

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

MICROCOPY FTSOLUTION TEST CHART NRICNAL BUREAL OF SIANOAROS-1963-h

A Systems Analysis of the Hog-Pork = Subsector

. ABS"「RAC"

Abstract

FOREWORD

This study was begha in cooperation with Purdue University and Michigan State Unisersity in 1970 . The idea was to analye the potential for najor change in the form of vertical coordination. A principal task was to assess the strength of the forces which might bring about a shilt to contracting or ownership integration in pork production, processing, and distribution.

The Economic Research Service (ERS) and the Nichigan Agricultural Experinent Stalion constructed a simulation motel of the hog-pork subsector. By using this model, the potential impacts of a mumber of possible changes in the form of vertical interration were analyzed. This report of the modeling effort is one of wo ERS publications resulling from the research effoct. The other report, Effects of chonges in Vertical Comardmatom on Pork Prohlactom amd l'rices, Agricultural Economic Report No. 303, August 1975, uses the model to evaluate the impact of potental change. Other results of the hog-pork subsector roseareh ulforl have been reported by the Purdue University Agricultural Experiment Station and the Miehigan Agricultural Experiment Station.

CONTENTS

Pase
Summary ii
Introduclion 1
Structure of the Hog-Pork Subsector 1
The problem setting 1
Produclion-feeding 2
Slatghteritg-processing 2
Distribution-consumption 3
Structure of Subsector Model 5
Development of subsystems 5
Empirical development and estimation of subsystems 5
Produclion-feeding subsystem 5
Slathghterins-processing subsystem 12
Distribution-consumption subsystem 13
Simulation and Validation of Model 23
Sinmutation results 23
Validation ol model 23
(Tse and limilations 29
References 30
Appendix: 31
Identification of variables for compuler simulation moded 31
Apporidix tables 34

SUMMARY

A mudel was struched to simulate the bogroork subsector. 'The model wats validated For the period danary 1965 through December 1971.

The systems analysis Cramework represents a relatively new approach in economia reserch. It provifles the means tor incorporating an entire economic system into a single amalysis. With this model, any qualitied researther ean porform an examination and gain at understambing of the hog production and pork marketing complex in a systematic way.
'The model is recursive and operates on a monthly basis on self-generated data with the exeretion of the initial haged endogenous variathes and a few exogenous variables. Sine this is a belatarial simulation model, no attempl is made lo oblatim simutated values which minnize he overall model error. Most of the error in the validated model tor the 7 -year period is in the d- to 6 -percent range.

The nesults presented are conditioned by the structure and the conceptuad framework of the systems approbeh employed. The model should be useful in evatuating the impach of polietes of the Fedecal Government or of industry on pertormance of the production and matholing stages of the hogrpork industry. As a device for simutating the absergate behavior of the subsector, it may prove useful to individual firms interested in making their own forecasts based upon industry forecasts. The model may also be used to trace the offects of structural changes over time by altering the values of any of the variables.

ACKNOWLEDGMENTS

The athors acknowledge the contributions of Richard Crom, Lawrence Duewer, Hovav Talpaz, and Dan Tsai. Richard Crom served as overall coordinator for the subsector model and acted as a consultani on theoretical matters. Lawrence Duewer provided the mothodology for disaggregating much of the consumplion data and performed the empirical estimation of the retail price equations. Hovav Talpa\% designed the mathematical structure and developed the production-feeding system while a Michigan Slate [iniversity graduate assistant, umier the guidnace of Warren Vincent. A special debt of gralitude is owed to Dan Tsai of Michigan State University for his help in computer programming and in delouging the model.

A SYSTEMS ANALYSIS OF THE HOG-PORK SUBSECTOR

James D. Sulliwn, (Hurles Y'. lia, and Warren Vincom.'

INTRODUCTION

Systems anulyses ol the hog-pork sector are designed to confront many industry problems. The analysis here is designed to deal with vertical coordination. 'Ilais report provides detailed information on the methodology used in desigining an econometric model of the hog-pork sector. The overall objectives of the hog-pork sector study are reported in the proceedings of a workshop that helped formulate the project (7) The findings of the sludy are published in Effects of Changes in Vertical Coordination on Pork Production and Prices (U.S. Depi. of Agr., Econ. Res. Serv., Agr, Econ. Rpt. No. 303, Aug. 1.97心)

The research was designed to appraise the probable nature of cuture vertical coordination and determine the

[^0]extent to which contraci production and vertical integration might lake over coordination of the hog-pork industry from traditional markets. To answer this important policy problem for hog producers, meatpackers, retailers, and Government officials, the analysis was [ocused on a subsector model. An additional objective was to simulate the aggregate production-pro-cessing-distribution activity of the hog-pork industry over lime, showing resulting prices and output when one form of coordination expands at the expense of others (2). The specific objectives of the systems model were:

1. To describe in quantitative terms the economic relationships existing in the U.S. hog productionpork marketing system.
2. To simulate industry performance over an historical time period.
3. To establish generalized criteria with respect to the behavior of the hog-pork industry.
4. To provide insight into the coordination and structure of successive stages of production, marketing, pricing, and processing•disltibution.

STRUCTURE OF THE HOG-PORK SUBSECTOR

For most purposes, an agricultural subsector can be regarded as a part of the agricultural economy that produces and markets a single farm product of a group of related products. For this study, a subsector was defined as a meaningful group of economic activilies related vertically and horizontally by production and marketing relationships. In this respect, the hog-pork subsector includes all economic activities associated with breeding the sow, feeding and marketing hogs, slaughtering, processing, transportation, and wholesale and retail distribution.

The Problem Setting

Review of the hog-pork subsector reveals a mumber of ways in which the present system performs poorly. Many independent hog producers sell to a smaller number of mentpackers at various coordinated levels who, in turn, sell pork products to even fewer but larger distribution outlets. It is a dynamic subsector character-
ized by cyclical, seasonal, and regular, as well as irregular, behavior patlerns. Hog producers, input suppliers, meat packers and processors, wholesalers, retailers, and consumers are directly affected by this oscillatory behavior.

These groups do not share equally in the rewards which occur during different phases of the cycle. The long-run competitive position of hog producers is extremely difficult to evaluate. Success or failure of a decision to expand productive or to market is largely determined by the price position in the hog cycle at the lime of the decision. Packers and processors invest miltions of dollars in plant and facilities without control over input supply in the immediate area. Consequently, with the fluctuating hog supply, they may have to procure inputs from greater and greater distances. Because the hos-pork subsector operates under fairly competitive conditions with a wide range of production efficiency, prices may fall below average variable costs.

As a result, some firms may constrich or cease operations, which leads to less competition.

The present orgarization of the subsector has, or at keast once had, good reasons for its structure. Changes to make the system more efficient wight cost more than they are worth. But this is unlikely since the subsector is currently undergoing organizational change. important potential changes appear to involve some sort of closer coordination of sucessive stages of production-feeding, slaughter-processing, and distribution. Reorganization of the hog-pork subsector would present participants in the subsector with important loag-range decisions. They would like to know what the fulure organizational pattern would be and how they would tht into il. haturmation aboul the basie economic torees at work is needed so that producers, packer-processors, and consumers ean lermulate their plans for the future. Also, the mumber of pubtic policy alterbatives is greatest in the first stages of change; once reorganization has occurred, not much can be done to alter it. The systems-oriented model formulated here will add analyses of how changes in any or all tiree subsystems of the hog-pork subsector will affeck that subsector.

Production-Feeding ${ }^{3}$

The well-known hog cycle was a familiar phenomenon as early as the begiming of the 20th century. Farmers fypically do not produce for a specific market but for a price. When chrrent prices are good, they tend to breed more gilts and sows, which results in increased supply and lower prices at a later date. Then, too little production is undertaken leading to shorl supplies and high prices. Since sufficient prodnctive capacity must be awaidable to handle peak volume, capacity is underutilized much of the time, leading to some inefficiency and consequentiy higher costs. The producer's strong tendency to stick to two farrowings a year is partiy because most hogs are produced on farms where labor needs for crop production are highest in late spring and summer. Seasonal variation in production has been reduced somewhat by more multiple farrowings, but it has not been eliminated.

The U.S. hog-pork subsector has been undergoing structural changes. The lrend in hog production has been toward tewer but larger producing units. The scale and melhods of production vary widely. Some producers have a few sows and use hogs mainly as a way of gaining some return tor family labor and feed, for which alternative outkels are poor. The larger producers may use a farowing-pasture system and market 300 to 400 hogs annualiy, or one of confinement housing and feeding where usualiy 1,000 of more hogs are sold annually. in 1969, the U.S. Census showed that 11

[^1]percent of the farms had 200 or more lrogs, with these representing 52 percent of the national hog inventory (22). In contrast, the 1964 census slowed that only 6 percent of the farms had 200 or more hogs, and these accounted for 39 percent of the total inventory.

Since 1950, the 10 major Corn Belt States-Ohio, Indiana, Ilinois, Wisconsin, Minnesota, Iowa, Missouri, South Dakota, Nebraska, and Kánsas-have produced 75 percent of the U.S. pig crop. However, the economic and tecimologicat conditions that long favored production of hogs and feed grains on the same farm are changing. Mechanization has increased the optimal acreage of crop farms and the importance of capital inputs relative to labor. An efficient crop production system has become less compatible with hog production. Rising farm labor costs and developments in feed manulacturing made the purchase of leed for hogs, instead of the use of homegrown grain, more attractive than it used to be. The large speciaized producer of today requires large amounts of inputs, primarily from outside sources. He purchases mosi of his feed directiy from a feed manuhacturer or local dealer. Producers of 10 years ago may have kept 8 or 10 sows as mainslays of their breeding and hog-raising operations, but today's specialized producer may have no sows, purchasing all of his hots as feeder pigs from other farmers. The input supplier is no longer just the local feed dealer providing concentrates and supplements. In this modern setting, the input supplier may be one or more of the following: feeder-pig supplier, financing agency, feed manufacturer, or veterinary-medical specialist. This is in contrast to hog operations of the past, which were tinanced by the producer from funds generated from his whole farming operation.

Slaughtering-Processing

Deconcentration and decentralization have been the structural changes occurring within the slaughtering-processing component of the U.S. hog-pork subsector.

Slaughter plants under Federal inspection and nonfederally inspected plants with an annual liveweight output of 300,000 pounds or more numbered 3,869 on March 1, 1970, compared with 2,957 in 1963. Of the 3,869 plants in 1970,83 , percent $(3,196)$ slaughtered hogs. Only 3 percent (99 plants) slaughtered hogs only (2i). Most of the plants slaughtering hogs also killed other kinds of livestock. The mosl common slatghter combination was cattle-calves and hogs (40 percent of the piants). Many of the bog slaughtering plants were relatively small, since only 371 of the March 1,1970 , plants were federally inspected, and they accounted for about 90 percent of the commercial hog slaughter in 1970 (21).

With the declining importance of terminal markets, most market areas for hog procurement are now smaller than a single State. About 70 percent of the pork carcass is processed before sale to the consumer. Processed pork products such as ham, bacon, sausage, and luncheon meat usually are branded and to some extent quality
controlled. On the other hand, the 30 percent carcass which is sold fresh has not been graded, has no uniform identification, and offers no assurance of consistent quality. There are no national meat quality grades for pork. While processed pork has a differentiaced product, a consumer image, and some protection against fluctuaiing prices, most meatpackers consider fresh pork to be a product whose prics is very sensitive to changes in supply and demand.

Structural characteristics of the slaughtering-processing component create a problem in translating consumption levels of pork (demand) into packer demand for live hogs (supply of market hogs). Although hog procurement is subject to the conventional concepts of supply and demand, the uncertainties of supply are greater than in most manufacturing industries. This is the result of three factors. First, the raw material (live hogs) coming from a large number of producers fluctuates widely. Second, market hogs are not of uniform quality nor generally purchased on any guarantee of quality. Hog buyers bid and contract for animals by purely subjective evaluation, and while they become quite proficient in this respect, the overall procurement procedure is plagued with more uncertainties than is true for manufacturing firms able to contract for a specified volume of standardized quality. Finally, purchasing hogs and processing them to the green-cut stage is a breakdown process rather than a conventional manufacturing process. From the green-cut stage to the finished pork product, the processing operation is much like other manufacturing processes. The meatpackers are not manufacturing one product (pork) but a large number of pork products. The mix of finished products does not make use of raw materials (green pork cuts) in the same proportion as they are purchased in the live hog. This causes problems in balancing the number of hogs to slaughter and the raw material needs for final consumer cuts of pork. Before buying market hogs, the packer must translate the demand for finished pork cuts into the demand for raw materials (green cuts) and finally his demand for butcher hogs.

Seasonal variability of supply contributes to packing plant inefficiency. Most plants are built to handle large
volumes in the peak staughtering season and operate below capacity the rest of the time. In larger plants, flexibility is achieved by using several combinations of men and line speed. This is almost imperative to lessen inetficiencies arising from the uneven seasonal supply of hogs. The smallei plants have more difficulty in attaining this kind of flexibility because they have fewer alternative productive jobs for employees. This is one reason why reductions in the supply of hogs and the rate of kill do not reduce the number of labor hours proportionately.

Distribution-Consumption

Fresh and processed pork products are distributed to wholesale ar.d retail markets by packers, processors, merchant wholesalers, and brokers. Speciality wholesalers have attained an important position in meat distribution. In 1972, they handled about two-thirds of the total sale of meat and meat products by wholesalers (23).

On the buying side of the wholesale market, $\$ 35$ billion was spent for away-from-home food consumption in 1972 (20, p. 103). For all meat, the retail value spent in hotels, restaturants, and institutions (HRI) was reported as $\$ 40$ bilion. Retail outlets, the other participants in the buying of meat products, consist of chain supermarkets, independent supermarkets, and convenience grocers. The number of independent stores, large or small, declined sleadily from 1938 to 1972 , and while there was a sharp decrease in the number of chain stores untii 1956, these stores increased from 1969 to 1972 at the expense of the small "mom and pop" stores (table 1). At the same time, independent supermarkets increased, but at a slower rate (table 2). The total value of sales reflects the same growth pattern (table 3).

Fresh and processed pork distributed through HRI outlets is consumed at away-from-home eating establishments, while that purchased through retail stores is usually consumed at home. During 1950-72, total pork consumption increased from 10.4 bilion to 13.9 billion pounds. Per capita consumption remained fairly stable, ranging from a low of 58.1 pounds in 1966 to a high of 73 pounds in 1971 (19, p. 123).

Table 1-Number of stores and sales of chain stores and independent stores, selected years, 1938-72

Year	Stores			Sales		
	Chain	Independent	All stores	Chain	Independent	All stores
	Number	Number	Number	Billion dollars	Billion dollars	Billion dollars
1938	46,500	390,750	437,250	2,657	5,076	7,733
1956	33,500 18,000	375,500	109,000 310,000	6,790	12,250	19,040
1966	18,000 25,205	292,000 201,800	310,000	15,900	27,000	42,900
1072	38.850	162,200	227,005 201,050	29,350 49,730	38,500 51,970	$\begin{array}{r} 67,850 \\ 102.700 \end{array}$

Table 2* Number and percentage of grocery stores, by ownership, 1969-72

Item	Stores				Percentage of total			
	1969	1970	1971	1972	1969	1970	1971	1972
	Number	Number	Number	Number	Percent	Percent	Percent	Percent
Chain: ${ }^{\prime}$	24,700	27,700	29,200	32,550	11.3	13.3	14.2	16.2
Supermarkets	19,700	20.400	20,700	21.700	9.0	9.8	10.1	10.7
Superettes .	5,000	7,300	8,500	11,050	2.3	3.5	4.1	5.5
Independent:	[3,480	44,100	43,400	44,000	19,9	21.2	21.2	21.9
Sugermarkels	17.480	17,900	18,200	19,100	8.0	8.6	8.9	0.5
Supersites . .	26,000	26,200	25,200	2.900	11.9	12.6	12.3	12.4
Small stores:	151,150	136,500	132,300	124,500	58.8	65.5	4.6	61.9
All stores .	219,330	208,300	204,900	201,050	100.0	100.0	100.0	200.0

[^2]Table 3--Sales of grocery stores, by ownership, 1969.72

Lem	Sales				Percentage of total			
	1960	1970	1971	1972	1969	1970	1971	1972
	Billion dollars	Billion dollars	Billion dollars	Billion dollars	Percenl	Percent	Percent	Percent
Chain: ${ }^{1}$	37.400	11,330	4,4,660	49,0.40	45.4	46.8	47.3	48.2
Supermarkets	36,120	39,350	42.420	45,900	43.9	44.5	44.9	45.1
Supereties .	1,280	1.980	2,240	3,140	1.5	2.3	2.9	3.1
Indepondent.	35,280	36.715	39,755	41,710	43.0	41.5	42.0	41.0
Supermarkets	26,280	27,315	29,965	32,810	32.1	30.8	31.7	32.3
Supersttes ..	8,900	9,400	S,790	8,900	10.9	10.6	10.3	8.7
Smat stores	9.525	20,370	10,055	10,950	11.6	11.7	10.7	10.8
All stores	82,205	88.115	94,470	101.700	100.0	100.0	100.0	100.0

${ }^{5}$ Definition of stores: she footnote 1 in table 2
Source: Progresive Grocer, Anmal Report, Apr. 1970-73.

Development of Subsystems

A quantifiable, dynamic economic model is a necessary tool Cor a systems analysis of a particular subsector. Operation of the model simulates the dynamics of market performance. The model can be used to show the effect of alternative forms of marke or production organization on performance. The framework for the hog-pork subsector model discussed here cousists of equations and variables for three subsystems-"produc-tion-feeding, shanghering-processing, and distributionconsumption, 'The structural equations are the price-outpul relationships within the subsector and may be either delanitional or behavioral. The definitional equations consist of physical, biologital, technical, and organizational variables, while the behavioral equations are comprised of economic variables.

The three subsystems are depieted in ligure 1. The physical flows from the breeding of the sow and git to consumption are one directional. The level of the price slructure is established in the wholesale market, inasmoth as the consumer is a price-taker and quantityadjuster. Retail prices and live log prices thow from the wholesole level as therived prices. The third dimension the focal point of the project) is the coordinating system(s) whela regulates the physical hows. The coordination is accomplished through prices determined at the indicated pricing points under the existing -current and historical-market structures.
'I'he production and marketing system for hogs and pork presents a complex set of techmical, organizational, and eronomic relationships. The subsector model construetued here is a dyamic monthiy model in which the basic behavioral feature is a recursive series of equations moving from production decisions to consumer meat purchases. The model is completely recursive: one-il-alime computations ui [successivel values for endage. nous variables can be successively sequenced in such a way that, for any month, the value of each endogenous variable may be computed given only exogenous vari. ables, lagged endogenous variables. and preceding current endogenous variables in the sequence. Since it is a simutation model, a number of mathematical tech-niques-ordinary least. squares, autoregressive least squares, and nonlitemar distributed lass-were used to estimate the behavioral relationships.

The first step in developing the simulation model was to cormulate a model eapable of validation over an historical period. The aim was to simulate total hog produetion and pork distribulion and consumption, to establish prices tor live bogs and for wholesale and retail culs of pork, and to determine market quantities which would be supplied to different types of wholesale and retail outlets. The hog-pork subsector at the present time is not fulls' integrated. 'Thereforn, the model which was validated for the $1965-71$ period is a free market model.

Empirical Development and Estimation of Subsystems

The systems approach to research in the hog-pork subsector necessitated the idenbification of a large number of variables tor the simulation model. However, the model generates more information than needed for the simulation objective itself. 'l'o permit an evaluation of the model and to validate its performance, only the important variables are presented here. The computer program and wariable identification of the simulation model are given in the appendix.

Producion-Feeding Subsysiem

The subsystem is a mutifrequency cobweb moclel incorporating the features of three basic models-the Cobweb, the Harmonic Motion, and Distributed Litgs. It refleets an integrated multifrequency decision process resulting from the leedback of production response to the hog-corn ratio signal through fixed, multipleproduction lags. Long, intermediate, and short run decisions are continualiy made, and their impacts are projected to future decisions and production processes.

As illustrated in figure 2, the fotal supply of hogs is targely a response lo past decisions and conditions. This comes aboul because of delays for physical and biological reasons as well as because of delays between planning and exectation by the producer. if breeding stuek is increased to meet a sudden rise in hog price, then the duration of the production delay ranges from 10 to 12 months, corresponding to the Gestation. , haturation Dehay.

About 90 percent of all farrowing take place between 111 and 119 days aiter breeding. Pigs are weaned at nboul 2 months, and gilts come into first heat at 3 months of age. However, gilts are normally not bred until they weigh an average of 250 pounds, or are about 8 months old. Market barrows and gilts are commercially slaughtered at 180 to 300 pounds.

The simulation begins with estimated sow farrowings and thows sequential from the weaning of pigs to the marketing of hogs. Hogs are marketed as five weight groups of barrows and gilts plus a category for cull sows and boars (tig. 3).

The producer's breeding decision determines the number of sows farrowing, A mumber of factors influence this breeding decision. One is the variable and tixed costs on the farm. For some inputs, purchase costs are substantially greater than their salvage values. Hence, the supply curve is more slastic when the price of hogs is increasing than when it is decreasing. During an upswing in prices, producers respond by increasing production to Guld capacily, with additional investments in buildings and equipment to increase production capacity. The new investment becomes a fixed cost. However, during a downturn in prices, pruduction will not be contracled as long as variable costs are being covered. Another factor

Figure 1.
A Systems Analysis of the Hog-Pork Subsector

Figure 2.

Gestation-maturation delay

is the iurluence of expected future market conditons, which is represented in the model by the hog-corn price ratio (HCPR)-the number of bushels of corn equal in value to 100 prounds of live hogs.

Amblically, the breeding decisions of log producers can be approximated by the number of sows farrowing (equation 1). The estimated coetficients and corresponding statistical properties for equation 1 are given in table at. All equations were estimated by using an ordinary least-squares stepwise delete algorithm.
(1)

$$
\begin{aligned}
\mathrm{SF}_{\mathrm{t}}= & =\mathrm{F}\left(\mathrm{HCPR}_{\mathrm{l} .5}, \mathrm{HCPR}_{\mathrm{t}-21}, \mathrm{SF}\right) \\
& \mathrm{SF}_{\mathrm{l}-\mathrm{G}}, \mathrm{~T}_{\mathrm{c}} \mathrm{C}
\end{aligned}
$$

where:

SF_{l}	= number of sows farrowing in montli t-1,000 head.
$\mathrm{HCPR}_{4.5}$	$=$ hog-corn price ratio lagged 5 months.
$\mathrm{HCPR}_{\text {t-2 }}$	= hog-com price ratio lagged 21 montlis.
$\mathrm{SF}_{\mathrm{t}-\mathrm{G}}$	$=$ number of sows farrowing lagged 6 months.
$\mathrm{T}_{\mathrm{c}} \mathrm{C}$	$=$ exogenous cycical variables-Fourier serips.
SD	$=$ zero-one montlily dummy variables, where December served as the a priori excluded.
PC	$=$ monthly price change between average hog price 4 montis earlier and 11 months earlier.

The 6 -month lag sow farrowing variable was used since il reflects the relationship between the spring and fall farrowings. $H C P R_{l-5}$ and $\mathrm{HCPR}_{\mathrm{l}-21}$ reflect the shorl- and iong-run breeding decisions as a response to price conditions, If it is assumed that il takes some time before realized hog and corn prices become known to producers, the 5 -month lag is a last minute change in planned production as a result of an assessment of current market conditions. The 21 -month lag retlects the longer run investment-disinvestment decisions. These decisions, such as new building and equipment, represent additional potential production capacily, which under a

Trable I -Sows farowing equation (SF), confficients and statistical information'

Indepondent variable	Regression coefficient	Stamdiard error of coctlicient	t-Value
Constant	-231.32	58.86	-3.93
Spl	0.397	0.045	8.87
$\mathrm{HCPR}_{\text {L-5 }}$	12.981	1.91	6.79
HCPR_{6}-21	11.730	2.28	5.14
Sine ($2 w_{0}{ }^{\text {l }}$)	39.750	8.66	: 1.59
Sine ($1 \mathrm{w}_{0} \mathrm{l}$)	1,145.61	33.95	33.75
dan. dummy ${ }^{\text {a }}$	-312.98	24.19	-12.93
Feb. dummy	-506.85	33.66	-15.06
Mareh dummy	-380.99	45.10	-8.15
dune dummy	529.45	30.83	17.17
July dummy	948.29	39.96	23.73
sug. duminy	1.515 .78	48.72	31.11
Sept. dummy	1,855.26	56.91	32.60
Oct. dummy	1,096.06	53.64	20.43
Nov. dummy	478.74	37.62	12.73
Price change	34.52	12.88	2.68

[^3]fixed cost situation induces the producer to change the number of sows farrowing. With respect to seasonal variations, all 11 monthly dumamy variables had significant T-values. Also, the significance of the sine variables ($2 w_{0}{ }^{b}$) ind ($4 w_{o}$) suggest. that the 2-year and 1-year cycles are not carried by the other indepencent variables.

From an econometric viewpoint, the regression coefficients for all independent variables are significant, with high t-values and small standard errors of estimate. . 'ever, the Durbin-Watson (DW) statistic indicates in. some serial correlation exists. This implies that
ane of the estimated coeffficients are less significant than reported; but the coefficients can still be regarded as consistent and unbiased estimales which can be safely accepted.

Figure 3. Systems Flow of Production-Feeding Subsystem

The current pig crop or number of weaning pigs is computed by equation 2 .
(2) $\mathrm{WPA}_{\mathrm{t}}=\mathrm{SF}_{\mathrm{t}}+\mathrm{f}(\mathrm{SPPL}, \mathrm{T})$
where:
WPA $_{t}=$ number of weaning pigs in month t.
$S F_{t}=$ idenifined in equation 1.
SPPL = number of 2 -day old pigs saved per hitter, seasonally adjusted.
$\mathrm{T}=$ time trend to allow for technological improvements because of reduction in mortality of newborn pigs.

The femates in the breeding herd consist of sows and mature gilts. It was assumed that a fixed disposal rate was unealistic because it does not allow for different management practices during expansion or contraction, for short-run market price effects, or for seasonal variations. Alternatively, the number of sows and gits sold was estimated by using equation 3 . The statistical properties of equation 3 are given in table 5 .
(3) $\mathrm{SGS}_{t}=\mathrm{f}\left(\mathrm{SF}_{\mathrm{t}-3}, \mathrm{HCPR}_{\mathrm{l}-2}, \mathrm{SD}\right)$
where:
SGS $_{t} \quad=$ number of cull sows and mature gilts sold
$\mathrm{SF}_{\mathrm{t}-3}=$ number of sows farrowing lagged 3 months- 1,000 head.
$\mathrm{HCPR}_{t-2}=$ hog-com price ratio lagged 2 months.
$\mathrm{SD} \quad=$ seasonal dummy variables ($\mathrm{p} . \mathrm{)}$).
Table 5-Sows and gilts sold equation (SGS), coefficients, and statistical information'

frademodent *variable	Regression coefficient	Standard error of coefficient	t-Value
Constant	620.22	51.67	12.00
$\mathrm{SF}_{\mathrm{t}-3}$	0.06	0.03	1.97
$\mathrm{HCPR}_{\mathrm{t}-2}$	-10.37	1.80	-6.76
Jan. dummy ${ }^{2}$	-75.82	23.25	-3.26
Feb. dummy	-145.78	29.93	-4.87
Mar. dummy	-127.86	28.51	-4.48
Apr. dummy	-77.21	24.08	-3.21
July dummy	59.33	23.40	2.54
Aug. dummy	92.32	21.75	4.25

$\mathrm{R}^{2}=.7442 ; \mathrm{F}=31.19 ;$ mean $\mathrm{SGS}=483.08 ; \mathrm{D} \cdot \mathrm{W}=$ 1.30; standard error of estimate $=51.45 .^{2}$ December served as the a priori exchuded month for equations 1, 2, 4 , and 5 .

Although the R^{2} value is lower than in equation 1 , the F-value is still high enough to give a high level of significance for the entire equation. The significance of $\mathrm{SF}_{\mathrm{t}-3}$ indicates that of the sows and gilts sold; a large number had just finished weaning their pigs. The shortrun market price conditions are represented by HCPR $_{t-2}$. The negative sign on the HCPR $\mathrm{H}_{\mathrm{t}} 2$ coefficient
may be inlerpreted by the following consideration: When hog prices are favorable, producers will expand the breeding herd by reducing the culling rate. The scasonal zero-one variables were included, while the cyclical effects were excluded.

The number of barrows and gilts sold depends or past farrowings, market prices, and seasonal and cyctical variation (equation 4) subject to avaiability of pigs by age-weight distribution.
(4) $\mathrm{BGS}_{\mathrm{L}}=\mathrm{F}\left(\mathrm{SF}_{\mathrm{t}-6}, \mathrm{SF}_{\mathrm{t}-\mathrm{S}}, \mathrm{SF}_{\mathrm{t}-10}, \mathrm{HCPR}_{\mathrm{t}-12}, \mathrm{TC}_{\mathrm{C}}\right.$, SD)
where:

$\mathrm{BGS}_{\mathrm{t}}=$	number of barrows and gilts sold in
	month $\mathrm{t}-1,000$ head.
$\mathrm{SF}_{\mathrm{t}-6}=$	number of sows farrowing lagged 6
	months.
$\mathrm{SF}_{\mathrm{t}-8}=$	number of sows farrowing lagged 8
	months.
$\mathrm{SF}_{\mathrm{t}-10}=$	number of sows farrowing lagged 10
	months.
$\mathrm{HCPR}_{\mathrm{t}-12}=$	hog-corn price ratio lagged 12 months.
$\mathrm{T}_{\mathrm{c}} \quad=$	identified in equation 1.
$\mathrm{SD} \quad=$	identified in equation 1.

The estimated parameters of equation 4 are presented in table 6. This equation and equation 1 are two of the most important equations in the subsector model. They largely determine the major output of the subsystem, since marketings of barrows and gilts exceed 90 percent of total commercial hog slaughter (19). The 6,8 , and 10 -montly lags on $S F$ variables indicate the relative size of pigs in these age groups. The $\mathrm{HCPR}_{\mathrm{t}-12}$ expresses the

Table 6-Barrows and gilts sold equation (BGS), coefficients and statistical information'

Independent varjable	Regression coefficient	Standard emor of coefficient	t-Value
Constant	-2507.03	614.94	-4.07
$\mathrm{SF}_{\text {t }}$.	1.41	0.22	6.39
$\mathrm{SF}_{\mathrm{t}-8}$	3.25	0.31	10.44
$\mathrm{SF}_{\mathrm{t}-10}$	2.02	0.22	9.24
$\mathrm{HCPR}_{\text {t- }} 2$	43.73	10.60	4.12
Sine ($4 w_{0}{ }^{\text {b }}$)	1896.32	244.45	7.76
Feb. (lummy ${ }^{2}$	-1551.41	154.25	-10.06
May dummy	-437.08	186.57	-2.34
June dummy	1203.43	248.39	4.84
July dummy	2242.90	429.66	5.22
Aug. dummy	3915.05	557.85	7.02
Sept. dummy	4388.93	602.09	7.28
Oct. dummy	3630.47	490.45	7.40
Nov. dummy	1460.19	253.36	5.76

[^4]effects of intermediate market condilions. Significant seasonal and cyclical variations were included in the equation. The statistical properties of the BGS equation indicate a satislactorily estimated equation with relatively high R^{2}, a high F-value, and low serial correlation (table 6).

While equation 4 provides an estimate of the total number of barrows and gilts sold, it dues not specify the age- or weight- distribution for the month. This inforunation is needed in the subsector model for inventory adjustments in the production-feeding subsystem and for allocating the barrows and gilts among live market weight groups for pricing in the slaughtering-processing subsystem.

The age-weight distribution is related to the average liveweight (equation 5) for the total number of barrows and gilts sold.

$$
\begin{equation*}
\mathrm{AVLW}_{\mathrm{t}}=\mathrm{F}\left(\mathrm{SF}_{\mathrm{t}-7}, \quad \mathrm{SF}\right. \tag{5}
\end{equation*}
$$

$$
\left.A P B G_{t-8}, A P B G_{t-26}, T_{\mathrm{C}}, \mathrm{SD}\right)
$$

where:

$\mathrm{AVLW}_{\mathrm{t}} \quad=$	average liveweiglt of market barrows and gilts in month t-pounds per hog.
$\mathrm{SF}_{\mathrm{t}-7}=$	number of sows farrowing lagged 7
	months.

The estimated regression coefficients are given in table 7. As expected, the lagged SF variable contributed substanitially to the determination of AVLW, simply because it reflects the corresponding volume farrowed with its age-weight distribution. The average hog price lagged 2,8 , and 26 montls represented the sales response to market price changes. The effects of the time variables were explicitly included in the form of seasonal and cyclical variables. All explanatory variables exhibited high significance levels, resulting in a relatively high R^{2} for the equation. The $\mathrm{D}-\mathrm{W}$ value1.69 -indicates relatively low serial correlation.

Equations 1, 2, 4, and 5 represent the economic framework for the production-feeding subsystem. Having estimated the four econometric equations with satisfactory results, the next step was to simulate the process of growing and finishing market hogs. Thus, the inventory of market hogs must be continuously adjusted to allow tor death, slaughter, and age-weight gain. To achieve this. a transter matrix of hog-age groups was developed.

Table 7-Average liveweight equation (AVLW), coefficients and statistical information'

Independent variable	Kegression coefficient	Standard error of coefficient	l-Value
Constant	217.36	2.73	79.49
$\mathrm{SF}_{\mathrm{i}-7}$	0.006	0.001	5.52
SF $\mathrm{t}_{\text {-9 }}$	0.01	0.0009	10.99
$\mathrm{SF}_{\mathrm{t}-10}$	0.005	0.001	4.76
$\mathrm{APBG}_{\text {t-2 }}$	0.08	0.09	9.09
$\mathrm{APBG}_{\mathrm{t}-8}$	-1.17	0.14	-8.36
APBG ${ }_{\text {t. } 26}$	0.34	0.05	6.77
Cosine ($2 \mathrm{w}_{\mathrm{o}} \mathrm{t}$)	-0.95	0.33	-2.84
Cosine ($4 \mathrm{w}_{0} t$)	-4.81	0.44	-10.94
Cosine ($5 \mathrm{w}_{\mathrm{o}} \mathrm{t}$)	0.59	0.26	2.76
Cosine ($6 w_{0}{ }^{t}$)	0.32	0.23	1.43
Sine ($1 w_{0}{ }^{\text {l }}$)	-5.78	0.56	-10.29
Sine ($2 w_{0}{ }^{\text {t }}$)	2.17	0.24	9.05
June dummy ${ }^{\text {a }}$	-5.65	0.88	-6.45
July dummy	-9.96	1.05	-9.52
Aug. dummy	-8.55	0.95	-9.05
Sept. dummy	-4.62	0.81	-5.67

${ }^{1} \mathrm{R}^{2}=.9256 ; \mathrm{F}=65.49$; mean AVLW $=234.83 ; \mathrm{D} \cdot \mathrm{W}$ $=1.69$; standard error of estimate $=1.33 .{ }^{2}$ December served as the a priori excluded month for equations 1, 2 , 4 , and 5 .

In the early development stage, the transier matrix was a diagonal matrix with death and farm slaughter rates for each age group of pigs on the diagonal. Later, it was found necessary to deal with pigs born on a weekly basis, so the matrix was enlarged. The sum of death and farm slaughter rate assumed in the study is as follows: 2.5 percent in the first month; 1.5 percent in the second; 1.3 percent in the third; 1.0 percent each in the fourth and fifth months; 0.7 percent in the sixth; and 0.5 percent in both the seventh and eighth months of age. The purpose of the transfer matrix is to shift the total population of barrows and gilts after marketings of the last month into the current month age-group population, but before the marketing allocation among the weight groups is worked out. At 8 months of age, the pigs still in the inventory join the breeding herd in the ratio of 92 percent femaies to 8 percent males.

The total number of hogs marketed can be computed by the identity:

$$
\begin{equation*}
Y_{t}=\mathrm{BGS}_{\mathrm{t}}+\mathrm{SGS}_{\mathrm{t}}+\mathrm{SMALES}_{\mathrm{t}} \tag{6}
\end{equation*}
$$

where:
$Y_{t} \quad=$ total number of hogs marketed in month $t-1,000$ head.
$\mathrm{BGS}_{\mathrm{t}} \quad=$ identified in equation 4.
$\mathrm{SGS}_{\mathrm{t}} \quad=$ identified in equation 3.
SMALES $_{t}=$ number of boars sold in month $t-1,000$ head.

The number of boars sold is computed as the disposal of the difference between the required 8.3 percent of the
breeding herd and the actual number on hand in the current month.

The identity given by equation 6 is subject to the limitation that inventory of $B G S_{t}$ and $S G S S_{t}$ be capable of defivering these numbers of hogs. As far as SGS_{1} is concerned, it is necessary to ensure that a minimum number of total females are held in inventory to breed in the current month for farowing 4 months later.

The checking procedure becames very complex for the $B G S_{i}$ inventory. Not only must $\mathrm{BCS}_{\mathrm{t}}$ as a total of all barrows and gilts of different ages be satistied, but the inventory balance of cach age group camot be violated. Futhermore, the lolerances are much tighter than that. If too many pigs are drawn from one age group for marketing, it may resul in no heavy butcher hogs being sold hater on. If too lew are drawn, then a large number of boars and gilts will enter the breedigg herd. followed by a very small number, resulting in extreme Nuctuations in the size of the breeding herd. Therefore, it is necessary to estimate the age-weight distribution associated wilh BGS ${ }_{t}$.

Since data avaliabte to support a direct approach to the problem were very limited, three allematives were considered:

1. Retention function-Given time t, the totat number of hogs equals the number marketed plus the number retaited at the farm. Theretore, if the retention function for each age group in the BGS inventory could be generated, the problem would be solved. However, in the absence of relevant information and a sound theoretical base for such a function, this approach was dropped.
2. Loop searcb allocation scheme-The need to reconcile the number of marketed hogs over time with the inventory on hand and the number of barrows and gilts marketed led to direchy determining the total number ol barrows and gills marketed by small iterative steps of selection from the inventory of each age group. On every pass, the number of barrows and gilts was drawn from the heaviest four age groups under the growing inventory on hand. In this way, a negative inventory was never reached and at the same time the different age groups were kept in relatively close ratios. Also, in each loop, a check was made to tind if the total number of BGS drawn had reached the quota as estimated by equation 1. An inventory adjustment was then made. The process of looping was contimued until the number as estimated by equation 1 was exceeded. At this point a novement backward was made, thus adjusting to the exact level as given by equation 1. A safety feature against an infinite loop was introduced, since the $B S_{L}$ and $S F_{t}$ are independenlly estimated, with the possibilily of having haged SF underestimated for several conseculive months and BGS overestimated later on. The disadvantage of this allemative in the overall simulation of the subsector model is that hog prices are endogenous to the system and functionally related to the age-weight distribution of the numbers of barrows and gilts sold. Also, the solution to such a
marketing scheme has no assurance of being unique. Therelore, this alternative was abandoned.
3. Agerwetght distribution allocation scheme-This third approach was finally used. To disaggregate the total inventory of BGS into weight groups, it is necessary to know the refation between the age of butcher fogs and the attained weight of the hogs. Without a behavorial-decision feeding model available, an implicit feeding system unchanged with time and market conditions was assumed.

Table 8 and tigure 4 show the growth function assumed and used in the subsector model. They give the expected as well as the minimum and maximum days required to qualify a hog into each of the five commercial market-weight groups. The hypothesis is that the weight distribution is some nonsymmetric distribution function which depends on the average liveweight. By using unpublished data from the major Midwest livestock markels, a picture of the real distribution over time was made (app. table I).

Table 8-Days required for bogs to reach selected weights

Pounds	Expected	Minimum	Maximum
	Days	Days	Days
$180 \ldots \ldots \ldots$	143	133	153
$200 \ldots \ldots$	155	144	166
$220 \ldots \ldots$	170	158	182
$240 \ldots \ldots$	184	172	196
$270 \ldots \ldots \ldots$	208	195	221
$300 \ldots \ldots \ldots$	233	219	247

Source: Estimated from graphic data similar to figure 4 and contained in unpublished report by E.C. Mill Jr., Animals Husbandry Department, Wichi. State Univ., 1972. Assumes one standard deviation from the mean number of days.

With an estimate of AVLW $_{t}$, a first approximation was made by computing the area under the normal distribution curve corresponding to each commercial weight group. Figure 3 illustrates the sequence. Assume the standard deviation about $A V L W_{t}$ is 19.5 pounds. By using an algorithm (NDTR) developed by IBM, the following commercial weight groups were estimated (s): $180.200,201-220,221-240,241-170$, and $271-300$ pounds per head (fig 4). The procedure to calculate these groups foll. ys. Step one: Estimate AVLW by equation 5 and compute the five commercial-weight groups shown in figure 4. 5 Step two: Adjust group size in proportion to the seasonal adjustment for the particular month being calculated. The estimated equations are given in the appendix and were obtained by applying ordinary least-squares procedure to the normal curve approximation and the sample values of appendix table 1.

Figure 4.

An Approximated Normal Weight Distribution
of Market Barrows and Gilts

Once the number of barrows and gitts was distributed among the bise weight groups, it was necessary to determine the age-inventory groups eligible for sale. To accomplish this, it was assumed that sow farrowings wers uniformly distributed throughout the month. Alter a pig reached 1 months of age, each month's growth was divided into four time periods, and the inventory was calculated at the end of each period. The eligibility of the expanded number of groups-16-is determined with the aid of table 8 , where a third of each weight group is drawn only from the expected ageweight combination, and the rest from the "expected" cell plas one standard deviation on both sides. In this way, the exact number of hogs to be drawn met of each weeks expected age-weight group is directly related to that group's size relative to thal of all eligible groups. This procedure ensured insentory control constraints and seemed to resemble the real world pattern.

Slaughtering-Processing Subsystem

With respect to inputs, the slaughtering-proc sing subsystent has interconnecting sets of belavioral relationships with the production-teeding subsystem, For oulput, it has similar behavioral relationships with the distribution-consumption subsystem (Cig. 5). On the input side, the subsystem has an interface with the production- reeding subsystem at the live hog maske, while on the output side it has an interface with the distributionconsumption subsystem at the wholesale
markel. in general, this subsystem is concerned with prieing and slaughtering of market hogs, breaking the carcass into primal cats, and processing the primals into final consumer pork products. As Cormulated, the subsystem is a recursive set of equations.

The live hog marketing syster as modeled attempts to solve two pricing problems facing the meatpacking industry: (1) determination of the price that is responsive to changes in supply and demand, and (2) establishment of payment for biological differences between markel classes of hogs. A third problem-quality-is not considered. The subsystem's output, composed of fresh and processed pork cuts, is specified withoul regard to brand, weight, or size of the consumer cuts.

Considerable research efforl was directed loward analyning time series data to determine characteristics of demand for hogs. Usually, a year or quarter was used as the observation period, and the analyses were based on static economic theory. In recent years, economists lave introduced dynamic theory into demand analyses by the use of the concept of distributed lags. The development of distributed lags as a workable econometric technique in supply and temand analysis can be attributed to the work of Nerlove (IO) (II). Later, Nartin developed a nonlinear distributed lag model containing two lag parameters for estimaling elasticities of demand (8).

The structural characteristics of the hog-pork subsector as ontlined above and the observed fluctuations in monthly log prices suggested that dyomic influences

Figure 5. Systems Flow of Slaughtering-Processing Subsystem.

4 Compute the anticipated wholesale cut demand for six market hog classes

5 Select the minimum and maximum values from four lean wholesale cuts by market hog class

6 Compute the number of hog equivalents from the minimum and maximum values for each market hog class
$7 \begin{gathered}\text { Estimate live hog } \\ \text { price for six market }\end{gathered}$ classes

9 Compute quantity of wholesale cuts from market groups

12 Will current wholesale cut production meet expected retail and nonretail pork cut
sales?

15 Process pork cuts into final retail and nonretail quantities

16 Transfer quantities of processed retail and nonretail pork cuts to distributionconsumption subsystem

were importamt determinants of hog prices. Therefore, it was imperative that a statistical lechnique be used that would yield consistent and unbiased estimates.

The estimation of hog prices by market classes is ervical for the system analysis. The assumption is made that the total supply of markel hogs will clear the markel, and be slaughtered, processed, consumed, or stored as cuts in the current period. Futhermore, the average price of barrows and gills acts as a leedback signal in tringing rorth fature hog supplies as well as providing necessary quantities of pork cuts for consumption. Thus, underlying the formulation and selection of variables for the estimated equations were three basic economic hypotheses: (1) the economic (anuse fehanges in hog supplies and pork ent sales) produces its completr effect (change in prite of market hosg groups only atter a lapse of time, (2) the effects oin changes in the rariables are spread over more than one tima period (a distributed lag) and (3) different tagged coreficients are associated with the variables for hog supply and sates of pork cuts. Given these considerathons. a nonstatis model incorporatimg distributed lags was reguired.

The general statistical model used to estimate all equations in the subsector model dealing with assumptions of distributed lags was Martin's two lag parameter model (s). The nathematical structure of this particular medel is given in equatan 7. The dependent rariable, ξ_{t}, is assumed to be a lunction of current and past ubservations of three subsets of independent cariables.
 1.4.4-1.181).

$$
\begin{align*}
& Y_{L}=a_{0}(1-\lambda)(1-\mu)(1-\beta)+\underset{i=1}{A} a_{i} x_{i l} \tag{7}\\
& -(\mu+i) \stackrel{A}{\underset{i=1}{\leq} a_{i} X_{i t-1}+\mu \beta} \stackrel{B}{=} a_{i=1}^{2} x_{i t-2} \\
& +\sum_{j=1}^{B} b_{j} Z_{j l}-(\alpha+\beta) \underset{j=1}{B} b_{j} Z_{j l-1} \\
& +\lambda_{\mu}{\underset{j=1}{B} b_{j}^{Z} Z_{j \mathrm{l}-2}+(\lambda+\mu+\beta) Y_{l-1}, ~}_{\text {a }} \\
& -\left\{(\lambda+\mu\} \beta+\lambda \mu 1 Y_{\mathrm{l}-2}{ }^{\mathrm{N}+\lambda \mu \beta \mathrm{Y}_{\mathrm{L}-3}}\right. \\
& +\underset{k=1}{C} d_{k} D_{k t}+c_{t}
\end{align*}
$$

whure:
$Y_{t-1 \mathrm{~m}}=$ the current and lagsed values of the dependent variable ($m=0,1,2,3$).
$X_{i t-m}=$ the current and tagged values of the exogenous variable associated with the lag parameter λ ($m=0,1,2$).
$Z_{j t-m 1}=$ the current and laged values of the exoparameter $\mu(\mathrm{m}=0,1,2)$.
$\mathrm{D}_{\mathrm{kt}}=$ the current exogenous and/or dummy variables which are not associated witl a laty.
$e_{t}=\quad$ the error lerm. the pure constani term.
$a_{i} \quad=$ the paraneters of the set of exogenous variables, $\mathrm{x}_{\mathrm{it}},(\mathrm{i}=1, \ldots, \mathrm{~A})$.
$\mathrm{b}_{\mathrm{j}} \quad=$ the parameters of the sel of exogenous variables, $Z_{j l},(j=1, \ldots, B)$.
$\therefore \quad=$ the lag parameter associated with the sel of exogenous variables, X_{it}.
$\mu=$ the hag parameler associated with the sel of exogenous variables, Z_{jt}.
$\beta=$ the first order allocorrelation cocfficient.
$d_{k}=$ the parameters associated with the set of exogenous variables, D_{k}.

This particular estimation algorithm was used vecause: (1) the assumption ol different lag distributions for the hog supply and pork sales variables could be made, (2) Line lagged effect of selected variatbles could be isolated empirically, and (3) adjustments could te made for athecorrelated errors.

The economic structure of the slaughteringprocessing subsystem was modeled from the viewpoint of the packer. A procedure was developed whereby consumption levels of pork culs were translated into packer demand for market hogs ((ij. 5). A data series was generated from reported pork production to approximate this demand for market logs. The procedure for disuggregating U.S. pork production and consumption data and rectifying production and consumption of pork cal proportions was developed by Duewer in an associated study. (3). To develop the data series for 1965-71, the implicit assumption was made that final consumer consumption was equal to pork production.

The derived production of primal pork cuts was assumed to represent the packers' anticipated sales of primal culs-hams, loins, bellies, ribs, butis, and picticsfor consumption as fresh or processed products. These anticipated sales of primat cuts were assumed to be a function of composite wholesale pork price, disposable personal income, zero-one monthly dummy variables, and a dummy variable for 1965 (equation 8). Only the four lean primals were estimated because packers generally buy hogs on the basis of a subjective judgment as to what the various groups of butcher hogs will yield in terms of the four lean cuts. The ${ }^{\text {th }}$ notation of equation 8 recognizes bellies and ribs for simplicity and consistency of subseripling in the subsector model since these two cuts are used in other phases of the model.

where:

$A^{\text {A }} \mathrm{C}_{\mathrm{t}}$	$=$ anticipated packer sales of the ith mal cut in period t-mil. lbs. $j=1$-hams $\quad j=5-$ butts $j=2-$ loins $\quad j=6$-picnics
	= composite wholesale pork price lagged montheel/ewt.
DPI	$=$ disposable personal income-\$/capita.
SD	= zero-one monthly dummy variab where danuary served as the a priori cluded month.
D65	$=$ dunmm variable for year 1965.

Econometrically, equation 8 was estimated as a Nerlove distributed-lag model with autoregressive errors. The mathematical structure as well as the identification of independent variables via the variable subject notation of equation 7 is given in appendix table 3.

The estimated parameters and associated statistical properties of loins are discussed and exhibited in table 9 . The estimation results for the remaining lean primal cuts-ham, butts, and pionics-are given in appendix table 4. Standard statistical tests used for OLS estimation should be used with caution since the estimation of equation 8 is nonlinear in the parameter space. The significance of individual parameters may be approximated by dividing each by its standard error.

Table 9-Estimated paraneters and statistical information for anticipated packer wholesale loin de mand' ($A Q C_{i}^{j}$)

Independent variables and lagged parameters	Estimated regression parameters	Standard ersor of parameters
Constant	214.1899	
CWPP t-1	-2.1282	1.0757
λ	0.0359	0.465
β	-0.0801	0.389
DPI_{t}	0.0443	0.008
Feb. dummy ${ }^{2}$	-26.7941	6.329
Mar. dunmy	7.2408	8.325
Apr. dummy	0.5965	7.408
May dummy	-25.7782	7.208
dune dummy	-34.2287	7.477
Wuly dummy	-39.9452	8.542
Aug. dummy	-23.4471	10.205
Sept. dummy	-4.4885	9.681
Oct. dummy	9.6399	8.210
Nov. dummy	6.6815	6.667
Dec. dummy	7.6735	6.238
1965 dummy	-17.9475	4.627

${ }^{1} \mathrm{R}^{2}=.899 ; F=37.213 ;$ Mean $=209.915 ; \mathrm{D} \cdot \mathrm{W}=$ 2.106; standard error of estimate $=10.545$; degrees of freedom $=67$. ${ }^{2}$ January served as the a prion exclucted month for equations

Using the above is a measure of signifinance, the lagged composite wholesale pork price, per capita disposable income, five of the seasonal variation variables, and the 1965 dummy variable trere judged significant in all equations. The appropriate economic sign for CWPP and DPI were estimated in all four equations. Variables for the months-Pebruary, May, dune, July, and August as well as the 1965 dummy variable were significant in all four equations. The five monthly variables had negative signs, indicating that demand for the four pork cuts in these months was lower than in the base month, January. the remaining months displayed a mixture of positive and negative signs. The months comprising the fourti quarter exhibited positive signs for all cuts except ham, indicating anticipation of increased consumption during the Thanksgiving-Christmas-New Years holiday stason. A shift in the demand curve for pork seems to have occurred between 1965 and 1966. The 1965 dummy used in the equations to reflect this shift was significant for all four cuts. The R^{2} and $\mathrm{D}-\mathrm{W}$ statistics are acceptable. The distributed lag parameters $-\lambda$,-and the autocorretation coefficient- β-were not significantly different from zero. This would sutggest linear estimation of equation 8. However, the OLS estimation of equation 8 was mich poorer with respect to $R^{2}, D-W$, and standard error of estimate statistics. Therefore, the nonlinear Nerlove equation was used.

The economic structure of the markel hog price equation was hypothesized from the viewpoint of the packer appraising a tive hog markel in which a predetermined supply of hogs is distributed among five market classes of barrows and gitts and one markel class of cull sows and boars. In estimating prices for these alternative market groups, packers are attempling to equate the predetermined supplies with their anticipated demand for pork cuts (demand which is ret\}ected back from the yetail markel to the live market). Thus, for each market group of hogs, price is assumed to be a function of hog supplies, demand for hogs, beef price, and monthly dummy variables (equation 9).

$$
\begin{equation*}
\mathrm{PBG}_{t}^{\mathrm{I}}=\mathrm{f}\left(\mathrm{SBG}_{\mathrm{t}}^{\mathrm{I}}, \mathrm{TBG}_{t}, \mathrm{PHD}_{\mathrm{t}}^{\mathrm{I}}, \mathrm{TWHD}_{\mathrm{t}}, \mathrm{BP}_{\mathrm{t}}, \mathrm{SD}\right) \tag{9}
\end{equation*}
$$

where:
$\mathrm{PBG}_{\mathrm{t}}^{\mathrm{I}}=$ live price of the $1^{\text {th }}$ market hog group in period t-\$/cwl. ($\mathrm{I}=1,-6$).
$I=1-180$ - to $200-\mathrm{pound}$ barrows and gilts.
$\mathrm{I}=2-200$ - to 220 -pound barrows and gille.
$\pm=3-220 \cdot 10240$-pound barrows and gilts.
$I=4-240 \cdot$ to 270 -pound barrows and gitis.
$I=5-270$.plus pound barrows and gitts.
$I=6$-sows and boars.
$\mathrm{TBG}_{\mathrm{l}}=$ total supply of market hous in period t-mtimber:'1,000 U.S. population.
PHD ${ }_{L}^{I}=$ additional number of hogs demanded in the $t^{\text {th }}$ weight group in period $t-\log$ equivalents: 10.000 U.S. population (I-$1,-6)$.
TWHD ${ }_{\mathrm{L}}^{1}=$ minimum number of hogs demand in the $\left[^{\text {th }}\right.$ weight group in period t-log eguivalent 10,000 E.S. population.
$B P_{l} \quad$: choice live steer price; in period \$iewt.
S0 : zoro-one monthly damy variables.

The supply of marke hogs (t'.S. commereial slaughter) in any given month is reperesented by two variables: (1) the number of hogs in each markel group, and (2) total number of market hogs. These two matables are generated within the production-feeding subsystem and transferred to the shathtering-proeessing subsystem. In this subsystem, the hogs are prieed and standitered by market group.
 assumed (1) represent expected primal cut sales by market group elassification in terms of equivatent hog numbers. The montity data sernes for these varabtes were generated (syathesized) from reported ('.S. pork prostuction data in two phases. The basic idea was to transate consumption levels of pork etts into packer demand for live hogs. Final consumer consumption was assumed equal to ('.s. pork production in developing the data spries for the 7 -vear period (1965-71). In the lirst phase, reported C.S. pork production was divided into six primal wholesale pork euts (hams, loins, bellies, ribe, butts, and pienits) by using stannard yiold coefficients (fis). Tu this derived production, the change in inventors of pork euts (reported cold-storage holdings) was added or stbtracted. This monthly data series was assumed to represent total U.S. consumption of primal pork ebls. The data were further disaggregated into expected primal cut sates on a markel-weight classification basis as follows: (1) The total U.S. consumption of primal euts was mutuplied by the market class percentage distribution factor obsersed from the commercial slangleter information, and (2) then divided by individual cut yield coeflieients for cach of the six market groups. The completion of the first phase resulted in a monthly tmae series of expected prinal cut sales by markel groups in letms of hog nambers.

Ther serond phase consested of selecting or identifying the PEDD and TWHD' sumbles from the expected primal cut sates, 'llut process was limuted to the four tean cuts. For bach cut, minmun and maximun quantities were selected for wach of the narket groups month by month. The momum quantits was assumed to repra sont ther monthls mumam experted sates of colsTWHD ${ }^{\text {I }}$ (rom a particular markel hog weight group. The maximum quantity minas the minomum quantity represented the additional monthiy expected sates of
culs-PHD ${ }^{\prime}$-trom a specific market group. Thus, thinimum expected sales of cuts-TWHD-represented the number of hogs in each weight group that the packer must buy to meet mimmum demand for the four lean pork cuts. Similarly, the BHD^{1} variable represents the additional number of hog equivalents in each market group that are required to tulfill the anticipated sales of the cut in greatest demand. The estimates for both the supply and sates variables were divided by ('S. population numbers for scaling purposes betore they were entered into the estimation procedure.

Four of the six market hog price equations were estimated in the mathematieal form alepieled in equation 7. The exeeptions $\{180$ to 200 pound barrows and gilts, and market sows and boars) were estimated as an autoregressive Norlove equation. The specific mathematical form and identification of variables are given in appondix tables 5 and 6. 'Pur estimated parameters and statistical properties of the equations are presented in table 10 and appendix tables 7 and 8 .

Equation 9 is nontinear in the parameter space, and, as for equation 8 , caution should be observed in interpreting its statustacal properties. In general, the estimation results were good. The coetficient of determination R^{2} was in the range of 93 to 95 pereent, while standard errors of estimate were between 0.81 and 0.91 , with a D-W statistic around 2.00 for all six equations.

By dwiding the estimated parameter by its slandard error, the relative significanee of the variables can be alssessed. As shown in table 10, total hog supply ($\mathrm{TBC}_{\mathrm{f}}$); minimum expected primal sales (TWHD): Choice steer price (BP_{i}); Pebruary. Juls, and August zero-one variables; and the λ, a, and a parameters were significant in the price equation for 220 - to 240 -pound barrows and gilts. The appropriate economic sign was estimated for those paramoters associated with supply and expected sties-packer demand-for all market hog groups of equation 9 (table 20 and appendix tables 7 and 8). The positive and highly significant atuocorreation coef-ficient- β-indicated serial correlation. The positive β indieated the estimated parameters had been adjusted for positive serial correlation, which is frequently the case with economic time series data. However, the usefulness of the U.W statistic is limited as a Lesi for serial correlation in the case of nonlinefr estimation because of bias (${ }^{4}$) in the original disturbances ($1+4$).

Changes in supply and domand are continually oceurring in the hog-pork industry. The resulting change in live hog prices may not be instantaneous. The significant α and μ values indicated that the hypothesis of a lagged adjustment in live hog prices to changes in supply and demand could not be rejected. The time required for price to adjust to within a specified interval of a now equilibrom price level was calculated, and resul's are presented in table 11. The positive λ indieated the price of 220 to 210 pound barrows and gilts underadjusted to supply changes white the negative μ inclicated an overadjustment of price to danges in parker demand for live hogs. thable 1.11. The average

Table 10 Estmated parameters and statustical information for market price of $2=0$ to 240 pound barrows and filks, ($\mathrm{PBG}_{\mathrm{t}}^{\mathrm{I}}$)
 21 tha: stethath crom of whmats - 0.810 degrees of
 monta

Table 11 Estimated time requred for priee of market barrows and gilts, and markes sows atad boars, to adjust to change in supply and demand ${ }^{1}$

[^5]NA nes atatable.
length of time requied for the markel price of barrows and gilts to adjust to whin 95 percent of a new equilibrium lovel was 9.4 months after a supply change and 5.1 months after a change in expected primal cat salles. The shortest time required after a supply change was 5.3 months for the 200 - to 220 pound barrows and gilts. This particular group of market hogs also gave the shortest time, 4.4 months, to adjust to a change in expected sales.

What the prices of the individual market groups developed, the subsystem proceeds with the process of slaughtering the hog and processing the primal cuts into final consumer euls. The quantily of groen cuts is determined by applying appropriate yiek coefticients to bath market group. (ireen eats, consisting of the six primals and trimmings, means the raw pork product before any processing or fital trimming.

The quantily of green cuts to be processed into ronsumer pork culs depends on packers' anticipation of retail demand. 'lime anticipated retail demand for the eght consumer pork cuts is estimated by equation 10.

$$
\begin{align*}
& \mathrm{QPCD}_{\mathrm{t}}^{\mathrm{I}}=\mathrm{f}\left(\mathrm{WBP}_{\mathrm{t}} \mathrm{CWPP}_{\mathrm{t}-1}, \mathrm{CRPP}_{\mathrm{t}-1}, R \mathrm{RPP}_{\mathrm{t}},\right. \tag{10}\\
& \operatorname{STQQSC}_{t}, \operatorname{TCKPC}_{i},
\end{align*}
$$

where:

$$
\begin{aligned}
\text { QPCD }_{L}^{1}= & \text { anticipated quantity demanded of the } \\
& \text { It }^{\text {th }} \text { retail eut in period t-mil. Ibs. (retail } \\
& \text { wsight). }
\end{aligned}
$$

$$
\begin{array}{ll}
I=1 \text {-hams } & I=6 \text {-pienics } \\
I=2-\text {-ioins } & I=7 \text {-not used } \\
I=3 \text {-not used } & I=8 \text {-bacon } \\
I=1 \text {-ribs } & I=9 \text {-sausage } \\
I=5-\text {-buts } & I=10 \text {-innebeon meal }
\end{array}
$$

$\mathrm{WBP}_{\mathrm{L}}$ CWPPP $_{t-1}$	$=$ wholesale beer price in period $t-\$ / e w t$. $=$ composite wholesale pork price lagged 1 montly -icwl.
CRPP ${ }_{\text {L }}$	= composite retail pork price lagged 1 month - \$/cwt.
RCP	retail ehicken price in period t-\$/ewt.
STPGSC	total quantity of fresh pork from curment slatulter in period t-lbs feapita.
TCKPC	: L.S. commercal broiler production in poriod t-lbs.jcapita.
DPI_{t}	$=$ disposable personal income in period t-Steapita.

SD = zero-one monthly dummy variable, where danuary served as the a priori exchted d month.

Equation 10 was estimated as a linear function by least squates. The regressons results for loins and the rmaining swen consumer cuts are given in tabie 12 and apperadix table 0.

Table 12-Eslimated parameters and statistical information for packer's anticıpated retail demand of hoins (QPCD ${ }_{t}^{-1}$):

Independent variables and lagged parameters	Estimated regression parameters	Standard error of regression parameters
Constant	25.2138	
$\mathrm{Wbr}^{\text {t }}$	0.2924	0.119
CWPP $_{1-1}$	-0.0447	0.079
STQasct	34.8602	1.022
$\mathrm{DHI}_{\mathrm{L}}$	0.0167	0.002
$\mathrm{RCP}_{\mathrm{t}}$	-0.2865	0.190
Feb. dummy	0.1680	1.337
Mar. dummy	0.2401	1.198
Apr. dummy	$\cdot 9.6578$	1.194
May dummy	-9.2980	1.314
dune dumamy	-8.6355	1.382
Juls dummy	-5.9020	1.484
Aus dummy	- 8.8102	1.277
Sept, dummy	-7.1834	1.187
Oct. dummy	-0.5031	1.169
Nov. dummy	-4.6183	1.153
Dec. dummy	-0.2751	1.152

${ }^{1} \mathrm{~K}^{2}=.994 ; \mathrm{F}=737.029 ;$ mean $=195.048 ; \mathrm{D}-\mathrm{W}=$ 1.326; standard error of estimate $=2.141$; degrees of freedom $=67$. 'dathary served as the a priori excluded month.

All of the independent yariables listed in equation 10 were not always included in the single equation estimates of the eight cousumer pork cuts. The explanatory wariables producing the best fit for the anticipated retail loin demand were wholesale beef price, composite wholesale pork price, composite retail pork price, retail chicken price, per capita U.S. broiler production, per capita disposable personal income, and the 11 zero-one monthly dummy variables. Of these variables, wholesale beef price, per capita quantity of fresh pork, and per capita disposable personal income were the most significanl. In general, the statistical properties of all eight equations were good, with high R^{2} and t - statistics as well as relatively low standard error of estimates (table 12 and app. table 9). The D-W statistic was acceptable in all equations, with some serial correlation indicated. The equations exhibiting a low D-W statistic were not considered of serious enough consequence to warrant restimation.

Distribution-Consumption Subsystem

The distribution-consumption subsystem is structured to mterface with the production-feeding and the shaughtering-processing subsystem as a synchronized and integrated part of the subsector model. The objective of this subsystem is to complete the systems model and represent the organizational structure of the distribution segment of the [.S. pork subsector.
lha subsystem consists of two main parts: (1)
distribution of pork cuts as wholesale cuts to nonretail and retail outlets and (2) consumption of pork products assumed to occur in the institutional and household segments of the United States. The nonretail outlets in the institutional channel include hote'. 3 , restaurants, and institutions (schools, hospitals, and so on). The distribution outlet for household consumption is divided into chain supermarkets, independent supermarkets, and convenience grocers (figure 6).

In distributing the pork cuts for the various categories of consumption there are two pricing points: the wholesale market and the retail market. The total quantity of pork (supply) is in the form of the eight processed cuts from the slaughtering-processing subsystem. The wholesale pricing point determines the wholesale price for each pork cut and the quantity of cach cut to be distributeed to the consumption outiets. Through the nonretail outlet, the wholesale cuts are consumed without further market action. The pork distributed through the retail channel is priced by cut for the three retail outlets.

At present, the U.S. pork distribution and consumption sector mainly operates in a free competitive market, with limited vertical integration between packers and retailers. Therefore, wholesale and retail markets serve as the points for price and quantity determination, with the packers and processors on one side and consumer of pork on the other (figure 6).

The wholesale market provides the link between this subsystem and the slaughtering-processing subsystem. The supply of pork by cuts in fresh and processed form as well as the average tive market hog price is furnished by the slaughtering-processing subsystem. There are three major segments of the distribution-consumption subsystem: (1) wholesale prices by pork cuts, (2) quantity of wholesale pork by cuts and market outlets, and (3) retail pork prices by cut and retail outlet. Operation of this subsystem begins with the determination of wholesale prices and the distribution of cuts to the retail and nonretail market channels. The pork distributed to the retail sector is in turn priced by retail cut, and the quantity moving to the three retail outlets is subsequently determined. A number of variables influence the three parts of this subsystem, lagged prices, lagged quantities, and exogenous variables. For example, the whotesale price of pork cuts is affected by lagged wholesale pork prices, lagged retail pork prices, total fresh pork supply, and the monthly dummy variables.

From the three major endogenous segments, several industry statistics were derived or calculated. A composite wholesale pork price was derived from the individual wholesale pork cut prices. Per capita pork consumption by cuts and by market outlets was calculated from the quantity of pork to be consumed. Average retail pork price by cuts and a composite retail pork price by outlets and cuts were computed. Two price spread series were calculated when combined with the average market hog price-the farm-to-retail price spread and the wholesale-to-retail price spread.

Finally, the composite wholesale pork price and wholesale prices for hams, loins, butls, and picnics are transferred back to the slaughtering-processing subsystem. These five price variables are used in the slaughtering-processing subsystem as hagged endogeneous variables.

In mathematica! form, the distribution-consumption subsystem can be delineated into two lypes of equations: functional forms and identilies. Functional equations are used to estimate the time major endogenous variables. Two types of statistical lechniques were used to estinate the functional forms: linear regression and nontinear atoregressive regression. the remaining endogenous variables of the distribution consumption subsystem wern calculated by using identities or arithmetical equations. The nonlinear regression model is a derivation of the two-lag model used in the saughteringprocessing subsestem (equation 7). In making use of the general model in this subsystem, the λ and μ patametars are set equal to rero, thus reducing the two fag model to a single lisgted model with a parameter, to account for antoregressive errors. The specific type of statistical method used to estimate the endogenouts mabables is presented in table 13.

Ordinarily, whotesale pork prices and quantities are determined simultamously in the wholesale markel. Hownver, in a recursive system of equations, only unilateral causal telationships are possible. Thus, the system establebhes wholesale pork prices prior to determining the quantity to be distributed to the various outhets. ds modeled, the shaghtering-processing subsysen: anticipates the total quantity of cots to be processed fequation 10). This anticipated quantity, in
turn, serves as a basis for the lotal quantity of whotes cuts available to the wholesale market. Once wholes. prices are determined by cut, the distribution of cuts retail and nonretail outlees occurs.

The wholesale prices by cuts was estimated usimg finear regression technique and consisted of the follo ing variables:

$$
\begin{align*}
& \mathrm{WPP}_{\mathrm{t}}^{\mathrm{j}}= \mathrm{f}\left(\mathrm{WPP}_{\mathrm{t}-1}^{\mathrm{j}}, A \mathrm{APR}_{\mathrm{t}-1}^{\mathrm{j}}, \mathrm{TQP}_{\mathrm{t}}\right. \tag{11}\\
& \operatorname{STOGS}_{\mathrm{t}}, \mathrm{RPB}_{\mathrm{t}^{\prime}}^{\mathrm{j}} \\
&\left.\operatorname{RCP}_{\mathrm{t}}, \mathrm{BPCM}_{\mathrm{t}}, \mathrm{TCKP}_{\mathrm{t}^{\prime}} \mathrm{SD}, \mathrm{D} 65, \mathrm{FRPS}_{\mathrm{t}-1}\right)
\end{align*}
$$

where:
$\begin{aligned} \text { WPP }_{i}^{j}= & \text { the wholesate price of the } \mathrm{j}^{\text {th }} \text { wholesa } \\ & \text { cut in period } t-\$ / \mathrm{cwt} .(\mathrm{j}-1,2,4-6,8.10) .\end{aligned}$
$\mathrm{j}=1$-hams $\quad \mathrm{j}=6$-pientes
$\mathrm{j}=2$-loins $\quad \mathrm{j}=7$-nol used
$j=3$-bellies $\quad j=8$-bacon
$j=4-$ ribs $\quad j=9$-sausage $j=5$-butts $\quad j=10$-luncheon meat
WPP ${ }_{\text {L. } 1}^{j}=$ the lagged wholesale price of the j^{\prime} wholesale cat@\$/cwt.
$A P_{i-I}^{j}=$ average retail price of the j th processe cul lagged one period ($3-1,2,4-6,8-10$) \$/cwi.
$\mathrm{TQP}_{\mathrm{l}}^{\mathrm{j}}=$ tolal quantity of the $\mathrm{j}^{\text {th }}$ processed ct available for wholesale market in perio $\mathrm{t},(\mathrm{j}-1,2,4-6,7-10)-\mathrm{mil}$. Ibs.

Table 13 Definition of variables contabed in equation for estimating wholesale pork prices and quantities, and retail pork prices, by outlets and cuts

Statistical equation	WPP ${ }_{\text {L }}$	$\mathrm{QP}_{t}^{I}{ }^{\text {j }}$	$\mathrm{PR}_{t}^{\mathrm{I}, \mathrm{j}}$
	Lines	Static with athoreqressive error	Static with autoregressive error
Endogenoms variables associated with y lass	\ldots	$\mathrm{TQP}^{\mathrm{j}}$	QPA ${ }_{t}^{\text {IJ }}$
hathed depordeat and other endogenous varabites nol associated with lats	$\begin{array}{ll} \text { WPP }_{\mathrm{t} \cdot \mathrm{~m}}^{j} & \text { TQP }_{\mathrm{t} \cdot \mathrm{~m}}^{\mathrm{m}} \\ \text { APR }_{\mathrm{i} \cdot \mathrm{~m}}^{j} & \text { S'QQGS }_{\mathrm{t}} \\ \text { FRPS }_{\mathrm{t}-\mathrm{m}} & \end{array}$	WPP ${ }_{\text {L }}$	$P R_{i-1 \mathrm{n}}^{[j}$
Exogenous variables	$\begin{array}{ll} \mathrm{BFCM}_{\mathrm{t}} & \mathrm{TCKP}_{\mathrm{t}} \\ \mathrm{RBP}_{\mathrm{t}} & \mathrm{RCP}_{\mathrm{t}} \\ \text { Thand } & \end{array}$	Trend	$\begin{array}{ll} \mathrm{TCKP}_{\mathrm{t}} & \mathrm{RBP}_{\mathrm{L}} \\ \mathrm{ROP}_{\mathrm{t}} & \mathrm{RMP}_{\mathrm{t}} \end{array}$
Dummy variables	$\begin{aligned} & \text { D65 } \\ & \text { SD } \end{aligned}$	SD	$\begin{gathered} \mathrm{D} 65 \\ \mathrm{SD} \end{gathered}$

$\mathrm{StPon}_{2}=$
total quantity of fresh pork avalable in period t from slanghter in period $t-m i l$. ibs.
$R B P_{l}=$ average relah beef price in period $t-\mathrm{c} / \mathrm{b}$.
$R C P_{t}=$ average retall chichen price in period $t-$ c ! b .
$\mathrm{BECM}_{\mathrm{L}}=$ U.S. beef consumption in period $t-$ mil. ibs.
$T C K P_{L}=$ U.S. commercial broiler production in period $1-$ mil. bbs.
$\mathrm{SD}=$ zero-one monthly dummy variables where dantar' served as the a priori excluded month.
D65 = dummy variable for year 1965.
$\mathrm{PRPS}_{\mathrm{t}-1}$ - the Earm-retat price spread laged one period Sicwt.

The estimation results for the wholesale price of bellies are presented in table 14 and those for the remaining wholesale pork cuts are in appendix table 10.

- In general, the estimation results were acceplable. Appropriate economic signs and high t-valates were indicated for the variables assumed to influence the wholesale priee of pork bellies. Seasonal dummies for months Nay through September were all negative and

Table 14 Estimated coefficients and statistical information for whulesale price of pork bellies, (Wpy ${ }^{j}$)'

Inderpendent variable	Estimated regression coefficient	1-Value
Constant	36.9829	
WPP ${ }_{\text {t-1 }}^{\prime}$	0.7073	6.317
WP1 ${ }_{\text {d-2 }}$	-0.1818	2.115
TQP ${ }_{\text {d-1 }}$	-0.080.1	2.744
TEP	0.2850	2.002
STQCS	-0.0394	7.332
BFCM	9.7223	2.651
${ }^{\text {THKP }}$	11.0872	1.428
Fob. dumms ${ }^{2}$	-3.1327	2.687
Mar dumms	$\cdot 1.1709$	0.987
Apr. dummy	0.6054	0.527
May dammy	-2.6735	2.20 .4
June dummy	-6.220.4	4.511
duly dammy	-6.5141	4.679
Aug. dummy	-6.258.4	5.126
Sept. dummy	-2.2824	2.072
Oct dummy	-1.1603	1.328
Nov dummy	2.1924	1.780
Der. dumby	$\cdots .7832$	2.622

[^6]significant at the 0.05 level or greater. This indicates that the price of pork bellies was depressed in this 5 -month period relative to the base month, January. A 1 -month lagged pork belly price was bery significant, thus indicating the cyclical intuence of wholesale prices. As expected, the total quantity of pork avaialble from current slaughier was significant and carried the appropriate negative sign. The total quantity of pork processed the previous month was signticant, possibly indicating a proxy variable for potential pork stocks. 'the high R^{2} vatue and significant F -statistis coupled with the satisfactory D-W statistic indicated the equation bad a relalively good fit.

A composite wholesale pork price is calculated by weighing the wholesale prices estimated for the individual pork cuts by the quantity processed of the respective cats:*

It is assumed that cwppt is equal to the reported U.S. average wholesale price.

After the wholesale price is established, the quantity of each cut distributed to retail and nonretail outlets is determined. These quantities were estimated by the nonlinear autoregressive regression technique used in equation 7:s

$$
\begin{align*}
& \left.\mathrm{QP}_{\mathrm{i}}^{\mathrm{Ij}}=\mathrm{f}_{(\mathrm{TQP}}^{\mathrm{t}-1} \mathrm{j}, \mathrm{QP}_{\mathrm{t}-1}^{\mathrm{Ij}}, \mathrm{WPP}_{\mathrm{t}}^{\mathrm{j}}, \mathrm{SD}, \mathrm{~T}\right) \tag{13}\\
& (\mathrm{I}=1-4) ;(\mathrm{j}=1-10)
\end{align*}
$$

where:
$\mathrm{QP}_{t}^{\mathrm{Ij}}=$ the quantity of the $j^{\text {th }}$ processed cut distributed to the $I^{\text {th }}$ outlet in period $\mathrm{t}-\mathrm{mil}$. Ibs. $\mathrm{I}=1$ - HRI
$I=2$-chain supermarkets
$\mathrm{I}=3$-independent supermarkets
I=4-convenience grocers.
The estimation results for equation 13 are presented in appendix table 11. A static autoregressive model was used. Estimation results were good, with R^{2} values ranging from 0.97 to 0.99 and generally satisfactory D-W statistics. As a group, the seasonal dummy variables were very significant. Since an autoregressive error model was used, the beta coefficient accounts for the autoregressive

[^7]errot in the residuals. It prowed to be highly signifieant in most equations. I'his particular parameter is also an indication of the inflenee of the lagged dependent viriable.

Per capita pork consumption by individual cut and on a composite basis are calculated by equations 14 and 15.
(1.1)

$$
\mathrm{PCOP}_{l}-\mathrm{IQP}_{l}^{\mathrm{L}}, \mathrm{POP}
$$

where:

P'eQP ${ }_{t}^{\prime}$ - par eapita consumption of the $j_{\text {th }}$ processsd cut $-($ lbs. $),(j=1 \cdots 10)$.
where:

$$
T^{1} \mathrm{P}^{\prime} \mathrm{Q} P=\text { composite per capita pork consump- }
$$ tion-lbs.

Atter wholesale prices and quantilies distributed to towretail and retail outlets are delermined, the system proceseds to price the pork cuts delivered to the three retail outlets. Pork euts are distributed to the GRI channels without aty further pricing. However, that portion of pork cuts delivered into retail outlets has retail prices determined by eut. Under the assumption that no storage occurs between the wholesate the retail markets, the quantity of pork distributed to each relail outlet is consumed in that amounl by households.

Yariables used in estimating pork retaii prices by cuts are presented in equation 16. The estimation technique is the static autoregressive lechnique derived from equation 7 .
(16)

The estimation results for the three retail outielschatn, independent, and convenience-by the eight retail cuts are presented in appendix table 12. The nonlinear autoregressive model provided estimation results supenor to those of a singe equation linear model. R^{2} values ranged from 0.91 to 0.99 . The equation for ham and bacon produced the lowest R^{2} vilues (0.9 l) of the 24 single equations estimated for the retail cuts (app. table 12). Sausage and lunch meat equations yielded the highest R^{2} values of the equation series-0.97 and 0.98 , respectively.

Following the determination of retail prices, an average retaid price by cut is calculated as indicated in eq. 17. Then, is composite retail pork price is computed (equation 18).*
(17)

$$
\begin{aligned}
& \text { (18) CRPP }{ }_{L}=\frac{10}{\substack{j=1 \\
j 0}}\left(A P R_{t}^{j} * \operatorname{TQP}_{i}^{j}\right) \\
& \sum_{j=1}^{10} \mathrm{TQP}_{t}^{j}
\end{aligned}
$$

where:
$\mathrm{CRPP}_{\mathrm{t}}=$ composite retail pork price; \$/cwt.
Price spreads are estimated at two levels-wholesaleretail and farm-retail (equations 19 and 20). The two linear equations were estimated by ordinary least squares.

APBG, Trend, SD, D65, BFCM, TCKP)
where:
$W R P S_{\mathrm{l}}=$ wholesale-retail price spread, \$/cwt.
$A P R_{t}^{j}=$ average retail pork price for jth cut.
$j=2-$ loins
$\mathrm{j}=5$-butts
j=6-pienics
(20)

$$
\begin{aligned}
\mathrm{FRPS}_{\mathrm{t}}= & \mathrm{K}\left(\mathrm{FRPS}_{\mathrm{t}-1}, \mathrm{CRPP}_{\mathrm{t}}, \mathrm{CWPP}_{\mathrm{t}}, \mathrm{APBG}_{\mathrm{t}}\right. \\
& \left.\mathrm{TCKP}_{\mathrm{t}}, \text { Trend, } \mathrm{SD}\right)
\end{aligned}
$$

where:

FRPS $=$ farm-retail price spread@\$/cwt.
The regression results are given in appendix table 13. Estimation equations were used for these two price spread variables for the following reasons:

1. In compiling the national statistic, the U.S. Department of Agriculture accounts for price specials on a weekly basis.
2. Price specials were not a component of the subsystem medel. Therefore, a single arithmatical calculation could not be done for comparison with the industry statistic.
[^8]
SIMULATION AND VALIDATION OF MODEL

Simulation Results

The hog-pork systems model, together with the specifications of exogenous price and quantity input variables, was simulated on a monthly basis for January 1965 though December 1971. Lagged reported data for the period October 1964 to December 1964 were used to initialize the model. The model was completely recursive and operating on self-generated data for January 1965-December 1971. During the simulation period, the model compared simulated variables with reported variables, calculated the error in terms of absolute terms and percentages, a.d then proceeded to plot the simulated and reported data.

The simulation results (figs. 7-11) and validation of the model are discussed in terms of the following five variables:

1. Sow farrowings.
2. Total number of market hogs sold-that is, commercial hog slaughter.
3. Average price of market barrows and gilts.
4. Composite wholesale pork price.
5. Composite retail pork price.

These variables were selected because they are frequently used when discussing the economic structure of the hog-pork industry or the impact of demand and supply changes. The relative frequencies of simulated vs. historical for the five performance variables are presented in appendix figures 1-5.

In general, the model traces satisfactorily the time path for all five variables. As expected, the price variables displayed more variation than those for sow farrowings and market hogs sold. However, the variation was not considered serious because it was not consistently above or below the reported time path. The quantity variables-sow farrowing and total number of market hogs sold-were simulated with less variation. The annual average of the percentage monthly deviations for the 7 -year period ranged from 5 percent below to just over 1 percent above the reported sow farrowings
for the same period (fig. 7 and table 15). A similar percentage deviation was observed for total number of market hogs sold. The observed percentage deviation ranged from 4.75 percent below reported commercial hog slaughter to 2.13 percent above. Since this was a behawioral simulation model, no attempl was mude to obtain simulated values which minimized the error.

Validation of Model

Much has been written about procedures used to simulate economic systems. However, relatively little has been said about how to verify a simulation model. In the strictest sense, validation means to prove that a model is true. But to prove that a model is "true" requires: (1) a set of established criteria for differentiating between models which are "true" and those which are "not true", and (2) the ability to readily apply these criteria to any given model.

Naylor (9) outlines two general approaches to model verification-verification by forecasting and historical verification. Verification by forecasting has the disadvantage of requiring (1) great lengths of time and (2) use of only part of the information available when constructing the model. Historical verification is questionable in that it generally uses the same data that wênt into developing the model.

A wide variety of tests have been developed for determining whether or not the relationship between simulated and actual time paths can be attributed to chance. These techniques include Theil's inequality coefficient (equation 21), spectral analysis, factor analysis, F-Test, and others. Theil's inequality coefficient was used as the test statistic for evaluating the simulation results of this study (24).

Table 15-Annual average monthly percentage deviations for selected variables, 1965-7,1

Year	Sows farrowings	Commercial hog slaughter	Average price, market barrows and gilts	Composite wholesale pork price	Composite retail pork price
	Percent	Percent	Percent	Percent	Percent
1965	-3.20	2.13	-3.95	-3.11	2.40
1966	-0.25	-1.98	-0.55	1.03	0.98
1967	-2.25	1.55	-6.67	-5.64	6.41
1968	-0.66	-4.75	6.41	-1.33	8.66
1969	1.35	-0.51	-3.81	-3.37	0.63
1970	-2.08	-1.31	3.93	12.62	-4.34
1971	-5.06	-2.48	4.80	8.51	3.53

Figure 7. Number of sows farrowed:

- = Simulated and
- Réported

Figure 8. Commercial hog slaughter:
---Simulated and
-Reported

Figure 9. Average market prices of barrows and gilts:

- -. Simulated and
—Reported

Figure 10. Composite wholesale pork price:

- - Simulated and
 - Reported

Figure 11. Composite retail pork price:

The value of this statistie would be sero for a perfeet smbiation experiment of the historical period. 'The computed test statistie when for the live selected varables are shown to table 16 . The ('-statistic for all endogenous vatables is given in appendix table 15.
selected endegumens tarabion

V゙uriduld	[1 Shativa
	1.0.is
armows duth gils	111:
slamgher.	0.019
(sate pork price	11976
t perh proes	(1) 0. 0.3

In view of the diflicultes with criterna for surificatom, a measure of the degree of confinement of the mudel seemed more approprate--Lhat i.s, simutation of turnng points on the time path of andividual variables. The results showed that turning points were missed in only 8 of $8 . t$ possible times for sow farrowings and in 26 of 8.1 times for the composite retail price. This is not surprismg, sme' quantity variables axhibit less vartation than price variables. Niso, some the the endogenous variables of the composite retail price equation were derived from other estimated equations withon the model.

Use and LimitaLions

On the basis of the smulation results, it can be concluded that the model provides a reasonably good explanation of the behavior of the hos-pork subsector during the period studied. For most of the endogenous variables in the model, the simulated bime paths followed a pattern which closely resembled the time paths of the historical variables. However, the model failed to predict some extrene values and missed sone turming points.

The primary interest was in evaluating the mpact of various vertical coordination alternatives on the behavior of the hog-pork subsector. The results of these simutatlions are reported in another publication Effects of Changes in Vertical Coordination on Pork Production and Prices \{ ('.S. Dept. of Agr., Bcon. Res. Serv., Agr. Econ. Rpt. No. 303. Aug. 1975). However, the model shoutd be useful in evaluating the impact of Federal Government policies on petformance of the market and production sectoms of the hog-pork subsector. The model also may have practicat or theoretieal uses. As a devie for simelating the adgregate behavior of the subsector, il may be useful to individual firms interested in making their own forecasts based on industry foren casts. To the extent that an individual firm's behavior follows the industry pattern, the firm could use the model for both long- and short-term forecasting.

The results presented here are conditioned by the
underlymg structure of the mudal, the limited data used, and the conceptual tramework of the systems approach employed.

Datal limitations affected the levels of disagnregation and aggregation, which in lurn affected the functional form of specifice equations. Data availability influenced the tevel of atgeregation for aquations in all three subsstems production, saughtering-processing, and distribution consumption, For example, data on market hog suppls bs market classes were not collected. As a nontit, Lotal monthly eommercial hog slathter was disaggregated mto weight groups based on assumptions about the growth and tatenity of market hogs. 'This promarsly influmeed the production and stanghteringprocossing subsystems. luditectly, it also influenced the distributiontconsumpton subsystem because quantilies of wholesate and retail pork cuts were affected by the estimated distribution of hog numbers among the market weight classes.

Data avalability also affected the form of specific equations. Frequently, theoretical determinants of a dependent varidble could not be adequately measured by existing data series. Several cxamples can be cited. Changes over time in the amount of pork used in thecheon meat are likely to be influenced by changes in the relative price relationship of pork, beef, and chicken. Data series do nut adequately measure the quantity of pork comsumed in the form of luncheon meat. Also, clatiges in the demand for specific weight groups of hogs are likely to be influenced by changes in the quantity of wholesale pork cuts in storage and consumer preference for certain cuts are perceived by the meatpacker. Again, no data series adequately measures the meatpacker's purchases of specific weight classes of hogs.

In some instances, the functional form of the equation was aflected by lack of data. Conceptually, one would like to fit a simultaneous systen of equations for all organzational entities in the live hog market, wholesale market, and retail market. But no data were available as to quantities taken or prices paid by these entities. For example, the model does not account for the simultaneous demand for pork cuts by retail and nonretiol institutions in the wholesale market, nor for the simultaneous determination of prices and quantilies by the chains, independents, and convenience grocers at the retail level.

The conceptual framework employed in constructing the model does not permit simulation of the behavior of various lypes of hog producers or meatpackers. For some purposes, it would be more desirabie to measure their response to alternative coordination possibilities than it would be to measure the agyregate response of producers, packers, and consumers. Additionally, much of the industry data series are collected annually, semimmually, or quarterly for the quantily variables and usually monthly for most of the price variables. The detailed price changes and quantily changes performed by the different lypes of patiofipants in the hog-pork subsector are disguised in the aggregate dita series.

REFERENCES

(1) Brandow, Cerorge E.

A Researeh Framework for Economic Analysis ol the llog-Pork Subsector. Unpublished Working Paper. L'S. Dept. Agr., Econ. Res. Serv., 1969.
(2) Crom, Richard J., and dames D. Sullnvan Difects of Changes on Vertical Coordioation on Pork Production and Prices. I.S. Dept. Agr., Econ. Res. Serv., Agr. Econ. Rpt. No. 303. Aug. 1975.
(3) Duewer, Lawrener A.

Price-Quantity Relationshiss for Solected Retait Cuts of Pork. L's. Dept. Agr. Econ. Res. Serv, Agr. Eeon. Rpt. No, 9.15. Aug. 1973.
(f) Gralichers, Wat
"Distributed Lags: A Survey," Economelrica, 35:16-19, jan. 1967.
(5) Hayenga, Marvin l., and others Sertient Coordination in the Pork Industry, Agr. Eron. Rpl. No. 194, Mich. State Univ, Feb. 197!.
(b) Intemational Business Machines

Systems. 360 Scientific Subroutine Package (360A-Chl-03X). Version 111, lBM, New York, 1968.
(7) Atanchester, Aden C.
"Systems Research in the Hog. Pork Subsector," Proceedings of llog. Pork Subsector Workshop. May 18-20, 1970. Purdue Univ., Lafayette, Ind.
(8$)$ Martin, dames E.
"The lise of Distributed Lag Models Containning Two Lag Parameters in the Estimation of Elastheities of Demand," Jour. Farm Econ. 45:1474-1481, Dec. 1963.
(9) Naylor, Thomas H.
"Policy Simulation Experiments With Macroeconometric Models: The State of the Art," Amer. Jour. Agr. Econ. 52:266, May 1970.
(10) Nerlove, Mare

Distributed Lags and Demand Analysis. U.S. Dept. of Agr. Agr. Handbook 241, June 1958.
(11)
"Distributed Lags and Estimation of Long-Run Supply and Denand Elasticities: Theoretieal Consideration," Jour rarm Econ. 40:301-313, May 1958.
(12) Progressive Grocer

Anhal Report-1973, Apr. 1973, p. 100.
(13) Schneidau, Robere E., and Lawrence A. Duewer, Editors Symposium: Vertical Coordination in the Pork Industry. The Avi Publishing Company, Inc., Westport, Conn, 1972.
(14) Shatfer, James Duncan
"Changing Orientations of Marketing Resenteh," Amer. Jour. Agr. Econ., 50:1437-1449, Dec. 1961.
(15) Shater, fames Duncan

A Working Paper Conerning Publicly Supported Economic keseareh in Agricullural Marketing. I'S. Dept. Agr, Econ. Res. Serv. 1968.
(16) Snyder, J.C., and W.V. Cander
"A Normative Analysis of the Vahte of Quality and Reguarity in Hog Markeling Contracts," Depl. Agr. Econ., Purdue Univ., unpublished.
"A Short-term Research Model of an Integrated
Hog Finishing, Slaughtering-Proressing-Markeling System," Dept. Agr. Econ., Purdue Univ., unpublished.
(18) U.S. Departmint of Agriculture Consumer and Markeling Service.
"Expected Yields of Cuts for Barrow and Gilt: Carcasses," unpublished table from Livestock Division, 2970.
(19)

Livestock and Meat Statistics, ERS-SRS, Statis, Bul. 522, Various Issues.
(20)

Market Structure of the Food Industries, Mktg. Res. Rpt. 971 Sepl. 1972, p. 103.
(2l)
(23)
(24)

Theil, Henry
Economic Forecasts and Policy, North-Holland Publishing Company, Amslerdam, Netherlands, 1961.

APPENDIX

Identification of Variables for Computer Simulation Model

MO1 $=$ current calendar month (1-12)
$\mathrm{MO} 2=$ simulation month $(1,-\mathrm{M})$
TMO (L) $=$ monthly dummy variable adjusiments 1-1-12
T'MO (1) = 1 if $1=\mathrm{MOl}$
TMO (1) $=0$ if $I=$ NO1
TREND $=$ time trend (1.8 .1)
NOTE: All variables are time subseripted l unless otherwise indicated.

Production-Feeding Subsystem:
Variable 1D

W	Fourier series constant.
SF (L)	- number of sows farrowing in the first lime period (1.000 head).
HP (${ }^{\text {(})}$	$=$ average price of bartows and gilts in the first lime period ($\$ 1$ per cwl.).
CP	- comprice; No. 2 Omaha (\$1 per bu.).
Cildis	= number of gilts saved for breeding (1,000 head).
BOARS	$=$ number of boars saved for breeding (1,000 head).
WPA	- number of weaning pigs, 1 to 30 days of nge, the current pig erop (1,000 head).
AK	- number of pigs per litter.
SPPL	- seasonal adjustment. on the piss per litter (AK).
HGPR	- hog-com ratio.
AVLWF	\triangle reported average liveweight (tos.).
BCSS	= reported number of barrows and gilts sold (1,000 head).
SOWSI	$=$ reported number of sows slaughtered (1,000 head).
BGS	= estimated number of barrows and gilts sold (1,000 head).
SWS	$=$ reported number of sows sold (1,000 head).
BRS	- reported number of boars sold (1,000 head).
TFH	$=$ total females held in breeding herd (1,000 head).
TMALES	- total males held in breeding herd (1,000 head).
SFTA	$=$ estimated number of sows farrowing at t+4 (1,000 head).
SGS	$=$ number of sows sold (1,000 head).
DMALES	- number of boars required to service TFH.
TFBD	- number of bred females required to yietd SFTAt.
SMALES	* number of boars sold (1,000 head).
AVLW	average liveweight for SBG(3) (lbs.).

BGAN $=$ number of barrows and gilts in 180.200 lb. weighit group.
$\mathrm{BGBN}=$ number of barrows and giles in $200-220$ lb. weight group.
BGCIV $=$ number of barrows and gilts in 240.270 lb. woight group.
$\mathrm{BGDN} \quad=$ number of barrows and gits in $270+1 \mathrm{~b}$. weight group.
BGEN $=$ number of barrows and gites in 220-240
GAMMA $1 \quad \mathrm{~b}$. weight group.
(I)
$=$ percentage of hogs in the fth weight troup of all market hogs sold ($\mathrm{I}=1,-6$).

$$
\begin{aligned}
& I=1=180-200 \mathrm{lbs} . \\
& 1=2=200-220 \mathrm{lbs} . \\
& I=3=220-240 \mathrm{lbs} . \\
& 1=4=240-270 \mathrm{lbs} . \\
& 1=5=270+1 \mathrm{bs} . \\
& 1=6=\text { sows and boars }
\end{aligned}
$$

Slaughtering-Processing Subsystem: Variable ID

NOTE: Time period subscript is denoted as follows:
$1=$ current month (t)
$2=$ lagged 1 month ($\mathrm{t}-1$)
3 = lagged 2 months ($\mathrm{t}-2$)
$4=$ lagged 3 months (-3)
General rules for subscripts in this subsystem:
A. Market hog weight, groups-
$1=180-200 \mathrm{lbs}$.
$2=200-220 \mathrm{lbs}$.
$3=220-240 \mathrm{lbs}$.
$4=240-270$ lbs.
$5=270+$ bss.
$6=$ sows and boars
B. Fresh or processed wholesale culs-

6 fresh (green cuts)
$1=$ hams
$2=$ loins
$3=$ bellies
$4=$ ribs
$5=$ butts
$6=$ pienics
$7=$ trimmings
8 processed culs
1 =hams
$2=$ loins
$3=$ not used
$4=$ ribs
$5=$ butts
$6=$ picnics
$7=$ not used
$8=$ bacon
$9=$ sausage
$10=$ luncheon meat

A $2(1,1,1)$
（iAMDA：
（1，1，18）
（WHP）

W13P11
DP！disposable personal intume is per capilal．

［IF＇］ 1
11．d
smid 11,11
にばがい
SBC： 11.1$\}$

TBC：

TWILO（1．0）

PHIE（I， 1 ）

12ll（1，1）
（ANMMAB（1）＝ $\begin{aligned} & \text { regression coefficients for } \\ & \text { estimated equation }(1=1-20) .\end{aligned}$ estimated equation（ $1=1-20$ ）．
BP $\quad-\quad$ choice tive steer price（\＄／ewl．）．
$A P B C$（ 1$) \quad=$ avenge price barrows and gilts in the ith time period（Sjewt．）．
Q（iS $([, d) \quad=$ quantity of the jth wholessie green cut from the ith market hog weighi group $(\mathrm{I}=1.6)(\mathrm{J}=1.7)$（mil．lbs．）．
TkZCS（J）$=$ total quantity of the jth wholesule green cut from current slauglater（ $J=1$ ． T）（mil．Ibs．）．
STQQ（is（1）＝total quantity of fresh pork from cur－ rent slanghter in the ith lime period （ $\mathrm{I}=1,2$ ）（mil．Ibs．）．
QP（D）（1，N）＝anticipated quantite demanded of the th processed eut in the jth time period $(\mathrm{i}=1,-10$ but $\overline{\mathrm{F}} 3$ or 7 ）（ $\mathrm{j}=1-2$ ）（mil． lbs．）．
THETA $3(1)=$ regression coefficient for QPCD（1，1） estimated equation $(\{=1,10$ but $=3$ or 7 ）．

WBP（I）$\quad=$ whetesale beer price in the ith time period（ $1=1,2$ ）（\＄！cwl．）．
TCKC（1）$=$ per capita chicken consumption in the ith time period（ $\mathrm{I}=1,2$ ）（Ibs．）．
$\mathrm{RCP} \quad=$ Fetail chicken price（\＄iewt．）．
CRPP（ I ）$=$ composite retail price of pork in the ith time period $(I=1,2)$（ $\$ / \mathrm{cwl}$ ）
QPCDF（d）$=$ quantity demanded of the jth proc－ essed cul in green cut equivalents，（ $J=$ 110）（mil．Hos．）
TCKP（I）－U．S．commercial broiler production in the ith time period（mil．Ibs．）．
QCCP（d）$=$ quantity of the jth green cul from cur－ rent slaughter for processing，（ $\mathrm{J}=1,10$ ） （mil．lbs．），
QQClS（d）\Rightarrow quantily of the jth green cut from storage for processing（ $\mathrm{J}=1,10$ ）（mil． lbs．\}.
$\mathrm{SQQ}(1, \mathrm{~d})=$ quantity of the ith cut in storage in the jth time period $(1,1-7)(J=1,2)$ （mil．Ibs．）．
DSTOR（d）$=$ maximum storage quantity of the jth cut（ $\mathrm{J}=1,7$（mil．lbs．）．
$\operatorname{PIPE}(\mathrm{J}) \quad=$ minimum storage quantity of the jth cut（ $\mathrm{J}=1 .-7$ ）（mil．Ibs．）．
QPS（ J$) \quad=$ quantity of the jth cut processed $(J=1$ ． 10）（mil．lbs．）．

Distribution－Consumption Subsystem：
 Variable ID

NOTE：Same rales for subscripting of cuts apply in this subsystem as in the Slaughtering－Processing sub－ system．
DPM（I）$\quad=$ days per month in the ith month（ $\mathrm{I}=1$ ， 12）．
DUMPR（ 4 ）$=1965$ dummy variable for the jth cut （ $J=1,10$ ）．
WPP $(\mathrm{I}, \mathrm{J})=$ wholesale price of the ith cut in the jth time period（ $\mathrm{I}=1,10$ ）$(J-1,3)$（ $\$ / \mathrm{cwt}$ ．）．
RA（I，）＝regression coefficients for the WPP （ I, d ）estimated equation（ $\mathrm{I}=1,10$ ）．
$Q P(I, J . K)=$ quantity of the jth processed cut for the ith outlet in the Kth time period （ $\mathrm{I}=1,4$ ），（ $\mathrm{J}=1,10$ ），（K－1，2）（mil．łbs．）．
DELTAI
（I，J）
$=$ regression coefficients for the QP（ $1, J$ ， 1）estimated equation（ $\mathrm{I}=1,5$ ）（ $\mathrm{J}=1$ ， 10）．
$\mathrm{TQP}([, d) \quad=$ total quantity of the ith cut processed in the jth time period $(I=1,10)(J=1,2)$ （mil．Ibs．）．
FRPS（ I$)=$ lamb－retail price spread in the ith time period（ $\mathrm{I}=1,2$ ）（ $\$ / \mathrm{cwl}$ ．）．
$A P R(1, d) \quad=$ average retail pries of the $i t h$ cut in the jth time period；averaged over the three retail outlets $(\mathrm{F}=1,10)(\mathrm{J}=1,2)$ （\＄／evt．）

IREND
$=$ time trend with first simulation month $=1$ and continuing.
$P C Q P(d) \quad=\quad$ per capita supply quantity of the jth processed cut ($(=1,10)$ (lbs.).
TPCQP
RMP (1)

PPD (I)
$=$ per capita pork supply quantity (lbs.).

- U.S. red meat production in the ith time period (10 mil . lbs.).
$=$ U.S. commercial pottry production in the ith time period (10 mil. lbs.).

QPX (I,NK) $=$ quantity of the jth processed cut for the th oxtlet in the kth time period adjusted to days in month ($\mathrm{I}=1,5$) ($\mathrm{J}=1,10$) ($\mathrm{K}=1,2$) (mil. lbs.).
PS (I) $\quad=1$. wholestale-retail price spread (\$/cwl.).
$\mathrm{l}=2$. farm-retail price spread (\$/cwt.).
$R B(1) \quad=$ regression coefficient for the ith price spread series ($1=1,2$).

Appendix table l--Market barrows and gilts: Weight group percentages, seven Midwest markets

Source: Unpublished data obtained from Market News Branch, Livestock Division, Agr. Miktg. Serv., U.S. Dept. of Agr., Washington, D.C. Seven markets include Indianapolis, Kansas City, Omaha, National Stock Yards, St. Louis, Sioux City, South St. Joseph, and South St. Paul.

Appendix table 2 -Estimation equations for the weight groups as fractions of total barrows and gilts sold

1/ The fraction for the $220-240$ pound barrows and gilts class was calculated as the residual.
2/ The equivalent fraction computed as area under the normal distribution curve
3/ The month of December was a priori deleted, Zero coefficients have been omitted.

Appendix table 3-Identification of variables in equation for anticipated packer sales of the four lean primal cuts-hams, loins, butts, and pienics

Appendix table 4--Estimated parameters and statistical information for anticipated packer sales of hams, butts, and picnics (AQGj)

*January served as the excluded a priori month.

Appendix Table 5-Identification of economic variables in statistical model of price of market 180-200 pound barrows ant gilts and market sows and boars

Appendix cable 6--Identification of economic variables in statistical model of price of barrows and gilts

Appendix table 7 --Estimated parameters and statistical information for price of 180- to 200 -pound barrow gilts and market sows and baars

*January served as the a priori excluded month.

Appendix table 8--Estimated parameters and statistical information for price of 200-220, 240-270, and 270-plus pound market barrows and gilts

*January served as apriori excluded month.

Appendix cable 9 --:stimated parameters and statistical information for packers' anticipated retail demand for hams, ribs, butts, picnics, bacon, sausage, and luncheon meat (QPCD

Independent Variables And Lagged Parameter	Hiams		Ribs		Butes	
	Estimated Regression Patameter	Stand Erro Para	Estlmated Regression Paramete		Escimated Regression Paramete	
Constiant	-2.2.7415	---	0.7121	---	-5.8798	---
WBP_{6}	: ---	$\rightarrow-$	---	---	0.1105	0.046
$\mathrm{CNPP}_{\mathrm{t}-1}$: .---	---	---	--"	-0.0114	0.030
CRPPt-1	-0.4186	0.189	-0.1028	0.051	---	---
$\mathrm{RCP}_{\mathrm{t}}$: --..	---	---	---	-0. 1.596	0.073
stucse	$: 40.7927$	2.927	8. 5491	0.799	11.0516	
TCAPC	: - - -	---	---	---	. 0.055	
DPIt	$: 0.0279$	0.003	0.0069	0.009	0.0055	0.006
Feb. Dumat *	: 2.095	3.983	0.0416	1.087	-0.0540	0.516
Mar. Dutumy	27.2333	3.584	0.2435	0.978	0.2496	0.463
Apr. Dummy	: -15.6231	3.555	-3.0995	0.970	-3.5641	0.461
siay Dummy	5.2322	3.820	1.9161	1.042	-2.9433	0.507
. Tune Dimmv	16.6062	4.097	4.5587	1. 1.18	-2.0560	0.534
July Dunts	6.2626	4.414	0.7690	1. 204	-1.4735	0.573
Aug. Duman	17.0415	3.867	1.9120	1.055	-2.4975	0.493
Stept. Durims	1.0958	3.621	-1.7071	0.988	-2.6009	0.458
Det. Mumay	4.5639	3.726	1.8666	1.017	0.0231	0.451
Nov. Danmy	20.3370	3.602	-3.0167	0.983	-0.5269	0.445
Deve . Dimmy	: 45.8767	3.590	-2.7133	0.979	1.0501	0.445
R^{-}	:	971				
Mean	245	937				
F	166	587				
D-W	$: 1$	819				
Standard Erro of Estimate	:	647				

*, January served as a priori excluded month.
Continued

Appendix table 9--Estimated parameters and statistheal information for packers' antcipated retall denand for hams, ribs, butts, plenics, bacon, sausnge, and luncheon meat ($\mathrm{QPCD}_{\mathrm{t}}^{\mathrm{j}}$)--Continued

dppendlx table $10 \rightarrow-\tan$ fined regression coefficiencs and statistical information for wholesale price, by pork cut, hPel

Indepenlenc. Variable	: Hams	Lains:	Bellies:	Ribs	Butcs	Pienics	: Bacon	: Sausage :	Lunch Meat
	Equation and Dependent Variable								
	(WPP	WP? (2)	$\begin{gathered} \text { WPP } \\ \text { (3) } \end{gathered}$	WPP (4)	$\begin{aligned} & \text { WPP } \\ & \text { (5) } \end{aligned}$	$\begin{aligned} & \text { WPP } \\ & (6) \end{aligned}$: WPP $: \quad(8)$	WPP $: \quad(9)$	$\begin{array}{r} \text { WPP } \\ (10) \end{array}$
(i): 1. Constant	:21.177215	49.985712	36.982912	27.952577	28.857743	7.798343	38.231029	9.405038	-7.081807
$\therefore \quad K P P_{t-1}^{1}$	$\begin{aligned} & : 0.803818 \\ & :(6.740) \end{aligned}$	$\begin{array}{r} 0.124799 \\ (1.179) \end{array}$	-	---	-r-	$\begin{aligned} & 0.053059 \\ & (0.884) \end{aligned}$	$\begin{gathered} 0.048624 \\ (0.552) \end{gathered}$	---	---
3. WPF ${ }_{\mathrm{t}-1}^{2}$: ${ }^{(6.740)}$	0.260542	---	--	---	(0.884)	---	$\begin{aligned} & 0.051017 \\ & (0.589) \end{aligned}$	---
i. WPt ${ }_{t-1}^{3}$	$: \quad-$	(2.539)	$\begin{gathered} 0.707345 \\ (6.317) \end{gathered}$	---	---	---	$\begin{aligned} & 0.694134 \\ & (5.392) \end{aligned}$	-.-	---
2. WPP $_{t-1}^{4}$: ---	---	---	$\begin{aligned} & 0.583258 \\ & (3.416) \end{aligned}$	--	---	---	---	---
3. WPV_{5-1}^{5}	$: \quad-\infty$	---	---	(3.416)	$\begin{aligned} & 0.560205 \\ & (6.208) \end{aligned}$	---	---	---	---
$\text { WY: }{ }^{6}$	$: \quad$---	---	---	---	(6.208)	$\begin{array}{r} 0.724613 \\ (6.345) \end{array}$	---	$\begin{aligned} & 0.355379 \\ & (2.379) \end{aligned}$	--
8. $W P P_{t-1}^{8}$	$: \quad--$	---	---	---	--.	---	---	---	$\begin{aligned} & 0.110902 \\ & (2.760) \end{aligned}$
9. KPP $_{\text {t-1 }}{ }^{\text {a }}$: ---	\cdots	---	---	---	---	---	$\begin{aligned} & 0.753424 \\ & (6.172) \end{aligned}$	
10. HPP_{8-1}^{10}	: ---	---	---	---	---	---	---	---	$\begin{aligned} & 0.475304 \\ & (3.937) \end{aligned}$
11. hPP $_{t-\text { : }}^{\text {l }}$ (3):	$\begin{aligned} & :-0.030231 \\ & :(-0.246) \end{aligned}$	---	\cdots	---	---	---	---	---)
12. WPP ${ }^{2}$:	$\begin{array}{r} 0.223822 \\ (1.851) \end{array}$	---	---	$\rightarrow-$	---	---	- ---	---
$\text { 13. } \mathrm{EPP}_{\mathrm{t}-2}^{?}$; ---	--..	$\begin{gathered} -0.181898 \\ (-2.115) \end{gathered}$	---	---	---	$\begin{aligned} & -0.113888 \\ & (-1.028) \end{aligned}$	---	\cdots
$1_{4}^{\prime} \cdot \text { hPP }_{r-2}^{4}$:	---	---	$\begin{aligned} & -0.087014 \\ & (-0.584) \end{aligned}$	---	---	---	---	---
15. WPP $_{t-2}^{5}$: ---	---	---	(0.584)	---	${ }^{-7 .-}$	---	---	---
16. WPF ${ }_{\text {t-2 }}^{6}$: ---	---	--	---	---	$\begin{aligned} & 0.013753 \\ & (0.130) \end{aligned}$	---	-	\cdots
(4):	:								
$1: \operatorname{cosp}_{\mathrm{t}-3}^{9}$; ---	---	---	---	---	---	---	$\begin{aligned} & 0.068357 \\ & (0.523) \end{aligned}$	$\cdots-$
$\text { 18. Wep }{ }^{10}$:	---	---	---	--	---	---	(0,	$\begin{aligned} & 0.103795 \\ & (0.842) \end{aligned}$
$\text { 14. } A P R_{t-1}^{1}$	$\begin{aligned} & :-0.221846 \\ & :(-2.156) \end{aligned}$	$\begin{array}{r} -0.482019 \\ (-3.261) \end{array}$)	---	---	---	---	---	\cdots
$\text { 20. APR } R_{t-1}^{2}$	$:--$	$\begin{aligned} & -0.246605 \\ & (-1.846) \end{aligned}$	- --	--	-	---	---	---	---
$\text { 21. } A P R_{t-1}^{4}$: -	(-1.846)	---	$\begin{aligned} & -0.022807 \\ & (-0.087) \end{aligned}$	---	---	---	---	$\rightarrow-$

Continued

Appondix table lo-Estimated regression coefticients and statistical information for wholesale price, by pork cut, WPP ${ }_{5}$--- Conthnued

Appendix table 10 -Eatheated regression coefficients and statigtical information for wholesale price, by pork cut, WPP t_{t}^{3} - Continued

Appendix table 11-Estimated parameters for wholesale quantities of pork distributed to retail and nonretail outlets, by cut and outlet (values appear in parentheses below the parameter)

Appendix table 11-Estimated parameters for wholesale quantities of pork distributed to retail and nonretail outlets, by cut and outlet (t values appear in parentheses below the parameter)--Continued

	$: \quad \mathrm{QP}(1,1)$	$\mathrm{QP}(2,1)$	$Q P(3,1)$	OP(4,1)	QP(1,2)	$1 \mathrm{P}(2,2)$	$Q P(3,2)$	$Q P(4,2)$
Mo (5)	: -5.822684	11.768222	18,561.859	0.291384°	7.268606	1.105525	0.131169	0.013016
(I, J, 16) :	$:(1,0086)$	(5.0789)	(7.0124)	(5.8612)	(3.1660)	(0.7912)	(0.0680)	(0.3861)
Mo(6)	: -8.278242	11.730661	19.27236	0. 307183	6.364818	1.961681	1,844204	0.038902
(I, J, 17) :	: (1.5973)	(6.11.41)	(7.6474)	(6.5385)	(2.7476)	(1.7517)	(1.215)	(1.4595)
Mo (7)	: 3.119831	7.831004	12.846868	0.187360	12.069186	-2.404087	-2.843505	-0.052713
($I, \mathrm{~J}, 18$):	: (0.6213)	(4.1928)	(5.1553)	(4.0366)	(5.6472)	(2.5543)	(2.3064)	(2.4114)
Mo (8)	$: 1.460057$	6.865937	12.959002	0.200289	12.064814	-0.853297	-1.482720	-0.023225
(I, J, 19) :	: (0.3584)	(4.7668)	(7.0198)	(5.7038)	(4.1643)	(0.7140)	(0.9248)	(0.8185)
Mo (9)	: -6.537216	9.546175	14.00266	0.221371	12.175147	-3.362363	-4.539361	-0.079297
(I, J, 20) :	: (1.8342)	(7.7416)	(8.6307)	(7.2270)	(4.1828)	(2.8165)	(2.9095)	(2.8481)
Mo (10)	: 14.611181	-1.588245	0.691515	-0.028500	-14.503273	8.850367	0.186781	0.186781
(I, J, 21) :	: (3.4242)	(1.0727)	(0.4074)	(0.891.7)	(6.1137)	(5.0380)	(5.5149)	(4.0524)
Mo (11)	: 16.729324	0.752391	3.278429	0.046161	-3.140769	3.954645	6.565447	0.106393
($1, \mathrm{~J}, 22$):	: (5.7682)	(0.8223)	(4.0430)	(2.5850)	(3.2930)	(6.1997)	(9.5640)	(8.1776)
Mo (12)	: 16.219696	0.362121	2.948939	0.038252	-3.781747	4.199112	6.913476	0.112422
(I, J, 23) :	: (5.9038)	(0.3082)	(2.7368)	(1.7532)	(3.5391)	(6.8856)	(11.1618)	(9.3423)
R^{2}	: 0.9902	0.9928	0.9939	0.9942	0.9935	0.9923	0.9920	0.9925
D-W	: 2.08282	1.9194	2.0119	2.0933	1.9011	2.1001	2.0191	2.0719

Appendix table 11-Estimated parameters for wholesale quantities of pork distributed to rerail and nonretail outlets, by cut and outlet (t values appear in parentheses below the parameter)--Continued

Appendix table ll-Estimated parameters for wholesale quantities of pork distributed to retail and nonretail outlets, by cut and outlet (t values appear in parentheses below the parameter)-Continued

Appendix cable 11 -Estimated parameters for wholesale quantities of pork distributed to retail and nonretail outlets, by cut and outlet (t values appear in parentheses below the parameters)-Continued

Appendix table 11-mestimated parameters for wholesale quantiries of pork distributed to retall and nonretail outlets, by cut outlet (t values appear in parentheses below the parameters)--Continutd

Appendix table $12-$ Eqrimated parameters of retail pork prices, by cut and outlet

Equation natoe and no.		$\begin{array}{lc} : & Q P_{t}^{I j} \\ : & 0 w n \\ : & \text { quanticy } \end{array}$	$:$ RBP 2 $:$ Beef $:$ erice	$\begin{array}{ll} : & \text { RCP } \\ : & \text { Poultry } \\ & \text { price. } \end{array}$	$\begin{aligned} & : \operatorname{RMP}_{t} \\ & : \text { Red weat } \\ & : \text { _produce } \end{aligned}$	TCKP Poultry produce	$\begin{gathered} \text { B } \\ \text { Auto-cor- } \\ \text { relations } \end{gathered}$
Ham Chain Price	1	$\begin{aligned} & :-0.190121 \\ & : 0.157) \end{aligned}$					
				$\begin{aligned} & 0.092557 \\ & (0.2194) \end{aligned}$	$\begin{aligned} & 0.057767 \\ & (0.0364) \end{aligned}$		0.947779 (0,0447)
Han Ind. Price	2	: -0.219481		0.114154	0.074723		0.938737
		: (0.1161)		(0.2179)	(0.0365)		(0.0462)
Ham Conv. Price	3	: -11.455462		0.113440	0.073682		0.943141
		: (6.6297)		(0.2296)	(0.0390)		(0.0456)
Loin Chain Price	4	: -0.514582			0.080913	0.146590	(1.962720
		: (0.1681)			(0.0422)	(0.0755)	(0.0316)
Lotis Ind. Price	5	: -0.421922			0.078907	0.145342	0.938600
		: (0.1452)			(0.0435)	(0.0766)	(0.0392)
Lolrt Conv. Price	6	: -24.094574			0.082628	0.156301	0.950621
		: (8.2130)			(0.456)	(0.0800)	(0.0357)
Rib Chain Price	7	: -4.141293		0.255093	0.097357		0.973477
		: (1.2198)		(0.2154)	(0.0366)		(0.0268)
Rib Ind. Price	8	: -3.366458		0.271290	0.112043		0.955362
		: (1.0404)		(0.2134)	(0.0373)		(0.0344)
Rib. Conv. Price	9	: -205.465100		0.275932	0.108265		0.965355
		: (59.3315)		(0.2259)	(0.0394)		(0.0304)
Butts Chain Price	10	: -2.075989		0.170603	0.148697		0.982724
		: (0.4718)		(0.1846)	(0.0341)		(0.0345)
Buecs Ind. Price	11	: -1.897387		0.195482	0.162016		0.947069
		: (0.3905)		(0.1826)	(0.0337)		(0.0434)
Butes Con. Price	12	:-105.903700		0.202864	0.167865		0.966345
		: (22.4834)		(0.1923)	(0.0360)		(0.0394)
Piente Chato Price	13	: -0.687902		0.316373	0.059152		0.932259
		: (0.3442)		(0.1720)	(0.0284)		(0.0364)
Pleute Ind. Price	14	: -0.535162		0. 318943	0.054841		0.923224
		: (0.2949)		(0.1734)	(0.0287)		(0.0391)
Pienic Cony. Price	15	:-38.938004		0.332995	0.059256		0.927150
		: (20.7526)		(0.1815)	(0.0301)		(0.0378)
Bacon Chatn Price	16	: -0.674129		0.231104	0.111297		0.931742
		: (0.2342)		(0.3261)	(0.0545)		(0.0468)
Bacon Ind. Price	17	: -0.571185		0.249601	0.110250		0.926278
		: (0.2017)		(0.3276)	(0.0550)		(0.0469)
Bacon Conv.Price	18	:-14.549573		0.260287	0.117768		0.927713
		: (5.0653)		(0.3436)	(0.0576)		(0.0471)
Sausaze Chain Price	19	$:-0.454320$	0.349784	0.244879	0.057618		0.964447
		$:(0.1765)$	(0.0982)	(0.1497)	(0.0230)		(0.0385)
Sausage Ind. Price	29	: -0.375683	0.344838	0.242358	0.057182		0.964416
		: (0.1586)	(0.0991)	(0.1507)	(0.0246)		(0.0396)
Sausage Conv. Price	21	: -3.490165	0.369176	0.252277	0.058397		0.964536
		: (1.4532)	(0.1038)	(0.1579)	(0.0250)		(0.0393)
Lunch reat Chain Price		:					
	22	: -0.177186	0.225462	0.221448	0.049267	-0.079512	0.969380
		: (0.1654)	(0.0762)	(0.1146)	(0.0199)	(0.0390)	(0.0173)
Lunch Meat Ind. Price		:					
	23	: -0.133409	0.225031	0.219907	0.047881	-0.080648	0.968224
		: (0.1401)	(0.0762)	(0.1147)	(0.0199)	(0.0390)	(0.0176)
Lunch Meac Conv. Prife		:					
	24	$=-0.549370$	0.235734	0.228656	0.049897	-0.083357	0.968390
		: 0.0 .5635	(0.0806)	(0.1213)	(0.0210)	(0.0415)	(0.0177)

Continued

Unen \quad URMMIES											
Equatton vame and Number	Fel.	Apr.		May	June tuly		Aug.	sept.	Nuv.		Dee
Ham Chaln Price	1:-1. 709724	-1.169449	-19.948820	-1.121294	0.671961	-1.772569	4.28135	-1.253:44	-1.715715	-1.247189	0.512971
	: 1.2431	(1.4.146)	(2.1519)	(1.2114)	(1. 15331	(1.0665)	(1.34 39$)$	(1.24)	(1.103)	(1.5172)	(1.329)
Ham Ind, Price	: $:-1.344324$	-11.14112	6. 417436	-0.5016.56	1.57310	-1.61/894	81.61811^{8}	-9,47t59	-1.415924	9.7644	1.7741?
	: (1.3639)	(1.5929)	13.1689)	(1.3386)	(1.5120)	(1.0152)	(1.5132)	(1,4420)	10.9782)	(1,705\%)	(1.4617)
Ham Cung. Price	3--1.403852	-0.307937	0.245541	-0.918173	1.270241	-1.819970	0.301360	-7, 73665	-1.66300^{7}	0.418798	1.128125
	((1.3875)	(1,6120)	13.2782)	(1.3379)	(1,5345)	(1.0987)	(1.5205)	(1.4529)	(1.0378)	11.7106)	(1.4854)
Loln Chain Price	$4 \div 1,51875$	1. 446692	-6.560368	1.193018	2.590726	4.318513	-1.46980.	-1.37074	4.937901	1.4A5799	1.729649
	: (1,4469)	(1.7979)	(1.5257)	(1.6987)	(1.8774)	(1. 31963$)$	(1, 85514)	f1.44th)	(1,4092)	(1. 8618$)$	(1.51913)
Loin Ind. Price	5.2.005797	1. 256997	-5.607919	1.956342	3. 361498	1.16.221\%	*). 744 F98	-1. 1.6844	7.548152	3.317%	2.544542
	: 11.6796$)$	(. .1816$)$	(1.4238)	(1.9544)	(2.0)136)	(1.5203)	(2,4124$)$	(1.6367)	(17.7550)	12,1218)	(1.8126)
Lofn Conv. Price	6:2.0n5253	1.181806	-6.375149	1.653899	3.115737	9.775998	-1.049917	-7.44997	5.536718	\% 015686	2.281694
	: (1.6633)	(3,1697)	(1,5426)	(1.3841)	(2.0758)	(1.6538)	(2.026)	(1.640)	(1,4385)	19.0989	(1.7876)
RIb Chasn price	$7: 0.419409$	0.395014	-5.792539	0.649524	3.148622	0.607896	9.7702\%	-7.91117	-3.87 8835	$-1.95111 ?$	15.329556
	$:(1.0760)$	(0.9666)	(2.2889)	(1.)393)	(1.0373)	(1.1795)	(1, $1,0 \mathrm{CL})$	(3.0207)	(1.0069)	(1).9693)	(9.997)
Bib Ind. Price	$8+1.325312$	1.720212	-5.565854	1.477776	3.98115	9.8.3789	1.343463	-1.059639	-2.642220	7.1826h4	121665
	$:(0.9810)$	(1.0113)	(2.0682)	(0.7921)	(0.9598)	(1.0576)	(11.9385)	(9.484\%)	(1, 9731$)$	11.0114)	(9, 94973
RIb Conv. Price	9.0 .937732	1.216202	-5.877607	1.144845	3.764072	9.463470	0.878112	-1.57464	- 1.41234	$-1.409+11$	0.831677
	(1.0122$)$	(1.0348)	(2.3118)	(1.0868)	(1.0422)	(1.1711)	(1.01 55)	(1.0781)	(1.0930)	(1.0370)	(1.016n)
Butts Chain Price 1	7 : 1.624944	1,122415	-4.331820	2. 364011	4,164929	2.84579	3.321425	-0.350121	7.752476	2.537872	2.669717
	+ (01.9786)	(1.2291)	(1.0942)	(0.9813)	(1,0040)	(0.8671)	(1.0155)	(0.9977)	(2.1229)	(1.2915)	(1.0729)
Butes Ind. Price	1. 3.036215	5.705358	-3.455027	3.579465	5.384296	3.937345	4.79748	1.91941:	7.791348	4.129599	6.191272
	$=(1.11954)$	(1.4720)	(0.9353)	(1.0905)	(1,1252)	(0.9142)	(1.137)	(1,9514)	(2.2682)	(1.4729)	(1.2004)
Butes Conv. Price	2 ± 2.584862	5.357914	-4.131908	3.275589	5.156605	3.652154 (1).934)	4,429846 $(1,1469)$	1,491366 11.0569	4.527299 17.3883	1.812798	$\begin{aligned} & 7.758452 \\ & 1 . .71639 \end{aligned}$
	$=(1.1031)$	(1.4014)	(1.0531)	(1, 1000)	(1,1316)	(0.9340)	(1.1469)	(1.0669)	17.3783)	1.472 1.709015	(1.2163) $\text { 9. } 463197$
Pienie Chatn Price	3:0.266770	-0).162072	-0.203241	-0.136841	1.980178	0.928037	0.767719	0.729999	1.697611)	1.309015 (0.8071)	9.463197 (5.7929)
	- 0.7966)	(0.8575) 0.010134	(0.7469) -0.021546	(0.8073) 0.107877	(0.7674) 1.237597	$\begin{aligned} & (0.7851) \\ & 1.125759 \end{aligned}$	(1).7871) 0.957191	$\begin{aligned} & (0.8620) \\ & 0.885259 \end{aligned}$	(0.4526) 1.750572	(0).8971) 1.467605	(0.7929)
Pienic Ind. Prlee 1	4. $=0,457565$ $=$	0.010134 (0.9297)	-0.021546 (0.7695)	(0.7868)	(0.7726)	(0.7955)	(0.8401)	(0.9979)	(1.0392)	19.9762)	(0.8427)
Pientr Conv. Price 1	$15: 0.389517$	0.088298	-0.108468	0.702267	1.255860	1,089512	0.913237	0.849779	1.762243	1.459335	. 585490
	(0.0 .8599)	(0.9403)	(0.7964)	(0.8396)	(0.8074)	(0.8292)	(0.8556)	(1).9427)	(1.0466)	(10.9863)	60.8591)
Bacon Chain Price 1	$16: 1.177117$	2.305901	1.560078	1.977606	4.774764	5.201463	4.369128	1.593912	-3.163715	1.68384	2.790154
	: (1.7213)	(2.0236)	(1.7990)	(1.6722)	(1.7589)	(2.2418)	(1.9037)	(1,8649)	(1.6417)	12.1320)	(1.8178)
Bacon Ind. Price 1	$7: 1.721071$	2.922522	2.15285	1.598378	5.374310	5.766291	4.971011	$\therefore 250655$	- 5.525073	2.311994	3. 366164
	: 1.1 .8546)	(2.2032)	(1.9474)	(1.7983)	(1.9028)	(2.4149)	(2,9845)	(2.0213)	(1.5626)	(2.3297)	(1.9855)
Bacon Conv. Price 1	$18: 1.53050$	1.80219 P	1.994643	3.459312	5.374326	5.929916	4.721712	4.17528	-4.889109	2.186239	3.291179
	: (1.8805)	(2.230 ${ }^{\circ}$)	(1.9722)	(1.8252)	(1.9271)	(2.4535)	(2.1025)	(2.1434)	(1.6752)	(2.3458)	(2.0136)
Sausage Chain Price 1	$19 \div-.197803$	-2.06718	-8.244716	-2.393562	-2.028908	-1.359656	-1.371794	-2.641674	$-9 . \text { B18x } 74$	$-3.551 .76$	$-2,955^{5} 35$
	$=(0.8144)$	$(0.63,3)$	(2.4534)	(0.8276)	(0.8153)	$(n .7030)$	(0.7386)	(9.7949)	(0.7287)	(0.6868)	(0.739)
514s, ige lnd. PrIce 2	$20: 1.777903$ $: 00.7565$	-1.6/3341	-7.778102	$\frac{-1.985131}{(0.7693)}$	-1.638722 (0. 7590)	-0.981471 (0.6763)	$\begin{gathered} 0.975233 \\ (0.69909) \end{gathered}$	$\begin{aligned} & -2.266260 \\ & (0.7679) \end{aligned}$	-0.438404 (1).8132)	$\begin{gathered} -1.165854 \\ 4.6834 \end{gathered}$	$\frac{-2.54966}{(1.7911)}$
Smasage Conv. Price 2	: 00.7565$)$ $21: 2052387$	(i) .6872$)$ -1.947388	(2.4530) -8.259539	(0.7693) -2.268354	(1). 7590) -1.889155	(0.6267) -1.218807	(0.6990) -1.19764	${ }_{-2.7491)}$	$(1) .8132)$ -9.703365	$1 / .6834$ -3.518913	(1.791)
	: (0.8219)	(0.7176)	(2.5859)	(0.8367)	(0.8236)	(0.7316)	(1).7463)	(1).8038)	(0.8086)	(9.7162)	(0.7549)
Lanch Meat thain Price 22	$22: 0.502561$	1.455377	1.072618	1.591329	1.990356	1.659085	2.673980	9.6659029	1.fitann	0.599825	0.831543
	: 0.0 .796$)$	(0.6603)	(0.7658)	(0.7612)	(0.4584)	(0).8607)	(0, 8272)	(0.6294)	(1).8142)	(0.5197)	(1.8121)
Luneh Neat find, Prtee 2	$23: 0.581037$	1.5197 .56	1.181867	1.681277	2.090424	1.707002	2.762739	9.74373	1.769469	9.656297	1, 823446
	(0.6051)	(0.6992)	(0.7353)	(0.7646)	(0.8624)	(0.7993)	(1). 84353	(1), F404)	(1,7691)	(1, fige $)$	(9, 77*
Lunch Heat Gonv. Priee 24	$24: 0.601123$	1.584802	1.216936	1.737269	2.161147	1,769475	2.375197	1.770386	1.323596	9. 694461	9,91842
	: 0.6362$)$	(0,7331)	(0.7855)	(0.8968)	(0.909\%)	(0.9415)	(0.9869)	(11,673)	(0.4299)	(0.6979)	(1).6.2)

Appendix table $12--E s t i m a t e d ~ p a r a m e t e r s ~ o f ~ r e t a i l ~ p o r k ~ p r i c e s, ~ b y ~ c u t ~ a n d ~ o u t l e t--~$ Continued

 larm-retail prite spreads (wnis ${ }_{t}$, PRPS S_{t})

Item		Wholesale-Retail Price : Farm-Rotail price Spread (WRPS) :... Spread (FRPS)			
		Cocricterat	t-val	Coeltici	t-value
	-	-			
constant	:		---	-7.8622	
WRPS ${ }_{\text {- }} 1$.	-0.0063	0.010	-	
IRPS $_{\text {- }}$		---	---	0.1067	1.700
$\operatorname{APR}_{t-1}^{2 t-1}$		0.069:	1.635	---	---
Apr ${ }^{5}$					
$\mathrm{ArR}_{\mathrm{t}-1}$:	0.0359	0.630	----	---
APR ${ }^{6}$.	0.0264	1.122	---	---
BFCN		-0.53.34	0.115	---	
TCK1		-0.1899	0.034	4.0539	1.330
stogs		-0.0022	0.543	----	---
CRPP		0.4351	3.713	0.9030	1.271
c.apy		-0.0138	0.092	-0.0769	0.631
APBC:		-0.8123	4.247	-1.3897	9.297
Trend		-..-	-_-	-0.0115	1.233
Feb. Dummy		0.1575	0.321	-0.0913	----
Mar. Dunmy		0.4852	1.004	0.2606	0.635
Apr. Dummy		-0.0872	1.623	-0.7285	1.750
Mav Dummy		-0. 3966	0.633	-1.1526	2.770
June Dunmy	:	-0.2407	0.313	-1.1688	2.750
July Dumay		-0. 3107	0.370	-1.0349	2.494
Aus, Dumay		0.0644	0.076	-0.9331	2.109
Sept. Dumav		-0.1.294	0.208	-0.6918	1.623
Oet. Dummy		-0.0029	0.005	-0.6879	1.640
Nov. Dummy		-0.7910	1.452	-0.5391	1. 198
Dees. Dummy		-1.1959	2.081	-0.3618	0.798
D65		0.4518	0.873	---	---
R^{2}	:	. 91			
D-W	,	1.729			

*January served as a priori excluded month.

＇$\cdot 112$	7：	－ 4.5	1．3．	3.44	－ 3.11	8．＇\％＇	－i，147	5．34	21．${ }^{\text {a }}$	）
－．\cdot	＇．！	－．${ }^{\text {，}}$	1.3	－\ddagger	－is st	4.7 ，	\rightarrow 3．${ }^{\text {a }}$ ，	－11． i4 $^{\text {d }}$	－ 21.70	－1．98
4.	－．it	［．4）	\cdots \％ $1 ;$	－i． 24	－0．97	0.11	－ 4.28	－ 03	18． 36	1.55
－			－-29	－4．98	－4．81	－5， 35	0.14	0.77	－57．03	-4.35
－1．： 1		－＇＊${ }^{\text {t }}$ ！	－5．76	1.36	－4．13	－3．04	\％． 31	1.81	－6．16	1
－－． 1	c．is	－i．．	－i．95	1．05	－${ }^{2}$ ． 71	－1．34	－2．8）	－7． 57	-15.67	－1．31
$\cdots{ }^{\prime}$ ，		$\cdots \cdots$	13．23	－4． 10	－i． 79	7．36	－8．04	－7．70	－29．7\％	－2．4 4

：－13．tis	$\therefore \mathrm{s}^{\prime}$	～3＊	－S．0］	\cdots	－ 4.	－3．195		－0．${ }^{\text {a }}$（	－3．12	－3．			
$\cdots 3$	＋．	｀，t；	119．94，	i．${ }^{\text {a }}$	$-1, l_{4}$	－ 2	－11．03	－4． 16	0.98	10．13	－4．21	-6.64	5
－．－¢	－9．91	－4．\therefore	－11．＇s	－\because ．	－16．1；	－11．64	－6．4．7	－0．9．5	1.35	3.75	5.71	－80．63	－6．67
$\therefore 8.46$	＊．．	－	1． 34	$\cdots \because$	わ． 6 ！	\％in	欠． 50	3．82	9.15	8.65	5.16	76．88	6.41
：${ }^{\text {\％}}$ \％	－ 4 ，	＋1．14	－+ －$\%$	－－．${ }^{\text {a }}$	$\because \therefore$ ar	－1．98	－6．8t	－6．53	－4．15	-11.65	－14．00	－49．6K	－3．81
－12，il	－12．43	－＊，is	－i． 24	1． 417	，	0.6%	F．89	9.33	15．47	24.87	23.33	47.10	3.95
12．${ }^{\text {a }}$	－${ }^{\text {r }}$	－．＇t	\therefore 兄	4． $3:$	4．${ }^{2}=$	－4．4．	＊．42	6.48	－0．64	3.8 .5	0.48	57.57	4.80

14n：
lytor．
！f\％
19ヶs
19が
い？

$:$
$:$
$:$
$:$
$:$
$:$
$:$
$:$
$:$

196；	：-19	1．9．	$\therefore 11$
	－－2．x3	－4．， 3	－ 239
1）${ }^{\text {1 }}$		$\therefore 84$	3．81
1968	$1 \therefore 1$	10．11	N．Ol
$14 \% 4$	4.84	$\therefore 11$	4． 2.
14\％	－h，br	－8． 8.10	－is． 14
14：	＋．？！	［．13	3.97

[^0]: ${ }^{4}$ James D. Sullivan is Research Economist, Connell Rice and Sugar Co., formerly Agricultural Economist, Economic Research Service (ERS), U.S. Depl. of Agr. Charles Y. Liu is Agricultural Economist, ERS. Warren Vincent is Professor, Department of Agricultural Economics, Michigan State Universily.
 ${ }^{2}$ Italicized numbers in parentheses refer to references listed on p. 30.

[^1]: ${ }^{3}$ The material for the production-feeding subsystem was laken from the unpubrished Ph.D dissertation of Hovay Talpaz, "Simulation Decomposilion and Control of a Mitli-Frequency Dynamic System: The United States Hog Production Cycle," Michigan State Univ.

[^2]: - Definition of stors: Chain-operation of 11 or more stores; indegendent-operation of 10 or fewer stores; supermarkets-sales of $\$ 500,000$ or more per year: superettes-sales of $\$ 150,000$ to $\$ 500,000$ per
 year; small stores-sales less than $\$ 150,000$ per year,
 Source: Progressive Grocer, Anmual Repori, Apr. 1970-72.

[^3]: ${ }^{1} \mathrm{R}^{2}=.9788 ; \mathrm{F}=256.93 ;$ mean $\mathrm{SF}=1,030.93 ; \mathrm{D}-\mathrm{W}$ $=1.176$; stand error of estimate $=50.55 .^{2}$ December served as the a priori excluded month for equations 1,2 , 4 , and 5 .

[^4]: ${ }^{\prime} \mathrm{R}^{2}=0.8939 ; F=54.77 ;$ mean $\mathrm{BGS}=6237.17 ;$ $\mathrm{D}-\mathrm{W}=1.69$; slandard error of estimate $=269.37$. ${ }^{2}$ December served as the a priori excluded month for equations $1,2,4$, and 5 .

[^5]:

[^6]: ${ }^{1} \mathrm{~K}^{2}=.959: \mathrm{F}-83.484 ;$ mean $=52.78 \mathrm{D}-\mathrm{W}-2.122$; standard error of estimate $=1.8453$; degrees of freedom $=41{ }^{3}$ danuary served as the a priori excluded month.

[^7]: ${ }^{4}$ Variables of equation 12 have been identified previously.
 'The $\mathrm{j}^{\text {th }}$ notation for equation 13 is the same as in equation 11. Independent varinbles identified in previous equations are not repeated here.

[^8]: - Only those variables not identified earlier or those needed for clarification are identified.

