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Sustainability with Unbalanced Growth:  The Role of Structural Change 

I.  Introduction 

Are growth and environmental sustainability compatible?  At least since Malthus (Essay on the 

Principle of Population (1798)) economists have studied the relationship between growth and natural 

resources.  Recently a sizeable literature studying sustained growth in the presence of natural 

resources or pollution has developed.  This literature builds on current neoclassical growth theory, 

and is almost entirely based on models with a single final good.  In such models, the growth of 

income and environmental damages derive from the same sector.  As we explain below, this restricts 

the options available for environmentally sustainable growth. 

In a model with a single final good, sustained and environmentally sustainable growth is 

possible only after making special assumptions.  Smulders and Gradus (1996) provide restrictions on 

production and pollution abatement technologies that make growth environmentally sustainable.  

Their restrictions are, a unitary elasticity of substitution between pollution and physical capital in 

production, and a greater than unitary elasticity of pollution reduction from abatement expenditures. 

In other words, abatement expenditures are relatively more effective in reducing pollution than 

increases in pollution from growth.  Assuming the existence of certain types of externalities can also 

generate environmentally sustainable growth.  For example, using the Ak model of endogenous 

growth, Huang and Cai (1994) rely on the externality effects of government spending on pollution 

control to generate sustainable growth1.  Schou (2000) meanwhile emphasizes human capital 

externalities for sustainable growth.   

                                                 
1 Their explanation for long-term growth is a government spending externality on pollution control. With an 
exogenously given tax rate, government expenditure on pollution control increases in the same proportion as growth in 
output. This causes pollution to grow slower than the growth in output and utility continues to grow in the equilibrium 
growth path. 
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Also using an Ak model of endogenous growth, Stokey (1998) has to depend on exogenous 

technical change to achieve sustained and environmentally sustainable growth.  She finds that 

growth and preservation of the environment are possible only if exogenous technical change allows 

growth in output at lower pollution intensities. 2  Aghion and Howitt (1998) extend the Stokey 

(1998) model to endogenize technical change and demonstrate that sustainable growth is possible 

without exogenous technical change, or exogenously imposed externalities.  However, they 

summarize their model of renewable natural resources in the following words, “it appears that 

unlimited growth can indeed be sustained, but it is not guaranteed by the usual sorts of assumptions 

that are made in endogenous growth theory” (p. 162).3 4  Aghion and Howitt (1998) are concerned 

with the assumption that the elasticity of marginal rate of consumption is greater than one (or that 

utility is highly concave).  This assumption is also necessary for sustainable growth in Stokey (1998). 

In a model with homothetic preferences it ensures that individuals are willing to make the required 

sacrifices in consumption needed for sustainability. 

In this paper we present a model with two final good sectors and three productive assets.  

Using this model we show that sustainable growth is possible without exogenous technical change, 

exogenously imposed externalities, or assumptions that are considered unusual, or restrictive in the 

literature.  This is possible due to the inclusion of two final good sectors: ‘clean’ (all non-polluting 

industries and services) and ‘dirty’.  The three assets in the model are: natural capital (a renewable 

resource specific to the ‘dirty’ sector), physical or financial capital (specific to the ‘clean’ sector) and 

human capital (used in both sectors).  Investment is possible in all three assets.  As the economy 

                                                 
2 Stokey (1998) uses a simple one-sector model (Ak model), with one input, and negative utility effects of pollution.  
3 Their assumptions are: the elasticity of marginal utility of consumption should be greater than one, the research 
technology should be productive, and the growth rates brought about by the above two assumptions should not be too 
high so as to cause unmanageable environmental damage. 
4 One could characterize this literature as grappling with the tradeoff between economic growth and a clean 
environment.  Another way to achieve sustainable growth would be to completely reject this tradeoff.  Bovenberg and 
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grows it imposes increasing demands on natural capital.  This threatens the survival of natural capital 

and the feasibility of economic growth.  Thus, the model possesses the standard tradeoff between 

growth and sustainability.  However, it offers a novel rationale for sustainable growth, that is, 

investment in natural capital combined with endogenous changes in the sectoral composition of 

output (commonly termed structural change5).  

Chenery (1960) and Kuznets (1957) present structural change (both across countries and 

over time) as a stylized fact of the modern growth process.  Baumol (1967) and Baumol et al. (1985) 

hypothesize differences in the rate of technical change across sectors as the main cause for structural 

change.  More recently, Echevarria (1998), Laitner (2000) and Kongsamut et al. (2001) highlight the 

non-homotheticity of preferences as a causal factor.  In this paper we show that structural change 

can arise from supply considerations even if preferences are homothetic and technical change is 

identical across sectors.  Structural change helps to make long-run economic growth compatible 

with natural resource sustainability.6  Along the growth path, a relative contraction of the natural 

resource using (or damaging) sector is optimal to reduce the costs of preserving natural capital.  

Endogenous changes in the share of the dirty good are brought about by unbalanced growth in 

assets.  Along the growth path, physical, and human capital grow at non-constant rates different 

from each other.   

This growth path is perhaps the most striking result from this paper.  If the marginal 

regeneration of natural capital (nature’s intrinsic productivity) is less than the marginal productivity 

of man made capital (human or physical capital) a reduction in the share of the dirty good becomes 

optimal.  As the share of the dirty good contracts, the share of labor income to total income declines 

                                                                                                                                                             
Smulders (1995) and (1996) do exactly that.  They postulate that technological progress is driven by stricter 
environmental regulation.  Under this assumption they show that environmentally sustainable growth is possible. 
5 Structural change refers to a reduction of output and employment shares of the primary (mostly natural resource 
intensive production like mining, forestry etc.) sector during the growth process. 
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and the physical capital to output ratio rises.  Meanwhile, the stock of natural capital, and the growth 

rates for welfare, and income remain constant.  We also show that the divergence of asset and 

sectoral growth from a balanced path (where all sectors and assets grow at the same rate) is higher 

for poorer countries than for richer countries further along in their equilibrium growth path. 

The remainder of the paper is structured as follows.  In Section II we present the model 

used.  In Section III we define equilibrium for our model and analyze the properties of equilibrium.  

Section III concludes the main body of the paper. 

II.  The Model 

Consider a small open economy with a representative agent consuming two final goods (one ‘clean’ 

and one ‘dirty’).  The production of the clean good (denoted c) has no impact on the environment, 

while production of the dirty good (denoted d) harms the environment.  The clean good represents 

the non-polluting productive sectors of the economy.  The dirty good represents all remaining 

natural capital intensive (harvesting, or extractive) and/or polluting sectors of the economy. 

A benevolent social planner allocates investment in three assets: human capital (h), natural 

capital (θ), and physical capital (k).  The social planner uses lump sum transfers to finance 

investment.  

Consumption 

The representative consumer consumes two final goods (the clean and the dirty good).  Let pc 

denote the price of the clean good, and pd the price of the dirty good.  Correspondingly let Xc 

denote consumption of the clean good and Xd consumption of the dirty good.   

Preferences of the representative consumer are defined using an expenditure function.  

                                                                                                                                                             
6 Our attempt is not to undermine the importance of technical progress and preferences in structural change.  We only 
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 { }1 2

,
( , ) min : ( ) ( )

c d

c d c c d d c d

X X
E p p U p X p X X X Uα α α≡ + = . (1) 

Parameters 1 2,α α  are the standard parameters in a Cobb-Douglas utility function with 01 >α , 

02 >α  and 1 2 1α α+ < .  This ensures that the utility function is strictly concave.  The parameter α 

is defined as 1 21/( )α α α≡ + >1.  

Consistent with the assumption of a small open economy units are adjusted to ensure that all 

goods prices equal 1.  This allows us to normalize (1,1) 1E =  from equation(1).  Therefore the 

expenditure function has a simple form, U α . 

Production and Labor Market Clearing 

The clean sector includes all non-polluting industries and services.  Inputs used in its production are 

raw labor (Lc), labor augmenting human capital (h ≥ 1), and sector specific physical capital (k).  The 

production function for the clean good is 

 ( , )c cQ G k hL= . (2) 

Where G(⋅) is increasing, concave, and linearly homogenous in k and hLc.  G(⋅) also satisfies the 

Inada conditions, in other words, as the quantity of an input approaches zero its marginal product 

tends to infinity. 

Using linear homogeneity of G(.), returns to sector specific physical capital can be denoted 

by a restricted profit function 

 { }( , / ) max ( , )
c

c c c c

L
k p w h p G k hL wLπ = − , (3) 

                                                                                                                                                             
wish to point out another rationale where structural change is optimal. 
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where w is the wage rate for labor.  The function π is non-decreasing in pc, non-increasing in w/h, 

homogenous of degree one, and jointly convex in (pc, w/h) (Diewert, 1974). Using Hotelling’s 

lemma, clean good output equals the derivative of the profit function with respect to price of output 

( ( )c
pQ kπ= ⋅ , all subscripts denote partial derivatives), and labor employed equals the derivative of 

the profit function with respect to the effective wage rate ( /( / ) ( )c
w hL k h π= − ⋅ ). Given that all prices 

equal 1 the following notation is adopted ( / ) ( 1, / )cw h p w hπ π≡ = . 

The dirty sector includes production that is either directly dependent on natural resources or 

is highly polluting.  Examples are: primary industries such as mining, fishing, forestry, and 

agriculture, or highly polluting industrial products.  Production of the dirty good uses raw labor (Ld), 

labor augmenting human capital (h), and the stock of natural capital (θ) as inputs.  

The production function for dirty good is 

 d dQ hLθ= . (4) 

This function corresponds to the standard specification for production based on natural resources. 

It was introduced to the literature in a more general form by Gordon (1954) who argued that the law 

of diminishing returns was not appropriate for modeling fisheries.  The specific form above (from 

equation (4)) was later proposed by Schaefer (1957).  Since then this specification has been widely 

used in modeling natural resources.  Recent users include Brander and Taylor (1998 and 1998a), 

Conrad (1995), and Munro and Scott (1993).  

One unit of dirty good output reduces current stock of natural capital by dφ , with 0 < dφ  < 

1.  If the dirty good is assumed to be a primary or extractive commodity output (from equation (4)) 

can be written as [ (1- ) ]d d d d dQ hL hLφ φ θ= + , where d dhLφ θ  is the harvest of the resource, and 
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(1- )d dhLφ θ  is processing.  Alternatively, dφ can be interpreted as pollution generated per unit of 

output.  

The labor market is perfectly competitive.  Aggregate labor supply in the economy is fixed at 

L .  Labor market clearing requires the sum of labor employed in the dirty and clean sectors to equal 

the total labor supply, c dL L L+ = .  This condition can be re-expressed as  

 / ( ) d
w h

k L L
h
π− ⋅ + =  

Note that there are constant marginal returns to labor in the dirty sector.  Also note that there are 

diminishing returns to labor in the clean sector.  This implies that the dirty good is produced as long 

as the aggregate labor supply is large enough.  When the dirty good is produced the wage rate equals 

the marginal value product of labor in production of the dirty good, formally w= dp hθ .  For now, 

assume that the dirty good is produced in this economy.7 

Asset Accumulation 

The social planner allocates investment across all forms of capital. Let jI denote investment in each 

of the capital assets { , , }j h kθ∈ .  Growth in labor augmenting human capital is given by 

 h hh I hδ= − , (5) 

where hδ  is the rate of depreciation of h.  The rate of depreciation of human capital can be 

interpreted as the proportion of annual retirements from the workforce.  Equation (5) implies that if 

investment exceeds depreciation the stock of human capital grows.  Any growth in human capital 

augments labor input in both sectors (see production functions in equations (2) and (4)).  In other 

words, growth in human capital equals endogenous labor augmenting technical change. 

                                                 
7 We later prove that specialization in either good is never optimal. 
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Let g(θ) be the intrinsic growth function of the renewable natural resource.  The function 

has an inverted U shape with ( ) 0gθθ θ < , and (0) ( ) 0g g θ= = , where θ  is the ‘carrying capacity’ 

of the natural resource.  The carrying capacity of a natural resource is the maximum stock that can be 

sustained in its natural surroundings.8  Let Iθ denote human investment in natural capital, such as: 

tree planting, national park protection, fish replenishment including aquaculture investments, 

protection of marine ecosystems, soil protection including terracing, drainage, agricultural fallowing 

as well as the cleaning-up of ecosystems.  Evolution over time of the natural resource stock is 

 
( ) , 0

,

d d

d d

g I hL if

hL if

θθ φ θ θ θ
θ

φ θ θ θ

 + − ≥ ≥ =  
− >  

. (6) 

Growth of the natural resource comprises its natural capacity to regenerate, investment (Iθ), 

and the reduction of natural capital from production of the dirty good ( d dhLφ θ ).9  Note that 

investment cannot maintain the natural resource beyond its carrying capacity (see equation (6) for 

θ θ> ).  Investment can substitute for natural regeneration only if the natural resource is within its 

natural bounds 0,θ θ∈    .  This reflects the fact that a natural resource involves constraints outside 

human control.  If investment in a natural resource could maintain stock beyond its natural carrying 

capacity, the natural resource would be no different from other forms of man-made capital. 

The stock of physical capital k grows according to the following equation.  

 k kk I kδ= − , (7) 

                                                 
8 If there is no extraction, the stock of natural resource stabilizes at its carrying capacity (see Conrad (1995) for examples 
of such a growth function).   
9 Note that in equation (6), the clean sector does not cause any damage to natural capital. However, one could allow the 
clean sector output to cause environmental damages as well.   As long as the clean sector causes less damage than the 
extractive sector such a change would not alter the results presented.  
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where kδ  is the rate of depreciation of k.  Equation (7) implies that if investment in physical capital 

exceeds depreciation, its stock grows. 

The Social Planner’s Problem 

The social planner maximizes the present value of utility for the representative consumer by 

optimally investing in human, natural and physical capital.  Let ρ denote the social discount rate.  

The social planner’s maximization problem is   

 
, , ,

0

max ( )exp
h k

t

U I I I
V U t dt

θ

ρ
∞

−≡ ∫  (8) 

where t denotes time.  Maximization of utility is subject to the following set of constraints: all capital 

growth equations ((5)-(7)), initial conditions for capital stocks, (for human capital 00(0)h h=  where 

h(t) is the stock of human capital at time t, for natural capital 00(0)θ θ= , and for physical capital 

00(0)k k= ), non negativity constraints U(t) ≥ 0, Ih(t) ≥ 0, Iθ(t) ≥ 0, and Ik(t) ≥ 0, and the following 

budget constraint,  

 ( )h kU I I I hL kα θ θ π θ+ + + ≤ + . (9) 

The budget constraint requires that total consumption and total investment expenditures should be 

no greater than society’s total income.  Recall that the wage rate w = θh when the dirty good is 

produced.  This implies that the first term on the right-hand-side of equation (9), hLθ , equals the 

total wage bill for this economy.  Due to the same reason return to owners of clean capital can be 

represented as kπ (θ). 
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Let λ be the Lagrangean multiplier associated with the budget constraint, and µ, η and Ω be 

the co-state variables associated with human, natural, and physical capital respectively.  The solution 

to the problem in equation (8) is found by maximizing a continuous time current value Hamiltonian. 

 
( )

( ) ( )

h k h h

d k k

U k hL U I I I I h

g I hL k I k

α θ

θ
θ

λ π θ θ µ δ

η θ φ θ π θ δ

   Η = + + − − − − + −   
    + + − + +Ω −    

, (10) 

where H is defined under the assumption that the natural resource is within its natural bounds 

( )0,θ θ∈  (see the discussion of Proposition 1 below for the case where θ θ= ). 

III.  Equilibrium 

Definition 1. The economy is said to be in equilibrium at time t̂   if  ˆt t∀ ≥ , µ η λ= = Ω = .  

Equilibrium requires that the current value shadow price of the three assets and the shadow 

price of current income (consumption) be equal to each other.  The social planner invests in an asset 

only if its current value is at least as great as the value of current consumption.  Further, 

simultaneous investment in all three assets is possible only when their current values coincide.  If the 

three current values are not equal to each other, investment is optimal only in the asset with the 

greatest marginal product.  In this case the most valuable asset grows faster than the rest leading to a 

relatively quicker decline in its current value.  Recursive use of the same logic implies that the 

current value of all three assets can equalize in the long run (see Proposition 1 below for the 

necessary and sufficient conditions for this equilibrium). 10   

                                                 
10 We call it equilibrium because of the difference with what is commonly called a steady state.  Originally, steady state 
referred to stagnation (Solow (1956)).  However, as models evolved to allow for growth in equilibrium the concept of 
steady state evolved to the state where both asset(s) and the economy grew at the same and constant rate (see for 
example, Cass (1965) and Koopmans (1965) for the single asset case, and Lucas (1988) with two assets).  As we illustrate 
later, in the equilibrium we present, assets grow at different and varying rates, but welfare grows at a constant rate.  If the 
reader is willing to narrow the concept of steady state to a condition where the welfare grows at a constant rate, then the 
equilibrium presented can also be labeled ‘steady state’. 
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Using the definition of equilibrium and the expressions for co-state variable dynamics 

derived from the Hamiltonian (equation (10)), we obtain a trajectory for the current value of h. 

 (1 )h d Lµ ρ δ φ θ
µ
= + − − . (11) 

Optimal utilization of human capital implies that its current value rises at the rate of social discount 

( ρ ).  The current value of human capital also increases as depreciation ( hδ ) reduces its stock.  The 

final term on the right hand side of equation (11) is the marginal addition to income from human 

capital net of damages to natural capital.   The current value of human capital is the discounted sum 

of all future income streams.  As the marginal income net of environmental damage from human 

capital: (1 )d Lφ θ−  is expended, the current value of human capital declines. 

From the Hamiltonian, trajectories for the current value of natural and physical capital can 

also be obtained.  The trajectory for the current value of natural capital is given by 

 [ ( )] [ ]  d dkg h L L k
hθ θ θ θθ

η ρ φ π π φ θπ
η

  = − − − + − −    
. (12) 

The current value of natural capital rises at the rate of social discount.  It also rises or falls depending 

on the intrinsic marginal productivity (termed marginal regeneration from now on) of natural capital 

( gθ ).  The current value of natural capital also declines as marginal income net of environmental 

damage ( [ ]d dh L Lφ− ) is expended.11  The final term on the right hand side of equation (12)  

( [( ]dk θ θθπ φ θπ− ) is the effect of increasing natural capital on the clean sector.  An increase in 

natural capital implies an increase in the wage rate for labor (recall wage is θh).  This reduces profits 

in the clean sector due to an increase in the wage bill ( k θπ ).  The increase in wages causes a 
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reduction in employment in the clean sector and the retrenched labor is employed in the dirty sector 

causing a reduction in natural capital.  This effect is captured by the term d k θθφ θ π− .  

The trajectory for the shadow value of physical capital is given by 

 [ [ ]]k d
θρ δ π φ θ πΩ

= + − + −
Ω

. (13) 

The current value of physical capital rises at the rate of social discount.  It also decreases as marginal 

income net of environmental damage of physical capital ( [ ]d
θπ φ θ π+ − ) is spent.  Note that an 

increase in physical capital reduces damages to the environment ( [ ] 0d
θφ θ π− > ).  An additional unit 

of physical capital raises production of the clean good.  This raises income in society (π ) and draws 

labor away from the dirty sector.  This increase in employment eases pressure on the stock of natural 

capital (reflected in the term [ ]d
θφ θ π  in equation (13)).  Besides generating income, accumulation of 

physical capital has a positive environmental effect by drawing labor away from otherwise extractive 

or polluting uses. 

From definition 1, equilibrium requires that the current value shadow price of the three 

assets and the shadow price of current income (consumption) be equal to each other 

(µ η λ= = Ω = ).12  This implies that the rates of growth for the current value shadow prices also 

coincide ( / / / /µ µ η η λ λ= = Ω Ω = ). 

If we equate equation (11) and (13) (i.e., / /µ µ = Ω Ω ) we obtain  

 [ ] (1 )d k d hLθπ φ θ π δ φ θ δ + − − = − −  . (14) 

                                                                                                                                                             
11 ( / ) dL k h Lθπ+ = , i.e., the damages to natural capital from an increase in natural capital are d dhLφ .   

12  The first order conditions for maximization of H in (10) and µ η λ= = Ω =  imply 0, 0hI I θ> >  and 0kI > . 
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Equation (14) imposes equality between the net marginal products of physical and human capital. 

The left hand side is the net marginal product of physical capital.  It includes an increase in physical capital 

income (π ) and the net gain to the natural resource from an expansion of clean production 

( [ ]d
θφ θ π− ).  The right hand side is the net marginal product of human capital.  It includes the marginal 

increase in wages net of damages to natural capital, and depreciation.  Equation (14) solves for an 

equilibrium solution for the stock of natural capital *( )θ .  That is, the definition of equilibrium used 

implies that the stock of natural capital achieves a stationary level, i.e., that the economy in 

equilibrium reaches environmental sustainability.  Investment in θ  will exactly off-set the net use of 

the natural capital so that 0θ = . 

The next step is to determine the economy’s growth rate at the equilibrium stock of natural 

capital.  Using / /λ λ µ µ= ,  we obtain 

 * *1( ) (1 )
1

d hU L
U

ω θ φ θ δ ρ
α

 ≡ = − − − −
, (15) 

where natural capital is evaluated at its equilibrium value θ*.  Equation (15) is an expression for 

utility growth along equilibrium.  It shows that utility growth is constant along equilibrium.   

Conditions for Equilibrium 

Thus far we show that the economy may achieve permanent positive welfare growth while keeping 

the natural capital stock stationary.  The following proposition establishes the conditions necessary 

for such an equilibrium. 

Proposition 1.  If a) *(1 )d hLφ θ δ ρ− − > , and b) [ ]hd L δθφ
α

ρ −−> *)1(1
 and c) *θ θ≤ , then 

equilibrium (as defined in Definition 1) exists and this equilibrium allows for diversified sustainable 

development. 
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The equilibrium illustrates ‘diversified sustainable development’.  Equilibrium is diversified if 

there is production of both the clean and the dirty good.  Sustainable development is defined as a 

condition where the stock of natural capital remains stationary, while welfare grows.  Three 

conditions are necessary for a diversified sustainable equilibrium.  The bracketed term in the right 

hand side of equation (15) is the difference between the marginal product of human capital and the 

social discount rate.  Condition a) requires that this difference be positive for positive growth.  

However, if the growth in welfare *( )ω θ  is too large the social planner’s objective function in 

equation (8) becomes unbounded.  Condition b) ensures that the social planners objective function 

is bounded.  It is a re-expression of the condition *( )ρ ω θ>  (see Appendix A).  Finally the 

equilibrium stock of natural capital should be less than the carrying capacity of the environment 

(condition c)).  Conditions a), b) and c) are necessary and sufficient for the equilibrium in Definition 1 

(see proof in appendix A).  Specialization in any sector is not consistent with equilibrium.  An 

equality of shadow values requires that the economy invest in all three assets.  Since k and θ are 

sector specific factors investment in both sectors implies that both sectors must be productive.  

Conditions a) and b) are simultaneously feasible when 1>α .  This assumption only requires 

the utility function to be strictly concave.  No further restrictions on the elasticity of marginal utility 

of consumption are needed for equilibrium.  In contrast, some earlier models of sustainable growth 

required the elasticity of marginal utility of consumption to be greater than one (a stronger 

requirement than strict concavity).  This required the marginal utility of consumption to decline 

rapidly along the growth path to ensure that the sacrifices in consumption needed to make growth 

sustainable were carried out.   

Growth in this model is sustainable not only due to the sacrifices made in consumption 

(rising investment in natural capital) but also due to endogenous changes in structure of the 
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economy.  As in earlier models greater investment in natural capital is needed as the economy grows, 

however besides sacrifices in consumption an endogenous change in the structural composition of 

output economizes on the consumable resources needed for investment along the growth path.  We 

discuss the endogenous change in structure in greater detail later in the paper.   

When condition c) is not satisfied specialization in the clean sector becomes optimal (see 

Appendix A for a formal proof) and the economy does not value natural capital.  This justifies our  

definition of equilibrium.  Equilibrium according to Definition 1 allows us to study meaningful 

sustainable development in a context where natural capital is socially valuable (please see Appendix 

B for an exposition of condition c) in the context of a Cobb-Douglass production function for the 

clean good). 

Figure 1 shows the level of natural capital (θ*) where net marginal products for human and 

physical capital are equalized.  The net marginal product for physical capital decreases as natural 

capital increases.  The net marginal product for human capital increases at a constant rate as natural 

capital increases.  This ensures a unique intersection where both net marginal products are equal.  If 

at the point of intersection the net marginal product of man-made assets (human and physical 

capital) is higher than the rate of discount (as shown in figure 1) equilibrium is characterized by 

positive welfare growth.  However if at this intersection, man-made assets are less productive than 

the discount rate, growth is not feasible.  In this case, the economy is characterized by implosion. 
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Figure 1. The net marginal products of k and h and the level of θ, the case of a growing 
economy 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Optimal Growth Rates of Man-Made Assets with Stationary Natural Capital 

Since θ* is constant along equilibrium the growth rate of natural capital equals zero.  From equation 

(6) this implies that the sum of investment and intrinsic growth of natural capital is equal to the 

damage to the resource, formally 

 * *( ) d dI g hLθ θ φ θ+ = . (16) 

Sustainable development is in part possible due to investment in natural capital.  However damage 

to natural capital, and its intrinsic growth rate (see equation (16)) also influence the growth rate for 

natural capital.  The intrinsic growth rate depends solely on the stock of natural capital.  Equilibrium 

growth paths for human and physical capital determine how damage to natural capital grows along 
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equilibrium.13  This in turn determines how much investment is needed to keep natural capital at the 

equilibrium level.  We characterize the equilibrium growth paths for human and physical capital 

below. 

Given a solution for natural capital (θ*) we use equations (11) and (12) ( / /µ µ η η= ) to 

obtain.  

 [ ] [ ( )] (1 )d d d hkk h L L g L
hθ θθ θ θπ φ θπ φ π φ θ δ − + − − − + = − −  

 (17) 

Equation (17) represents equality of marginal products of human and natural capital. The left hand 

side is the net marginal product of natural capital.  It includes: losses to society from reduced income in 

the clean sector ( k θπ ), losses to society from reduced employment in the clean sector ( d k θθφ θ π− ), 

the gain in income from increased wages net of damages to natural capital ( [ ]d dh L Lφ− ), and the 

marginal regeneration of natural capital ( gθ ). The right hand side is net marginal product of human 

capital (discussed earlier, see equation (14)).   

Let * *( ) [(1 )[ ] ]d dF θ θθθ φ π φ θ π≡ − − + .  *( )F θ  represents the change in net marginal 

product of natural capital from an increase in physical capital along equilibrium.   By definition 

*( ) 0F θ > .  Let * *( ) [(1 ) ]d hL gθχ θ φ θ δ≡ − − − .  *( )χ θ  is the difference between the net marginal 

productivity of man made assets ( *[(1 ) ]d hLφ θ δ− −  is the net marginal product of human capital 

which from equation (14) is equal to the net marginal product of physical capital) and the marginal 

productivity of nature ( gθ ). 

                                                 
13 Damage to natural capital depends on the productivity of labor in the dirty sector (which depends on the stock of 

human capital h), and on labor employed in the dirty sector.  Labor employed in the dirty sector ( ( )dL L
k
h θπ θ= + ) 

depends on the equilibrium stock of natural capital, and on the stocks of physical, and human capital. 
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When *( ) 0χ θ <  the net marginal productivity of man-made assets is less than the marginal 

productivity of nature.  When 0χ ≥  the net marginal productivity of man-made assets is greater 

than the marginal productivity of nature.  In figure 1 at equilibrium (intersection of marginal 

products of human and physical capital) the marginal productivity of nature is lower than the 

marginal productivity of human and physical capital.  In other words figure 1 illustrates the case 

where *( ) 0χ θ > . 

At equilibrium with a constant stock of natural capital (θ*) equation (17) represents a 

relationship between human and physical capital.   Using the two terms ( )F θ , and ( )χ θ , equation 

(17) is expressed as  

 * *(1 ) ( ) ( )d hL F kφ θ χ θ− − = . (18) 

Equation (18) implies that *( ) /[(1 ) ]dh k F Lθ φ = −  .  Note that (1 ) 0d Lφ− >  is the 

marginal change in the net marginal product of natural capital from an increase in human capital (see 

equation (17)).  As both ( )F θ  and (1 )d Lφ−  are positive, human and physical capital grow or 

decline together in equilibrium.  Equation (18) also implies that human and physical capital need not 

grow at the same rate.  The relationship between the rates of change for human and physical capital 

is  

 
*( )1

(1 )d

h k
h k hL

χ θ
φ

 
= − − 

. (19) 

We characterize this relationship using the following proposition. 

Proposition 2. During equilibrium the physical/human capital ratio, k/h, is increasing if and only if χ > 0. That 

is, / / 0k k h h >
<−  iff 0χ >

< . 
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Equation (19) implies that human capital grows slower than physical capital when nature’s 

productivity is lower than the productivity of man-made assets, that is ( )* 0χ θ > .  We believe this to 

be the normal case.  In modern societies we expect man-made assets to provide greater marginal 

value than the intrinsic growth of natural resources.  If either forms of man made capital (physical or 

human) have a very low productivity this may not be the case.  Note that at equilibrium (from 

equation (14)) * * * * *( ) [(1 ) ] ( ) [ ]( )d h d kL g gθ θ θχ θ φ θ δ π θ φ θ π θ δ ≡ − − − + − − = − .  Thus a low 

marginal product of physical capital will cause *( )π θ  to be low and thus can cause ( )*χ θ  to be 

negative.  Similarly, if the economy is sparsely populated the return to human capital is not high 

enough (as L  is low) and ( )*χ θ  can be negative.  In such cases the productivity of nature is higher 

than the productivity of man-made assets, and human capital grows faster than physical capital.  

Figure 2 depicts the ‘equilibrium expansion path,’ EP (given by equation(18)). The 

‘equilibrium expansion path’ is derived for the equilibrium value of natural capital under the 

assumption that the productivity of man-made assets is higher than nature.  The equilibrium expansion 

path represents combinations of physical and human capital that are needed to maintain the equality 

of the net marginal products of all assets.  A growing economy in equilibrium must expand physical 

and human capital along the equilibrium expansion path maintaining a fixed level of natural capital 

(θ*).  As illustrated in figure 2 the physical capital to human capital (k/h) ratio permanently increases 

along the equilibrium expansion path.14 
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Figure 2. Combinations of k and h that equalize the net marginal returns of assets:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The growth rates for human and physical capital become closer with positive growth, but 

they are never equal.  In Figure 2, the ray BB rising from the origin corresponds to asset balanced 

growth.  BB must be parallel to the equilibrium expansion path (labeled EP in Figure 2).  Hence, 

balanced asset growth for human and physical capital is never achieved (as long as 0χ ≠ ).  This 

suggests the following corollary. 

Corollary 1 to Proposition 2.  As t →∞ , h k
h k
→ .  

Corollary 1 follows directly from equation (19).  The implications are, as consumption per 

capita increases the gap between the growth rates of physical and human capital decline.  

The unbalanced growth of human and physical capital influences the relative growth rates 

across clean and dirty sectors.  The implications of proposition 2 on the sectoral composition of this 

economy are provided in the following corollary. 

                                                                                                                                                             
14 If χ(θ*) < 0 the expansion line starts at a positive level of physical capital and the k/h ratio declines over time. 
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Corollary 2 to Proposition 2. Along the equilibrium expansion path, if 0χ > ;(i) The share of labor employed 

in the dirty sector declines. (ii) The ratio of value of dirty output to the value of total output declines. (iii) The 

share of labor income in total income declines. (iv) The physical capital to output ratio in the economy rises. If 

0χ < , the exactly opposite results hold. 

Proof: Please see Appendix A. 

The social planner uses a combination of instruments to keep natural capital constant (or 

equivalently to attain sustainable development).  These instruments are investment and a variation in 

the structural composition of output.  Investment in the replenishment of natural capital acts as 

public pollution abatement. Additionally, to economize on the use of consumable resources for 

investment, the structural composition of output is altered.  When the productivity of nature is high 

relative to the productivity of man-made assets, growth in the share of the dirty sector does not 

affect the sustainability of natural capital.  However when natures intrinsic productivity is low the 

dirty sector is shrunk relative to the rest of the economy so as to preserve natural capital.  When 

natures intrinsic productivity is low it is more costly (in terms of investment in natural capital) to 

sustain the equilibrium value of natural capital.  This makes it necessary to complement the 

investment effort in natural capital with a gradual shift of the structure of production towards the 

clean sector.  The method of achieving structural change is by allowing physical capital to grow 

faster than human capital.   

IV.  Conclusion 

The main contribution of this paper is to show that permanent growth and environmental 

sustainability can be compatible even if technical change is completely endogenous.  Investment in 

the environment combined with an optimal variation in the composition of output ensures 

permanent welfare growth without harming the environment.   
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Most studies explaining growth in the presence of natural resources rely on models with a 

single final good.  They achieve sustained and sustainable growth only after imposing special 

conditions.  We illustrate that such special conditions are not necessary to achieve environmentally 

sustainable growth.   

We find that an adjustment in the composition of output (between clean and dirty sectors) is 

crucial to economize on the costs of environmental sustainability.  This optimal adjustment is 

achieved seamlessly due to the presence of a social planner.  A useful extension of our research 

would be to determine the optimal tax and transfer framework that would bring about this 

adjustment in a market framework.   
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Appendix A: Proofs 

Derivation of Proposition 1 b). 

The condition stated in Proposition 1 b) follows from the transversality conditions for 
man made assets. We begin by noting that by the end of the planning horizon man 
made assets and all investments grow at approximately the same rate. From equation (5) 
and (7) if growth rates for assets are finite it is necessary that / /k kk k I I=  and 

/ /h hh h I I= . Additionally, as t tends to infinity, the difference in the rates of growth of 
man made assets approaches zero, as can be seen from (19); that is : / /t k k h h→∞ ≈ . 
Finally, from (16) it can be seen, as θ  is fixed, eventually / /h h I Iθ θ= . Differentiating 
the budget constraint (9) with respect to time we get: 

 * * *( ) ( )
k h

k h
k h

h k I I IU hL k I I I
h k I I I

θ
α θ

θαω θ θ π θ= + − − − . (20) 

Given that man made assets and investments tend to grow at the same rate by the end 
of the planning horizon we have from (20) and (9) that: as : /t k k αω→∞ ≈ . From 
the first order condition for welfare we have that / ( 1)α ωΩ Ω = − − , where we have 
used the equilibrium condition that / /λ λ = Ω Ω . We can now simplify the 
transversality condition for capital Lim ( ) ( ) 0t

t
e t k tρ−

→∞
Ω = , to: 

 ( 1)
0Lim 0t t t

t
e e k eρ α ω αω− − −

∞→∞
Ω = , (21) 

where 0Ω  is the level of the shadow value of assets and income when equilibrium is 
achieved and k∞  is an arbitrarily large capital level at which the asset grows at its 
asymptotic rate.  The condition expressed in (21) will hold as long as ρ ω> . ■ 

 

Proposition 1 c): Proof of Diversification when *θ θ≤ .  

Condition c) from Proposition 1 requires that equilibrium stock of natural capital be 
less than the carrying capacity of the environment  Suppose not, if *θ θ>  the 
equilibrium solution for the natural resource is carrying capacity (a corner solution for 
θ*).  At θ  the net marginal product of k is greater than that of h (see Figure 1).  The 
economy invests only in k and not in h.  This implies that compared to the dirty sector 
the marginal product of labor in the clean sector rises.  The clean sector grows and 
absorbs labor.  This process leads to specialization in the clean sector.   

A diversified equilibrium necessarily occurs if *θ θ≤ .  Assume that *θ θ≤  and that the 
economy specializes in the clean sector.  From labor market clearing with specialization 

 /( / ) (( / ) ) 0c s s
w hL L k h w hπ= + = , (22) 
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 where the superscript s denotes equilibrium values under specialization.  In other 
words, ( / )sk h  is the physical capital to human capital ratio when the economy 
specializes in the clean sector.  Under specialization the net marginal products of k and 
h (in the clean sector) are equal, thus, 

 /(( / ) ) (( / ) )
s s

s s
w h

k ww h w h
h h

π π   = −   
   

, (23) 

where ( )/ sk h  and ( / )sw h  are the long-run equilibrium values for k/h and w/h under 
specialization.  Combine  (22) and (23) to obtain 

 (( / ) )
( / )

s

s

w hL
w h

π
= . (24) 

Compare the solution from (24)  with * *( / )w hθ =  in the diversified equilibrium.  From 
(14), assuming for simplicity that depreciation rates are equal, diversified equilibrium is 
given by  

 

* *

* *

*

( )1
( ) ( )

1

d

dL

θφ θ π θ
π θ π θ
θ φ

 
− 

 =
− 

  

, (25) 

which is feasible given that *θ θ< .  Since 0θπ <  and 1dφ <  we have that the term in 
square bracket in (25) is greater than 1.  This implies that 

 
*

*

( ) (( / ) )
( / )

s

s
w h

w h
π θ π
θ

< . (26) 

Since ( ).π  is a decreasing function the inequality in equation (26) can only occur if 

( )* / sw hθ > .  That is, the wage rate under diversified equilibrium is higher than under 
specialization in the clean sector.  Specialization in the clean sector cannot be sustained.  
Labor migrates into the primary sector in search of higher wages allowing the primary sector 
to become productive.  As long as *θ θ≤  specialization in the clean sector is not optimal.  
Specialization in the dirty sector is ruled out by Inada conditions assumed.  As 0cL →  the 
marginal product of labor in the industrial sector approaches infinity.  The clean sector 
always attracts workers from the primary sector when the level of employment is sufficiently 
low. ■ 

Proof for Corollary 2 to Proposition 2. Note that from proposition 2 the following holds true: if 

0χ >
< then / / 0k k h h >

<− . This implies that if 0χ > : (i) *( )d kL L
h θπ θ= +  declines along 

the growth path. (ii) Using (i) we get that the share of value of dirty output to total value of 

output in this model 
*

* *(1, )

d
d

d
p

hLs
hL k

θ
θ π θ

=
+

 declines. (iii) The share of labor income in 
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total income is 
*

* *( )
w hLInc

hL k
θ

θ π θ
=

+
 which too declines during the equilibrium growth 

path. Finally (iv) the capital output ratio for this economy can be expressed as: 

* *(1, )d
p

k k
y hL kθ π θ
=

+
 which rises along the equilibrium growth path. ■ 

Appendix B: Conditions Necessary for Diversification with Cobb-Douglass 
Clean Production 

To shed additional light on condition c) from Proposition 1 assume a Cobb-Douglas production 
function for the clean good, 1( )c b c bQ Bk hL −= , where B is total factor productivity in the clean 
industry, and 0 1b< <  is the share of capital in the industry.  It is easy to verify that the unit profit 
function in this case is 1/ (1 ) /( ) [ /(1 )] b b bb b Bπ θ θ − −= − .  The solution to equation (14) in this case 
(assuming for simplicity that h kδ δ= ) is  

1/* (1 )(1 )
bdb L Bθ φ

−

= − −   . 
Condition c) from Proposition 1 requires that 

1/
/ (1 )(1 )

bdB b Lθ φ γ< − − ≡    

Recalling that d dQ hLθ= , we can interpret θ  as the maximum level that total factor productivity of 
man-made assets can reach in the dirty industry.  Thus the condition for diversification requires that 
the total factor productivity of man made assets in the industrial sector to be not much larger than 
the maximum attainable total factor productivity in the primary sector.  If /B θ γ<  then the primary 
or dirty sector is potentially competitive with the industrial sector and eventually diversified 
equilibrium at *θ θ<  is attained.  If /B θ γ>  then the dirty sector cannot compete and eventually 
the economy would specialize in the clean sector. 




