist within a species between young adult females and fully mature ones with distended bodies.

Antennae.-Considerable variation exists in the size and shape of the five- or six-segmented geniculate antennae and in the individual segments. Differences in the antemnae can often be used to characterize species. In the shorter type most segments are wider than long in contrast to the reverse condition in the longer type. Antennal measurements were made along the longer margin of each segment and the divisions number I to VI.

The antennae are clothed with numerous elongate setae. Also present are enlarged sensory setae whose size and shape are excellent characters for differentiating species. All fivesegmented antemae have five sensory setae on segment V, one elongate, spinelike sensory seta, and four falcate sensory setae; the smallest one is borne proximally. In the sixsegmented antennae the terminal segment has one spinelike sensory seta and three larger falcate sensory setae; a smaller fifth sensory seta is bome distally near the margin on segment V. The larger falcate setae may be long and slender, short and stont, tapered or clavate, and the other setae display similar differences in shape.

The interantennal space varies considerably and generally is not a satisfactory character for differentiating species.

Eyes. The presence or absence of eyes is an important specific character. When present, these simple structures may be obscured by the antennae or hidden between folds of the integument, or they may be difficult to observe because of their small size and weak pigmentation. The eyes vary greatly in size and shape. They are weakly protuberant to comparatively prominent and hemispherical to globular. Most eyes are round or slightly oval, but some are much longer than wide.

Rostrum.-Only the two distal segments of this conical structure are referred to in the
text. The location of its 20 setae occupy about the same position in each species. Measurements of the length and width of the rostrum and the length of its loop are useful diagnostic characters. Its size and shape are fairly constant within a species. The extension of the rostral loop may be short, or it may reach to or slightly beyond the attachment of the second pair of legs. However. in newly matured females the rostrum is more robust and rounded, and the loop appears to be longer than in older adult females.

Cephalic Plate.-This is an irregularly shaped, sclerotized plate situated on the medioventral surface of the head anterior to the mouth parts. It is taxonomically useful. The plate sometimes has small vacuoles near its center and normally possesses several body setae on its periphery. It is present in most species. Intraspecific and interspecific variation occurs in the structure and the degree of sclerotization of this plate. Differences in staining techniques or condition of specimens may render the plate difficult to observe.

Dorsal Ostioles.-These structures are not too helpful in separating species, and their presence sometimes is questionable. They may be heavily sclerotized, conspicuous, and surrounded by numerous pores and body setae or weakly sclerotized and with very thin rims.

Legs.-The size, shape, and nature of the claws and claw digitules are the most useful leg characters for separating the Rhizoecus species. The claws vary greatly in size and shape. The claw digitules are either long or short. The long ones extend to or slightly beyond the claws and usually are dilated apically; the short ones vary in length and thickness but seldom reach beyond the midlength of the claws. Leg spines have proven of slight value in separating species, and they are omitted from descriptions.

Circulus.-The size, shape, and structure variation of the circuli are reliable differentiating characters in over 50 percent of the species. Normally only a single circulus is present midventrally on the fourth abdominal segment, but an additional smaller circulus occasionally is found on the third abdominal segment; specimens of a few species seem to
have two circuli consistently. In some species. however, the number of these structures is variable. In R. campestris Hambleton three to six circuli have been observed on the second to seventh abdominal segments. The circuli display much variation in size, shape, and structure. They may be conical, truncate, or depressed with narrow or widely sclerotized rims, and the distal surface may be reticulate, faveolate, or undifferentiated.

Anal Lobes.-The anal lobes may be well developed, slightly protuberant, or absent. A group of three or more elongate setae. several auxiliary setae, and trilocular pores laterad of the anal ring near the body margin define each lobe area. This area, or the lobe itself, may be sclerotized. Individuals may appear to lack sclerotization, even when present, owing to unsatisfactory mounting procedures. The size and length of the anal-lobe setae compared to those of the anal-ring setae are good characters for assisting in species separation. The number of elongate lobe setae is also useful.

Anal Ring.-The cellular structure of the anal ring is invaluable in separating species, though heretofore little emphasis has been placed on this structure. The nature and disposition of the cells-their size, form, number, and arrangement-vary little within a species. In some species the cells of the outer part of the ring possess spicules, either one to a cell as in falcifer, or three to five as in distinctus. The cells of the inner part of the ring are usually larger and more irregular in outline than the outer ones. Also characteristic of the genus is the innermost circle of hemispherical cells that make up part of the darkened area. The comparative differences in length and thickness of the anal-ring setae with those of the anal-lobe setae are often helpful in species diagnosis.

Cerores.-The cerores are of maximum value in distinguishing species. They are the most conspicuous wax-secreting structures in the Rhizoecini and differ from the multilocular disk pores, the triangular and the medioventral pores. Morphologically the ceroris is not a pore because it is composed of either two or three ducts. The true pore in the Rhizoecini
generally consists of three or more loculi and does not possess visible ducts.

Bitubular or tritubular cerores are among the more important structures that characterize Rhizoecus. Their size, shape, and distribution are excellent characters for distinguishing species. The bitubular ceroris occurs in only 10 of the 52 species in the Western Hemisphere. De Lotto (19.57) and McKenzie (1907) used the term "unitubular pore" for what is actually a bitubular ceroris in geniculatus James from Kenya and disjunctus McKenzie from California. The elongate ducts in the bitubular cerores of these species appear to be fused. The bitubular cerores may appear as elongate objects resembling spicules with about one-half of their individual ducts projecting above the derm as in disjunctus, or elongate and stout with wide ducts veakly protruding above the derm as in maricams (Hambleton) and solani (Hambleton), and with small, elongate, strongly protruding ducts as in kondonis and menkei McKenzie.

In the tritubular cerores the three ducts are placed together in a whorl with their distal extremities divaricated. These cerores may vary in size and shape interspecifically and intraspecifically. The walls of their individual ducts may be nearly parallel or taper gradually toward their apices. Several species have two or three sizes of tritubular ceroreslarge, medium, and small. Where more than one size is present, the smaller one usualiy is confined to the venter and the larger to the dorsum. In ornatus (Hambleton) the larger cerores have short, stout ducts, which are barely longer than wide.

The cerores occur dorsally and ventrally on all areas of the body, but are more numerous on the abdomen.

Multilocular Disk Pores.-The disk pores are circular and possess to to 12 loculi. They are important taxonomic characters. These pores are present in most species and normally occur on the venter in the area of the vulva. When they are abundant, they may be restricted to the venter, or they may be widely distributed over the derm.

Tubuiar Ducts.-The size, number, and distribution of these ducts are important aids in
separating species. These structures when viewed from above appear as circular objects on the derm. In profile they are readily discernible and should not be mistaken for pores. Tubular ducts vary in size. They are narrow and elongate or short and stout, and they may be heavily sclezotized. No distinction is made between the oral-rim and oral-collar tubular ducts because the thickness of their rims varies considerably. Most species, however, appear to have the oral-rim type of duct. In some species the tubular ducts are common and widely disiributed, in others they are scarce or absent.

Mushrogin Bodies.-Under high magnification these mushroom-shaped structures rescmble tubular ducts, but their exact nature has not been determined. In slide mounted specimens they assume various positions, some of which are shown in figure 32 . They measure less than onc-half the diameter of a trilocular pore.

Trilocular Pores.-These pores are present in all species of Rhizoccus and are among the smallest and most common pores in the genus. Their relative abundance is of some taxonomic significance. The trilocular pore is subtriangular to circular and varies in size, each having three loculi. These pores oceur over the entire dorm.

Merlioventral Pores.-These pores are larger and more elongate than the trilocular pores. They appear conical and vary considerably in size. They occur in clusters of 4 to 23 , each near the medioventral line of the sixth and seventh abdominal segments. Three species are known to possess these pores.

Circular Pores.-Appearing as small circles without depth. these pores are approximately one-half the diameter of a trilocular pore. They oceur dorsally on the midabdominal segments in only three species-mritchardi, subcumeralis Hambleton, and panciporus Hambleton.

Body Setac.-In most species of Rhizocus the body setae are wather uniformiy distributed. but they may be most abundant dorsally om the head and along the body margins. Thev are usually short and slender but may vare in lengeth and thickness. In a few species the setae aro grool differentiating characters.

genus RHIzoecus Künckel D'HERCULAIS

Rhizoeous Künckel d'Herculais, 1878: 163; Hambleton, 1946a: 50; Ferris, 1953: 426; Williams, 1962: 41; De Lotto, 1964: 381; McKenzie, 1967: 370; Hambleton, 1973: 63; 1974: 147.
Morrisonella Hambleton, 194Ga: 16.
Coccidella Hambleton, 1946b; 177.
Ripersiell Tinsley, in Cockerell, 1890: 278; Cockerell, 1901: 165; Morrison and Morrison, 1922: 54; Hambleton, 1946a: 59; De Lotto, 1964: 382; Williams and de Boer, 1978: 241; Hambleton, 1974: 147. Type-species: Rhizocous falcifer Künckel d'Herculais.

I share Ferris' view on the generic structure of Rhizoecus, but I am of the opinion that the status of the genus can be strengthened by increased knowledge of characters that have not been adequately utilized in the past. Of major importance are the bitubular and tritubular cerores, the cellular structure of the anal ring, and the sensory setae of the antemnae. Also, the circuli, the claws, and tubular ducts will provide additional means of characterizing the genus and will assist in the recognition of its species.

The composition of Rhizoccus is here considered identical to my (1973) characterization. An effort was made to weigh the value of morphological details of all taxa in arriving at a practical and useful classification.

Approximately 85 percent of the described world Rhizoecini species are placed in Rhizoe-
cus. The remaining 7 genera, of which 4 are monotypic, include 17 species. Although our present knowledge of the tribe is inadequate and further change in its status is inevitable, it is hoped that a better understanding of its known genera will be forthcoming.

The genus may be characterized as follows: Antennae five- or six-segmented, geniculate, sensory setae of terminal segments well developed. Anal ring usually distinct, with six setae, its cellular structure diverse. Anal-lobe arn usually undeveloped, with or without sclerotization and with three or more elongate setae. Derm with bitubular or tritubular cerores of one or more sizes, with trilocular pores, with or without multilocular disk pores and tubular ducts. Circuli numbering from none to six, of variable size and shape. Head often with an irregularly shaped ventral cephalic plate anterior to the mouth parts. Eyes present or absent, varying in size and shape. Legs generally spinose, claws of varying lengths, digitules short and setose, or elongate, extending beyond tip of claws and dilated apically. Borly setae of variable lengths, mostly short. Dorsal ostioles usually distinct, strongly sclerotized, or inconspicuous and possibly absent. Body shape oval elongate to broadly ovate.

KEY TO THE NEW WORLD SPECIES OF RHIZOECUS

1. Multilocular disk pores present
2. Circuli present
3. With two circuli; anal lobes rounded, protruding, each with 8 to 10 elongate setar; tubular ducts of normal size; body setae conspicuous Rondonis Kuwana
With three to six circuli; anal lobes not as above, each with three to four clongate setae and several shorter body setare; tubular ducts stout, litrger than trilocular pores; body setac inconspicuous campestris Hambleton
4. Digitules short, sctose, not extending beyond middle of claws monki MeKenzie Digitules long, slender, extending to tip of claws
5. Eyes absent; normally with two ciretli, but occasionatly with one
6. Bitubular cerores with their ducts appearing to be fused, projecting at least 5!-6u above derm
disjumctus MeKenzie
Bitubular cerores with their ducts separated. projecting less than sul above derm
7. Circulus large, about same widt as anal ring: multilocular disk pores oceasionally present on head; rostral loop reaching to or slightly beyond insertion of second pair of legs thericomus (Hambleton)
Circulus small, about one-half width of anal ring: matilocular disk pores confined to abdomen; rostral loop not reaching insertion of second pair of legs

8. Falcate sensory setae rather stont. weakly clavate, claw digitules apparently not dilated apically totonicapants (Hambleton)
Falcate sensory setae more slender, tapering; claw digitules diated apically gracilis Mekenzie
9. Antemae five-sesmented: eves absent 1.4
Antennae six-segmented; eyes present 15
10. Anal lobes unsclerotized, each with five to seven elongate setae; eerores predominately lage; body setae mostly lous; maltilocular disk pores numerous in vultar area

fateifer Kunckel dhereulais

Anal lobes selerotized, each with three elongate setae and several shorter body setae; cerores predominately small; body setac short, rather sparss; multilocular disk pores scattered in valvar area nitidelis Hambleton
15. Bitubular cerores present bohort i MeKenaic
Tritubular cerores present 10
$\begin{array}{ll}\text { 16. Tritubular cerores present } & 17 \\ \text { Tritubniny ceres of large size only } & 20\end{array}$
Tritubuhar cerores of two or three sizes20

17. Multiloculax disk pores searce, restricted to vulvar area; tubular ducts
present
subchmeralis, new shathecular disk pores relatively abundant, widely distributed dorsally and ventrally; tubular ducts absent
18. With 21-25 tritubular cerores; anal-ring setae, stout, acute, averaging about 354 long; length of longest anal-lobe seta about equal to width of anal ring; multilocular disk pores mostly with T loculi spimpes (Hambleton)
With 46-74 tritubular cerores; anab-ring setac slender, averaging about 60! long; length of longest lobe seta considerably grenter than width of anal ring; multilocular disk pores mostly with 10 loculi

19. Tritububar cerores of three sizes

Tritubular cerores of two sizes
21. Tubular ducts present; anal lobes usually distinctly sclerotized; 10-12 small tritubular cerores present ventrally on abdominal segments \vee VIIT; leas about 366 c long, stout
Tubular ducts absent; anal lobes weakly selerotized; 11-36 small tritubular cerores present ventrally on abdominal segments IV.VVIII; legs about 315 long, of medium size maytuns (Hambleton)
$\begin{array}{ll}\text { 22. Venter of abdominal segments VI and VII with medioventral pores } & 23 \\ \text { Venter of abdominal segments without medioventral pores }\end{array}$
Venter of abdominal secments without medioventral pores
Anal lobes unsclerotized; 21-31 small tritubular cerores present ventrally
23. Anal lobes unsclerotized; 21-31 small tritubular cerores present ventrally \quad pocnsis (Hambeton)

Anal lobes sclerotized; four small tritubular corores present ventrally
24
24. Multilocular disk pores with 6 or 7 loculi occurring ventrally, $18-25$ present on abdominal segments VII-IX; eyes viewed in profile distinctly plobular, constricted at their bases; falcate sensory setae long, moderately stout, tapering . . globoculus (Hambleton)
Multilocular disk pores with $10-12$ loculi occurring dorsally and ventrally, $3 \overline{5}-40$ present on abdominal segments VII-IX; eyes viewed in profile hemispherical, not constricted at their bases; falcate sensory setae comparatively short, stout. throbromuc (Hambleton)
25. Anal-lobe area sclerotized 26
Anal-lobe area unsclerotized 30
26. Tubular ducts absent $\quad 27$
Tubular ducts present - . 28
27. Ventrally 10 medium-sized tritubular cerores present on abdominal segments $V-V I I I$; apmoximately 60 multilocular disk pores occurring ventrally on abdominal segments VII-IX ncostagei Miller and McKenzie
Ventrally $4 t$ medium-sized tritubular cerores present on abdominal segments IV-VIII; approximately 100 multilocular disk pores oceurring ventrally and some dorsally on abdominal segments III-EX stangei McKenzie
28. Antennae normally about $165!$ long, apical segment not twice as long as
vide; 11 large tritubular ceroces present dorsally (hats (Hambleton)
Antennac normally at least 200 n long, apical segment about twice as long as wide; 20 or more large tritubular cerores present dorsally
29. Multifocular disk pores searee, a few present near vulva; circular pores present on segments V and V
patiporms, new species
Multilocular disk pares abundant, present dorsally and ventrally; circular pores absent graminis (Hambleton)

30. Multilocular disk pores present on both surfaces
31
Multiocular disk pores present on venter only 32
31. Body length less than 1.00 mm ; xostral loop extending beyond insertion of second pair of legs; derm with less than 20 tritubular cerores
neomericomus McKenzie
Body length at least 1.36 mm ; rostral loop not reaching insertion of second pair of legs; derm with more than 30 tritubular ceroves
caladii Green
32. Tubular ducts absent; circular pores present dorsally across abdominal segments IV-VI; 11-21 multilocular disk pores present ventrally

> .pritchardi McKenzie

Tubular ducts present in small numbers; circular pores absent; $5-10$ multilocular disk pores present ventrally --

33. Falcate sensory setoe moderately stout, not tapering; roshrum about 98
long; cells in outer part of anal ring ovate elongate; larger cerores not
surrounded by body setae
nemoralis (Hambleton)

Falcate sensory setac clongate, tapering; rostrum about 75μ long; cells in
outer part of anal ring mostly sinuate; larger cerores surrounded by one
to four body setae
.cyperalis (Hambleton)
34. Normally with two cireuli 35
Nommally with one circulus, rarely with an additional small one 36
35. Tritubutar terores of one size; apical segment of antemac blunt, with slender, weakly clavate falcate setac; circulus not reticulose at orifice; claws stout
bicirctus MeKenzie

Tritubular cerores of two sizes; apical segment of antemae not blunt, with stout falcate setae; circulus with orifice reticulose; claws clongate
ornatas (Hambleton)

[^0]37. Body small, maximum body length 1.53 mm ; anal lobes sclorotized; rostrum $51 \mu-57 \mathrm{t}$ long
Body large, minimum body length 1.58 mm ; anal lobes unscierotized; rostrum $72 \mathrm{t}-95 \mathrm{p}$ long
38. Anal ring about 60 l wide, its setae about 87 f long, outer part with $25-30$ large, angular, irregularly quadrate, mostly isolated cells; orifice of circulus narrow, less than one-half its basal width . firrifamus Hambleton
Anal ring about 45μ wide, its setae about $\overline{5} / 1 \mathrm{l}$ long, outer part with $19-20$ small, elongate, oval cells almost touching end to end; orifice of circulus wide, more than one-half its basal width tropicalis, new species
39. Tritubular cerores abundant, $125-130$ present; apiced segment of antennae twice as long as wide; sensory seta of sesment V short, stout; tubular ducts about same size, of simple design . weahu, new species
Tritubular cerores less abundant, $35-50$ present; apical segment of antemae less than twice as long as wide; sensory seta of segment V narrow, elongate; tubular ducts varying in size, more complex in design

> rflativus, new species
40. Digitules short, setose, not reaching tip of claws 41
Digitules long, usually dilated at their apices and exceeding tip of claws
41. Digitules less than one-half as long as claws; hind claw about 244 long; rostrum about 694 long and 46 wide; with $50-55$ tritubular eerores; lobe setae shorter and more slender than ring setae arebions, new species
Digitules at least onchalf as long as claws; hind claw about 40μ long; rostrum about $80, \mathrm{long}$ and 78 g wide; with $35-40$ tritubular cerores: lube setae about same size as ring setac
maritimus (Cockerell)
42. Anal-lobe area sclerotized
Anal-lobe area unsclerotized
43. Adult female not more than 1.50 mm long; fatcate setae stout, weakly clavate; rostrum at least 50!t lang futacirchlus, new species
Adalt female more than 1.50 mm long; falcate setae not clavate; rostrum at least 75 m lons
4.4. Anal ring about 80μ in diameter, its outer part with about 4.1 cells in double row in places; antemal segment VI twice as long as wide, its larger falcate setae tapering apically; rostral loop reaching to insertion of second pair of legs
mataregori, now spectes
Anal ring about 70 of in diameter, its outer part with $21-28$ cells in single row; antemal segment VI not twice as long as wide, its larger faleate setac not tapering apiealy; rostral loon not reaching insertion of second pair of legs
wakaharui, new species
45. Adult female $0.85-1.40 \mathrm{mmang}$; rostrum not more than bob long; anal ring less than 600 in diameter
\therefore dult female $1.40-2.57 \mathrm{~mm}$ bong; rostrum at least fort long; and ring more than fark in diameter
46. Celis of outer part of amal rimg subpaadrate to trianguate; longest anal lobe seta not more than 60 long \quad insularis, new species
Cells of outer part of anal ring oval to elemgate aval; kngest anal hobe seta not more than tisk hons

$$
47
$$

47. Cells of outer part of abai ring elongate, thee to four times as long as wide; 8 1'3 small trituhular ceromes present: faleate sensory setac narrow, elongate; rostral loop reaching about one-half distance to insertion of second pair of legs
cells of onter part of anal ring oval elongate, about twics as homs as
Cells of outer part of anal ring oval elomgate, about twice as loms as moderately stout; rostral loop reaehing insertion of second pair of less
simple (Hambicton)
48. With more than 75 tritubular cerores; rostrum at least 100 k long; cells of outer part of anal ring mostly isolated
With less than 75 tritubular cerores; rostrum less than 90μ long; cells of outer part of anal ring not isolated
49. Tubular ducts conspicuous, abundant, short, stout, strongly sclerotized, variable in size, many as large as cerores; outer part of anal ring with 48-50 cells; eyes small, rather depressed; with more than 100 tritubular ceroxes;

Tubular ducts inconspicuous, moderately abundant, elongate, neither variable in size nor as large as cerores; outer part of anal ring with 24-31 cells; eyes fairly prominent; with less than 100 trituoular cerores; rostrum about 98μ wideatlanticus (Hambleton)
50. Cells of outer part of anal ring mostly elongate or sinuate; with $20-23$ tritubular cerores; rostral loop extending to insertion of second pair of legs \qquad chilensis, new species
Cells of outer part of anal ring mostly subtriangulate or irregularly ovate; with 30-55 tritubular cerores; rostral loop not reaching insertion of second pair of legs -
51. Apical antemal segment usually elongate, about twice as long as wide; sensory seta of segment Y weakly lanceolate; rostrum moderately elongate, averaging 88μ long, rostral loop extending more than one-half distance to insertion of second pair of legs; claws stout, wide at base; outcr part of anal ring with $32-40$ swhtriangulate to quadrate cells arranged indiscriminately -.-ccticans (Hambleton)
Apical antennal segment more robust, seldom twice as long as wide; sensory seta of segment V long, narrow, weakly curved; rostrum stout, broad, averaging 74μ long, rostral loop extending less than one-half distance to insertion of second pair of legs; claws elongate, narrow at base; outer part of anal ring with 22-30 elongate to irregularly ovate cells arranged more uniformly
-lencosomas (Cockerell)

DESCRIPTIONS OF SPECIES

Rhizoecus americanus (Hambleton)

(Figs. 1-9)
Morrisonella americana Hambleton, 1946a; 18. Rhizoccus ancricanus: Ferris, 1953: 428; Hambleton, 1973: 64.

Adult Female.-Ovate elongate. Length, 1.501.63 mm ; width, $0.80-0.89 \mathrm{~mm}$. Antennae sixsegmented, average length of segments: I, 41; II, 20 ; III, 30 ; IV, 23 ; V, 21 ; VI, 45 ; apical segment tapered, less than twice as long as wide, with three moderately stout, weakly tapered, falcate sensory setae and one nearly straight, slender, acute sensory seta; segment V with one smaller, naryow, elongate sensory seta. Interantemal space equal to combined length of three terminal segments. Eyes prominent, protuberant, occasionally longer than wide, lightly pigmented. Rostrum moderately stout, average about 75μ long, 56μ wide; rostral loop extending beyond halfway between insertion of first and second pair of
legs. Cephalic plate broader than long, its latexal projections usually meeting a body seta near each laterocephalic margin. Dorsal ostioles conspicuous, their rims thickly sclerotized, surrounded by 8 or 9 body setae and 1517 trilocular pores.

Legs moderately long, stout, average length of segments of hind pair: Trochanter, 55; femur, 121 ; tibia, 84 ; tarsus, 76 ; claw, 30 ; claw digitules short, setose, reaching half the length of long, slender claws.

Circulus absent. Anal lobes slightly protruding, usually somewhat sclerotized, each lobe with one seta $70 \mu-90,4$ long, two shorter setae, and two or three auxiliary body setae. Anal ring small, approximately $40 \mu-45 \mu$ in diameter, each of its setae about $56 \mu-58 \mu$ long, slightly more slender than longest lobe seta; cellular structure fairly clear; outer part of anal ring with 12 irregularly elongate or sinuate cells, each with 1 and sometimes 2 spicules near its center; cells of inner part of
ring more obscure, seldom more than 6 observed, elongate oval. Tritubular cerores of 3 sizes, large size occurring dorsaly: 5 or 6 extending from head along dorsal line to abdominal segment YI, 6 submarginally along thorax and abdomen; medium-sized cerores about 8 in number, occurring submarginally on renter of abdominal segments V-TIII; 616 small cerores confined to venter of abdominal segments V-YIII. Multilocular disk pores with $7-10$ loculi, most abundant on venter of posterior segments. elsewhere scattered ventrally and dorsally except on head there occurring only ventrally when present. Tubular ducts about same diameter or slightly larger than trilocular pores, short, strongly sclerotized at their bases, scattered dorsally and ventrally in small numbers over entire derm. Trilocular pores fairly evenly distributed, more abundant dorsally. Body setae moderately sparse, short except for few longer ones on head and along body margins.

Holotype.-Villavicencio, Colombia, 4-XI-44. E. J. Hambleton. Paratypes.-Twenty-three from Colombia, Cuba, Ecuador, Jamaica, Trinidad. USNM.

Host Plants.-Andropogon wirginicuts, Aralia sp., Arancaria eacelsa, Areca sp., Arecastrmm romanzoffianzo, Asparagus sprengeri, Caladium sp., Calliandra haematocephala, Calliandra sp., Callistemon sp., C. viminalis, Chamaccypuris sp ., Chamaedorea elegans, Chlorophytum sp., Chrysulidocarpus lutescens, Chrysanthemum sp., Coccothrinar argentata, Coffea. arabica, Collinia sp., Conocarpus erecta, Dieffenbachia macnlata, D. piett, Dizygothect elegantissima, Eragrostis mayparensis, Ernodea angusta, Euphorbia milii, Ficus nitida, Gardenia sp., Gnaphalium sp., Guettarda sp., Hemigraphis reptans, Hibiscus rosa-sinensis, Hibiscus sp., Isoloma sp., Kentia sp., Kolleria sp., Lantana sp., Liriope sp., Malphighia. coccigera, Melaleuca leucadendron, Nephthytis sp., Paspatum conjngatum, P. fimbriatum, Peperomia peltucida, Phoenin: lowreirii, Physalis pubescens, Pothos sp., Pyracantha coccinea, Quercus sp., Rhaphiolepis sp., Saintpandia ionantha, undetermined species of Gramineae, Orchidaceae, Urticaceae, fem.

Distribution.--Florida, British West Indies, Mexico, Central America, South America.

Florida: Altamonte Springs, 5-VIII-59. C. O. Voutsey. Bradenton, $3-1 X-70$, S. L. Poe. Clarcona, 9, 16-X゙I-70, 13, 15-IV-71. F. L. Ware. Delray Beach. 16-II-71, W. E. Wyles and R. A. Long. Fern Park, 27-YIII-62, C. O. Youtsey; 22-IF-65, J. II. McLeod; 6-18-XI70. 16-XII-70, H. M. Van Pelt; 19, 27-1-71, G. W. Dekle. Flamingo, 18-II-70, E. J. Hambleton. Gainesville, 4-VIIII-71, J. Perry. Grassy Key, 21-X-72, W. H. Pierce. High Point. 15-TY-71. E. W. Miller. Largo, 4, 16-II-T1, K. C. Hickman. E. W. Miller, and G. T. Williams. Middle Torch Kes. 20-X-72, IV. H. Pierce. Naranja, 30-IX-72, W. H. Pierce. No Name Key, 3-II, 21-X-72, W. H. Pierce. N. Fort Meyers. III-71, W. T. Walsh. N. Miami Beach. 18-XII-72, E. J. Hambleton. Orlando, 9-II-71, F. L. Ware. Osprey, 5-II71. J. R. MeFarlin and C. J. Bickner. Palma Sola, 19-IX-72. C. J. Bickner. Palmetto, 1VII, 14-X, 15-IX-70, J. R. McFarlin and C. J. Bickner; 3-VIII-70, C. J. Bickner, St. Petersburg, 12-II-71, K. C. Hickman, Sarasota, 22-II-71, J. R. McFarlin. Seminole, 12-II-71, K. C. Hickman. Snead Ishand, 11, 16-XI, 24-XII-70, 2-IV-71, J. R. McFarlin. Sugarloaf Key, B-II-72. W. F. Pierce. Tallevast, 17-II71, 9-I-73, J. R. MeFarlin. Upper Key Largo, 22-VIII-68, R. E. Woodruff. Winter Garden, 21-VIII-67, R. J. Griflith; 9-XII-70, G. W. Dekle, D. Short, and S. L. Poe: 25-X-72, F. L. Ware.

British West Indies: Trinidad, 23-XI, 7, 31-XII-43, A. H. Strickland.

Colombia: Chinchina, $1-\mathrm{IV}-56, \mathrm{~S}$. E. Flanders. Fusagasugá (Cund.), 17-VIII-71, F. Miosquero and H. Martin. Villaricencio, 4-XI-44, E. J. Hambleton.

Costa Rica: Las Cruzes, 6 mi E. of San Vito, 18-II-70, M. Kosztarab.

Cuba: Santiago de las Vegas, 1-VIII-45, S. C. Bruner and E. J. Hambleton.

Ecuador: Pichilingue, $1-\mathrm{X}-44$, E. J. Hambleton.

Honduras: La Lima, TX, X-67, C. Evers.
Jamatica: Interception at Hoboken, N.J., 11-IV-27, W. T. Ehiger.

Mexico: Vera Cruz, 10 mi SW. of Jalapa, 13, 16-VII-67, D. R. Miller and J. Villanueva B. 10 mi S . of Xiutetelco, $28-\mathrm{II}-72, \mathrm{D} . \mathrm{R}$.

Miller and F. D. Parker. Interception at Brownsvilie, Tex., 23-VI-49.

Panama: Canal Zone, Summit Gardens, 14-VII-48, E. J. Hambleton.

Puerto Rico: El Yunque, 7-II-72, E. J. Hambleton.

Virgin Islands: St. Croix, 21-III-73. G. W. Dekle and M. Murphey.

Discussion.-The types and more than 200 additional specimens of americanus have been studied. This species usually has sclerotized anal lobes and tubular ducts, structures that were reported missing in the original description. Multilocular disk pores with 6 loculi were observed with the normal 10 loculi in some Florida specimens collected on Araucaria excelsa.

In recent years americanus has become a pest of considerable importance in Florida nurseries. It was first collected in the State at Altamonte Springs in Augusi 1969. Although widely distributed in the State, it is unknown elsewhere in the United States except an isolated infestation in New Jersey. The diverse host list and wide distribution of this species are indicative of its potential as a possible greenhouse pest in other parts of the country. Costa Rica, Honduras, Panama, Puerto Rico, Mexico, and the Virgin Islands represent new distribution records for this species.

Among the more important distinguishing features of comericamus are its three sizes of tritubular cerores, small anal ring, and sclerotized anal lobes.

Rhizoecus apizacos, new species

(Figs. 10-15)
Adult Female.-Oval elongate, tapering toward extremities. Length, $0.97-1.38 \mathrm{~mm}$; width, $0.41-0.74 \mathrm{~mm}$. Antennae six-segmented, moderately short, stout, closely placed near tip of head, segments in following proportions: I, 25; II, 11; III, 14; IV, 11; V, 13; VI, 39 ; apical segment less than twice as long as wide, with three very slender, rather strongly curved, falcate sensory setae, subequal in length, and one shorter, spinelike sensory seta near its apex; segment V with
one short, slender, weakly clavate sensory seta. Interantemal space less than length of scgment I. Eyes small, protuberant, weakly pigmented. Rostrum short, stout, about $49!$ long, 45 , wide; rostral loop reaching about halfway between insertion of first and second pair of legs. Cephalic plate longer than wide, length about 37μ, narrowed anteriorly, extending to or beyond base of antennae. Dorsal ostioles inconspicuous, their rims narrow, weakl ${ }_{3}$ sclerotized.

Legs short, moderately stout, average length of segments of hind pair: Trochanter, 25 ; femur, 65 ; tibia, 58 ; tarsus, 46 ; claw, 18 ; claw digitules slender, their tips dilated, extending beyond weakly curved claws.

With one conical circulus about 11 u wide. diameter at orifice about 54. Anal lobes undeveloped, unsclerotized, each lobe area with three long, slender setae, longest about 48μ long, and four or five shorter body setae. Anal ring clearly defined, averaging approximately $45!1$ in diameter, its setae 50μ long, about same length as longest lobe setae but much stouter; outer part of anal ring with 16-18 irregularly sinuate cells; cells on inner part of ring larger, more irregular in shape, numbering $8-10$, bordered internally by clouded semicircular cells. Tritubular cerores small, their ducts about $5!-6!1$ long, few in number, occurring dorsally, three on head, four on thorax, six or seven on abdomen. Multilocular disk pores absent. Tubular ducts minute, about one-half diameter of trilocular pore, few in number, at least two each on abdominal segments V-VIII. Trilocular pores evenly distributed. Body setae mostly short, longest on posterior abdominal segments.

Hobotype.-Tlaxcala State, 26 km N. of Apizacos, Mexico, 12-VII-67, D. R. Miller and J. Villanueva B.; UCD. Paratypes.-Three, same data as holotype; one UCD, two USNM.

Host Plant.-Unknown.
Distribution.-Known only from type locality.
Discussion.-R. apizacos superficially resembles simplex, but new species has larger legs, its antennae are more closely placed, and the falcate sensory setae are longer and more slender than those of simplen. Other major differences separating the two species are in the key.

Rhizoecus arabicus, new species

(Figs. 16-23)
Adult Female.-Elongate oval. Length, 0.841.73 mm ; width, $0.46-0.87 \mathrm{~mm}$. Antennae sixsegmented, segments in following proportions: I, 35; II, 21; III, 33; IV, 16; V, 17; VI, 45 ; apical segment rather stout, less than twice as long as wide, with three falcate sensory setae and one more slender, shorter, sharply tapered sensory seta; segment V with one slender, weakly lanceolate sensory seta. Interantennal space about equal to combined length of three terminal segments. Eyes moderately prominent, weakly pigmented. Rostrum rather elongate, about $68!1$ long, 46,1 wide; rostral loop extending to or slightly beyond insertion of second pair of legs. Cephalic plate of medium size, irregularly subquadrate, with two vacuoles near its posterior extremity. Dorsal ostioles indjstinct, appearing as if unsclerotized.

Legs well developed, of moderate size, length of segments of hind pair: Trochanter, 43 ; femur, 100 ; tibia, 95 ; tarsus, 57 ; claw, 24 ; claw digitules short, setose, reaching midlength of claws, inner margin of claws almost straight.

With one conical circulus, about as long as wide, its orifice faveolate. Anal lobes undeveloped, unsclerotized, each lobe area with one seta about 62!! long, two shorter elongate setae, one or two auxiliary setae, and usual trilocular pores. Anal sing well defined, about $57!$ wide, its setac about $90!1$ long, stouter and longer than lobe setae; outer part of anal ring with approximately $24-30$ fairly large, irregularly shaped, rather angulate, quadrate to ovate cells, ends of most not touching; inner part of anal ring with $10-14$ Jarger, irregularly elongate cells bordered inside by clouded area of semicircular cells. Tritubular cerores of medium to small size, their ducts weakly tapered, projecting well above derm, 50 55, widely distributed dorsally and ventralls. Multilocular disk pores absent. Tubular ducts narrow, elongate, rather uniformly distributed but less common on head and thorax. Trilocular pores most abundant on head and posterior abdominal segments. Body setae
short, some longer setae dorsally on head and posterior abdominal segments.

Holotype.-Chinchina, Colombia, April 1956, S. E. Flanders, with one paratype and one unidentified Neorhizoccus on same slide; USNM, Paralypes.-Three, same data as holotype, two partially mutilated; two Cota, Costa Rica, $20-\mathrm{V}-57, \mathrm{E}$. B. Dixon. on two slides, one slide also bearing threc immatures of R. campestris; USNM.

Host Plants.-Coffea arabica, undetermined Grammeate, in soil.

Distribution.-Colombia, Costa Rica.
Discussion.-In the key to species, arabicus occupics the same counlet with maritimus. It may readily be distinguished from the latter by its shorter digitules, smaller rostrum. larger number of tritubublar cerores, and smaller anal ring. The cells of the outer part of the anal ring of arabiens are mostly quadrate, whereas those of maritimuts are mostly oval elongate.

Rhizoecus associatus (Hambleton)

(Figs. 24-29)
Morrisomello assuciata Hambleton, 194ga: 20.
Rhizorms associaths: Ferris, 1952: as0; Mekenzie, 1975: 372.

Adult Female.-Rather stout, elliptical, much narrower toward heat. Length, $1.26 \cdots 1.94 \mathrm{~mm}$; width, $0.58 \cdot 1.21 \mathrm{~mm}$. Antennae six-sermented, placed near apex of head, serments in following proportions: I, 39; II, 25; III, 20; IV, 18; V, 17; VI, 43; apical segment less than twice as long as wide, with three stout, apically tat percd, clavate falcate sensory setac and one elongate, nearly straight sensory seta near its apex; segment Y with one elongate, narrow sonsory seta; all serments with extremels long setare of usual type. Interantennal space acual to length of segment I. Eyes small, protuherant, pigmented. Rostrum kong, 75!-78!! i, Jength, 50, wide; rostral loop extending to on slightly beyond insertion of second patir of kens. Cephalic plate large, irregularly trianFulate. 54! long, 58! wide, with four or five setia boriering its periphery. Dorsal ostioles weakly developer, inconspicuous.

Legri moderately short, average longth of segments of hind pair: Trochanter, 41 ; femur.

80 ; tibia, 62 ; tarsus, 52 ; claw, 30 ; claw digituies short, setose, almost reaching midlength of claws.

Circulus absent. Ansi lobes roundly developed, heavily sclerotized, each lobe with 4 or 5 elongate setae of varying lengths, longest about $80 \mu, 3$ or 4 smaller body setae, and $8-10$ triloculax pores. Anal ring about 65μ in diameter, its setae about 63μ in length, stouter than lobe setae; outer part of anal ling with 12 moderately large, elongate cells, each with several minute spicules; inner part of ring with 6-8 cells larger than those of outer part and more irregular in shape, lying adjacent to large darkened semicircular cells. Tritubular cerores large, varying somewhat in size, 60-74 occurring dossally and ventrally over entire derm. Multilocular disk pores present dorsally and ventrally, occurring in irregular. transverse rows, absent from head. Tubular ducts absent. Trilocular pores evenly distributed, sparse in areas on thorax and between segments. Body setae short. sparse, a few longer setae on head, posterior abdominal segments, and along body margin.

Holotype.-Guatemala, along highway between apetzaltenango and Totonicapan, 10,000 $\mathrm{ft}, 20-\mathrm{Y}-45$, E. J. Hambleton. Paratypes.-Three taken with holotype. USNDI.

Host Plants.-Alchemilla whiculata, midentified Gramineae.

Distribution.-Califorma, Guatemala, Mexico.
California: Santa Cruz. 9-II-64, D. R. Miller and J. A. Froebe.

Guatemala: From the type locality.
Mexico: 10 mi S . of Texcoco, State of Mexico, 12-VIMI-G7, D. R. Miller and J. Villanueva B.

Discussion.-Ferris (195) doubted that associatus differed from distinctus. His key characters for sepatating the two species are unreliable because the inner row of "pores" of the anal ring appears clouded in all species of Rhizopchs. Staining techniques possibly alter the degree of cloudiness in some suacimons. McKenzie (106\%), using the identical characters in his key. likewise overlooked the important differences between these mealybugs, The basic differences separating the two species are in the kes. Also, associatus has Ionger appendages than distinctus and its falcate
sensory setae are clavate. The larger number of anal-lobe setae and the more protruding anal lobes readily distinguish associatus from distinctus.

Rhizoecus atlanticus (Hambleton), new combination

(Figs. 30-39)
Ripervielta attatica Hambleton, 1946a: 62.
Adult Female.-Oval elongate, moderately stout. Length, $1.76-2.20 \mathrm{~mm}$; width. 0.94-1.88 mm. Antennae six-segmented, elongate, widely spaced, average length of segments: I, 41; II, 24 ; III, 29 ; IV, 19 ; V, 20 ; VI, 59 ; apical segment about twice as long as wide, with three long, rather slender, tapering, falcate sensory and one shorter, sharply tapered sensory seta; seament V with 1 short, narrow, tapered sensory seta. Interantemal space equal to combined length of segments II-V. Eyes fairly prominent. weakly pigmented. Rostrum very stout, 104u long, slightly longer than wide; rostral loop extending halfway to insertion of second pair of legs. Cephalic plate small, irregular in shape, with two vacuoles. Dorsal ostioles almost indistinguishable.

Legs fairly large length of segments of hind pair: Trochanter, 52 ; femur. 118: tibia, 107 ; tarsus, 65; claw, 27 ; claw digitules long, dilated at tips, extending slightly beyond tip of rather stout. moderately curved claws.

With one elongate, conical circulus. Anal lobes simple, undeveloped, each lobe area with three elongate setae, two about 874 long, longer and stouter than third, and four or five smaller anxiliary setae. Anal ring latge, 78 !!8:m in diameter, each of its setae shorter and somewhat narrower than largest lobe seta: outer part of anal ring with $24-31$ mostly isolated. irregularly owal to almost circular cells, varying in size, each with tiny spicule; cells of inner part of ring approximately 22 in number. larger, many touching; clouded area indistinct except for large oval cell stoucture. Tritubular cerores small, their ducts long, slender, tapering, and divaricating, profecting well above derm. about $9 \overline{\mathrm{j}}-100$ present dorsally and ventrally in thansverse series encircling segmonts. Multilocular disk pores absent. Tubular ducts fairly abundant, wecur-
riner over most of derm. Mushroomlike bodies, similar to those found in polyporms, widely distributed over derm. Trilocular pores moderately abundant, evenly distributed. Body setae longer on head, elsewhere varying in length, uniformly distributed.

Holotype.-Guarujá, State of São Paulo, Brazil, 22-VIII-35, B. L. Ribeiro and E. J. Hambleton; on slide with four paratypes. Paratypes.Ten on two slides. USNM.

Host Plant.-Axomopus sp.
Distribution.-Known only from the type localits.

Discussion.-No other known species of Rhizoccus resembles atlcuticus. Its large, broad rostrum, finely tapered ceroris ducts, and unusual cellular structure of the anal ring set it apart from all other species. This mealybug was originally collected along the Atlantic seacoast with R. nitidalis and Brevicoccul. clavisetosus Hambleton.

Rhizoecus bicirculus MeKenzie

(Figs. 40-45)
Fhizoceus bicirculus McKenzie, 1967: 374.
Adult Female.-Elongate oval. Length, 1.102.55 mm ; witith, $0.40-1.26 \mathrm{~mm}$. Antennae sixsegmented, short, stout, weakly clavate, length of segments: I, 21; II, 12; III, $17 ;$ IV, $10 ; \mathrm{V}$, 11; VI, 28; apical segment broad, with three fairly stout, clavate, falcate sensory setae and one narrow, elongate sensory seta; segment \checkmark with very short, clavate sensory seta. Interantennal space less than width of segment I. Eyes small, inconspicuous. Rostrum small, about 42 ti long, 28 ut wide; rostral loop not reaching halfway to insertion of second pair of legs. Cephalic plate lonaer than wide, about $28^{\prime} 4$ long. Dorsal ostioles small, weakly sclerotized.

Legs short, stout, length of segments of hind pair: Trochanter, 24; femur, 54 ; tibia, 47; tarsus, 30 ; claw, 12 ; claw digitules long, dilated at their tips, exceeding basally stout, weakly curved claws.
With two depressed circuli situated ventrally on segments III and IV, measuring 10n-13j in diameter, their circular rims strongly sclerotized. Anal lobes undeveloped,
each lobe area with three elongate setae, subecual in length. longest about 341 long. and several shorter body setae. Anal ring about 404 wide, its setae about $34!1$ long, stouter than lobe setae; outer part of anal ring with 18 elongate oral cells, varying in size, mostly with spicules; inner anal ring with $8-10$ larger, more irregularly elongate cells, lying adjacent to rather indistinct clouded area. Tritubular cerores small, their ducts short, 20-24 present, most occurxing dorsally. Multilocular disk pores absent. Tubular ducts smaller in diameter than trilocular pore, present dorsally and ventrally, scattered on abdomen, sparse on thorax, absent from head. Trilocular pores rather sparsely distributed over entire derm. Body setae mostly short, slender.
Holotype.-Trinity Countr, 6 mi NE. of Weavervilue, Stony Creek on Lake Trinity, Calif., 22-V-63, R. F. Wilkey; UCD. Para-types.-Two, one USNM.

Host Plants.-Ceanothis mamilus, Eriogonum sp., Lotus scoparius, unidentified Grami-
neae.

Distribution.-Type locality and the following records: California: Merced County, 18 mi W . Los Banos, 17-II-67, T. R. Haig. Santa Barbara County, South Ridge Station, Santa Crue Island, 6-Y-68, D. R. Miller and R. W. Rust. South Rim Station, Santa Gruz Island, $9-\mathrm{V}-68$, D. R. Miller.

Discussion.-This musual species is easily recognized by its two larg sirculi, its short, stout antennae, and small rostrum. Contrary to McKenzie's belief, bicirculus is not closely related to cacticans. The two speries are not similar morphologically.

Rhizoecus bituberculatus McKenziq

> (Figs. 46-54)

Whinoccus bithberenlaths MeKenzie, 10606: 743; 1.067;
? 26.
Aduit Female.-Oval elongate. Length, 0.821.20 mm ; width, $0.34-0.40 \mathrm{~mm}$. Antemnae sixsegmented, moderately stout, segments in following moportions: I, 33; II, 19; III, 31; IV, 14; V, 17; VI, 44; apical segment tapered, twice as long as wide, with three fairly stout, weakly tapered, falcate sensory setae and one
elongate, spinelike sensory seta; segment V with one shorter, weakly lanceolate sensory seta. Interantemal space cqual to length of segment I. Eyes absent. Rostrum about 65! long, 45, wide: rostral loop extending to or beyond insertion of second pair of legs. (ephalic plate about $38!1$ long. narrower anteriorly. Dorsal ostioles well developed. strongly sclerotized, posterior pair surrounded by concentration of trilocular pores and body setae.

Legs relatively short. stout. length of serments of hind pair: Trochanter. 35; femur. 77 ; tibia. 66; tarsus, 50 ; claw, 17 ; claw digitules weakly dilated apically, extending beyond claws.

With one faveolate, depressed. conical circulus, its orifice about 11 in in diameter. Anal lobes weakly developed, each with small sclerotized patch, three elongate setae, subequal in length, longest approximately $52!1$ long. Anal ring well defined, diameter 40, its setae about 63 n long. slightly weaker than strongest lobe setae; outer part of anal ring with approximately 14-16 oval, elongate cells of varying lengths, each with spicule; inner part of ring with smaller number of larger. more irregular cells lying adjacent to cellular darkened area. Bitubular cerores small, elongate, relatively stout their ducts projecting well above derm, 45-55 occurring dorsally and ventrally. Multilocular disk pores more abundant ventrally in abdominal and thoracic areas, scattered and in small groups, dorsally limited to posterior abdominal area. Tubular ducts scattered dorsally and ventralig. Trilocular pores uniformly distributed dorsally, on venter in patchlike areas. Body setae varying in length, rather sparse, usually oceurring with trilocular pores.

Holotype--Placer County, 4 mi W . of Newcastle, Calif., 21-TIT-58, W. H. Lange, L. M. Smith, and R. O. Schuster; CCD. Paratypes.Many, same location as holotype, 15-IV-58, 10-III-59, L. M. Smith and R. O. Schuster; UCD, two USNME.

Host Plant.-Unknown, taken in soil under Quereus wislizenii.

Distribution.-California, Indiana, North Carolina.

California: Type locality and near Nashville, El Dorado County, $25-\mathrm{I}-58$, L. M. Smith
and R. O. Schuster. Three mi N. of Placerville, 18-V-61, R. O. Schuster.

Indiana: Lawrence Countr, Spring Mill State Park, T-NI-71, J. A. MeBride. (In rotting wood and soil. via Berlese trap.)

North Carolina: Duke University Forest, 24-In-45, A. S. Pearse.

Discussion.-This small native species is one of the tew with bitubular cerores. The presence of a circulus, the bitubular cerores, and lack of eyes distinguish bitubcrenlatus from its nearest relatives. The multilocular disk pores of this species displas a considerable difterence in size and their loculi vary from 8 to 12 instead of from 10 to 12 , the number in most species. Tubular ducts reported to be absent in the original description, are present in bitubereulatus.

Rhisoecus boharti MeKenzie

(Figs, 55-61)
Rhisurtos boharti Meknonie, 1960n: 139.
Adult Female.-Elongate oval, narrower toward apex. Length, 1.05 mm ; width, 1.00 mm . Antemme six-segmented, relatively small, length of serments: I, 33 ; II, 22 ; IIT, 26 ; IV. 17: V. 19: VI, 41; apical serment about twice as long as wide, with three elongate, falcate sensory setae and one elongate, spinelike sensory seta near apex; segment V with one small, short, rather narrow sensory seta. Interantemal space equal to length of segment I. Eyes small, protruding. Rostrum elongate, $66!1$ long. $36!$ wide: rostal loop reaching to insertion of second pair of legs. (ephalic phate broadly rounded, weakly pigmented. Dorsal ostioles well developed, their rims strongly selerotized.

Legs comparatively small, length of hind lex segments: Trochanter, 29; femur, 72; (ibia, 64; tasus, 44 ; claw, 17 ; claw digitules elomgate, their $\mathrm{i} p \mathrm{p}$ woakly diated, exceeding moderately stout claws.

Circulus absent. Anal lobes undeveloped, each lobe area with selerotized jatch, three elongate setac, longest about 42 4 long, and several short body setas. Anal ring 45y wide, its setae about 44 ! 1 long, slighty longer and stouter than lobe setae; outer part of ring with

16 oval, elongate cells with spicules; imer part of ring with 10-12 larger, more irregular cells lying adjacent to diffused shaded area. Bitubular cerores small, their ducts elongate, weakly tapered, about 55 present, occurring dorsally and ventrally. Multiocular disk pores present, confined almost entirely to posterior abdominal segments, dorsally only two pores present on segment VIIL. Tubular ducts short, smaller in diameter than trilocular pore, distributed over entire surface. Trilocular pores distributed dorsally and ventrally, fewer present between segments. Body setae mostly short, slender.

Holotype.-Cochise County, 5 mi SE. of Apache, Ariz., I1-VIII-58, R. M. Bohart; UCD.

Host Plant.-Unknown, collected in soll yia Berlese trap.

Distribution.-Known only from type locality.

Discussion.-This rather unique species with six-segmented antennae and bitubular cerores has no circulus. These features alone separate it at once from all known species of Rhizoccus in the Western Hemisphere.

Rhizoecus cacticans (Hambleton)

(Figs. 62-69)
Ripersiclla cacticans Hambleton, 104Ga: 64.
Rhizoects cacticans: Ferris, 1953: 432; Mckenzie, 1960b: 74 $\overline{2}$; McKenzie, 1967: 379; Hambleton, 1973: 65.
Rhizoecus epiphylli Ferris, 1953: 442; MeKenzie, 1960b: 745.
Rhizorcu: leucosomus (Cockerell): ìcKenzie, 10日T: 308 (misidentification in part); Gonzalez and Charlin, 1968: 112 (misidentification).
Adull Female.-Oval elongate, stout. Length, $2.25-2.57 \mathrm{~mm}$; width, $0.98-1.18 \mathrm{~mm}$. Antenmae six-segmented, rather elongate, widely spaced, average length of segments: I, 39 ; II, 25 ; III, 45 ; IV, 18 ; V. 20 ; VI, 55 ; apical segment usually twice as long as wide, with three wather narrow, elongate, falcate sensory setae and one more slender, strongly taperd sensory seta; segment V with one shorter, narrow, elongate sensory seta. Interantennal space equal to approximately length of segments IV-VI taken together. Eyes moderately large, protuberant, pigmented. Rostrum
wather long, averaging about 88% long, 654 wide; rostral loop extending to or slightiy beyond halfway to insertion of second pair of legs. Cephalic plate irregularly triangulate. 35 w wide at base, with two large vacuoles. Dorsal ostioles inconspicuous, their rims lightly pigmented.

Legs of normal size, moderately stout, elongate, length of segments of hind pair: Trochanter, 51 ; femur, 124; tibia, 104; tarsus, 62; claw, 20 ; claw digitules elongate, weakly dilated at tips, extending beyond stout, curved claws.

With one strongly sclerotized, conical circulus, about as long as wide. Anal lobes undeveloped, unsclerotized, each lobe area with three elongate setae, one measuring $75 u-95!$ long, remaining two shorter, more slender, and not as long as anal-ring setae. Anal ring approximately 75 in diameter, its cellular structure clear, distinct, ring setae ranging between $92!1$ and 1054 long; outer part of anal ring with $32-40$ subtriangulate to quadrate, indiscrimmately arranged cells of large size; cells of inner part $20-22$, somewhat larger than those of outer part, irregular in shape, lying end to end, bordering clouded area of semicircular cells. Tritubular cerores small, between 50 and 55 present, occurring dorsallyand ventrally, usually 4 or 5 to segment. their indiridual ducts not reaching f ar above derm. Multilocular disk pores absent. Tubular ducts minate, of smaller diameter than trilocular pore, distributed over entire derm but more prominent on abdomen. Trilocular pores numerous, eventy distributed. Body setae 20u55 long, wather uniformly arranged.

Holotype-Cayambe, Ectador, 11-X-44. E. J. Hambleton. Paratypes.-Twenty-three from Argentina, Californa, Ecuador, and Germany. USNM.

Host Plants - Bromus mioloides, Cmerys sp., Dudleya farinosa, Echercria sp., Eleusiuc indica. Epiphyllm, sp., Holrms lanatus, Kalanchir sb., K. fomentosa, Klcinia sp.. Lobivia shafori. Lobivia sp., Loliem pornuc, MammilInvin sp. Mess mbrumenthemm sp., Opmatia sp.. Semprotivm sp., S. tectorm. Senceio miltaniwides. undetermined cactaceac.

Distribution- California. Florida, Argentina, Chile, Eetudor, Fonduras.

California: Berkeiey, 7-VI-48, C. A. Hansen. Dale City, 18-I-57, D. J. Bingham and E. L. Labadie. Davis, 11-II-65, W. Russell; 24-II-65, Mrs. Wr. A. Williams. Fallbrook, 11-III-57, K. F. Sims. Fontana, 1-V-34, E. P. Bradbury. Leucadia, 8-XII-55, D. Sprague. Niles, 25-II-48, A. E. Pritchard. Ontario, 26-XII-48, C. R. Tower. Pacifica, 8-II-64, D. R. Miller and J. A. Froebe. Santa Cruz. 26-III-64. R. W. Nutter. Watsonville, 29-XI57, D. H. Shaw.

Florida: St. Petersburg, 9-II-73, C. K. Hickman. Sanford, 15 -II-63, (. O. Youtsey.

Argentina: Locality unknown, intercepted at Washington, D.C., 23-XI-36, D. P. Limber and W. B. Wood.

Chile: Cautín Province, 1 km N. Villarrica, 29-IY-65. R. H. Gonzalez. Cuesta de Pucalan, La Calera, 1961, L. M. Smith. La Cruz, 4, 15-IT-61. L. M. Smith. One km E. Maitencillo, 16-III-61, L. M. Smith. Olmue, 21-YI-61. L. M. Smith. Valparaiso Province, Quebrado El Soldado, El Cobre, 15-YII-61, L. M. Smith. Jardim Botanica Nacional, Vina del Mar, 16-VI-61, 4-TII-61, L. M. Smith; 15-VT-65, R. H. Gonzalez.

Ecuador: Alausi, 7-X-44, Cayambe; 11-X. 44, Salcedo; 4-X-44, E. J. Hambleton.

Honduras: La Lima, X-6t, (. Evers.
Discussion.-This species has been confused with lencosomus, floridamus, and the new species chilpmsis and maktharai described herein. The misidentification of cacticans is believed to have been due primarily to overlooking detailed morphological structures. Characters of major importance in separating cacticons from its nearest relatives are its unsclerotized anal lobes, elongate rostrum, length of apical antennal segment, and the number, shape, and size of the cells in the outer part of the anal ring. In foridam"s and nolithorai the amal lobes have rather small, elongate sclerotized areas. Several diflerences separate $h \cdot h$. cosomus and cactionns. The former possesses a shorter and stouter rostrum, less elongate apical antennal segment, and fewer elongate, irregularly ovate cells in the outer part of the anal ring. These cells are also smaller and more uniformly arranged in lrucosmm:s. Other characters may be referred to in the key.

Rhizoecus caladii Green

(Figs. 70-71)
Rhirocots caludii Green, 1923: 53.
Adult Female.-Oval elongate, moderately stout. Length, $1.36-1.65 \mathrm{~mm}$; width, $0.74-0.91$ mm. Antennae six-segmented, avelage length of segments: I, 38; II, 21; III, 33; IV, 28; V, 22; VI, 48; apical segment longest, with threc rather fong, slender, gradually tapering, falcate sensory sotae and one slender, spinelike sensory sela near its apex; segment V with one short, slender falcate seta. Interantennal space about equal to combined length of serments Y^{\prime} and Vi. Eyes protuberant, lightly pigmented. Rostrum clongate, about $78!$ long, 5l! wide; rostral loop not reachine insertion of second pair of legs. (ephalic plate not observed. Dorsal ostioles clearly dofined, their rims selerotized, surrounded by numerous trilocular pores and body setale.

Legs faily large, average length of serments of hind pair: Trochanter, 55; femur, 123; tibia, 88 ; tarsus, 76 ; chaw. 33 ; chaw digitules short, setose, not reaching one-half length of narrow, elongate, fincly pointed claws.
(iverulus absent. Anal lobes very weakly protruding, each lobe area with one seta 78 u tong and two shorter setae. Anal ring about $45!$ in diameter, its structure poorly defined, rells apporaring elongate; its setac 50!-60! long. Tritubular corores of 2 sizes, their ducts short, stout, about 20 of larger size occurring dorsalls, 6 extending along median line from head to abdominal segment VI, 4 submarginally on abdemen; small ceroces occurring ventralls, total of 14 present submarminally and near median area of abdominal serments T VIII. Multilocular disk pores present ventralls, moderately crowded near rulva, sattered elsewhere on abomen and thorax, absent from head. Tuhalar ducts small, scaree, few near abolominal margins. Trilocular pores rather evendy distributed. Body setale short, spatse, inconspicuous.

Topotypes.-Three. Surinam, Dutch Guianat,

Host Plants.- ('rlatiom bicolor, ('offet arab)iro.

Distribution. Wnown only from trpe locality.

Discussion.-Redescribed from three topotypes determined by F. Laing. It is not known if the three topotype specimens were seen by Green. I am convinced nevertheless that ther are conspecific with Green's type specimen of caladii.
R. caladii resembles poonsis from Colombia but differs from it in lacking clusters of medioventral pores and by possessing shorter and less conspicuous body setae and narrower claws.

Rhizoechs californicus Ferris

(Figs. 72-80)
Rhizoects calformions Ferris, 1953: 434; McKemzie. 1967: 381.

Adult Female.-Elongate oval. moderately stout. Length, $1.20-1.50 \mathrm{~mm}$; width, $0.75-1.00$ mm . Antemae five-segniented, weakly clavate, average length of segments: I, 22 ; II, 24; III, 19; IV, 17; V, 60; apical segment more than twice as long as wide, with four falcate sensory setae of medium size, longest about equal to width of segment V, and one narrow, spinelike sensory seta. Interantennal space less than length of segment V. Eyes usually inconspicuous, weakly pigmented, often difficult to observe. Rostram short, average length $55 \cdot 1$, width $42!1 ;$ rostral loop rather short, seldom extending to insertion of second pair of legs. Cephalic plate broader than long, about 50! wide. Dorsal ostioles prominent, their rims heavily sclerotized.

Legs stout, exhibiting some variation in size, hind pair measurements of largest specimen: Trochanter, 44; femur, 92; tibia, 83 ; tarsus, 55 ; claw, 22 ; claw digitules long, dilated at tips, extending beyond stout, curved, acute claws.

With one rather small, truncate to domeshaped circulus with reticulated oral surface. Anal lobes showing some devolopment, each with strongly sclerotized area equal in size to width of anal ring, with three elongate setae, subequal in length and size, and several body setae. Anal ring about 40, in diameter, each of its setae slightly more slender than largest
lobe seta and usuatly about as long as latter : outer part of amal ring with 14-16 small, uniform. elongate. oral cells. each with spicule: inner ring with 10 or 12 larger, irvegularly elongate cells bordered inside by diarkened area of semicircular cell structuxe. Tritubular cerores of " sizes present, their ducts shord and stout. smaller size less numerous, more common ventrally, total number of cerores ranging between 130 and 200 , sifuated mostly in rows across segments and seattered on head. Multilocular disk pores present. confined to posterior abdominal segments ventrally. from 2^{-1} to $4 \overline{5}$ distributed along margins of segment VII, around rulab, and atoross segment IX. Tubular ducts mather elongate, with broadly rounded sclerotized bases, distributed on both surfaces, is many as four on each abdominal segment. Trilocular pores fatirly evenly distributed, less common in thoracic areal Body setre spurse, mostly short, slender.

Lectotype.—Berkele, Calif.. 23-IV-IG. H. M. Butterfield, with five paralectolypes on one slide, E. O. Essig collection, UCD.
Host Plants.-Artemisia douglasiana, Dipsarens sp., Frafura chilochsis. Helionthus sp., Pollgomm sp., in soil moder chaparral, in grassland.

Distribution.-California.

Cabifornia: Berkeley, 2-IIT-58. L. M. Smith. One mi W. Bolinas, 19-T-60, W. G. Iltis and C. Judson. Two mi NE. Bolinas. 27-YriI-63, D. R. Miller. Davis, 23-TX-61, M. F. Irwin, Gont Rock, 10 X-67. H. L. Mekenzie. Guerneyville, $30-$ Y $^{-}-60$, C. Judson. Millbrac, San Andres Lake, $\mathrm{XI}-57$, D. Wr Price. Palermo. 23-X-70. E. Remmurs. Six mi E. Point Reyes, 1-TIT-60. L. M. Smith and R. O.
Schuster. Schuster:

Discussion.-.The original description of califormitus by Ferris (1053) was based on a collection of six temalo specimens mounted on : single slide. Since no type was designated, I have designated the specimen on the right side of the slide, nearest the label to the right, as the lectotype.

In addition to the types, more than 28 specimms of this intoresting Californa species have been studied. It is readily distinguished bv having five-segmented antenac, an average of over 150 tritubular cerores of two
sizes, multilocular clisk pores, and a circulus. The heavily sclerotized anal lobes are also a good diagnostic character. Although considered absent in the original description, tubular ducts are present in californicus. It may also be noted that the eyes are so weakly pigmented that they often are not observed.

Rhizoecus campestris Hambleton

(Figs. 81-88)

Rhizoceus campestris Hambleton, 1946a: in1; Ferris, 1953: 436.

Adult Female.-Elongate oval. Length, 1.301.53 mm ; width, $0.46-0.60 \mathrm{~mm}$. Antennae strongly geniculate, clavate. five-segmented, segments measuring as follows: I, 43; II, 22; III, 19; IV, 13; V, 69; apical segment more than twice as long as wide, with three stout, weakly clavate sensory setae, one shorter clavate seta near its base, and one elongate spinelike sensory seta near apex. Interantemnal space less than length of apical segment. Eyes absent. Rostrum small, average length about $58!$, average width 40μ; rostral loop extending to insertion of second pair of legs. Cephalic plate irregular in shape, about $32!$ long, wider posteriorly, sometimes with several vacuoles. Dorsal ostioles conspicuous, their rims well sclerotized.

Legs of medium size, length of segments of hind pair: Trochanter, 42; femur, 103; tibia, 77 ; tarsus, 56 ; claw, 20 ; claw digitules slencler, acute, reaching about half the length of elongate, moderately stout claws.

With two to six trumeate circuli, varying in size and occurring along venter from abdominal segment II to VII. Anal lobes weakly developed, unsclerotized, each lobe area with three to four elongate setae, longest sometimes 82 ! in length, four to five shorter auxiliary setae, number of trilocular pores with some adjacent to bases of larger setae. Anal ring about 40μ in diameter, its setae 62,1 long, more slender than largest lobe seta; outer part of anal ring with 12-14 narrow, elongate cells, each with elongate spicule; inner part of ring with 6-10 larger, more elongate, and irregular cells lying adjacent to darkened area of semicircular cells. Bitubular cerores of me-
dium size, with elongate, weakly pigmented ducts whose external bases are surrounded by oval-shaped sclerotized collar, ocerring dorsally, 1 on head, 5 on thorax, 14 on abclomen along middorsal line and submarginally. Multilocular disk pores confimed to venter, some 40-48 present on abdominal segments VII-IX. Tubular ducts unusually large, about G!! long, rather flask-shaped, their diameter exceeding that of trilocular pore, scattered over entire derm. Trilocular pores fairly evenly distributed except on thorax and between abdominal segments. Body setae slender, short to medium in length, distributed in same manner as pores.

Hriotype.-Retalhuleu, Guatemala, 16-Y-45, E. J. Hambleton. Paratypes.-Three, taken with holotype. USNM.

Host Plants-Coffea arabica, uniclentified Compositae.

Distribution.-Costa Rica, EI Salvador, Guatemala.

Costa Rica: Coto, $13-\mathrm{IV}, 20-\mathrm{Y}-57$, E. B. Dixon.

El Salvador: Two mi S. Quetzaltepeque, 17-VIJ-61. M. E. Irwin.

Guatemala: Fietalhuleu, $16-\mathrm{V}-45$, E. J. Hambleton. San Rafael Pie de la Cuesta, Departamento de San Marcos, December 1963, N. Jesus Escobar.

Discussion.- R. compestris is one of the few species with multiple circuli and five-segmented antemmae. Perhaps it is more closely allied to kondonis than to any other species. It is distinguished from the latter by its smaller size, shorter and less abundant body setae. fewer multilocular disk pores, and particularly by its poorly developed anal lobes, each with 3-4 elongate setae instead of $8-10$ as in kondomis.

Rhizoecus chilensis, new species

(Figs. 89-93)
Rhizocens lencosomms (Cockerell): Gonzalez and Char1in, 1998: 112 (misidentification).
Adult Female.-Elongate ovate, narrower toward heacl. Length, $1.07-1.43 \mathrm{~mm}$; width, $0.29-$ 0.58 mm . Antennae six-segmented, closely spaced, average length of segments: I, 34; II, 18 ; III, 28 ; IV, 15 ; V. 18; VI, 44 ; apical ser-
ment not twice as long as wide, with three slender, falcate sensory setae and one shorter, spinelike sensory seta; segment V with one short, slender sensory seta. Interantemnal space less than width of segment I. Eyes rather inconspicuous, weakly pigmented, slightly protuberant. Rostrum of medium size, 68: long, 53 un wide; rostral loop extending to insertion of second pair of legs. Cephalic plate irregularly elongate, reaching base of antennae, about $50 \mu \mathrm{long}, 33 \mu$ wide. Dorsal ostioles inconspicuous, their rims thinly sclerotized.

Legs of medium size. Average length of segments of hind pair: Trochanter, 38; femur, 91 ; tibia, 79 ; tarsus, 50 ; claw, 23 ; claw digitules long, slender, dilated at their tips, extending to or slightly beyond moderately elongate, curved, acute claws.

With one conical circulus about 22 wide at base. Anal lobes undeveloped, without sclerotization, each lobe area with three clongate setae, one about 61 ! long, slightly longer and stouter than remaining two. Anal ring well developed. steucturally distinct, about $68!$ wide, its setae approximately 841 long , much stouter and longer than lobe setae; outer part of anal ring with $26-28$ mostly small, narrow; elongate to oval elongate cells; imner part of ring with 12-16 much larger, iryegular cells lying adjacent to clouded area of large hemispherical cells. Tritubular cerores medium to small, their ducts narrow, few in number, about 20-23 present, more common dorsally. Multilocular disk pores absent. Tubular ducts short, smaller than trilocular pore, occurring in small numbers on both surfaces. Trilocular pores rather evenly distributed, with clear areas more common ventrally. Body setan mostly short. longer on head, and posteriomy on abdominal segments.

Holotype--El Granizo. Olume, Vaparaiso Province. Chile, $5-1 \mathrm{H}-61$, L. Campos; ESNM. Paratypes. Three, same data as holotype, one each. IBM, CCD, and CSNM.

Host Plant.- Cnknown, taken from soil.
Distribution.-Known only from type kecality. Three immature females believed to be this species wore taken 4 km W . of Chergueneo. Caution Province, Chile. 26 TV 65. le R. FT Cionzalez.

Discussion.-This new speries smowhat re-
sembles leucosomus but may be separated from it by its smaller size, narrower body, shape of its rostrum, its longer rostral loop, and more elongate cells of the outer amal ring.

Rhizoecus cyperalis (Hambleton)

(Figs. 94-97)
Mortisonefle coperalis Hambleton, 19f6et: $2 \underline{2}$.
Thizoceus cypewhe: Fervis, 1933: 438; MeKenzie, 1967: 38: (misidentifeation).

Adult Female.-Eroadly cate. Length, 1.421.58 mm ; width, $0.84-1.02 \mathrm{~mm}$. Antennac sixsegmented, widely spaced, average length of segments: I. 37 ; II, 21; III, 34; IV, 20; V, 17; VI, 41; apical segment less than twice as long as wide, with three elongate, moderately stout, weakly tapered, falcate sensory setac and one narower, spinelike sensory seta; segment V with single, shori, stout, almost lanceolate sensory seta. Interantonnal space about equal to combined length of segments IIT-VI. Eyes rather prominent, appearing litile longer than wide. Rostrum elongate, about 75 a long, $42!$ wide; rostral loop not reaching insertion of second pair of legs. (ephalic plate apparently lacking. Dorsal ostioles well developed, their rims thickly sclerotized.

Leas moderately stout, average length of segments of hind pair: Trochanter, 51 ; femur, 122: tibia, 85 ; tarsus. 75 ; claw, 24 ; clatw digitules very shori acute, not reaching middle of weakly curved claws.
(riculus absent. Anal lobes weakly protruding, unsclerotized, ench lobe area with one seta approximately son long and two shorter slender setac. Anal ring about 40 in diameter, its setae 60 p long, as stout as lobe setae; outer part of anal ring with simuate to oval, elongate cells, their number impossible to determine becalte of condition of type. Trifubular cerores of 2 sizes, small and medium, thoir ducts short, stout, at least 20 of mediumsized rerores ocurring dorsatly and submargibally over body serments, majority surrounded by 1 4 body setae; $4-6$ small cerores present rentrally near body margins of posterior abolominal segments. Multilocular disk pors scare ond fise to seven occuring ventrally near vulsa. Tubular ducts small, few in
number, observed near body margins on posterior abdominal segments. Trilocular pores moderately abusdant, evenly distributed. Body setae short, slender, rather sparse.

Holotype.-Santiago de Maria, El Salvador, 20-VIII-44, E. J. Hambleton. Paratypes.Three taken with holotype. USNM.

Host Plant.-Cyperus tenerimus.
Distribution.-Known only from the type locality.

Discussion.-McKenzie (1.967) recorded $c y p$)eralis from Adiantum sp., San Mateo County, Calif., 1955. After close examination of the two rather poor specimens, I am convinced that they were misidentified and confused with mitchardi, which they closely resemble. Furthermore, pritchardi has been taken on the same host, on the same date, and in the same vicinity, and was recorded as such by McKenzie (1967).

This Central American species is closely allied to nemoralis, pritchardi, and subcuperalis, resembling all three in body shape, anal riag, and antennae. The presence of one to four body setae in close proximity to most of the larger tritubular cerores. fewer cerores, and more elongate, tapering, falcate sensory setae separate cyperalis from nomoralis. The latter is larger with fewer anal-lobe setae and more conspicuous body setae. The characters that separate cmperalis from pritchardi are its tubular ducts, more cerores, and absence of small circular pores.

Rhizoecus disjunctus MeKewaic

(Figs. 98-108)
Rhizoccus disjunctus McKenzie, 1967: 38i.
Adult Fenale.-Elongate oval. Length, $0.75-$ 1.43 mm ; width, $0.40-0.56 \mathrm{~mm}$. Antennae sixsegmented, rather short, stout, clavate, closely spaced, average length of segments: I, 22; II, 13 ; III, 21; IV, 13; V, 12; VI, 33 ; apical segment stout, not twice as long as wide, with three long, slender, talcate sensory setae and one spinelike sensory seta near apex; segment V with one much shorter, narrow sensory seta. Interantemnal space less than width of segment I. Eyes hemispherical, pigmented. Rostrum of medinm size, $53!$ long, $40!$ wide; ros-
tral loop not reaching insertion of second pair of legs. Cephalic plate longer than wide, narrow toward apex, about 33μ long. Dorsal ostioles not conspicuous, weakly sclerotized.

Legs moderately short, stout, average length of segments of hind pair: Trochanter, 25 ; femur, 58 ; tibia, 53 ; tarsus, 36 ; claw, 14 ; claw digitules long. slender, dilated at their tips, extending beyond sharp, apically curved claws.

With one conical circulus, about $12!$ wide at base. Anal lobes undeveloped, with small, elongate sclerotized patch between setae, each lobe area with three slender setae, longest about 43!, long, several body setae, usual derm pores and corores. Anal ring 40μ wide, its setae slender slightiy stouter and longer than lobe setae; outer part of anal ring with 12 sinuate cells, many with spicules; inner part of ring with 10 larger, more irregular celts lying adjacent to circle of dark, rounded cells. Bitubular cerores present, their two ducts often lying parallel or appearing to be partially fused. elongate, conical, about $8!-9!!$ long, projecting well above derm, occurring over entire surface but more abundant dorsally across segments and scattered on head. Multilocular disk pores present on both surfaces, 17-28 on venter of posterior abdominal segments, fewer on dorsum in same general area. Tubular ducts about same size as triloculat pores, their rims strongly sclerotized, rather evenly distributed over entire derm. Trilocular pores sparse. Body setae variable in length, not abundant.

Holotype--Corona (Prado Dam), Calif., 27-XII-64, D. R. and J. F. Miller; UCD. Para-types.-Two taken with holotype, one UCD, one USNM.

Host Plants--Eneclia sp.?, Eriogomm fascicmatwm. Eriogomm sp.

Distribution.-California, Mexico.
California: Beamont. 24-X1J-67, D. R. Miller. Corona, 27-XII-64, D. R. and J. F. Miller.

Mexico: Three mi S. Zapotitlam. Puebla, 2-III-72, D. R. Miller and F. D. Parker.

Dircussion.--The elongate, conical bitububar cerores of disionctus separate this unique species from any other Rhizorens in the Western Frmisphere. This type of eroris is similar to the one found in afmidulatus from East Afri-
ca, first discussed by me (1046a). These interesting cermes. referred to by DeLotto (19.5:) and McKenzie (196\%) as "unitubulat pores," are actually bitubular in nature: the two elomgate ducts lie almost parallel. The cerores of disjunctus differ from those of acniculatus by being larger, wider at the surface and more strongly tapered at their apices.

Rhizoecus distinctus (Hambleton)

(Figs. 104-i10)
Morrisonclla distincta Hambleton, 194fa: 24. Rhizoccus distinctus: Ferris, 1973: 440.

Adult Female.-Oval elliptical, broad across middle. Length, $1.28-2.22 \mathrm{~mm}$; width, $0.74-$ 0.81 mm . Antemae six-segmented, strongly geniculate, closely spaced near apex of head, average length of segments: I, 33 : II, 22 ; III, 21; IV, 20; V, 17; VI, 43; segments clothed with long, slender setae, apical segment with three stout, weakly clavate falcate sensory setae and one narrow, elongate, spinelike sensory seta; segment V with one narrow, elongate, curved sensory seta. Interantemal space less than width of antennal segment I. Eyes small, protuberant. pigmented. Rostrum elongate, $66!$ long, $40!$ wide; rostral loop reaching near insertion of second pair of legs. Cephalic plate large, more or less triangulate, about 55,1 long, with seven to eight slender body setae bordering its periphery. Dorsal ostioles inconspicuous, their rims with little sclerotization.

Legs rather short, stout, average length of segments of hind pair: Trochenter, 36 ; femur, 76 ; tibia, 55 ; tarsus, 44 ; claw, 25 ; claw digitules short, setose, less than half the length of claw, latter long, slender, moderately curved beyond middle.

Girculus absent. Amal lobes weakly protruding with heavily sclerotized patch surrounding lobe setae, each lobe area with three elongate setae, longest about $74!t$ long, and several smaller body setae. Anal ring about 55 wide, its setae rather short, averaging about 58 , long, shorter and stouter than lobe setae; outer part of anal ring with 10-12 elongate cells, each with $2-5$ spicules; inner part of ring with 8 larger, irregular elongate cells lying next to darkened area of 10-12 large subcircular cells.

Tritubular cerores large, their ducts stout, 46it wourine rather uniformly on both surtaces. 3 on head. $3-7$ on each body segment. Multiocular disk pores occurring dorsally and ventrally in irregular rows across segments. but more abundant on venter, scarce on head. Tubular ducts ausent. Trilocular pores faty numerous and evenly distributed. Body setae variable in size and length, evonly distributed, some longer setale on head and across abdominal segments.

Holotype--Falls Church. Fa, 14-XI-45, Floyd Andre. Paratypes. Two, one taken with holotype. one Cabin Gohn Bridge, Md.. 27-III00, T. Pergande. CSSMI.

Host Plants.-Andropogon sp., Artemisie rulgaris. Astor sp., Dactulis glomerata. Lespediould cuncata. Malus sp. Qucrens cocainca, Rubus arantus. Solidates sp., Thideus flaws, Yorbasfom thopsus, undentified moss.

Distribution.-Maryland, Virginia.
Maryland: Cabin John Bridge, $27-11 \mathrm{~T}-00$, T . Pergande. Libertytown. 25-VTIT 44, Floyd Andre.

Virginia: Falls Chuch, $20-$ VIIT, $29-\mathrm{X}$, 19 XI-44, Floyd Andre. Mt. Vernon, 3-XII4. Floyd Andre. Purcellville, 10-VI-66, 21-V-68, 21, 23-7ケ-69, 29-X. 5-XII-70, 20-T1-71. E. J. Hambleton.

Discussion.-I have collected this species on 10 diflerent host plants near Purellville, Va. This additional material emabled me to verify the differences between associatus and distimeths. (See discussion on 1. 14.)

Rhizoecus falcifer Kïnekel d'Herculais

(Figs. 111-117)
Rhinocens fulcifry Kannekel d'Freculais, 1878: 193.
Rimersia tovestris Newstend, 189.5: 2133.
hhizuems levensfis (Newstead): Fernalsi, 1003: 113.
fhizocens afreaths Rain, 1015: 0.5.
Thizoccts trcomtus Green, 1n20: 177,
 9?
Rhizerens falcifer: Rau, 19*35: 267; Hambleton, 1946a: 53: Frris, 1053: d4; Williams, 1062: 4t; McKon\%ic, 196t: 389; Fambeton, 1973: 05.
Adult Female.-Elongate oval, rather Jarge. Length, 1.91-4.28 mm; width, 0.50-1.08 mm. Antennac five-segmented, average length of
segments: I, 66; II, 28; III, 51; IV, 41; V, 112; segment I stout, apical segment longest, more than twice as long as wide, with four moderately stont. elongate, tapering, falcate sensory setae and one slender, spinelike sensory seta. Interantennal space about equal to twice length of antennal segment I. Eyes absent. Rostrum 108! long, 68! wide; rostral loop reaching about halfway to insertion of second pair of legs. Cephalic plate irregularly quadrate, about 48 , long, usually with two or three vacuoles. Dorsal ostioles prominent, heavily sclerotized, bordered by numerous body setae and trilocular pores.

Legs normal, size in proportion to body length, average length of segments of hind pair: Trochanter, 73; femur, 184; tibia, 141; tarsus, 98 ; claw, 40 ; claw digitules short, setose, reaching about half the length of moderately long, stout, curved claws.

Circulus absent. Anal lobes roundly protruding. unsclerotized, each lobe area with six elongate, stout setae, longest about 188,4 long, and four to six shorter auxiliary setae. Anal ring relatively small, about $62!1$ in diameter, its setae long, slender, averaging about 102,! long; outer part of ring with 10-12 irregularly sinuate cells, most with spicule; inner part of ring containing 8 larger, irregular, elongate cells lying adjacent to circle of darkened semicircular cells. Tritubular cerores present in 2 sizes, ${ }^{175} 5-200$ present, larger size occurring dorsally on head, thorax, and across abdominal segments; medium-sized cerores present ventrally, few on head and thorax, more numerous across abdominal segments. Multilocular disk pores present on both surfaces, more abundant ventrally, especially above and below vulva and on posterior abdominal segments. elsewhere scattered; dorsally more common on head and sides of thorax. Tubular ducts fairly numerous, present on all segments dorsally and ventrally, but more common ventrally on nosterior abdominal segments. Trilocular pores numerous and evenly distributed. Body setae variable in length, most shorter than $30!$, some about 55!!, some along body margins 1001 long, more abundant and evenly distributed over dorsal surface.

Types.--Location not determined. Probably in Muséum d'Histoire Naturelle, Paris.

Host Plants.-Agapanthus sp., Ajuga sp., Anthemis tinctoria, Aquilegia sp., Buatus sempervirens, Cestrum sp., Chrysanthemum frumtescens, Chrysanthemum sp., Codiacum sp., Coffea arabica, C. liberica, Cumressus sp., Cmodon dactylon, Fragaria sp., Gardenia sp., Heuchera sp., Howeia belmoreana, H. forsteriana, Fris sp., Jasmintm sp., Kalmiu sp., Lotus sp., Lycopersicon esculentum, Ophiopogen sp., Pelargonizm sp., Phoenis roebelenii, Picea abies, Tropasolum majus, Watsonia sp., Zantedeschia aethiopica, various Gramineae, miscellaneous flowering plants, in soil and leaf mold. This species has also been reported from the following hosts in Califormia, but I have not seen specimens: Acacia sp., Anemone hupehensis var, japonica, Aralia sp., Carea' sp., Citrus sinensis, Delphinium sp., Erodirm moschatum, Escallonia Mubra, Fibiscus sp., Ligustrum ovalifolium. Matthiola sp., Petunia sp., Phoenix canariensis, Piper sp., Promus sp., Ribes sp., Syminga vulgaris, Thymus vulgaris, Teronica sp., Titis sp.

Distribution.-California, Florida, Missouri, New Jersey, New York, Dutch Guiana, Mexico.

California: Berkeley, 8-VII-44, E. O. Essig; 15-II-59, A. E. Pritchard; 25-IX-59, L. A. Folson; 17-IV-60, Bill Paul. Davis, 24-V-62, F. E. Strong; 6-VIII-63, H. Lange. El Cerrito, 23-II-60, Lora Wiegmann. Fairfax, 5-V-58, W. Erickson. Gardena, 26-V-58, Hener. Healdsburg, 1-II-62, W. R. Michie; 25-III-65, J. Ogawa. La Jolla, 18-V-63. R. A. Lewis. Los Angeles, 9-VI-17, R. S. Woglum; 17-VII-25, L. E. Myers. Modesto, 5-X-56, G. E. Wilhite. Montebello, 16-IV-31, L. S. Jones. Oakland, 19-VII-39. E. O. Essig; 30-TV-52, G. B. Laing; 29-II-59, A. E. Pritchard. Palo Alto, 25-III-[1], Duncan. Piedmont, 10-V-59, K. S. Hagen. Rio Vista, $14-\mathrm{IX}-64$, W. H. Lange. Sacramento, 27-IV, 8-V-63; 30-IX-67, H. L. McKenzie. Salinas, $1.7-\mathrm{IV}, 19-\mathrm{V}-62$, W. H. Lange and L . Lamini. San Angelmo, 20-VII-59, J. L. Joos. San Jose, 11-I-21, L. R. Cody and E. O. Essig; 15-V-61, G. S. Myers; 13-IV-21, R. D. Hartman; 25-IX-59, W. Allen; 18-X-59. W. Allen. San Rafael, Aug. 1959, R. Hunsinger. Santa Barbara, 31-III-42, J. B. Steinweden and S. Smith. Santa Paula, 14-X-33, E. L. Smith. Santa Rosa, $15-\mathrm{V}-61$, M. E. Imsdale. Vallejo, 13-VII-44, E. O. Essig. Walnut Grove, $10-\mathrm{XI}-$

69, Rogexs. Watsonville, 19-IV-67, L. R. Gillogly. Whittier, 29-VII-33, Stickney.

Florida: Location unknown, specimens collected from a palm originating in Florida, $20-$ XI-53, at station in Iowa, W. S. Craig, collector. Missouri : St. Louis, 13-VI-41, T. E. Birkett. New Jersey: E. Rutherford, 1936, G. Rau. Summit, $3-\mathrm{I}-21$, A. I. Bourne and J. G. Macdonald.

New York: Ithaca, October 1940, 21-II-41, W. G. Bodenstein ; 13-TX-38, W. E. Heming; 14-X-50, C. Johansen; April 1955, J. Naegle.

Dutch Guiana: Surinam, 1932?, G. Bunzli.
Mexico: Location unknown, taken at quarantine, Nogales, Ariz., 4-III-68, G. Ehmi.

Discussion.-Known by the common name "ground mealybug," this species is one of the better known cosmopolitan members of the genus. Although it was described from France and is widely distributed in Europe, it was not discovered in the United States until 1917. Since then it has at times been a troublesome pest.
R. falcifer is the largest species of the genus. It is easily recognized by its five-segmented antemme, the clusters of anal lobe setae, the many tritubular cerores, and lack of circulus. Although considered by some workers to lack tubular ducts, these structures are present in considerable numbers over the entire body surface in mature females. In general appearance, falcifer resembles kondowis. The presence of small bitubular cerores and circuli in the latter separates the two species immediately.

Rhizoecus favatircalus, hew species

(Figs. 118-125)
Adult Female.-Elongate ovate, of medium size. Length, 1.28 mm ; width, 0.60 mm . Antennae six-segmented, rather short, widely spaced, average length of segments: 1,$33 ; 11,15 ;$ II 22 ; IV, 11 ; V, 11 ; YI, 33 ; apical serment confshaped, longer than wide, with three short, stout, weakly clavate, falcate sensory satae with tapered apices and one slender, spinelike sensory seta; segment V with one fairly elongate, clavate sensory seta. Interantennal space equal to combined length of segments IV, V, and VI . Eves prominent, globose, not strongly pis-
mented. Rostrum of medium size, elongate, 53 !! long, 394 wide; rostral loop extending almost to insertion of second pair of legs. Cephalic plate triangulate, its base about $38 \mu-44 \mu$ wide, with three vacuoles and several body setae. Dorsal ostioles inconspicuous, lightly selerotized.

Legs small, average length of segments of hind pair: Trochanter, 34 ; femur, 73 ; tibia, 68; tarsus, 40 ; claw, 19; claw digitules long, slender, their tips dilated, reaching to or slightly beyond moderately stout, curved claws.

With one circulus, about 201 wide at base, its orifice faveolate. Anal lobes undeveloped, each lobe area with small sclerotized patch between elongate sctac, latter broken at their bases. Anal ring about 55 , in diameter, its setae averaging about $70!$ long; cells of outer part of ring varying in size and shape, irregularly ovate, about one-half of 28 cells with spicules; imer ring cells fewer in number and varying greatly in shape and arrangement, lying next to contiguous ring of large darkened cells. Tritubular cerores of medium size, 48-55 evenly distributed dorsally and ventrally, not more than 4 or 5 to an abdominal segment. Multilocular disk pores absent. Tubular ducts smaller in diameter than trilocular pore, generally distributed over entire derm. Trilocular pores most numerous dorsally, in some areas sparse on venter. Body setae mostly short, moderately sparse.

Holotype-Coto, Costa Rica, 20-V-57, E. B. Dixon. Paratype.-One, taken with holotype. USNM.

Host Plant.-Crnknown, specimens taken in soil under Coffeca arabica.

Distribution.-Known only from type locality.
Discussion.-This species closely resembles wrobicus, which is also found on coffee roots, but farariculus differs by possessing long claw digitules, shorter antemae, and stouter falcate setae. The smaller legs and shape of the anal ring cells of favacircmlus also are distinctive.

Rhizoecus floridanus Hambleton

(Figs. 126-132)
Rhicorens foridums Hambeton, 1973: 67.
Aduft Female.-Broadly ovate, narrower in area of head and thorax. Length, $1.20-1.63 \mathrm{~mm}$;
width, $0.65-0.80 \mathrm{~mm}$. Antennae six-segmented, of medium size, average length of segments: I, 31 ; II, 19 ; III, 25 ; IV, 17 ; V, 16 ; VI, 37 ; apical segment slightly less than twice as long as wide, with three moderately long, stout, falcate sensory setae and one slender, acute sensory seta; penultimate segment with one smaller, rather elongate, weakly clavate sensory seta. Interantennal space equal to about twice length of segment I. Eyes absent. Rostrum relatively short, measuring about 57μ long, 40μ wide; rostral loop extending to or near insertion of second pair of legs. Cephalic plate irregularly triangulate to quadrate, wider posteriorly, about 38μ across its base, with indistinct vacmoles. Dorsal ostioles weakly sclerotized, inconspicuous.

Legs of medium size, average length of segments of hind pair: Trochanter, 37 ; femur, 81 ; tibia, 69; tarsus. 51; claw, 22; claw digitules long, their tips dilated, surpassing narrow, elongate, weakly curved claws.

With one conical circulus, variable in size, width at base varying from $21!$ to $35!$, its apex finely faveolate. Anal Iobes undeveloped, each lobe area with small, narrow sclerotized patch between three elongate setae, longest measuring about 60μ long. Anal ring about 60μ in diameter, its setae considerably longer and stouter than lobe setae, averaging about $87!$ long; outer anal-ring cells large, diversiform, 24-33 present, mostly isolated; inner part of anal ring with $14-20$ cells of similar size and shape lying adjacent to imer darkened area of semicircular cells. Tyitubular cerores small. walls of their individual ducts almost parallel, $36-40$ present dorsally and ventrally, most abundant on abdomen and rather evenly distributed elsewhere. Multilocular disk pores absent. Tubular ducts small, widely scattered on both surfaces but absent from clorsal surface of head. Tribocular pores fairly evenly distributed. Body setae mostly short.

Holotype.-Pembroke, Fla., 2-VחI-67, H. G. Schmidt. Paratypes.-Many from numerous localities in Florida and from Spaulding County, Ga. Holotype and five paratypes USNM; two paratypes each BM, UCD, UG, VPI; remaining paratypes FSCA.

Host Plants.-Aechmea chantinii, A. orlandiana, Andropogon virginichs, Anthemis sp..

Aralia sp., Aratcaria excelsa, Arecastrum romanzoffianum, Bambusa sp., Billbergia sp., Buxus sp., Calliandra sp., Callistemon vigidde, Carissa grandifora, Carissa sp., Chrysalidocarpus lutescens, Citrus mitis, Citrus sp., Conocarpus erecta, Cortaderia selloana, Cuphea sp., Dieffenbachia sp., Distichlis spicata, Dizygotheca elegantissima, Dracaena marginata, Eremochloa ophiuroides, Eugeria sp., Gardenia thunbergia, Hoya sp., Ilex comuta cy. Burfordii, I. opaca, I. rotunda, I. vomitoria, Ixora sp., Jasminum sp., Lachnanthes tinctoria, Leutophyllum frutescens, Panicum sp., Philodendron selloum, Philoxerus vermicularis, Phoenia: canariensis, Pluchea sp., Prums angustifolia, Pyracantha sp., Quercus sp., Rhododendron sp., Sida sp., Viburnum suspensum, undetermined Gramineae, Palmaceae, from rotting wood of dead maple.

Distribution.-Florida, Georgia, Indiana, Maryland.

Florida: Alva, 17-X-72, J. C. Denmark, Apopka, 11, 15-II-71, C. L. Speaker; 14, 19-VI-72, F. L. Ware; 10-XI-72, P. Gibson and W. H. Pierce; 3-VIII-72. J. F. Knauss. Arcadia, 26-II-71, G. P. Lamb. Boynton Beach, 4-I-73, W. H. Pierce. Bradenton, 5-I-71, J. R. McFarlin; 11-I-71, S. L. Poe. Casselberry, 26-XII63, C. O. Youtsey. Clearwater, 12-II-71, E. W. Miller. Cudjoe Key, 2-I-73, E. J. Hambleton. Dade City, 30-IX-72, 15-XI-72, W. H. Pierce. Delray Beach, 11, 15-II-71, W. E. Wyles and R. A. Long, Eau Gallie, 8-II-71, H. C. Levan. Englewood, 29-VI-71, C. J. Bickner. Fairvilla, 2, 22-TI-71, 21-XIJ-71, F. L. Ware. Flamingo, 18-II-70. E. J. Hambleton. Ft. Meyers, 31-I73, W. A. Padgett. Gainesville, 19-IV-67. G. W. Dekle; 29-III-67, G. W. Dekie and C. Lvons. Gillette, 23-IV, 23-V-71, C. J. Bickner. Grant, 19-II-71, H. C. Levan. Key West, 1-I73, E. J. Hambleton. Lakeland, 6-VI-69, J. W. McLeod. Larero, 10, 11-II-71, C. K. Hickman et al. Lockhart, 30-XII-63, 6-I-64, R. J. Griffith. Mango, 19-IT-71, E. R. Simmons. Naples. 4-III-71, W. T. Walsh and W. A Padgett. No Name Key, 21-X-72. W. H. Pierce. N. Miami Beach. 18-XII-72, E. J. Hambleton. Oneca, $27-\mathrm{V}-71$, J. R. McFarlin. Orlando, $20-\mathrm{II}-69$, F. I. Ware ; $10-\mathrm{II}-71$, W. W. Smith and E. R. Fatic; 21-V-71, F. E. Ware: $26-\mathrm{II}-71, \mathrm{D}$. A. Grady and E. W. Ensign; 31-VII-72, F. L.

Ware. Osprey, 5, 10, 15-II-71, J. R. MeFarlin and C. J. Bickner. Palma Sola, 19-X゙-72. C. J. Bickner. Palmetto, 25-II-71, J. R. MeFarlin. Pembroke. 14-IT, 2-YIII-67, H. G. Schmidt. Pinellas Park, 18-II-71, C. K. Hickman. Plant City, 19-II-71, D. A. Taughn. Plymouth, 29-I71, W. IV. Smith and E. R. Fatic: 19-T-71. H. M. Yan Pelt; 12-X-71, H. M. Tan Pelt; $19-\overline{\mathrm{X}}-72$, P. Gibson. Punta Gorda, $16-\mathrm{Y}-71$, G. P. Lamb. Sarasota, 22-II-71, J. R. McFaxin and C. J. Bickner. Sebastian Inlet, 12-II-71. H. C. Levan. Seffner, 12-II, 17-TIII-71. D. A. Vaughn. Tall Timbers, 12-XII-69, H. H. Tippins. Tampa, 3, 15-II-71, S. A. Fuller and C. W. Hale: $25-$ VIII-72, C. W. Hale. Terra Ceia, 15, 18-7X-72, J. R. McFarlin. Yineland, 29-XI-72, F. L. Ware. W. Melboume, 12-II-71. H. C. Levan. W. Palm Beach, 11, 15-II-71, 4-III-71, M. L. Messec. Windermere, 28-XI-73, F. L. Ware. Winter Haven, 11-VIIr-68, H. C. Burnett.

Georgia: Spaulding County, 16-V-68, H. H. Tippins.

Indiana: Bluffton, Wrells County, 19-XII-72. R. F. Wilkey.

Maryland: Grasonville (Kent Narrows), 24-IX-42, H. S. McComnell.

Discussion.-R. floridanus most closely resembles tropicalis from Guatemala but is easily recognized by its more elongate, apical antennal segment, more slender falcate setae, and larger and more numerous triangulate to quadrate anal-ring cells.

Rhizoecus globocults (Hamb]eton), new combination

(Figs. 133-140)
Mowisonclla globocula Hambicton, 104Ga: $2 \overline{5}$.
Adult Female.-Oval elongate, moderately stout. Length, $1.05-1.36 \mathrm{~mm}$; width, $0.60-0.76$ mm . Antennae six-segmented, average length of segments: I, 37; II, 22; III, 26; IV, 21; V, 19; VI, 45; apical segment longer than wide, with three medium-sized, gently tapered, falcate sensory setae and one narrow, elongate, spinelike sensory seta; segment V with one narrow, elongate sensory seta. Interantennal space equal to combined length of segments III, IV, and V. Eyes prominent, globular, weakly pig-
mented. and constricted at their bases. Rostrum of medium size, about $73!$ long. $48!1$ wide; rostral Joop extending to or slighty beyond insertion of second pair of legs. Cephalic plate irregutar in shape, 30 u- $40!1$ wide, with two or three racuoles near its center. Dorsal ostioles wather prominent. their rims rather heavilyselerotized.

Legs well developed. averate length of segments of hind pair: Trochanter, 50 : femur. 115 ; tibia. 88; tarsus. 64: claw, 28; chaw digitules short, setose, not reaching middle of long. narrow. weakly curved chaws.

Circulus absent, Anal lobes slightly profruded and weakly sclerotized. each with three slender setae areraging about $50!1$ long, Anal ring about $47!$ in diameter, its structure not clearly defined, ring setae slightly stouter than amal-lobe setae, longer setae at least 580 long; celnular structure of outer part of ring appearing narrow and elongate, possibly with less than 13 cells: imer part of ring with larger. undifferentiated cells, Tritubular cerores of 2 sizes, $16-18$ of large size on dorsum, 6 along each lateral margin. 4-6 along middorsal line: small to medium-sized cerores occurring on renter of abdominal segments VI-VIII. Multilocular disk pores of 6 or 7 loculi confined to venter of posterior abdominal segments in area of vulva, 18-25 present. Medioventral pores on venter, usually occurring in two groups, one on abdominal segment VT with none to five pores, other posterior to it on abdominal segment VII with tour to nine pores. Trilocular pores uniformly distributed but not abundant. Body setae rather fine, sparsely distributed.

Holotype- Non Pareil Estate, Trinidad, British West Mndies, 3-III-44, A. H. Strickland. Paratypes.-Two taken with holotype; five, Marper Estate, Trimidad, 5-I-44, A. IT. Strickland; one, Trinidad. 6-VI-35, E. J. H. Berwiek. USNM.

Host Plants-Cofica arobica, Theobroma cacan.

Distribution.-Known only from the type locality.

Discussion.-This species runs parallel with theobromar in the key to the New World species of Rhizorcus. Although both , pecies attack cacao and are rather unique in having medioventral pores, globoculus is readily distin-
guished from the former by its large globular eyes, its multilocular disk pores of six or seven loculi. and the more elongate, tapering falcate setae.

Rhizoecus gracilis McKenzie

(Eigs. 141-149)
Rhizoccu: gracilis McKenzic, 1901: 4.5; MeNenzie, 10fi: 392.

Adult Female.-Elongate oval. Length, $0.9 \overline{0}-$ 2.07 mm ; width, $0.30-0.83 \mathrm{~mm}$. Antemae sixsegmented, moderately short, stout, average length of segments: I, 32; II, 18; III, 20; IV. 17; V, 15; VI, 38; apical segment slightly less than twice as long as wide, with three mediumsized. rather slender, falcate sensory setae and one shorter, tapering, spinelike sensory seta; segment V with one much shorter, narrow sensory seta. Interantemal space equal to about width of basal antenmal segment. Eyes hemispherical, not strongly pigmented. Rostrum relatively small, $66!$ long. $42!$ wide; rostral loop extending to about halfway to insertion of second pair of legs. Cephalic plate slightly longer than wide, with two vacuoles and four body setae. Dorsal ostioles not strongly developed, their rims thinly sclerotized and weakiy pigmented.

Legs rather small, stont, average length of segments of hind pair: Trochanter, 35 ; femur, 81 ; tibia, 72 ; tarsus, 48 ; claw, 15 ; claw digitules long, dilated at their tips, extending beyond short. stout claws.

With one broadly truncated circulus, width across its base about $20\{1-28 p$, its orifice reticulated. Anal lobes undeveloped, each lobe area with small, elongate sclerotized patch and three elongate setae subequal in length, longest about 51μ long. Anal ring approximately 48μ wide, its setae averaging $584 /$ long, stouter and somewhat longer than lobe setae; outer part of anal ring with $14-16$ sinuate to oval, elongate cells, each with long spicule; inner part of ring with at least 10 large, irregular, elongate cells lying adjacent to welldefined clouded area of semicircular cells. Bitubular cerores small, moderately stout, their ducts about 7β long, slightly tapered and divaricated, widely distributed dorsally, $5-8$ on head. 25-28 on thorax, usually 4-7 spread across each
abdominal segment, occasionally observed rentrally new body margins. Multilocular disk pores variable in number. 11-64 located posteriorly on venter from apex to abdominal segment VI. few occurring dorsally on abdomen. Tubular ducts short, stout, readily observed. scattered dorsally and ventrally orer most of derm. Trilocular poees evenly distributed except between serments where they are sparse or missing. Body setae short, slender. uniformly distributed.

Holotype-(cahill Ridge. Calif.. $7-\mathrm{V}^{-60}$. D. W. Price. Paratypes-Several taken with holotyper, alsu from 2 mi W . of Independence, 6- T_{-} 69. A. S. Menke and F. D. Parker and at Susamville, Calif., $17-\mathrm{T}^{-58}$. R. W. Gerhardt. Holotypes and paratypes C'CD; paratypes CDA. TSNM.

Host Plants-Arhillet mill folmm. Artemisia raliburnica, Artemisia sp., A. tridentata, Atripher sp.. Bricleclia sp.. Chrosothrmmus Fiscilifloms, Eriogomnon heraclonides, Eriophyllim confertiflorm, Franseria chamissonis, frimblia compomm, Gutiervezia sp., Haplopapm, camms, H. spimulosus ?, undetermined Cactaceae. Chenapodiaceac, Compositae, Gramineae, Leguminoseae, Loranthaceae, in soil, under rocks, beneath chaparral.

Distribution.-Arizona, California. Colorado. Idaho. Montana, New Mexico, Oklahoma, Oregon. Texas, Virginia, Mexico.

Arizona: Bisbee, 2-VIII-66, D. R. Miller. Five mi Xe. Douglas, 2-VIII-66. D. R. Miller.

Califormia: Barrego Springs, 27-I-65. D. R. Miller. Cahill Ridge. 7-T-60, D. W. Price. Coches Prietos, Santa Cruz Island, 18-YI-67, 10-V-68, D. R. Miller. Two mi W. of Independence, $6-T^{-}-60$, A. S. Menke and F. D. Parker. Fifteen mi N. of Kramer Junction, 28-XII-64, D. R. and J. F. Miller. Two mi N. of Lompoc, 27-VI-66, D. R. Miller. Merced, 18-I-67, T. R. Haig. Monitor Pass. 9-VIII-64, D. R. Miller. Ten mi N. of Pescadero, 8-IT-64, D. R. Miller and J. A. Froebe. Susanville, 17-V-58, W. Gerhardt. Trabuco Canyon, 28-III-64, D. R. Miller and J. A. Froebe. Talley Center, 27 -III64, D. R. Miller and J. A. Froebe. Warner Springs, 26-I-65, D. R. Miller. W. Patterson, 27-IV-66, D. R. Miller.

Colorado: Holly, 20-VI-70, D. R. Miller. Lamar, $30-\mathrm{VI}-70$, D. R. Miller.

Idaho: Graters of the Moon, 8-VIII-67, D. R. Miller and D. S. Horning. Five mi E. of Montpelier, 3-VIII-67, D. R. Miller and D. S. Horning. Twenty mi N. of Spencer, 5-VIII-6T, D. R. Miller and D. S. Horning.

Montana: Boyes, 11-VIII-70, D. R. Miller. Nine mi SE. Livingston, 28-VIII-64, D. R. and J. F. Miller.

New Mexico: Carrizozo, 6-YIII-66, D. R. Miller. Five mi NW. Cedarvalle, 6-VIII-66, D. R. Miller. Three mi S. Oscuro, 5-VIII-66, D. R. Miller. Seven mi W. of Silver City, 6-IX-68, D. R. Miller and J. E. Lauck.

Oklahoma: N. of Boise City, 30-VI-70. D. R. Miller.

Oregon: Bandon, 6-VIII-68, D. R. Miller and R. F. Denno. Twelve mi SW. of Plush, 3-TIII-68, D. R. Miller and R. F. Denno. Ten mi W. of Vale, 4 -VIII-70, D. R. Miller.

Texas: Dumas, I-VII-70, D. R. Miller.
Virginia: Mountain Lake, $24-X-70$, D. R. Miller.

Mexico: Apizaco, Tlaxcala, 16-VII-67, D. R. Miller and J. Villanueva B. Jahapa, Veral Cruz, 16-VII-67, D. R. Miller and J. Villanueva B. Fifteen km SW. of Mirallores, Vera Cruz, 13-VII-67, D. R. Miller and J. Villanueva B. Seven $1-\mathrm{m}$ N. of Perote, Vera Cruz, 28-H1-72, and 7 km SUF. of Perote, 29-II-72, D. R. Miller and F. D. Parker. Texcoco, 12-VII-67, D. R. Miller and J. Villanueva B.

Discussion.-Since its discovery in California in 1960, frachis has been collected in nine additional States and Mexico owing largely to the intensive and productive collecting by D. R. Miller and his associates. Except for seven locality records previously reported by Mekenzie (106~) for California, the distribution records listed here are new. With its recent discovery in Virginia, fracilis appears to be the most widely distributed indirenous species in the United States.

The species most closely resembling fracilis is totomicapomus from Guatemata. The falcate sensory setae of aracilis are slender and taper apically, whereas those of fotonicalanns aro somewhat stouter and weakly clavale distally. In fracilis the rostrum is sightly longer and there appear to br fewer litubular cerores than in totomicapanus.

Rhizoecus graminis (Hambleton)

(Figs. 150-154)
Momponclat framinis Hambleton, 194aa: 28.
Rhizocons arominis: Ferris, 19ids: 446; Mekenzie, 1967: 39.4.

Adult Female.-Oval elongate. Length, 1.261.85 mm ; width, $0.54-0.76 \mathrm{~mm}$. Antennae sissegmented, elongate, segments I and VI rather stout, length of serments as follows: I, 57 ; II, 26; III, 37 ; IV, 27 ; Y, 28; VI, 70 ; aplical segment robust, about twice as long as wide, with ihnce moderately stout, falcate sensory setae, tapering gradually apically, and one much narrower, spinelike sensory setal; segment V with one much shortel, stout, clavate sensory seta marow at its base. Eyes rather prominent, protuberant, lightly pigmented. Rostrum elongate, 964 long, $61!$ wide; rostra! loop reaching insertion of second pair of legs. Cephalic plate relatively small, with two vacuoles and two body setae. Dorsal ostioles conspicuous, their rims heavily sclerotized and sarrounded by numarous body setae and pores.

Legs well developed, clongate, average length of serments of hind pair: Trochanter, 63; femur, 125; tibia, 122 ; tarsus, 73; claw, 28; claw digitules very short, selose, less than hall the length of stout, elongute, curved claws.

Without circulus. Anal lobes wakly protruded, partially sclerotized, each lobe area with threc elongate selat, Iongest about 88 ! long, and several shorter body setae; triloculay pores crow ded at base of larger setae. Anal ring about sin in diameter, its structure not clearly visible, its setac averaging about 67: long, slighty narower and much shorter than longer lober vetac; outer part of anal ring apparentis. With 14 . 16 small, clongate cells; inner part of ring with cells larger and less numerous. Tritubular ceroves of 2 sizos present, 20 of larger sizo occurring dorsally, 6 atong middusal line from head to abdominal segment. VI. 7 along eath bedy magein or submactimally; smali tri1 ububar cerores with about 25 present ventrally, 4 on tharex, 21 distributed across abolominal serments IV.IX. Mutalocular disk pores numerots, present dowsally and ventrally, more profuse ventrally in bands across abolominal sugments. Tobutar ducts small, their collars werotigerl, slightly lareser in diameter then tri-
locular pore, commonly observed ventrally on posterior abdominal segments. Mushroom bodies present dorsally and ventrally. Trilocular pores apparently with tiny prongs, rather uniformly distributed except scarce on thorax. Body setae variable in size, distributed in same manner as trilocular pores.

Holotype.-Oakland, Calif., 29-I-38, E. O. Essig. Paratypes.-Twelve taken with holotype, 7 on one slide with holotype, 5 on 2 additional slides. USNM.

Host Plant.-Agrostis sp.
Distribution.-California. The type locality, and Colma, $12-X I I-63$, C. S. Koehler:

Discussion.-Although R. graminis keys to the same couplet as latus from Ecuador, the two species are easily separated. The antemae and leg segments of framinis are much larger, the eyes less protuberant, and the number of multilocular disk pores is greater than in latus.

Rhizoecus insularis. new species

(Figs. 155-158)
Adult Female.-Elongate oval. Length, 1.24 mm ; width, 0.65 mm . Antennae six-segmented, of average size, segments measuring as follows: I, 22; II, 17 ; III, $25 ;$ IV, 13 ; V, 14; V1, 33; apical segment less than twice as long as wide, with three moderately stout, elongate, falcate sensory setae and one slender, spinelike sensory seta; segment V with one shorter, narrow sensory seta. Interantemmal space equal to combined length of segments I and II. Eyes semicircular, rather prominent. Rostrum small, $47,!$ long, $44!$ wide; rostral loop extending to about insertion of second pair of legs. Cephatic plate not distinguishable. Dorsal ostioles inconspicuous, their rims very thinly sclerotized.

Legs short, segments of hind legs measuring as follows: Trochanter, 35 ; femur, 72; tibia, 68; tarsus, 46 ; hind chaw missing; claw digitules long. siender, their tips dilated, reaching slightly beyond claws.

With one conical, weakly faveolate circulus measuring about $16!t$ at its base. Anal lobes slightly or not developed, each lobe area with three small, delicate setae, longest about 60! long. Anal ring clearly defined, about $55!1$ wide. its setae averaging approximately $66!1$ long.
much stouter than lobe setae; outer part of anal ring with 28 large, subquadrate to triangulate cells, mostly touching end to end; imner part of ring with $10-12$ irregular, more elongate cells lying adjacent to darkened atea of cellular structure. Tritubular cerores small, their ducts narrow, elongate, projecting more than onehalf their length above body surface. 55-60 of them occurring on both surfaces, widely distributed, as many as 6 per abdominal segment. Mutilocular disk pores absent. Tubular ducts small, few in number, observed more readily along body margins. Trilocular pores moderately abundant, scattered. Body setae short, ineonspicuous.

Holotype.-Darwin Research Station, Galapagos Islands, $30-\mathrm{I}-64$, R. O. Schuster; UCD.

Host Plant.-Hippomane mancinella.
Distribution.-Known only from the type Iocality.

Discussion.-At least three species of Rhizoccus are now known from the Galapagos Islands: latus, insularis, and a third apparently undescribed species of which only an immature female has been seen. The large cellular structure of the anal ring, the small rostrum, and number and size of the tritubular cerores are distinguishing features of insularis.

Rhizoecus kondonis Kuwana

(Figs. 1.59-1.66)
Rhizocens hondonis Kuwama, 1923: 3.5; Hanbleton, 16that 5(f; Fervis, 1953: 448; MeKenzie, 1960b: 7.49; MeKenzie, 1967: 394; Kuwai and Takagi, 1!71: 17T.
Whizocths spinostas MeKenzie, 10600: T.j3; Mekenzie, 106i: 404. NEW SYNONYMY,

Adult Female. - Elongate oval. Length, 1.582.24 mm ; width, $0.62-0.92 \mathrm{~mm}$. Antenna fivesegmented, moderately stout, placed near apex of head, segments with following measurements: I, 55 ; 11.34 ; LLI, 38 ; IV, 25 ; V, 95 ; apical segment almost three times as long as wide, sament I very stout, with four relatively stont, short, weakly tapered, faleate sensory setale and one narow, elongate, spinelike seta gently curved. Interantennal space less than width of segment i. Eyes absent. Rostrum averaging about 75 a long, 53,1 wide; rostual loop reaching
almost to insertion of second pair of legs. Cephalic plate occasionally obscure, wider than long, triangulate, with 2 small vacuoles near its center and 8-10 short setae along or near its border. Dorsal ostioles well developed, strongly sclerotized, and surrounded by numerous setae and pores.

Legs large, well developed, average length of "segments of hind pair: Trochanter, 59 ; femur, 137 ; tibia, 109 ; tarsus, 81 ; claw, 34 ; claw digitules very short, acute, less than half the length of slender, curved claws.

Usually with two truncate circuli, smaller one on abdominal segment III, one on segment IV averaging about 29,1 in diameter, both circuli with thinly sclerotized orifices and some reticulation. Anal lobes well developed, roundly protruding, apparently unsclerotized, each with cluster of $8-10$ elongate setae, varying in length, longest about 98μ long. Anal ring about 54μ in diameter, well differentiated, its setae averaging about 60μ long, more slender than largest lobe setae; outer part of anal ring with 18-20 fairly uniform, oval, elongate cells, each with spicule; inner part of ring made up of about 10 larger, more elongate, and irregular cells, clouded area with little or no visible design. Bitubular cerores small, each with 2 ducts arising from sclerotized cone with oval-shaped base, $25-30$ uniformly distributed on dorsum. Multilocular disk pores concentrated ventrally in area of vulva and from segment VII posteriorly to apex, absent elsewhere, 65-106 present. Tubular ducts present on both surfaces but most common on abdomen, their diameter about size of trilocular pore. Trilocular pores uniformly distributed over most of derm. Body setae numerous, variable in length, some measuring 100رt long.

Types.-According to S . Takagi (personal communication), Kuwana's types of kondonis were probably lost in a fire following an earthquake in Tokyo, Sept. 1, 1923. Two topotypes taken on roots of orange, Wakayama, Japan, in November 1926 and identified by Kuwana, formerly a part of the Stickney collection, are in the USNM. The types of R. spinosus are in UCD.

Host Plants.-Carex sp.?, Celtis occitlentalis, Citrus sp., Coffea arabica, Fragaria sp., Ligust${ }^{2} \mathrm{~mm}$ sp., Medicago sativa, Nerium sp., Pe-
largonimm inquinans, Portulaca grandifora, Promus sp., Rosa sp., Rumer sp., Scabiosa sp., Stellaria media, Watsonia sp., Ieaf mold, decaying log.

Distribution.-California, Guatemala.
California: Berkeley, 27-X-28, E. O. Essig. Butte County, $15-\mathrm{X}-62$, M. Morse. Clarksburg, $23-\mathrm{XI}-60$, V. E. Berton. Davis, $12-\mathrm{XI}-58$, L. M. Smith ; 9-XI-60, D. W. Price and R. O. Schuster; 15-X-65, Mrs. Rose. Two mi N. of Dixon, $11-\mathrm{V}-66$, A. G. Gentile. Healdsburg, 12-I-62, P. F. Wright. Hopland, 2-VIII-67, T. Erickson. Knight's Landing, 24-IV-59, F. C. Raney. Menlo Park, 11-III-21, G. F. Ferris. Mix Canyon, 25-VIII-60, R. O. Schuster. Placer County between Wheatiand and Newcastie, 26-IX-62, V. Marble. Placerville, 11-II-44, M. Austin, Sacramento, 8-V-63, H. L. McKenzie. St. Helena, 12 mi N. of city, 8-IV-61, F. C. Raney. San Jose, 10-XII-58, A. E. Pritchard. San Leandro, 9-VI-59, A. E. Pritchard. Santa Monica, 18-IV-40, in quarantine from St. Helena. Santa Rosa, 7-XI-58, B. Houston. Stockton, 3-XI-70, J. Gianelli. Yuba City, 26-V-59, K. Uriu. Two mi S. of Yuba City, 23-III-62, L. M. Smith.

Guatemala: San Marcos, San Marcos Province, 4-XI-63, N. Escobar.

Discussinn.-The distribution of kondonis in the United States is restricted to California, where it has become a pest of considerable importance (McKenzie, 1960b). Its presence in Guatemala rnay indicate a wider distribution in the hemisphere than records signify.

Kuwai and Takagi (1971) have called attention to some discrepancies between Japanese specimens of kondonis and the descriptions and figures given by Ferris (1053) and McKenzie (1907). Ferris' indequate illustration and diagnosis of hondonis apparently mislead McKenzie when he (19606) prepared the description of spinosus. No mention was made of its similarity to the Japanese species until 1967.

I have carefully checked the types and nine additional specimens labeled spinosus and find no difierence between them and those labeled kondonis. The type specimen of spinosus has what appears to be a poorly defined and weakly sclerotized circulus on segment III in addition to the normal larger one on segment IV. Occasionally only a single circulus may be present in
species normally having multiple circuli. Of the 95 specimens of kondonis studied, 35 were immature females, all with a single circulus. One specimen identified by McKenzie as spinosus has two circuli. the normal number for kondonis. Since there appear to be no consistent differences between the two, I consider them the same, and spinosus thus becomes a junior synonym of kondonis.

The roundly protruding anal lobes beset with numerous elongate setae, the normal presence of two circuli in the adult female, the fivesegmented antennae, and bitubular cerores are important distinguishing characters of kondonis.

Rhizoecus latus (Hambleton), new combination

(Figs. 167-174)
Worrisonclla lata Hambleton, 1946a: 30.
Adult Female.-Broadly ovate. Length, 1.351.61 mm ; width, $0.82-1.07 \mathrm{~mm}$. Antemae sixsegmented, widely spaced near apex of head, segments measuring as follows: I, 38; II, 20 ; III, 25; IV, 20 ; V, 17 ; VI, 45 ; apical segment tapered, with three moderately stout, falcate sensory setae and one elongate, slencler. acute sensory seta; segment V with one elongate, slender sensory seta. Interantennal space equal to combined length of four distal antennal segments. Eyes prominent, protuberant, pigmented, slightly longer than wide. Rostrum of medium size, $75!$ long, $48!$ wide; rostral loop extending to beyond halfway to insertion of second pair of legs. Cephalic plate small, triangulate to quadrate, with indistinct vacuoles and body seta on each laterocephalic margin. Dorsal ostioles conspicuous, their rims thickly sclerotized.

Legs of normal size, averag size of segments of hind pair: Trochanter, 50 ; femur, 107 ; tibia, 80 ; tarsus, 64; claw, 26 ; claw digitules short, setose, reaching almost to middle of fairly stout, weakly curved claws.

Circulus absent. Anal lobes slightly prominent, each sclerotized and with one long and two shorter elongate setae, longest about 80 85, long, and several auxiliary setae. Anal ring rather small, about 41,1 in diameter, its setae
about 60,1 long. slightly stouter and longer than shorter lobe setae; outer part of anal ring with 10-12 elongate, oval cells, each with spicule; inner part of ring with irregularly elongate, somewhat larger cells lying adjacent to concentric ring of large, ovate, darkened cells. Tritubular cerores of 2 sizes, larger size confined to dorsum, I on head, 5 on thorax, 5 on abdomen; 10-12 medium-sized cerores, most occurring on venter of posterior abdominal segments. Multilocular disk pores present on both surfaces, at least 50 observed ventrally from apex of abdomen to abdominal segment YII. elsewhere very few scattered widely on head, thorax, and abdomen. Tubular ducts present, their collars slightly larger in diameter than a trilocular pore, most common ventrally but also present dorsally. Trilocular pores sparse, uniformly distributed. Body setae sparse, mostly short but few longer ones on head and along body margins.

Holotype.-Pichilingue, Ecuador, 2-X-44, E. J. Hambleton. Paratypes.-Five taken with holotype. USNM.

Host Plants.-Hippomane mancinella, undetermined Gramineae.

Distribution.-Ecuador, Galapagos Islands.
Ecuador: From the type locality.
Galapagos Islands : Darwin Research Station, Santa Cruz Island, 25-I, 30-I-64, R. O. Schuster.

Discussion.-Siateen specimens from an undetermined host taken in the Galapagos Islands answer the description of latus but differ in the following respects: The largest adult female measures 1.43 mm , whereas most specimens consist of newly emerged females with nondistended bodies that measure less than 1.00 mm in length; the rostrum is shorter, more rounded at its apex; the sensory seta on antennal segment V is weakly clavate apically. In another collection from the same locality, taken on Hippomane mancinella, two specimens of latus. were taken with the species insularis.

Rhizoecus leucosomus (Cockerell)

(Figs. 175-181)
Ripersiella lencosond Cockerell, 1001: 16t).
Riporsiclla lencosoma: Fernald, 1903: 115; Bueker, 1931: 151; Fambleton, 1946a: 66.

Rhizoccus leucosomus: Ferris, 1953: 450; McKenzic, 1967: 398.
Rhizoccus cacticans (Hambleton): McKenzie, 1967: 400 (misidentification in part).
Adult Female.-Oval elongate, moderately stout. Length, $1.60-2.88 \mathrm{~mm}$; width, $0.70-1.55$ mm . Antennae six-segmented, rather widely spaced; segments in following proportions: I, 34 ; II, 24; III, 34 : IV, 18 ; V, 20; VI, 53 ; apical segment seldom twice as long as wide, with three elongate, medium-sized, falcate sensory setae and one narrow, spinelike sensory seta; segment V with one shorter but elongate sensory seta. Interantennal space equal to combined length of two apical segments. Eyes comparatively small, not strongly pigmented, slightly protuberant. Rostrum short, stout, averaging about 74μ long, 64μ wide; rostral loop seldom reaching halfway to insertion of second pair of legs. Cephalic plate fairly large, longer than wide, about 45 ap long, with two large vacuoles, and usually bordered by three or four setae. Dorsal ostioles plainly evident, weakly sclerntized.

Legs of average size, segments of hind pair measuring as follows: Trochanter, 48; femur, 122 ; tibia, 104 ; tarsus, 63 ; claw, 25 ; claw digitules elongate, dilated apically, extending beyond moderately stout, curved claws.

With one truncated, cone-shaped circulus. Anal lobes undeveloped, each lobe area with one elongate seta about $76!$ long and two shorter elongate setae. Anal ring large, about $64!$ in diameter, its structure distinct. its setae stouter than lobe setas, about $89!1$ long; outer part of anal ring with 23-32 mostly oral, elongate cells and some distinctly shorter, irregularly rounded cells, many lying end to end but not always touching, imer part of ring with $16-20$ larger, irregularly clongate cells lying next to clouded area of semicircular cells. Tritubular cerores smatl, 5 on head. 10-13 on thorax, 18-20 on abdomen, more prevalent on dorsum, few submarginally on venter. Multilocular disk pores absent. Tubular slucts smaller than triberwher pores, present on both surfaces. Trilocular pores uniformly distributed. Body setae short. inconspicuous.

Lectotype.-Las Vegas, N. Mex. 11-TV-01, W. P. Cockerell. Paralectotypes.—Five with lectotype on one shide. USNA.

Host Plants.-Bathia dissecta, Cyperus esculentus, Escoboria tuberculosa, Mammillaria sp., Nerium oleander, Phleum pratense, Poa sp., Psoralea tenuiflora, Sempervivum sp., Sorghum halepense, unidentified Gramineae, under stones with ants.

Distribution.-Arizona, Califormia, Colorado, New Mexico, Ohio, Texas, Virginia, Washington, D.C., Mexico.
Arizona: 19 mi E. McNary, $8,500 \mathrm{ft}$, 18-VII40, L. P. Wehrle. Williams, 1-IX-68, D. R. Miller and J. E. Lauck.

California: Calexico, $30-$ III-72, R. A. Flock and D. Conn. Norco, 4-X-65, N. W. Getz and J. H. Preston. Sacramento, 22-IX-65, S. Scribner. San Clemente, $22-\mathrm{X}-65$, A. Johnson.

Colorado: Boulder, 13-VIII-23, R. Shotwell.
New Mexico: Las Vegas, 11-IV-01, W. P. Cockerell.

Ohio: In quarantine at Washington, D.C., d-XII-22, W. B. Wood.

Texas: Corpus Christi, 4-VIII-71, S. Nakahara.

Virginia: Chincoteague, 17-VIII-71, D. R. Miller. Narrows Marina, Seashore State Park, 3-V-71, D. R. Miller and S. Nakahara.

Washington, D.C'., 1-III-27, H. Y. Gouldman.
Mexico: In quarantine at Nogales, Ariz, 9-IX-67, J. M. Kaiser. Seven mi N. Perote, Vera (ru\%, 28-II-72, D. R. Miller and F. D. Parker.

Biscussion.-The type material of leucoso$m m s$, consisting of six specimens mounted on one slide, was remounted in February 1997 and again in May 1944. Since a type was not designated by Cockerell, I heroby designate specimen No. 1 at the extreme left on the type slide as the lectotype. The midlegs and hind legs are missing, but otherwise the lectotype is in good condition. The five paralectotypes are also in fair condition except some missing appendares and lobe setae.

Until recently lrurosomus has been known only in the Western Lnited States. It has been comfused with crerlicans, forridamus, and makaharai. The San ('lemente record by WeKenzie (1atir) for (alifornia is correct, but the remaining omes refer to cacticons and makherai.

The similarity of leneosomms to cucticons and what may be intermediate forms of these speciss sometimes makes their identification
difficult. In most specimens they may be readily separated by comparing details of the antemnae, rostrum, and anal ring.

Rhizoectus macgregori, new species

(Figs. 182-191)
Adult Female.-Oval elongate, moderately stout. Length, $1.44-1.95 \mathrm{~mm}$; width, $0.65-1.06$ mm . Antennae six-segmented, average length of segments : I, 44 ; II, 26 ; III, 40 ; IV, 23 ; V, 26 ; VI, 56 ; apical segment almost twice as long as wide, with three rather stout, tapering, falcate sensory setac and one elongate, spinelike sensory seta; segment Y with short, much smaller sensory seta. Interantemal space equal to combined length of segments II and III, Eyes small. pigmented, not strongly protuberant. Rostrum fairly stout, elongate, about 85 long, 56 p wide; rostral loop reaching more than halfway to insertion of second pair of legs. Cephalic plate irregularly triangulate, approximately 45 u-50! wide, with three or four vacuoles and bordered by several body setac. Dorsal ostioles well developed, their rims narrow, sclerotized.

Legs rather elongate, average longth of segments of hind pair: Trochanter, 48; femur, 129 ; tibia, 115; tarsus, 69; claw, 24; claw cligitules elongate, dilated apically, extending beyond basally stont, curved claws.

With one prominent, strongly sclerotized subconical circulus, measuring about $39 \|$ at its base, its orifice 20,1 wide, finely reticulated. Anal lobes little or not protruding; each lobe area with small sclerotized patch between three elongate setae, longest about $88!1$ long, and few short body setae and trilocular pores. Anal ring large, about 81 ; in diameter, its setae somewhat stouter and longer than lobe setae; outer part of anal ring containing 42-45 small oval cells, in places forming double row; imer part of ring with about 20 larger, more irregular cells. Tritubular cerores smali, 40-60 submarginally and across body segments dorsally and ventrally. Multilocular disk pores absent. Tubular ducts conspicuous, varying in diameter from size of trilocular pore to that of tritubular ceroris, stout, strongly sclerotized, widely distributed over entive derm. Minute mushroom
bodies less than one-half diameter of trilocular pore, scattered widely over body surface. Trilocular pores fairly abundant, more common dorsally. Few minute, simple circular pores observed ventrally across midabdominal segments. Body setae short, rather sparse.

Holotype-Apatzingan, Michoacan, Mexico, 19-XI-65, Raúl MacGregor; USNM. Para-types.-Two, taken with holotype; IBM.

Host Plant.-Gossyminm hirsutum.
Distribution.-Known only from type locality.
Discussion.-.The sclerotized anal lobes, size and abundance of the conspicuous tubular ducts. and the presence of minute mushroomlike tubular ducts and circular pores distinguish this cotton-inhabiting species from all other members of the genus.

It is with pleasure that I dedicate this species to Dr. Raúl MacGregor L. of the Instituto de Biologia, Universidad Nacional, Mexico, D.F.

Rhizoecus maritimus (Cockerell)

(Figs. 192-196)
Ripersia maritima Cockerell, 1804: 42.
Riprrsicht maritima: Cockerell, 1899: 278; Fernald, 1903: 115.
Morrisonclla maritima: Hamblcton, 1046a: 31.
Whinocus marilimhs: Ferris, 1953: 452; Hambleton, 1973: 68.

Adult Female.-Elongate oval. Length, 1.172.61 mm ; width, $0.34-1.33 \mathrm{~mm}$. Antennae sixsegmented, average length of segments: I, 40; II, 25; III, 36; 1V, 17; V, 21; VI, 55; apical serment almost twice as long as wide, with three medium-sized, tapering, falcate sensory setae and one acute, spinelike sensory seta; segment V with one much smaller, weakly curved sensory seta. Interantennal space about equal to combined lenyth of segments V and VI. Eyes prominent, rather globose, pigmented. Rostrum stout, length about $84!1$, width, $73!$; rostral loop usually short but sometimes reaching insertion of second pair of legs. Cephalic plate approximately bout long, triangulate or quadrate, with two or three vacuoles and six or more small body setae. Dorsal ostioles fairly well developed, their rims weakly pigmented, lightly sclerotized.

Legs moderately stout. average longth of segments of hind pair: Trochanter, 55 ; femur. 120; tibia, 109 ; tarsus, 73 ; claw, 39 : claw digitules slender, setose, varying in length but usually about half the length of narrow, elongate. weakly curved claws.

With one large truncate circulus, its broad. selerotized base about 45 in width. Anal lobes undeveloped, unsclerotized, each lobe area with three elongate setae, longest about 90 ! long. remaining two slightly shorter. Amal ring large. about $87!1$ in diameter, its structure clearly defined, ring setae each about $85,1-90!$ long, about same thickness as longer lobe setae: outer anal ring composed of $36-40$ racher small. oval, or irregularly polygonal cells, some not touching, some with short spicules; cells of imner part of ring much larger, 26-28 present. more elongate. rectangular, mostiy touching and to end, sometimes forming double row and lying adjacent to clouded area of large semicircular cells. Tritubular cerores small, their ducts slightly tapered, occurring on both surfaces, but more common dorsally, $4-5$ on head, 10-12 on thorax, 18-20 on abdomen. Multilocular disk pores absent. Tubular ducts small, numevous, distributed over entire derm. Trilocular pores well distributed but sometimes sparse in areas across segments. Body setae variable in size and length, longer setae on head, thorax, and along body margins.

Lectotype.-Sea Clift, N.Y., 7-V-94, Nathan Banks, mounted on one slide with fve paralectotypes. Paralectotypes.-Five additional specimens mounted on two slides. USNM.
Host Plants.-Faucaria tigrina, Iva frutescens var. oraria, Rhizophora mangle, Spertina alternifora, S. patens.

Distribution.-Florida, Massachusetts, New Jersey, New York.

Florida: Bailey's Bluff, 7-III, 3-VIII-71, G. T. Williams. Cedar Key, 19-VIJ-70, G. W. Dekle. Tampa, 17-II-71, E. R. Simmons.

Massachusetts: Cape Cod, July 1968, W. J. Wall.

New Jersey: Greenwich, 1-XI-44, G. Raw.
New York: Hampton Bays, Long Island, 14-V-57; North Sea. Long Island, 19-V-57, John Vack.

Discussion.-Since Cockerell (1894) did not designate a holotype in his original description,

I hereby designate the second specimen from the right on slide No. 1 as the lectotype.
R. matitim,s may be readily distingushed from its closest allies by its long, slender claws, stout rostrum, and elaw digitules that are about hate as long as the claws.

Rhizoecus mayomus (Hambleton)

(Figs. 197-204)
Morvomalla matam Hambleton, 19f(6a: 32.

Adult Female-Oral clongate, moderately stout. Length, $0.89-2.00 \mathrm{~mm}$; width, $0.41-1.04$ mm. Antemate six-segmented, widely spaced, a worage length of segments: I, 38; II, 20; III. 28; IV. 22; 1, 18; V1, 46 ; apical segment coneshaped, with three moderately stout, weakly tapering, falcate sensory setae and one slender. spimelike sensory seta; segment V with one narrow, elongate sonsory seha. Interantennal space about cqual to combined longth of antemal segmonts I IV. Eyes small, protuberant, lightly pigmented. Rostrum clongate, $73!$ long, $48: 1$ wide: rostral loop extending halfway or more to insertion of second pair of legs. Cephalic plate broader than long, about 30μ long, 48, wide, with body seta on each haterocephatic margin. Dorsal ostioles moderately conspicuous, their rims heavily selerotized, surrounded with numerous pores and body setae.
Legs of medium size, average length of segments of hind pair: Trochanter, 44 ; femur, 99 ; tibia, 79; tarsus, 66; claw. 27: claw digitules short. setose, reaching about half the length of fairly stout, weakly curved claws.

Circulus absent. Anal lobes weakly protruding, with small, irregular sclerotized area at base of larger setae, each lobe with one seta about 72_{4} long and two shorter elongate setac, several auxiliary setae and body pores. Anal ring small, about 43_{1} in diameter, its structure often indistinct, setate averaging about 58 ; long, shorter and more slender than largest lobe setae; outer part of anal ring with 10-12 oval cells, twice as long as wide, most with spicules and touching end to end; celis of immer part usuatly larger and more irregular; shaded area not clearly distinguishable. Tritubular cerores of 3 sizes, all with short stont ducts, distributed
as follows: Large size, $12!-13!$ in diameter, confined to dorsum, 5 extending from head to abdominal segment VI along or near middorsal line; merlium-sized cerores, 9 ! -11_{1} in diameter. occurring ventralls; 1 on head, 3 or 4 along submarginal borders of abdominal segments V, VII, and VIII; small cerores, $5!-7!$ in diameter, present ventrally from segments IV to VIII, $0-3$ on IV, $1-5$ on $Y, 2-10$ on VT, $5-13$ on VII, and 3-8 on VIII. Multilocular disk pores occurring in some numbers on venter of posterior abdominal segments and in transverse rows across posterior borders of segments V-VII, elsewhere, except on head, usually widely isolated on both surfaces. Tubular ducts usually absent. Trilocular pores rather evenly distributed, not abmendant. Body setae short, moderately sparse.

Holotype.-Puerto Barrios, Guatemala, 9-V45 , E. J. Hambleton. Paratypes.-Four taken with holotype, 13 from same location and date on different host and from Retalhulew, Guatemala, 17-V-45, E. J. Hambleton. USNM.

Host Plants.-Clmbopogon citratus, C. nardus, Echinochloa colomm, Eleusine indica, Musa paradisiaca var. sapientum, Panicum marimum, Paspalum conjugatnom, Setaria geniculata, Xanthosoma robustum, undetermined Labiatae.

Distribution.-Guatemala, Honduras.
Guatemala: Puerto Barrios and Retalhulew, as recorded previously.

Honduras: La Lima, 1-IX-60. L. Roth; IX, X-67, Carlos Evers.

Discussion.-This species was originally described from two imported oil-producing grasses, Cymbopogon citratus and C. nardus. These plants are grown commercially in Guatemala. R. moyomus is here reported on roots of banana in Honduras.

The larger specimens of mayanus resemble americanus; the two species, each possess three sizes of tritubular cerores, but the rostrum of mayanus is more elongate and its anal ring cells are larger and less sinuate than those of americanus. Type specimens of mayanus lack tubular ducts, yet occasionally an isolated duct is present in the Honduran specimens. On the average, moydanus has twice as many small tritubular cerores as americanus.

Rhizoecus menkei McKenzie

(Figs. 205-211)
Hhitorew monki MeKenzie, 1962: 6ח3.
Adult Female.-Oval elongate, small. Length, 1.19 mm ; width, 0.65 mm . Antennae sixsegmented, average length of segments: I, 35; II, 18; III, 27 ; IV, 17 ; V, 17 ; VI, 45 ; apical segment about twice as long as wide, with three moderately stout, elongate, weakly tapering. falcate sensory setae and one slender, acute, spinelike sensory seta; segment V with one narrow, shorter sensory seta. Interantemal space ccual to combined length of segments I and II. Eyes rather prominent, slightly longer than wide, weakly pigmented. Rostrum elongate, about $67!$ long, $44!$ wicle ; rostral loop extending to or slightly beyond insertion of second pair of legs. Cephalic plate fairly prominent, measuring $33!$ long, $47!$ wide. Dorsal ostioles well developed but weakly sclerotized.

Legs with average length of segments of hind pair: Trochanter, 44; femur, 88; tibia, 84; tarsus, 53 ; claw, 24 ; claw digitules short, setose, not half as long as rather stout, elongate, curved claws.

With one thin-rimmed truncate circulus, its apex faveolate. Anal lobes slightly protruding, each lobe area with prominent sclerotized patch, one seta about 66μ long, two shorter setae, and usual pores and body setae. Anal ring small, approximately $50!$ wide, its structure clearly defined, its setae about as long as longest lobe seta, anterior pair somewhat stouter than other two pairs, latter about as stout as lobe setae; outer part of anal ring with $12-14$ elongate cells, wide at middle with tapered ends, each with spicule; cells of inner part of ring larger, more irregular in shape; clouded area containing some large globular cells anteriorly. Bitubular cerores with ducts about 8μ long, not strongly divaricated, occurring dorsally and ventrally, 7 on head, $22-25$ on thorax, 48 on abdomen, most addominal segments with $5-7$. Multilocular disk pores more abundant ventrally from posterior apex to posterior border of abdominal segment VII, elsewhere usually absent except few occurring dorsally along submarginal borders of segment VIII. Tubular
ducts very small, about one-half diameter of trilocular pore, present in small numbers over entire derm. Trilocular pores and short body setae uniformly distributed over body surface.

Holotype.-One mile N. of Tepic, Nayarit, Mexico, 27-VII-59, A. S. Menke and L. A. Stange. Paratype.-One taken with holotype. UCD.

Host Plant.--Unknown, taken in soil.
Distribution.-Known only from type locality.
Discussion.- R. menkei is more closely related to bituberculatus than to any other species. However, the prominent eyes, shorter legs, more elongate cells of the outer part of the aral ring, somewhat longer and more numerous bitubular cerores, and absence of multilocular disk pores from the head and thorax distinguish menkei from bituberculatus. Contrary to McKenzie's belief, both of these species have tubular ducts.

Rhizoecus mexicanus (Hambleton), new combination

(Figs. 212-217)
Ripersiellat mercana Hambleton, 1y4fa: 6 ;
Adult Female. Elongate oval. Average measurements of two specimens, length, 1.60 mm ; width, 0.87 mm . Antenmae six-segmented. comparatively small, moderately widely spaced, arerage length of segments: I, 28; II, 16 ; III, 30 ; IV, 15; V, 14; VI, 39 ; apical serment about twice as long as wide, with three long, moderately slender, falcate sensory setae and one spinelike sensory seta; segment V with one much narrower and shorter sensory seta. Interantemal space equal to combined length of segments I-III. Eyes small, moderately protuberant, lightly pigmented. Rostrum elongate, about 73, long, 47 f wide; rostral loop reaching to or slightly beyond insertion of second pair of legs. Cephalic plate very small, insignificant. with two visible vacuoles. Dorsal ustioles not observed.

Legs of medium size, length of segments of hind pair: Trochanter, 33 ; femur, 79 ; tibia, 67 ; tarsus, 44 ; claw, 14 ; claw digitules elongate, dilated, reaching beyond rather short, stout claws.

With one large, truicate, faveolate circulus, about 43 at its widest diameter, its orifice about 27μ wide, comparable in width to amal ring, strongly sclerotized. Anal lobes undeveloped, unsclerotized. each lobe area with one seta about 50 a long and two shorter setae. Anal ring 43 w wide, its structure clearly defined, anterior pair of ring setae about 56,1 long, fairly stout, other 2 wairs shorter and about half as stout as anterior pair; outer part of ring consisting of 11 or 12 rather uniform sinuate cells, each with prominent spicule near its center; inner part of ring with $10-12$ larger, more irregularly elongate colls lying adjacent to circular clouded area composed of semicircular or triangulate cells. Bitubular cerores present, their individual ducts stout, about $9 / 4$ long, weakly projecting above derm, occurring dorsally and ventrally in about following proportions: 8-9 on head, 20 on thorax, 40 on abdomen, most abundant dorsally. Multilocuar disk pores present on both surfaces but more numerous ventrally on three catadal abolominal serments, accasionally an isolated one occurxing elsewhere. Tubular ducts common, more than hilf as long as ceroris ducts and smaller in diameter than tribocular pore, widely scattered over entire derm. Trilocular pores sparse ventrally, especially in thoracic area, elsewhere more or less evenly distributed. Body setae variable in Jength, most short and sparsely distributed over term.

Holotype-Mexico, locality unknown, intercepted at guarantine in San Francisco, Calif., ?-VI-35. Paratype.-One taken with holotype and mounted on same slide. USNAT.

Host Plant.-Vndetermined suceulent and cactus.

Distribution.-Texas, Mexico.
Texas: Locality unknown, taken at St. Peterslourg, Fla, vial Texas, 7-III-73, C. K. Hickman.

Mexico: Locality unknown.
Discussion.-This species was inadvertently (omitted by Ferris (79.53) and by McKenzie (79001, 196r). R. mericanus closely resembles soloni but may be distinguished by its larger circulus, smaller bitubular cerores, and more slender fatcate setae.

Rhizoecus nakaharai, new species
(Figs. 218-227)

Abstract

Rhizocous cacticans (Hambleton): McKenzie, 106T: 381 (misidentification in part). Rhizoccus leucosomas (Cockerell): McKenzie, 1967: 398 (misidentification in part).

Adult Female.-Elongate ovate. Length, $1.25-3.22 \mathrm{~mm}$; width, $0.56-1.73 \mathrm{~mm}$. Antemnae six-segmented, moderately stout, average length of segments: I, 44; II, 24; III, 36; IV, 22; V, 23; VI, 51; apical segment slightly less than twice as long as wide, with three rather narrow, elongate, falcate sensory setae and one shorter, narrow, spinelike sensory seta; segment V with one short, narrow, occasionally weakly clavate sensory seta. Interantemnal space equal to combined length of antemnal segments V and VI. Eyes weakly protruding, often difficult to observe, and may be absent. Rostrum stout, slightly longer than wide, about 77: long, 68! wide; rostral loop short, seldom reaching halfway to insertion of second pair of legs. Cephalic plate usually longer than wide, quadrate or triangulate, with two or three vacuoles and bordered with several body setae. Dorsal ostioles well developed.

Legs robust, average length of segments of hind pair: Trochanter, 45; femur, 108; tibia, 96 ; tarsus, 60 ; claw, 24 ; claw digitules clongate, their apices dilated, extending beyond basally stout, elongate, curved claws.

With one conical circulus, its base measuring between 20 f and 30 . Anal lobes undeveloped, each lobe area with small sclerotized patch between three elongate setae, longest about 74μ long, and two much shorter setae. Anal ring well defined, its periphery often hexagonalshaped rather than circular, about 69μ in dianteter; its ring setae approximately 85 k long, much stouter and longer than lobe setae; outer part of anal ring with $24-48$ rather small, oval, elongate, or triangulate cells, many almost touching; imer part of ring with 18 large irregular cells bordered inwardly by circle of large, ovate dark cells. Tritubular cerores small, 36-46 present, 7-10 dorsally along median line from head to abdominal segment VIII, and 21-36 dorsally and ventrally, most along submarginal borders. Multilocular disk pores absent. Tubular ducts small, few, usually con-
fined to dorsum of abdomen. Trilocular pores wather evenly distributed on both surfaces but less abundant on thorax. Body setae short, sparse, longer and more numerous across posterior abdominal segments.

Holotype.-Discovery Bay (Jefferson County), Wash., 5-IX-66, Sueo Nakahara; USNM. Para-types.-Five taken with holotype; USNM. Forty additional paratypes from following locations: Califormia: Coches Prietos, Santa Cruz Island, Santa Barbara Comnty, 10-V-68, D. R. Miller; El Centro, Imperial County, 25-II-63, G. O. Poinar and D. W. Ricker; one-half mi S. Gold Lake, Sierra County, 3-XI-66, T. R. Haig; N. Grizzley Island, Solano County, 20-X-69, R. O. Schustex; Los Banos, Merced County, 23-IV-68, T. R. Haig; Rohnersville, Humboldt County, 29-III-56, B. F. Kemp. Iddho: Three mi N. Ashton, Fremont County, 21-YTI-64, D. R. and J. F. Miller; Craters of the Moon National Monument, Butte County, 4-VII-67, D. S. Horning; 8-VIII-67, D. R. Miller and D. S. Horning; 20 mi N. Spencer, Clark County, 5-VIII-67. D. R. Miller and D. S. Horuing. Montcne: $1 \frac{1}{2} \mathrm{mi}$ SSW. Winett, Petroleum County, via W. H. Burleson, 1971. Oregon: Mapleton, Larie County, 5-VIII-68, D. R. Miller and R. F. Denno. Washington: Blewett, Chelan County, 4-VIII-66, Sueo Nakahara. Thirty-six UCD, four USNM.

Host Plants.-Afropyrom sp., Carex sp., Cyperns rotmudus, Distichlis spicata, Dudleya greenei, Eringonum heracleoides, Juncus balticus, Lithospermum ruderale.

Distribution.-Califomia, Idaho, Montana, Oregon, Washington.

Discussion.-This species has been confused in the literature with cacticans and lencosomus. R. nakaharai resembles leucnomus, particularly in the size and shape of the rostrum and the nature of the cellular structure of the anal ring. However, the presence of an elongate sclerotized area on the anal lobes is characteristic of mokahorai and will separate it at once from lencosomus and cacticans.

It is a pleasure to name this species in honor of my friend, Sueo Nakahara, whose dedication to the collection and identification of the Coccoidea has helped increase our knowledge of these insects.

Rhizoecus nemoralis (Hambleton)

(Figs. 228-234)
Momisonella nomoralis Hambleton, 1046a: 33. Rhizoccts nomoralis: Ferxis, 1953: 456.

Adult Female.-Broadly ovate. Length, 1.642.08 mm ; width, $1.00-1.19 \mathrm{~mm}$. Antennae sixsegmented. moderately stout, widely spaced, average length of segments: I, 46; II, 24; III, 39 ; IV, 22 ; V, 21 ; VI, 50 ; apical segment less than twice as long as wide, tapered, with three moderately stout, bluntly tapered, falcate sensory setae and one spinelike sensory seta; segment V with one short, stout, lanceolate sensory seta. Interantennal space equal to combined length of segments II-VI. Eyes small but prominent, subconical, pigmented. Rostrum elongate, 98,4 long, $51!$ wide; rostral loop reaching almost to insertion of second pair of legs. Cephalic plate absent. Dorsal ostioles prominent, heavily sclerotized. surrounded by numerous pores and body setae.

Legs stout, average length of segments of hind pair: Trochanter, 67; femur, 135; tibia, 100; tarsus, 86 ; claw, 27 ; claw digitules short, acute, extending to about one-half the length of long, stout claws.

Circulus absent. Anal lobes weakly protruding, without sclerotization, each lobe area with three elongate setae, longest about $92,1 \mathrm{long}$ and five to eight short body setae and numerous pores. Anal ring about 49μ wide, its structure fairly distinct, its setae averaging about 72! long, shorter and more slender than largest lobe seta; outer part of anal ring with 10-12 irregularly elongate cells, some with elongate spicules; cells of inner part somewhat larger, 8 lying adjacent to clouded area of laxge oval-shaped cells. Tritubular cerores of 2 sizes, larger or medium size occurring dorsally, 5 along dorsomedian line from head to abdominal segment VLII; 5 or 6 along submarginal borders; 28-37 small cerores present ventraliy near body margin and scattered elsewhere. Multilocular disk pores numbering 5-11, confined to venter near vulva. Tubular ducts few, also occurring in area of vulva. Trilocular pores rather numerous and evenly distributed. Body setae conspicuous, variable in length, longest setae approximately
50 pi long.

Holotype.-Along roadside, between Quetzaltemango and Totonicapan. Guatemala, $10,000 \mathrm{ft}$ elevation, $20-\mathrm{T}-45$, E. J. Fambleton. Para-types.-Two taken with holotype. USNM.

Host Plants.-Alchemilla orbiculata, Citrus sincusis.

Disiribution.-At type locality and Antiqua, Guatemala. 25-V-45. E. J. Hambleton.

Discussion.-Ferris (10.53) was not convinced that nomoralis and cyperalis were distinct. This was probably because of the limited amount of material available for study. Based on my studies it is clear that these species are closely related. Until more material of cyporalis is available, it seems advisable to consider the two as distinct. See discussion under cyporalis, page 22 .

Rhizoecus neomexicanus MrKeluie

(Figs. 235-240)
Rhizucerts ncomer.icents McKenzio, 1962 : 67.4.
Adult Female.-Oval elongate. Length of holotype, 0.83 mm ; width, 0.37 mm . Antemnae six-segmented, length of segments as follows: I, 29 ; II, 19; III, 17 ; IV, 16 ; V, 13 ; VI, 34 ; apical segment tapered, less than twice as long as wide, with three rather stout, falcate sensory setae, their tips weakly tapered, and one elongate, more acute sensory seta; segment V with one elongate, narrow sensory seta. Interantennal space equal to less than length of segment I. Eyes small, with little pigmentation. Rostrum approximately 63!u long, 44u wide; rostral loop extending little beyond insertion of second pair of legs. Cephalic plate triangular, about 35 wide. Dorsal ostioles moderately conspicuous, their rims weakly pigmented.

Legs relatively short, of medium size, segments of middle pair of legs as follows: Trochanter, 25 ; femur, 70 ; tibia, 47 ; tarsus, 42 ; claw, 18; claw digitules short, acute, about onehalf as long as slender, acute claws.

Circulus absent. Anal lobes somewhat produced aud slightly sclerotized, each lobe with three elongate setae of varying lengths, Iongest about 454, slightly longer and stouter than ring setae. Anal ring about 38 u wide, its setae averaging about 44, long; outer part of anal ring not well defined, cells appearing to be longer
than wide; imner part of ring indistinct. Tritubular cerores short, stout, of two sizes, Jarger cerores present only on dorsum, one on head, five on thorax, one on abdominal segment V, and two on segment IX; smaller cerores occurring ventrally, two on abdominal segment V, four on VII, and two on IX. Multilocular disk pores present on both surfaces but more numerous ventrally from posterior border of abdominal segment VII to apex, few scattered elsewhere on abdomen and thorax. absent from head. Tubular ducts distributed lightly over entire derm. Trilocular pores most numerous dorsally, sparsely scattered ventrally. Body setae short, some longer setae on head and along posterior abdominal margins.

Holotype.-Alazan, Vera Cruz, Mexico, 15-VயI-59, A. S. Menke and L. A. Stange. Para-type.-One taken with holotype. UCD.

Host Plant.-Unknown, taken in jungle soil.
Distribution.-Known only from the type locality.

Discussion.-Three slides labeled Rhizoecus neomexicanus McKenzie represent the type material, which forms the basis for the previous redescription of this species. Unfortunately there are two species among the five individuals mounted on the three slides. One slide labeled "type" has the true neomexicanus and an immature female of tropicalis, new species. A second slide labeled "paratype" contains one female of neomexiconuts in the process of molting and one apparently mature female of tropicalis. On the third slide, also labeled "paratype" is an adult female of tropicalis but no neomexicanus. The holotype of neomexicanus probably had not attained its full life size and is not in the best condition; therefore, its redescription is incomplete.
R. neomexicanus is smaller and has fewer tritubular cerores than caladii.

Rhizoecus neostangei Miller and McKenzie

(Figs. 241-245)
Rhizoecus neostangei Miller anc McKenzie, 1971: 588.
Adult Female.-Oval elongate, stout. Length, 1.36 mm ; width, 1.08 mm . Antennae sixsegmented, moderately stout, widely spaced, length of segments: I, 44; II, 23; III, 26; IV,

21 ; V, 22; VI, 55 ; apical segment not twice as long as wide, with three elongate. medium thick, rather bluntly tapered, falcate sensory setae and one spinelike sensory seta; segment V with one elongate, narrow, weakly clavate, curved sensory seta. Interantemal space equal to combined length of segments IV-VI. Eyes small, rather prominent, lightly pigmented. Rostrum 86! long, 62! wide; rostral loop extending only slightly beyond apex of rostrum. Cephalic plate broader than long, $33!$ long, $39!$ wide, with body seta on each dorsolateral margin. Dorsal ostioles well developed, heavily sclerotized, with numerous trilocular pores along their rims.

Legs rather large, segments of hind pair measuring as follows: Trochanter, 60; femur, 124 ; tibia, 101 ; tarsus, 77 ; claw, 29 ; claw digitules short, setose, not reaching middle of rather long, stout, weakly curved claws.

Circulus absent. Anal lobes weakly protruding, each lobe area with small sclerotized patch, three elongate setae, longest about 66μ long, and usual pores and setae. Anal ring not clearly defined, about 53μ wide, its setae about same thickness as lobe setae but slightly shorter than longest, averaging 63μ long; outer part of ring probably with no more than $10-12$ elongate, oval cells most with small spicules; cells of inner part of ring and clouded area not discerned. Tritubular cerores of 2 sizes, 19 large ones occurring dorsally, 7 along middorsal line from head to abdominal segment VI, 12 submarginally along thorax and abdomen; 10 mediumsized cerores present ventrally from abdominal segments V to VIII. Multilocular disk pores present on venter only, about 60 located from posterior margin of abdominal segment VII to anal ring and few between or near legs. Tubular ducts absent. Trilocular pores distributed dorsally and ventrally. Body setae rather short, slender.

Holotype.-Jalapa (Rio Cedeno), Vera Cruz, Mexico. 16-VIII-67, D. R. Miller and J. Villanueva B.; UCD.

Host Plant.—Rhus sp.,
Distribution.-Known only from the type locality.

Discussion.-This species is closely related to R. stangei but differs from it in lacking doxsal
multilocular disk pores and in possessing fewer medium-sized tritubular cerores on its venter.

Rhizoecus nitidalis Hambleton

(Figs. 246-250)
Rhizoccus mitidelis Hambleton, 1946a: 57.
Adult Female.-Broadly ovate, stout. Length, $1.70-3.06 \mathrm{~mm}$; width, $0.94-1.99 \mathrm{~mm}$. Antennae five-segmented, large, average length of segments: I, 55 ; II, 25; III, 45; IV, 31; V, 98 ; segment I rather stout, apical segment approximately three times as long as wide, with four stout, elongate, strongly tapered, falcate sensory setae, posterior seta smaller, shorter, and one narrow, spinelike sensory seta near apex. Interantennal space equal to slightly more than width of segment I at its base. Eyes absent. Rostrum elongate, averaging 106! long, 70 wide; rostral loop extending halfway or more to insertion of second pair of legs. Cephalic plate twice as wide as long, 82μ wide, 39μ long, with three to six vacuoles near and along its posterior border and several body setae along anterior margin. Dorsal ostioles conspicuous, their lims narrow but strongly sclerotized.

Legs well developed, large, with considerable variation in size, average lengths of segments of hind pair: Trochanter, 67 ; femur, 160 ; tibia, 119 ; tarsus, 80 ; claw, 40 ; claw digitules very short, finely setose, less than one-hatf the length of long, narrow, weakly curved claws.

Circulus absent. Anal lobes slightly protruding, each lobe with irregularly rounded sclerotized patch, three elongate, stout setae, longest about 81, long, five or six short auxiliary setae, and small concentration of pores. Anal ring about 58 ; in diameter, of simple, concis? design, its setae averaging about $60!1$ long, shorter and weaker than largest lobe seta; outer part of anal ring with 10 or 12 elongate, pointed cells, each with spicule; cells of inner part of ring irregularly elongate and larger, 10 usually touching and lying adjacent to undifferentiated shaded area. Tritubular cerores of 2 sizes present, larger about $12!$ wide. smaller about 5! wide, both with short, stout ducts; large cerores occurring dorsally, 16 present on median line and along or near body margins
from head to abdominal segment VIII; smaller cerores numbering between 45 and 51 ventrally in more or less transverse rows across abdominal segments IV-IX; segment VII with as many as 15 in some specimens. Multilocular disk pores of five to seven loculi distributed on both surfaces, but more numerous on posterior abdominal segments, gradually diminishing in numbers anteriorly and absent from frons. Tubular ducts about same diameter as trilocular pores, apparently confined to abdominal area. Trilocular pores almost circular, rather uniformly distributed. Minute circular pores half the size of trilocular pores scattered over most of derm. Body setae usually short, variable in size and length, some longer setae along body margins and on head.

Holotype.-Guarujá, State of São Paulo, Brazil, 22-VIII-35, B. L. Ribeiro and E. J. Hambleton. Paratypes.-Five mounted with holotype on same slide and 30 from other host at same location. USNM.

Host Plants.-Aronopus sp., Cenchrus echinatus, Paspalum vaginatum.

Distribution.-Known only from the type locality.

Discussion.- R. nitidalis resembles falcifer in geneal appearance. It differs in having sclerotized anal lobes with fewer elongate setae, fewer and different distribution of cerores, its multilocular disk pores with five to seven loculi, and in having shorter and more sparsely distributed body setae.

Rhizoecus ornatus (Hamblelon), new combination

(Figs. 251-258)
Ripersidta orntif Hambleton, $1046 a: 70$.
Adult Female.-Oval elongate. Length, 1.44 mm ; width, 0.75 mm . Antemae six-segmented, relatively small, length of segments: I, 29; If, 20 ; ILI, 2.4 ; IV, 16; V, 16; VI, 37; apical serment less than twice as long as wide, with three stout, bluntly tapered, falcate sensory setae and one elongate, spinelike, apical sensory seta; segment V with one short, stout, lanceolate sensory seta constricted near its base. Interantennal space less than width of sefment T. Eyes
rather prominent, protruding, weakly pigmented. Rostrum about 60μ long, 38μ wide; rostral loop extending to or slightly beyond insertion of second pair of legs. Cephalic plate present, weakly pigmented, not well defined. Dorsal ostioles inconspicuous, their rims thin. weakly sclerotized.

Legs of medium size, length of segments of hind pair: Trochanter, 35; femur, 74 ; tibia, 65 ; tarsus, 41 ; claw, 25 ; claw digitules elongate, weakly dilated apically, reaching tip of long, narrow, curved claws.

With two elliptical circuli about $21!$ wide, with thinly sclerotized rims, their orifices reticulose, with $15-18$ polygonal-shaped cells. Anal lobes undeveloped, unsclerotized, each lobe area with three slender, elongate setae. longest about 38μ long and three or four body setae. Anal ring unique, 65! wide, its setae comparatively short and stout, each about 55 ! long, setae shorter than diameter of ring; outer part of anal ring with 10 large, isolated, oval, elongate cells, $2-3$ times longer than wide, each with prominent spicule; imer part of ring with 6-8 more elongate cells lying adjacent to darkened area or concentric ring of large oval cells. Tritubular cerores of 2 distinct types, larger ceroris strongly depressed with short ducts, about 7 fr in diameter, occurring dorsally in interrupted rows across segments VII and VIII, 9-11 on VII, and 19-22 on VIII; smaller cerores of more normal type with short ducts, about 4 in in dameter, usually encircled by trilocular pores more common on head and thorax and along body margins on both surfaces. Multilocular disk pores absent. Tubular ducts not observed and considered absent. Trilocular pores distinctly triangulate, rather numerous, tending to form bands across abdominal segments. Body setae smahl, some longer setae across abdominal segments, along bodys margins, and on head.

Holotype.-Trinidad, British West Indies. 3-III-44, A. H. Strickland. Paratypes.-Two from same location, E-VI-35, E. J. H. Berwick. USNM.

Host Planis.-Coffea arabict, Theobroma cacao.

Distribution.-Known only trom type localits.
Discussion.-R. ornatus is one of several interesting hypogeic mealybugs from Trinidad.

Because of their unusual morphological characters, they differ from other members of the genus. This species may be distinguished by its tritubular cerores with their short, stout ducts.

Borchsenius (1040) described a species under the name "Rhizoccus omatus" from the Crimea. Since ornatus Borchsenius is a secondaxy homonym of ornata, the name of the Crimean species should be changed. The Trinidad and Crimean taxa are both valid species.

Rhizoecus ovatus, new species

(Figs. 259-263)
Adult Female.-Broadly ovate. Length, 1.58 mm ; width, 1.05 mm . Antennae six-segmented, widely spaced, average length of segments: I, 48 ; II, 26; III, 47 ; IV. 21 ; V, 26; VI, 65; apical segment twice as long as wide, with three narrow, elongate, strongly tapered, falcate sensory setae and one spinelike sensory seta; segment V with one shorter, narrow sensory seta. Interantennal space equal to combined length of segments V and VI. Eyes absent. Rostrum rather large, conical, 95 , long, $73!1$ wide; rostral loop extending almost halfway between insertion of second and third pair of legs. Cephalic plate inconspicuous, weakly sclerotized, its shape undiscemible. Dorsal ostioles well developed, but with weakly sclerotized rims.

Legs long, aveage length of segments of hind par: Trochanter, 55 ; femur, 134 ; tibia, 101 ; tarsus, 55 ; claw, 28 ; claw digitules slender, elongate, sctose, reaching to or slightly beyond stout, strongly curved claws.

With one trumcate circulus, its orifice about Iflu in diameter. Anal lobes undeveloped, unselerotized, each lobe area with two stout, elongate setae, longest about $86 p$ long, and one shorter. more slender seta and five or six smaller auxilary setae. Anal ring large, well defined, about 78 : wide, its setae about same size as lobe setar but appearing to be slightly longer: onter part of anal ring consisting of $3 \overline{3}-40$ rather small, irregularly quadrate or rounded cells, most being longer than wide, isohated. and in places forming a double row: imer part of ting with about 20 much larger
and irregularly oval, elongate cells, their ends touching and lying adjacent to ill-defined darkened area. Tritubular cerores small to medium. their ducts weakly tapered. at least $45-50$ occurring dorsally, and uniformy distributed from head to abdomen. Arultilocular disk pores absent. Tubular ducts rather promiment, short, stout. 6!4-7! long, slightly smaller in diameter than tritubular ceroris. distributed dorsally and ventrally anterior abdominal seyments each with 7 to 11 tubular ducts. Trilocwar pores more abundant dorsally. Body setae short, longer, and more abundant dowally.

Holotype--Mexico. Iocation unknown, taken in guarantine at Bellfower. Calif.. 2-IV-10. L. E. Meyers: UCD. Paratypes.-Three taken with holotype, one UCD, two CSNAT.

Host Plant.- Mommillarite sp.

Distribution.-Known only from Mexico.

Discussion. With the exception of falcifo $\%$ this is the only known Mexican species that lacks eyes. The presence of prominent tubular ducts, their size, abundance. wide distribution. and slender, tapering, falcate sensory setae are distinguishing features of this species. One specimen has circuli on the venter of each of three abdominal segments, a normal-sized circulus on abdominal segment IV, and a smaller circulus on each of segments III and r.

Rhizoecus partiporns. new species

(Figs. 264-268)
Adult Female.-Broadly ovate. Length, 1.87 mm ; width, 1.05 mm . Antennae six-segmented, rather stout, tapering toward apex, length of segments: I, 50 ; II, 22; III, 40 ; IV, 24; V, 21; VI, 50 ; apical segment about twice as long as wide, with three moderately stout, elongate, falcate sensory setae and one smaller, elongate, spinelike sensory seta near its apex; segment V with one shorter, fairly stout, lanceolate sensory scta. Interantennal space equal to combined length of segments I, II, and III. Eyes prominent, longer than wide, strongly pigmented. Rostrum elongate, 103μ long, $64!$ wide; rostral loop nearly reaching insertion of second pair of legs. Cephalic plate apparently absent. Dorsal ostioles prominent, heavily scle-
rotized. surrounded by numerous pores and body setae.

Legs apparently rather large, all broken except dight hind leg, its dimensions as follows: Trochanter. 66: femur. 188: tibia. 90 ; tarsus. 88: claw, 30; chaw digitules probably short. setose. not observed: claws stont.

Circulas absent. Anal lobes weakly protruding. eath lightly scleootized, and with three elongate seate, longest about Bär long, (most of setale lost in mountingr), and with concentration of pores. Anal ring about 56,1 wide, its structure not clemp defined, its setae shorter and somewhat more slender than largest lobe seta: outer part of anal ring with no more than 12-i-1 oval, elongate cells. some with spicules; imer part with fewer similar cells. darkened area indistinct. Tritubular cerores mresent in 2 sizes, Harger about $8!-9 \mu$ in width, their individual ducts short. stout, 20 occurring dorsally, 6 along median line from head to abdominal segment YII, 7 submarginally along both sides from head to abdominal segment VIII: smaller chores. normally 8 occurring ventrally, 4 on thomax, 1 pair etch on segments YiI and YIIT in submarginal areas. Maltilocular disk pores inconspicuous. only thee each with six loculi, near vulsa. Tubular ducts present. strongly sclerotized. equal to or larger in diameter than tribocular pores, more numerous nem vulva, [ew seattered elsewhere. Trilocular pores fairly barge, variable in size, some almost circular, most abundant, and uniformly distributed sorsally. Circular pores about one-half the diameter of trilocular pore present dorsally in small numbers more visible across and near posterior borders of segments Y and VI. Body setae usually short relatively sparse some longer setae on head.

Holotype--Ten mi NW. Comitan, Chiapas, Mixico, 22 Yitit-67, J. Reddell, J. Fish, and T. Evans; USNM.

Host Plant.-Tnknown, taken in surface debris.

Distribution.-Known only trom type locality.
Discussion.-The shape of the antennae and eves, the sparsity of multilocular disk pores, its well-defined tubular duets, and presence of circular pores separate this species from its relatives.

Rhizoecus poensis (Hambleton), new combination

(Figs. 269-273)
Morrisonclla pocnsis Hambleton, 1946a: 35.
Aduit Female.-Elongate oval, moderately stout. Length, $1.54-1.96 \mathrm{~mm}$; width, $0.77-1.12$ mm . Antemae six-segmented, widely spaced, average length of segments: I, 45; IL, 28; III, 30 ; IV, 27; V, 22; VI. 56 ; apical segment talpered, not quite twice as long as wide, with three moderately stont, weakly tapered, falcate sensory setae and one spinelike sensory seta; segment V with one narrow, extremely elongate sensory seta. Interantennal space about equal to combined length of segments IV-VI. Eyes prominent, protuberant, weakly pigmented. Rostrum stout, 77! long; 65!u wide; rostral loop extending approximately halfway to insertion of second pair of legs. Cephalic plate poorly defined, wider than long, about $44!$ wide, containing numerous indistinct vacuoles. Dorsal ostioles inconspicuous, thinly rimmed, weakly sclerotized, anterior pair almost indistinguishable, posterior pair with numerous body setae surrounding them.

Legs robust, average length of segments of hind pair: Trochanter, 61; femur, 140; tibia, 103 ; tarsus, 85 ; claw, 33 ; claw digitules short, setose, reaching midde of moderately stout, curved claws.

Circulus absent. Anal lobes simple, weakly developed, insclerotized, each lobe with three elongate setae, longest about $85!\mathrm{long}$, and six to eight short auxiliary setae. Anal ring about 50,1 in diameter, its setae long and slender, slightly narrower than stoutest lobe seta, averaging about 73μ long; outer part of anal ring with $10-12$ narrow, elongate cells, each with spicule; inner part of ring with cells similar but somewhat larger; clouded area with ovalshaped cells. Tritubular cerores of 2 distinct sizes, their ducts short, stout, larger size about $8 \sharp-9!$ in diameter, occuring dorsally, $7-10$ along each body margin, $5-10$ along middorsal line; smaller cerores about $6,4-7,4$ in diameter, occurring ventrally, $5-9$ submarginally along each side and usually 1 pair near midventral area on each of segments V-VIII. Multilocular disk pores relatively abundant, especially in
posterior abdominal area, occurring on both surfaces orer entire derm. Tubular ducts absent. Trilocular pores uniformly distributed. Medioventral pores in 2 clusters ventrally on abdominal segments VI and VII, anterior cluster with 5-12 pores, posterior cluster with $5-14$ pores. Body setae moderately dense, variable in size, $10!1-55!t$ long, longest on head and along body margins.

Holotype.-Bogota, Colombia, at $10,000 \mathrm{ft}$, 27 -X-44, E. I. Hambleton. Paratypes.-Nine taken with holotype, two mounted on same slide with holotype. USNM.

Host Plant.--Poa anmaa.
Distribution.-K Kown only from type locality.
Discussion.-R. poensis is one of three species having two clusters of medioventral pores. Both globoculus and theobromac possess these pores and are closely related to poensis. However, poensis may be distinguished by its unsclerotized anal lobes. presence of multilocular disk pores on the head, and the move slender falcate setae.

Rhizoecus polyporus, new species

(Figs. 274-282)
Adult Female.-Oval elongate. Length, 1.73 mm ; width, 1.02 mm . Antennae six-segmented, elongate, rather stout, length of segments: I, 44 ; II, 30 ; III, 50 ; IV, 24 ; V, 29 ; VI, 62 ; apical segment at least twice as long as wide, with three elongate, fairly slender, falcate sensory setae and one shorter, spinelike sensory seta near its apex; segment V with one much shorter, lanceolate sensory seta. Interantennal space about equal to length of segment VI. Eyes small, rather depressed. pigmented. Rostrum stout, 106! long, $77!\mu$ wide ; rostral loop extending between insertion of second and third pair of legs. Cephalic plate arrowhead-shaped, longer than wide, about 60μ long, 37μ wide, with vacuoles near its center and two body setae on its posterior margin. Dorsal ostioles well developed, strongly sclerotized.

Legs rather large, segments of hind pair measuring as follows: Trochanter, 61 ; femur, 156; tibia, 136 ; tarsus, 77 ; claw, 23 ; claw digitules setose, elongate, extending beyond stout, apically curved claws.

With two circuli (probably only one occurring normally), one large, truncate, about 50! in diametcr, $34!1$ across its finely faveolate orifice, located on segment IV, and smaller one of similar shape on segment III. Anal lobes undeveloped, without sclerotization, each lobe area with three elongate setae, two of them about 80" long, third much shorter, and several body setae and two cerores. Anal ring conspicuous, measuring $89!$ in diameter, its structure clearly defined, its setae stouter and Ionger than lobe setae, anterior pair about $9 \bar{p}, \mathrm{long}$; outer part of anal ring consisting of $48-50$ rather small, oval, diversiform, isolated cells, in places forming double row; inner part of ring with circle of larger, irregularly shaped cells, about 20 lying adjacent to shaded undifferentiated area. Tritubular cerores of medium size, their individual ducts about 10,1 long, rather strongly divaricating and weakly tapered, projecting well above derm and occurring dorsally and ventrally in large numbers, approximately 130 on head and thotax, 108 on abdomen; dorsally cerores are arranged in rather uniform rows across abdominal segments. Multilocular disk pores absent. 'Tubular ducts short, stout, strongly selerotized, 5it64 in diameter, slightly smaller than cerores, present over entire derm, some abdominal segments with as many as 20. Minute tubular ducts, referred to as "mushroom bodies," seattered widely over both surfaces. Trilocular pores faimy numerous, more abundant dorsally. Body setae variable in length, short, evenly distributed.

Holotype.-State of Sonora, Mexico, 29-ITI67, intercepted at quarantine at Nogales, Ariz. USNM .

Host Plant.-Unknown, taken in cacti debris.
Distribution.-Known only from the type locality.

Discussion.-This species and rolations are alike in having large, unusually stout tubular ducts and an abnormally large number of tritubulat cerores. Both the size of the tubular ducts and large number of cerores are uncommon for Rhizocons. R. polyporus difters from relatimes in having longer legs and antennae, larger circulus, slender, nontapered sensory setae, and more numerous cerores.

Rhizoecus pritchardi McKenzie

(Figs. 283-289)
Fhizucer mithardi MeKenaie, 19001s: r49; McKenzie, 1917: 400: Fambleton, 1973: 69.
Rhizor res cyprralis (Hambleton) : McKenzie, 1467: 383 (misidentification).
Thizor cus chminath McKenzie, 1960b: T47; McK Kenzie, 1!nt: 387. NEW SYNONYMY.

Adult Female.-Elongate oval, moderately stout. Length, $1.62-2.10 \mathrm{~mm}$; width, $0.95-1.33$ mm . Antennae six-segmented, rather stout and widely spaced, average length of segments: I, 40 ; II, 21 ; III, 33 ; IV, 18 ; V, 18 ; VI, 43 ; apical segment narrowest, not twice as long as wide, with three moderately stout, falcate sensory setae and one spinelike sensory seta near apex; segment V with one much shorter, lanceolate sensory reta. Interantennal space equal to twice width of segment I. Eyes small, often weakly pigmented, difficult to observe. Rostrum elongate, $88!$ long, 52! wide; rostral loop not reaching insertion of second pair of legs. Cephalic plate absent. Dorsal ostioles well developd, their rims strongly sclerotized.

Legs normal for size of insect, moderately stout, clongate, average length of segments of hind pair: Trochanter, 49; femus, 109; tibia, 82; tarsus, 71 ; claw, 25 ; claw digitules short, acute, reaching about to middle of stout, curved claws.

Circulus absent. Anal lobes slightly developed or weakly protruding, unsclerotized, each lobe with one long and two shorter elongate sctae, longest about 84 u long, and several body setae. Anal ring comparatively small, about 50μ wide, its setae shorter and narrower than longest lobe seta; outer part of anal ring with 12 elongate, oval cells, each with spicule; inner part of ring with cells of similar shape but larger; darkened area indistinct (anal ring of this species often assumes vertical position upon mounting and thus makes it difficult to ascertain the mature of the cellular structure). Tritubular cerores of 2 sizes, 25-28 of larger size present dorsally, 3 on head, $8-10$ on thorax, 13-14 on abdomen; slightly smaller cerores, 4-6 occurring submarginally on abdomen. Multilocular disk pores, varying in size and shape, 11-21 present ventrally, usually near vulva on segments VIII and IX, occasionally

1 or 2 on YII. Tubular ducts absent. Trilocular pores abundant, well distributed, some areas of head and thorax occasionally with few pores. Circular pores occurring dorsally, very small. about one-half size of trilocular pore, from few to as many as 22 scattered across posterior borders of abdominal segments IV, Y. and YI. Body setae variable in size, short and long setae about evenly distributed.

Holotype.-Colma, Calif., 17-I-57, E. L. Labadie and D. J. Bingham. Paratypes.-Several taken with holotype, UCD; paratypes also CAS, CDA, USNM. Holotype of cluminatus, Bayside. Calif., 24-IX-54, W. D. Thomas; paratypes taken with holotype. UCD, one paratype USNM.

Host Planis.-Achillea agcratifolia, Adiantwm sp., Arctostaphylos sp., Chrysanthemmm sp., Genm coccinemm, Lantana sp., Polygala crotalariodes, Saintpamia ionantha, Siminfia speciost.

Distribution.-California, Florida, Illinois, Maryland. Massachusetts, New York, Pemsylvania, Canada.

California: Bayside, 24-IX-54, W. D. Thomas. Bellfower, 12-I-67, T. and H. Ryner. Berkelev. 25-IX-59, A. E. Pritchard. Colma, 24-II55, W. E. Davis. Escondido, $21-\mathrm{II}-56$, A. A. Church. Napa, 30-XI-64, D. R. Hall. San Bruno. 29-IV-58, A. E. Pritchard. San Francisco, 29-IV-60, R. Michelsen. Santa Barbara, 18-II-60, M. Suskin. Visalia, 11-III-64, Pliil Hemphill.

Floricla: Apopka, 1-IV, 11-V-71, R. M. Remington. Gainesville, $23-V-68$, E. Mercer. Largo, 22-IV-66, J. R. McFarlin.

Illinois: Elizabeth, $5-\mathrm{T}^{t}-64$, F. F. Smith.
Maryland: Baltimore, 22-IV-65; Beltsville, 15-XII-65. 2-III-70, F. F. Smith. Cheverly, 4-XI-71, W. W. Cantelo.

Massachusetts: Waltham, 26-IIT-70, A. G. Gentile.

New York: Ithaca, 8-XII-61, D. S. Welsh. Scotia, 25-III-65, G. V. Johnson.

Pennsylvania: York, 22-VII-65, F. F. Smith.
Canada: Niagara Falls, Ontario, 22-XI-48, R. Sheppard.

Discussion.-McKenzie (1060 b), in describing eluminatus, indicated the close relationship between it and pritchardi, pointing out that eluminatus differed principally in the absence
of exes. Close examination of the types indicates the presence of small, inconspicuous eyes in both species. Examination of a series of pritchardi specimens reveals that the eyes may be present or absent. In all other respects chmiHathes and pritchardi are similar and therefore are here treated as synonyms. The name "pritchard" has been selected as senior synonym because of its usage in economic literature.
R. pritchardi is readily separated from its closest allies by the absence of tubular ducts and presence of circular pores. It has more moltilocular disk pores than either cyperalis or nomoralis, two of its nearest relatives.

Rhizoecus relations, new species

(Figs. 290-293)
Adult Female.-Elongate oval. Length, 1.95 mm ; width, 1.01 mm . Antennae six-segmented, moderately stout, length of segments: J, 36 ; II. 25; III, 40 ; IT, 25; Y, 24; VI, 53; apical segment robust. not twice as long as wide, with three elongate, moderately stout, tapering, falcate sensory setae and one shorter, spinelike sensory seta; segment V with one much smaller, short, lanceolate sensory seta. Interantemal space equal to about combined length of segments I and II. Eyes absent. Rostrum stout, approximately $72!$ long, $65!4$ wide; rostral loop reaching midway between first and second pairs of legs. Cephatic plate longer than wide, irregular in outline, narrow anteriorly, about 53 l long, 40 p wide, with four to five body setae on its borders. Dorsal ostioles inconspicuous, hind pair more prominent, all with weakly sclerotized rims.

Legs comparatively short, stout, (hind pair and one of second pair broken), length of segments of midleg: Trochanter, 41; femur, 94; tibia, 69 ; tarsus, 48 ; claw, 19 ; claw digitules elongate, weakly dilated, extending beyond rather stout, acute, curved claws.

With one medium-sized truncate circulus, $34!$ at its base, 13 across its orifice. Anal lobes undeveloped, unsclerotized, each lobe area with three elongate setae, longest about $77 \ldots \mathrm{l}$ long, several shorter setae, body pores, and several cerores. Anal ring about 68,1 in diameter, its cellular structure well defined, its ring setae
longer and stouter than lobe setae. longest about 7 bul long; outer part of anal ring with $36-38$ cells varying considerably in size and shape, some rounded, elongate or triangulate. rather indiseriminately arranged: inner part of ring with 14-16 irregularly elongate. larger cells lying next to darkened area consisting of about 10 hemispherically shaped cells. Tritubular cerores small to medium. projecting well above derm, their ducts divaricating, present on both surfaces but more abundant dorsally, total of about 85 on head and thocax, 60 on abdomen. Multilocular disk pores absent. Tubular ducts short, stout, strongly sclerotized, diameter varsing from that of triangular pore to ceroris scattered widely over both surfaces. Mushroom bodies widely distributed over entire derm. Trilocular pores faitly uniformls distributed, more numerous on posterior abdominal segments but sparsely arranged in area along anterior and posterior margins of segments. Body setae short. yarying somewhat in length. evenly distributed.

Holotype.-Three mi NE. Nogales Station, Cruz Co., Ariz., I-VIII-66, D. R. Miller; UCD.

Host Plant.-Uncletermined.
Distribution.-Known only trom type locality.
Discussion.-The presence of large tubular ducts separates this species from lencosomus. As its name suggests, refatirus is closely related to polymorms, but it differs from the latter in having shorter legs and antemme, a smaller circulus, differently shaped falcate setae, and fewer cerores. In rolatirus the eves are lacking and the microscopic mushroom bodies are poorly defined.

Rhizoecus simplex (Hambleton)

(Figs. 294-298)
Riprosiclla simpler Hambleton, 1049a: 73.
Rhizoceus cucticuns (Hambleton) : MeKenzie, 1997: 381 (mixidentifieation in part).
Rhizocens simplex: Fambleton, 1973: 60.
Adult Female.-Oval elongate. Length, $0.87-$ 1.39 mm ; width, $0.38-0.66 \mathrm{~mm}$. Antennae sixsegmented, short, moderately stout, average length of segments: I, 25; II, 14; III, 20; IV, 12; V, 13; VI, 31; apical segment less than twice as long as wide, with three fairly stout,
weakly tapered, faleate sensory setae and one spinclike sensory seta near apex; semment V with one shorter. clavate sensory seta. Interantemmal space about equal to length of segment I. Eyes weakly protruding, lightly pigmented. Rostrum medium size, about 50, long, 35! wide ; rostral loop extending almost to insertion of second pair of legs. Cephalic plate irregular in outline. $37!$ long, 35 !! wide, contalining two vacuoles and bordered by five or six body setie. Dorsal ostioles inconspicuous, lightly sclerotized.

Legs small, rather stout, segments of hind pair measuring as follows: Trochanter. 28: fenum, 58: tibia, 56; tarsus, 36 ; claw, 15 ; claw digitules elongate, dilated at tips, extending to end of long, rather acute claws.

With one more or less truncate circulus, 13 un wide at its base, its orifice roughly faveolate. Anal lobes undeveloped, unsclerotized, each lobe area with three slender, elongate setae. longest about 37!t long. Amal ring about 46! wide, its setac averaging about 50,1 long, stouter than lobe setae; outer part of anal ring consisting of 17-23 oval cells with spicules: imner part of ring with about 14 larger diversiform cells lying adjacent to circular area of darkened hemispherical cells. Tritubular cerores small, variable in number, 48-68 present. most numerous dorsalls, their ducts clongate, about $71-8$, long. and projecting well above derm. Multilocular disk pores absent. Tubular rlucts small, elongate, present on both surfaces but more numerous ventrally. Trilocular pores evenly distributed, not numerous. Body setie shord, slender, rather sparse.

Lectotype-São Paulo City, São Paulo, Brazil, 10-IV-35, B. L. Ribeiro and E. J. Hambleton. Paralectotypes.-Four taken with lectotype and monted on same slide, seven additional paralectotypes taken on different hosts in same locality mounted on four slides. TSNM.

Host Plants.-Brassaia sp., Calendmat sp., Cowissa trandiflora, Coccoloba waifora, Cordyline sp., Cryptanthus sp., Dieffrmbachia sp. Diangothect cletfatissima, Evigt on bonariensis, Eriobolrya japomica, Euphorbia milii, Gardeniot insminoides. Homatocachus selispinus, Hedera heli.r, Hoba camosa ev. crotica, Irora cocrinca, Nroregclier sp., Nephole isis craltate, Oralis martiona, Pemicum sp., Peperomia sp.,

Pilea microphylla, Plantago sp., Saintpaulia sp., Strelitzia. reginae, Zygocactus sp., Z. truncatus.

Distribution.-California, Florida, New York, Washington, Brazil.

California: Berkeley, Alameda Co., 4-XI-58, H. L. McKenzie and A. E. Pritchard.

Florida: Apopka, 21-I-71, F. L. Ware. Bradenton, 1-I-71, J. R. McFarlin. Eau Gallie, 8-II-71, H. C. Levan. Englewood, 16-I-73, C. J. Bickner, Fairvilla, 2-II-71, F. L. Ware. Fort Lauderdale, 14-II-72, J. R. Halstead. Gainesville, 19-VI-70, John Perry. Gotha, 1-VIII-61, R. J. Griffith. Homestead, 23--IY71, J. H. Knowles. Key West, 1-I-73, E. J. Hambleton. Leesburg, 13-V-71, A. L. Bentley. Lockhart, 29-I-71, F. L. Ware. Orlando, 10-II-71, W. W. Smith and E. R. Fatic; 21-V-71, F. L. Ware. Osprey, 万-II-71, J. R. McFarlin. Oxford, 22-IV-71, A. L. Bentley. Palma Sola, 7-XII-67, J. R. McFarlin. Pompano Beach, 10-VI-63, M. L. Bank. Sebastian Inlet, 12-II-71, H. C. Levan. Snead Ishand, 2-IV-71; Tallavast, 30-III-71, J. R. McFarlin. Upper Key Largo, 3-II-68, R. E. Woodruff. W. Melbourne, 9, 12-II-71, H. C. Levan. Winter Garden. 11-I-65, 26-II-65, R. J. Griffith; 19-II-68, F. L. Ware. Zellwood, 28-IX-73, P. Gibson and W. Pierce.

New York: Syracuse, XI-72, 27-IJ-73, C. A. Cooke.

Washington: Bellingham, 4-IX-65, C. A. Leckie; 10-VI-68, B. J. Landis.

Brazil: The type locality.
Discussion.--Because a holotype was not indicated in the original description of simplex, I hereby designate the first specimen on the left in the bottom row in a field of five individuals on slide No. 1 as the lectotype.

The study of a long series of specimens from Florida has proved invaluable in confirming the validity of simplex. Its present distribution, including the new record for New York, represents a considerable extension in the known range of the species.
R. simplex is about one-half the size of cacticans, and both species differ in the size and shape of their antennae and rostra. The cells of the outer part of the anal ring in simplex are mostly oval elongate and number 17-23,

Whereas in cacticons there are 32-40 larger, subtriangulate to quadrate cells in the outer part of the ring.

Rhizoecus solomi (Hambleton)

(Figs. 299-303)
Ripersicha wolrui Hambleton, 194Ga: 75. Rhivocrts nolani: Ferris, 1953: 458.

Adult Female.-Elongate oval. Length, 1.351.53 mm ; width, $0.66-0.71 \mathrm{~mm}$. Antennae sixsegmented, rather widely spaced. average length of segments: I, 32; II, 18; III, 31; IV, 17; V, 17; YI, 45; apical segment not quite twice as long as wide, with three moderately stout, bluntly tapered, falcate sensory setae and one elongate, spinelike sensory seta; segment V with shorter, narrow sensory seta. Interantennal space equal to combined length of segments V and VI. Eyes fairly prominent, weakly pigmented. Rostrum elongate, measuring 73 ! long, 41_{1} wide; rostral loop reaching almost to insertion of second pair of legs. Cephalic plate weakly indicated, appearing to be longer than wide. Dorsal ostioles inconspicuous.

Legs rather stout, average length of segments of hind pair: Trochanter, 37; femur, 96 ; tibia, 81 ; tarsus, 59 ; claw, 20 ; claw digitules elongate, weakly dilated apically, extending to or slightly beyond rather stout claws.

With one medium-sized conical circulus, 25μ across its base, its orifice about $10!$ in diameter, fincly faveolate. Anal lobes weakly protruding, unsclerotized, each lobe with three elongate setae, two of them longer and stouter than the third, longest about 74,1 long. Anal ring appearing slightly wider than long, measuring 49,1 in diameter, its setae about as long and stout as lobe setae; outer part of ring with 12-15 elongate, simate cells practically touching end to end, each with spicule near its center; cells of inner part of ring $10-12$, larger and more irregular in shape, lying adjacent to clouded area of subcircular cells. Bitubular cerores present, about 18,1 long, rather stout, 45-48 present mostly dorsally and submarginally, 21-22 on head and thorax, 24-26 on abdomen, walls of ducts parallel, two ducts lying side by side, or with their bases diverging, pro-
jected part slightly above derm. Multilocular disk pores $45-50$, occurring across venter of posterior three abdominal segments and occasionally 1 over same area dorsally. Tubular ducts small, widely distributed over derm. Trilocular pores moderately abundant and uniformly distributed. Body setae variable in length, most short, not prominent.

Holotype.-Guatemala City, Guatemala, 12-V-45, E. J. Hambleton. Paratypes.-Three taken with holotype. USNM.

Host Plant.-Solanum nigrum.
Distribution.-Guatemala, Mexico.
Guatemala: The type locality.
Mexico: $15 \mathrm{mi} \mathrm{S}$. Llera, Tamaulipas, 24-II72, D. R. Miller and F. D. Parker.

Discussion.-As indicated under the discussion of mexicanus, that species and solami are closely related. See page 37 and the key to species for their major differences.

Rhizoecus sonomae McKenzie

(Figs. 304-309)
Rhizocths somomac McKenzie, 1960b: 751; McKenzie, 1961: 47; McKenzic, 1904: 269; MeKenzie, 1967 : 402.

Whizopens browni McKenzic, 1961: 43; MeKenzie, 1967: 370. NEW SYNONYMY.

Adulf Female.-Elongate oval. Length, $0.91-$ 1.84 mm ; width, $0.46-0.91 \mathrm{~mm}$. Antennae sixsegmented, average length of segments: I, 33; II, 20 ; II, 36 ; IV, 21; V, 21 ; VI, 51 ; apical segment about twice as long as wide, with three long, narrow, falcate sensory setae and one distal, spinelike sensory seta; serment V with one shorter, narrow, weakly clavate sensory seta. Interantennal space equal to about combined length of segments III and IV. Eyes weakly protuberant, lightly pigmented. Rostrum moderately stout, $71 / 1$ long, $53 p$ wide; rostral loop extending to about insertion of second pair of legs. Cephalic plate usually slightly wider than long, well sclerotized, bordered anteriorly by three small body setae. Dorsal ostioles well developed, inconspicuous.

Legs of average si\%e, length of segments of hind pair: Trochanter, 45; femur, 94 ; tibia, 86; tarsus, 63; claw, 22; claw digitules long,
slender, dilated at tips. reaching beyond moderately stout, curved claws.

With one elongate, conical circulus, about as wide at base as long. Anal lobes undeveloped, each lobe area with small sclerotized patch, three elongate setae, longest about 75μ long, small concentration of pores, and several body setae. Anal ring about $5 l_{!}$wide, its structure distinct, its anterior pair of setae stoutest, remaining pairs about as stout but shorter than longest lobe seta; outer part of anal ring with $17-20$ small, elongate, oval cells, most with spicules; inner part of ring with 14 much larger, more irregular cells lying adjacent to darkened area of semicircular cells. Tritubular cerores of medium size, about 7μ long, walls of individual ducts almost parallel, projecting half their length above derm, about 30 dorsally along median line and submargin, on venter, about 15 occurring on submargin, Multilocular disk pores more abundant ventrally in area of vulva, as many as 28 on segment VIII, 26 across base of segment VII, 18 on segment IX, several on VI and areas opposite base of rostrum, elsewhere scattered; on dorsum, 3 present on VI, 3 on VII, 9 on VIII, 6 on IX. Tubular ducts small, evenly distributed on both surfaces, few on head. Trilocular pores fairly uniformly distributed, more sparse ventrally, especially in thoracic area. Body setae varying somewhat in length but most short and rather inconspicuous.

Holotype.-Two mi W. of Petrified Forest, Sonoma County, Calif., 23-II-59, W. R. Bauer and J. S. Buckett; UCD. Paratype--One from same locality, $25-\mathrm{X}-59$, J. S. Buckett; CDA. Holotype of browni, 5 mi NW. Spanish Flat, Napa County, 1-III-61, S. W. Brown; UCD.

Host Plant.-Unknown, taken in leaf mold and trash from soil under Juniperus sp . and Quescus wislizenii.

Distribution.-California: Type locality. Grafon, 20-II-60, C. L. Judson. Lucerne, 1-VI-61, R. O. Schuster. Wooden Valley, 29-IV-62, S. F. Bailey.

Discussion.-In attempting to key the species somomae and broumi on the basis of their original descriptions, certain characters appeared to differentiate the two forms. However, when types and other available material were studied, it became apparent that they could not be separated. In all specimens the sclerotization
of the anal lobes is very weak, the claw digitules are weakly dilated. and the anal ring structure, antennae. rostra, and other characters show no marked differences. Because of these similarities, browni is here considered a junior symonym of sonomac.

Rhizoecus spinipes (Hambleton)

(Figs. 310-315)
Movisonelle spinipes Hambleton, 1946a: 36. Rhizoccus spinipes: Hambleton, 1973: 70.

Adult Female.-Broadly elliptical. Length, $1.32-1.64 \mathrm{~mm}$; width, $0.91-1.19 \mathrm{~mm}$. Antennae six-segmented, short, stout, closely placed near apex of head, segments in following lengths: I, 23; II, 18; III, 15; IV, 12; V, 11; VI, 34; apical segment stout, less than twice as long as wide, with three stout, strongly clavate, apically acute, falcate sensory setae and one spinelike sensory seta near apex; segment V with one narrow, elongate, curved sensory seta. Interantennal space about equal to width of segment I. Eyes small, rather prominent, weakly pigmented. Rostrum almost twice as long as wide, 57 l long, 31 if wide; rostral loop extending slightly more than halfway to insertion of second pair of legs. Cephalic plate spadeshaped, rather large, about 44μ long, with as many as 10 small body setae associated with it. Dorsal ostioles poorly developed, anterior pair apparently absent, posterior pair inconspicuous, weakly pigmented.

Legs small, robust, rather spinose, length of segments of hind pair: Trochanter. 30 ; femur, 58 ; tibia, 47 ; tarsus, 35 ; claw, 21 ; claw digitules not reaching half the length of long, slender claws.

Circulus absent. Anal lobes undeveloped, each lobe area with elongate sclerotized patch, with four slender, elongate setae, longest about $48!$ long. Anal ring about $45 ;$ in diameter, its setae shorter than its diameter, stout, apically acute, about $35 p$ long; outer part of anal ring with 12 rather large, elongate cells isolated from one another and with tiny spicules; inner. part of ring with $8-10$ similar cells lying adjacent to undifferentiaterl shaded area. Tritubular cerores large, their individual ducts stout,
slightly tapered, about $11!$ long, present on both surfaces, 3 on head, 8 on thorax, 12-14 on abdomen. Multilocular disk pores with six to seven loculi, present dorsally and ventrally, few but uniformly scattered, absent from head. Tubular ducts absent. Trilocular pores sparse, widely distributed. Body setae short, sparse, somewhat longer on head and on dorsum of posterior abdominal segments.

Holotype.-Howard Comity, Ark., 8-VI-36, W. F. Turner; USNM.

Host Plants.-Andropogon hizomatus, Panic'um sp.. undetermined Gramineae, in soil under peach tree.

Distribution.-Arkansas, Florida, Georgia, Mexico.

Arkansas: Type locality.
Florida: Gainesville, 10-X-67, K. R. Langdon.

Georgia: Chattooga County, 4-XII-73, R. J. Beshear.

Mexico: Jalapa (Rio Cedeno), Vera Cruz, 16-YII-67, D. R. Miller and J. Villanueva B.

Discussion.-This unique species is distingruished by its short, stout. acute anal-ring setae, presence of four elongate setae on each anal lobe, shape of its falcate sensory setae, and multilocular disk pores with six or seven Ioculi.
R. spimipes was omitted by Ferris (1053) and by McKenzie (1960b, 1967).

Rhizoecus stangei McKenzic

(Figs. 316-320)
Rhizoccus stanyci MreKenzie, 1962: 67G.
Adult Female.-Oval elongate. Length of type, 1.29 mm ; width, 0.66 mm . Antennae sixsegmented, stout, length of segments: I, 58 ; II, 33 ; III, 36 ; IV, 27 ; V, 27 ; VI, 64 ; apical segment less than twice as long as wide, with three moderately stout, falcate sensory setae tapering toward their extremities and one spinelike sensory seta near apex; segment V with one elongate, narrow, slightly clavate sensory seta. Interantennal space about equal to combined length of segments V and VI. Eyes prominent, rather globose, weakly pigmented. Rostrum comparatively stout, length 83μ, width $64!$;
rostral loop reaching insertion of second pair of legs. Cephalic plate approximately 33 , long and 464 wide, with two body setae on anterior border. Dorsal ostioles well developed, heavily sclerotized.

Legs rather large, length of segments of hind pair: Trochanter, 59 ; femur, 123 ; tibia, 101; tarsus, 79 ; claw, 34 ; claw digitules very short, setose, hardly reaching half the length of long, stout, curved claws.

Circulus absent. Anal lobes slightly protruding, each lobe with small selerotized patch. three elongate setae, longest about 511 long. remaining two shorter, smaller. and with six to eight short body setae. Anal ring about 53up wide, its setae of variable lengths and averaging about 60! long, all longer and about as stout as stoutest lobe seta; outer part of anal ring with 10 rather large, elongate. oval cells, some with spicules and most isolated from each other; inner part of ring with about same number of cells of similar size; clouded area not clearly defined. Tritubular cerores fairly numerous, 2 sizes present, larger abont $11!$ wide. their ducts $8!-9!$ long. stout. about 18 occurring dorsally, 5 along median line from head to abdominal segment YI and 12 or 13 submarginally from thorax to abdominal segment VIIT; smaller or medium ceroris $5!-7 \mu$ wide and of similar shape, 44 or more occurring ventrally in rows across segments. of these, $23-28$ are on segments VII and VIII. Multilocular disk pores abundant, over 100 observed on venter of abdominal segments III-IX, more numerous in area of vulva and across posterior borders of segments V-VIII, few occurring dorsally or near lateral margins, absent from head and thorax. Tubular ducts absent. Trilocular pores rather evenly distributed over both surfaces. Body setae most small, inconspicuous.

Holotype.-One miN. Tepic, Nayarit. Mexico, 21-VIII-59, L. A. Stange and A. S. Menke. Par-atype.-One taken with holotype. UCD.

Host Plant.- Unknown, collected from soil.
Distribution.-Type locality.
Discussion.- R. stangei seems to bear some relation to americanas and mayomus. The major difference between them is that stongei has only two sizes of tritubular cerores and possesses many more larger cerores on its ventral surface. It is also similar to neostangei.

Rhizoecus subcyperalis. new species

$$
\text { (Figs. } 321-323 \text {) }
$$

Adult Female.-Broadly ovate elongate, stout. Length, $1.60-1.81 \mathrm{~mm}$; width, $0.81-1.00$ mm . Antennae six-segmented, short, rather stont. widely spaced, average length of segments: I, 41 : II, 19 ; III, 35 ; IV, 18; V. 18; VI. 41: apical segment not twice as long as wide, tapering, with three comparatively narrow, elongate, falcate sensory setae and one elongate, spinetike sensory seta; segment V with one shorter, smaller sensory seta. Interantennal space equal to combined length of segments I-III. Eyes small, often inconspicuous, weakly pigmented. Rostrum elongate, 82 long, $55!$ Wide; rostral loop reaching halfway to insertion of second pair of legs. Cephalic plate absent. Dorsal ostioles conspicuous, their rims strongly sclerotized.

Legs of average size, length of segments of hind pair: Trochanter, 46 ; femur, 105 ; tibia, 75 ; tarsus. 68; claw, 24; claw digitules short, acute, about reaching middle of elongate, curved claws.

Circulus absent. Anal lobes with some protrusion, unsclerotized, each lobe with three or four elongate setae, longest approximately $78!$ long, and body pores concentrated around them. Anal ring about 51 ! wide, usually resting at angle or vertically in mounted specimens, its setae each about 57 ! long, as stont as but shorter than longest lobe seta; outer part of anal ring with 10-12 elongate, oval. or sinuate cells with spicules; imner part of ring with harger cells of similar shape but more irregular in outline. Tritubular cerores large, of one size, 18 occurring dorsally, 3 on hend, 7 on thorax, 8 on abdomen. Multilocular disk pores $4-10$. confmed to venter in area of vulva. Tubular ducts small, few, located on venter of abdominal segments VIII and IX. Trilocular pores evenly distributed over both surfaces, Cireular pores minute, sparse, occurring across forsum of midabdominal segments. Body setae rather short, inconspicuous.

Holotype.-Portal, SW. Research Station, Cochise County, Ariz., 3-VIIF-66, D. R. Miller; UCD. Paratypes.-Five taken with holotype, on four slides; six arditional on six slides as follows: Arizoma: Bisbee, Cochise County, 2-

VIII-66, D. R. Miller; Madera Canyon Station, Santa Cruz County, 31-VII-66, D. R. Miller. Idaho: Craters of the Moon National Monument, Butte County, 4-VII-66, D. S. Horning; 8 mi NE. Minkcreek, Franklin County, 3-VIII67, D. R. Miller and D. S. Horning. Nine UCD, two USNM.

Host Plants.-Lithospermum ruderale, Urtica lyallii, under rocks, in soil.

Distribution.-Arizona, Idaho.
Discussion.-Twelve specimens in the UCD collection mislabeled cyperalis, eluminatus, and pritchardi form an integral group of individuals with like characters and are here considered new and described under the name subcyperalis. The true cyperalis from Central America does not appear to be present in California, Arizona, or Idaho; eluminatus has been synonymized with pritchardi. The latter species has 30-35 cerores of 2 sizes that occur both dorsally and ventrally, whereas subcypertlis has only 18 cerores of 1 size and they are restricted to the dorsum.

Rhizoecus theobromae (Hambleton), new combination

(Figs. 324-328)
Morrisonclla theobromae Hambleton, 1946a: 39.
Adult Female.-Elongate oval, slightly constricted behind thorax. Length, $1.39-1.70 \mathrm{~mm}$; width, $0.66-0.75 \mathrm{~mm}$. Antemnae six-segmented, comparatively short, widely spaced near apex of head, segments measuring as follows: I, 33; IL, 18; III, 19 ; IV, $20 ; \mathrm{V}, 17$; VI, 42 ; apical segment less than twice as long as wide, sharply tapered, with three stout, apically obtuse, falcate sensory setae and one elongate, spinelike sensory seta; segment Y with one elongate, stout, clavate sensory seta. Interantennal space equal to combined length of segments V and VI. Eyes rather prominent, hemispherical, pigmented. Rostrum of medium size, length about 67 y long, 48 f wide; rostral loop extending slightly beyond insertion of second pair of legs. Cephalic plate irregularly shaped, approximately $28 p$ long by 48 wide, with several vacuoles and usually with body seta at each laterocephalic margin. Dorsal ostioles moderately
conspicuous, their rims weakly pigmented, surrounded by numerous pores and body setae.

Legs of average size, length of segments of hind pair: Trochanter, 41 ; femur, 96 ; tibia, 74 ; tarsus, 55 ; claw, 25 ; claw digitules short, setose, hardly reaching half the length of long. rather stout, weakly curved claws.

Circulus absent. Anal lobes weakly developed, each lobe with light, irregular sclerotization, three slender, elongate setae, longest about 6011 , (others broken off in type), and several small body setae. Anal ring about 40,1 in diameter, iis setae about same thickness but shorter than longest lobe seta, measuring about 52 u long; outer part of ring containing 12 narrow, elongate cells with spicules and often touching end to end; cells of immer part of ring with about same number, somewhat larger but not well defined and lying next to darkened area with large, oval cell structure. Tritubular cerores present in two sizes, larger about $8!1$ wide occurring dorsally, five along median line from head to abdominal segment VI, eight submarginally; cerores about 5μ wide, present ventrally, one pair each on abdominal segments V and VII near midventral area. Multilocular disk pores most numerous on venter of posterior abdominal segments, $35-40$ present, elsewhere, except on head, few pores widely scattered on both surfaces. Tubular ducts scarce, occurring on venter, opposite anal ring on anterior anal-lobe area. Trilocular pores uniformiy distributed, most numerous dorsally. Medioventral pores in two clusters across midventral surface of abdominal segments VI and VII, 12-31 pores in each cluster. Body setae mostly short, some longer setae on head, prothorax, and posterior abdominal segments.

Holotype.-Pichilingue, Ecuador, 1-X-44, E. J. Hambleton. Paratypes.-Three (one mounted with holotype on same slide) and three preadult females. USNM.

Host Plant.-Theobroma cacao.

Distribution.-Known only from type locality.
Discussion.-This species, like the West Indian globoculus, has the peculiar medioventral pores and is found on the same host. Its stouter falcate setae, less globose eyes, and more abundant multilocular disk pores distinguish it from globoculus. Tubular ducts are present in theo-
bromac, though the original description of the species stated that they were absent.

Rhizoecus totonicapanus (Hambleton)

(Figs. 329-333)
Ripersiclla totonirapana Hambleton, 1946a: Th. Khizoects totonicapanas: Ferris, 1953: 460.

Adult Female.-Oval elongate. Length, 1.351.43 mm ; width, $0.67-0.71 \mathrm{~mm}$. Antennae sixsegmented, moderately widely spaced, segments measuring as follows: I, 25 ; II, 17 ; III, 19 ; IV, 14; V, 13; VI, 39; apical segment less than twice as long as wide, with three eiongate, moderately stout, weakly clavate, falcate sensory setae and one elongate, spinelike sensory seta located near apex; segment V with one short, clavate sensory seta. Interantennal space about equal to combined length of segments I-III. Eyes rather small with little pigmentation. Rostrum of average size, $62!$ long, $41!$ wide; rostral loop extending more than halfway to insertion of second pair of legs. Cephalic plate subquadrate, about 30μ long, 40μ wide, with two vacuoles and several body setae on its borders. Dorsal ostioles almost unrecognizable, without pigmentation.

Legs short, length of segments of hind pair: Trochanter, 33 ; femur, 68; tibia, 55; tarsus, 45 ; claw, 1.8 ; claw digitules long, slender, and appearing setose, extending to tip of relatively stont claws.

With one conical circulus, about 16μ wide across its base. Anal lobes not protruding, each lobe area with small, irregular sclerotized patch, three slender setae, longest about 60μ long, several body setae and pores. Anal ring about 50 p wide, its setae slender, anterior pair stoutest and about 62μ long; outer part of anal ring with $12-14$ elongate, oval cells with spicules; inner part of ring with 10-12 larger, more irregular colls lying next to shaded area of rounded cell structure. Derm with bitubular cerores small, elongate, with ducts about 9μ long, weakly tapered, divaricating, present dorsally and ventrally, 19-22 on head and thorax, 23-27 on abdomen. Multilocular disk pores $31-48$, present largely on venter of posterior abdominal segments, few occurring on dorsum.

Tubular ducts about $5 / 4$ long, distributed on both surfaces in small numbers over entire derm. Trilocular pores fairly abundant, more numerous on dorsum. Body setae varying in length, some longer setae nearly 40μ long on head and abdomen.

Holotype.-Along roadside between Quetzaltenango and Totonicapan, Guatemala, $20-V-45$, E. J. Hambleton. Paratype.--One taken with holotype. USNM.

Host Plant.-Alchemilla orbiculata.
Distribution.-Known only from type locality.
Discussion.-In addition to the differences pointed out between this species and gracilis (p.29), the latter species is larger and the cells in the outer part of its anal ring are much narrower than those in totonicapanas.

Rhizoecus tropicalis, new species

(Figs, 334-339)
Rhizocnts neomexicanus McKenzie, 1962: 674 (misidentification in part).

Adult Female.-Oval elongate. Length, 1.29 mm ; width, 0.64 mm . Antennae six-segmented, moderately short, stout, strongly geniculate, length of segments as follows: I, 21; II, 17; III, 19 ; IV, 15 ; V, 14 ; VI, 33 ; apical segment less than twice as long as wide, with three slender, bluntly tapered, weakly clavate, falcatr sensory setae and one narrow, more acute sensory seta; segment V with one shorter, clavate sensory seta. Interantennal space about equal to combined length of segments V and VI. Eyes absent. Rostrum of medium size, 51u long, $45!$ wide; rostral loop almost reaching insertion of second pair of legs. Cephalic plate longer than wide, with four or five body setne along its periphery. Dorsal ostioles weakly sclerotized, inconspicuous.

Legs short, stout, length of segments of hind pair: Trochanter, 33 ; femur, 58; tibia, 55 ; tarsus, 35 ; claw, 15 ; claw digitules elongate, their tips dilated, extending beyond rather stout, weakly curved claws.

With one small, roundly truncate circulus, about 13 w wide at its base, its apex widely faveolate. Anal lobes undeveloped, each lobe area with small, irregularly elongate, sclero-
tized patch between one long and two shorter setae (mostly broken in types). Anal ring about 4511 in diameter. its setae approximately 55 long, much stouter than lobe sctae; outer part of anal ring with $19-21$ elongate to ovate, loosely arranged, spiculate cells; imer part of ring with 10-12 larger, more elongate, and somewhat stouter cells, dark area poorly defined. Tritubular cerores small, their ducts about $6 \mu-74$ long, present dorsally and ventrally, 17-18 on head and thorax, $21-24$ on abdomen, as many as 5 on abdominal segment VIII. Multilocular disk pores absent. Tubular ducts smaller in diameter than trilocular pores, widely distributed but most common ventrally, five or six present on most abdominal segments. Trilocular pores rather sparsely distributed, very few in some areas of abdominal segments. Body setae short, rather sparse.

Holotype.-San Rafael, Departamento San Marcos, Guatemala, 28-XII-63, J. G. Rodriguez. Paratypes.-Two taken in Guatemala in 1964 by Jesus Escobar, USND; two, Alazán, State of Vera Cruz, Mexico, 15-VIII-59, A. S. Menke and L. A. Stage, UCD.

Host Plant.-Coffea arabica.
Distribution.-Guatemala, Mexico.
Guatemala: Type locality.
Mexico: Alazán, Vera Cruz, 15-VIIT-59, A. S. Menke and L. A. Stange. This collecting record includes three specimens mistaken for neomericants. (See discussion under R. neomexicomus, p. 40.)

Discussion.-The structure of the anal ring, shape of the rostrum, and faveolate circulus are distinguishing characters of this species.

SUMMARX

In this bulletin 52 species of Rhizoecus Kunckel d'Herculais are recognized, of which 12 are described as new; 33 of the 36 previously described New World species are retained as valid, and 3 names are synonymized; 7 species originally described under Morrisonella Ham-
bleton and Ripersiella Tinsley are assigned to Rhizoecus. A key is presented to adult females of New World species. All taxa are described or redescribed and pertinent structures are illustrated. Host plant and distribution records are listed for each species.

LITERATURE CITED

Borchsenius, N. S.
1949. FAuNA of the ussr. homoptera, pseudococcidae. Akad. Nauk Zool. Inst. (n.s. 38) 7, 383 pp .
Brain, C. K.
1915. the coccidae of south africa. Roy. Soc. Africa Trans. 5 (2): 65-194.
Bueker, E. D.
1931. mealy-bugs (coccidae) of nests of ants. Colo. Univ. Studies 18 (3): 151-162.
Cockerell, t. D. A.
1894. a maritime species of coccidne. Insect Life 7 (I) : 42-44.
1890. tables for the determination of the genera of coccidae. Canad. Ent. 31 (10) : 273-279.
1901. new and little-known coccidae i, ripersiella and ceroputo. Biol. Soc. Wash. Proc. 14: 165-167.

De Lotto, G.
1957. the pseudococcidae described by it. c. james from e. africa. Brit. Mus. (Nat. Hist.) Ent. Bul. 5 (5): 185-232.
1964. observations on african mealybugs. Brit. Mus. (Nat. Hist.) Ent. Bul. 14 (8): 343397.

Fernald, M. E.
1903. catalogue of the coccidae of the world. Mass. Agr. Expt. Sta. Bul. 88, 360 pp.
Ferris, G. F.
1953. atlas of the scale insects of north amertca, vi, the pseudococcidae (pt. in). Pp. 279-506. Stanford Univ. Press, Stanford, Calif.
Gonzalez, R. H., and Charlin, R.
1968. nota preliminar sobre los insectos coccoideos de chile. Rev. Chilena de Ent. 6: 109-113.

Greer：E．E．
1926．observations on brittish coccidae x．Ent． Monthly Mag．62：172－183．

1933．NOTES ON SOME COCCIDAE FROMI SURINAM， DUTCH GUTANA WITH DESCRIPTIONS OF NEW species．Stylops 2 （3）：49－58．
Hambleton，E．J．
1946a．studies of hypogeic mealyblgs．Rev．de Ent．（Rio de Janciro）17（1－2）：1－77．

1946b．A New Name for a mealybug．Biol，Soc． Wash．Pros． 59 ： 1 \％f．

1973．Florida mealybugs of the gends rhizoe－ cus witil description of a New species． Ent．Soc．Wash．Proc． 75 （1）：62－71．

1974．THREE NEW SPECIES OF RHILZOECLS FROM NEW gealand with rotes and redescription of others．New Zeal．Jour．Zool． 1 （2）： 147－158．
Kunckel d＇Herculais，J．
1878．Histoire de la cochenilde vivant sur les racines des palmiers de la section des seaforthia，Soc．Ent．de France Ann． 8 （5）：161－164．
Kuwar，S．，and Takagi，K．
1971．DESCRIPTIONS OF THREE ECONOMICALLY IMT－ PORTANT SPECIES OF ROOT－FEEDING MEALX－ bugs in Japan（homoptera：precdococcr－ DAE）．Appl．Ent，and Zool． 6 （4）：175－182．
Kuwana，I．
1923．DESCRIPTIONS AND BIOLUGY OF NEW OR LITTLE－ known coccids from tapan．Japan Dept． Agr．and Com．Imp．Plant Quar，Sta，Bul． 3：1－67．
McKenzif，H．L．
1960a．A New subterranean rhizoecus mealy－ bug from arizona．Pan－Pacific Ent．3G （3）：139－141．

1960b．taxonomic study of california mealy－ bugs，with descriptions of new species （HOMORTERA：COCCOIDEA：PSEUDOCOCCIDAE）． Hilgardia 29 （15）：681－770．

1961．SECOND TAXONOMIC STUDY OF CALIFORNIA MEALYBUGS，WITH DESCRIPTIONS OF NEW spectes（homoptera：coccolden：rseudo－ coccidae）．Hilgardia 31 （2）：15－52．

196？．THIRD TAXONOMIG STVDY OF CALIFORNLA mealiblgs，incledivg additionat spectes FROM NORTH AND SOUTII AMERICA（HOMOP－ TERA：coccombe：PsetrdococcidaEl．Milgar－ dia 22 （14）：637－688．

1964．FOURTH TANONOMIC STLDY OF CALIFORNIA Mealyblgs，wita additional spectes fromi NORTH AMERICA．SOLTIL AMERICA AND JAPAN （HOMOPTERA：COCCODEA：PSECDOCOCCIDAE）． Filgardia 35 （10）：211－2ォ2．

1967．ateslybles of califorsid with tavonomy， blology and controi of ronth american SPECTEN． 525 pu．じniv．Calif．Press， Rerkeley．
Miller，D．R．，and Mckenzie，H．L．
1971．SAXTI TANONOMIC StLDY of NORTI AMERI－ CAN MEADMblGs，with adoItional species FROM SOUTII AMERICA（HOMOPTERA：coccor－ dEA：PSELDOCOCCIDAF）．ILilgardia（10（17）： 565－602．
Morrison，H．，and Mormison，Fr．
1922．A REDESCRIPTION OF THE TYPE SPECIES OF coccldaf based on spectes described by Maskell．C．S．Nati．Mus．Proc．60（12）： 1－120．
Nenstean，R．
1895．Observations on coccidar．Ent．MIonthly Mag．31：213－214．
RaU，G．T．
1937．FXTEMPORANEOUS REPORT ON SCALE INEECTS IN a greenhouse at brond park，N．y． N．Y．Ent．Soc．Jour． 45 （2）： 267.
Willifams，D．J．
19G1．Cilangeg in nomenclatcire affecting Some coccomea（homortera）．Ent． Monthly Mar．97：92－93．

1962．TIIE BRITISII PSELDOCOCCDAE（ITOMOPTERA： Coccotpra）．Bist．Mus．（Nat．Tish．）Eat． Bul， 12 （1）：1－79．
－w．＿and DE Boer，J．A．
1973．THE TAXONOMY OF SOME NEW DEALAND PSEUDOCOCCIDAE（IGMOPTERA：cOCCODEA）． Roy．Ent．Soc．London，Trans．125（2）： 227252.

INDEX TO HOST PLANTS

	Гage		1＇ame
Acacia sp．．．．．．．．．．	24	Aechmeat mfandirnut I．B．Smith	2 d
Achillea ageratifolia（Sibth．and Sm．）Boiss．	46	A gaponthus sp）．	2.4
Achillea millefolitm L ．	28	Agropyron sp．	38
Adiantum sp．	22，46	Afrostis sp．	30
Aechmea chantinii（Carriere）Baker	26	A juge sp．	24

Alchemilla orbiculata R. and P.
Page $14,39,53$
Pase
Coffea artabica $\mathrm{L} . \quad 11,13,18,20,24-25,27,31,42,54$
Andropogon rhizomatus Swallen50
Andropogon sp. 23
Andropogon virginicus L. - -- 11. 26
Anemone hupehensis, var. japonica(Thunb.) Bowles and Stearn24
Anthemis sp. 26
Anthemis tinctoria L. 24
Aquilegia sp. 24
Aralia sp. 11. 24, 26
Araucaria excelsu R. Br. 11-12. 26
Arctostaphylos sp. 46
Arect sp. 11
Arecastrum romanzoffiamom (Cham.) Becc. 11, 26
Artemisia califormica Less.28
Ariemisia douglasiana Bess. 19
Artemisia sp. 28
Artemisia tridentata Nutt. 28
Artcmisia valgaris L. 23
Asparagus sprengeri Regel II
Aster sp. 23
Atriplex sp. 28
Axonopus sp. 15,41
Bahia dissecta (A. Gray) Britt. 33
Bumbusa sp. 26
Billbergia sp. 26
Brassaida sp. 47
Brickellia sp. 28
Bromus unioloides Kunth 17
Buxus sempervirens L. 24
Burus sp. 26
Caladium bicolor (Ait.) Vent. 18
Caladium sp. 11
Calendula sp. 47
Calliandra haematocephala Hassk. 11
Calliandra sp. 11,26
Callistemon rigidus R. Br.
Callistemon sp.26
Callistemon viminalis Cheel 11
Carex sp. 11
Carissa grandiflora (E. Mey.) A. DC. 24, 31, 38
Carissa sp. 26, 47
Ceanothus pumilis Greene26
Coltis occidentalis L. 15
Cenchrus echinatus L 31
41
Cestrum sp. 24
Chamaecyparis sp. 11
Chamaedorea elegans Mart. 11
Chlorophytum sp. 11
Chrysalidocarpus lutescens (Bory) Wendl. 11. 26
Chrysanthemum irulescens L.24
Chrysanthemum sp. -- I1, 24, 46
Chrysothamnuts viscidifioris (Hook.) Nutt. 28
Citrus mitis Blanco 26
Cilnus sinersis (L.) Osbech 24, 39
Citrus sp. 26, 31
Coccoloba uvifere (L.) L. 47
Coccothrinax argentata Bailey 11
Codiactm sp. 24
Caffa liberien Bull ex Hiern 24
Collimia sp. 11
Conocarpus erccta L. 11, 26
Combline sp. 47
Cortaderit sellowm (Schult.) A. and G. 26
Cruptanthus sp. 47
Cuphea sp. 26
Cupressus sp. 24
('mbopogon citratus (DC.) Stapif 36
Cymbopogon nardus (L.) Rendle 36
Cymodon clactylon (L.) Pers. 24
C'mpertes exculentus L. 33
Cmperus rotambers L 38
Cyperies sp. 17
Cuperus tenerrimus Liebm. 22
Doctylis glomerata L. 22
Dciphininm sp 24
Dieffenbachics maculale (Lodd.)
G. Don cy. Amoene 11
Dicffenbachia picta Schott 11
Dieffenhachias sp. 26. 47
Dipsacus sp. 19
Distichlis spicata (L.) Greene 26. 38
Dizygothect eleguntissima (Veiteh)
Vig. and Guill. 11, 26, 47
Droctena marginata Lam. 26
Dudleya farinosa (Lindi.) Britt. and Rose 17
Dadleya aremei Rose 38
Echercria \quad.
Echinachlof colomom (L.) Link 17
Eleusime indica (L.) Gaertn. 36 36
17,36Encelia sp.
Encelia sp. 22
Epiphylhm sp. 17
Erafroslis mayphrensis (Y.B.K.) Steud. 11
Eremochloa ophiuroides (Munro) Hack. 26
Erigeron boncricusis L. 47
Eriobolvya juponica (Thunb.) Lindl. 47
Eriogonum fasciculathm Benth. 22
Eriogontm heracleoides Nutt. 28, 38
Eriogonum sp. 15, 22
Eriophylhum confertiftorm (DC.) Gray 28
Emodea angusta Small 11
Erodium moschatum (L.) L'Yer. ex Ait. 24
Escallonia mbra (Rui\% and Pav.) Pers. 24
Escoborit tuberculosa (Engeim.) 33
Eugcnia sp. 26
Euphorbia milhi Desmoulins 11, 47
Fancarite digrinct (Haw.) Schwant. 35
Ficus nitida Thunb. 11
Pragariat chilomsis (L.) Duchesne 19
Fraguria sp. 24, 31
Franseria chamissonis Less. 28
Gardenia jasminoides Ellis 47
Gordenia sp. 11. 24
Gardenia thubergia L. f. 26
Geum eoccincum Sibth. and Sm. 46
Gnaphalinm sp. 11

Cinssyminm hirsutam L．

Grindclias camporam Greene
（inctlardes sp．
（iuticrrezia sp．
Hamotocactu：setispinas：Rritt．and Rowe
Haplopappus conus（Gray）Blake
Haplopappus smindosus（Pursh）DC．
Hedera helis L．
Helianthes sp．
Hemigraphis reptans T．Anders，ex Hemsl．
Henchera sp．
Hibiscns rose－sinensin L．
Hibiscus sp．
Hippomaxe jumcinella L．
Holcus lenatus E．
Hoveis brlmorerma（C．Moow and F．v．Muell．Beec．
Hovcia forstcriana（C．Moore and F．v．Muell．）Bece．
Hoyfr carnosa（I．）R．Br．ev．Exotica
Hoya sp．
Hex cormute cy．Burfordii
Her opues Ait．
his rohumb Thunb．
Hes romitorin Ait．
tris sp．
Isolomet sp．
Ie＂frutercens var．wroria（Bart．）
Fern．and Grise．
howa coccineat．
frore sp．
Jisminuon sp．
Jumens batheces Willei．
fluipertes sp．
Kuknchor sp．
Kialanchor tomentosa Baker
Kalmia sp．
Komties sm．
Klcinia sp．
Kohlerite sp．
Lachuththes（iuctoria（Wall．）Ent．
Lemternet sp．
Lespedical cuncata（Dumont）G．Don
Lentophyhum fratescens Johnst．
higustrum oralijolham Massk．
Ligustrum sp．
fiviope sp．
Lithospermum mulerale Dougt．ex Lehm．
Lobilia shaferi Britt．and Rose
Lebbievies sp ．
Lolium perenne Is．
Lofus scopurius（Nut．in T．and（i．）Ottley Loths sus．
Lycopersicon csculentum Mill．
Malpighict coccigcrat．
Mahs．s sp．
Dammillaria sp．
．1／athiola sp ．
Mchicago sutiva L．

Pak＂
3.1

28
11
28
17
28
28
if
19
11
24
11
11． 2.4
30， 32
17
 11Page
Whambrtunthe $w, n=\mathrm{sp}$ ． 17
Busa paradiviaca var．semionhm Kuntze 36
Nequgrlinsp． 47
 47
Nephthylis sp． 11
Neriom alfamier L ． 33
Nimansp． 31
 24
Comaties sp． 17
O．calis martimat Zucc． 47
I＇⿴囗十ickm masimum Jaç． 36
f＇anicam sp． 26，47，50
Pospalum coningothm Beres． 11， 36
Pavpllam timbriolum H．B．K． 11
Pospultm ragimatmm Swartz 41
Pelergonium inquinons（L．）L＇Herit et Ait． 31
Pelaryonion sp． 24
Peperomio prllucidn H．P．K． 11
Piperemias sp． 47
Prifmias sp． 24
Hhilod ndron sclloum C．Koch 26
Philoserus rermiculeris（ I_{E} ）Beauv． 26
Pheum pretrnse L． 33
Phoenir conorionsis Chaul． 24， 26
Phocmis（murivia Kunth 11
Phoenir roebflenii O＇Brien 24
Physalis pubescens L． 11
Picen alics（L．）Karst． 24
rifrat microphylla（L．）Liebm． 48
Piper sp． 24
riantago sp． 48
Phelhea sp． 26
Paat ammu L． 44
Poa sp． 33
Polugule crotalariodes Ham．ex DC． 46
Polygomum sp． 19
Porfulaed grandifora Hook． 31
Polhos sp． 11
Promus anghslifolia Marsh． 26
Promus sp． 24， 31
Psoralea temuifort Pursh 33
f^{\prime} fractitha coccinea Roem． 11
Piprcectutha sp． 26
Querens coccinea Muenchh． 23
Qurrens sp． 11， 26
Querets rislizenii A．DC． 16,49
Rhophiolepis sp． 11
Rhizophora memgle I． 35
Rhododendron sp． 26
Rhus sp． 40
Ribes sp． 24
Roses sp． 31
Rubus argutus Link 23
Romer sp． 31
saintpantio ionanthe Wendl． 11， 46
Saimepradia sp． 42
Srabinsa sp． 31
Scmpervibum sp． 17， 33
Sempervirum tcctorum L. 17
Senccio mikumioids's Otin ex Walp. 17
Setaria geniculata (Lam.) Beaus.36
Side sp.26Simningie speciona (Lodd.) Hiern46
Solanom nigram L.49
Solidago sp.23
Sorghom halcpense (L.) Pers. 3.3
Spartina alternifora Loisel. $3 \overline{5}$
Sparting patoms (Ait.) Muhl. 33
Stclleria modia (I.) Cyrill. 31
Strelitzia reginae Ait. 18Syringa rulgreris I.24
Throbromateren L .
That
Thimmes ralgoris T.. Titge Titge 24Tridens thatis: (I..) Hitche.
23
Tropuesham mojus I. 24
lifies lumbii Wats. 52
V. rbasertm thatastes I 23
Vermmica sp. 24
TVמ"m"m susprasum Eind. 26
litis sp. 24
Ha/semiatsp. 24. 31
Xumilhosoma sobusfum Schott 36
Zantedeschian arthomien (L.) Spreng. $2 \cdot 1$
Zulfocactus sp. 48

INDEX TO MEALybugs

(Valid names are in roman type, synonyms in italie)

10
Figjres 1-13.-Rhizocous amerivanus: 1, Terminal segments of antenna; 2, cephalic plate; 3, rostrum; 4, tritubular ceroris, lateral; 5, tubular duct, lateral and ventral; 0 , multiloculaw disk pore; 7 , anal ring, right half; 8 , hind claw; 9 , trilocular pore, R. apizacos, new species: 10, Rostrum; 11, cephalic plate; 12, hind claw; 13, tritubular ceroris, lateral and ventral.

Figures 14-23.-Rhizoecus apizacos, new species: 14, Terminal segments of antenna; 15, anal ring, right half. R. arabicus, new species; 16, Trilocular pore; 17, anal ring, right half; 18, terminal segments of antenna; 19 , tubular duct, lateral and ventral; 20, hind claw; 21, cephalic pirate; 22, circulus, lateral; 23, rostrum.

Ficurbs 24-29. -Rhizucus associahta: 23, Terminal segments of antenna; 25, cephalic plate; 26, rostrum; 27, anal ring, right half; es, tritubutar ceroris, lateral and ventral; 29, hind claw.

Figures 30-39..-Rhizoecus athanticus: 30, Cephalic plate; 31, terminal segments of antenna; 32 , mushroom bodies, various aspects; 33, tritubular eeroris, lateral; 34, rostum; 35, tubular duct, lateral; $3 G_{\text {, }}$ anal ring, right half; 37 , eye, lateral; 38 , circulus, lateral; 3 ?, hind claw.

Ftgures 40-54.-Rhizoecus bicirculus: 40, Anal ring, right half; 42, cephalic phate; 42, terminas segments of antenna; 43, circulus, dorsal; 44, hind claw; 45, rostrum. R. bituheredfalus: 46, Bitubular cevoris, lateral; 47, anal sing, right half; 48, terminal segments of antema; te, rostrum; 50, cephalic plate; 51, tubular duct, leteral; 52, multilocular disk pore; 53, circulus, dorsolateral; 54 , hind chaw.

Figures 55-65.-Rhizoecus boharti: 55, Terminal segments of antenna; 56, cephalic plate; 57, anal ring, right half; 58, hind claw; 50, tubular duct, lateral; 60, rostrum; 61, bitubular ceroris, lateral. R. caclicans: 62 , Terminal segments of antenna; 63, hind claw; 64, cephalie plate; 65, anal ring, right half.

Figunes 66-80.-Rhizoecus cacticans: 60, Rostrum; 67, circulus, lateral; 68, tubular duct, lateral; 69, tritubular ceroris, lateral. \quad R. caladii: 70, Hind claw; 71, rostrum. R. calijornicus: 72 , Trilocular pors; 73, terminal segments of antenna; 74, tubular duct, lateral; 75 , anal ring, right half; 7h, cephalic phate; TT, tritubular ceroris, lateral; 78, hind claw; 79, rostrum; 80, circulus, lateral.

Figures 81-88.-Rhizocus campestris: 81, Terminal segments of antenna; 82, tubular duct, lateral and ventral; 83 , cephalic plate; 84 , rostrum; 85 , anal ring, right half; 86 , anal lobe, right; 87 , bitubular ceroris, lateral; 88 , hind claw.

Figunes 89-97,-Rhizocens chitensis, new species: 89, Terminal scgments of antemat 90, cephalic plate; 01, hind claw; 92, rostrum; 93, anal ring, right half. R. cyperalis: 94 , Terminal segments of antenna; 95 , rostrum; 96, tritubular ceroris and body setae, lateral; 97, hind claw.

Figures 98-110.—Rhizoecus disjunctus: 98, Terminal segments of antenna; 99, bitubular cerores, lateral; 100, anal ring, right half; 101, cephalic plate; 102, rostrum; 103 , hind claw. R. distinctus: 104, Terminal segments of antenna; 105, tabular duct, lateral; 106, hind claw; 107, tritubular ceroris, lateral; 108, cephalic piate; 109, rostrum; 110, anal ring, right half.

Ficures 111-125.-Rhizoecus falcifer; 111, Anal ring, right half; 112, tritubular ceroris, lateral and ventral; 113, rostrum; 114, hind claw; 115, multilocular disk pore; 116, cephalic phate; 117, tubular duct, lateral and ventral. R. favacircutus, new species: 118, Trilocular pore; 119, cephalic plate; 120, anal ring, right half; 121, terminal segments of antenna; 122, hind claw; 123, tubular duct, lateral; 124, circulus, dorsolaceral; 125, rostrum.

131
130

135
134

Figures 126-139.-Rhizoecus foridanus: 120, Terminal segments of antenna; 127, tubular duct, lateral; 128, circulus, lateral; 129, cephalic plate; 130, hind claw; 131, rostrum; 132, anal ring, right half. R. globoculus: 133, Medioventral pores, ventral and dorsal; 134, oye, lateral; 135, rostrum; 136, multilocular disk pore; 137, cephalic plate; 138, terminal segments of antenna; 139, hind claw.

Figures 140-153.-Rhizbects globoculas: 140, Cluster of medioventral pores. R. grocilis: 141, Terminal seqments of antenna; 142, cephalic plate; 143 , tubular duct, lateral; 144, eye, lateral; 145 , anal ring, right half; 146, hind claw; 147, circulus, dorsal; 148 , bitubular ceros, lateral; 149 , rostrum. R. graminis: 150 , Rostrum; 151, cephalic plate; 152, hind claw; 153 , tubular duct, lateral and ventral.

Figures 154-165.—Rhizoccus gramzns: 154, Terminal segments of antenna. R. insularis, new species: 155, Circulus, dorsolatoral; 156, hind elaw; 157, rostrum; 158, anal ring, right half. R. Kondonis; 159, Anal ring, right half; 160 , bitubular ceroris, lateral; 161, cephalic plate; 162, circulus, lateral; 163, hind claw; 164, rostrum; 165, tubular duct, lateral.

Figures 166-174.-Rhizoccus kondonis: 16G, Terminal semment of antenma. K. laths: 167, Liye, left, and trilocular pore, lateral; 168, tubular duct, lateral; 160, cephalic plate; 170 , anal ling, right half; tra, terminat segments of antemat; 172 , rostrum; 173, multilocnlaw disk pore; 173, hind claw.

Figures 175-188.-Rhizoccus leucosomus: 175, Tritubular ceroris, ventral; 176, terminal segments of antenna; 177, tubular duct, lateral; 178, anal ring, right half; 179, cephalic plate; 180, hind claw; 181, rostrum. R. macgregori, new species: 182, Circulus, dorsal; 183, tritubular ceroris, lateral; 184, tritubular ceroris, ventral; 185, rostrum; 186, cephalic plate; 187, hind claw; 188; tubular duct, lateral and ventral.

Foures 189 195. - Fhizorchs macfregori, new species: 189, Terminal segments of antenna; 190, anal ring, right
 195, hind claw.

198

Figures 196-208.-Rhizoceus maritimus: 196, Anal ring, right half. R. majumus: 197, Terminal segments of antenna; 198, rostrum; 199, cephalic plate; 200, hind claw; 201, anal ring, right half; 202, trituluular ceroris, laxge, ventral; 203, tritubular ceroris, medium, ventral; 201, tritubular ceroris, small, ventral. R. monkei: 205, Cephalic plate; 206, hind claw; 207, circulus, dorsolateral; 208, anal ring, right half.

Figures 20n-223-Rhizoccus menkci: 209, Terminal segments of antenma; 210, rostrum; 211, bitubular ceroris, lateral. R. mexicums: 212, Terminal segments of antenna; 213, anal ring, wight haif; 214, bitubular ceroris, lateral; 215, hind claw; 216, rostrum; 217, citculas, dorsal. R, hahaharai, new species: 218, Cephalic plate; 219, hind claw; 220 , trilocular pore; 221, eys, hateral; 222 , hbubar fuct, ventral; 223, circulas, dorsal.

Figures 224-232.-Rhizoecus nukuharai, new species: 224, Terminal segments of antenna; 225, tritubular ceroris, ventral; 226, anal ring, right half; 227, rostrum. R. ncmoralis: 228, Anal ring, right half; 229, terminal segments of antenna; 230, trilocular pore; 231 , hind claw; 232 , tubular duct, ventral.

Figunes 233-245.-Rhizoccus nemoralis: 233, Rostrum; 234, tritubular ceroris, ventral. R. neomexicthuts: 235, Tubular duct, lateral; 23G, tritubular cevoris, lateral; 237, cephalie plate; 238, terminal segments of antenna; 239, middle claw; 240, rostrum. R. neostongei: 24I, Rostrum; 242, cephalic plate; 243, trilocular pore; 244 , terminal segments of antenna; 245 , hind claw.

Figures 246-256.-Rhizoecus nitidalis: 246, Terminal segment of antenna; 247, rostrum; 248, cephalic plate; 249, hind claw; 250, anal ring, right half. R. omatus: 251 , Tritubular ceroris and trilocular pores, ventral; 252 , hind claw; 253, tritubular ceroris, lateral; 254 , small tritubular ceroris and trilocular pores, ventral; 255 , circulus, dorsal; 256 , rostrum.

Figures 257-263.-Rhizoecus omatus: 257, Anal ring, right half; 258, terminal segments of antema. R. ovatus, new species: 250, Rostrum; 260, tubular duct, ventral; 261, anal ring, right half; 262, terminal segments of antenna; 263, hind claw.

Figures 274-286.-Rhizoccus polyporus, new species; 274, Rostrum; 275, cephalic plate; 276, circulus, dorsal; 277 , eye, lateral; 278, small circulus, dorsolateral; 279, tubular duct. lateral and ventral; 280, anal ring, right half; 281, hind claw; 282, terminal segments of antenna, R. aritcherdit: 283 , Hind claw; 284, trilocular pore; 285 , tubular duct, ventral; 286 , rostrum.

Figures 287-295,-Rhizocots pritchardi: 287, Terminal segments of antenna; 288, large tritubular ceroris, ventral; 289, small tritubular ceroris, ventral. R. relativus, new species: 290, ' 'erminal segments of antenna; 291, anal ring, right half; 292, cephalic plate; 293, middle claw. R. simplex: 294 , Rostrum; 295, cephalic plate.

Figures 296-308.-Rhizoecus simplex: 296, Terminal segments of antenna; 207, hind claw; 298, anal ring, right half. R. solani: $299, \mathrm{H}$:nd claw; 300 , terminal segments of antenna; 301 , anal ring, right half; 302 , rostrum; 303, bitubular ceroris, lateral. R. sonomae; 304, Anal ring, right half; 305, hind claw; 306, cephalic plate; 307, circulus, lateral; 308, rostrum.

Figures 309-319.-Rhizoecus sonomae: 309, Terminal segments of antenna. R. spinipes: 310, Rostrum; 311, anal ring, right half; 312 , hind claw; 313 , terminal segments of antenna; 314 , cephalic plate; 315 , multilocular disk pore. R. stangei: 316, Rostrum; 317, anal ring, right half; 318, cephalic plate; 319, hind claw.

Figures 320-327.-Rhizoecuts stangei: 320, Terminal segments of antenna. R. subcyperalis, new species: 321 , Hind claw; 322, rostrum; 323, terminal segments of antenna. R. theobromae: 324, Cephalic plate; 325, hind claw; 326, rostrum; 327, anal ring, right half.

Figures 328-339,-Rhizocous theobromae: 328, Terminal segments of antenna. R. totonicapanus: 329, Rostrum; 330, hind claw; 331, anal ring, right half; 332, cephalic plate; 333 , terminal segments of antenna. R. tropicalis, new species: 334, Circulus, dorsolateral; 335, anal ring, right half; 336, terminal segments of antenna; 337, rostrum; 338, eephalic plate; 339, hind claw.

S U.S. GOVERNMENT PRINTING DFFICE: 1976 O-SBG-S3:
\qquad

[^0]: 36. Eyes absent .37
 Eyes present, or sometimes absent from nakaharai 40
