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INTRODUCTION 

Man's explosive intrusion into forest ecosystems has not only 
affected the present charactel' of our forests but in a more pro
foundly disturbing way has also affected the evolution of our 
future forests. Not only are the trees growing today different 
from those of past decades, but we have often lost the resilient 
capacity of this renewable reSOUl'ce to respond to the changing 
demands of nature and man. "Vhen whole forests are lost, the 
genes are lost, ancl replanting the land cannot recover the potential 
of any extinct genes. Even during breeding, the genetic resource 
may often be so reduced that future evolution is halted. Today, 
forests are being more intensively exploited and the forester has 
an obligation to safeguard the future of his resource. He can con
structively direct the evolution of forests toward increased pro
ductivity within a genetic system that is capable of cumulative 
improvement and of meeting the varying and uncertain demands 
of the future. 

If the genetic resource is to be effectively used and forest 
composition extensively controlled, we must look for ways to 
optimally control the evolutionary system of the whole species, 
and not just the transient status of anyone generation. The forest 
scientist is thus 0bJiged to understand the forces which have con
trolled or can control the evolving forest and to predict the conse
quences of directed 01' accidental changes in both the genetic 
and ecological systems. The potential benefits of tree breeding are 
widely recognized, and forest tree breeclers will undoubtedly have 
at least partial control of the genetic basis of future forests. The 
forest geneticist must therefore understand the genetic materials 
and the manipulative techniques available. Quantitative genetics 
can help him to rationalize his tactics ancl strategies. It provides 
a means to construct unifying and explicit theoretical structures 
and testable hypotheses of alternate theories and practices. 

During the past two decacles, fOl'est geneticists have devoted 
most attention to observing inheritance patterns, correlations 
among traits, and developmental relations among traits and be
tween juvenile and mature tree performances. Much work has 
also been devoted to estimating the apportionment of genetic 
differences between and within seed sources, the utility of hybrids, 
and the economic and biological constraints of forest trees which 
affect breeding operations. Thus, the forest geneticist has begun 
to develop a greater understanding of the organisms handled and 
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a pool of materials for starting a process of controlled evolution. 
However, the past two decades have also produced major develop
ments in the science of genetics and the theoretical foundations of 
evolutionary and breeding theory. Thus, the tree breeder often 
finds that his initial efforts have provided him with a good basis 
for directing the evolution of future forests but that there now 
exists a vast array of new selection theories. 

This book is a guide for forest geneticists to the more useful 
techniques and theories of that collection of applied mathematics, 
statistics, population biology. and genetics which is collectively 
called quantitative genetics. Those parts of the theoretical and 
analytical techniques which can be useful in forestry are reviewed. 
However, there is no general review of the forest genetics litera
ture. No detailed instructions on breeding mechanics or seed pro
duction are given, nor are many specific population or provenance 
studies reviewed excent to illustrate how the basic principles and 
theories are applied. Within most chanters, a skeletal guide to the 
necessary concepts is given with applications to forestry. Often, 
topics which are not immediatelv anplicable to forestry are dis
cussed because of their potential future importance as our scien
tific knowledge increases. For the most part, the book requires 
undergraduate college-level mathematics, statistics. and genetics. 
Several special topics require a background in graduate-level sta
tistics, but these are not essential to the continuity of subjects. 
Such topics are labeled with an asterisk. 

The chapters are grouped into two sections. The first section is 
devoted to the breeding and population genetic theories applicable 
to forest tree breeding. The first chapter is devoted to the basic 
models of gene effects and genetic variances which form the basis 
for selection and breeding theories. Chapter 2 is devoted to the 
application of those statistical and population genetic concepts to 
the study of selection effects and how selection can be made 
effective in tree breeding. Then, chapter 3 considers selection 
theory as applied to plant breeding and tree breeding in particular. 
The strategy of breeding is discussed with respect to the objectives 
and the tactics available in chapter 1-1.. Some special problems in 
developing an optimal breeding program in forestry are discussed 
in chapter 5. 

The second section is devoted to a deeper examination of the 
population ecology models on which the genetic models are built 
and the statistical models and methods used. These areas of 
currently expanding research can clearly affect the breeding 
operations of foresters in the near future. Chapter 6 is devoted 
to the population ecology related to forest trees. Chapters 7 and 8 
are devoted to the statistical developments which can directly 
affect tree breeding. Chapter 9 is a more detailed examination of 
population genetic theories related to forest trees. Finally, chap
ter 10 considers research in forest genetics needed to fulfill the 
forester's obligation to create an optimal evolutionary system for 
future forests. 

• 
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CHAPTER 1 

MODELS OF GENE ACTION 


To the unpracticed eye, forests may at first seem to be mono
lithic, immutable masses with uniform shape and behavior. How
ever, a closer look readily reveals tremendous variations in age, 
size, and species of trees-even a single stand of trees cannot be 
completely characterized by any single concept or measure. Varia
tions exist around some average form or behavior, and an acute 
observer may discern a pattern in the individual-tree deviations 
from the norm. Scientists are interested in determining causes 
for some of those deviations, and they have found that clusters 
of performance types exist. Thus, our knowledge of the nature 
of forests has advanced from a perception 0'£ uniformity to a 
concept of an average with variation, and to an analysis of the 
sources of variation. In this scientific search for causes of varia
tion, models are formulated and tested against reality, and better 
models formulated. In forest genetics, we have generally passed 
the stage of estimating means and are now estimating variations 
and evaluating the relative importance of different sources of 
variable behavior. 

In this chapter, simplistic concepts of tree populations are 
described, along with effects of genetic differences on these popu
lations. The concepts of mean and variance are used in population 
models to ascribe variation to environmental and genetic causes. 
The essentials of population genetics are then introduced as a 
basis for the subsequent chapters on selection and breeding. These 
statistical and population concepts are explored in greater depth 
in chapters 6 and 7. 

DESCRIPTIVE STATISTICS 
Almost any collection of trees varies considerably in a multitude 

of traits. The responses of trees to even the same sequence of 
environmental conditions usually differ sufficiently to produce 
recognizable variations in height, weight, color, odor, or other 
measurable traits including the physiological response system 
itself. Since trees also grow under different environmental 
sequences, even in managed plantations, large variations in indi
vidual tree behavior commonly exist. Silvkulturists traditionally 
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have recognized and used some of the causes of these differences. 
The recent history of silvics is largely devoted to effects of such 
factors as age, spacing, and soil type on tree behavior. Even 
accounting for these major sources of variation, considerable 
variations still remain unexplained and can often mask even major 
site effects. 

If general groups of behavioral types can be recognized, then 
it is useful to know the average performance for each group as I 

well as how tightly clustered the groups are. Traditional and· 
useful descriptors are the mean (,.t) and variance (a2), which 
are defined as: 

Mean = ~ Ii Xi = ft 

Variance=~ I, X,2_ ft2=a2, 

where Ii is the frequency of the ith type, and Xi is the value of 

that type. 

If the measurements are made on a continuous scale, the defini

tions become: 


Mean=}xf(x) dX=ft 

Variance = Jx21(x) dx- ft2, 

where I(x) is the probability density function of x, and x is the 
value over the whole range. 

Once we recognize that the population is not a single, uniform 
entity which can be described by a single statement, the above 
two descriptors often suffice for a statement of central location 
and degree of dispersion. However, once causes of that variation 
are considered to exist and hypothesized in a conceptual model to 
affect the trait, then the mean depends on the level of the causal 
mechanism and the variance depends on \vhether we consider the 
dispersion of the whole population or only that around the mean 
at one level of the causal factor. If soil fertility affects diameter 
of a tree at a given age, then we might conceive of a consistent 
increment in size for unit increments in fertility. The population 
mean and total variance measured in ignorance of soil fertility 
remain as they were, but the informed forester would be interested 
in descriptions of the mean for each fertility level and the varia
tion around those means. He would also be interested in describ
ing the relationship between the fertility levels and those means. 
The regression is a useful way to describe these relationships 
according to the conceived model of cause and effect, and it is a 
useful third measure for describing the true state of the world. 

Foresters have traditionally been interested in environmental 
or silvicultural control of tree behavior and have frequently used 
regression first to describe effects of environmental factors and 
then to modify the forest environment for improved performance. 
Thus, if potassium levels, for example, affect tree size within a 
plantation, and if soil samples can be taken, the potential to 
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improve growth may exist. While other factors may continue to 
cause va;t'iations in size even among trees at the same fertility 
levels, the total variance can be partitioned into a part due to 
those unexplained other sources of variance, and a part due to 
variations in potassium. If the unexplained causes of variation 
are unrelated to potassium effects and if they occur independently 
of potassium levels, the total variance would simply be the sum 
of the two variances. The forester would presumably conclude 
that increased yields would follow from increased potassium 
applications, and he might even be able to eliminate that as a 
source of variance and have a more uniform stand. If he were a 
scientist, he would check his deductions against results and would 
likely find his initially conceived models inadequate. He might 
then propose better models of growth and fertilizer response and 
develop this branch of science. 

In genetics, a similar sequence of development is involved and 
can be described by similar kinds of parameters. It is clear that 
genes do affect growth behavior, and for some populations of 
trees part of the variation in size is due to differences in genes 
possessed by individual trees. There may well exist considerable 
variations in behavior, even for the same genetic state, but the 
total variance would still be partitionable into a part due to 
genetic causes and a part clue to other effects, such as fertility, 
and other unexplained differences. The forester would then also 
be justified in concluding that fixing the correct genes could give 
him behavioral improvements. 

However, two major differences exist between genetic and 
environmental sources of variation. First, the genetic sources of 
variation are often caused by so many genes that, through proper 
breeding, they constitute a renewable resource which can continue 
to yield cumulative improvements. Unlike fertilizer treatments, 
the objective of gene management often is not just to fix the best 
available genotype but to use genetic recombination to generate 
more useful variations. The second major difference is our inability 
tv directly observe and control most genes and hence our inability 
to directly create an ideal genotype, even if one could be defined. 
Therefore, to thoroughly understand and use the genetic resources 
of tree populations, we require more sophisticated concepts of 
breeding than simply picking and fixing the best. We must under
stand ho\\' genes act; we must formulate explicit models before 
we can establish anything neal' ideal breeding procedures. 

GENETIC SOURCES OF VARIATION 
The description of gene actions which shall be used here is 

based on the simple Mendelian model of two alleles at a genetically 
active locus and the genotypes which may thus exist. Considering 
genotypes to be fixed at anyone time and describing the variation 
caused by the effect that such genotypic differences would have 
on average performance differences is similax to describing the 
variation due to any other sonrce, such as soil fertility. 
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If stem-volume growth averages 100 units per tree and no 
recognizable fertility differences exist in the population, the trees 
may still vary in performance due to unknown causes. A sample 
of these trees might measure 101, 104, 93, 102, 97, 99, 103, etc., 
and carry an average near 100, a range of 11, and a variance due 
to unidentified causes of around 10. If the population contained 
variations in genetic composition such that some of the trees had 
a growth average of 95 units, then a sample of trees with that 
genotype might be 96, 98, 99, 94, 88, 92, 97, etc., carrying an 
average near 95 and a variance due to those same unidentified 
causes (residual variance) of around 10. If another genotypic 
variant existed at random in the same population and had an 
average growth of 100, a sample of its trees might be 93, 96, 99, 
102, 102, 104, 101, etc., with residual variance around 10. If a 
third genotype existed and its trees measured 106, 109, 107, 108, 
98, 102, 104, etc., averaging 105 with the unexplained residual 
variance of around 10, it can be observed that the total variance 
has increased if all genotypes are included in the same population 
sample. 'Whereas the range of variation in the initial population 
was from 93 to 104, the range now is 88 to 109. The actual vari
ance in this more variable population would then depend on the 
relative frequencies of the genotypes. If almost all were of any 
one type, the variance might not be much different than originally, 
but if almost all were equally split between the extreme types, 
then the variance would be considerably larger. 

Consider that the three types described above may be the three 
genotypic variants generated from two alleles, A and A', namely, 
A'A', AIA, AA. If they were equally frequent in the population, 
then the trees from all types would be roughly equally sampled 
and the variance due to genotypic differences would be 16-2/3. 
The total variance for a sample, including the residual variance, 
would be the sum of the genetic and residual variances, 26-2/3, 
if genotypes were randomly located with respect to those unidenti
fied sources of variance. More typically, however, the relative 
frequency of the genotypes is not equal but is dependent on other 
factors such as the relative frequency of the alternate alleles and 
mating patterns. If thealleles wel'e equally frequent (0.5 each) 
and mating was random, the relative genotypic frequencies would 
be expected to be 0.25, 0.5, and 0.25, respectively, for A'A', A'A, 
and AA. The variance due to ge:-Ietic differences would be then 
12.5. However, if matings were arranged such that only 0.5 ri'A' 
and 0.5 AA "xistecl, then the variance due to there being just the 
two extreme types would be 25. 

Gene frequency can affect the variance due to genotypic differ
ences even with the same model of gene effects. If one allele, 
say A" were at very high frequency in the population, and if mat
ing were random, then almost all trees would be of genotype riA, 
and few of the A'A' or A'A would exist or be sampled. Then, the 
population mean would be close to 105 and the variance not much 
more than the residual level of 10. The same, of course, holds true 
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if A were at low frequency, though then the mean would be closer 
to 95. 

Another factor that can affect genetically caused variance is 
the gene-action model itself. Clearly, if the mean differences were 
80, 100, and 120, the variance would be much greater than if they 
were 99, 100, and 101. Also, if genes acted such that the heterozy
gote, A'A, did not yield an intermediate value between the homo
zygotes, then the total variance would change. For example, if 
dominance existed, the genotypes A'A', A'A, and AA might have 
values like 95, 105, and 105, and the variance can be larger than 
for 95, 100, and 105. If the values were 93.5, 101.5, and 103.5 and 
frequencies were 0.25, 0.5, and 0.25, the total genotypic variance 
would be 14.5 instead of 12.5 as above, even though the mean 
stayed at 100 and the difference between extremes remained at 10. 

To describe these effects in simple models, it is useful to parti 
tion the genetic sources of variation into parts ascribable to 
classical types of additive and dominance types of gene action. 
This can be done in several ways, as detailed in chapter 7, and 
one particularly convenient method uses the following definitions 
and assumptions: 

Genotypes are A'A' : A'A : AA 

Let q=frequency of one of the alleles, say qA. 

Assume random mating, which then implies genotypic fre
quencies (1_q)2 : 2q(1-q) : q2. 

The 	measured difference between A'A' and AA is 1l so that 
if the variable being measured is 93.5 for A'A' and 
103.5 for AA, 11-=5. 

The value of the heterozygote A'A is a . u, a mUltiple of 
1l and a factor "a," which determines how much greater 
or less the heterozygote is than an intermediate, or 
no dominance position. If complete, classical dominance 
exists, A'A and AA are identical, then a=l and a' 1l=U. 
If no dominance exists, A'A is intennediate between 
-1l, and +1l, and a=O. If overdominance exists, then 
A'A is larger than AA and its measure, a' 'tt, has a value 
larger than 'tt, and hence a> 1. If A'A is 101.5 exhibiting 
only partial dominance, as in the above example, where 
u=5, then a=0.6, lying between 0 and 1. 

Under these conditions, the portion of the genotypically caused 
variance called the additive genetic variance is (1,t2=2q (l-q) u2 

[1+ (1-2q)aJ2. This is the part of the total genetic variance which 
can be described as having been caused by the average effect of 
substituting one allele, say A, for the other. Hence, it is a measure 
of how an allelic substitution in a tree would cause variations in 
a tree's performance, and is similar to the variation in perform
ance caused by a unit change in fertilizer application. In the 
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above example, ITA'!. = 12.5. The complementary portion of the 
genetic variation is the dominance genetic variance: 

ITD'!.=4q2 (l-q)2 a2 'u2• 

This is the part of the total variation due to the heterozygotes' 
failure to behave in a simple intermediate manner. If variations 
in performance due to genotypic differences at this locus are not 
describable or completely accounted for by a simple model which 
adds a unit in yield for an allelic substitution, then dominance 
exists, and its effect on genotypic variance is lTD'!.. In the above 
example, ITD2=2.25. 

The above two partitions of the total variation are analogous 
to a linear and quadratic partitioning of the variance due to any 
ordinary type of causal or regression variable. In a soil fertilizer 
experiment, it is common to use a few levels of application of a 
particular nutrient, say potassium, and to describe its effectiveness 
in terms of sums of squares or variance due to the nutrient and 
to the linear and quadratic portions of that variance. In such 
experiments, it is also common to use other nutrients such as 
nitrogen i.o study their effect on trees and to similarly describe 
their total effect in terms of variances accounted for or caused by 
those variations. It is often valuable to know the interactions 
among nutrient effects as well as the linear and quadratic effects 
of nitrogen. The form of the effect of potassium may change with 
nitrogen level. In a similar way, the combined effects of two 
genetic loci can be described even if they are not as easy to 
control or change as soil fertility is. 

MULTIPLE-GENE LOCUS MODELS 
Consider two loci with roughly the same kinds of gene action 

as described above. Each has some average homozygote and 
heterozygote yields, and hence some average effect of alleles which 
is measured over all variations in external environments and 
over all variations in genetic differences at other loci. \Vith this 
model, it may be more difficult to perceive average genotypic 
differences at anyone locus, because the background variations 
are larger due to genetic variations of other loci in addition to 
the otherwise unidentified variations. Similar gene actions would 
cause similar variations, but the genetic variations would include 
an IT 

t 
l 2 and ITD2 at each locus. In addition, if interactions between 

loci occur as between potassium and nitrogen, then additional 
effects and their description in terms of variances must be defined. 
These genetic interactions are collectively known as epistasis, and 
they can be statistically described as: .. 

additive-by-additive epistasis (linear-by-linear interaction), 
additive-by-dominance epistasis (linear-by-quadratic inter

action), and 
c1ominance-by-c1ominance epistasis (quac1ratic-by-quadratic 

interaction) . 

http:ITD2=2.25
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The classical genetic concepts of epistatic interaction, such as 
complementary or multiplicative gene action, would be reflected 
in the existence of variations in perfol1nance above those expected 
on the basis of models assuming independent gene actions. 

Greater complications are introduced into the model if three 
loci are considered, since not only are more two-way interactions 
generated but triple interactions of various sorts may also exist. 
Such extensive models would indeed be complicated, and if we 
wished to analyze the detailed interactions, our problems would 
increase dramatically with each new locus added. Experimental 
models on silvicultural treatments with three kinds of variables 
are usually as much as can be handled, and certainly four or more 
variables soon become impossible to interpret. Yet in genetical 
situations, we often deal with effects which cannot be easily 
handled physically, are often masked by unidentified variations, 
and involve the actions of many genes. In such situations, if single
gene effects are important, the geneticist will try to isolate those 
effects by fixing all other sources of variations including genetic 
and environmental sources. More commonly, however, the single
gene effects are not easily studied and greater concern is centered 
on the total cumulative effect of all genes which influence a trait. 
Thus, if 20 loci affect growth, the statistic of main interest is the 
sum of variances due to the additive gene actions at all loci, or 
the sum of variances due to the dominance actions at all loci. The 
interactions may also be of interest and use, but again, with many 
loci, the sum of all two-way interactions, as for example all the 
additive-by-additive epistasis, is of greater interest than the form 
of the effects at anyone pair. 

This approach makes the description and analysis of gene 
effects much easier, but also submerges many substantive ques
tions about the actual interaction of genes. Within a small range 
of gene actions and small changes in the frequency of the genes 
in any population, the consolidated statistics may accurately and 
consistently describe gene actions. For many breeding systems, 
gene frequency at each locus changes slowly, though the total 
impact of all loci on the phenotype may be large. Through mating 
and recombination, the genetic variance at each locus may change, 
but total variance may remain fairly constant. For any real popu
lation, however, very complicated interactions are likely to occur 
among loci and are likely to change whenever anyone locus 
changes much in genotypic composition. Since foresters commonly 
deal with traits with fairly complicated morphogenesis, not only 
may many genes affect a single-behavior mode, but many physio
logical systems may be interacting to produce the composite trait 
of growth, resistance, etc. Thus, while genetic variance statistics 
are highly useful in condensing meaningful data and modeling 
population behavior, a complete knowledge of genic systems 
requires far deeper and more extensive research. It will eventually 
be necessary to recognize and study the genic interactions of traits 
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and how genes and physiological systems interact in composite 
traits. 

For many practical purposes, the gross statistics of the collec
tive genetic val'iances and environmental variances are useful 
descriptors of factors affecting forest tree behavior, and many 
studies have indicated that substantial amounts of genetically 
related variation exist. Thus, it is reasonable to consider the 
variation of tree behavior in most forests to be due to many 
effects, which are simultaneously varying. The genetic sources 
of this variance, which can be used and still provide more varia
tion for cumulative gains, are the focus of interest in this book 

Unfortunately, genetic sources are complex and difficult to 
measure and use. Other sources of variation, such as soil fertility, 
can be examined by chemical and structural analysis of the soil, 
and the relation between those variables and growth determined 
by experimental control and test. Genes cannot often be measured 
and are generally known only by their action on the trait being 
measured. T"terefore, instead of directly manipulating genes, other 
relationships have to be used to infer something about their 
effects. 

One kind of relationship useful in analyzing the strength of 
genetic variation is the tendency of close relatives to be genetically 
more similar than distant relatives or unrelated trees. If genes 
have any effect on the trait being studied, then the trait should 
show a lower degree of variation within close family groups than 
between unrelated trees. Trees with the same ancestors will share 
more common genes and hence will behave more similarly to 
each other than trees with dissimilar ancestries. However, if the 
genes do not affect the trait being studied, then values for the 
trait will not be clustered within families. The geneticist, there
fore, has an instrument by which he can measure the importance 
of genetic sources of variation. By comparing the degrees of 
variation between related and unrelated trees, the genetic differ
ences can be seen to have a strong effect if the data cluster in 
family groups, or a weak effect if family clusters are diffuse. If 
the geneticist can control the degree of relatedness, an exact 
relationship between genetic variance and family differences can 
be obtained. The closer the family relatedness and the higher the 
genetic variance, the higher the variance between the families. If 
either relatedness or genetic variance is weak, the variance be
tween families relative to that within families is small. The rela
tionship is a multiplicative one: 

where a/ is variance among families, l' is coefficient of relation
ship, and al is genetic variance. 

This form of relationship is important not only for analyzing 
the relative strength of genetic sources of variance, but for also 
selecting and breeding. Therefore, before discussing the selection 
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process and the relation of gain from selection to gene action and 
to genetic variance, let us consider the experimental design and 
analysis possible with gene effects. 

ESTIMATING GENETIC SOURCES 
OF VARIATION 

In most studies of response to some manipUlated variable, the 
variation caused by or attributable to the variable is separated 
from the variation caused by other effects or other unidentifiEd 
sources. For genetics experiments in which the only controllable 
factor is the degree of relatedness within families, the family 
groups are the experimental sources of variance which can be con
trolled and analyzed. The degree of relationship and the strength 
of the genetic effects determine the physical distinctiveness of the 
family groupings. By knowing or controlling the degree of rela
tionship, we can study gene effects measuring the similarity of 
family members. If --~riation is largely the result of gene effects, 
then close relatives like parent-offspring or sib-sib will be very 
similar, as compared with unrelated pairs. The variation in an 
offspring population will be correlated with parental-behavior 
variations. This condition can be expressed in terms of statistical 
regression as a high covariance of relatives. In such cases, the 
behavior of trees is predictable from the behavior of their siblings. 
If both parents are common between sibs (full-sibs), the covari
ance is higher than if only one parent (half-sibs) is the same. In 
turn, the half-sib covariance is higher than for more distantly 
related pairs. 

If variation among trees is largely the result of nongenetic fac
tors and is nearly random with respect to ancestral relationships, 
then the degrees of relatinnship can change as above, but the be
havioral correlations would be lower. More variations due to 
nongenetic effects would reduce the measured covariance of those 
relatives. These relationships are derived more extensively in 
chapter 7 but can be summarized as follows: 

Cov (parent-offspring) =% U.4 2 +1)1, UAA + ... 
COy (full-sibs) =% UA 2 +1)1, UD2 +1,4 UA.A2+% UAD2+ 

Cov (half-sibs) =1,4 U'12+1~6 u..u 2 + ... 

From this point of view, the covariance of relatives reflects the 
relative similarity of family associations and hence increases as 
family groups become more distinctive due to close relationship, 
high genetic variation, or both. The genetic variation is reflected 
in the variation between family groups, which increases as the 
covariance of relatives increases within groups. Then, by con
structing family groups, the variation between them is a measure 
of the covariance within families. Since the covariances are known 
functions of the genr.:tic variances as given above, the genetic 
variances can then b'c estimated. 
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COEFFl2IENTS OF RELATIONSHIP 
Genetic variances can be estimated from measures of common 

ancestry. Measures of relationship can also indicate the degree of 
inbreeding from matings of relatives. Common ancestries are ex
pres!:;ed in terms of probabilities that the trees involved have 
alleles derived from common ancestors. Consider that for any two 
individuals, a covariance would exist and can be written in terms 
of genetic effects if there is some probability that identical genetic 
effects occur other than solely by chance in random mating. If 
pairR of individuals are randomly chosen from a large population, 
then their alleles are expected to occur in the frequencies expected 
of the general population. If the pairs have closer relationship, then 
the degree of nonrandomness can be measured by the probability 
that the alleles in the two individuals are identically derived and 
exactly alike. Thus, for a lineal' model of average and dominance 
effects, as we have previously defined, we can derive the covari
ance between two individuals, X and Y, according to the prob
abilities that their alleles are the same: 

x = J.L + ax ~.• + ax ~ -+- ax
cJ.
.:r: 0¥ 

and Y=p.-+'av, +ay <;.!-Oy:, Y" 
where a.r " is average effect of male parent gene contributed to x, 

ax,.. is average effect of female parent gene contributed to x, 
Of 

a =' is average effect of male parent gene contributed to y, ay ? is v 

average effect of female parent gene contributed to y, S.c •• x <; is 

dominance deviation of parental genes contributed to x, and 

oUd y; is dominance deviation of parental genes contributed to y. 

As developed in chapter 7, aa2 = 1/~ a.\2, and a.\~a/J2. If the male 
parentage of X and Y is identical, nonrandom, or related in some 

way, then a certain probability exists that aX! = au~' , and the co

variance of X includes Pr(X! = Y ,) (%) aA
2

, If the female 
parentage was somehow nonrandom or related, the Pt· (X <=Y't ) 
:;60 and the variance contains :",.JPr (X,""}'j) (J/~)(TA2. Note that 
if we took the probability of a random allele from ;1' and random 
allele from y being identical by descent, this probability is ~itl 
1,:1. PdX,""~ YJ), which is ~Ialecot's (1969) coefflcient of (:0

ancestry Ixv. Therefore, 2/JJ= ~,~ ":i.(,jP/'(X,::,:::, YJ) which can be 
used as the coemcient for the a.l!! contl'ibution to tIl(' covariance 
of relatives. If both male and female parentage of X and Yare 
related, then E(S,. .r'ov.y )'::~PI'(.r ,''''y .and :1' ::C:Y.o) a~2 
.• PI'(.!' , ,:c: y .. and J', Y ;) ao~:Then fol' any kinds of ;:elallOl1ship, 
we can trace the \'al'iolls Jll'obabil ities and determine the contribu
tions of these genetic variances to the cO\'[ll'iance of relatives, For 

. 

.. 

.. 



11 

.. 


example, if the female parent of X and Y were the same, then the 
only nonzero probability would be Pt' (X ~ = Y:;), and it would de
pend on how the choice of gametes is made in the production of 
eggs of the common mother. If the choice is random, then the 
probabilty is 1h that the same allele (either one) is chosen and 
the contributions of the genetic variance to the covariance of these 
half-sibs are Y.1, rr.{2. If both the male and female parents of X 
and Y were common, then PI'(X ~ = Y",) =PI' (X ~.=Y-,) =1/2 and 
the probability that both are identical is (Y2)' (%) =1/'1., and 
the other probabilities are ZE:ro. Therefore, the genetic variance 
contributions to the covariance of full-sibs is % rr.-t2 +14 rrD2. 

For the case of parent-offspring covariances, if we take the parent 
as X and the offspring as Y, the Pr(X -:,=Y~) =Pt·(X .,=Y?) =1/2 
and all other probabilities are zero. Then the covariance of parent 
and offspring is (112) rr;12. 

If additional genetic loci affect the genetic variances and co
variances among relatives and if they are independent loci, then 
the probabilities of identity by descent for mUltiple-locus effects 
can be added over the genetic variances at each locus. For multiple
locus epistatic effects, the probabilities of joint identities by 
descent are products of the independent probabilities. In such 
cases, for any kinds of relatives which have the additive genetic 
variance coefficient of (~ and a coefficient for rrn2 of d, the general 
covariance due to all types of genetic variance can be written as: 

Cov =(~rr.42 + clrro2 + adrr.w2-+- a2 rrA.\2 -+- d2rr r)fJ2+ a2drrA.w2 -+- ••• 

or in general COY ='5:. •• i aidi ~.l!()i' 

Inbreeding nullifies the independence assumptions and the prob
abilities of orawing identical alleles. It is clear, for example, that 
if F' is defined as the probability that the two alleles at a locus are 
identical by descent, the probability that two randomly drawn 
alleles are identical is % (1 -I-- F) instead of (112). With a 
parental inbreeding coefficient of F, even with random choice of 
parents and hence no inbreeding of the offspring, the a and d co
efficients used to compute the covariance of relatives are increased 
by factors of (l+F) and (1+F)2, respectively. The problem re
mains, however, that the rr.4:! and fIr? themselves require specifica
tion with respect to the inbreeding generation they refer to. 

Linkage can also affect the probabilities of some gametic com
binations, the contributions of the epistatic gene effects, as well 
as how the additive variances are summed over loci. The manner 
in which they affect the covariance of relatives is not an easily 
derivable I'eh~tionship (Cockerham 1956). Nevertheless, if we wish 
to exactly define and estimate meaningful parameters, the broad 
effects of such factors as linkage and inbreeding must be con
sidered. 

It is also clear that hybrid populations will engender genetic 
variances and covariances among relatives with quite unique 

http:a2drrA.w2


12 

effects and probabilities of drawing gametic contributions. The 
effects of dominance t.ypes of intralocus gene actions are unique, 
and all types of interlocus epistatic interactions are unique since 
the entire genome is a hybrid combination. In addition, gametic 
frequencies depend on the differences in gene frequency between 
the populations and on the linkage disequilibrium so induced 
(Stuber and Cockerham 1966). In our brief review, all of these 
effects will be neglected and we shall assume large random-mating 
populations with independent loci. 

DESIGNS FOR ESTIMATION 
In the kinds of designs useful with forest trees, it is often 

possible to derive estimates of variances due to family differences 
where families are structured into half- or full-sib groups. For 
example, if female parents are chosen and a different set of male 
parents is chosen for each female, then the variation among off
spring in different female parent groups is the same as the varia
tion among half-sibs. Similarly, the variations among the families 
of different males within the same female family group is the 
variance among full-sibs within half-sib groups. It is thus the 
variance among full-sibs, less the variance among half-sibs. If 
both estimators are available, then we can estimate as follows: 

Variance (female half-sibs) = (1/.j,aA~+1~6aAA2+ . ..) 

Variance (male full-sibs within 
female half-sibs) = (Y20·,l2+%.aD2+1;J.aAA2+ .. . 

- ~~aA2+%(TD2+%oa u 2+ ...) 

Thus, the female family variance contains only 1/.1- of the additive 
genetic variance and a small fraction of additive types of epistasis, 
and the male family variance contains that much plus 1/.1- of the 
dominance variance. The difference between them therefore con
tains % of the dominance genetic variance and small fractions of 
the epistatic variance. 

Since many experimental mating designs can be constructed to 
provide similar estimates, populations can be examined for their 
genetic sources of variation. Not only are analysis of variance 
estimators available, but regressions of offsprings, clones, etc., 
on parental performances also allow one to estimate the variances. 
Since precise estimates require large experiments, efficient experi
mental design is highly desirable. For purposes of this chapter, 
recognition of the existence, descriptive forms, and estimability 
of genetic variance parameters are sufficient. 

Using various experimental procedures, large estimates of ge
netic sources of variation in forest trees have often been derived. 
How have forests evolved such a system? It behooves us to con
sider the mechanisms by which variations are generated and 
maintained. An understanding of the dynamics of forest systems 
is desirable for its own sake as well as to help us design more 
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efficient manipulative mechanisms to serve the long-term interests 
of forests and man. 

POPULATION GENETIC BASIS 
The basic forces which have molded the system of genetic 

variability have been mutation, migration, selection, and random 
events. Mutation has rarely been successfully used in breeding 
programs and though it is the basic originating mechanism for 
new alleles and is occasionally useful, it will be ignored in this 
chapter. 

Migration. or its lack, and consequent subdivision of the popu
lation into intraspecies subgroups, has also been an important 
factor in evolution but is not a significant manipUlative factor 
except for constructing or crossing among subpopulational group
ings. The lack of complete migration of genotypes through a 
species leads to separate evolutionary paths being taken by sub
populations as they respond to selection differences or chance 
sampling events. The use of variations among these subdivisions 
directly as in provenance selection or as a source of genetic varia
tion is a useful initial stage of breeding and deserves detailed 
analysis. However, we shall consider the directive forces of selec
tion within any given population as the basis for understanding 
selective breeding effects. 

In simple models of selection where the effect of a gene is easily 
recognized, the breeder either simply fixes the good homozygote 
by crossing only among the good genotypes or breeds the heter
ozygote by crossing the different homozygotes. While dominance 
effects may mask the heterozygote, the breeding procedures are 
simple and the genetic problem is solved in one or relatively few 
breeding generations. In natural selection for reproductive fitness, 
selection operates by eliminating defective genotypes. However, 
environmental effects 01' genes at other loci cause some errors in 
artificial or natural selection. These errors occur because the 
phenotypic expression is different from the average genotypic 
expression of the locus, because the selection process is not de
terministically exact, or because of both factors. In any case, a 
slower process of allelic substitution occurs, and the average 
changes in progress to higher fitnesses, or more economically 
valuable trees, occur in smaller steps each generation. 

Considering a single locus with two alleles A and A' and it~ 
three genotypes AA, A'A, and A'A', the change in value from onl 
generation to the next depends on having more of the preferred 
genotypes present. If AA is preferred over A'A', or has a higher 
probability of being selected, then the contribution of parental 
trees with AA to the progeny generation will be higher, the A 
allele will be more frequent, and hence AA genotypes will often 
be more heavily represented in the next generation. 

Two genetic factors influence the rate of progress, the relative 
probabilities of selection or fitness of the genotypes, and the gene 
frequencies. The greater the differences between genotypic fit
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nesses, or in precision and intensity of selection, the greater the 
change will be in anyone generation. The only complicating fac
tor would be the existence of dominance which might mask ~he 
effect of an otherwise unfavorable allele. In the case of over
dominance, the best genotype is the heterozygote and the general 
tendenc.y will be for the population to stabilize gene frequency at 
some intermediate level. Otherwise, selection in a consistent di
rection will tend to eventually fix the favored allele in the popula
tion, and, in the absence of mutation or immigration, eliminate 
the other allele. 

The change in gene frequency (q) in response to selection 
pressures also affects the rate of change. The change in gene 
frequency is a function of the change in fitness and a factor of 
q(l-q). This is a quadratic function with a maximum at q=1/2, 
and zero value at (F=O or q=1. Thus, the most rapid changes in 
gene frequency, and hence the most rapid changes in population 
fitness, occur in the intermediate ranges of q. Since the actual 
response depends on the fitness levels, dominance, etc., the rate 
of change may not be symmetrical with respect to gene frequency, 
but only when the frequency is intermediate can rapid response 
to selection be expected. We can further imply that genes involved 
in selection will exhibit most rr.pid frequency change when fre
quency is intermediate and therefore will not usually be found in 
the intermediate frequency range unless strong dominance to over
dominance exists, or unless selection is in a transient state. 

These simple models have served as good first approximations 
but they have some obvious shortcomings. Often, as in competitive 
situations, a genotype's fitness depends on its own relative fre
quency and hence frequency-dependent selection models require 
examination. Discussion of this problem is postponed to chapter 2. 
A further obvious complicating factor is that genes rarely act 
alone, and in almost all investigations highly intricate develop
mental pathways exist and require that gene actions be coordi
nated. Even if the linear gene-action models are accepted within 
small changes in gene frequencies in a single physiological sys
tem, inter.ictions among the genes of the mllltiple flystems must 
exist. 

When con~idering even just two loci, the obvious results of the 
one-locus case cannot be generally extended. Not only does physical 
linkage between genetic loci affect selection, but the dual factors 
of epistasis and linkage can fOrm several intermediate frequency 
equilibria when an analysis of the individual loci would not reveal 
that possibility. It is also possible that selection would not maxi
mize fitness as in the single-locus case, and hence that intermedi
ate frequencies for the loci may be stabilized at less than optimum 
frequencies. Hence, in the natural evolution of populations, one
locus analyses may not reveal the reasons for the existence of 
stable, intermediate gene frequencies maintained by selection. 
Thus, not only can selection cause stable eqUilibria, but directional 
selection as practiced by man may be adversely affected. 
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If populations have many mechanisms for continually generating 
variations, they also have others by which genetic variations are 
lost. III addition to directional selection, the accidental loss of 
genes from small populations leads to a reduction of variation at 
least in the local population. The smaller the popUlation, the 
greater the chance that an allele or a genotypic combination of 
alleles can be lost. If theI'e is a 10-percent chance of a gene being 
represented, and only a fe\\' trees are sampled, there is a reason
able finite probability that the gene will be lost in one or a few 
generations. Since many investigations on trees have indicated 
that small population subdivisions exist, even in continuous stands 
(Sal'vas 1963; Sakai 1971), it is possible that sampling variations 
have affected the evolution of variation patterns in many forests. 

In natul'al selection, average selective values may indicate the 
prohabilities of a tree's sl\l'viving and reproducing "on the aver
age." However, anyone tree either reprocluces or it does not, and 
indeed any group of trees with the same selective values may 
totall~' fttil or succeed. Thus, the average statistics are accurate 
only for large populations OL' fo!' many repeated trials of small 
groups. If the relath'c selective values of AA, A'A, and A'N, for 
example, are 1: 1.5: 1, we can expect that an average gene fre
quency of I ~ would exist, and that AA and A'A' would exist in 
equal frequency. However, if only a single small population was 
reproduced, it would eventually be either all it.fl 01' all A'A', with 
no A'A hetel'ozygotes, due to natural inbreeding. AA and A'A' 
would not coexist in the small population. If many such small 
groups were isolated, each would be either AA or A'A', and 
though they might have the same frequency if all groups were 
counted, no .f1'A would exist. Thus, any group of trees classified 
by variety, age clnss, genotype, or alleles may be lost even though 
selection fRVOl'S their survival. 

The accidents of sampling in small populations can thereforE: 
cause more rapid fixation of an allele than might be expected from 
selection effects ,done, In fact, even if an allele is favored by 
selection, it can be lost by 1:cciclent, especially if it initially occurs 
at lo\\' frequency. SimilRrly, the effects of mutation, migration, 
dominance, and epistatic gene actions can be H:' Jdified by sampling 
variations in sl11nll populations. In general, more extreme allelic 
frequencies, fixations of favored 01' unfavoJ'ed alleles, and less 
stable frequencies over populations 01' generations can be expected. 

A balance among the simultaneous effects of selection, migra
tion, mutation, Hnd sampling erroL' is struck in the natm'al evolu
tion of populations, and the gene system itself may slowly respond 
to any changes in selective pressures. For breeding purposes, the 
gene frequencies made Hvailable by the natural processes are the 
raw materials for manipulating future evolution. The limitations 
on selective breeding imposed b~' sampling errors are important 
to consider in deciding how intensIve selection should be. 



CHAPTER 2 

SELECTION THEORY 


Since selection has affected evoiution and can be used to direct 
future evolution of populations, the stud:; of selection and its 
effects has absorbed more interest and effort than any other 
genetic force. Still, the relationship between the choice of a subset 
of all potential parents fol' regenerating future populations and 
its actual effect on changing genotypic frequencies and on eventu
ally changing a population's phenotypic distribution is a complex 
of interacting factors that remains poorly defined. In this chapter, 
we shaH investigate the theories of how selection affects popula
tions and the various parameterizations that have been useful in 
studying the effects of selection. Simple one- and two-locus models 
of classical types of gene actions are very simply modeled for 
cases where such simple actions and environmental factors affect 
phenotypic performance. Since average phenotypic performance, 
which is genotypic potential, is rarely exactly achieved, variability 
causes some difficulty in determining the genol. ve from the 
phenotype. The effects of selection on the basis of phenotypic 
measures are therefore modeled as a probabilistic proc~ss which, 
while inexact, would have an expected change on the gene fre
quency of the selected versus the unselected population. The conse
quent effect on population mean improvements in the short and 
long runs is then examined in terms of the effects of N p (effective 
population size)! heritability, and selection intensity on the 
improvement. In addition, the general breeding methods which 
have been developed in light of their relation to selection theories 
are briefly examined. 

SINGLE-LOCUS MODELS 
\Ve can work most simply with a one-locus genetic modeL In 

classical genetic theory, the only problem in selection forcing the 
population into homozygosis for the favored allele or some pre
fen'ed intermediate frequency is the time it takes to arrive at the 
stable state. In the simplest case in which genotypes can be 
phenotypically recognized and easily distinguished, selection for 
the best homozygote or for an overdominant heterozygote condi
tion is direct and immediately produces the desired population. 
Only under complete dominance would ari "undesirable" allele 
remain in the population but that can also be eliminated by simple 
test crossing and selection. To more exactly determine the progress 
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that can come from selection, consider that generally, each geno
type may have some possibility of reproducing in the next 
generation, From a single genetic locus with two alleles A and A', 
the three genotypes would then have selective values of 1',L4 :1',1,[,: 

l'X,I', respectively, vVe can then define an average selective value 
for the whole population according to the r values and their re
spective frequencies as r=])2'r,lA +2p (l-p) r . .J.,I' + (1-1) )2r,.J. '.1' where 
p is frequency of the A allele, We might also define an average 
selective value of an allele according to the frequency and the 
average effect that it has in the zygotes as: 

1',1 =Pl',.J.o4 -I- (1~p) r,t..J. and ]',1 = In'A,!' -I- (1-1) l' A ',I" 

Thenr=pl'.l";" (1-p) 1',1 =p2rA,4..\.·2p(1-p) 7',4,1";" (1-1))2/',1,4, 

Also, the yariance among the average effects 1',t and 1',4 is 

1)),2.{+ (1-p}r2,t _12, which equals p(1-p) (r.1 -1',4)2, 

\Ve can now analyze the changes in selective values by noting 
that r is a function of gene frequency and 

ir _ (, _, ,) +pdrA +(I-p)dl',4'-- 1A 11 -- ----dp , dp Jp' 

S' dr,1 d dr.!,
Ince dp-=r.lo4 -J'Ao4', an dj) =1',I,4'-1'A',4', 

clr
then dp = (rA- 1',4) +p (1'04,1- r,IA') + (1-p) (1'AA,'-1'A ,d, 

ir
Then -=2 (1',4 -7',4,'),

dp 

Since it is also true l'.at, 

dp dI =1) (1',4 -1') =p (l-p) (1',{ -1'A') , 

we can see that, 

dr dr i/;p
dt = dp df=2p(1-'p) (1',4-1'.4.-)2 

which is simply twice the variance in average selective effects, 

It is particularly interesting to examine the : function, since 

it would indicate the location of potential stationary points where 
p does not change with advancing t, It also indicates that the rate 
of change in frequency and fitness with respect to time is partly 
controlled by the factor p O-p), which is a symmetrical quadratic 
function of p with a maximum at p close to ]h, Hence, intermedi

ate values of p will always force ~~ to be high, and ~ to also be 
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high 1'elative to the extreme values of p, Hence, p and l' change 
most rapidly when p is intermediate and slower when p is close to 
zero or one, Furthermore, if a profile of gene f1'equencies is made 
among loci which have been subject to selection at one time or 
another, the great majority of loci will have moved their gene 
frequencies through the middle ranges and would now be at low 
01' high f1'equency, This implies that selection is most effective on 
genes of intermediate frequency and that we cannot ordinarily 
expect to find many loci kept at these frequencies by directional 
selection, 

However, even the ~f function can be described in terms 

dr 
of dp as: 

and hence the movement of p can also be analyzed in terms of the 
1'elationship between selective value and gene frequency, Since r, 
1'A, and 1'A, are all functions of p, and the three genotypic values 
1'AA, 1',lA', and 1',!'..!", which we assume are fixed, we can describe 
r in terms of variations in 11 for given relative values of the tlu'ee 
zygotic 1"S, 

To see the effects of selective values on changing gene fre
quencies, we can follow several sets of relutions among the 1"S, 

- dr
for r, and dp , since 

r=p1'u L j'2p (l-p) 1'AA' + (1-p)1"!'A,2, and 

dr 
dp =2p (1'AA -2r,IJ'+r,I'..d + 2 {r,Ll'- r,!'.d, 

If, rAJ >r,[,!, >1' A' A' ,then l' increases monotonically with p in a 
form like 

r 

p 




20 

and ~; is a linear function of p in a form like 

df 
dp 

p 

dp p (1-p) dr . 
and dt = 2 dp- IS 

If, rAA <1'AA'<rA'A', the reverse relationships hold for similarly 
scaled r values: 

df 
r dp 

p p 

and 

dp 

dt 

p 
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If, 1'AA <rU'>rA'.{', the r has a stable peak at an intermediate p 
with a maximum to the left or right of p=O,5 according to whether 
rA'.!' is greatel' or less than rAA: 

f 

p 

F 

p 

r 

p 

~; remains a linear function of p but now must be scaled to 

cross zero to the left or right of p=O,5 according to whether rA'A' 


is greater or less than 1'AA. 


Generally, 


dr 
dp 
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and hence 

!!fa 
dt 

p 

In this case we can also notice that if ~; =0, and if we use 

ru=l-s, rAA·=l,1"A·.1.·=l-t; that p= s!trepresents the equilib

rium point for p. 

If rAA>rAA'<rA'.1.', the reverse relationships exist and gener
ally, 

p 
and 

df 
dp 0 

p 
and 

~ 
dt 0 

p 
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which has an unstable equilibrium at intermediate p. 
In all of these cases, the only stable equilibrium, except at p=O, 

exists when r is at a maximum. The last case is the only one in 

which an intermediate P value exists where ~~ =0, but in which 

it is also clear that small displacements of P from that point cause 
the 1) to go either to °or 1. At the equilibrium 1), 1)., and a small 

change to the right makes : >0 and hence forces P to go further 

towards 1, and a small leftward change from Pe makes ~~ <0 and 

hence forces P further towards 0. In the immediately preceding 
case of over dominance, small changes from Pc can be seen to have 

the opposite effect on ~~ and hence to force P back to Pe. 

lt can also be seen at the equilibrium points of frequency ex

cept at p=O, and~~ =0, that if: =p (1'A-10""=P (l-p) (1'A -1"..1') 

that r=1'.i =1',1'. 

If particular values for gene frequency and the 't's are known 
in populations with discrete generations, more exact analyses of 
changes in gene frequency can be made simply by following the 
selective process, one generation at a time. The process involved 
is to find the gene frequency of the generation following selection, 
in terms of the selection and gene frequency prior to selection, 
and to then write the relationship in the form of a difference, or 
recursion equation. Thus, as in the third case as examined above, 
if the heterozygote is favored and rAA =1-8, 1'..1..1:=1, 
1'A'A'=1-t, then: 

Initial Selection Proportions
Zygote proportions proportions after selection 

AA Po2 1-8 Po2 (1-8)
A'A 2po(1-po) 1 2po (I-po)
A'A' (I-po) 2 1-t (I-po) 2 (l-t) 

The A alleles come from the AA parents with frequency Po2 (1-8) 
and from half of the AA' for a total new relative frequency of 

Po2(1-8) +Po(1-po) 
PI Po2 (1-8) +2po (I-po) + (1-Po2) (l-t) 

The A' allele's frequency can be derived similarly as: 

1- = Pa(l-po) + (l-Po)2 (l-t) 
PI Po2 (1-8) +2po (I-po) + (l-Po2) (l-t) 

These formulas can be simplified to: 
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We might note that the change in frequency is: 

Po (l-spo) -Po (1-po) [sPo-t(l-po)] 
Pl-'Po 1-sPo2-t(1-Po) 2 -Po l-sPo2-t(1-Po)2 , 

(l-p) - (1-'P) = Po (l-'Po) [sPo-t(l-'Po)] 

1 - 1-sPo2-t(1-'PoP
0 

For any generation of selection, the change is similarly formu
lated and the A or A' allele can gain or lose in frequency according 
to the sign of sp.,-t(l-Po). If spo is greater than t(1-po) , the 
A' allele gains in frequency. If spo is less than t (I-po), the A 
allele gains. And, if sPo=t(l-po) the change is zero, and from 
this condition, 

sPo+tPo=t 


t s 

Po= s+t' and 1-po= s+t ' 

as previously derived. Other equations for other gene action models 
are detailed in several texts (Li 1955). 

The foregoing selection models assume that each genotype has 
properties which predispose it to given selection frequencies. This 
is a kind of "soft" selection among genotypes in which selection is 
in proportion to genotypic propensities for success. A different 
model of selection is a kind of "hard" selection in which indi
viduals are selected if they perform over a minimal level regard
less of how many may be so selected. In breeding practice, a level 
of phenotypic performance is often determined when genotypes 
cannot be easily distinguished, and any tree exceeding the specifi
cations is accepted for further breeding. On the other hand, if a 
certain proportion of selection is fixed, the breeder is implicitly 
following a "soft" selection procedure. 

If selection thus actually operates on the phenotypic level, as 
is most often the case, then other parameterizations of selection 
probabilities can be made in terms of phenotypic distributions. 
Thus, a commonly used model of gene effects would specify a mean 
effect for a genotype and some distribution of phenotypes ex
pressed for that genotype with a variance ~. The probability of 
selection will differ among genotypes according to the differences 
among the means as well as the relative size of ~ with respect to 
the mean differences. If a2 is relatively large, the selective prob
abilities will be similar, regardless of genotype, while if a2 is 
relatively small, there might be little error in assuming that spe
cific genotypes are recognizable and are being selected. If we 
cannot attach high probabilities of selection to genotypic differ
ences, then we admit a certain degree of error in choosing opti
mum genotypes. Consider, for example, a genotype with mean 
productivity value of 1,000 units and a variance (17e2) of 1,000 
due to various internal and external environmental variations in 
expressing its average productive capacity. If this variance of 
1,000 has no genetic basis, then, of course, selection of the higher 
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yielding trees will yield no genetic gain. If three genotypes existed, 
AA, AAI, and A'AI, with the same variance but with average 
production capacities of 1,005, 1,000, and 995, respectively, then 
the valiation among genotypic effects can be used. Assuming that 
gene frequency q=0.5 and that there is random mating in a large 
population, then the genetic variance is all additive and equals 
UA2=12.5. For the total population which has a mean of 1,000 
and a total variance of 1,012.5, selection of all trees above say 
1,050 would be expected to truncate the population as in figure 1. 

800 900 1000 1200 

Phenotype 
Mo 
'------' s 

Figure I.-A normal distribution of tree values around a mean of 1,000 and 
varian.ce of 1,000, with truncation selection above phenotypic value t. 

Since the three genotypes differ in average effect, however, the 
expected truncation includes different proportions of the expected 
genotypic distributions as shown in figure 2. It can be seen that 

./Total Population 

Figure 2.-Relative numbers of three genotypes from a population with a 
normal frequency distribution of random variations around genotypic 
means generated by additive gene action and gene frequency 0.5. 

while the heterozygote still is relatively heavily represented in the 
selected portion, the favorable homozygote is more heavily repre~ 
sen ted than the unfavorable homozygote. If wider mean differ~ 
ences among the genotypes existed relative to the error 
variance, then the proportions expected in the selected populations 

http:varian.ce


26 

would even more heavily favor the AA genotypes. If the frequency 
of the A allele were higher, then proportionately more of the AA 
would be selected over the AA' and A'A' genotypes, but the change 
in relative gene frequencies may be slower. If only the most ex
h"eme phenotypes were selected, then the relative gain in gene 
frequency would be further increased. Thus, the frequency of the 
A allele is expected to increase according to the mean differences 
among genotypes, their error variances, and the selection in
tensity; and the selection effect on the locus is a function of all 
three factors. Thus, selection has less immediate effect when the 
genetic variance is low with respect to the error variance, and 
progress can be slow even when selection is consistently in the 
same direction. 

Other gene models may be similarly viewed, including domi
nance and extending the models to include cumulative action of 
several loci. For example, if the three genotypes of locus A had 
means of: 1,003.5 for AA; 1,001.5 for .AA'; and 993.5 for A'A', 
and the frequencies were h: 1/~ :1/(., the total population mean 
would be 1,000, but the variance would be 1,014.75, including 
a . .[2=12.5, ar/==2.25, and the error variance around each genotype 
would be ae2 ==I,OOO. The effect of selection can be seen in figure 3 

Fi~ure 3.-Relath'e numbers of three genotypes from a population with a 
normal frequency distribution around ~enotypic means generated by 
partial dominance gene action and gene frequency 0.5. 

to be less discriminating among the alleles than under pure addi
tivity since the relative proportions of A • .:1 and AA' in the selected 
group are more nearly equal. 

TWO-LOCUS MODELS 
Expanding consideration to two loci, a simple additivity of 

alleles within loci and among equally effective loci would give 
average genotypic means of: 

AA .AA' A'A' 

BB 1,010 1,005 1,000 

BB' 1,005 1,000 995 

B'B' 1,000 995 990 


http:ar/==2.25
http:1,014.75
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If q.4. =QB=0.5 and no linkage and random mating existed, figure 
4 shows how the genotypes may be distributed. If equivalent levels 
of dominance existed in both independent loci, the following 
genotypic values would yield the same UA 2 and UD2 at each locus as 
for the single-locus case with dominance as given above: 

AA AA' A'A' 

BB 1,007 1,005 997 

BB' 1,005 1,003 995 

B'B' 997 995 987 


Again, selection can be seen to have similar effect on both loci 
simultaneously, but for the same total selection intensity, there is 
less effect on each locus' gene frequency than for the single-locus 
case. 

I 
01234 

NO. OF ALLELES OR 8 ALLELES 


IN GENOn PES 


Figure -t.-Relative numbers of five genotypic means generated by two loci, 
each with additive gene action and gene frequency 0.5. 

Various kinds of epistasis may now be included in these models 
of mean effects such as complementary dominance: 

AA AA' A'A' 

BB 1,010 1,010 995 

BB' 1,010 1,010 995 

B'B' 995 995 985 


In fact, any kind of mixed dominance conditions which change 
according to the allelic combinations of the other locus may be 
included: 

AA AA' A'A' 
BB 1,010 1,000 995 
BB' 1,010 1,005 995 
B'B' 995 990 985 
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The effect of epistatic actions on changing gene frequency now 
becomes very complicated, since the effect on one locus will depend 
on the changing frequencies of the genotypic state at the alternate 
locus. Furthermore, linkage can cause the frequencies of the 
various genotypes to be nonindependent and variable and, there
fore, would make selection prediction more complicated and in
tuitively more difficult to visualize. Even without epistasis, 
however, the addition of genetic loci can be seen to increase the 
genetic extremes and variances and hence can contribute a larger 
portion to the total variance even if individual gene actions have 
small mean effects. 

NONSELECTIVE FACTORS¥ 
Before continuing with more genetic models and how the effects 

of selection are translated into changes in gene frequencies and 
hence into population means, a few other complicating effects 
should be considered which further inhibit the direct response of 
alleles to selection. One factor is the nature of the breeding system 
with respect to inbreeding. For example, if selection is not precise 
and only a few individuals are chosen or if those chosen are re
lated, then there is some chance that the wrong allele will increase 
in frequency or even be fixed by accident in the breeding popu
lation. Since inbreeding would tend to fix homozygotes in the 
absence of selection, then selection has to be relatively effective, or 
the genetic differences must be large relative to the error variance, 
to assure that the correct allele is going to be fixed. Even if se
lection is for the heterozygote, the pressure of inbreeding towards 
homozygosis can fix an allele by limiting free recombination of 
all alleles. 

The problem of inbreeding and selection in regular mating 
systems (as distinct from completely random mating) may be 
analyzed in the form that Fisher (1965) derived for the long-run 
behavior of inbreeding systems. The analysis carries the proba
bility distribution of zygotes, gametes, or mating types from one 
generation to the next which can be found for any regular mating 
system. The transition probabilities or the probabilities of geno
types or mating types to generate a new array of genotypes or 
mating types in the next generation are influenced by the mating 
system and selection effects or any other factors which may be 
included in the model. These effects can be traced in the eigen
values and eigenvectors of the matrix. In Mather and Hayman's 
(1952) analysis of full-sib mating, for example, if selection was 
for hete;" 6ygotes such that homozygote survival was a fraction, 
1-8, of the heterozygotes, the transition probabilities for each of 

*Graduate-level statistical training required for thorough understanding. 
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the mating types on the left for the next generation arrayed at the 
top would be: 

Generation 1 
Generation 0 AAXAA: AAXAa:AaXAa:AaXaa:aaXaa: AAXaa 

AA XAA (1-8) 

AA XAa (1-8)2
-4

(1-8)
-2

1,4 

AaXAa (1-8)2 
16 

(1-8)
-4

1,4 (1-8) 
4 

(1-8)2 
16 

(1-8)2
-8-

Aa X aa 1,4 (1-8)
-2

(1-8)2
·-4

au X aa (1-8) 

AA Xaa 1 

An analysis of the major roots of such a matrix would then re
veal the eventual stabilities among mating types and hence the 
persistence of heterozygosity. The eigenvectors would reveal the 
expected changes in frequencies of the mating types from genera
tion to generation for any given starting frequencies. Alterna
tively, we may treat the progress of matings as a general stochastic 
process with a fixed Markov matrix and can determine for any 
time value the probabilities that some of the heterozygote (non
absorbing) states may exist (Feller 1951). In a similar analysis, 
Hill (1969) traced the progress of changes in gene frequency 
using transition matrices and determined the probabilities of 
change by assuming a normal error distribution and given levels 
of selection intensity. In one-locus models, he confirmed Kojima's 
(1959a) finding that strong over dominance is required to main
tain genetic variability at a locus under selection. 

For single loci, an alternative mechanism for maintaining inter
mediate gene frequencies is variation in the environments which 
cause genotypic selection probabilities to change over generations. 
If the environmental variations are uniform over the population 
but affect selection over time within generations and are repeated 
each generation, then the net effect of geneotypic differences may 
be determined in a more complex multivariate form, but would 
nevertheless be translated into constant probabilities of selection. 
However, any variations over generations in the life cycle would 
induce variations in the transition probabilities and may affect 
the existence of genetic variations. Even such changes as earliness 
or duration of reproduction, as well as any changes in survival 
probabilities, would affect the relative fitness of genotypes. Then, 
even without dominance in any single environment, it is possible 
that intermediate gene frequency equilibria would be optimal. If 
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environmental variations exist among population subdivisions, 
then genetic polymorphisms may also exist. As discussed in chap
ter 9, populations may evolve stable equilibria under such con
ditions. In terms of single-locus selection in breeding populations, 
there would be little problem if the genotypes could be selected 
for specific ecological or economic environments in each genera
tion, bu t; if there is error in selecting genotypes and error in know
ing the environments which will be faced, then more difficulties 
exist. If environments cannot be subdivided for more uniform 
treatment and single populations must be bred for mixed environ
ments, then intermediate gene frequency optima may well exist. 
For multiple-locus traits, selection can have effects which cannot 
be predicted by simply extending the results of single-locus theory. 
As previously discussed, epistasis can generate several local op
timum points and, with linkage, force populations into permanent 
disequilibria. Even without epistasis, certain unexpected stable 
equilibria can exist. For example, Wright (1935b) investigated 
multiple-locus selection for both additive and complete dominance 
gene actions and concluded that all loci would move toward fixa
tion. Even selecting for an intermediate optimum would lead to 
a mixture of homozygous loci with the average gene frequency at 
an optimum mean frequency. However, Kojima (1959b) showed 
by using a quadratic fitness model that intermediate levels of dom
inance could lead to stable equilibria. Lewontin (1964) later ex
tended these analyses to many loci and also found that several 
loci can be kept in intermediate frequencies with only partial dom
inance operating on a quadratic fitness model. Hence, many more 
complex polymorphisms may exist even under constant selection 
pressures when multiple loci are involved. The analysis of epi
static models in chapter 9 have direct implications for breeding 
theory with multiple loci. 

SINGLE-LOCUS SELECTION WITH PHENOTYPIC 
VARIANCE AROUND GENOTYPIC MEANS 

When error is involved in observing and selecting phenotypes, 
some additional complications to the immediate effectiveness of 
selection occur, depending on the distribution of the errors. 
Genetic effects can be modeled in much the same way as the effects 
of soil fertilizers or other site factors on tree yields. In a soil 
fertility experiment, variations in the yield (Y) of the kth tree 
(Yk ) might be ascribed to, say, potassium Xl or nitrogen X~, 
and the interaction Xl!!' In a linear or additive effects model, yield 
would depend on the summation of all effects which operate on 
the tree, including an error term for uncontrolled deviations, Ch: 

Y;.:=,u.+X1 +X!!,l-XI2+ek. 

In such a model, the effects determine the direction of the tree's 
performance from the mean. Similarly, for the alleles at a single 
locus, the variations in yield can be ascribed to effect of each allele 
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(al and a:J, and the interaction a12 : 

Yk=}.I.+al +a!!+ 1l 1!!+ek' 

Since effective selection requires the existence of variations in 
yield and since yield depends on site or genetic factors, it is the 
variations in site or genetic effects \\'hich determine the potential 
gains. Variation in yield due to variations in fertilizer effects can 
be measured as a variance and is designated as a rr;J,2 even though 
it is a variance in Y due to X. Thus, 

as given in chapter 1, where the X is actually the effect of X on 
the Y measure of yield. Similarly, the variance due to genetic ef
fects is designated by (Ta!! and rr{j2 and depends on the frequency 
with which those allelic combinations occur as well as on the 
size of the effects. 

Using the definitions of gene effects given in chapter 1 where 
the effect of the genotypes AA:AA':A'A' was measured in terms 
of u (the difference between AA and A'A') and au, (the deviation 
of AA' from the midpoint between AA and A'A') I the additive 
genetic variance was given as: 

rr.12=2q (l-q)u2 [1+ (1-2q) aJ 2. 

Using the average effect of the alleles as the (L'S given above, the 
average effect of an 11 allele (a,l) is: 

Clol=u(l-q) [I+a(I-2q)J, 

and the average effect of an A' allele is: 

a.l= -uq [I+a(I-2q)]. 

Then, since the frequency of A is q, and the frequency of A' is 
l-q, the variance of the average effects is: 

qa2 + (l-q) aa2 =q (l-q)u2 [1 +cL(1-2q) J2. 
This is exactly % of the additive genetic variance, rr.l!!' 

From this simple linear model of gene effects and environmental 
variations, the genotypic mean is defined in tern1s of the Cl and a 
effects. Then, the probability of the genotype being selected is 
defined in terms of its having those alleles and the phenotype 
such that it is included in the selected population. From the array 
of probabilities of each genotype belonging to the selected popu
lation, the expected distribution of selected genotypes is derived 
in terms of the genetic variances. From this same array, random 
mating among those selected is then derived and the mean gain 
of the progeny is sho\\'11 to be well approximated by the familial' 
s X heritability formula. The assumptions involvecl in the deriva
tion are noteworthy. 
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GRIFFING'S EXPECTED-GAIN FORMULA 
Using the above model of gene effects,assuming that the allelic 

frequencies are Pio in the initial generation and using 

dil=al+Ct/+8uo, 

the population mean at the original time (0) is: 

p.0=~ Piopldljo, 
ii 

and Ct!o=~JPlduo. 

In the standard definitions of linear effects, the additive genetic 
variance is : 

and the dominance genetic variance is: 

UD2=~ p,Op/8iJ2. 
""J 

As pre"iously described, Ct! is the average effect of allele i, CtJ is the 
average effect of allele j, and 8" is the effect of the dominance de
viation due to the interaction of the i and the j alleles. The effect 
of selection can be described in terms of the probability that a 
particular iXj genotype will be included in that part of the pop
ulation which is selected to be the parents of the next generation. 
Once the probability is determined for each genotype, the prob
ability distribution can be determined, and from any such distri
bution the mean can be computed. This is the analytical strategy 
we follow. 

If the genotypes are not directly observable, then selection would 
phenotypically resemble the truncation type shown in figure 1, 
and the effect on the three genotypes generated by one-locus vari
ations would resemble the type shown in figure 2. The probability 
of selection would be proportional to the value of dlj, increasing 
for high values and diminishing for low, and would be inversely 
related to the total phenotypic variance u2 which is the sum of ue

2 

and genetic variations and hence includes all genetic and environ
mental sources of variation. The probability of selection is ap
proximately: 

Pr (select i,j) ='lJ (1+ ~ Xs) 

where v is the proportion selected, and s is the difference between 
the mean of the original population and the mean of the selected 
population. Since v is a constant for the population, the relative 
selective value of the i and l' genotypes is: 

1+ ~ Xs, 
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.. 


Therefore, the expected relative frequency with wh.ich the particu
lar genotype occurs in the selected population is: 

du )plpl (1+-;?8 . 

Given this relative frequency of genotypes in the truncated por
tion, the weighted mean value of the selected, truncated popula
tion is: 

d;, 
~. plpl (1+78 ) diJ 
tJ 

=~ p,oPldlj+ ~ ;p,oPldlI, tJ 


8 

=O+7ua2 

where ua2 is the total genetic variance. 

Hence, the expected mean genetic value of the truncated population 
before any mating or recombination of these potential parents is 
8 X broad-sense heritability, because ua2 is the total genetic vari 
ance and u2 is the total phenotypic variance, including all genetic 
and nongenetic sources of variation. 

If mating is now made among the selected parents, randomly 
with respect to genotype, these parents will leave progeny in fre
quencies determined by their own altered genotypic frequencies. 
Assortative mating within the selected group invalidates this as
sumption. The new L.xpected gene frequency p? for allele i is de
termined by the probability that the different carriers of the i 
allele are included in the selected parental group and would be: 

do,
p,l='2.JP,oPl (1+ ;8) 

8 =p,o (1+-0, (X,)
u

8=p,o+_.,p,0(X"
u-

We now have a difference equation relating gene frequencies for 
two generations. If mating is at random with these new gene fre
quencies and the number of selected parents is reasonably high, 
the progeny generation will have genotypes i and j according to 
the Hardy-Weinberg frequenciet: 

'2.p,lp/. 
i; 

For just two alleles, this is: 

(pl)2: 2p,1 (1-pn: (1-PI1)2 



34 

and hence the mean of the progeny population is: 

(PI1 )2dli+2p? (l-pll )dlj+ (l-p?) 2 d;i' 

In terms of the allelic frequencies in the original population, the 
frequencies for this popUlation can be generated by the combi
nations: 

(p,o+~,Oa,) (Pl+~/aj)
(r a

and can be grouped as: 

for the ii genotypes, 

2[P,oP/+ ;P;oP/ (a,+aJ) +( ::! rPlOp/alai} 

for the ij genotypes, and 

( 0)2+( S ° )2+9S ( 0)2Pi a2Pi ai, ~ a:! Pi al, 

for the if genotypes. MUltiplying these frequencies by their dij 
values provides a progeny population mean: 

Substituting al+ ai+8lj for dlj, 

summing as indicated, and using 

2:SPla 12 = a,(2, 

we derive 

(Plogeny_ ) _ a2 a.12+ ( S ):!"W ° o(a.al)da2p. -0 + s ""7 PI Pi ii-

Then, if the last term's products are small, a good approximation 
to the progeny mean is: 

S 
p. (progeny) = a2 a,!2=S X (narrow-sense heritability). 

HERITABILI1'Y 
Griffing's derivation, as outlined above, gives flesh to the re

lationship between the genetic and phenotypic variances and the 
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progress in the population mean from selection. The change in 
the genotypic frequency array is the direct effect of selection 
which, in turn, affects gene frequencies of the parents and the 
genotypic frequencies of the progeny population, and, consequently, 
the new population mean. Since all of these changes can be written 
in terms of the gene-model effects {ad and gene frequencies, the 
change in population mean is a product function of the gene 
effects and frequencies. In addition to the genetic variance, there 
is a selection differential multiplier and a total variance divisor. 
The ratio of the additive genetic variance to the total variance 

is called the narrow-sense heritability and is a useful statistic to 
describe relative amounts of additive genetic and nongenetic 
sources of variance as well as to predict gain from simple selec
tion procedures. 

The selection model thus far considered is a simple method of 
recurrent selection in which individuals are selected without re
gard to the existence of infOl·mation on relatives or coancestry, 
and are simply random mated. We develop more complicated 
models in chapter 3. The genetic model is for one locus; however, 
if the trait under selection is affected by several independent loci 
without epistasis and without linkage, each of small effect, the 
selection effects may be summed over loci and the same formula 
would predict one-generation gains for the accumulated action of 
all loci. As long as the genes operate in approximately the same 
manneT and the individual gene frequencies do not change dras
tically for several generations, the predictions will hold for each 
new generation cumulatively. With many loci of small effect, it 
is reasonable to expect that the total variance may be quite large 
due to the accumulated genetic variances at each locus. If the se
lective action at each locus is such that only small changes in 
frequencies occur on each of many loci, however, the net gain in 
effect can be large. Hence, continued gain can be obtained in se
quential breeding generations as long as some loci continue to 
contribute useful genetic variance. In this sense, substantial gains 
can be accumulated and the genetic sources of improvement hence 
can represent something of a renewable resource for gain if man
aged in such a way as to preserve variation while still accumulat
ing gain. 

SELECTION DIFFERENTIAL 

In populations with traits which have a normal distribution, 
the mean difference between the original and selected parents, 8, 
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can be computed in terms of the proportion selected very easily. 
The mean of the new parental selection is: 

00 00

Jxf(x)dx+Jf(x)dx 


t t 


where x is the phenotypic scale, t is the truncation point, and 
f (x) is the probability density function, and in the norrral distri
bution, 

e-x2 / 2 


f(x)=-=

y'27l' 

for a population scaled to a mean of zero and variance of one. 
Integrating the numerator by using the substitution u=x2/2 gives 
us: 

e-t2 
/2 

' 

y'2 r. ' 

which is the height of the ordinate of the normal curve at the 
point of truncation. Distribution functions other than the normal 
can be directly evaluated or approximated on computers to give 
the relationship between the truncation point, proportion selected, 
and the selection differential. The denominator is merely the pro
portion selected and therefore the mean, taken as a deviation from 
the original mean, is zip, where z is height of the ordinate of the 
truncation point, and p is the proportion selected, for a standard
ized phenotypic variance. If the phenotypic variance is not stand
ardized, then s= (Z/p)a, where the phenotypic variance=~. It is 
sometimes useful to distinguish between the standardized selection 
differential, which is often called the selection intensity i=z/p, 
and the nonstandardized selection differential s=ia, which is the 
difference as measured in the scale of the original units of meas- .. 
urement. This selection differential, s, is thus the difference in 
means between what we started with and what we have chosen as 
parents of the new generation and represents the amount of change 
we "reach" to achieve. 

GAIN . 
Because the phenotypic variance ~ includes nonadditive genetic 

and error sources of variation, hvwever, only a fraction of this 
"reach" is actually achieved. The fractional achievement expected 
under the simple breeding scheme given can now be seen to be 
the proportion of the total phenotypic variance which is due to 
additive genetic variances aA2+~, which is otherwise known as the 
narrow-sense heritability. This stands in contrast to the gain 
achieved in actual parental genotypic mean values for which the 
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fractional achievement rate is ua2 + a2 and includes all of the non
additive genetic effects in the numerator. 

These concepts of gain have also served as the basis for much 
plant and animal breeding theory for large-population sizes. For 
traits affected by large reservoirs of additive types of genetic 
variance, they have served very well. For many species of plants 
and animals, the various modifications of the theories have re
liably predicted genetic gains (Sprague 1966; Allard 1960). How
ever, the models are extremely naive in their assumptions of steady 
gene frequencies and genetic and phenotypic variances and in their 
exclusion of obviously important genetic effects. For example, 
genes do not all act in small increments. Some must change fre
quency as selection progresses, they do occur in linkage groups, 
and they undoubtedly have some forms of epistatic interactions. 
In addition, dominance effects can lead to inbreeding depression 
(Kojima 1961) and asymmetrical responses to selection (Curnow 
and Baker 1968). While some experiments may tend to confirm 
the general adequacy of Griffing's (1960) theoretical estimates, 
the asymmetry of response to selection and lack of continued gain 
in other experiments could be due to any of several factors. If the 
genetic variance and gain from selection are due to few alleles 
of large effects, the above approximations can be quite inaccurate 
as these major loci become fixed (Latter 1965). 

It is also clear that anyone selection trial samples different sets 
of individuals and may therefore start with a distribution of geno
types, other than what may be expected on the average. In small 
populations, the genotypic distribution and its concomitant mean 
and variance measures may therefore vary from trial to trial. 
Also, since genotypes are obsel'ved with some error, the actual 
selection differential can vary widely for any given genotypic dis
tribution. The above measures are therefore good only for large 
population sizes but serve as predictors of average results. 

POPULATION SIZE 
Among the more serious difficulties in accurately predicting 

gains from selection are the effects of popUlation-size restrictions 
on changing gene frequencies. Whenever selected populations are 
restricted in size, there is some chance of losing an allele otherwise 
favored by natural 01' artificial selection, even with simple additive 
gene effects. When consideration is extended to several loci, the 
chance loss of potentially valuable alleles can severely restrict the 
size of the potential gain. Since it is generally assumed that no 
single tree possesses all of the desirable alleles fOl' all traits si
multaneously, ultimate progress requires that several genotypes 
be used in the breeding population to assure the presence of at 
least most of the useful alleles in the breed. Thus, if we had six 
equally effective and independent loci with simple additive effects, 
the following array of 10 genotypes may exist as randomly drawn 
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with gene frequencies 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6: 

Locus 
Tree Total plus alleles 

1 2 3 4 5 6 

6A + ++ + + + 

+ +B 3+ 

+C 1 

+D 4+ + + 

+ + +E 4+ 

+F + + 3 

+ +G + - + 4 

+ + +H 6+ + + 

+ +I 4+ + 

+ + +J 7+ + + + 
Total plus 


alleles 2 4 6 8 10 12 42 


In this sample of trees, the best genotype is J and its selection 
would assure a good chance to eventually get an all-plus breed 
but would not, by itself, give llS all of the best alleles. In addition, 
with some error in observing true genotypic values, there could 
be only a slightly higher probability that tree J is chosen, and not 
tree H, A, or G. If the random error has a large variance relative 
to the average genotypic differences, the difference in probability 
of selection between trees J aud C may be quite small and hence 
C may be picked over J amost as often as J over C. In that case, 
or in case some mixture of trees is chosen, some good alleles will 
be lost in spite of the gain in frequency of good alleles which might 
generally be expected. Therefore, limiting the breeding population 
can limit progress even without dominance or inbreeding depres
sion. Many forest tree breeding operations appear to have popu
lation sizes that are too small to permit continued breeding 
progress for more than a few generations. With few parents, the 
subsequent generations will be generated from relatives with 
increasingly similar ancestral lineages. The number of independent 
genotypes among the parents must then decrease. Thus, the proba
bility of accidental gene loss would increase even if the physical 
number of parents remained the same. Relationships among the 
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parents decreased the effective popUlation size (Ne) as further 
detailed in chapter 3. The population size useful for computing 
probabilities of accidental loss of alleles is N., which is usually 
smaller than the number of parents crossed. On the other hand, it 
is intuitively obvious that greatest progress is expected by the 
most intensive selection and the consequently greatest reduction 
of breeding population size to only the very best parents. The di
lemma, therefore, is how to maintain both a large population size 
and a large selection differential. The problem is most easily stated 
in terms of the special effects of stochastic variation in small pop
ulations as discussed in chapter 9. For a large number of inde
pendent genetic loci affecting a trait under selection with simple 
types of gene actions, we could first determine the probabilities of 
loss of favorable alleles and then consider more complicated models 
incorporating migration, nonadditive gene action, etc. \Ve return 
to the applied breeding implications of this dilemma in chapter 3. 

DIFFUSION MODELS FOR SELECTION 
First, considering a simple diffusion process, the effects of se

lection are assumed to be such that a constant pressure for a 
directed change in gene frequency exists. vVe can easily conceive 
of gene-action models where this is not so, such as if dominance 
exists, or even as we developed for Griffing's approximations, the 
change in gene frequency: 

8 
])!1_ p,Q::: pt-;-;-a" 

u

is a function of at ancllJ,". ~everthelessJ for small changes in gene 
frequency and effects, and without dominance, a selection pressure 
on an average change in gene frequency of x may be a reasonably 
good approximation. In Kimura's (1964) notation, an additive 
gene-action model entailing the following probabilities of selec
tion would produce an average change in gene frequency of 
~]J (1- p), where ~ is the difference in the probability or expected 
frequency of selection against A'.ti' and for AA. The effect on the 
zygotes is expected to be: 

(1 ~>-1/.4/: (l)Arl/:(lT~)A_ ..L 

ThD.t is, from the expected change in gene frequency on a con
tinuous time scale: 

dp I
df=P(1-P) (r.l-rA), 

where r is the relative fitnesses of the alleles, the mean change in 
gene frequency, J}, is :;/1 (1-])). If the variance in gene frequency 

. ff tIl J b' . I I' ]J 0-]) , tllen t'heIS a· ec ec on Y Jy momla samp lIlg error --'2\-;
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probability of fixing the favored allele A is: 

l_e-4N.tpo 

UPF l-e -4N.t ' 


where Po is the initial gene frequency, and where N. is the effec
tive population size. As pnlViously suggested, several simplifica
tions on the formulas can elucidate some relationships among the 
variables, Po, N e, and t. For example, if N.t=O, then the limiting 
value of UPF is Po, which is intuitively satisfactory for the case 
when selection is not practiced and gene frequency is allowed to 
drift at l'andom. In the case of selection, however, with N.t>O, 
then UPF becomes a function of Po and the product 2N.tpo (I-po), 
as well as other terms of smaller size. 

The distribution function for the whole range of gene frequen
cies under additive gene action reduces to: 

ke -4N.tp 

p (I-p) 


which has peaks at high and low gene frequencies and can be 
skewed to either end by the effects of selection. This results in a 
J-shaped curve increasing the frequency of the favored allele and 
its probabilities of fixation over the alternate allele. 

Using a model with overdominance as: (1) A'A': (1+0A'A: (1) 
AA, the frequency distribution function can be derived to be: 

ke 4Netp (l-p) (Li 1955). 

1J(1-p) 


In this form of the gene frequencies, the intermediate frequencies 
enjoy some greater weight; but the extremes still occur to providf' 
a profile as: 

p 

In addition, the joint effects of selection and the various effects 
of population size, migration, and mutation rates can be jointly 
determined for some simple genetic models. As previously outlined, 
migrations 01' mutations may introduce genes into a population 
at a rate which may either reinforce or act against the effects of 
selection. In small populations, all effects are further modified 
by the tendency of genes to become randomly fixed simply by 
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::5flmpling error. Variations in selection coefficients can also produce 
a tendency for fixation as analyzed by Levins (1968). If stable 
gl}'ne frequency distributions exist for genetic models with con
stant selection coefficients, then variances in the coefficients tend 
to destabilize them. If the variations in the selection coefficients 
exist in correlated series, however, the variance effects would be 
ameliorated and populations may behave in cyclic patterns. 
On the other hand, with moderate directional selection and ad
ditivity, variance in selection can induce more stability in inter
mediate gene frequencies than if selection was consistently in the 
same direction. 

The general difficulty that restrictions on population size may 
impose on selection advance is the random fixation of alleles which 
may not be the favorable ones. Thus, even without considering 
epistasis or inbreeding depression, the loss of good alleles can be 
a serious problem, especially for long-term prospects of accumu
lating maximum improvement, on the basis of cumulatively im
proved breeding population. Indeed, in the long run the breeder 
will always face the possibility that by restricting population size, 
he will not have the kinds of genetic variations available for fur
ther improvement that he would like. When economic, ecological, 
01' environmental changes occur, he would either have to develop 
at least some new unselected genotypes with an otherwise less fa
vorable collection of alleles in order to introduce new variants for 
recombination and selection or else he would have to be content 
with his limited gains. Thus, the immediate breeding problem 
is how to compromise his selection program between the maximi
zation of immediate gain by the highest selection intensity and 
lowest Xe as against the maximization of long-run gains by some 
partial relaxation of selection in the breeding population. The 
long-telm problem for the breeder is to develop population mix
tures which will permit him to continually develop variations 
without excessively sacrificing general fitness or economic value 
of the breeding popUlation. The additional problem of develop
ing populations for short- and long-run objectives when the physi
cal and economic environments are changing in uncertain ways is 
a further problem we postpone to chapter 4. The problem consid
ered here is the effects of selection on populations assuming some 
known direction. It is, therefore, the genetic problem of response 
of a population of organisms amI not the economic one of the value 
of the response. 

The application of diffusion-process approximations to the ef
fects of selection, as proposed by Kimma, was significantly 
advanced by Robertson (1960), who considered the ultimate prob
ability of fixation to be a good criterion for judging the long-term 
effects of selection. Only the simplest genetic models of additive 
gene action, no migration 01' mutation, and independent loci were 
initially considered, though subsequent research has amplified 
the effects of those forces. The distributions are derived fo]' either 
a large sample of genetic loci which together affect a trait in a 
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single population or for n large sample of populations \\-ith a single 
locus displaying the expected distribution of allelic frequencies 
among the population. It seems clear that other measutes of good
ness might also serve particular needs incJucUng measures such 
as ske\\'ness, degree of heterozygosity, duration of allelic varia
tions, etc" which may give additional information on rates of 
selection advance. Nevertheless, the probability of fixation is a 
useful measure which contains much of what breeders are inter
ested in. \Ve shall consider the probability of fixation, n(q), as the 
expected proprtion of equh-alent loci which would be fixed in a 
single population or as the proportion of sampling populations 
which \\'ould have the favorable allele fixed. 

As previously noted, without selection, .vr~=O, and the solution 
of the Ii «(j) equation is a function only of {fo. the initial gene fre
quenc~-. Any low initial gene frequency thus has a proportionately 
low probability of fixation. a 0.5 initial frequency may go either 
way, and a high qo will have a high Drobability of fixation by ran.. 
clom events. With positive selection for the allele, (fa, the 1L (q) 
function increases approximately as a function of q (l-{f) XeS' 
Therefore, II (q) is dependent on the quadratic function q (l-q) 
for any given S,:: level, and the change is most rapid in the in
termediate gene-frequency ranges. The relationship between Ii (q) 
and S,;: is charted in figllre 5 for seven levels of (/'/. If dominance 
exists, somewhat differently shaped curves l'e1';ult as the change 
{{(q)-q function is approximately (2/3),Y,s(1-q:!) when selection 
is for the recessh'e allele. Fl'om these figures it j1'; clear that high 
initial frequencies of ftworable alleles present little problem in 
maintaining them in the selected population and of ultimately 
eliminating the alternate alleles. Those alleles which Rtart at low 
frequencies are rlifficuit to advance and are easily lost, especially 

Fig-lire 5.-'rhc chancc of fixation or a gcnc acting additively. Thc curvCI'! arc 
dr.'awn fur differcnt initial gene frequencies. (Hobcrt.son 1960) 
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at low Nel;,. Both Ne and l;, at high levels are therefore necessary 
to ensure against the loss of useful alleles. The speed with which 
the frequency of favorable alleles is fixed is also a function of N. 
and C. The time required for % of the total guin to be achieved is 
approximately Nel;,q (l-q), and therefore maintaining large No 
and (: will also assure rapid progress. 

If favored alleles exist at low initial frequencies, however, it is 
clear that periods of inbreeding or any reduction of the effective 
population size in the early generations can strongly reduce long
term gain potentials by eliminating alleles before selection has 
increased their frequency. Thus, in figure 6, the restriction of 
popuiation size is shown to be always debilatory. However, if 

o 2 4 6 
N8 

Figufe G.-The effect of various treatments on the curve of chance of fixation 
against Nr for a gene with initial fl'equency of 0.3. 'rhe treatments are 
three generations of (a) selection ~vith r = 0.4 in a largf~ population, eb) 
restriction of effective population size to 5, and (c) selection with r = 0.4 
and effective population size 5.0=original. (Robertson 1960) 

alleles are suspected of initially being at low frequencies and a 
high Net can be initially maintained, then the initial frequencies 
can be advanced and less restrictive breeding procedures would 
be allowable in future generations. Thus, if initial selection can 
advance low gene frequencies into the intermediate range, con
siderable safety against accidental loss of alleles is assured. Nev
ertheless, as seen in figure 7, if the initial selection requires a loss 
of No, those early restrictions in N r are always detrimental, es
pecially for alleles at lower initial frequencies. Thus, previously 
unselected populations require large initial efforts to attain large
Net:. more so than previously selected 01' partially improved breeds, 
although all popUlations respond better to selection with high Ne. 
In tree breeding, high N p is likely to be required to compensate 
for low and possibly variable l;,. 
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Figure 7.-The effects of "bottlenecks" in population size on the curve of 
chance of fixation against calculated for initial gene frequencies of 0.1, 
0.3, and 0.5: (a) initial population, (b) restriction to a single mating for 
one genet'ation only, and (c) restriction to a single mating for three 
consecutive generations. (Robertson 1960) 

In terms of phenotypic gains, the , used here is equivalent to 

Griffing's 8~1 and we can compare the relative effect of having 
a'" 

a few alleles of large a, effect versus more alleles with small a, ef
fects if the total effect of the genes is the same for both systems. 
Robertson (fig. 8) finds that for initial frequencies of 0.5, the 

l-__________________--1ULTlMATE 

__--==-==~ LIMIT 

2010o 
NT 

Figure B.-The expected limits to artificial selection in a population in which 
all genes have initial frequency 0.5 and in which the possible advance is 
contributed equally by genes with a/a = 0.1, 0.2, and 0.5, respectively. 
(Robertson 1960) 

larger effect (larger selection coefficient) genes, although fewer 

in number, contribute most heavily at lower values of N!Le]J • 
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Only at high Ne ~ values do the less heavily selected alleles, but
1) 

at more numerous genetic loci, contribute as much. Similarly, com
paring low versus intermediate initial gene frequency loci of equal 
effect, the lower frequency loci contribute significantly only at the 

higher Ne .!.... levels since the lower frequency alleles are more 
p 

easily lost. Thus, N; affects the relative importance of factors 
which otherwise would be considered of equivalent merit. 

These basic concepts of course involve many simplifications, but 
they have provided a basis for considering the effects that such 
factors as linkage, dominance, changing genetic variances, and 
genetic backgrounds can have on the general progress from selec
tion predicted in these models. In addition, many approximations 
involved in the derivations are not justified, as noted by Robertson 
(1960). Hence, alternate derivations and independent tests of the 
l'esults have been used to determine the adequacy of the models 
and to propose new, more comprehensive and more exact models, 
While Ewens (1963) found little error in the diffusion-equation 
approximations for an additive gene-action model at very low N e, 

other effects may distort the expected results. More exact analysis 
of selection effects, such as derived by Hill (1969), is instructive 
to describe for its explicit statement of assumptions. 

OTHER PROBABILITY MODELS 
FOR SELECTION:to 

The first major objective of Hill's (1969) analysis is to derive 
the probability that each of the A'A', AA', and riA genotypes is 
represented by <.:~;actly nl, n'J" and 123 individuals (nl +n2+n3=N) 
in a new populatIOn when they were originally represented by ml, 
?n2, and m3 individuals (ml +m2+lna=M) in the parental popula
tion. \Ye do this for all possible combinations of 1'/,1, n2, and n3' 
From these probabilities, we can then compute the changing geno
typic and allelic frequencies for the three types, or more generally 
for any of g different genotypes in any multiple allelic series. We 
do this for one generation at a time; assuming that the error 
variances clo not change, and further assuming that these proba
bilities are independent of 11, ancl ill, levels, we can use matrix 
methods to project future population behavior. 

Since the truncation point is determined by selecting the top N 
out of the M potential parents, we cannot be sure where the trun
cation point will come in the rankings of each genotype, nor where 
in the entire phenotypic range it may fall. One way to compute 
those probabilities is to determine the exact probability that the 
point of truncation 'will produce 1h of the first genotype and 1l:! of 

'Grnduale-Ievel statistical training required for thorough understanding. 
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the second, etc. Since each genotype would have a slightly different 
distribution (fig. 2), the relative probabilities of representation in 
the selecterl population change according to where the truncation 
point falls and the varhms distributional differences. The proba
bilities of obtaining nt, n2, and na, given ?nt, in!!, and 111;1, can be 
obtained by looking at the mutually exclusive events; that the low
est ranked selection is of genotype 1, and 11.1-1 are higher, and n::! 
and 1L3 of the other'ypes also rank higher; that the lowest selected 
is of genotype 2, fI.nd n!!-1 are higher, and iLl and n:1 also rank 
higher; and that the lowest selected is of genotype 3, and n;!-1 are 
higher, and nl and it!! also rank higher. These probabilities can 
be derived from order statistics and for the first kind of.event are: 

PI'( H t of g'enotype 1 are selected, and the lowest ranked 
selection is of genotype 1 given In[ to choose from) 

?HI! [ Jl1~l-nl[ J1L1-l= ( 1) f ( ) I F1 (;r) I-F t (x) It (x) d:c
n[- . 111'1-11 [ • 

where f [ (.r) is the probability density function for genotype 1 and 
Fl (x) is the integrated form of II (.1:) or the cumulative distribu
tion function for genotype 1. 

PI' (n!! of genotype 2 are greater than truncation individual 
nt!!) 

..cc __ ~_I_?n2 ~ -[Fd:r) J Jn2-n2[I_F2 (.1:)Jn
2 


n2' (m:,;n2) ! 


PI' (H3 of genotype 3 are greater than truncation individual 
'Ina) 

nh ~ [ JIn;I-H;l[ JI1:1 
'-n;T(II!:I-ll;T~ F3(·r) I-F3 Cr) 

Since these are order statistics and are all independent, the 
probability for the flrst kind of event is the product of these 
probabilities. 

The second kind of event puts genotype 2 in the position of 
having its lowest ranked selected tree also representing the lo\vest 
ranked selected tree for all genotypes, and this joint probability 
requires only switching notation between 1 and 2 in the above 
equations. 

The third kind of event is similarly treated, and jf a multiple 
allelic series exists, any other genotypes can be similarly handled. 

Since each of the kinds of events are mutually exclusive, they 
may be summed for all types of events, each event's probability 
being the product of fJ terms. For three genotypes ({J;;c:3), the 
probability of obtaining 1/.1, n!), and 113 from a given set of lnl! m~, 
and nt3 trees when the truncation point is at .1' is: 
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2 

n1-1 m , I [ ] m1-n1 [ ]I F (x) l-F1(x) fl (x)dx 
(n -1) ~ (m 1-n 1)! 1

1
I n

2 2m2' 
X [F (X)] m -n [1-F (X)]

~ (m2-n.,)! 2 2n2 

m3'
I [ r,-n, [ 1n3 

x Fg(x) l-Fg(x)
n3! (m3-n3) ~ 

I [ r-nz n2-1m2'+ F2(x) [ l-F2 (X)J1 f 2(x)dx(n -1)! (m2-n2) ~ 2

n1 [ 
n lml' 

X 

I [ rF1(x) 
1- l-F1(x)1nl ~ (m1-n l)! 

] n3 

X 
, 

I 
[ r,-n, [

I m3, F3(x) l-F3(x) 
n ,(m -n ),

3 3 9

I ]n 3-1
m3' [ r,-n, [+ F3(x) l-F3(x) f 3(x)dx

(n 3-1)! (m 3-n3)! 

[ r-n1 
ml' 

I 

x F1(x) l-F1(x)[ ] 
n l 

n 1 ~ (m 1-n 1 ) ~ 

I z nz m2, 
x F2(x) l-F2(x)[ r r- [n2! (m2-n2 )! 

Since the truncation point x may actually occur over the whole 
range of x, 've can sum 01' integrate over all x values to determine 
the transit-'m probability of going from rnl1 m2, and ma. to 11\. "112, 

and n3, and by the gathering of appropriate terms we can in gen
eral write this Pr(n!, n2,." ng I /nll 1n2,'" m9) as: 

!i§l (~~)[F'(X)rrn'[ l-F,(x) ritnJ[ l-FJ(x) r!J(X)dX 

The equations are exact for the transition from m to 12, and the 
only remaining problem is how to get the probabilities of transi
tion from n in a population of trees to a new n in the new popula
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tion of trees. That is, starting with a parental array n[O], they mate 
to produce a new and presumably larger progeny population of 
m[O] from which we select a new parental population of n[l]. The 
above transition probabilities give us the probabilities of nEll, given 
the ?n[O] or Pr (n[l] ! m[O]). We wish to determine P?· (n[l] I n[O]) 
and this can be determined by P1·(n[l] I m[O])XP'r(m[O] In[O]). The 
last probability distributions to consider are therefore the Pr (m(O) I 
n[O), which are determined by the mating patterns used among 
those selected. Assuming random mating of the nCO) trees simpli
fies the detennination of Pr (m(O) In(O), but any mating pattern 
may be pursued to give the probabilities. The product of 
P1· (m(O) I n[O]) with Pr (n[l] Im[O]) can then be formed to give 
Pr (n(l) I n[O) . The simplification that the random-mating assump
tion affords is that m[Ol is completely determined by the gene fre
quency (under the Hardy-Weinberg law). If the gene frequency 
in the n[O) population is Po, we can determine m[O] as: 

P02: 2Po(1-Po)2 : (l-po) 2 

or in terms of numbers of alleles: 

_ 2nl (0) +n2[0] _ i 

Po- N[O] - N[O]· 


Given these frequencies, the probabilities for the generation of 
m[O] are multinomially distributed: 

2m 
P1·( m[O] 1n[O]) =Cnl?~2mJ(1)0)~ml[2po (l-po)Tn2 

[1-po ] 3 , 

or =( M )(~)2ml[~(1_~)Jm2[1-~J2m3
mlm2m 3 2N N '2,N 2r-.; 

Since this is a function only of i for any given constant population 
size N, we can determine PI' (n[l] : n[O]) for all combinations of n 
vectors and for the complete tntnsition matrix for a given N. 
This matrix, P, can then be iteratively applied for any consistent 
mating system and the nature of the ultimate results can be de
termined in terms of its roots and eigenvectors. 

The method is generally applicable, and some simplifications 
are possible with further assumptions on the form of the different 
Fdx). Hill's (1969) results indicate that for alleles of small ef
fect, and independent loci, N may be as small as 8 before the 
diffusion-equation approximations are bad. The larger the average 
effect of an allele is with respect to the variance (a;! fI close to 1) , 
the worse the approximation can be. However, the diffusion ap
pl·oximations cannot be considered poor for these limited models. 

The other infinite model approximations as used by Griffing 
(1960) to predict response require that gene effects, as a ratio of 
fI2, be of small magnitude, and Latter (1965) has shown that genes 
of large effect can lead to much larger or much smaller gains than 
predicted as well as to differential amounts of change according 
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to the direction of selection. Linkage can further restrict the use
ful genetic variations and reduce total response to selection, but 
the effects of restricting population size may outweigh those of 
linkage (Latter 1966). Similarly, an additive gene-action model 
on linked loci showed relatively little effect of linkage on response 
to selection except when differences in gene effect are large and 
when one locus may affect the probability of fixation at the other 
(Hill and Robertson 1966). However, some genetic variances do 
change as gene frequencies change in some predictable ways (Nei 
1963), and epistatic effects do occur, influencing selection response 
as allelic frequencies change. If such conditions as epistasis do 
exist, then linkage effects can become important and gain esti
mates by Griffing's (1960) approximations can be very poor, 
especially in small populations (Gill 1965b). 

Thus, predictions based on esoteric formulas must be examined 
very closely before too much reliance is placed on specific results. 
Most of the difficulties and disagreements among the various an
alytical and computer simulation studies, however, occur when 
the effective population size is very small, less than 8. In compari
sons of the various approximate gain estimation procedures, in
cluding dominance-effect models with a normal error distribution 
(Kojima 1961) and iterative transition matrix models based on 
them (Curnow and Baker 1968), little bias is found as contrasted 
with Robertson's predictions when N. >8 (Pike 1969). 

Under somewhat more complicated genetic models, including 
epistasis or over dominance at some loci, the requirements for rea
sonable robustness of the various estimators of gain increase the 
recommended population size that must be carried (Gill 1965a). 
When the more involved genetic models are used, genetic loci do 
not behave linearly and additively, and alleles which might be re
quired for ultimate progress are more easily lost. The genetic 
variances themselves change during a selection program, and pre
dictions based on assumptions of constant variance are unreliable. 
The effects of inbreeding depression undel' various dominance and 
epistatic conditions further complicate the response predictions. 
Gill's (1965c) computer simulation studies indicate that effective 
population sizes should be kept above 30 to avoid excessive 
loss of othenvise favorable alleles. The trends in linkage effects 
and selection on means and variances for 40 loci on 8. chromosomes 
clearly indicate that the effects of small Nc are rapidly felt and 
that alleles are easily lost through the joint action of selective 
breeding and drift. 

SELECTION MODELS 
The results of these theoretical analyses and computer simula

tion stUdies may be summarized as suggesting that only for the 
simplest gene-action models, and then only for reasonably large 
population sizes, do the simple models of Griffing (1960) and 
Robertson (1960) apply as they recognized themselves. The more 
exact analyses indicate that for simple gene models, and Nc greater 
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than 8 to 10, the approximations used in their derivations are not 
bad and the general results can be reasonably accurate. However, 
extensions of the model to include large allelic effects, strong dom
inance to overdominance effects, and epistasis, make the effects of 
population size less predictable for means and variances of quanti
tative traits and for probabilities of fixing the desired allelic 
combinations (Latter 1966). In addition, the utility of Robertson's 
analyses were specifically investigated by Rawlings (1970) for 
p1ant breeding programs and several of the assumptions and deri
vations were found wanting. FOl· example, one of the derivations 
used by Robertson requires that Ne~ be small in order that the 
approximations used be accurate, but if Net is around 0.6 as re
quired, then for reasonable levels of heritability and selection 
intensity, Ne must also be less than 8. Since most tree breeding 
will involve Ne >8, the predictions of selection limits may be quite 
imprecise. In attempting to account for these errors of approxi

mation, the factor Ne~can be translated into the multiple-locus
p 

case by dividing the total selection differential effect into as many 
loci as desired using the approximation for each locus of: 

ai 2 (h2/m) 
()"~ = q(l-q) 

where h2/nL is heritability divided by number of loci affecting the 
trait. For simple additive effect models, and to provide a high 
probability of fixing the favored alleles, Rawlings finds the re

quired minimal Ne ~ values given in table 1. Thus, at highly in
]J 

tense selections for alleles at low initial frequencies, a quite large 
Ne is. required. When selection intensities are low or when many 
traits are simultaneously selected for, the requisite Ne increases 
rapidly, especially for those low-initial-frequency alleles which can 
easily be accidentally lost. The biases are most seriously felt in 
predictions of long-term progress and ultimate probabilities of 
fixation and less so in gain estimates for a few generations of 
selection. 

Table 1.-Minimwnmlues of Nci to give / .•(q) >0.95 

Heritability/loci (h'/m)Initial gene 
frequency (q,) 

1/40 11200 111,000 1/2,000 1/10,000 

% 4 9 20 28 63 
~~ 7 15 33 42 104 
~'t 12 26 58 84 188 
lio 21 45 100 139 313 
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It may be further remembered that No refers to the effective 
population size, which can be considerably smaller than the actual 
number of genotypes used. As relationships among the genotypes 
increase due to disproportionately high representation of some 
families, the coancestry within breed populations may not be con
trollable (Burrows 1970), and the actual numbers required may 
be much larger than the Ne figures given. By controlling allowable 
levels of inbreeding and making family sizes more equal than 
would occur in random mating, some of the expected decreases in 
N. can be avoided. By controlled intermating of selected parents 
such that each parent is equally represented in the progeny pop
ulation, Ne can be larger than the number of parents at lone 
heritabilities and only slightly lower at moderate heritabilities 
(Rawlings 1970). 

An alternative method for obtaining purebreeding populations 
with somewhat lo\ver probabilities of loss was suggested by Baker 
and Curnow (1969). They suggest splitting the single population 
into smaller sets and breeding within each for several generations 
and then selecting in only the best subpopulations. While the 
smaller subpopulations will lose favorable but low-frequency al
leles more quickly, the more immediate 5- to 10-generation gains 
are made with intermediate-frequency alleles of large and mod
erate effect anyway. As long as subpopulations are kept at N.> 16, 
not many of those alleles will be lost though some var~ations among 
the subpopulations can be expected. Thus, the average of all sub
populations will be slightly lower than the expected gain in a single 
large population, but the best one among the several subpopula
tions is expected to be substantially higher. Furthermore, if several 
replicate subpopulations can be developed, the best among these 
may then be intercrossed to produce a new base population for 
advanced sequences of population improvement, taking advan
tage of the variations in the loci fixed for alternate alleles and any 
formerly low-frequency alleles maintained at higher frequencies 
in any of the replicates chosen. However, the advantages may often 
be quite minimal (Madalena and Hill 1972) and would certainly 
involve more complex breeding programs. 

For hybrid breeding programs, selection within populations 
which provide the parents for hybrid seed also requires the ad
vancement of gene frequencies, and the only major difference in 
developing the recurrent selection population is that the gem' 
frequencies are moved to diverge as much as possible between the 
two populations. Otherwise, the cumulative improvement of the 
recurrent selection populations is under the same restrictions of 
selection differential and Ne as for purebred populations. 

For these simple gene-action models and for all breeding sys
tems, it seems desirable to keep a high selection intensity by 
generating large populations from which to select a minimal 
numbAr of pal·ents. Intensive selection may thus be coupled with a 
sufficiently large N" that immediate gains can be achieved without 
greatly sacrificing future gains. At the higher levels of selection 
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intensity, vast increases in numbers examined may be required to 
significantly increase the selection differential. On the other hand, 
increases in selection intensity when the number of parents is 
fixed are most easily achieved by increasing population size when 
population size is initially relatively small. Hence, subdivision can 
yield substantial advantages to breeders. In addition, if time can 
be afforded, subdividing selection into generational sequences may 
yield savings in the sizes of populations necessary to carry in each 
generation. For tree breeders the time costs may be excessive, 
but for short-generation species like cottonwood, the advantages 
may be significant. 

SELECTION EXPERIMENTS 
Theoretical investigations such as we have been reviewing, even 

for simple models, lead to some imprecision in predicting long
term results, and many variations in gene action, frequencies, 
dominance, epistasis, linkage, etc., can occur in actual populations. 
Tests of selective predictions with real organisms are therefore 
needed to indicate how well the reaction of !>ome population systems 
is approximated by the theories. Most of the population testing 
has been done with animal populations in which family sizes and 
selection for many generations could be controlled. One of the 
primary difficulties in both directly testing theories and in apply
ing theoretically advantageous breeding methods is a correlated 
decline in reproductive fitness as size or other economic measures 
are increased. Tree breeders often can partially overcome this 
problem through extensive cloning. By dev"~\)ping large numbers 
of fruiting branches, he can often obtain l.>t.tfficient numbers of 
viable seed, even though the genotype is a relatively poor seed 
producer. Linkage, epistasis, dominance, and relations with the 
fitness factors bias the results of selection. Even without direct 
effects of the trait selected on fitness, an interaction between 
them can exist. There seems little doubt that for normally cross
bred organisms, restriction of population size leads to fixation of 
deleterious alleles by either random or directed, correlated selec
tion effects (Latter and Robertson 1962). Under selection, there 
is also a tendency to create more relatedness among parents than 
if random mating occurred unless coancestry is strictly controlled. 
In addition, by controlling reproductive rates to equalize popula
tion sizes instead of allowing random selection and mating to 
occur, the hidden effects of natural selection against reproduc
tively deleterious alleles can be ameliorated in the selected group. 
Thus, different traits even with the same heritabilities may ex
hibit different responses to selection according to their allelic 
relEitions with fitness, linkage, etc. Certainly different species will 
respond differently to selection and restrictions of population size, 
numbers of alleles, etc. 

For hybrid breeding programs in which the product is a cross 
between selection populations, the selection populations themselves 
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may be inbred with little consequence of the inbreeding depression 
eXl...ept on seed-production capacity. The deleterious effects of loss 
of alleles would be present, but inbreeding depression would not 
affect the theory of selection advance. 

It is, therefore, clear that wide testing of selection theories 
is required to determine any generalities about natural popula
tions from which guidelines may be drawn for untested popula
tions. 

Among agronomic crops, direct indications of response to selec
tion and random mating among the parents are available from the 
long-term selections in snch species as alfalfa, sugar beets, corn, 
wheat, and barley, (See Allard 1960; Penny and others 1962, 
1966; Sprague 1966, 1967; Smith 1966, for review.) In tests with 
relatively mild selection intensities and most often with large 
popUlations, long-term response h::s been steady. Even after 100 
generations, the populations can respond to mass or bulk selection 
in which phenotypic selection and random mating are performed. 
\Vhile the long-term experiments are not conducted in strictly 
controlled environments, and some environmental variations must 
have OCCUlTed over the years, the direction of selection has been 
persistent and the response al\\'ay~ positive. Furthermore, most 
shorter duration tests also show substantial responses to selection 
for additively inherited quantitative traits even for small initial
population sizes. 

However, in the breeding process, possibilities for further 
genetic advance can be eliminated, as was particularly evident in 
the lack of response in sugar beets to continued intensive selection 
fol' sugar content, root form, and other traits. While 100 years of 
mild selection increased sug'ar content by over 100 percent, from 
7.5 to 16 percent, advanced intensive selection has netted relatively 
little advance. Failure may have been caused by changes in the 
gene effectf: themselves as major physiologically limiting factors 
were met. Perhaps new combinations of genes and traits are re
quired for any new advances. Severe inbreeding has persistently 
Jed to loss of genetic variance and inbreeding depression in all 
cross-poIlinated crops, even when efforts were made to select for 
inbreeding' ahilit~· and to save the lines. The loss in fitness is 
partially due to directed selection for traits which dil'ectly affect 
survival in nOl1cultivatecl en\'ironments. This conclusion was dem
onstrated in selection experiments in which the selected types 
were placed under 110 selection for a few generations or were 
actually placed in direct competition with bulk varieties. Either 
the trait suffered selection towards the nonselectecl mean, the 
variety displayed a relative loss of competitive ability, or both. 
However, there are also debilities from inbreeding depression in 
which even the most strenuous efforts fail to canT lines to sur
vival without competition. There is usually some variation among 
individual lines with some surviving with \'igor equivalent to the 
bulk variety, but fitness loss is the common expectation (Laude 
and Swanson 191.12; Bal and others 1959; Allard 1960). The loss 
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in fitness may be related to competitive ability (Harlan and 
Martini 1938; Lerner 19£)/1; Finlay 1963), susceptibility to preda
tors, weak repl'Oductive mechanisms, or some combination of 
these. In species in which vegetative vigor or stem mass is selected 
for, debihties of the reproductive organs down to some limit may 
not be significant, but any loss of vigor would directly affect the 
efficacy of selection. 

The lack of response to selection may sometimes be due to a 
loss of alleles which might otherwise provide a. basis for continued 
response. If traits were affected by a few alleles of large effect, 
then fixation at small population sizes can quickly exhaust the 
available variability. Crumpacker and Allard (1962), for example, 
estimated that heading date in wheat was controlled by only three 
major genes but that many minor g'enes also affected its inheri
tance. \-Vhen gene frequencies for the major genes can be ad
vanced close to one, then progress with the action of the minor 
genes may then be effective, if somewhat slower. 

In tree species, the early indicaUons of inbl'eeding indicate 
that vegetative vigol' and survival traits are directly affected by 
inbreeding depression (Franklin 19(8) and are therefore subject 
to both of the detrimental effects of limited population size. 

While many organisms have been studied in long-term selection 
experiments, mice and Drosophila have been intensively worked 
organisms and provide some illuminating expel"iences in selection 
experiments. As in plants, the common experience has been that 
with reasonably large populations LY,.>GO) and moderate selec
tion intensities, response for the fh'st 10 or 20 generations is quite 
uniform ancl of a size according to the heritability. Thus, Kojima 
and Kelleher (1963a) state: "From these findings it may be 
concluded that the total response in the mean of the population 
continues to change, on the average, linearly in the direction of 
::;election dlll'in~>: the early pel'joel of s'?lc('tion. regnrdles:-; of the 
kinds of ol'ganisms and traits and of the methods of selection." 

However, there are limits to the generality of the results in 
both the physiological gene-action effeds and in the loss of fitness 
by inbreeding depression and the loss of usable genetic variations. 
Thus, in mice, both upward and downward selection for body 
weight reach limits in 17 to 22 generations (Falconer1955) and 
in Drosophila a plateau in response also occurs in 20 to 30 genera
tions. In many ~l1ch experiments the population carried is rea
sonably large, an(l at the stage when plateaus occur, genetic 
variations still exist (Falconer 1960), sometimes with even higher 
heritabilities than were originally present (Robertson and Reeve 
1952). Thus, limits to selection which cannot be caused by ex
haustion of genetic variation, inbreeding depression, or linkage 
with deleterious fitness factors also exist. These may possibly be 
the effect of a changed physiological 01' genetic milieu and hence 
different gene effects, or due to the existence of complicated 
epistasis. If gene actions are so complicated or if natural selection 
opposes any particularly directed ::;election, then the relaxation of 
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selection should cause n decline in mean response. In these cases, 
as well as in the case when different alleles may have been fixed 
in subdivided populations, a breeding procedure which can utilize 
gene differences among subpopulations is required. 

A series of studies by Frankham and others (1968a, 1968b, and 
1968c) is particularly enlightening. Those authors conducted 
replicated tests of a two-treatment factorial combination of popu
lation size (10, ~O. and ·10 pair mntings per generation) and 
selection intensity (selection proportions of 10, ~O, 40, 80, and 
100 percent) over 50 generations. Over the first 12 generations, 
the strongest effect was that of selection intensity. Gain was 
clearl:,!, linearly related to selection percentage, except that the 
80-percent selection level (four-fifths saved) was almost in(lis
tinguishable from the control population (100 percent saved). 
These results agree well with Kojima and Kelleher's (l963b) 
observations. In contrast. the effect of population size is not as 
strong as that of selection level in the short run, but the larger 
population tends to attain a higher total gain at the same selection 
intensities. In fact, the <lO-percent selection population with ·10 
pail' matings did exceed the mOJ'e intensive 20-percent selection 
carried with 1 () pair matings. Also, in terms of the ratio of 
achieved gain to selection intensity (the realized heritability), the 
milder selections tended to exceed the more intensive percentages 
and indicated that a longer period of response, and eventually a 
greater total l'espon:5e, may be obtained at the ,LO-percent ",election 
level than at the ~() 01' 10 percent. It would thlls appeal' that even 
in the short run, the increased gain by increasing selection in
tensity can he cletrimentally nffected if the populations maintained 
are small. While milder selection arollnd GO percent may provide 
a long, slow gain, at least the l1Umbel' of pail' matings should be 
kept large. 

In general, howe\'er, the response is a lineal' function of the 
initially e:-;timnteci heritability and selection intensity and some
what less of' .Y,. While the effects of selection intensity on renlizecl 
heritability (i.e., achieved gain ..;- reach) are not clear, the early 
responses suggest thnt both small .Y, allel high selection intensities 
tend to reduce total gain. The variation among replicates of the 
populations was so high, however. that no one population could 
be expected to follow these a\'el'age trends vel'Y eiosely. The 
smaller population sizes in pm'ticulal' exhibited great variations 
in response, indicating that at least sampling- \'ariations affect 
the replicate variance in the stoehastic proce:>:>e~ involvecl in the 
generational sequences. Even under these contl'OlIecl environments, 
and with an org-ani:>111 adapted to those controls, the g-ene effect, 
selection, and mating pl'Ocesses generate substantial variations 
among identically treated (with respect to population size and 
selection intensity) population tl'ials. 

In the long'('l' run, of :)0 generations, most populations still 
appeal' to be l'esllol1cli ng- to selection. The higher level:-; of selec
tion intensity also still pl'oduce highet' respOllses pel' generation. 
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However, the effects of population size, which earlier were not 
clearly established, became a major factor in determining re
sponse. By the 20th generation, there is a clearly established 
effect of largel' population sizes on increasing response as lower 
selection intensities begin to exceed higher selection intensities 
if they also have larger population sizes. By the 50th generation, 
there is a rough equivalence in response of the main effects of 
increasing population size :md of increasing selection intensity, 
and hence there is a much greater realized heritability for the 
larger populations. In addition, while all populations show some 
reduction in genetic variance, the larger populations continue to 
display a higher response rate than the smaller ones. It was clear 
that even with 16 percent heritabilities and using simple mass 
selection, the population responses of the larger populations under 
10 percent selection exceeded the original mean by 1 standard 
deviation in b\'o generations and by 2 standard deviations in five 
generations. with continued response after that. Thus, in relatively 
few generations, the population means far exceeded the original 
extremes. 

In additional tests of Robertson's (1960) suggestions that early 
selection might advance gene frequencies into a safer intermedi
ate range, smaller population replicates were split off from the 
10-, 20-, anel .1O-percent selection populations with 40 pair matings 
each aftel' 16 generations, by snmpling 10 pair lines and breeding 
in those at their same selection intensities. All subpopulation 
splits of 10 pail' lines immediately fell behind the larger population 
and the lag accumulated. This is a clear experimental counter 
evidence to the concept that it is generally safe to restrict popula
tion size after an initial period of selection in a large population. 

The variations among replicate populations, especially smaller 
populatio!1s, remained very large, tending to increase as a func
tion of the mean response and hence increasing as selection in
tensity increased. The larger populations continued to exhibit less 
variation than the small ones. In addition, the variation among 
populations was exhibited when temporary plateaus and rapid 
responses alternated. \\'hile the average response for the replicates 
at each of the selection intensities was reasonably smooth, incli
vidual replicates varied widely in size and period of response. The 
average declines in fitness, as tested in lines drawn from the 
selected lines and placed under relaxed selection, were moderate 
and lasted only a few genel·ations. Therefore, there was only a 
moderate amount of natural selection opposing the directed selec
tion. Some individual lines, however, did regress strongly due to 
recessive 1ethals still being carried and possibly also due to strong 
epistasis and linkages. 

These long-term results indicate that epistatic interactions and 
the formation and destruction of linkage blocks can bt> important 
in holding genetic variations in populations, at times impeding, 
then aiding response to selection. The populations continue to re
spond to selection and though there is some moderate decline in 
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heritability, large variations among replicates also exist. In check
ing the state of the populations, it was found that some lethals 
were still present and affected selection response, but that the 
genetic variance was by no means exhausted. Several loci with 
large-effect alleles were still present at intermediate to high fre
quencies and some at low frequencies. Thus, it was concluded that 
several large-effect genes at low initial frequencies can continue 
to affect selection response long after one might otherwise assume 
their fixation. In addition, the presence of complicated linkage 
and epistatic effects can so confound the response to selection that 
useful genetic variance can also persist for many generations, 
especially at the larger population sizes and lower selection in
tensities. 

From these various theoretical and long-term experimental 
studies, the possibilities of progress from selection and simple 
mating schemes among selected parents can be broadly sketched. 
For traits which are inherited in a truly quantitative manner, 
the response to selection is a reasonably linear function of the 
narrow-sense heritability 01' selection intensity, at least in the 
short run. If heritability is well estimated, population sizes are 
kept high, and truncation selection applied with accuracy, the 
average linear estImates of gain, such as by Griffing's (1960) 
formula, should be reasonably close. The effect of severe restric
tions on population size, however, is felt even before the 10th 
generation, and can have major early effects if there are large
effect loci at low frequency in the population or if epistasis and 
linkage are strong. Thus, even in the early selection generations, 
a large Xc is required. Furthermore, since large-effect loci may 
possess the favored allele at low frequencies for many generations, 
a continuously large X, is required for continued selection gain. 
Since :-,~( in such sequential breeding populations is sensitive to 
occasional bottlenecks, a continued monitoring of :-,"" is required. 

Since gain is therefore affected both by the selection differential 
and X t and since the two are somewhat antagonistic objectives, 
some compromise is recillired. That is, the more intensively selec
tion is applied, the smaller the number of selected parents will be. 
The problem is easily avoided by pl'oducing and examining large 
numbers in the intervening progeny generations between selected 
parental generations. Since the selection differential jg a function 
of the proportion selpcted while :-"" is largely H function of the 
numbers selected, the obvious solution is to increase the base pop
ulation from which the parents may be selected. This may be done 
to maintain a minimum acceptable effective number of parents 
so that the expansion of the population examined increases the 
selection differential or may be carried out b~' proportionately in
creasing both N~ and zlp. The co:>t of increasing the selection 
differential by increasing the numbers of trees tested can be "ery 
high, as noted by Shelbourne (1973), where the increase in zip 
by a factor of ~ requires \·ast increases in test size (figs. 9 and 
10) at higher selection intensities (~amkoong and Snyder 1969). 
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Figure 9.-Relationship of seh.>ction differential to proportion of examined 
population which is I'lclcctcd. (Shelbourne 1973) 

If the cost of increasing the test population is high relative to the 
cost of the generation time, one may save by selecting in tandem 
sequences at lower selection proportions (Rawlings 1970). Never
theless, there is a constant requirement for keeping large Nt' and 
as high a selection intensity as compatible for short-run gains 
pel' generation. In the long run, less intensive selections would 
give greater total gains, but such plans would require careful 
examination for economic evaluation. 
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figure lO.-I{elationship of selection differential to number nf trees examined 

per selected tree (inverse of proportion selected). (Shelbourne 1973) 


Continued response from selection due to genes at initially 
low frequencies may also be expected regardless of the size of 
their effect. While large-effect alleles at intermediate frequencies 
and with small N r may be quickly fixed, maintaining larger Ne 
can keep favorable, low-frequency alleles in the population for 
many generations while substantially increasing their frequency. 
Therefore, large population sizes, especi'ally in the founder popu
lations, can significantly affect progress for many generations. 
The effect of such low-frequency al1eles will also be felt in crosses 
among any subdivisions of a larger population as may be de
veloped. This is especially important if few alleles are expected 
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to exist in natural populations at frequencies close to ~~. 
It may be common for frequencies of favorable alleles to form 

a bimodal or ske\\'ed unimodal Clu·\'e. Traits presently or recently 
under selection would force gene frequencies to extremes unless 
overc1ominance is strong. which is unlikely to occur for \'ery many 
loci. Such traits would tend to exhibit unimodal c1istl'ibutions with 
the allele favored by natural selection in relatiYely high fre
quency but not necessarilyfixec1 clue to the effects of slow re
sponse at high frequencies. migrations, etc. Loci with little 
pt'esent selecth'e pressures might be more uniformly distributed 
except a::; drift \\'ould cause extreme distributions or as past 
selections would cause skewed distributions which have not been 
homogenized by gene migmtions. It can thus be conjectured that 
the maintenance of genetic variance, which requires stable gene 
frequencies. and continued response to selection. which requires 
changing gene frequencies. are simultaneously possible to achieye. 
Both genetic variance and initial responses to selection will depend 
on intermediate-frequency genes or large-effect genes at low fre
quency. As these can change \'el'Y rapidly, they soon will join 
the pool of high-frequency genes with little further effect on 
either variance or mean. The pool of genes at low frequenc.\' of 
favorable alleles must then be moved into the effective frequency 
range and can ("ontinue to slowly feed genes into positions to 
affect means and variances. Thus. the initial profile of gene fre
quencies can affect the continuity of response without linkage. 
epistasis. or other effects which fmther complicate the response 
patterns over generations. Thus. also cOlTelations can change 
rapidly o\'er generations according to which loci are ehanging 
frequency, while the total genetic variance itself remains stable. 

In genel'al. it might be concluded that ovel' the generations 
of a selection program, the correlations among traits are highly 
susceptible teJ char~ge as well as to yery poor initial estimation 
(Bohren ami others 19(6). To effectively select for many traits 

simultaneonsly, therefore. requires an understanding of the mech
anisms il1\'oking the correlations to predict their changes as well 
m; tn modify them by selection, This further places a premium 
on keeping a high X. so that the opportunities fOl' special selection 
of recombinations might lJe effective. The special association of 
trait:; under selection with reprocluctive fitness traits l"equires 
special attention for its modifying effects: on selection. 

INITIAL SELECTION CONSIDERATION 
IN FORESTRY 

For most forest tree species which have not lJeen hem'ily se
lected for fitness in plantation en\'inJl1ll1ents, the prospects f,.r 
selection gains b;v almost ally method for mnny traits of com
met'cial importanee seem temptingly unexploitecl. As long as 
founder population and subsequent effective population sizes are 
kept large, well-estimated heritability>' selection differential can 
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be expected to reliably estimate average gain for quantitatively 
inherited traits. If large populations exist from "'hich to select 
new generations, then intensive selection from many trees can 
still provide for a relatively large number of selected parents. 
Then, at a constant heritability, gain is maximized by maximiz
ing the size of the populations in which selection is practical. For 
minimal breed population sizes, however, increasing the selection 
intensity by expanding the progeny populations or the wild, orig
inal population from which the breed parents are selected may 
often cause associated problems in adequately judging the selec
th'e value of candidate trees. Not only is it more difficult and 
costly to examine or test large numbers, but the tests cannot be 
held to standard conditions very well. Thus, as more numerous 
or more mnssive tests are run, the error in estimating selective 
value increases and the heritability of the value measure de
creases. In addition, more variable environments are encountered 
and less control of age, spacing, or other significant variables 
will also decrease the heritability of the traits. Thus, even if costs 
of expanding the test populations can be afforded, there is no 
advantage to increasing the differential when the decrease in the 
heritability exceeds the gain in the differential. A further diffi
culty in measuring the selection differential occurs 'when large 
numbers of trees are examined and more errors are made in 
determining the trees which adually rank highest phenotypically. 
Tree breeders may therefore be faced with economic and physical 
limits due to the size and time requirements of trees not en
countered to the same degree in other organisms. 

The requirement for maintaining large, effecti\'e population 
sizes, however, is not diminished especially if traits can commonly 
be expected to ha\'e loci with fa\'orable alleles at 10\\' frequencies 
and selection pressure per trait, per locus, is not wry intense. 
Then, the need for large Se for even short-run gain maximization 
is acute. Even if breed population crossing programs are con
sidered for future breed development, the low-frequency alleles 
are still required for new recombinations to provide ach'anced 
gains. This is particularly acute for those species and means 
where the main natural populations are being replaced by the 
new breeds. However, even when large, unselected populations 
may remaill, the new breeds can be expected to be such improved 
forms that any l'eselections in the original populations will be 
costly. FUl'thel'mol'e, even without the expected existence of in
breeding depression, the need for ancestral data and control of 
ancestral relatedness in future breeding populations is necessary. 
Since inbreeding depression does occur so commonly among forest 
tree species (Franklin 1968), and epistasis must e\'entually affect 
selection response, forest tree breeders will be continually select
ing uncler some ad\"erse effects of natural selection, l'eg'arclless of 
any direct associations of the selection goab and reproductive 
fitness. Any loss of l'eIJroclucth'e fitness may be overcome at a 
cost, by special treatment to increase fruiting branch tips as by 
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cloning, 01' by enhancing natural reproduction under controlle 
environments. Nevertheless, linkage, pleiotropy, and epistasis cm 
confound natural and artificial selection effects. 

The tree breeder does have some considerable advantages in 
controlling selection progress which have not been considered in 
these simple programs. Breeding programs can be devised that 
offer many alternatives to the simple mass selection and random 
mating of selected parents which can aid ancestral control. Fur
thermore, the breeder can test and retest an individual and its 
relatives in controlled environments and hence increase the herit
ability of the value measure. By controlled mating, controlling 
family size and designing periods of relaxed selection or crossing 
among subdivided populations, 01' deliberately avoiding or mini
mizing coancestries, he can inhibit the reduction of "Se. Thus, 
breeding programs tailored to the organism and traits can have 
,vide latitude in making the general selection program efficient 
and effecti\ye. Tree species present particular operational prob
lems, and certainly each species and trait selection has unique 
problems in applying the general procedural principles of opti
mum selection and breeding methods. Kevertheless, ,vithin the 
limits of the reproductive mode and of extrapolating results too 
extensively, the general principles of plant breeding can be de
veloped from the theories of selection outlined in this chapter 
and can be applied as outlined in chapter 3. 



CHAPTER 3 

BREEDING THEORY 


In most breeding programs with large numbers of parents, 
inbreeding and coancestry can be maintained at low levels for 
many generations. Some mating plans for selected parents can 
rapidly lead to high levels of inbreeding or coancestry, however. 
Crossing all parents to a single male or female would induce high 
inbreeding and quickly create high ancestral relatedness among 
all members of the breed population. The effective population size 
would be rapidly diminished and selection progress reduced. Only 
by introducing new materials would new genetic variants be avail
able for continued selection. If the new genotypes, however, were 
from an unselected 01' unadapted population, the breeding popu
lation would immediately suffer some loss in mean value and 
might take several generations to recover its former gains. Fl)r 
crops in which several cycles of intensive breeding can alter val'le
ties in a few years, this course of action may be feasible. Until 
that is possible with forest trees, however, it is far more efficient 
to avoid the necessity. Reasonable gains can be achieved in selec
tion systems that maintain large populations and in mating 
systems that minimize inbreeding. 

Discussion of breeding methods aimed at fixing optimum com
binations of major genes is beyond the scope of this book. Major 
genes, as contrasted with polygenes, have such a large average 
effect relative to variations in phenotypic expression that the 
genotypes can be identified with little errol' except for dominance 
or other masking types of gene effects. Relatively few loci would 
affect any single trait, and breeding methods to fix optimum 
genotypes would be simple and are well described in classical 
genetic texts. At this time, few economically important traits in 
forest trees are known to involve major gene effects but more 
"will undoubtedly be found as data and measurement techniques 
develop. It is assumed that as detection of such genes progresses, 
they will be fixed by well-established procedures within breed 
populations that are also being developed for the totality of traits 
requiring genetIc improvement. It is expected that many traits 
will be improved through a combination of major and polygene 
breeding methods, but that in forestry, primary emphasis "wi.ll 
remain on polygene improvements for many generations. Regard
less of the emphasis placed on one type of gene action 01' ~'"nother, 
a continually improving base population is needed from which 
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subpopulations can be drawn for any special breeding procedures. 
Our concern here lies with selection and mating programs 

designed for sequential development of breeding populations. These 
programs are distinguished from those for the expansion of 
genotypes into seed orchards for the production of seedlings, 
cuttings, etc., for commercial forests. We shall postpone for later 
consideration the problems of measuring economic and ecological 
value and temporarily assume that tests and measurements on 
trees have been made and that phenotypes have been accurately 
observed and evaluated. We shall also assume that all problems 
of planting, cloning, pollinating, etc., present no restrictions on 
our choice of either selection or mating design. 

Regardless of the breeding method, each generation is expected 
to produce genotypes with cumulatively better collections of alleles. 
Multiple production of sibs by crossing among large numbers of 
parents, or among single pairs of genotypes, or by selfing espe
cially good lines for commercial seed production is a technical 
problem for the breeder but is not treated here. Similarly, the 
best genotypes can be periodically chosen for vegetation repro
duction, as in poplars, but again, we shall have to consider pro
duction problems as ones of technique in handling and distributing 
what the breeder produces. The concern of this chapter is on 
iteratively improving the breed population from which the best 
propagules can be drawn for commercial use. The next chapter 
focuses on the problems of identifying the best genotypes within 
any generation. We would generally expect that only the ex
tremely best propagules would be used in reforestation in any 
one breed generation. Some ecological balancing to avoid the 
dangers of monoculture has to be considered as well as the 
optimum mixture of growth forms to satisfy the multiple Ui2e 
requirements of the forest land. In general, we do not expect to 
decrease the genetic sources of variance in the basic breeding 
populations. Therefore, bleeding programs will not generally re
duce the tree-to-tree variances as has sometimes been claimed. 
Only if a restricted subset of the breed is used in plantations 
can the genetic sources of variance in plantations be reduced. 
Otherwise, genetic uniformity can come only at the expense of 
the breeding program. 

Three kinds of populations can be envisioned in each cycle of 
selection and breeding: (1) the selected parents which are mated 
in certain designs to produce the next generation; (2) the next 
progeny generation so produced, which serves as the base popu
lation for the next cycle of selection; and (3) the population of 
genotypes used in the production of propagules for commercial 
use. The last may be a subsample of the selected parents set aside 
for production matings or vegetative propagation. It may be more 
intensively tested and selected to a smaller set of parents or 
ortets for immediate propagation. It may then be used as a base 
population in short-term breeding programs for pure-line or 
single-cross production. On the other hand, if seed or ramet 1)1'0
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duction needs are pressing, the population for that production 
may include all of the parents that are used for the breeding popu
lation or an even wider sample of trees as may be required for 
commercial propagation. We shall be concerned with the first 
two kinds of populations and how they are generated by a selec
tive reduction to some minimal set of parents, how the parents 
are mated to produce a larger and improved base population, and 
how the l'eselection is to start again, Methods for selection and 
breeding are given first for single populations. Distinction is 
made between breeding procedures used for the long-term breed 
development and breeding within any single generation. Hybrid 
breeding methods are then examined as is provenace selection, 
before integrated breeding program organizations are reviewed. 

SINGLE·POPULATION BREEDING 
In general, the breeding system used is highly dependent on 

the normal mode of reproduction exercised by the organism and 
its native sources of genetic variation. For normally crossbred 
organisms such as most forest trees, the maintenance of crossing 
among a large sample of genotypes can be achieved within a 
single population, even though the eventual population composi
tion may include few genetic variants. Single-population breeding 
methods may be maintained for hundreds of generations, and 
may even then contain sufficient genetic variations to respond 
to changing ecological or economic objectives. We first examine 
the systems involving intensive inbreeding and then other systems 
which allow for less inbreeding and more control of coancestries. 

In organisms such as corn and wheat, which can be adapted 
to selfing or high degrees of inbreeding, pure lines or pedigrees 
are commonly developed, though they may be outcrossed for com
mercial production. Much of the success of these methods lies in 
a good selection of the original parents and in the ability of 
breeders to advance many lines for many generations to derive 
the final, limited, selected set of genotypes for commercial seed 
production. A single inbred is usually grown for production, but 
the lines may be crossed for the seed released as well as for the 
establishment of new segregating populations from which new 
selections for pure-line developments can begin. If inbreeding 
depression or survival and reproduction are not too severe, and 
the genotypes selected can be accurately observed in spite of the 
opposing depressive effects of homozygosis, then pUTe-line breed
ing can be useful. For limited objectives on a few loci where 
homozygosis is beneficial, such pure lines may be profitable. If a 
line is already developed and a few lod or chromosome segments 
are to be substituted, then various backcrossing schemes may be 
useful. Such systems, which rely on the development of invariant 
genotypes, are most easily carried out with natural seIfers apo
miets, or those that rely relatively little on genetic recombination 
for reproduction. Most such species-tobacco, oats, peanuts, etc.
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exhibit some degree of outcrossing but often have relatively low 
chromosome mm1bers and recombination frequencies. 

INBREEDING SYSTEMS 
Systems of selfmg and partial combinations of half-sib and 

progeny testing systems may be constructed to fit the require
ments of the organism being bred. In forest trees, however, most 
such family selection systems are not required since the original, 
relatively unseledecl parents can be saved. Furthermore, appli
cation of such systems to trees would often entail severe inbreed
ing depression. Thus, selfing systems and pure-line breeding, in 
which single genotypes are sought for development, are not often 
practical for trees. The half- and full-sib family selection systems 
are usually not followed by sequential inbreeding within selected 
families but rather are used in recurrent selection schemes for 
either general or specific combining ability. Such systems, how
e-vel', are possible to develop with forest trees as exemplified by 
the Douglas-fir selfing system used by Orr-Ewing (1965). 

In contrast to recurrent selection systems in which intel'mating 
among selected parents is sequentially used to generate new, 
generally cross-pollinated populations in which variability is 
maintained, line breeding extracts more purebreeding homozygfJuS 
genotypeii either for self-propagation or for lise in specific crosses 
or in synthetic varieties. Forest geneticists will generally start 
with ul1selectec1 crossbl'eeding populations, which will generally 
resemble the F~ populations used by pUl·e-line plant breeders. The 
emphasis in sllch breeding systems generally lies in maintaining 
line samples from as lal'ge a Pl'opol'tion of the base population as 
possible and not on selection among lines until the final generation 
is reached. Howe,'el·, one may select among lines according to 
pedigrees or may segregate especiall.\' good bulked J)Q!,ulations to 
concentrate effort on more promising lines even during the early 
generations. The balance achieved would presumably depend on 
the need for commercial breeding lines during the intermediate 
generation!>, ancl the trustworthiness of early-generation selec
tion. The heritability appropriate for computing gain from selec
tions includes the total genetic ,'ariance among lines in the 
numerator and the pheuotY))lC variance of line means in the de
nominator. Since the genetic variance changes with inbreeding 
and gene effects and since responses to environments may affect 
the phenotypic \'Hl'iance differently from generation to genera
tion, it will likely be necessary to reestimate the appropriate 
components of variance more often than in the recurrent selec
tion systems. 

HYBRIDIZING INBREDS 
Since severe depression is an expected consequence of inbreed

ing forest tree species, few tree breeders eXI)ect to use inbreds 
directly as the commercial material. Instead, inbred lines may be 
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used as parents in some form of crossing system among lines to 
create a relatively vigorous hybrid. Single crosses take but one 
generation to develop in contrast to triple, double, and higher 
order configurations and might, therefore, be expected to be more 
commonly used than others. A single cross may be widely planted, 
but such a practice would be subject to the same dangers as any 
other monocultural system. Instead, sets of single crosses may be 
used in commercial plantings. It is also possible to test-cross 
among many possible line combinations and use only crosses 
among those which combine particularly well in a synthetic vari
ety. Such synthetic varieties are simply the product of intercross
ing among a small number of appropriately selected parental lines 
and resemble recurrent selection populations except that the 
source of material is generally more uniform genetically within 
each parental unit. Specific test crosses and plantings for selec
tion of good hybrid vigor are made and entries into the synthetic 
are determined on that basis. 

At present, ther' is little information on forest trees to indi
cate that pure breed-hybrid systems can overcome the difficulties 
in maintaining such lines (Franklin 1970a) or that selection 
among selfs using additive gene effects can be effectively used for 
developing synthetic varieties. However, little effort has been 
expended in these directions. 

MASS AND SIMPLE RECURRENT SELEC'fION 
Various programs which eventually develop a uniform breed 

or variety, but without selfing, are possible to carry out with 
forest trees. Mass selection with a limited number of parents 
selected each generation is one example. While these methods 
eventually also rely on additive types of gene action and in the 
very long run would eventually lead to pure breeding varieties, 
inbreeding can be controlled and the normally outcrossing behavior 
of most tree species can be maintained. Thus, in mass selection, 
the open, randomly poIIinated seeds from selected parents con
stitute the progeny generation from which the next generation of 
parents is selected. Simply maintaining a large N in the parental 
populations assures a reasonably large Nc and hence some con
tinual variation in the breed. "Gnder recurrent selection, the 
matings would always be among the selected parents. With peren
nial organisms that f' t.:it repeatedly, there is no need to self the 
selected parents to keep their genotype intact and hence the only 
major difference between mass and simple recurrent selection is 
that recurrent selection requires the systematic intermating of 
all possible selected parents instead of simple random mating with 
only female parent identification. Thus, the characteristics of mass 
and simple recurrent selection in trees are the lack of test crossing 
and the more or less complete intermating of selected parents with 
uncontrolled versus controlled pollen parentage. 

Mass selection is the simplest system to operate and requires 
little time or effort. It may, therefore, be the most common breed
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ing system. However, simple recurrent selection such as practiced 
in clonal seed orchards can also be very economical. Agencies that 
must proyide seed fol' a planting program with many species 
may find that establishment and seed costs are only negligibly 
increased, if at all, by establishing clonal seed orchards (Perry 
and \Vang 1958). Hence, minimal breeding programs with either 
of these two methods are readily j ustified economically. 

At a slightly increased cost, pollination can be partially con
trolled and parental sources can at least be identified in the field 
if planted in blocks or rows and identified for selection. Some 
coancestry control and data for testing parents can therefore be 
obtained relatively cheaply. Large N is thus generated at a small 
loss in future iV" and precision of selection. 

There are altel'llatives to testing and to the patterns chosen 
for controlled matings. For instance, determining general com
bining ability of individuals may require test matings on the trees 
in the base population to some general tester set of trees. The 
best performers can then be completely intermatecl as in simple 
recul'l'ent selection. Because the base population genotypes of 
crop plants often cannot be directly observed or saved. some form 
of family selection is practiced. Since the relatives would not have 
the same genotypic composition as the original plants but may be 
more precisely tested, the expected gain from selection is !1( t 
easily derived. For example, if the original plants are lost and 
only open-pollinated seed are available for testing and subsequent 
use as selected parents, then the selectiol~ of such a half-sib 
family on the basis of performance in a replicated test can be 
very precise. However, the individual plant(s) chosen to represent 
the family as a new parent is only a half-sib of (he plants tested. 
\Vhile such meaSUl'es are rarely necessary in tree breeding, the 
results are quite similar to the practice of collecting open
pollinated seed and selecting among these half-sib families on the 
basis of the family performance in test plantations. 

To estimate the gains from such procedures, we can develop 
the concept of heritability in a somewhat different way than 
Griffing (1960) did but with essentially the same approximations 
and limitations. The result is easier to apply to plant breeding 
situations (Empig and others 1971). If we again consider a 
simple genetic model with many independent loci, each affecting 
the trait in a similar, small, and cumulative way, then the effect 
of selection can be estimated for one locus and added oYer all 
effective loci. Using the model of gene effects as in chapter 7, 
the genotypic and phenotypic mean of the population is: 

/4 = Ut[q? -- (l-(ji) ~ 1"- 2qt (I-Ci,) (Ii] ~'" H( [([. -- (l-Cft)'- 2Cit (1-(11) Clt]. 

The total genetic variance computed from 

~ frequency>' (genetic value) 2 - p.2 is: 
i 

CT0 2 = (jh~12 +2qi (1-Cit) ((hl/2 ~. (l_(ItFaj2 _'1.2. 
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The additive genetic variance is: 

UA2 =2ql (1-qi)1il [1 + (1-2q;) aiP. 
The remaining dominance variance is: 

UD2 =4 [ql (1-ql) aIHI] 2. 

The total phenotypic variance (ui) includes a purely environ
mental variance component Uf?' and assuming no correlations nor 
interactions of genotypes with environments, 

Then the population change under a selection differentia1 of 8 is a 
function of the change in gene frequency and the change which 
those frequencies would have on genotypic or phenotypic means. 
In a normally distributed population, E (8) =iIT, or (zlq) IT as 
previously derived in chapter 2. In the following discussions, we 
shall assume that the s is appropriately determined for any given 
distribution and is determined by considerations of minimum N e• 

total numbers to be examined, and cost factors independent of 
heritability. \\'e also assume that the populations are large enough 
or are replicated sufficiently that variations in sand h2 are not 
important. In forestry, the assumption of independence of sand 71,2 
is questionable, but discussion of this is temporarily postponed. 

The change in gene frequency can be approximated by a linear 
regression of the frequency on genotypic value which would be: 

Cov (gene freq., phenotypic value) . 
Val' (phenotypic value) 

In maSs selection, the allelic frequencies for each genotype and the 
selection values are: 

Genotype 
Item T

A'A' AA' AA 
r ! 

Genotype frequency (I) (1-q)2 2q(1-q) q2 
Mean phenotypic 01' 

genotypic value (x) -7t (LU U 
Allele A frequency (y) 0 % 1 

----- ~-.,.........,..-.....-~----

The mean frequency of allele A is: 
y= (%) (2q(1-q» +q2=q. 

The mean phenotypic value is: 
x= [q2_ (1-q)2]u+2q (l-q) au. 
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The sum of cross products between gene frequency and phenotypic 
value is: 

~ Ixy=q2U +q (l-q) em, 

and therefore the covariance is: 
~ Ixy-xy=q (l-q)n[1 + (1-2q)a.] . 

The effect of such a gene-frequency change on phenotypic mean 
(x) can be approximated by: 

dx el[1l[q2- (l-q)2+ 2q(l-q)a]]=211,[1+ (1-2q)a]. 
dq dq 

Therefore, the gain is: 

b.G~s. Cov (gene freq., p!1enotypic value) . ddx 
Up q 

and from the definition of u..t2 , 

summed over all loci. 

ddxFinally, "re may observe that the is in effect approximated
q 

by the covariance between the new genotypic values and the gene 
frequencies when divided by q (l-q). Therefore, the product of 
the two, as used to approximate gain, is: 

ell:Cov' -d' :-:: (Cov)2+q(l-q).
q 

Since (Cov),! is a function of the additive genetic variance, U,42 is 
a function of the covariance between the phenotypes selected and 
the expected phenotypes or genotypes of the selectively regener
ated population. This assumes that the selected parents are ran
domly or completely intermated. Thus, the concept of heritability 
as a regression coefficient with Cov (phenotypes selected, geno
types generated) + phenotypic variance is a useful approxima
tion to actual expected changes in allelic and genotypic frequencies. 

FAMILY SELECTION 
In half-sib family selection, as detailed by Empig and others 

(1971), the family means are estimated using random matings 
with the unselected population, and the best families are inter
mated to produce the next generation. We ignore individual selec
tion within families until later in this chapter. In family selection 
with crops, the common parents of the families usually are not 
available, and the actual units selected are the open-pollinated or 



71 

randomly mated progeny which are half-sibs of the test materials. 
Thus, parents of the AA genotype occur with frequency q2 and 
have randomly mated offspring of types AA and AA' at expected 
frequencies q and l-q, respectively. Expected values of'lL and a'll, 
respectively, give a weighted mean value of AA parents of q2 
[qu+ (l-q) au], since the AA occurs \"ith frequency q2. The 
frequency of the A allele in the progeny of this family is ex

pected to be 1;q. Computing the similar expectations for the 

AA' and A'A' genotypes gives the following set of values: 

Parent genotype
Item 

A'A! AA' AA 

Genotype frequency (f) (l-q)2 2q(l-q) q2 

Offspring lnE'an value (x) qUlt- (l-q)lL (2q-l)ll+au 
2 

qu+ (I-q) all 

Allcie A frequency (y) q 
2 

1+2q
-4

l+q 
--r 

The covariance of gene frequency and phenotypic value is: 

q(l~q)U[l+ (1-2q)aJ 
dx

The dq function remains the same as before: 

dx [ 1+ (1-2q) adq =2u ] 

and hence: 

E(t.G) =_~;;--_s__ . Cov(q,x) • ddXq 
O"-balr-slb (liS) 

= s ~ q(1-Cf )U2[1+Cl_2Q)a]2
O"IIS- 2 

- S (11.) 2-~-2 /;.L O"A • 
uJIS 

This value can be summed over all independent loci, since the 
O"A 

2 is that which is summed over all loci and (;/IS is the common 
expected denominator. The gain expectation could altel'llatively 
have been derived by simply noting that the covariance between 
the genetic value of the individual units selected and the test ma
terials is that of half-sibs. The ratio of this covariance to the 
phenotypic variance is a heritability appropriate for half-sib 
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famil~r selection: 

and expected gain of: 

E (~G) =shll /. 

In general, au.•2 is more easily controlled and hence can be much 
smaller than a/!' if uncontrollable environmental variances in 
a/ are large. 

If the original parents can be saved for breeding by some form 
of self-propagation, then the matings for commercial production 
can be controlled to include only selected parents. This occurs, for 
example, when open-pollinated 01' bulk pollen may be used to 
produce test seedlings while the original parents' genotypes are 
grafted or othel'wise preserved. Then, the parents are rogued 
according to the half-sib family tests and the selected clones 
allowed to intermate. In this case, the gene-frequency gain of the 
favorable allele is essentially doubed, and hence doubles the co
variance between valut! and favorable allele frequency. Alterna
tively, the covariance among half-sibs may be viewed a::; being 
essentially constant, but the effective selection differential doubled. 
In either way of deriving the expected gain, the preservation of 
the original, undiluted genotypes and their intermating doubles 
the expected gain. This is actually a form of progeny testing 
on the basis of half-sib family performance, but the co\'al'iance 
relationships are most easily derived, as ,\'e have above. 

It should be noted that while only 11. 01' 1 ~ of the additive 
genetic variance is effective in the numerator of the gain heritabil
ity, the denominator is the variance of the half-sib family means 
used in the tests. In the nested design, as reviewed in chapter 8, 
the female half-sib family variance is: 

and the family mean variance with /' replications and using a set 
of m male tester pollen pel' female is: 

a£,2 ~t-_ }Oam 2 -i.-- rnlu/2 _ u(P' . um 1 I) 

,ti}l,--- - rln -.- m-
2 

.,. a,-. 
Thus, by increasihg the}' or m factors, this variance of a family 
mean can be com;iderably i'educed if ar2 is high as it must be if 
the /til,"? is low. 

In full-sib family selection, the family menns are estimated 
for each pHil' mating and the best families are propagated. If 
propagation is by mndom 01' complete intel'mating among the best 
families and specific dominance effects are not used, as i:hey may 
be in special pail' matings, then only the additive genetic variance 
is usee! in the numerator of the gain heritability since all domi
nance deviations are expected to be randomly distributed. Thus, 
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the genotypic mean frequencies, values, and the frequencies of 
favorable alleles would be given in Empig and others (1971) and 
yield an expected gain of: 

In this case, ari is the variance among full-sib family means and 
woulcl usually be slightly larger than awl', since it uses just one 
other parent as a tester source of pollen. In terms of the nested 
analysis used for the am;'.! composition, the alii· would include: 

., 
Cfr:- I ,., f 2-,CT

m
-,a,.

l' 

The numerator again is twice the covariance of half-sibs since 
the mating is done independently of any dominance or specific 
cross combinations which may give high yields due to specific 
gene interactions in the progeny. 

If the original parents could be saved, or somehow the full-sib 
families could be reconstructed by selfed seed or vegetathTe propa
gation, the immediate gain could be enhanced with specific crosses 
which may have combined especial1y welL Such interactions, as 
measured by the deviation of the specific cross from what may be 
expected as the average yalne of the parents in other random 
crosses, is called the specific combining ability. It is a deviation 
from the average of the parental performances, which are their 
general combining abilities. In this case, the full covariance of 
full-sibs would be used in the numerator of the gain heritability 
and would include: 

However, if cumulative gains are desired from such initial selec
tions, the specific crosses have to be reconstructed to select for 
heightened specific combining ability. Otherwise, if a general 
crossing system is followed and new selections are made from a 
random 01' complete crossing scheme, only the ~~(T'12 can be used 
to predict cumulative gains. 

HERITABILITY CONCEPTS 
Since many types of breeding programs are available, forest 

geneticists are sometimes confused over the appropriate definition 
and use of hel'itability for each program. Animal breeders and 
geneticists originally defined heritability as either the total genetic 
variance -;- total phenotypic yariance (broad-sense heritability), 
01' total additive genetic val'iance -;- total phenotypic variance 
(narrow-sense heritability). Since plant geneticists apply differ
ent forms of selection and breeding, the proportion of the genetic 
variance that can be translated into gain is different for them. 
They can also change phenotypic yuriance C\t will with plots, 
environmental replicates, etc. Therefore, the ratio of genetic 
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and phenotypic yal'iances requires further specification in plant 
genetics, 

In the approximations of Grifl1ng (1960) and Robertson (1960), 
simple genetic models were used and allelic effects were summed 
over independent loci. The assumed conditions were a form of 
mass selection or simple recti l'l'ent selection with random mating 
among the selected parents anel ]10 change in variances over many 
selection cycles, In the regression concept of heritability, as de
scribed by Empig and others (1971), and more explicitly de
veloped by Hanson (l9G3) and Falconer (1960), continuous 
genotypic distributions are assumed; it is further assumed that 
recurrent selection procedures will regenerate all \'ariances in 
each generation. Since the different derivations vary only in the 
contribution of .Y, and in some epistatic components, all provide 
the same predieth'e quality and all are susceptible to most of the 
same limitations anel hm'e the same model deficiencies. 

THE NUMERATOR 
In the regression concept. the numerator of the gain heritability 

is the covariance between the genetie value of the plants pro
duced for ultimate utilization and the phenotypic measures used 
to estimate that g-enetic value. As noted abo\'e, a breeder may be 
interested in one of two types of produced materials: (1) the 
E'Xliet reproductions of the families 01' dones tested or (~) the 
randomly mated 01' completely intel'crossecl new population in 
which geneti<' recomhinHtion ig expected to reciuC'e the effects of 
speeilie t'ombining abilities. When tested families can be repro
duced hy sadn'[f parents and remating acco!'(ling- to test values, 
then the full g-enetic \'(ll'iallces indicated by the covariance among 
family members constitute the numerator. If selfs 01' clones are 
J)l'oc1ucecl. total genetic vitrianc'e is included. If full-sibs are pro
cluced, the al'l'a~' of genetic variances should include: 

bec,wse all these elements enter into the variance among' full-sib 
families. Similarly, for half-sibs 01' any kinds of families pro
eluced, the genelic variance among the selection units that should 
be enterecl in the numcrator of the gain heritability is the repeat
able part of the vHriation, On the other hand, if selected family 
representatives arc mated 01' if parents me completely intermatecl 
to g-enerate a population fOl' the next cyele of recurrent selection, 
then the full contributions of epistatic and dominante effects will 
be reduced by the extent to wldeh the intralocus and intel'loCllS 
allelic correlalions are losl in the reeombinations and matings. 
Then, regardless of whether the paren ts wet'e selected on the basis 
of clonal. full-sib, half-sib, or othel' famil~T mean valnes, most of 
the nonadditive genetic contributions to the differences among 
selection units will he lost ill !'ltnc1om 01' complete intermatings. 
Only by selfmg or se\eeti\'e erossing, as in single crosses or 
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synthetic Yariety construction, or by recurrent selection for some 
specific combining ability, can the nonac1ditiye yariances be effec
tiYely used in a cumulative sequence of generational gains. 

One factor that can influence the genetic \'al'iances in the 
numerator is the presence of cryptic differences between the 
measured traits and the traits desired for actual improvement. 
Since the performance of an il1diYidual or family under forest 
conditions may be only partially correlated with performance 
under test conditions, the appropriate heritability numerator 
should be the genetic contriance and not the genetic variance. 
Some compensation for difference~ heh\'een age, condition of test, 
etc.. should be made when possih'Hties of measuring correlated 
instead of directly measured traits can be estimated. Further 
treatment of selection with correlated traits is postponed to 
chapter 4. 

One other element may enter the numerator of the gain herita
bility due to nonlinear of nonadditive relations between genotypic 
and environmental effects-the genotype-by-environment interac
tion. If testing and e\'aluation are performed over a sample of 
environments, and genotypic value is determined as the average 
of each genotype O\'er the nlrious environments, then the genetic 
variances can be defined in terms of the plants' reactions to these 
ellYironments. Howe\'er, particular genotypes may perform espe
cially well 01' poorly in certain conditions. If so, their potential 
yield on those sites will not be well predicted by an a\'erage yield 
over all environments, an a\'erage of the environments, or the 
mean contribution of both genotype and environment. Consider, 
for example, two families on t\\'0 sites. If genetic variance exists 
011 each site and family .tl. scores 10 and family B scores 5 on 
site I; but A scores 15 and B scores 20 on site II, then the relative 
rankings change, uvemge site difference from 7.3 to 17.5 would 
be obsen'ed, but no overall genetic variance would exist. Since 
there is no average difference among genotypes, selection for 
average performance would be futile. Ho,,'ever, if the sites are 
classified and planting zones are distinguished for separate breed
ing effort~, then the genetic variances within sites can be used to 
predict gain and the genotype-em'ironment interaction no longer 
is defined. COl1\'ersely, if general performance over all sites is 
desired but testing can be made only on a few sites, then genotype
environment interaction may cause bias in estimating general 
performance. ?\e\'ertheless, the interaction can be useful if it is 
recognized and if en dronments and genotypes can be altered to 
take advantclge of especially favorable combinations of special 
trees on special sites. On the other hand, if the extra \'a1'mtiol1S 
caused by these interactions nre large, small erl\'ironmental sam
ples will llot pl'o\'ic1e good estimates of true a\'erage genetic 
differences. Hence, the cO\'(ll'iance between test performance and 
average genetic value b; reduced by the extent to which the intel'
action adds to the family differences in the :'lite (s) tested. Thus, 
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estimates of genetic variance taken on one site may apply only to 
similar sites. Some \'alue for an interaction variance must be 
subtracted to predict the gain from selection for planting on 
many sites. 

If fertility, stand density, or other controllable site factors 
have strong interaction effects such that some genotypes do ex
ceptionally well under certain regimes, the interaction effects can 
be used to enhance average genetic values and gains. It may then 
be possible to select trees with good response to intensive culture, 
for example, and to combine the improved seed with a cultural 
regime recommendation. If so, the interaction effects should re
main in the numerator. 

In a closely related sense, the economic conditions in which the 
forests must have adaptive value simply represent another class 
of environments or performance requirements. However, it may 
be easier to project estimated economic values according to models 
of forest uses than to predict environmental variations and fre
quencies. Multiple traits that directly and indirectly influence 
some value parameters are easy enough to measure, but breeders 
need to know the correlations between such traits and between 
juvenile and mature tree characteristics. Hence, multivariate 
analyses of genetic variances and covariances should be planned 
along with measurements of performance in multiple ecological 
environments. 

THE DENOMINATOR 
The denominator of the gain heritability is the variance of the 

estimated mean values for the selection unit. Under mass, or 
simple recurrent selection, the individuals are usually assumed 
to be randomly located with respect to all environmental factors; 
hence the variance among individual units is simply the sum of 
all contributing variance components, genetic and nongenetic 
alike. The sampling errors are both genetic and nongenetic and 
can be reduced by extE:nsive sampling to properly rate a selection 
unit with respect to other units. Since trees can often be replicated 
in plots and over environments, several components can be recog
nized. vVe will usually assume that gross macrosite effects can be 
recognized and variations in these adjusted for before estimating 
relative values. If adjustments cannot be made or can be made 
only with some error, the error variance of the adjustment or 
lack of it would have to be included (O"g2). In addition, any inter
actions of macrosite effects ancl genotypes (0"(lg2) would contribute 
to the \'ariance among units. Both of these components would be 
reduced by a good sampling of several environments and, if e 
environments were randomly sampled, would contribute: 

0"£2+ 0"0£2 

e 
to the variance among selection unit means. In replicated tree 
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plots, the enol' variation due to families not behaving the same 
way in all replications within macrosites is a plot enol' variance 
(ol), which can be reduced by the number of replicates in each 

macI'osite sampled (r) and the number of macrosites ( O'p2 ) • An 
1'e 

additional source of variation among units lies in microsite or 
otherwise uncontrolled measurement or sampling error among 
trees even in the same plot (0',,,2). This remaining error and the 
residual genetic variation among trees within family plots (O'u,02) 

can be I'educed by the number of trees per plot (n) and hence 
would affect the phenotypic variance by: 

A small portion of the within-family genetic variance (lin) is 
car:ded in O'p2. The final commonly designated source of variance 
among units is the variance component due to genetic differences 
among the units themselves (0'/). Together with 0'!}W2 and the 
small portion of the plot error due to genetic sampling, the total 
genetic variance is approximately: 

Thus, f(lr single-tree plots, unreplicated but with adjustments 
made for macrosite variations, the phenotypic variance is: 

2 2 2 2O'T = 0'",2+ 0'!}W + O'l+ O'GE + 0'/ or O'w2 + G'/+UGE2 + 0'0 • 

If these are n families per plot, with r blocks ~I~ ::; inacrosites, the 
variance among family means that should be entered as the 
denominator of the regression gain heritability is: 

2+ . 2 2 
2- O'w O'/lW + up + 2 

O'TP - nre re 0'/1' 

Optimum allocations of n, r, and e, for different cost constraints 
can be developed to maximize efficiency or minimize the variance 
for given costs of establishing "n" trees, in "1''' reps, in He" sites. 
However, the problem of estimating the variance of the heritabil
ity regression coefficient can be more complicated than the design 
considerations I'eviewed in chapter 8 since both numerator and 
denominator are estimated and we require the variance of the 
ratio before optimum designs can be defined. Some simpler de
signs such as the parent-offspring regressions discussed in chap
ter 8 lead to some easily derived estimates of the error variance in 
heritability estimates and to easily computed optimum allocations 
of plant materials to efficiently estimate h2' (Falconer 1960). Also, 
when the heritability can be easily constructed as an intra-class 
correlation or as a simple ratio of two mean squares, the distribu
tions are well known (Hanson 1963) and optimum allocations of 
materials can be derived by standard calculus procedures. Eo\\,
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ever, when variance components have to be estimated and several 
mean squares have to be used in combination to derive the h2

, the 
variance is more complicated to derive and optimum designs more 
difficult to design. Some combinations of numerator and denomi
nator for different kinds of heritabilities are listed below. 

The forest geneticist may design experiments to estimate the 
components in a variety of ways and, independently of such esti
mation experiments, may construct heritabilities appropriate for 
several types of seJection and breeding programs. If the component 
estimation program is indeed independent of the breeding pro
gram, then designs can be constructed to efficiently estimate the 
components on the heritabilities, as discussed in chapter 1. Once 
such estimates are obtained, the geneticist may then compare the 
relative ITierits of different breeding systems according to their 
expected gains by constructing the selection differentials and 
heritabilities that apply to those systems. Some numerators and 
denominators for different heritabilities for some breeding pro
grams are: 

Numerators Denominators 

3/ 2
,.j.U"L 

lhU"L2 

Appropriate types of heritability for certain selection methods are: 

Type of heritability Selection method 
a~12 I UT?' Simple recurrent selection 

Recurrent selection with clonal or 
Selfecl family testing 

Individual-tree selection within 
half-sib families 

Mass selection without pollen par
ent control 

Mass selection without pollen 
parent control, -;vith clonal test
ing 

Cumulative portion of recurrent, 
within full-sib family selection 

1;.j,UA 2 / UTp2 Half-sib family selection 

(1I:WA2+14 un2 
) /' UTp2 Full-sib family selection 
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EXPECTED PROGRESS FROM SOME 
RECURRENT SELECTION AND 
BREEDING SYSTEMS 

If the selection differential and heritability are well estimated, 
expected gains from various proposed tree-breeding methods can 
also be well estimated. However, variance in actual levels of either 
factor leads to variance among sample popUlations. Here, gains 
from just one generation of breeding are examined for various 
breeding and seed-orchard procedures for their average or ex
pected results. Then, we consider breeding methocis for repeatedly 
and cumulatively improving breeding population in particular 
mating patterns. 

Simple mass selection is perhaps the easiest breeding method 
in forestry; phenotypes are selected according to their individual 
performance and open-pollinated with unselected pollen. In simple 
recurrent selection, selected parents are systematically crossed 
either in the forest or in orchards. In both methods, selection is 
based on the individual's own phenotype only, and both have been 
called mass selection in plant and forest breeding. If the pollen 
parents are unselected, the effective gene frequency of the favor
able allele is halved and the gain is half of the usually computed 
mass selection: 

This value is also essentially the regression of offspring on parents 
when the offspring were from unselected, or uncontrolled matings. 
The numerator covariance is that of offspring-parents, while the 
denominator is the variance among the parents which were used 
to estimate the value of their projected offspring. 

If the original parents were 8aved and matings were among 
selected trees only, then the full narrow-sense heritability would 
apply: 

which is double the regression h2 noted above. In this case, the cost 
of keeping the same s value increases by the amount required for 
controlled pollination, establishing orchards, etc., but seed collec
tion costs can actually decrease due to seed production and har
vesting efficiencies (Perry and Wang 1958). In some species, it 
is difficult to cross selected trees except in clonal orchards, and 
the cost of establishment is small enough th<tt mass"selection 
clonal seed orchards are standard operations. Other species, how
ever, may be easily crossed onsite or may have propagational 
problems too difficult or costly to bear in a clonal orchanl program. 
If onsite crossing is not feasible, a form of selting 01' other family 
selection may be required. The cost of seed may actually depend 
more on vagaries of crop size, species, site, weather, and use of 
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mechanized equipment, than on manner of crossing or control of 
pollen parent. 

One further procedure similar to mass selection in its full 
utilization of the additive genetic variance is selection on the basis 
of clonal performance, as recommended by Libby (1964). The 
great advantage that vegetative propagule testing has is that for 
traits with low h2, replications can reduce urp2 well below ur2 and 
hence can increase the heritability that can be translated into gain. 
However, the method requires that the performance of vegetative 
propagules in tests accurately reflect that of seedlings or ramets 
as used in commercial production, or at least that the covariance 
between genotypic value and performance be close to the full 
genetic variance. Topophysis, age effects, rooting 01' graft compat
ibility variation, etc., can all reduce the covariance between per
formance and breeding value and hence reduce the value of the 
numerator U.d 2 • In addition, testing costs are high and should be 
offset by later uses such as for seed-orchard materials. Time delays 
in generating the new breeding population can also be costly, and 
any reduction of numbers of genotypes which can be examined by 
these methods may cause the s to be severely reduced, decreasing 
the value of the breeding effort. Nevertheless, for species which can 
be easily and cheaply propagated by cuttings, apomictic seed, etc., 
and which perform without much c or special and biasing clonal 
effects, the advantages can be great. The covariance between ob
served performance and breeding value is not a true genetic 
variance for clones or different aged materials that are either more 
juvenile or more senile than desired. Gain is made on the basis 
of the correlated response of tt'ee value on measured trait, as out
lined in chapter 4. 

In addition to these forms of mass selection, various types of 
progeny test selections have been employed, as described by N am
koong and others (1966). In these programs, an initial selection 
on the basis of individual performance is made, as in mass selec
tion, but more parents are selected than are actually to be used 
in the final breeding population. A second selection is made on 
the basis of further family or clonal tests to reduce the population 
to the minimal Nc desired. In clonal seed-orchard programs, such 
as described by Zobel and IVIcElwee (1964), the trees originally 
selected in the first phase are crossed to some designated tester 
trees, 01' often, a set of heavy pollen producers serves as pollinators 
for the other parents. The families thus produced are evaluated in 
field tests and estimates of the combining ability of the parents 
are made. The trees which prove to be poor parents are culled 
from the orchard, or a new orchard is established with ramets 
only from the best parents. From these reconstructed orchards, 
the seedlings of the reselected parents can be generally considered 
as half-sibs of the seedlings produced for the testing, though a 
slight bias exists if any of the testers arE' also selected. Therefore, 
there is a half-sib relationship between the families tested and the 
seedlings from the reconstructed orchard, and the appropriate 
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covariaI)ce is that of half-sibs. When both parents have been se
lected, the effect of the selection differential is doubled. Hence, the 
gain from the second culling is: 

2
%,UA..6.G2 = 282 "--,-,-, 
UTP

where UTp 2 is composed of: 
2+ ., 2 l) f) 

UU' Ugw- +!!:L UOS- UmF +U 2 

nre 're + e + m •U 

uml is the male X female interaction variance and m is the number 
of male testers. It should be noted that the genetic contribution to 
the error is somewhat differently allocated between this factorial 
design and either the hierarchical or diallel designs and is some
what smaller for the factorial than either of the others. However, 
the difference is negligible if m. is over 3 or 4 in any of the designs. 
UA.. 

2 is the additive genetic variance in the second-stage materials. 
Since no genetic recombination occurs between the two selection 
stages, UA,2 will be less than U,(2 by an amount proportional to the 
initial heritability and initial selection intensity, both of which 
tend to reduce the amount of genetic variation among the initially 
selected trees. The reduction in u . .J.,2 is tabulated by Finney (1956) 
for various levels of initial UA. 2 / UT2 and initial selection intensity. 

The advantage of this method lies in the gains which may be 
achieved in the second stage for traits of low-mass selection 
heritability but which can be tested to greatly improve the half-sib 
heritability. The method is especially useful for traits such as early 
growth, response to soil fertility or spacing, and some pathogen 
:..esistances that may have very low heritability and may be weakly 
correlated with other breeding values. Testing in controlled en
vironments may then give substantial heritability since UTp2 may 
be very much smaller than UT2 such that the only reasonable gain 
possible may be in the second stage on those traits. Direct costs 
and time costs of such testing, however, are substantial. In addi
tion, the costs may inhibit the number of entries accepted into 
the testing stage so severely that only a very small second-stage 
selection differential can be afforded. Such a limitation would 
clearly destroy the value of the testing, because gain is propor
tional to the product of oS and h2• Thus, only if the differences in 
h2 are large enough to offset the cost of the replicated testing can 
the advantages of second-stage testing be utilized. 

Since selections in the two stages are based on performance 
data which would be correlated to the extent that genetic effects 
control the phenotypes, it is clear that high heritabilities would 
mean a high correlation in the performance data between stages 
1 and 2. The correlation is increased even further since the stage 2 
selection will be based on both initial and replicated-test perform
ance. If the additional testing is needed because of initially low 
h2, however, the data will be less well correlated and the additional 
gain more significant. By examining a wide range of initial h~ 
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and post-test h 2 , it was found by minimization under constraints 
that additional testing- costs were offset only when initial h~ was 
less than 3 percent (Namkoong 1970a). Using a linear program
ming analysis, van Buijtenen and Saitta (1972) similal'ly found 
that progeny testing can often be wasteful. When initial gains 
appeal' difncult to make, more careful initial examination and 
selection should generally be attempted first since even heritabil
ities of 5 percent will usually be enough to make some gain more 
quickly and cheaply than progeny testing. 

There are some operational advantages to the progeny testing 
which some breeding programs are using. For commercial seed 
production, the parents can be culled or selectively mated as soon 
as reliable data begin to indicate quality differences. Progeny test
ing can give such data relatively early, and elaborate test designs 
may not be necessary. Such advantages in the commercial value 
of the seed can be applied in each generation, regardless of the 
size of the breeding population. In addition, it is possible to begin 
intercrossing- among a wider sample of potential parents, as may 
be present before progeny testing in an orchard, to generate 
the breed population. Then, when progeny test data become avail
able, crosses with the culled parents can be discarded from the 
breeding program while intel'l!l'osses among the tested and selected 
parents are saved. This step is costly and may reduce the progeny 
population of the next generation which can be carried because 
of the wasted efforts on crossing among culled parents. \Vithout it, 
however, the benefits of the progeny test cannot be incorporated 
into the breeding population until after testing has identified the 
proper parents, those parents have been intercrossed, and the 
seedlings have matured. Such delays themselves are costly, and 
unless the cost of extra crosses and seedlings is worthwhile or the 
time interval for testing and producing a new generation is small, 
the breeding population will develop at a faster rate witnout 
progeny testing. 

One other advantage of progeny testing may exist when selec
tion is made for traits more readily observable 01' with higher 
heritability in progeny than in older parents. Thus, traits like 
rapid early growth may not be observable in older parents, and 
hence selection in parents is only for a correlated trait, whereas 
in juvenile progeny, the genetic variance itself is useful (SnJder 
1969) . 

In future generations, both parental selection and progeny test 
efficiencies are likely to increase. Initial heritabilities will be higher 
since the material will usually be grown in better-known environ
ments and more measurements will be accurately taken. Testing 
wi'! likely be easier and better done and at earlier ages, but some 
traits cannot now be improved without detailed or complicated 
tests. Some agencies will have other uses for the tests which may 
be done quiekly and cheaply enough to justify the large post
progeny test selection differentials \'equil'ed to achieve reasonable 
gains. There appears to be little difference in test estimation ef
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ficiency among the mating designs used as long as the number 
of crosses pel' entry and the seedlings per cross are reasonably 
high. 

A slightly different form of two-stage selection. using seedling 
propagules instead of clonal regeneration of the initially selected 
genotypes, has also been extensively used in tree breeding (God
dard and Brown 1961; Wright 1964a; Stern and Hattemer 1964). 
In these seedling seed-orchard methods, the initial selections may 
not be easily propagated other than by seed, and it may be rela
tively easy to induce early flowering on the seedlings such that seed 
production from the seedling orchard is at least as good as from 
any other materials. The seedlings from the initially selected 
forest trees serve as their own test performance material. 

The heritabilities and gains for initial selection are the same 
as in any simple recurrent selection system except that the male 
pollen may be unselected. If the initial selections are intel'cl'ossed, 
then the full-mass-selection gain is achieved, but if open-pollinated 
families are used, the gain is halved. Then crosses among selected 
seedling family members instead of clones produce the commer
cial seed. 

In the second stage, which follows the initial selection, if many 
unselected pollens or open-pollinated seeds are used in the orchard
test plantation and then families are selected on the basis of 
average family perfonnance, gain must be computed from half-sib 
family covariances, and the variance of the family means is: 

where 1n, the number of males, is assumed very large. The co
variance numerator of the gain h2 betw'een the commercial and test 
material is simply the genetic variance among test units, which is 
the covariance of half-sibs. The half-sib families are the units of 
test and selection and are to be mated among similarly selected 
families as in half-sib family selection. As noted by R. D. Burdon 
(personal communication), the variance among these units is re
duced by the initial selections in the same way as for clonal 
selection. Hence, the second-stage gain 01' family selection is: 

11. ~, • .1,0',[,
( 82 ) --•• -, 

O'PT

where 82 is limited by the number of families brought into the 
family trial and by the number of different families allowed to 
pass into the breeding populations. 

Since the construction of families would also permit selection 
among individual family membe1's on the basis of their own per
formance, an additional selection gain is possible in a form of 
mass selection within families. If selection is made in this tandem 
fashion-first families, then individuals within families-the gain 
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in the last stage of individual selection is: 

where (sa) is the differential for selection among family members, 
~(I.aA2 is the genetic variance within half-sib families, and aT';!. is 
the variance of individuals within families. aA~ should ordinarily 
be regenerated by matings and hence should be close to the original 

Q

a.{-. 

Alternatively, if the families entered the orchard as unrelated 
full-sibs (01' if a full-sib family selection was made), then the 
variance among families would be ~~a'l'!! plus the dominance and 
epistatic variances, while the useful variance 'Nithin families 
would be ~ 2a,42 plus the remaining nonadditive genetic variances. 
Hence, the gain from alternative procedures will vary according 
to the selection differentials and control of crossing exercised and 
the relative sizes of the heritabilities. Using a single pollen source 
would create excessive inbreeding in one generation, but it would 
generate l.'J.a.l!! among the full-sib families within the single half
sib family, and 1;2a.l!! among the individuals within families. 

If the operational advantages of secondary selection and propa
gation do not dictate the choice of intermediate selection stages, 
the advantage of the seedling seed-orchard test combinations is in 
the additional selections that can be made not only among the 
original families but also among individuals within families. By 
simply using enough seedlings within each family, the last selec
tion can have a large S3, and while h!! is on an individual tree basis, 
aT2 may be somewhat reduced by the easier environmental control 
and more detailed observations possible within experimental con
ditions. \Vhile both the clonal and seedling seed orchards share 
the common problem of having to balance S2 and aPT for maximum 
gain, it seems that in individual selections, Sa and aT!! can more 
easily be balanced by reasonably large family sizes. It is also likely 
for individuals to be selected on the basis of an index of informa
tion on family as well as individual performance (Namkoong 
1966b). In such cases, it is feasible to construct testing and breed
ing replicate blocks that contain only one or very few family 
members at sexual maturity. Then the combined individual and 
family selections can be made and the expected gain approxi
mated from the average S values per block, or by an S for the 
index selection. The chances of rapid inbreeding are enhanced 
by heavy family selection. However, if pollination is controlled and 
potential inbreeding and spacing are not otherwise serious prob
lems, the gain from individual within-family selection can be em
phasized. It can be increased by having many trees pel' family, 
and the h2 for that phase can be maximized by using many seed
lings per plot if the plot error is high 01' many plots otherwise. 

The method described therefore provides a two-generation se
quence of selection in one step. Substantial quick gains can be 
had if a large selection differential is generated (Namkoong and 
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others 1966). Unlike for clonal seed orchards, optimal allocation 
of selection intensities among stages yields relatively equal se
lection proportions between the stages of selection for reasonable 
costs. However, special handling and care are required to combine 
the objectives of testing and eventual seed production, and more 
time or cost is required to generate a completely new recurrent 
selection generation than in other methods. The additional time is 
required for crossing and establishing a seedling generation. An 
alternative is to make crosses for the next generation earlier than 
culling allo\,'s and hence to make unnecessary crosses which are 
subsequently omitted from breeding. However, in addition to the 
difficulties of establishing seedling seed orchards, the existence 
of large genotype-by-elwironment interactions may require that 
seed-production techniques be postponed until testing is finished. 
If the interaction is large, poor families in the seed orchard may 
be genotypes which should be picked for propagation. If the advan
tages of substantial improvements in h2 and the additional selec
tion differentials in the seedling generation warrant it, however, 
the method merits the work needed to overcome the experimental 
problems of simultaneous testing and seed production. In particu
lar, the use of clonal replicates of seedling entries could substan
tially improve individual seedling selection heritabilities and make 
gains on that basis very strong (Libby 1969). 

The time and effort of progeny testing in either clonal or seedling 
seed orchards can clearly be substantial, but with experience and 
data on juvenile-mature correlations, it should be far easier to 
handle in future generations. As the breeder develops the capacity 
to evaluate more juvenile materials, the value of progeny testing 
increases (Nanson 1967), and the main limitation is to induce 
sexual reproduction in juvenile stages without mitigating the value 
of the tests. Clearly, one means would be to have different clonal 
replicates for testing and for reproduction to treat each ramet 
appropriately fOl' its purposes and to develop rapid testing and re
productive cycles. 

Similar forms of selection among families can be generated 
from single pair matings instead of the half-sib forms of the 
intercrossing outlined above (Libby 1969). After the initial selec
tions, possibly at somewhat lower intensities, crosses are made 
among them, and full-sib family identities maintained in test 
crosses. Then several optional systems may be followed. The best 
full-sibs can be identified, and the specific good combinations se
lected for reproduction by repeated crossing of the same selected 
parental pairs in special, limited combination orchards. The gain 
due to additive genetic action is similar to that of the progeny
tested clonal orchard if the s factors are equivalent, but a gain of: 

due to dominance can be added. This gain, clue to dominance. is not 
cumulative if the next generation will be created through l'ecUl'
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rent selection of completely intercrossed trees, but it can be at 
least partially cumulative if the parents are selfed or otherwise 
regenerated and new selections are based on specific cross-test 
performance (Namkoong and others 1966). Subsequent generation 
gain can then be based only on the genetic variances generated 
among individuals within parental lines. 

Selecting within the full-sib families for advanceC! generation 
crossing provides the same advantages and problems as when the 
families were generated as half-sibs, except that the family selec
tion gain is on the basis of: 

while the within-family individual-tree selection gain is on the 
basis of: 

Clearly, the benefit of this method over other methods of crossing 
and selecting depends on the allocation of the selection intensities 
and on the sizes of IT"(2, rIPT2 , and rIT2 (Squillace 1973) . For example, 
we can contrast selecting, say, 400 trees and making 200 pair 
crosses of 1,000 seedlings each with making a partial diallel in 
some partially blocked design such that 5 crosses per entry pro
duce 200 seedlings per cross for the same number of seedlings. 
Further, supposing that in the first case we pick the best 100 
crosses (1 :2) and the best single tree in each, and that rIA!!=l, 

rIT!!=20, rI1'1'!! =:2, the additive genetic gain from the progeny test 
stage is: 

t::.GF.~=iFS (%) rIA!! / rIPT+iJ (%) rI,(2/ rIT 

=0.80 (0.5) /1.41+3.37 (0.5) /4.47 

=0.283 +0.377=0.66. 

Also suppose for the second case that the best 100 entries were 
picked (1 :4) and the best full-sib (1 :5) family was picked from 
those, and the best individual from them chosen (1: 200), and that 

rIA!!=l, rIT2=20, rI~T(J/fI) =2, rI;T(}<,S) =3. Then the gain is: 

t::.GD/,lL=iJlg (14.) rI.t2 ! rIPT(I1.~)+iFN (14) rIA2! rIPTm;; 

+i[ (V2) rI,!!!! aT 

=1.27 (0.25) /1.41+1.40 (0.25) /1.73 
+2.89 (0.5) / l1.47 

=0.225+0.202+0.323=0.750. 

However, if (T'/= 10 instead of 20, then ~GFlI=0.816 and t::.GJ)/Al, 

=0.884. On the other hand. if we s'3lectecl down to a population of 
50, then for rIT!!= 10, t.Gps -=0.983 and .6.Gf)J,lL = 0.952. If the half

http:1.41+1.40
http:0.377=0.66
http:1.41+3.37
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sib selections cause inbreeding. these reductions would make the 
full-sib system more attractive (Squillace 1973). Inbreeding, how
ever, is induced in the fnll-sib phases of both systems. 

In mating patterns for either progeny test selection or breecl
population generation, partially balanced designs will often be 
necessary (Snyder 1966) . Thus, for diallels any of the partial and 
blocked partial designs described for estimation of variance com
ponents may be used. For selection among blocks, check entries 
or overlapping blocked subsets can be easily installed. The reduc
tion of error variance in testing among g-enot.y-pk means by the 
use of subblocks can be especially valuable in forestl·y. However, 
if a choice exists between using varietal checks to allow for inter
block selection and increasing the selection differential by allowing 
more entries in the test, greater expected gains will generally fa
vor the inclusion of more entries. 

The various forms of recurrent selection for general combining 
ability, or in the one special case of full-sib selection for specific 
combining ability, are reviewed by Namlmong and others (1966). 
They find that operational and time costs can significantly affect 
the choice of breeding method, because the forms dictate different 
lengths of breeding cycles ancl the gains due to various selection 
stages occur at different times. Fairly complicated considerations 
of the relationship between the selection intensity and its effect 
on the numbers of entries, and hence on 11:1., also make it difficult 
to generate any general statements on choice of method. van 
Buijtenen and Saitta (1972) concluded for their conditions that 
hea\'y progeny testing can be justified only if its primary use is 
for developing advanced breeding generations. 

"Vhen it is possible to produce clones instead of seeds for com
mercial reforestation, additional gains can be achieved from non
additive genetic \"ariations though these gains are not generally 
cumulative. The basic breeding population is expected to de\"elop 
mainl;v from recurrent selections and general crossing among all 
selected parents. Only for specific, short-run breeding programs 
would groups, families, or individual lines be inbred to cumula
tively utilize nonadditive gene actions. However, even ',vhen a 
breeding population is improved by simple recurrent selection 
system, specific clones can be picked and their peculiar gene com
binations used within each generation even though that gene 
combination may be superseded in the developing breed. Thus, 
for example, the breeder may use the above diallel-crossing pro
cedure and can expect to accumulate gain in the breeding popula
tion as computed above. However, in each generation additional 
gain can be achieved by selecting fol' improvements clue to the 
nonadditive genetic variance among the selection units. While the 
selection intensities and the phenotypic variance denominators 
would remain the same, the genetic variance in the numerator 
would be increased. In half-sib family selection, the additive-by
additive epistasis and other higher order epistatic variances would 
be added. In full-sib family selection, ~'I. of the dominance and 
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additive-by-additive epistasis, 1/s of the additive-by-dominance 
epistasis, lti6 of the dominance-by-dominance epistasis, etc., 
would be added .. Finally, in individual-within-family selection, % 
of the dominance and all remaining epistatic variances within 
full-sib families would be added. If the nonadditive genetic vari
ances are substantial, the one-generation gains can also be sub
stantial. Gains in future genel'ations would also be substantial 
but would have to stad on the basis of the cumulative gain 
achieved in the basic reference breeding population. 

MATING PATTERNS 
Regardless of the method for selecting parents for the next 

generation and for any progeny testing, the parents may be fur
ther used in two distinct ways. The commercial product may be 
generated from a subset of those parents, all of them, or a wideI' 
sample of genotypes than will be I'etained in the breeding popu
lation. On the one hand, a single pair may be chosen to produce 
all of the commercial seed desired while a separate population is 
bred by intercl'ossing among many trees for future selections and 
breeding. On the other hand, it may be difficult to obtain the seed 
required even from all of the selected parents, and hence the com
mercial seed-production orchards may include trees which would 
have been culled for breeding purposes. 

We distinguish between the seed-production and breeding
production operation, but they may sometimes be the same, as in 
mass selection. In general, however, seed production can be sep
m'ated, and such separation is generally desirable if the seed 
product is noninbred while the breeding population may be inbred. 
Hence, actual commercial production, such as with single full-sib 
families 01' with clonal collections in "synthetic multi clonal hybrid 
varieties" (Schreiner 1968), is considered as an alternative only 
in its selection and breeding phases and not in production phases 
of the material released for commercial propagation. 

Since crossing can usually be done immediately before com
mercial seed production, the only limitations on making many 
crosses to generate a breeding population are the costs in time and 
effort. The sizes, times, and designs of these crosses are critical 
for breeding advance. Estimation experiments and test-cross de
signs may be required to yield data as early as possible. Factorial 
and diallel designs may be adequate for estimation, and little 
distinction can be made among them for testing purposes. 

Designs must be examined, however, for their efficiency in 
developing a breeding population from some sets of parents. The 
major criteria are maintaining large, effective population sizes 
and achieving rapid selection advance in the base populations. 
Many breeders will want to combine at least some of their estima
tion and test designs with breed-population production and some
times also with their seed-production operation. At this time, we 
shall consider crossing designs only for purposes of generating 
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advanced breeding populations and shall generally assume that 
some limitations on time and effort exist. 

The easiest operation, of course, would be akin to a mass or 
simple recurrent selection system in which only the selected par
ents are allowed to randomly mate, all seed is used commercially, 
and the entire production of seedlings then forms the next popu
lation for a new generation of selection. However, while the 
method is easy, some crosses will be very heavily represented in 
the subsequent generation, while others may be absent. Not only 
will the expected level of inbreeding increase with increasing 
departures from uniform representation, but stochastic variations 
among trials may be large enough to create unacceptable risks 
that a particular breeding' population will either lose favorable 
alleles, suffer excessh'e inbreeding depression, or both. Since any 
recurrent selection program will eventually accumulate high in
breeding, outside sources of genotypic yariants may have to be 
periodically infused. In some systems, materials from outside 
ancestry are expected to be continually (l\'ailable and can be tested 
against the breed population. The best of the new introductions 
can be used with profit if some of the population proves less 
valuable than the new (Burrows 1967). Introducing new ma
terials would entail some loss in gain of favorably fixed or other 
high-frequency loci, and this loss can be considerable as genera~ 
tions advance. As the mean is cumulatively improved and more 
forests are established from the select breed. it becomes less likely 
that such materials ,vill be found usefu1. Therefore, in plans for 
developing the main breed, many generations should be selec~ 
tively advanced without such recourse. Other techniques, such as 
replicating breeding populations, should be used to postpone the 
crisis. Therefore, controlled crossing programs can be useful if 
plans are made to incorporate all useful alleles in the base breed
ing population and effective population sizes are kept large enough 
that they may be expected to ac1yance. 

In simple reclH'rent selection systems, aU selected genotypes 
are completely intercrossecl, and the seed is composited for the 
next generation. That generation is later reduced by selection to 
about the same number of parents as preyiously chosen for a new 
generation of intercrossing. Howeyer, through controlled inter
crossing and compositing, ancestral controls c,m be imposed. 
Various degrees of control are possible. At one extreme, bulking 
pollen from all male genotypes and bulking all seeds are almost 
like mass selection. At the other extreme aTe keeping female 
parent identities on seed lots and making identifiable crosses with 
specific males. Since such care is more expen:,ive, fewel' incli
viduals may be available for selectilJ". and hence the selection 
differential may be reduced. i;Vithin these limitation~, various 
forms of complete crossing and seedling identification have been 
proposed which are short of complete intercrossing and complete 
control. 
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With completely controlled crossing and seedling identification, 
pairwis ~ mating systems which allow some inbreeding but less 
than random pairwise matings have also been proposed. Regular 
mating systems which can be continuously followed in the whole 
population and repeated eyery generation offer some insights into 
how relatedness and inbreeding deyelop. In such regular systems 
as have been studied, selections are generally assumed to have 
been made within families, and the number of selected parents 
remains constant oyer generations. Thus, the selection differential 
is governed by the number of seedlings generated pel' cross, and 
family information is not used in selection except for ancestral 
control. 

vVe can thus examine a variety of mating systems according to 
the manner in which ancestral control is completely, partially, or 
not at all maintained. Among the systems 'with complete control 
of mating and coancestry, differences exist in the numbers of 
families generated from each selected parent of the breeding 
population. The fewer the crosses or families made per "t:tarent, 
the less chance for family selection, but, presumably, the greater 
the number of individuals to select from within each family. 

RECTJRRENT MATING SYSTEMS 'VITHOUT 
FAMILY SELECTION 

Complete ayoidance of inbreeding by mating only single pairs 
from unrelated lines has been recommended at least as a tem
porary measure for forest trees. If complete control is main
tahlecl, however, this system requires that the selected population 
shrink by at least half in each generation or that it be mated in 
carefully controlled pattel'l1s. 

Thus, forgoing any interfamily selections, the proposed matings 
would be: 

GENERATION 

m 
Famny selection at any stage would, of course, more rapidly leacl 
to the final necessity of crossing among individuals of a single 
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full-sib family. A replicate population from the same original 
parents would permit cousin matings at low(:r inbreeding levels, 
which are discussed below. 

Replicate populations, however, do not add to the number of 
generations which may be developed from a given set of genotypes 
without any inbreecUng. Such systems contain no early inbreeding 
but greatly increase the common coancestry of breeding popula
tion genotypes and lead to the accumulation of very small in
bl'eeding for a few generations, followed by large increases in 
inbreeding (F) when avoidance is no longe!' possible. Thus, ex
treme early avoidance of inbreeding with an initial population of 
n individuals can be followed without inbreeding for lc generations 
if n=2", but must thereafter involve high F. Therefore, such 
extreme systems may be followed to temporarily maintain a given 
low level of inbreeding but, in recurrent systems, may lead to 
higher inbreeding in the longer nll1 (Cockerham 1970). 

Such early avoidance systems can be designed to permit only 
mating of distant cousins after matings of unrelated pairs are 
impossible. Such systems rapidly build up the average coancestry 
among trees while avoiding inbreeding.1 However, they do ac
cumulate coancestry more rapidly and for small parental popula
tion sizes (around 8) do have higher inbreeding than random 
pairs after 2,1 generations. 

On the other hand, a regular system of circular half-sib 
matings, as described by Kimura and Crow (1963), maintains 
the same number of families in each generation if no family 
selection is permitted but ,vill immediately lead to higher inbreed
ing but a slower increase in coancestry. Therefore, the high initial 
inbreeding is thereafter accumulated more slowly, and with N=4, 
the inbreeding becomes less than the cousin system of mating by 
the 15th generation at F=O.68. With N=8, however, it takes 
until the 35th generation (F=O.7) and with N=16, the 95th 
generation (F=O.78). Thus, the relationship between early avoid
ance and eventual inbreeding is clearly an inverse one, but one 
which takes many generations for the lower rates of increase of 
the coancestries to overcome the initial levels of inbreecling, and 
this only occurs at quite high F values. Thus, early avoidance, 
cousin systems of matings may be quite feasible in forestry. 
However, regular systems may be required to assure that the 
pairings are made each generation in the desired patterns and 
that all families contribute equally to the new generation. For 
example, in the following diagrams of eight parents per genera
tion with one of several hundred individuals from each mating 
selected, the cousin systems eliminate inbreeding entirely until 
the fourth generation, whereas the circular half-sib system initi
ates inbreeding ill the third generation: 

1 Cockerham, C. C. 1969. Notes on quantitative genetics. Unpublished 
lecture notes, Sect. 5. N.C. State Univ., Raleigh, 29 p. 
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For any regular systems of inbreeding in which linear recursion 
relations can be established for coefficients of inbreeding or rela
tionships, asymptotic results can be easily determined by an 
analysis of the roots of the recursion equation matrix (Crow and 
Kimura 1970), as shown in chapter 9, for mating frequency 
recursion equations. Inbreeding coefficients for general patterns, 
however, may be computed by machine (Cruden 1949). 

Other patterns of pairwise mating can be formed by grouping 
subsets of parents in less rigid hierarchies and mating among 
groups when within-group inbreeding exceeds predetermined 
levels. Patterns such as proposed by Aalders (1966) have some 
merit in compromising between complete avoidance of inbreeding 
and minimizing coancestry, and they may be easily handled in 
field operations. However, for current tree breeding with large 
population sizes, an early avoidance system may be most practical. 
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In the early stages of breeding, new g~notypes can be infused 
into the populations without much loss in value. Early avoidance 
systems can give very low inbreeding for at least a dozen genera
tions. For example, a system can be designed to completely avoid 
early inbreeding with separate replicates of full-sibs in the initial 
generations. Distant cousin relationships are formed among trees 
in the replicate sets. When the inbreeding potential within sets 
becomes excessive, crossing of sets will cause little inbreeding 
immediately but mOl'e rapid increments thereafter. It is then 
always possible to change mating patterns, but the effect of 
sequences of patterns may not be advantageous. 

RECURRENT MATING SYSTEMS 'VITH 
FAMILY SELECTION 

Mating and coancestry patterns become far more complicated 
when multiple crosses are made among the parents selected to 
regenerate the breeding population. In early generations, family 
selection is liable to be high as major genes are sorted out and 
inexperience with useful selection takes its toll. Family selection 
may also be popular for intensive, short-run breeding. However, 
the benefits of selection among families must be balanced against 
the cost of making many families that are not selected. The cost 
must also include any loss in the within-family selection intensity, 
which is reduced if limited land and funds are spent on creating 
many families. The latter loss may not be too debilitating since 
neither selection intensity nor additional experimental cost is 
linearly proportional to numbers of families. But a solution that 
optimizes gain by balancing selection among and within families 
is desirable. As previously shown for seedling seed orchards or for 
breeding populations, the balance depends on heritabilities and 
selection differentials. We can affect the family selection differ
entials by creating more or less different kinds of families. 

The breeder's options for multiple crossing among the par
ents of the developing breed extend from single pair matings 
and their reciprocal full-sibs to a full diallel of all possible 

n (;-1) crosses and reciprocal full-sibs plus selfs. Crossing pat

terns that lead to immediate and extensive inbreeding should be 
avoided. It is clearly better to choose patterns that reduce early 
inbreeding. 

As pointed out by Libby (1969), the hierarchal mating design 
that may be useful for other purposes holds no partic.ular ad
vantage over single pair matings for breeding population de
velopment, even if inbreeding problems are ignored. Other crossing 
patterns such as partial, disconnected, or disconnected jJ<trtial 
diallels, on the other hand, make possible alternate sets of pair
wise matings. The breeder can select among sets to take advantage 
of variations, both within I1n(; among families. In such recurrent 
selection systems, which develop breeds on the basis of their 
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intrapopulation general combining ability, little advantage can 
be taken of dominance genetic effects expressed in specific com
bining abilities, but selection for additive gene effects can be 
effective. Where multiple crosses are m'lde, fu11- and half-sib 
families can be formed in early generations, and more complex 
cousin groups can be formed in advanced generations. Some 
original families may be disproportionately represented in suc
ceeding generations if selection of individuals is based on family 
and indi\'ic1ual performances. Crossing patterns that include some 
inbreeding may be the result. There is no need to produce exactly 
the same numbers of families as parents, but fewer families than 
parents rapidly lead to high coancestries. Any su<::h mixed pat
terns require the careful tracing of coancestl'ies to minimize 
inbreeding and the concomitant loss of genetic varianc:e. If co
ancestry records are maintained, high levels of inbreeding in the 
breed pOlmlation can be reduced for commercial seed production 
by crossing unrelated trees in seed orchards. In adclitiol1, the seed 
production crosses may be designed to utilize nonadditive and 
otherwise noncumulative gene effects in specific crosses. Partially 
controlled hlocked ·Unllels (Braaten 1965) or blocked factorials 
(Burdon and SheliJuurne 19(1) offer many more variations on 
partially subclidded mating patterns. However, the effective popu
lation should not he inadvertently reduced below the desired size 
by blocking of mating sets in a way that induces positive as:;orta
tive mating. If controlled crossing systems are feasible for breed
ing populations and identification of parent~l sources can be 
maintained in commercial seed production, the selection differ
ential for within-family selection is maximized by using all seed 
orchard products in selecting the next generation. When carefully 
controlled sites are l'equiredfor accurate selection ~l.nd controlled 
crossing with identification is not possible, it is impractical to 
reselect from the entire populntion. 1£ costs of such special planta
tions are low enough and evaluations and seed production can be 
early enough, seedling seed orchards may have considerabl, ad
vantages. However, any of the selection-hreeding methods Ch!1 be 
itenlth'ely applied, and subdivision of the hreeding population into 
breeding units greatly increases the possible variations in crossing 
patterns. 

For breeding population:;, control of ,'::>allcestry is required 
e\'en though we have very meager knowledge of the effects of 
inbreeding on both inbreeding depression and loss of genetic vari
ance in selectell tree populations. Indications thus far favor 
minimal inbreeding. In general, since breeding generations are 
so long and breeders and organizations in forestry do change, it is 
li1{ely to be even more important for futme generations that large 
populations and strict coancestry control be maintained (Nam
lwong 1971). It may sometimes be possible to breed with small 
numbers of parents an:1 to tolerate high levels of inbreeding" in 
some rapid selection and breeding systems. "Jlethods to achie\'e 
quic1( gains with small numbers, such as 5 to 10 clone orchards 



95 

with mass or single recurrent selection, may represent viable 
short-term alternatives, and require experimental testing. 

PARTIALLY CONTROLLED MATING SYSTEMS 
Operational problems or costs may sometimes prevent a breeder 

from maintaining the identity of all parent ancestries. The costs 
of maintaining identities in field plots after controlled crosses 
can be large. in addition, ehrly selection and early seed produc
tion can be forced, then the relative costs in time, effort, and 
selection differential of making such crosses can be high. How
ever, the benefits of maintaining identities, or conversely, the risk 
of loss in variation ancI inbreeding depression through unper
ceived inbreeding, may well justify thorough identification. If 
partially controlled breeding programs can partially control such 
losses, then an optimum intermediate level of control may exist. 

Most analyses of breeding systems are based on average ie\"els 
of inbreeding or coancestry, and the results assume a linear 
relationship with cost or loss of \Talue. \Vhile the relationship 
between mean inbreeding and loss clue to dominance gene effects 
may be linear, a more meaningful loss function might relate 
variables in breeding method to risk of achieving homozygosity. 
While two met:lOds may be similar in average inbreeding (F) or 
expected heterozygosity (l-F), one may generate homozygosity 
18vels with less variation than another and hence may be judged 
to be a better method if the risk of high homozygosity is costly. 
Risk analysis is especially important if ureeclers cannot fully 
identify parents. Whether or not identification can be maintained, 
optimizing selection at the le\'el of inbreeding that can he tolerated 
to achieve selection gain 01' the functional relationship between 
the two requires far more information than is now axailable on 
inbreeding effects. The critical need is for data on performance 
at F \"ailies below 0.25 (BUlTo\vS 1970). 

\Vhen it is possible to ident.ify at least seed parentage, then it 
may also be possible to partially control male parentage by using 
different sets of males for mass polljnation each year. Then, 
identifIcation of seeds by years would identify male sets, at least, 
and hence probabilities of parentage would be more clo:5ely de
termined. Alternati\-ely, s:lbsets of factorial mating degigns could 
be segregated in which the male entries for each subset are pooled 
into pollen mixes specific for each subset of female~. "Variations 
on this polycross system are described by Burdon and Shelbourne 
(1971), \\Therein subsets are completely separated and no geno
types occur in bm sets, or where genotypes may o\,el"lap among 
subsets with some males or females present in two or more sub
sets. Such designs can be varied according to the anliIability of 
pollen and female flowers. In these systems, as in controlled 
crossing, the dang"ers of rapidly reducing the effective population 
size by assortative mating should be recognizecl. While exad re
latio11s~lips are not know11, the probabilities of selecting closely 
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related individuals in subsequent generations are increased by 
selecting among subsets and hence reducing the base population 
for further breed development. 

When complete records are not feasible, it is profitable to at 
least identify the seed (~) parentage of field stands. The cost 
of such records is minimal. Only nursery and seedling lot need be 
identified, and sets of females can be confounded with location 
and year of planting. The problem in analyzing the alternate 
systems for their cost-benefit functions again lies in determining 
the loss function at the expected levels of inbreeding. Since varia
tion in homozygosity level is likely to be much higher than where 
identity is controllecl, risk analysis may be a more valuable com
putation of expected loss. 

It is instructiye to regard average inbreeding level generated 
by selection among open-pollinated families as a key criterion. 
Even 'with open pollination and up to lji family selection, Burrows 
(1970) finds that average inbreeding in the third generation still 
lies between 4 anel 1:2 percent in a EllcalY?Jtus seedling seed 
orchard. Empirical studies are needed on selection methods to 
determine if this method, simple mass selection, or any other 
systems can function as expected and with "\\That variation among 
replicate trials. 

It shoulcl be remembered that in a seecl-production orchard, 
replacement of clones with advanced generation materials is a 
continuing operation. New seed-production ramets replace old 
ones as the benefits of replacement become clear. Some genotypes 
may remain in the orchard for several generations, because they 
continue to rank high genetically. Others are replaced as newel' 
material IH'O\'eS better. In this situation, inbreeding must be 
controlled, because both parents and their offspring may be 
present. Testing anrl replacement can he progmmmed to gradually 
change the composition of genotypes making up the breed, and 
testing should include samples of generations other than the 
current one. 

All the above programs llse selection among individual trees 
within famjJjes to some extent. Since selection is most accurate 
among contiguous trees, the allocation of trees within plots and 
among plots, replicate blocks, or stands should heavily favor trees 
within plots. To the extent that family selection will be important, 
however, site replication will be important and may cause some 
reduction in the optimum number of trees pel' plot. 

HYBRID BREEDING SYSTEMS 
The foregoing: discussion has been concerned with methods of 

improving pUl'ehrecl or l'ecunent-selection populations developed 
for general combining ability and u!'ling' the cumulatiye effects of 
additive gene actions in single populations. While some methods 
discussed above may temporarily use any discovered specific com
bining abilities, they do not cumulatively develop lines or popula
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tions for crossing to obtain specific combining ability effects. 
For naturally cross-pollinated plants, however, inbreeding is 
aberrant, and debilities of illbreds may recur for many genera
tions. Many lethals and sublethals found under intensive inbreed
ing destroy lines despite vig'orous efforts to save them. Those lines 
or populations that do survive, do so wIth less vigor and size than 
the normally outcrossed varieties. All methods for developing 
single populations eventually increase inbreeding and coancestry; 
the methods discussed only affect the rate of inbreeding. In con
trast, hybrid systems develop at least two lines or populations for 
crossing. These systems use the phenomenon of heterosis, which 
is often vie·wed as the direct opposite of inbreeding depression. 
Outcrossing restores v.igor and reproductiYe fitness, and inter
varietal and even interspecies crosses often exceed the develop
ment of both the midpal'ent and the highest parent. If the gene 
action that produces the greater value of the hybrid is not 
heterosis or if heterozygosity is not necessary, then hybrid su
periority may be due to additive gene actions on a combination 
of traits. In that case, it is usually far simpler to create a single 
base population of Fl crosses and to improve that population as 
any other single population breed for the combined traits. Only 
if heterosis is useful, will it be generally advisable to enter hybrid 
programs. 

Limits to cross compatibility are often wide enough to allow 
distant evolutionary relations to cross. Stephens (1961) has classi
fied hybrid breeding programs according to the extent to ,vhich 
incompatibilities restrict the segregation of new genotypes. Within 
species, genetic cliyergence also may generate a quadratic re
sponse in vigor as more and more divergent sources are cr06sec1. 
In corn, for example, heterosis is measured by the excess of the 
hybrid over the median parent or the F~. In one study, heterosis 
rose as the varieties which were crossed increased in diversity 
of their origin up to a peak and declined as the diversity of origin 
apparently exceeded an optimal level (Moll and others 1962, 
1965). Thus, at the "arietal leyel of biological organization, varia
tions in heterotic response may be a predidable quadratic re
sponse function of diversity. However, it is also possible for 
dominance le\'els among alleles within populations to be maxi
mized by natural selection, and to diminish as more foreign alleles 
are paired. 

At the species level of diversity, less distinct patterns of 
heterotic responses are visible, e\'en in tree species in which con
siderable amounts of natural species crossing occurs. Information 
is confounded because species relationships are constructed partly 
on the basis of cl'ossabjlity, but there seems to be no strongly 
defined hierarchy of chromosomal OJ' other incompatibilities 
(Wright 19(2). Species that cross seem to do so without differ
ences with respect to origin of parents. IIowe\'el', heritable dif
ferences in morphological traits exist and may sometimes show 
heterosis. 
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Selection for hybrid performance can mean selecting among 
inbreds for inbred-cross performance, among varieties for varietal 
hybrid performance, or among species combinations and sources 
withm species for specific tree-by-tl'ee crosses. Different degrees 
of inbreeding with respect to the outcrossing product are there
fore tolerated to achieve the relatively outcrossed product, and 
variations among hybrid breeding methods exist in the purity or 
allelic homogeneity of the parental populations. 

In general, selection units 'will vary within at least one of the 
parental populations, and selection is based on tested performance 
as potential parents of hybrids. Further genetic recombinations 
are created within the selected parental populations by some 
breeding method and a neiV cycle of selection for cross per
formance is instigated. Thus, cumulatively better hybrids are de
veloped from base breeding populations selected to regenerate 
variations ill hybrid performance. Hybrid systems resemble those 
for developing populations with high general combining ability 
in the sequence of developing genetically variable populations and 
reselecting parents for iterated cycles of improvement. Hybrid 
systems require designs for testing, selection, and intrapopulation 
mating to generate the parental population. 

In hybrid breeding, production and testing seed are distinct 
from breed population development. Commercial seed production 
can similarly come from a subset of either 01' both parental popu
lations, or a large set of parents jf seed demand exceeds produc
tion capacity from selected parents. As for purehreds, the sex 
with larger gametic production will tend to have fewer parental 
entries in the commercial seed, but for hybrids a choice exists as 
to ivhich population serves as male 01' female. While some mixture 
of sexual role is generally expected, optimum sexual functioning 
may require that the population be treated to maximize gametic 
production of the less prolific sex. Prog'eny testing with all of its 
attendant costs is always required, but with reasonable efforts 
towards juvenile testing and early reproduction, the costs can be 
mitigated as for the recurrent selection programs previously out
lined. 

Among the \Tarious ways to make the test crosses and to carry 
cross identifications into long-term field plots, the individual tree 
crosses are most expensive, but they afford greatest possibilities 
for selecting specific crosses and developing specific combining 
abilities among crossed parents. Any of the mating designs may 
be used for any level of hybridization, and since testing is distinct 
from breed population development, factorials or blocked fac
torials would not carry the inbreeding problems they do for the 
single-population recul'l'ent selection programs. Specific crossing 
combinations may then be identified fol' use in special seed 
orchards, l)ut unless those lines are identified and inbred for fu
ture selection for specific combining ahility, that gain is not 
cumulative. The cumulative gain is therefore generally based on 
the cross-general combining ability among generally cross
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compatible populations. Specific combinations of cross parents 
may be developed in separate subpopulations, requiring that 
within the alternate populations specific line or subsets be de
veloped which cumulatively cross well \vith their opposite numbers 
in the other population. These will not be followed in this dis
cussion, though they represent a viable, short-run alternative in 
hybrid breeding. 

After testing" and selection, parental populations in hybrid 
programs must be further developed through a stage of recom
bination within the source populations. Thus, some degree of 
inbreeding will be present in the hybrid seed product when an 
established variety or seed source exists and cannot be improved, 
only the new population requires the selection and recombination 
phases. Since in forestry this is expected to rarely be the case, the 
following discussion will generally refer to improvement of both 
populations. If single crosses within an adapted \'ariety are the 
products, then lines of inbred (for example, selfed) parents would 
be developed and retested for the next generation, and subsequent 
selection would be based on Hnes and individual within lines. If 
varieties or species are hybridized for the seed product, then each 
selected population would be intercrossec1 within themselves to 
regenerate aIleUc combinations for advanced generation hybrid 
development. If a general cross-performance is desired, inter
crosses among the selected parents within the population are 
necessary. If specific single crosses between individual trees in 
the alternate populations are desired, a greater degree of inbreed
ing within lines \yjthin populations is required. 

Inbreeding is useful in a breeding program for a cross-pollinated 
species only if the hybrid product is better 01' more uniform or 
otherwise more easily controlled than what could be developed by 
normal outcrossing procedures. If the development of pure lines 
is feasible, then hybrids may still be sought to improye traits 
affected by dominance or ovel'dominance types of gene action. 

HYBRIDS OF INBRED LINES 
Selection of inbrec1s for crossbred performance requires either 

direct testing in hybrid combinations or a high correlation between 
inbred and hybrid performances. This correlation can be highly 
variable (Allarc11960; Allard and other;:; 19G6), and even though 
it may take a long time, direct testing is likely to be best. Special 
care of inbreds and the possibilities of doubling mOJ1oploic1s may 
l'apidly create relatively homozygous lines fo], selection in a few 
years (Stettler and others 1970; Orr-Ewing 196;:)). In that event, 
simple selection among lines will he feasible to produee standard 
inbrec1s for hybrid seed production. Sel(~<:ti()n on inbred perform
ance may take the form of mass srJedion in whit·h the indi
vidual's own performance is the bash, for selection, 01', as in 
most plants, it may more often take the form of selection on 
family performance, including sibs as weH flS pal'ents. Early 
generation selection for inbred performance in later generations 
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of crosses, however, is difficult and may take too long to be pl'ac
tical in forestry. Only if crosses can be developed each generation 
as the inbreds become more selectively homozygous, will long-term 
inbred development be worthwhile. 

Testing the developing inbred lines in all combinations is 
clearly the most desirable way to select among lines for the best 
crossers or for the best single-cross combinations. Costs and other 
physical limitations, however, generally predude such complete 
testing. Hence, something less than complete testing but more 
than selection on individual performance alone is attempted ,vith 
other crops than trees. Topcrossing has served as both a testing 
procedure as well as a form of hybrid seed production in which 
the inbrec1s are crossed to a mixed source as the alternate parent. 
The top cross tester may be other standard inbreds, a standard 
heterogeneous variety, or any stable mixture of other materials 
which gives a mixed genotypic source against which the inbred's 
hybrid performance can be observed. In corn breeding, the tester 
has generally been a standard ,'ariety, but any set of lines can 
be used in testing as well as for seed production. If generation 
and testing times are short, top crossing may also be used in 
preliminary screening for general combining ability of crosses to 
reduce the number of single crosses for testing and to develop the 
best single-cross combinations. In forestry, some argument can 
be made for local or traditional seed sources or identified clonal 
sets as being useful as a stable, standard variety, or at least as 
the population to develop in the single-population breeding pro
gram. In most cases, however, considerable room for improving 
even these "varieties" exists, and a dual improvement program 
will be most appropriate. 

Single crosses in advanced generations of inbreeding may not 
be sufficiently viable for seed production, or they may not contain 
all of the traits desired for commercial seed production. Triple 
and double crosses may then be feasible for development through 
additional testing, but development time may be too costly to 
support such procedures. If trees can be vegetatively propagated, 
it would seem better to develop lines for single crosses and to 
expand the number of fruiting branches by such propagation 
methods as cloning reproductive tips. 

HYBRIDS OF POPULATION 
Recurrent selection for specific combining ability is an alterna

tive to pure-line development for hybrid performance that is 
similar to developing recurrent selection populations. In this 
case, instead of using a heterogeneous set of testers to select for 
general combining ability) a particular line or stock is used and 
the genotypes are selected for cross-performance. The best trees 
are then completely intercrossed, and the new population is again 
reduced to a set of selected parents according to test-cross results 
with the same tester stock. This method thus develops a popula
tion that complements a specific tester stock. That stock would 
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have to be well defined, continuously available, and useful in seed 
production as well as testing. Otherwise, direct recurrent selection 
for general combining ability would be easier and just as effective. 

Gains from selection for specific combining ability depend on 
differences in hybrid gene effects being accumulated in the pm·en
tal populations (Cress 1966b). For most forest tree species which 
have not developed standard varieties of any purity, a reasonable 
approach to developing high specific combining ability in crosses 
would be the mutual development of complementary populations 
such as by reciprocal recurrent selection. The operations involved 
in this selection system are identical with recurrent selection for 
specific combining ability, but instead of using a standard tester 
stock, the pairs of developing populations are used as reciprocal 
testers, both of which are mutua]}y improved. This method has 
become the standard for many cross-pollinated crop plants against 
which other methods are compared. 

Theoretical comparisons of methods for hybrid population 
development methods are difficult to derive, because the specific 
kinds of dominance effects required to make hybrid breeding 
advantageous depend upon gene frequency locus and distribution 
(Cress 1966a). Therefore, while genetic variances, effects (In 
covariances of relatives, and selection advances within generations 
can be derived (Stuber and Cockerham 1966), the gene fre
quencies will presumably be diverging in subsequent generations, 
relative inbreeding within parental l)Opulation will become 
stronger, and translation of gene effects and variances between 
generations will be less well defined. In fact, in the F l , special 
dominance eff·Jcts exist which may not be seen in the F~, and varia
tions ,\"ill appear in the F2 which were hidden by dominance gene 
actions in the Fl. Xe,·ertheless, empirical studies on the efficacy of 
reciprocal recurrent selection indicate its value when dominance 
gene actions are important. Theoretically, the method should be 
able to utilize any 'within-population general combining ability 
not masked by hybrid effects, as wel1 as the interpopulation spe
cific combining ability between the complementary sets (Kojima 
and Kelleher 1963a). 

In an actual breeding experiment contrasting reciprocal recur
rent selection (RRS) with si11gle-population development, :Moll 
and Stuber (1971) found in corn that for roughly comparable 
selection differentials RRS can utilize both general and specific 
combining abilities. The hybrid product of RRS was slightly 
bettel' than the best population llred by full-~ill family selection 
in a recurrent selection system. It waS also much better than the 
hybrid between the parental populations which had been bred for 
general combining ability, Another population was developed by 
oreHnary full-sib family selection hut from an initial population 
which was composed of F't of the original parental varieties. This 
selected population performed at about the average level of the 
t\,'O full-sib family seJectjon populations carried within each 
parental variety, and not as well as the RRS hybrids. Xevertheless, 
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full-sib family selection within each parental line was moderately 
effective and utilized general combining ability variations in the 
original parental populations. Instead of using the original paren
tal varieties, the parents developed for RRS were also used to try 
full-sib family selection from each parental variety. RRS dis
played a greater development of heterosis in the hybrids and 
created a better hybrid population than the recurrent selections 
within the parental or hybrid variety. Ho\vever, RRS was not as 
effecti\~e in improying the intravarietal performance as was full
sib selection. Moll and Stuber (1971) also found for their constant 
and moderate selection intensities that the gains hy all breeding 
methods were reasonably constant and hence may be predicted 
for at least six selection cycles from first-generation results. 

In such hybrid breeding programs, as in all breeding programs 
in forestry, immediate gains in commercial seed are required 
because development of trees through multiple generations often 
requires more time than can be justified. Therefore, intermediate 
products are always required, and, as suggested by Cress (1967) 
for other crops, production of synthetic varieties in the inter
mediate generations of RRS population development is desirable. 
Such synthetic varieties may be composed of entirely different 
genotypes for each generaLion, or may include some particularly 
good genotypes for several generations, until better ones are 
developed. Regardless of the origin of the parental genotypes, or 
their homozygosity, commercial seed-production orchards can be 
composed of a subset of entries with especially good specific 
combining abilities among crossed parents. Seed requirements 
would determine whether fewer or more parental combinations 
are included in the seed-production phase than in the breed
production populations. In many tree species, it is l)Ossible to 
vegetatively propagate a set of especially good clones instead 
of using sexual reproduction. Thus, intermediate stages of 
Schreiner's (1966) "synthetic multiclonal hybrid varieties" may 
also be produced. 

The deyelopment of hybrid breeds is clearly dependent on the 
importance of dominance types of gene actions, 'which are not 
easy to estimate in the generally heterozygous populations of 
cross-pollinated species. Moll and Robinson (1967) clearly show 
that initial estimates of dominance levels (':m be substantialiy 
affected by linkage, and that favorable epistatic combinations of 
alleles can be lost during breeding ancl mating (Gardner and 
Lonnquist 1959). Also, dominance levels among alleles within 
populations may exceed those between populations. Therefore, 
hybrid breeding programs developed on the basis of initial esti
mates of high dominance effects may not be as beneficial as 
expected. In a comprehensive review of plant breeding in the 
"Gnited States, Sprag-ue (1966) examined the famous hybrid-corn 
breec1illf!' programs of the past and concluded that, strictly from 
the viewpoint of g-enetic progress obtainable, selecUon programs 
based on developing general combining ability within single popu



103 

lations could have been at least as good. Furthermore, since the 
existence of heterosis does not by Hself justify a hybridization 
program (Stuber 1970), we should not assume that the success 
which corn hybridization has achieved can be applied to other 
species. 

Hybridization has played an impressive role in many tree breed
ing programs and will continue to do so in many cases (\Yright 
196.1b). Most such programs were developed to combine traits of 
different but related species; goals included combining acceptable 
growth rates with acceptable resistance to a disease 01' insect, 01' 

performance in a particularly harsh environment (van Buijtenen 
1970). ]l,Iany examples of species hybrids created for those pur
poses exist, but few programs have sought cumulative improve
ment of the hybrid populations. The creation of a base hybrid 
population through single-population recurrent selection, as 
outlined by Stuber (1970), is potentially valuable. Throughout 
Europe, extensive plans exist to introduce special traits into 
species through species and varietal hybridization. The species 
chosen are generally good and may be further bred to produce 
base populations for recurrent selection, reciprocal recurrent 
selection, 01' single-cross types of programs (Xilsson and Anders
son 1970). Among the early programs desi,£,rned to create a hybrid 
base population for future recurrent selection were those on the 
Pinus )'(ldiata ~.,.. P. attenuata hybrids (Righter 1960). )'1(jre 
recently, Conkle (1970) suggested that reciprocal recurrent selec
tion can be profitably applied to those two species as the parental 
populations. The extensive development of Pinus 1'igida Y P. iaeda 
hybrids in Korea has also recently led to the development of 
reciprocal recurrent selection plans in addition to a continu
ing program of selection within the hybrid base pop\lhtion 
(Hyun 1971). 

In all these cases, p0pulation development still requires that 
the one or se\'eral parental-source populations be large enough 
to avoid the loss of favorable alleles. The problems of recurrent 
selection for general combining ability and the strictures on 
maintaining large population sizes are as important in hybrid 
as in single-population programs. The limitations on crossing 
patterns within parental populations and the requirements for 
large family sizes and numbers of families are the same as for 
single-population recurrent selection, as are the limitations placed 
on the ~election (liffel'ential b.y the requirements of replicated 
testing. In fact, these problems are even more acute 'with hybrid 
breeding programs since both parental I)Ollulations will often 
require separate development ane! testing, and henee some l'e(luc
tion in capacity to l'el1licate tests. If a minimum of GO to IOn 
genotypes is deemed necessary in single-population hreeding to 
maintain genetic variation 'without sigl1ifif'unt loss of selection 
intensity and to preserve genetic variations in traits not presently 
under breeding pressure, then approximately the same number 
would have to be maintained in each of the parental populafions 
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for hybrid breeding. An adequate test size, including numbers of 
trees per plot and crosses per parent, would then require about 
double the effort of single-population development plus testing 
time. The only relief found in hybrid programs is that inbreeding 
depression of intrapopulation crosses does not reduce gain in the 
seed products. 

The possibilities of replicating populations for parallel breeding 
programs are the same for hybrid as for single-population breed
ing. The same advantages of safety exist, since each breeding unit 
can be developed for several generations before the parental 
populations begin to deplete their genetic variations, and the 
possibilities of selecting among fortuitously good units also exist. 
However, the advantages of crossing among the better replicates 
to regenerate variations will presumably not exist for hybrid 
programs, since they depend on creating compleme11tary gene 
arrangements. At this time, no theoretical work has been done 
on these tol)ics, however, and variations on the replication theme 
have not been explored enough to dismiss the possibility that 
some forms of replicated reciprocal recurrent selection may be 
uniquely advantageous in tree breeding. 

Except for pure-line development for parents of single-cross 
hybrids, the performance of parents as individuals is not nearly 
as important a basis of selection in hybrid breeding as in single
population breeding. Thus, only direct testing of cross combina
tions is reliable for hybrids. The gain in each generation can be 
predicted as the variance among selection units, but prediction 
for future generations is uncertain. Therefore, only the methods 
which utilize some form of progeny or sib testing are useful. 
Unless required for other reasons, mass selection and seedl.ing 
orchard methods in which the observational or test materials are 
also used as parents are not suitable for hybrid breeding. Sepa
rate seed-production operations will almost always be requiTed. 
If clonal reproduction of the commercially produced genotypes is 
desired, then a separate operation for regeneration is clearly 
required after the best genotypes are chosen. For any program 
in which separate commercial seed production is required, there 
is no need to maintain this operation in the same areas as the 
test sites. In fact, controlled pollination may be easier outside 
the natural range of the species. 

A major problem in hybrid breeding occurs after the initial 
parents within each population have been intermatec1. Each popu~ 
lation may have several thous(\nd trees available for selection. 
A tree's phenotypic performance is likely to be poorly correlated 
'with its per[ormance as a hybrid IJarent. The crossing ane! 
evaluation phnses, therefore, can be massive unless some schemes 
for staging sequences of testing can reduce the numbers of entries 
which require intensive handling. Various methods are possible 
for sequential testing and selecting' to reduce their parental 
numbers to the minimum sizes required. If sequential data on 
hybrid performance in reciprocal recurrent selection or recurrent 
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selection for specific combining ability are available, some form 
of family selection may be feasible. It may also be desirable or 
even necessary to select within parental populations for general 
vigor before making hybrid test crosses and reselecting on progeny 
performance. In all such cases, gain can be estimated by the ratio 
of the genetic variances of the hybrid generation, as described by 
Stuber and Cockerham (1966), and the phenotypic variance of 
the test materials. The selection differential requires the same 
considerations as for single populations, and the compromise 
choices for maximizing s' h2 between the sand h2 elements are 
essentially the same and require no development here. In recipro
cal recurrent selection, for example, the same s may require that 
fe"wer individuals be tested and selected as in single-population 

h2recurrent selection. The denominator variance of should be 
comparable, and the numerator covariances "would be equivalent 
in the additi,'e genetic components to those for progeny-test or 
sib selection. The numerator covariances, however, would also 
include a dominance variance contribution which would vary 
according to gene-frequency differences among the parental 
populations. 

The development of selections in a single population of hybrids 
is no different from any other single-population breeding program, 
except that the F2 generation must be used to represent the base, 
noninbred population, even though some linkage effects will linger 
for several generations. 

Othenvise, the same basic considerations of population size 
and mating pattel'l1s remain. Single pair matings in any of the 
various sib or cousin patterns may be duplicated in either kind of 
program, and expansions of sets of pair matings in hybrid pro
grams into multiple cross or partially controlled cross systems are 
identical within parental populations. Test matings are the only 
distinctive feature. 

MIXED BREEDING PROGRAMS 
Some traits may be best improved by utilizing heterosis, and 

others by using additive gene effects. If the forest is to be com
posed of a mixture of tree types, then breeding populations for 
different objectives may be separated. However, if a single
breeding population is required to simultaneously improve traits 
by both hybrid and a single-population breeding, then a mixed 
program is required. 

A mixed program may be done by tandem selection, say first 
for the adc1itively inherited traits in each of the narental popula
tions/ and then for the heterotic traits in hybrids. Seed production 
is then from the hybrid populations in general or specific crosses, 
while breed-population regeneration requires intrapopulational 
mating. Alternatively, additive and heterotic gene actions can be 
simultaneously selected for if information on all performances is 
available. The additional information 0n a tree's own performance 
and that of other relatives would always be useful for gain in 
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traits dependent on additive gene actions, while progenies of 
hybrid crosses are required for evaluation of traits dependent on 
heterosis. 

CONSIDERATIONS IN CHOOSING 
BREEDING METHODS 

Mode of reproduction, operational costs, time costs, and types 
of gene action will determine the optimal breeding system. While 
it may be simple to derive the basic concepts for estimating gain 
for any system of sand h2, errors in estimation of parameters, 
costs, and operational interactions are considerable. Thus, testing 
large numbers of trees increases s but introduces wider environ
mental and measurement errors and hence decreases h2 • Also, 
the cost of increasing s by one unit at high levels of selection 
intensity is very high, because vastly greater numbers and pro
portions are needed to change s. Changes in operational costs 
affecting h2 are seldom linear; the marginal cost of adding repli
cates, for example, can be low if other tests and experiments are 
to be conducted anyway. Benefits of small increases in breeding 
products are also unlikely to be linear functions of gain in physi
cal parameters, and, therefore, relative costs and risks are likely 
to be nonlinear with respect to experimental size. Hence, small 
gain differences even at high immediate land or operational costs 
may justify choosing a more expensive breeding program. 

The simplest form of breeding is rapid and cheap mass selec
tion that any intelligent forester can apply to seed collection and 
forest regeneration, vVhile clearly the simplest, it may not be as 
efficient or as profitable as the more sophisticated methods already 
described. There are clear differences in the manner and efficiency 
in which the various methods accumulate a favorable set of aBeles, 
since information is used differently and matings are made differ
ently. If mass selection is considered as essentially costless or, at 
least, no more costly than other methods of seed procurement, 
then the costs of controlled crossing programs are only the 
marginal costs of making specific crosses and keeping ancesh'al 
identities. The benefits of such additional operations lie in the 
control of effective population size for any given number of trees 
and in the possible uses of family selection to increase herita
bilities. Of the various crossing methods discussed, from partial 
to complete control, fewer parents would be required for breeding 
if ancestries are kno'wn, because some expected or feared level of 
additional inbreeding would have to be assumed without control, 
thereby decreasing the effective population size. To maintain some 
minimal N e, more parents would bE' included in the breeding 
popUlation, making less intensive selection desirable for methods 
with less ancestral control. In addition, controlled crosses in the 
breeding population, especially those of the diallel patterns, allow 
the breeder to choose among favorable combinations of family and 
individual selection to maximize the product of sand h2 and the 
sum of gains derivable from each stage. There is some trade-off 
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bet-ween sand h2 and between the efforts of making many crosses 
with few trees pel' cross, and few crosses with more trees per 
cross, but optimal combinations do exist. An additional benefit of 
controlled crosses is the possible use of specific combining abilities 
in temporary or short-run breeding operations. Only if families 
are identified can they be used as recombinants for increasing 
specific combining ability responses. Indeed, the detection of such 
efforts themselves requires controlled intercrossing. 

In addition to rapidly improving breeding populations, con
trolled crossing permits somewhat more precise selection if prog
enies ,,"ithin any generation are tested. General and specific 
combining abilities can be estimated and used to impro\'e the 
commercial seed product within anyone generation. Also, while 
slower and more expensive, controlled crossing can achie"2 more 
gain pel' generation if the sand h2 for progeny tests comp.'~nsate 
for the time lost in breed development. 

If the tree breeder is responsible for several species, coordina
tion of operations can be overwhelmingly complex. He must deter
mine for each species the unique genetic and phenotypic means 
and variances, costs of operation,. etc., to arrive at optimal 
operational comprornises with respect to selection differentials, 
heritabilities, population sizes, etc. Then, a desirable extent of 
controlled crossing desired and its pattern and sequence can be 
established for the breeding operation. With limited time and 
resources, various strategies may be followed to maximize total 
improvement. Some may wish to establish a complete program 
for each species, taking them in some order of importance, while 
others may wish to attack all species simultaneously in a single 
program. In general, however, efforts must be concentrated on 
those most valuable species which can profit most by intensive 
breeding programs. Programs for other species usually are limited 
to minimal mass selection or simple recurrent selection. For such 
multiple species programs, decisions on such Questions as desired 
selection differential for family and individual selection affect the 
effort affordable on other species. Hence, efficient breeding of a 
key species can determine the form of the entire program. Most 
multiple species programs will probably have three classes of 
operations. One or two ·widely planted species with high-genetic
gain potential will receive maximum effort. Several species wilJ 
receive moderate effort to establish breeding populations with 
controlled breeding options. And minimal efforts will be directed 
to species that require some improvement but for which progress 
is limited by lack of knowledge or planting potential. Allocation 
of effort among breeding agencies within regional cooperatives or 
governmental units could assure the Ion g·-term development of all 
potentially useful populations. 

All of the above methods depend completely on additive types 
of gene act:on and e\'entually learl to homozygosity within repli
cate trials. The choices between them rest on testing efficiencies 
and costs, maximizing both sand h2 at minimal costs, maintaining 
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genetic varIance, and species characteristics of the plants. 
A maj or difference in concept exists if any of the hybrid 

systems are pursued. Hybrid selection methods clearly depend on 
developing complementary sets of genes in the parental popula
tions. If gene actions turn out to be largely additive, hybrid selec
tion may produce the same results as single-population selection 
at a higher cost. However, if overdominant gene actions exist and 
can be accentuated by developing complementary allelic frequen
cies, these hybrids can offer great advantages. Otherwise, less 
than complete dominance and epistasis may not be any better 
utilized than in the single population. Various types of semihybrid 
programs, however, such as developing single-population breeds 
from a hybrid base popuiation, may offer considerable advantages 
when species 01' provenance hybrid combinations bring valuable 
traits into the population for further concentration. Eventually, 
the hybrid programs, too, will lead to homozygosity within paren
tal sources. In hybrid programs, however, homozygosity will occur 
so far in the future that new variants will be generated if popu
lations are kept large. 

In forest trl.!e breeding, the present need is clearly for experi
mental e\'idence on the biological and economic feasibility of the 
diverse methods that appear to be available. Responses to mod
erate selection and inbreeding must be found, and analyses are 
needed on the effects of different environments on phenotypic and 
genetic variances. Small replicate populations are particularly 
well suited to single-population breeding, and the effects of their 
use require empirical testing. Organization of hierarchies in such 
replicated breeding populations, as recommended by Xamkoong 
and others (1971), should be explored for single-population breed
ing and can be adapted to hybrid breeding in which the parental 
populations are separately developed. Experimental testing of 
breeding rc~thods on rapid generation sequences is required. 

SEED SOURCE SELECTION 
The first step in all breeding programs has traditionally been 

the choice of provenances to utilize available geographic varia
tions. Since forest trees have been relatively unselected, unique 
opportunities exist for exploiting natural racial variations within 
species. Regardless of any other patterns of variation that may be 
discerned, it is only reasonable to examine genetic differences 
among subpopulations for their possible utility in building breed
ing populations ancl for any limitations which may exist in cross
ing among them or with other potential parents. One objecth-e of 
selecting trees from the best provenances is to collect the best 
alleles into the base population and to increase their frequency by 
breeding without having to return later to unimproved popula
tions for useful alleles. It is most practical to start breeding at as 
high a level of value as possible. However, proper breeding of 
an average provenance will soon yield varieties better than any 
existing unimproved provenance. Therefore, the breeder will have 
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to choose between seeking improvement either through an initial 
cycle of provenance tests or through immediate breeding of the 
best r 'ovenance he has available. Variation among provenances is 
usually exhausted for purposes of selection among them after 
the best have been chosen. 

Significant variations exist among local populations of almost 
all wide-ranging forest tree species. While there aTe some notable 
exceptions to this general phenomenon, Wright's (1962) compre
hensive review of provenance differences strongly indicates that 
it is wiser to assume large subpopulation variations and to prove 
the assumption wrong than to ignore the possible existence of 
such variations. Variations among provenances and their possible 
uses have already been ·well described elsewhere. The discussion 
here is confined to the discerning of patterns of variation and the 
sources and llses of such patterns. 

The traditional concept has been that selection for vegetative 
vigor should be limited to local sources, which are presumably 
best adapted to local environments. Strong support for this con
cept came from the classical studies on Achillea, by Clausen and 
others (1948). They suggested that natural selection eliminates all 
migrants and genetic segregants not suited to local environments, 
and that vigorolls growth was highly correlated with competitive 
ability and fitness. Further support for this view with forest trees 
was developed by Langlet (1936) and Wakeley (1954). In any 
test, growth would be expected to be best from the local source 
with some degree of decrease as a function of environmental 
distance. 

Conflict with the traditional model was noted by Wright (1962), 
who observed that local provenances of Douglas-fir ,vere not al
ways the most vigorous. Careful analysis of loblolly pine per
formance in the "Southwide Pine Seed Source Study," by Wells 
and ,Vakeley (1966), demonstrated the existence of an optimal 
growth zone along the southeastern coastal border of its range. 
Genotypes from this zone outperformed all others in local tests up 
to 200 miles inland. Similarly, growth potentials for genotypes 
from more central populations and moderate climatic sources of 
black walnut were considerably superior for gro\vth vigor far 
north of their present range (Bey 1970). In addition, optimal 
climatic and soil regions near the centers of the ranges of slash 
pine (Squillace 1966b, 1966c) and of ponderosa pine (Conkle 
1973) produced genotypes which are superior far outside of their 
local regions. 

It would be valuable to know why natural selection has not pro
duced locally optimal vigor or, perhaps, fitness. It may be that 
vegetative vigor is not as well correlated with reproductive fitness 
as we foresters might suppose, especially since we measure vigor 
in plantations and not under natural conditions (Squillace and 
Kraus 1959). Certainly, however, vegetative vigor and reproduc
tive fitness cannot be completely independent. l\Iore exact models 
and tests of the relationship between vigor and fitness are re
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quired, but the following discussion assumes that less than maxi
mal fitness is being maintained in some populations. Accidental 
drift and restricted migration could produce random deviations 
around generally fit area means, but the regular patterns that 
have been observed cannot be so explained. It seems more likely 
that variations in environments have more critical effects on fit
ness values in ecologically marginal areas, and that the lack of 
response to selection for vigor is itself a defensive response to 
variability in environmental requirements. The concept of the 
existence of stable, optimal populations evolving under variable 
environments has been extensively developed by Levins (1968), 
who showed that maximum fitness over several generations can be 
achieved by a population that is not maximally fit in anyone en
vironment but reasonably good in aU. If variations in climate, soil, 
or other environmental factors are large, it can be advantageous 
for populations to remain more conservatively adapted to the 
harshel' environments. In forest tree species, especially those on 
ecologically marginal and variable sites. it can be advantageous 
not to respond to selection for what may be only transiently favor
able site factors. Only in more stable, optimal areas would fine 
adjustments to environments add to the long-term fitness of the 
species.

One mechanism to dampen response to selection is a high migra
tion rate among populations. Antonovics (1968a) has recently 
shown that among perennial organisms even limited amounts of 
pollen migration can strongly inhibit immediate responses in 
gene frequency to selection. Hence, currently unfavorable alleles 
can be maintained at intermediate frequencies if migration is 
effective. If the correlation between vegetative vigor and fitness is 
high, however, strong selection will clearly tend to produce vigor
ous local performance even with pollen migration (Endler 1973). 
But if the correlation \vith commercially important traits is low, 
the breeder should consider provenance selection in regions of 
optimal ecological development and minimal environmental stress 
as defined by the species itself. 

An altogether different feature of provenances which may re
quire special measures for selection is the genetic variance within 
seed sources which itself may vary among populations. If few 
populations are selected for breeding, then they should contain as 
much of the potentially useful genetic variants as is possible to 
obtain. In some cases, only large populations of species with con
siderable migration will be selected, and little extra care will be 
required. In other cases, however, the populations may be relic 
stands, plantings of limited parental origins, or even mixtures of 
a few clones as sometimes occur in Japanese Cryptomeria stands 
(K. Sakai, personal communication). In those cases, remedial ef
forts to regenerate genetic variations may be useful. One may 
select trees only from those populations with a large effective pop
ulation size and genetic variance, or select among several stands 
of different origins to assure a low coancestry among the selects. 
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Much provenance research involves the discernment of relations 
between environmental and yield factors, For example, after a 
local provenance test the breeder often wishes to estimate the re
lations between environmental variables at the seed source and 
performance in his plantation. The interest for population ge
netics lies in determining the extent of genetic segregation in 
allelic frequencies and whether substantial genetic variance exists 
within or between stands. The extent to which variation in traits 
of interest is determined by environmental factors indicates the 
relative strength of directional selection and migration versus 
drift and other random forces in determining allelic frequencies. 
The analysis of multiple regression in several traits simulta
neously is therefore of value in interpreting genetic population 
structure. The genetic covariance matrix among traits, estimated 
after interpopulation effects are removed, represents the multivari
ate analog of the simple genetic variance within populational sub
divisions. One might wish to simplify interpretation by using 
canonical or principal component analysis, but the total regression 
and residual genetic covariance on all the traits should also be 
estima ted. 

The matrix of p (p~ 1) genetic variances and covariances 
2 

among p traits is therefol'e desirable to estimate, and general 
lineal' hypotheses (on additive or dominance effects in multivari
ate space, for example) can be tested by multivariate analogs of 
unl\'ariate analyses of \'ariance. Thus, maximum-likelihood testing 
of the dispersion matrix among provenances or among half-sib 
families in several traits should be performed, and cluster analyses 
should be attempted to discern communities of similar prove
nances. 

It is often difficult to define the location of optimum prove
nances where regular patterns of. response exist, especially if 
plants have been moved much by natural or human endeavors. If 
high-vigor zones occur at random, then only complete or random 
sampling would locate them with any known probability. How
ever, if trends exist, even \vith local enol' variations, the breeder 
may wish to weight his sample in favor of areas most likely to 
produce good genotypes. 

Variables in source environment, such as seasonal rainfall, ele
vation, soil type, and length of growing season, that influence 
various expressions of yield can be identified. And fOl' tests at one 
planting location, multip1e regressions of all yield variations on 
all environmental-source vHriables can be detel'mined. 

For anyone yield variate, the surface of response can be esti
mated if enough source environments are sampled anel maxima 
and minima are estimated on those surfaces by standard linear 
01' nonlinear regression. The sampling problems are no different 
Lorn any other multiple regression pl'Oblem, except that the com
binations of elwil'onmental variables are not subject t(l simple 
manipulation but must be sampled as they exist in nature. If the 



112 

objective of provenance testing is to determine general variations 
and means, then general, range-wide or random sampling may be 
best. However, if the objective is to estimate the location of 
optimal regions, then heavier sampling around expected optimal 
regions is desirable. For example, if more moderate environments 
than available in local sources are expected to yield more vigorous 
trees, a pattern of sampling using the local source as an extreme 
and suspected optimal regions as centers of sampling may be 
feasible. Combinations of environmental variables may be sought 
which, in the dimensions of those vari..:'l.bles, are constructed in 
concentric circles or rectangles with replicated center points. Such 
variables can be very efficient estimators of the surface for 
maxima neal' the suspected region. The surfaces may be as simple 
as the quadratic (Namkoong 1967) 01' some more complicated 
asymptotic functions (Sm'vas 1970) which require heavy sampling 
in reg-ions of maximum (urvature, but all benefit from planned 
sampling of environmental variables. Provenances can also be 
analyzed for not only mean differences, but also for differences in 
reaction to sites. The results may indicate different levels of 
genotype-site interactions which can be studied by regression types 
of analyses (Butcher and others 1972). The problem for most 
programs, however, is that several traits are of interest simul
taneously, and that simultaneous estimation and a unified form 
of evaluation are required. Estimation problems for the multivari
ate case are not especially difficult, but they require the estima
tion of 11 matrix of regression coefficients instead of a simple 
vector (Namkoong 1967). Except for problems with missing elata, 
the only new concepts involved are associated with the distribu
tion of multivariate moments, and they should cause little diffi
culty for the forester. The gTeatel' practical problem is that the 
optimum environment for one trait may not be optimum for 
others, and hence selection of an optimum set of em'ironmental 
variables is not simple. 

If the value functions for tbe combined traits of interest are 
independent among traits and can be well approximated by a 
lineal' function, environments can be evaluated in terms of that 
lineal' function. The evaluation can be made as if a single-value 
trait was being measured, since, under the assumption of linearity, 
relative values of traits do not change, regardless of the actual 
levels of the trait variables. Nonlinear value functions are dis
cussed in greater detail in chapter c1 in the section on eval uation. 
For the present discussion, it is sufficient to state that a solution 
for an optimal environmental vector may indicate a combination 
of environmental variables ,vhich does not exist in natul'e. For 
example, for a given ,'alue function, its maximum within the space 
of environmental variables may lie at a combination of say low 
wintel' temperatures and high winter l'ainfall. This combination 
may not exist. To obtain trait combinations in provenance selec
tion, then, mixtures 01' hybrids from complementary regions may 
provide material for future selection. For example, source .t1 may 
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promise good growth but little resistance, while source B prom
ises high resistance but poor growth. If both traits are necessary 
and not otherwise simultaneously available, a hybrid WOlll~l con
tain both traits at intermediate gene frequencies and could prom
ise greater breeding gains. While the estimation and selection 
problems are general for all breeding evaluations of a multivariate 
nature, breeders dealing with provenance selection will immedi
ately be faced with choices of mixing the most useful sources for 
multiple traits in the base population. 

In addition to problems of evaluating a mUltiple-regression sur
face for multivariate decisions, a tree breeder is seldom interested 
in one planting site. He must usually have to consider what single 
source or combination of sources may be suitable over .a range of 
sites and how they will change for a set of planting environments. 
Complete sampling of all sources on all sites is desirable but often 
not feasible. Efficient sampling for testing suitable provenances on 
a sequence of sites would require that some changing subset of 
sources be tested on each site if some choice in source sampling is 
possible. A partial sampling design may be like: 

SOURCE 
A B C D E 

a X 
b X X 
c X X X 

Site d X X 'v
,1',- X 

e X X X X 
f X X X 
g X X 
h X 

Overlapping sources among planting sites are required to deter
mine general somce effects and to distinguish between source X 
planting site interaction effects and general source average per
formances. 

A complete factorial sampling of all sources on all sites would 
provide a '.!omplete picture of value at each combination, and we 
could then describe a 3-dimensional factorial response surface of 
value: 

",VALUE 

SOURCE 
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If sources and sites are identically ordered and the order has 
some relation to value, some simple surfaces may be described for 
some simple hypothetical results. 

If sources differed but were identical in response to all sites, 
the value surface would be like: 

VALUE 

SITE 

If sites differed but had identical effect on all sources, the value 
surface would resemble: 

,/ 

If both sites and sources differed but no interactions existed, the 
value surface would resemble: 
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If interaction existed, irregular surfaces would display various 
forms. A conditi.on of local sources always being best would look 
like: 

Less regular and mixed surfaces would have to be generally ex
pected. To the extent that each site has unique optimal sources, 
the site-by-source interaction can be expected to be high. To the 
extent that sources perform consistently over different sites, the 
provenance source will have a large effect at the expense of the 
interaction component. It is such cases as these which were 
alluded to in the discussion of optimal ecological zones. The gain 
achievable is directly estimated by the mean dL:erences observed. 

In tests designed to evaluate provenance selection in which only 
a sample of all possible provenances is taken, gain estimation is a 
simple analysis of ordinary gain estimates by regression. If the 
interaction component is high and selection is to be generally 
among the best test sources, then the expected selective advantage 
for starting with the best sources is the selection differential X h2 

(provenance) ; where h2 (provenance) is covariance (provenance 
test value, breeding value) + variance (test values), and where 
the selection differential is the difference between the population 
mean and the mean of the selected provenance. In this case, the 
numerator covariance of the provenance h2 will be largely the 
interaction variance component plus any contributions due to per
sistent provenance performances. 

If a mixture of sources is selected for starting the breeding 
population, materials with different gene frequencies will some
times be mixed in the breeding. Any dominance and epistatic 
effects will then produce genetic recombinations and genetic vari
ances in the F'.!. generation unforeseen in the parental or initial 
crossing generations. It would, of course, be beneficial to start into 
recurrent selection either for a hybrid system 01' for general com~ 
bining ability with a hybrid base population with some experi
mental information on the importance of nonadditive effects. 
However, if most provenance crossing displays additive and aver
aging effects and little dominance or heterosis, as appears true for 
most pine species, then provenance selection is simply a higher or
ganizational form of family selection. Then, selection may be made 
in a tandem fashion-first provenance or source, then family and 

http:conditi.on
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individual. Simultaneous selection on an individual-tree basis is 
also possible if some index weight is given to family and prove
nance collateral relatives in judging individual worth. The effects 
of linkage disequilibrium, however, will be felt for several genera
tions. 

To the extent that provenance selection is deemed worthwhilE:, 
some question exists as to how much gain can be achieved by 
second or multiple stages of refined selection of stands within gen
eral provenance areas. If the initial sampling was small, then the 
response surface is poorly estimated and the model form of the 
surface may not even be detectable as being especially good or 
poor. In such cases, the breeder may: (1) choose the best among 
those he has sampled, (2) estimate and select from an optimum 
environment, or (3) res ample the population for further testing. 
While further testing increases the chances for greater precision 
and gain, time and experimental costs also increase, and one might 
be better off to start a breeding operation if the benefit of better 
provenance selection can be overcome by a generation of within
population breeding. Thus, for example, the value of the selection 
of seed-production areas or stands may not be worth much extra 
time or testing if stanc~ heritabilities are low and pollination is 
uncontrolled. The more intensive the initial sampling was, the 
less chance that either a more precise surface estimation would 
indicate other optima or that stands other than those actually 
sampled would be much better for starting a selection program. 
Provenance selection may occasionally be all that is desired if 
breeding in even minimal programs cannot be supported (Wright 
1971). Thus, one generation of well-designed and intensively sam
pled provenance tests is often as much testing as is desired for 
starting either hybrid- or single-population breeding. Subsequent 
population I:evelopments would then proceed either to develop the 
separate parental pOl)ulation for hybrid production or single pop
ulations for some form of recurrent selection for general combin
ing ability. 



CHAPTER 4 

TESTIN-G AND ESTIMATING VALUE 


IN FOREST TREE BREEDING 


It is clear that defining, measuring, and using gene effects in a 
breeding program, or simply understanding the variations and 
operations of natural events, involve highly complicated studies 
in which optimum solutions may be difficult to produce. Efficient 
estimation, breeding population development, and seed production 
in a breeding agency all require careful design. In addition, since 
the breeding program requires that all tasks be integrated, the 
various phases of the complete program often require simultaneous 
operation. Design problems can be highly complicated and al'duous, 
since they involve genetics, statistics, and mathematics applied to 
the practical problems of testing, selecting, and breeding trees for 
a multitude of purposes. Nevertheless, forest tree breeders are 
required to also conduct tests which require unusually large 
amounts of time and space, and hence demand efficiency in achiev
ing all of the experimental goals sought. Testing trees, families, 
or provenances for selection in forestry is complicated by chang
ing environments and changing requirements for data on perform
ance of different relatives on different planting sites. Because 
of these problems, the plant resources required for testing must 
be efficiently allocated. 

In this chapter, testing and evaluation techniques are discussed 
as additional objectives of efficient breeding. The use of informa
tion on relatives in a linear function and the evaluation of multi
ple traits, also in a linear function, are discussed. The use and 
evaluation of correlated trait selection and response are examined 
and nonlinear value functions are discussed. Genotype-by-environ
ment interaction and competition models are then described. In the 
following chapter, strategies for developing integrated research 
and development programs in forest genetics are discussed. 

INDEX ON RELATIVES 
One method of increasing selection efficiency is to use as much 

information as may be available on the performance of \'arious 
kinds of relatives. The more relatives that exist, the more precisely 
the genetic value is measured, and the closer their relationship to 
the units being selected, the more reliance can be placed on their 
performance as supplements to the individual's own performance. 
Combining the information, which may indicate for example that 
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an individual is good but its half-sib family and parents are 
poor, requires that the performances be put in a form that permits 
fair weighting of the contrasting data to give precise selection 
and hence maximum gain when the units are selected. 

A linear function is a simple, reasonable form for a composite 
index value: I=b1Xl +b2X2+ ... , where the Xi are the variables 
for each kind of rrbtive, and the bi are the index weights to be 
determined. Then the true value of a tree, V, can be estimated with 
some error by V=I+e, where e is the errol' in estimating true 
value by the I index and is to be minimized. Then, as in any se
lection scheme, expected genetic gain in value E (.6.G y ) when some 
imprecision in selection exists can be approximated by the regres
sion function E(~Gl')=h/(f8-~tl)2, where hl is the regression 
heritability of the index values, and 7.- P.I is the selection differen
tial between the mean index value of those selected and the general 
population mean index value. The regression heritability h/2 =Cov 
(I,v) + Val' (I). For normally distributed traits (x variables can 
be expected to be approximately normally distributed especially if 
the x's are means), the expected selection differential E(l8-~/)= 
(zip) ai, where, as previously discussed, z is the ordinate of the 
standardized normal distribution at the truncation point, and p 

is the proportion selected. Then E (.6.G r ) =zlp ~ =z/p PVlay. 
a[ 

Since ai' is fixed in the population, and zip is chosen by the breeder 
to satisfy demands previously discussed, we maximize gain by 
maximizing the correlation pn or by maximizing the errol' variance 
of I around F. Using least squares procedures as in multiple re
gression, an underline to indicate a vector, and a prime to incli
cate a transposition, the relationships which Ive require are: 

or 
to. 
b=P-l Cov (:ri,v) 

.....'J 
the matrix of phenotypic variances and covariances, 
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the vector of weighting coeffidents, and 

Cov (XI,v)
Cov (x"V) = Cov (X2,V) 

the vector of genetic covarianc~s between the relatives and the 
genotypes being tested. 

It can be further seen that since: 
A 

b=P-ICOV (X;, V), 

and [=b'x, 

Cov (l, V) =~'Cov (x;, V), 

and a}=b'Pb. 

Therefore, 

=Cov (l, V), 

and therefore, h/=l. 

Since E (t:..Gv ) = (zip) U'I h2 , 

E (t:..Gv ) = (zip) U'I, 

in the scale of the index measures taken on the relatives, and gain 
can be estimated as: 

E (t:..Gv ) = (zip) yb'Pb 

or E(t:..Gv ) = (zlp)yCov' (Xj, V)PI Cov (Xi, V), 

assuming that P, Cov (Xl, V), and b are all well estimated. 

This kind of index has some potential use in forestry when sib, 
parental, and clonal data can all contribute to the estimate of 
value of a tree (Namkoong 1966b). We can get an intuitive feeling 
for how the index gives weights to the various relatives if we ig
nore the phenotypic covariances in P and instead look at only the 
phenotypic variances. 

A 

Then b= COV (Xl, V)] 
Cov (X!!, V)

] [
(Ix -2 

3 • • • 
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Therefore, 

We can see that the closer the relationship to the tested genotype 
is, the higher the covariance 'will be. The better ,\"e can estimate 
the breeding value of a genotype by reducing nongenetic variation, 
the lower the phenotypic variance (IT.r2) will be, and hence the 
greater the b, coefficient will be. For tl~ose species which can be 
tested clonally, we would have direct measures of the genotype 
and hence, the covariance of ramets with ortet would be the total 
additive genetic variance. Also, clones can be planted in several 
locations and replications and their value determined 'with mini
mum error. Hence, if clones can be used, their ,veighting will be 
very high (Libby 1964). 

The variances in the diagonal of the P matrix are more easily 
estimated from the variance of various family means or clonal 
means. The covariances as between, say, full-sib and half-sib 
family performances in a balanced experiment may be zero but in 
unbalanced experiments may not be. Maximum likelihood esti
mates of the index can still be computed (Henderson 1963). Inde
pendently estimated means contribute no covariances to the P 
matrix. The other genetic covariances between an individual selec
tion unit value and the various relatives' means may be simple 
genetic covariances as for parent-offspring relations, but may in
volve more complicated relationships between an individual and 
its family if the individual itself contributes to the family mean. 
In such cases, finite population correction factors can be used and 
the standard indices estimated (Henderson 1963). 

The more complicated the relationships involved, and the more 
different kinds of relatives are estimated, the less well are the 
various covariance matrices estimated and, therefore, the poorer 
are the estimates of the optimal b coefficients. In a fairly ex
tensive mixture of crossing and selfing data from a diallel estima
tion experiment, Cockerham and Matzinger (1966) found that 
simplified weighting procedures may often prove to be at least as 
good as the complete least squares analyses. In fact, as analyzed 
by Williams (1962) and Patel and others (1962, 1969), poor 
estimation of the P matrix can, over several trials, lead to poorer 
cOlTelations of indices with true breeding value than simplified 
weighting procedures on the basis of genetic correlations among 
relatives or cost and precision of estimates. 

Thus, for selection, very extensive tests of many kinds of l·ela
tives may not be worth construction of separate experiments, even 
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if they would be useful if they are otherwise available. 1\1ore 
remote relatives have little to add to selection precision and may 
cause more problems in estimation of value than their limited 
assistance is worth. Furthermore, the use of relatives is most 
helpful in cases of low individual heritability, and even progeny 
testing may not be worth the cost in time 01' effort required 
(Namkoong 1970a) unless heritability is very low. Thus, while it 
is useful to have data on relatives, selection gain alone may not 
be worth the cost of extra matings and plantings to obtain the 
data. Each program, however, must make that cost analysis for its 
own benefit valuations. It must also be considered that multiple 
traits are often simultaneously selected for and that the desir
ability of using information on relatives usually varies among 
traits. For example, selection for growth may have a high 
heritability while selection for disease resistance may be low. 
In addition, if the correlation between them is negative, one may 
be forced to obtain the additional information for simultaneous 
selection from progeny tests CA. E. Squillace, personal communica
tion). Thus, a complete evaluation of progeny testing for obtain
ing infurmation on any kinds of relatives generally requires a 
multiple-trait evaluation. 

INDEX ON TRAITS 
In the above discussion, \\'e have generally assumed the ex

istence of a single measure of value on each unit of selection for 
which the various relatives are measured in some common way. 
In general, however, several traits are selected for and the simul
taneous improvement of all traits is often desired. Alternatively, 
methods of improving one trait at a time in a tandem sequence 
or of simply using truncation selection for each trait independently 
to arrive at the same selection c!ifferential }ut\'e been shown to be 
poorer than simultaneous index selection (Young 1961, 1964). 
One method of reducing the several-trait measures to a single 
scale is essentially the same as for selection with multiple relatives 
-a linear index function with weights estimated to maximize the 
gain in value. Similar to the previous discussion, a linear function 
is appropriate for independent evaluations of the traits, each of 
which increases in value in a lineal' form, While this is clearly a 
POOl' approximation, it may not be bad for small :::hanges in each 
component trait. 

The index we wish to build would thus "weight the trait vari
ables in a linear function: I=b)Yl+b~y~'+' ... , and each trait 
would have some relationship to value V as before, The only added 
complication no\'{ is that value is some function, presumably linear, 
of each trait's true value, V==nlgll..(l~g~+ ... , where g, are the 
inherited 01' true genetic values in the selection units, and ai are 
the economic weight$ in the linear value function. As before, 
the maximization of value requires the least squares estimates 
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for the b coefficients from: 
A 

Pb=Cov(y" V} 

A 

or b=P-1COV(yc, V). 

The new problem is that the covariance of each variable y, must 
be taken with the linear function of value, l'=algt -:-(12g2+ .... 
Sinl!e we are in a breeding operation, the covariance of a pheno
typic measure (Yi) with its genetic value (g,) in a selection unit 
is the genetic variance or, more often, the additive genetic variance 
of the trait CTA_ 2 • Similarly, the covariance of a phenotypic measure 
on trait i (y;) 

I 
with the genetic ';nlue of another trait (gJ) is the 

genetic covariance or additive genetic co\'ariance between traits 
CTAiAr 

Then, since value V=a.lg1+((2g2+ ... , 

,2= (LI CT .41 + (/2 CT.4,.4 2 + (13 CT·-l,.Aa 

alCT.4,.4 2 +a!!U2..t., +((3CT.4~.43 + 
aICTA,A 3 +a2CT.4 2_4 3 +a3CT2A3 + 

,J.., 'T 

=(G}a, 

where G is the genetic (additive) covariance matrix, and a is the 
vector of economic weights. 

A 

Then b=P-1Ga. 

As before, the expected gain in value, using optimum weights 
and assuming a linear economic model, is: 

E (~G) = (zip) CTth/2 

where h/ 2 =Cov(l, V} + Var(l). 
A 

Since b=P-IGa 

and l=b'x, and V=a'g, 

then COy (I, V) = b'eov (YI, gJ) CL 

and Var(l) = b'Pb 

=b'pp-1Ga 

=b'Ga 

=b'COV(Yf, gj)a=Cov(l, V). 

http:3CT.4~.43
http:13CT�-l,.Aa
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Therefore, hr2=1 

and E (~G) = (zip) fIr 

in the units of measure used to derive I. Even if a linear economic 
function is adequate, poor estimates of P or G lead to the same 
problems in estimating the optimum index weights as pre\'iously 
discussed .. The ilwestigations of Williams (1962) and Patel and 
others (1962, 1969) were directed to these kinds of indices and 
resulted in recommendations that the estimated b weights were 
better when the linear, aclditi\'e genetic variances were high 
relati,·e to nonac1dithoe genetic variances and that estimates of the 
coefficients were restricted to within reasonable limits. 

A more general condition for selection index construction in
cludes cases in which it is wished to keep some traits in the popu
lation unchanged, \Vhile essentially similar in form to the indices 
constructed abo\·e, the value is to be maximized under conshaints 
\\'hich require zero-valued functions to exist (Tallis 1962), Kemp
thorne and ~orc1skog (1959) state the restrictions in algebraic 
form as linear functions of genotypic values c'r;=O, and maximize 
the value function using Lagl'vngian multipliers. The optimum b 
estimate then is: 

where C is the matrix of coefficients of the restricting equations 
ancl the other matrices are as J)l'eviously clefll1ecl. If C=l as for 
the case of no restrictions, the equation reduces to the familiar 

"lJ=p-1Ga. 

A different kind of index is required if dominance types of gene 
action are used, as in hybrid or mixed breeding systems. In :;uch 
cases, the genetic ,'alue of the entries is also dependent on domi
nance effects and dominance and ac1ditIve-by-c1ominance genetic 
variances. These genetic variances and con1l'iances, however, are 
defined according to their hybrid population statistics as developed 
by Stuber and Cockerham (1966). 

CORRELATED RESPONSE 
The effects of selection for one set of traits on changef: in other 

traits are clearly of great intere~t to foresters, gince mallY forests 
are subject to multiple simultaneous demand:.; and futlll·(1 forests 
are subject to selection for diftel'ent sets of traits. :JIaintllining 
variation ill the forests h.y maintaining" huge populations or lW 
selecting to maintain some intermediate mean values may hoth 
be useful, though large population size is easier to lise amI likely 
more c:ollsen'ing of vadance. A more critical problem is that 
genetic correlations and hence (·orrelatecl responsef: to se]E'ction 
are notoriollsly variable from generation to generation. If the 
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correlations among traits are due to nongenetic sources, they can 
change with environmental or cultural variations. If they are 
partly genetic, then they may change as linkages change or as 
they influence the relative effects of pleitropy or epistasis on trait 
correIa tions. 

It may also be useful to select trees for improvement in one 
trait like yield by measuring a more easily observable associated 
trait like height growth. The associated trait may be measurable 
under less environmenL:'1lly variable conditions 01' measurable 
several years earlier than the trait of direct economic value. Selec
tion efficacy depends on the nature of the correlation between the 
trait5. 

Faced with problems associated with poor estimations and 
changing genetic correlations, greater assurance of achieving gains 
can be given if the numbers of traits are limited to a few with 
relatively assured values and breeding is followed with large 
population sizes. 

One form of index selection on correlated traits which would 
be extremely valuable in forestry is selection on a set of juvenile 
traits for mature tree performance. Several .i uvenile traits that 
can be easily measured may, by themselves, have an economic 
\'a1t~e of zero but still be useful if correlated with one or several 
mature tree traits. In terms of single pairs of juvenile-mature 
tree traits, Nanson (1970) has clearly demonstrated that for many 
traits in a wide variety of forest tree species, these correlations 
aL'e high enough that substantial saYings in cost and rate of genetic 
gain can be achieved by selection early in the life cycle. The gain 
from selection on .r on the correlated trait of value 1/, using linear 
approximations, is: 

E (~GfJ = irr,rh;r2b;r.v 

whell h./""(TA/lrr} • .l.'2, the heritability of trait x, and br." is the 
regression between the genotypic nllue of 11 on the genotypic 
value of .r. The numerator of the regression is usually restricted to 
the addith'e genetic covariance between the two trait performances 
rrAdv, while the denominator is rr.li, the additive genetic variance 
of :t.. 

Then 

01' as Falconer (1960) states: 
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NONLINEAR RELATIONS 
As suggested in chapter 1, means and variances are descriptors 

of population behaviors useful primarily as initial approximations 
to biological l)henomena. Similarly, the linear covariances and 
correlations described above are useful first approximations to 
the actual relationships among population measures. True linearity 
of relationships among traits should not be assumed; it is a rare 
exception in the real world. Few traits are linearly related and, 
even when measuring the same trait in different relatives, the 
conditions of the testing or ages of the relatives may differ. Hence, 
the covariance between say offspring and parent is often not 
one-half of a genetic variance, but is one-half of a genetic co
variance. This relationship, however, may not be linear. In such 
cases, curvilinear reg-!·ession adj ustments are often made to 
linearize the parameters of the model and multiple regression 
coefficients used for each trait. These introduce no new theoretical 
problems, are useful second approximations to reality, and are 
about all that can now be done without using nonlinear mathe
matics. 

If we can then assume that breeding can be efficiently performed 
for a given set of values, the central problem in forest tree breed
ing is defining and measuring value when the traits themselves 
are complicated by environmental interactions and their economic 
effects are nonlinear. Se\"eral forms of nonlinearities are fairly 
common in forestry. Some such problems cannot be linearized by 
logarithmic or polynomial transformations. Slightly more difficult 
to handle are cases in which discontinuities exist in the relation
ship between physical measures and value, such as between stem 
diameter and stem value when it jumps from pulp size to pole, 
saw-log, and veneer-log sizes. In addition, (legree of past resistance 
may exhibit a relatively flat value function until some minimal 
levels aTe reached, after which a linear function may exist until 
high resistance levels are reached and increments in resistance 
add little to final crop value, especially if some natural thinning is 
expected. In many such cases, approximate value functions may be 
assigned and linearized, even when multiple discontinuities exist. 
Only slightly more complicated and difficult are those cases in 
which the value of one trait depends to some extent on the value 
of other traits-when trait values are interdependent. The joint 
value function then requires some iterative e\"aluation as, for ex
ample, when both volume growth and \\'ooel quality are interde
pendent and both depend on survival and pe~L resistance le\'els. 
For example, pest resistance may be of rehl.tively little yallle at 
low-growth levels but can assume an exponential yalue function at 
high-yield levels. Similarly, increasing wood yield under high l'isk 
of mortality may be of low value until mortalitr rates can be 
dropped enough to warrant investment in growth improvement. 
HJwever, even such joint value functions, with various points 
and lines of discontinuities and with variolls forms of Clll'\'aLUl'C, 

present problems only in locating a direction for maximizing value 
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on an uneven, but known, surface. Thus, on some nonlinear surface 
of value of possible trait combinations, the breeder can seek to 
determine the direction cosines of the line which would give him 
maximum gain. This line may be either in the direction of maxi
mum value gain for \'ery small changes in trait values, for ex
ample, the gradient, or in the direction of the optimum trait 
combination which may require a long-term breeding effort and 
more than what maximum immediate gains could promise. In the 
case of a truly linear value function, these lines are identical and 
the index coefficients which are derived by traditional methods 
are the direction numbers of the planes of equal value which are 
perpendicular to the gradient. Determinations of the direction 
numbers of planes of equal \'alue or the associated direction cosines 
of the line normal to those planes are essentially similar operations 
as one can be determined from the other. Therefore, other than 
forcing one to work harder to determine the value function and to 
change the direction of maximizing value gain according to the 
present mean \'alue of the population. the above nonlinearities 
cause no theoretical problems in breeding in whatever direction 
is determined to be optimum. 

A different class of problems are generated when, in addition 
to any nonlinearities, the actual value function is not precisely 
known. In this case, errors in estimating true values can cause 
some trait values to be relath'ely decreased in breeding value if 
they happen to be more sensitive to the uncertainties of future 
values. This is a particularly acute problem in forest tree breeding 
where the time interval for single generations from selection 
through breeding, planting, and harvest would often involve 20 
to 60 years. While these times can be expected to decrease, the 
uncertainty factor will always be present. Since breeding opera
tions for particular hybrids or with any recurrent selection ob
jectives obviously require projections of value into an unknown 
future, only temporary gains can be achieved if breeding objec
tives change within generations. Long-tenn gains are necessarily 
limited to relatively few traits of persistent value such as survival, 
growth under wide site variations, ancl perhaps some pest resist
ances. Short-term objectiw:s can include mOl'e traits but even 
then must include evaluations based on unknown technologies 
applied at various stages of forestry between planting and final 
conversion to economic return. Any of the stages, including silvi
culture, harvesting, mill technologies, and market variables, which 
can change within a generation between seed production and value 
conversion, can be more quickly altered than breeders can affect 
their product values (Namkoong and oth2rs 1966) . In other breed
ing prO.QTams with shorter breeding cycles, such as with dairy 
cows blL.d for high butter fnt content in milk or with tobacco bred 
for nicotine content, marked changes required strenuous changes 
in modifying otherwise adapte(l breeds and lines. Thus, the choice 
of traits for breeding when economic value uncertainty exi::;ts can 
drastically affect the value of the \yhole breeding operation, and 
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considerable care is required in choosing breeding for long-term 
gains on some traits and short-term (one generation or more) 
gains on others. Foresters "rill have to be far more conservative, 
since rapid breeding generations to alter breeds will not generally
be possible (Stern 1972). 

If some uncertainty is involved in determining a value function 
for a given generation of selection and breeding, the optimum 
strategy may not be to maximize an expected average gain, which 
may be known only with high error of estimate. Clearly, if the 
uncertainty were such that the error on predicted values was very 
narrowly distributed around a mean, then one might "'ish to treat 
the case as a deterministic one. In what might be the more com
mon situation, however, a relatively high variance on the value 
function exists, and an estimated average function may have too 
high an error to attempt a definition of optimum breeding direc
tion cosines. An alternative strategy is to determine simultaneous 
confidence limits within which, at given probabilities, the optimal 
direction exists. Breeding evaluations may then be made on the 
assumption that a maximum errol' ane! an associated minimal gain 
can be made for a gh·en range in direction cosines. Alternatively, 
a breeder may wish to minimize the probability of certain errors 
occulTing, such as some limit on misdirection, and may instead 
choose direction cosines with minimal gain objectives. 

Under conditions of high uncertainty, such that the error dis
tribution on the predicted value function is too large to reasonably 
derive an estimated mean with any reasonable probability of 
accuracy, the concept of maximizing expected value may have to 
be totally discarded. In such cases, it may be possible to describe 
several value functions for the combined traits, no one of which 
is any more likely than the rest to reflect the actual value function 
at harvest time. Then, maximizing a minimum expected gain may 
be a more reasonable, if conservati\e, strategy to follow since it 
would guarantee that certain minimal values can be achieved re
gardless of which value function actually exists at harvest. The 
optimum trait direction for the breeder to follow is thus defined 
as that which imparts the highest minimal gain which can be 
achieved. As an oversimplified example, consicler only one trait, 
wood specific gnwity, which is highly correlated with cell-wall 
thickness, and assume that one of four situations illustrated in 
figure 11 may occur: 

(1) 	Thin-walled fibers become very valuable ane! wooel of 
low specific gravity has high value. 

(2) 	 Thin-walled fibers are of some value hut the loss in 
fiber yield of low-specific-gravity wood almost offsets 
the value of the wood-quality gain. 

(3) 	 Cell-wall thickness (loes not affect value and the in
creased fiber yield of high-specific-gr(tvity wood in
creases its yalue. 
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(4) 	Thick-walled fibers are of some value and accentuate 
the increased value of high-specific-;"!L'It1vity wood. 

If these four adequately define all value functions, the X marks 
in figure 11 l'epresent the extreme points of the possible solution 
set. The value of specific gravity which maximizes the minimum 
gain is indicated by a circle and would be the optimum point 
toward which the population should move. It can be seen that 
discontinuities in the value functions would cause a problem in 
arriving at a solution. 

4 

3 

I 
I 

E9.3 .5 .7 .9 
SPECIFIC GRAVITY 

Figure 1l.-:'.laximin problem for values of specific gravity in four possihl~ 
situations: (1) strongly decreasing value, (2) moderately decreasing 
value, (3) moderately increasing value, and (4) strongly increasing value. 

In any real situation, the economic functions would be more 
complicated and involve more variables, but they could be easily 
solved since the solution of maximin games can be found by 
standard lineal' programming (Hadley 1964). Difficulties with 
continuous, nonlinearizable functions remain (Owen 1968), but 
with modern computers good linear approximations for small 
intervals can be made, and the expanded set of restrictions can 
easily be handled. All problems of discontinuities and boundary 
values have been eliminated. Therefore, solutions for such 
linearizable functions in these essentially two-person, zero-sum 
games can always be found, and an optimum point or direction 
defined. Therefore, a direction for moving the breeding population 
can be defined even in these situations. 

Therefore, even facing uncertainty of a high degree, the breeder 
can determine optimum trait combinations and can evaluate trees 
with respect to the directions so determined. While it is also clear 
that, due to precliction problems and problems of estimating genetic 
and phenotypic means and variances, only a restricted number of 
traits should be included in breeding programs, it is also true that 
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even mild selection pressureR can be beneficial in keeping faYol'able 
alleJes in population. Such alleles can be useful in later generations 
of breeding or in special breeding' orchards and would be useful to 
maintain even if their immediate usefulness is limited and of 
uncertain values. In these cases, once a basic set of traits and 
their optimal direction cosines, (11' associated direction numbers, 
are determined, restricted indices may be additionally useful 
(Tallis 1962). 

GENOTYPE X ENVIRONMENT INTERACTION 
Economic and estimation uncertainties are not the only factors 

which make the direct application of breeding theory especially 
complicated in forestry. Changes jn the environments of forests 
are also becoming more rapid and widespread through the direct 
efforts of silviculturists as well as through the accidental impact 
of human and other influences. The economks of land use \vith 
forestry altel'nath'es clearly depend on forest values which are jn 
turn affected by genetic potential yalues and the control exercised 
by breeders. At the same time. values clearly depend on how 
society controls forest operations 'within the general economic 
system. Lllclel' an intensiye system of planning, genetic control of 
forest characteristics and values can be one management control 
variable fol' use in conjunction with silviculture and other tech
nologies capable of affecting forest values. If the environment can 
be predicted to change. then coordinated changes in culture and 
genetic composition of forests can give extra benefits if geno
type ./ em'ironment interactions exist. For example, genotypes 
may compose an ordered set of entdes in a field trial in which 
several environmental state:; may he sampled and relative per
formances estimated. Regardles$ of whether either genotypes or 
environments lutve any H\'el'uge o,'el'all efrect~, \'urious combina~ 
tions of particular genotypes on particular enyironments positively 
or negath'ely depart from theil' average performance due to the 
special reaction of one to the other in the combination. If the 
environments can be ordered, then differences among genotypes' 
l'esponse functions other than general mean or simple scale differ
ences may be considered to be interaction effects for which some 
nonlinear functions may be fit and found to \'al'~' among genotypes. 
For many plant sllecies, relationships among genotypes seem to be 
nearly lineal' with respect to stability measures or to measures of 
relative performance of genotypes over se\'eral environments 
(Freeman and Perkins 1971). Howe\'el', this need not be true for 
the range of site variables which forest trees must fnce. In mnllY 
forestry cases, the entire multivariate response surface to multiple 
environmental gradients should be el1timated along 'with differ
ence" between genotypes so that specific sets of genotypes cnn be 
recommended for specific classes of environmental factor combi
nations as previously descdbe<l. Regression analysis would indi
cate the extent to which regularity of response ean be prer1icted. 
It could also jnc1icate the distribution of the residual errors, ac
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cording to various subdivisions of regression sums of squares and 
interactions, and hence the linearity of genotype X environment 
interactions (Eberhart and Russell 1966; Freeman and Perkins 
1971). In such cases, the entire package of genotypes with en
vironmental specifications might be more easily developed, as has 
been the eXl)edence with other crops which are developed for 
given fertility and \\"ater regimes (Robinson and Moll 1959). For 
foreb~ trees, stich factors as planting-site preparation, spacing, 
fertility, and growing region fOl' general climate or soils might be 
sufficiently controllable that testing for resp< nses to some speci
fied standardized conditions might give worthwhile benefits. How
e\"er, very close specification of environments shrinks the area 
within which the breeding population is ideally suited, and total 
gain may sut'''!r if the breeding program must sustain too many 
populations adapted to special sites instead of a good o\"erall 
average adaptability. An alternative goa1 of breeding may then be 
to select for lack of response to a wide variety of conditions and for 
good a\"erage performance, as suggested by Finlay and Wilkinson 
(U'63). In addition to any aYerage value benefits, this system 
may have a greater uniformity of response to uncontrolled site 
val"iation. can ha\"e vahle as a more consistent or reliable planning 
factor, and can increase forest values by increasing their uni
formity. For some plant species, however, highest average yield 
is associated with instability (Tai 1971), and different em'iron
ments may induce different kinds of genetic variance to be dis
played by the same organisms (Perldns and Jinks 1968). Then, 
uniformity of performance is most readily produced by different 
genotypic mixtures. 

It would clearly he ach'antngeous to use genotypes which uni
formly perform hest in all sites. There is some indication that 
such phenomena may exist. but to the extent that such unifol111 
goodne:::;s does not exist, some compromise is reqni reel beh\"een 
maximum adaptedness with special breeds and limits to the num
ber of special populations which can be specified for geogral1hic 
areas 01" other site restrictions. Thus, preliminary Slll"veys of the 
dimensions Hnd extent of em'ironmental variations are desirable 
to test the form and importance of these genotype :"' environment 
interactions as "'ell as any changes in the genetic variances (King 
1965; Leclig 1970; Squillace 1£)70). Descriptions anel classifications 
of genotypes according to similm'ity of responses can be useful 
to determine the existence of subsets of elwironmental yariables 
and subsets of genotypes (Hanson 1970). Regression types of 
analyses of genot)1)es on environments can greatly benefit both 
the analysis of for111s of interactions and the practical use in breed
ing (Pel"kins and Jinks 1968; Freeman and Perkins 1971). 

Differences in degrees of stability and response to favorable and 
unfayol'able E'lwironments have been fonnd for slash pine (Snyder 
and Allen 1971). The only major difference between these methods 
and standard regression analyses is that the environments are 
scaled according to the average performance of the genotypes and 
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not by known, measurable variables. Freeman and Perkins (1971) 
construct an ANOVA for t g-enotypes (with t-I degrees of free
dom), s environments (with 8-1 elf), and an interaction (with 
(t-l) (s-l) elf). The 8-1 df for environments are partitioned 
into 1 df for a sum of squares due to an average lineal' regression 
and s-~ elf for the remainder. The interaction is partitioned into 
sums of squares due to genotypic differences in their linear regres
sions (with t-l df) and a remainder (with (t-l) (8-2) df). 
Eberhart and Russell's (1966) partitioning is slightly different: 
the 8-2 df of the remainder from enyironmental regression and 
the (t-l) (8-2) elf of interaction remainder are used to construct 
a sum of squares of devjations of environments from linearity 
with 8-2 df for each genotype. Both methods, howeyer. are essen
tially similar in seeking linear regressions and ANOVA's for 
testing those models. 

For more general analyses of nonlinear and multi1mrametel' 
responses, the same breakdown of degrees of freedom for multiple 
regression can be followed. For such cases, unbalanced designs 
with several environmental measures may find greater use, 
especially for forest trees with complicated response patterns. 
These experiments would require a careful allocation of p(lssible 
treatments or elwironmental degrees of freedom into specined 
treatment combinations. 

While special treatment combinations can be most efficientl~' 
designed for purposes of regression analysis as above, 01' in more 
complicated response surface estimations (Box and Lucas 1959), 
it will seldom be possible to test all genotypes on all site and 
silvicllltllral \'ariar~e levels. The location of replicated treatment 
combinations around maximum response and maximum clll'Yature 
zones, as preYiously suggested, may not be feasible. ~Iore often, 
it will be necessary to specify standard elwironments which can 
test the range of responses of interest or to specify indicator 
genotypes which provide some idea of the existence and form of 
genetic interactions for given site Yal'iations. In addition to the 
effects on selection, the existence of interactions cause::; bias in 
estimating genetic \'ariances of single-location experiments as 
previously discussed. However, e\+en if the component of \'[lriance 
due to interactions is small, its effect on selection can be significant 
(King 1965). As a minimum program for testing. at least an 
average site would have to be sampled by all genotypes. ~Iore 
generally, to the extent that seedlings are l!\'ailtthle fOl' testing, 
environmental factor combinations l'epresenting the breeder's best 
guesses on major site subdivisions should be sampled, If major 
genotype Y site interactions exist, then selections can be made 
for specific sites for special breeds or for a single, generally useful 
breed. 

Site sampling should follow the general principles of Box am] 
Lucas (1959) to span as many site dimensions of present and 
future utility as possible. If balanced designs incorporating all 
genotypes across all seJected sHes cannot be installed, then llnbal
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anced designs will find some utility. Recognizing that some inter
actions of special genotype-site combinations ,\'ill not be observed, 
and if mean estimation is still of major importance, then partially 
balanced factorials of genotypes X sites can be profitably used. 
These may either involve a single, completely connected, partial 
factorial in which some o\'erlap between genotypes and site 
combinations exists so that. complete least squares of main effects 
can at least be determined, or some subblocking can be used 
instead. If genotypes are subblocked to gain experimental (mean 
estimation) efficiency, some loss occurs in that genotypes in 
different subblocks cannot be compared. The general design and 
analysis problems considered in chapter 7 are directly applicable 
to these problems. Subblocking can be arranged in several ways 
to avoid putting all genotypes on all sites. The families may be 
completely separated into mutually exclusive sets and each tested 
on one set of sites which are also subdivided into mutually exclu
sive subsets. h sllch a path'1'I1, no information on sites or geno
types in :5eparhle sets can be recovered. By making partial 
overlaps of familie.3 among sites, comparisons of families in 
different sets can be made, and different average site effects can 
also be compared. This can be ananged by using certain families 
as common checks on all sites or alternatively, on some sites, using 
all families as a basis f01' adjusting other sites and genotypic 
combinations. In complete blocking designs, using a series of dif
ferent, overlapping families to connect sequences of sites may also 
be used. For these testing purposes, various partially balanced 
incomplete blocking arrangements can be used. They will be the 
same for comparing genotypic means as for any other kinds of 
treatment means. In particular, the use of partial balance with 
respect to genetic blocking or replication within sites can help to 
preserve balance with respect to major site variables (Schutz and 
Cockerham 1962). The balanced designs are distinctly preferable 
for testing means, for determining regressions on ordered vari
ables, and for security of the material and analysis in future years. 
If necessary, ho\\'eve1', designing partial balance can offer experi
mental efficiency of scarce materials. 

For purposes of estimating the general size and form of 
genotype Y. interactions, unbalance is not as great a problem in the 
design and analysis of experiments for estimating variance com
ponents or regression-type responses as it is for testing. At 
least initially, however, installing such experiments will be quite 
difficult. Experimental geneticists may be largely limited to pro
viding some replicated genetic identities to use as split-plots in 
large plot silvicultural experiments. Locational 01' site differences 
have been thought to be more significant than year differences in 
annual crops because \vide site variations can be easily sampled 
(Rojas and Sprague 1952), but persistent site )< year X genotype 
differences also exist. The form of interaction effects is still highly 
variable and can affect experimental design as well as breeding 
proceclures (Comstock and Moll 1963; Hanson 196'1). Within the 
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set of factors and variations in each that might be considered, 
factors which change within the breeding cycle are generally 
considered to be part of the uncontrolled variations contributing 
to error variance. Hence, trees with good average response or lack 
of response to those factors might be given added value for 
uniformity of response to noise variations. Stability over these 
and unpredictable future variations is then an important positive 
value and can be parameterized and tested (Hanson 1970). Similar 
methods as developed by Finlay and Wilkinson (1963) and Eber
hart and Russell (1966) have been found useful in studying 
provenance variations in Jack pine (Morgenstern and Teich 1969). 
Year-to-year climatic variations may often be linear, and therefore 
easily handled where breeds have to be planted over all of the 
years of seed production regardless of the climatic variations. 
Major yearly differences, however, may involve drought, fertility, 
or early planting effects of major significance which may be 
adjustable and hence, if properly sampled, can be a major site 
variant controllable by silvical measures. 

The genotype X site interactions that occur among replicates 
within planting zones cause an additional problem in testing 
among a large number of entries within replication blocks. Since 
the use of check varieties or genotype entries is limited by their 
own interaction potentials, Schutz and Cockerham (1962) recom
mend the use of blocks of genotypes confounded in replication 
blocks, for selection as well as estimation experiments in prefer
ence to replications of complete blocks of entries or checks. 
They find it more efficient to subblock entries to reduce within
replication enol' at the expense of recovering interblock informa
tion and selection among entries in different blocks. 

Sampling site variations by splitting major-site plots with 
genotypically distinct subplot differences may be a satisfactory 
compromise between independent experimentation and economic 
necessity. Standard split-plot analyses may then be performed 
within the treatment level combinations afforded by the silvi
culturist. In addition, any family structure such as male full-sibs 
within female half-sibs would allow for some further breakdown 
of the genotype X environment interactions into additive and 
dominance gene effects. For example, consider two environmental 
variables V and W. Let locations, replications in locations, fami
lies, and individuals in famjJies be considered as random samnles 
from infinite populations and the cultural treatments be considered 
fixed effects. 

The lineal' model yield equation is: 

Y=p.+L1+Rr/l+ V v+ W".+ (VW) lW+ (VL) "1+ OVL) wi 

+ (V'WL)vlI.t+ea+F,+ (FL)ft+ (FV>t,,+ (FlY),,,, 

+ (FVW)/t'w+ (FVL)'t'l + (FVWL) /rwl+eb+ew 
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where L!= lth location effect, 
Rr/!= rth replication effect in the lth location, 
Vu=vth level effect of treatment V, 

Ww=wth level effect of treatment W, 
(VW)"w= interaction deviation of the vth with wth 

levels of treatments V and W, 
(VL) v/= interaction deviation of the vth level of treat

ment V with location l, 
(WL),c!= interaction deviation of the wth level of 

treatment W with location l, 
(WVL) "to = interaction deviation of the wtr level of 

treatment V with the wth level of treatment 
W with location l, 

ea=major plot error, 
F,= fth family effect, 

(FL) f!= interaction of the fth family with the lth 
location, 

(FV) ft'= interaction of the fth family with the vth 
level of treatment V, 

(FW) fW= interaction of the fth family with the wth 
level of treatment W, 

(FVW) fcw= interaction of the fth family with the vth and 
the 'lVth levels of treatments of V and W, 

(FVL) M=interaction of the fth family with the vth 
level of treatment V and location l, 

(FWL),.c!=intel'action of the fth family with the ~vth 
level of treatment Wand location l, 

(FVWL) frtc!= interaction of the fth family with the vth and 
wth levels of treatments V and Wand loca
tion l, 

eb=minor (family) plot error, 
ew = within minor plot error. 

The location and interactions can then be further partitioned into 
linear and nonlinear regression factors, with their associated 
sums of squares. 

If the family members are grouped into plots, the analysis may 
be made as on a split-split-plot, with the replicate-location plots 
designated as major plots, the V by W treatment factorial as 
subplots, and families as sub-subplots. If, in addition, reciprocals 
or closer relatives are grouped into compact family blocks, a 
further degree of hierarchy in genetic and error components 
would exist. In the following, we assume random location of all 
family plots. The fixed nature of the cultural treatments allows 
certain simplifications to be made in the tabulation of expected 
mean squares. From the analysis of variance presented in table 2, 
estimates of the variance cOmI_.,nents can be easily derived. A 
slightly different but essentially similar analysis would follow 
if the family members were randomly placed within the treat
ment plots. 
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Table 2.-Analysis of variance for families 

Source of variation df I Expected mean squares 

Locations 1-1 

Replications in locations I (r-l) 

V v-I 

W w-l 

v'xTV (v-I) (w-l) 

VxL (v-I) (l-l) 

WxL (w-l) (l-I) 

VXWxL (v-I) (w-l) (l-I) 

~ajor plot error (vs-l) I (r-l) 

Families (f-1) a.2 +1·vwpa,,'+ruwplas' 

Families xlocations (f-l) (l-1) a;+rvwpa,,' 

Families x V (/-1) (v-I) a.'+1·pwa/r,'+rp1wur,' 

FamiliesxW (/-1) (w-l) u.'+rpVur", ,'+rplv<tr",' 

FamiliesxVx TV (/-1) (v-I) (w-l) u."+1·pa,.", ,'+rplar",,' 

FamiliesxVxL (1-1) (v-I) (1-1) u.'+1·pwar,,' 

FamiliesxWxL (/-1) (w-l) (l-I) 

FamiliesxVxWxL (/-1) (v-I) (w-l) (1-1) 

~inor plot error (1-1) (V1v-l) (r-l) 

Within plot error (lv1V1'I) (p-l) 

If the sampling of families ,vas structured to reflect a hypothe
sized structuring of the wild population (i.e., racial hierarchies) I 
then the a/ may be broken down into these components. If the 
families were structured as to types of relatives, the a/ may be 
interpreted in terms of genetic variances. For instance, if the 
families were unrelated half-sibs, u/ is the covariance of half-sibs 
which, under assumptions of no inbreeding of progenies and insig
nificant epistatic variances, is one-quarter of the additive genetic 
variance (UA2). The single-locus genetic model leading to the latter 
covariance interpretation is: 

Y=fJ.+ay +ay/+ 8u 1I,+e,+ (ae) u .+ (ae) 11/1+ (8e)u v/II
In m m m 

where au, = additive effect of the jth parental allele, j =m, I, 
avmv,= dominance effect of the 11'/, with t parental alleles, 

e.= a general environment effect, 
(ae) Yjl= interaction of the ith environment with the addi

tive effect of the jth allele, 
(8e) Vmllfl= dominance X environment interaction effect. 
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The covariances of different individuals under the above 
assumptions are: 

Cov (maternal half-sibs over treatments) =a/=n<T.{2, 

COy (individuals with the same environment over families) 
=<Tll, and 

where UAB2 is the interaction of the environmental factor with 
additive genetic effects. If the breeding design had been a hier
archy of females (f) and males (m) within females, the analysis 
of variance (table 2) would be exactly the same, but with a 
subdivision of the family and the family interactions sums of 
squares. Such an analysis is presented in table 3 with the major 
plot analysis omitted. If <T.4S2 is hig!l, it is included in the estimates 
of aA 2 made from analyses within location sites, and is properly 
included as part of the usable genetic variance for breeding for 
specific sites. For general site breeding, ho\\,ever, the a.4. 2 estimated 
over all sites is the only usable genetic variance for breeding 
purposes. However, it should again be noted that these are statisti
cal averages. The indications of high UAS'.! will generally \yarrant 
more detailed investigation of the forms of environmental response 
displayed by the sampled genotypes and the existence of different 
amounts of genetic variance in different environments. 

Again, the environmental and interaction components can be 
further partitioned into regression parameters of the interaction 
model. 

If we again assume the linear model with a generalized environ
ment effect, the covariances are: 

COy (maternal half-sib5 over environments) =a/:=O~I!uA2, 

COy (full-sibs over environments) =am·l ~a/":C; J 2a,! '2 T %,a[J2, 

am ·l= ~'t, (a,!!!'+- ar?), 

COy (individuals in same environment over families) =ae2
, 

COy (individuals with same env.il'onment and maternal par
' -1- 2' .) 1/ .,. .,. \' ~ ent over maI)es =CJ/f:-' as +a/-= /'.J,aAS~~u£-"'" /1.aA-, 

a/£2= 1ILa.le2
, 

COy (individuals with ~ame envil'onment and maternal and 
paternal parents) =aEm /~ ale2 + al,~"aml~al 

= 1/~a'12~ llt.an:! -I- as2.;..12aAE2 + J, i.aw:'!:, 

aEml/== VI. (a'le 2 +aoE2). 

Since these variances can be expected to be different, their 
existence implies error hete}'ogeneities that will cause testing errol' 
rates to be imprecisely determined. If the dominance-by
environment interaction i8 high, then breeding would have to in



Table S.-Analysis of va-riance fo?' nested sibs 

.-~~-
Source of variance 

--~~- -,"'~~ ..--~.....~ ...............-...----
Females 

Males/females 

FemalesXloca tions 

Males/ipmalesX locations 

Fp/TI;tlesXV 

M::ll('s/ females XV 

Femnle;;x VXlocntions 

Mnlps/iemaks XVX locn tions 

FemalesX ll' 

Mules, femalesX lV 

FemalesX lVx locations 

Males/females XWx locations 

li'pmalesx 1'x IT' 

Males/femalesxVx W 

Ff.'mnlesX \IX H'Xlocations 

Males!femalesxVx Wxlocatiolls 

FVIlHtl(' plot error 

Male, '[vlllale plot error 

(major lJZots omitted) 

df 

d-l 
d (8-1) 

(cl-l) (1-1) 

des-i) (i-I) 

(el-l) (v-I) 

des-I} (v-I) 

(el-I) (v-I) (l-1) 

d (8-1) (v-I) (l-I) 

(el-I) (w-I) 

d(s-I) (w-l) 

(el-l) (w-I) (i-I) 

d(s-l) (w-l) (1-1) 

(d-l) (v-I) (w-l) 

d(s-l) (v-I) (w-I) 

(d-I) (v-I) (w-I) (1-1) 

d(s-l) ('11-1) (w-l) (l-l) 

(d-I) (vw-I) l(r-I) 

d(s-I) (vw-I)l(r-l) 

Expected. mean squares ~____ ,.~__ __________ 

u.. +?7JVUJu·I .. ,,+?7)VWSu"'t +rpvwlu'''''r+rpvwl~,, 
u"m +'r1>vwu""u(+?-pvwlU'm" 

u". +rlJ'lJWu·"""-J-?7H>1VSu·,, 
" u', +rpvwU"m/' , 

u', +?'pWu· ....,r+rpWSu·.,f+rplwu·...,,+rplwmd'rl, 
u", +rpwu". Im'I +rplwu'.m't 

u". +rpwu".lmlf+rpWSu".,/
t 

u·'. +rpwu·.tml' 

u".,+7jJru"",I"vt+rpVsu·""/+rplvu· .... "+rplvma",,,, 

(1',. +7'PVU·., ....,' +rplvu'",,,,,, 

u'. +rpvu'",'m1t+rpVSu'''''f , 
0'11'" +rpVu';!",'m" 

u". +7·P(1·... ,m/'+rpSu" ... 'I +rplu·.....,(+rplma"... , 
( 

U2~. +'1']J<r:!"Ulln"f +?"Plu2 
plCI m,' 

u", +7-Pu"... ,ml(+rpsu· ... ,1 
f 

(I':.,.. +rpcrl1wl"ut 

u t , +l)llcr. =U'rl 
J , 

a.l,"+p~.m. =ut!. .Within male (dwuw1r) (p-l) U'" 
~ 

_, ___~_ _______~___..">"~-'''''->- __w,~. -=l '" 
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elude specific combinations of parents or hybrid breeding systems 
to utilize their responses to particular environments. In contrast, 
general combining ability breeding methods would be applied to 
use additive genetic variance-by-environment interactions, 

Partially balanced designs would, of course, have different 
analyses, The above completely balanced analysis is exceedingly 
cumbersome and the variance components estimates would carry 
high errors, 1!nbalancecl designs could estimate the same com
ponents with far greater efficiency. Designs for testing can be 
amalgamated with designs for variance component estimation 
through Gaylor and Anderson's (1960) L-shaped designs, All 
genotypes are represented on a subset of sites, \yhile all sites are 
sampled with a subset of genotypes. In addition, where even the 
basic subset of sites cannot be sampled by all genotypes, partially 
balanced factorials or blocked factorials should be used. 

To the extent that the elwironmental variables are ordered and 
have some regular form of effect on the yield variables, such as 
a polynomial function, the sum of squares due to the interactions 
can be further partitioned into such effects as linear or quadratic 
interactions. 

Not only do genotypes ,'al'Y in their ~werage responses to en
vironmental variations, hut the degree and form of that variation 
are also genetically determined. Some genotypes are highly vari
able in theit' response to a set of different enYironments while 
others with the same average performance and grown on the same 
set of enYironments are more homeostatic (Butcher and others 
1972) . It has been frequently observed that the degree of inbreed
ing also can affect the general level of response to environmental 
differenceg; the higher the inhreeding, tllP grNtter the variation 
as measured by the interaction (Allard and Bradshaw 1964). 
However, there is no evidence that the tYl)e of gene action involved 
in a,'erage performance determines the degree of the interaction. 
An forms of gene effects have been associated with genotype X 
elwironnlpnt interactions (Robinson and ::.ro11 1959). 

The utilization of data on the response form in either breeding 
for high response to controllable site factors or uniformity of re
sponse to any kind of site factor depends on how uniformity is 
evaluated. If it is of positive value as implied by Hanson (1970), 
its value should be considered positive in e\'aluating trees for use 
in an uncertain future environment. However, if the future dis
tribution of environments is known, then the mean value of the 
population will be the determining factor and uniformity of re
sponse will not affect value except as it can increase mean tree 
value directly. If the analysis of value is made under uncertainty 
and a value function is taken as some form of a minimax strategy, 
then uniformity has some incremental value h1 that it would give 
high minimal values to those h'ees with high uniformity. 

In all of these experiments it is assumed that plot arrangements 
permit a complete evaluation of trees or families .oyer as large a 
part of their life cycle as necessary in what might be understood 
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as reasonable competitive and spacing environments. However, it 
is clear that these factors are not simply defined, nor are there 
uniform conditions for suggesting that standard environments 
can be found. The effects of missing trees and missing plots are 
problems of experimentation which induce estimation problems 
and error heterogeneities and which affect test error rates. How
ever, since these are common statistical problems not peculiar to 
forestry, the reader is referred to texts on experimental design 
and analysis. 

Some designs to test spacing effects have been proposed 
(Namkoong 1966a), as have plot arrangements that maintain reg
ular spacing for each family through successive thinnings (W. J. 
Libby, personal communication). But little work has thus far 
been attempted on intcl'genotypic competition effects among fami
lies of the same species or provenance. 

COMPETITION 
Competition effects among genotypes, as distinct from spacing 

effects, require that genotypic interactions be analyzed and that 
performance be defined in terms of other genotypes. At the inter
species level, genetic competition effects are clearly significant in 
forming plant. and animal communities. At the finer levels of re
strictions on growing space, competition control has been a major 
silvicultural tool. While interspecies competition may occur 
throughout the life cycle and environmental variables may affect 
all factors of a tree's growth and development, spacing effects 
themselves involve crown, stem, and root in complicated inter
actions (De\Yit 1960). However, forest ecologists are still un
tangling the interrelationships among trees caused by proximity 
and competition for limited space, other special competitive inter
actions among specific genotypes caused by chemical 01' special 
time-dependent effects also have to be studied. In a sedes of 
studies on rice, Sakai (1955, 1965) defined intergenotypic compe
tition as any departure in plant performance exhibited when a 
plant is competing against other genotypes rather than in a 
pure stand. Thus, ordered or unordered sets of competing geno
types at the same spacing and constant in other environmental 
factors have been noted to have suppressing or enhancing effects 
relative to pure-stand performance, and parameters and genetic 
variations with respect to the special competition environment 
have been described (Sakai 1961). Extending this work to forest 
trees, Sakai and l\Iukaide (1967) and Sakai and others (1968) 
clearly note that these special effects can substantially increase 
the total variance in mixed genotype stands over pure stands. 
Hence, such effects may be of considerable impodance in con
trolling values and forest uniformity. Not only may uniformity be 
increased by selecting similar acting genotypes, but growth may 
be enhanced by selecting genotypes which somehow complement 
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and mutually benefit their selected neighbors. While too little is 
yet known of how the interactions operate and whether they are 
strongly dependent on other site factors of significance, further 
investigation is clearly warranted in forest trees (Adams and 
others 1973). Huhn (1969, 1970a, 1970b) defined the effect of 
genotype X on the growth of another genotype Y as the competi
tive influence of tree X (W.d on the tree Y which has a competi
tive ability Fy. His projections suggest that genetic variances in 
both types of competitive effects can stabilize in forests. Similarly, 
Mather (1969) indicates that competition can have stabilizing 
effects on ;:>olymorphisms in natural environments. While his 
definitions are different from Sakai's, the results suggest a useful 
parameterization and a method for estimating the significance of 
this kind of competition in forests. 

If competition can have as significant an effect on plant breed
ing, as suggested by Allard and Adams (1969), such as to force 
a complete reevaluation of plant breeding methods due to the 
peculiar stabilities that natural stands may have generated, then 
tree breeders can start developing their populations with the 
precautions of including wide growth variations in competitive 
tests using grouped tests, as suggested by Schutz and Brim 
(1971). In fact, the expansion of models to include competition 
and its spacing and density-dependent effects have generated re
newed concern with the classical concepts of population genetics 
and their ability to account for the existing variations in natural 
population (Mather 1969; Ayala 1971). If it can clearly have 
profound effect on natural evolution, then for foresters starting 
with relatively natural populations and selecting for increasingly 
cultivated environments, the demand is clear for experimentation 
on these effects. 

While most of the above studies have been made on mixtures of 
pure breeding lines, genetic segregation and intermating among 
competitors in breeding popUlations can also be studied as has 
Huhn (1970a). In terms of how selection affects the composition 
of competitive interactions if the genes which affect competitive 
ability are quantitatively inherited, Griffing (1967) has developed 
a model which is parallel to his classical model of selection effects. 
The allelic combinations which result from truncation selection 
and reconstituting a breeding population by crosses among that 
combination of selected individuals is traced. In definitions similar 
to Huhn's (1969), Griffing assumes that alleles have both direct 
effects on their own genotype's growth as well as associate effects 
on those with which it competes. Thus, instead of a simple 
(lij=cq+aJ+ 81} genetic model, he c1efinesilhdizf2 as being the genetic 
value of individual 1 in the presence of individual 2, and hence for 
populations of size 2, the array of genotypes with allelic frequen
cies Pi and p, is: 

~I,P!p, (AlA,) X2;Pi1Jj (AA,) =2; PI1PftPizPiz(AilAftAizAlz) 
, i,J 
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Genotype value AllAh as expressed in (AllAh' A!2AJ) is !IJld!2J2' 

'lhd!zJz=da,1.+ daft +dSI1.J1. +aa,2+aaJz +as 'Z/2 + da (aa) Illz 

+da (aa) !2J2+da (aa) 1112 +da (aa) hi2+ da (as) !l'2i Z 

+ da (as) ft!2J2 + da (Sa) Ilh!2 + da (Sa) 'lftJZ +da (Ss) 'lftI2i2' 

where da,l = direct additive effect of allele Ail' 

d8!lil = diI'ect dominance effect of AllAh' 

"aiz = associate additive effect of A12 as measured 
on AIIAll , 

as'2/, = associate dominance effect of A'2Ai2 as 
measured on AlIA", 

da (aa) ill, = additive X additive interaction effect between 
- direct allele All and associate allele A'2' 

do (as) 1 i.j = additive X dominance interaction between 
I - direct allele AiL and associate genotype A!2AJ2'2 

da (Sa) 'lill. = dominance X additive interaction effect 
- between direct genotype AIIA'I and associate 

allele A!2' 

da (SS );\/112i2 = dominance X dominance interaction effect 
between direct genotype AllAh and associate 
genotype A 12 A 12• 

These interaction effects are not epistatic effects but average in
tergenotypic effects due to allelic effects in the sense of affecting 
competitive phenotypes. The total genotypic variance for 
Ilildi2i2 is: 

and the covariance between direct and associate effects is: 

daO',l = 2~P!1 (da!) (aa{J. 

The consequences of ignoring the existence of interactions 
among competing genotypes in selecting individual trees can then 
be traced with the same simplifying assumptions that Griffing 
used to derive the non interactive solution. However, by also trac
ing the associate effects of the trees selected, he derives a selectbe 
value of: 

Wlt/l =1+( :2 )'t/td 

and the gametic array of selected individuals is: 

(1/2) :£ P'1.P1t'Wil/l (Ail+A 1J . 
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Random mating among these selected parents then generates a 
new mean of approximately: . 

! 1Jl1]Jh1Jj2]Jj2 [ 1+ ~[ clal1 +dah +clnlz+dCLJ2]] (11i1dI2i2) 

This reduces to the familiar sh2 if the covariance of direct and 
associate effects is zero, which implies that there is independence 
of the two effects and that, on the twerage, we can select on in
dividual performance with impunity. However, if a strong com
petitor is a vigorous tree which snppresses its neighbor, then a 
negative covariance can exist and gain can be substantially re
duced. If the covariance is positive, a benefit is obtained over the 
case of ignorjng competition effects. 

If some form of group selection is used in which f:,roups of size 
(gr) 2, 3 ... n are chosen for mixed growth properties, the 
selecth'e value of groups is taken as the contribution of both direct 
and associate effects. Then under group selection: 

'Wi1h' 12f2=1+~2 (gr) I ~ (ili1drIJ2' izizdllit) 

and selection of groups within which random mating occurs yields 
a mean of approximately: 

1/2 ;2 (gr) [cl(7.-l2+2(daJ!1A +a(7.12} 

While the latter factor can never be negative and never smaller 
than (7A 2 in the individual case, the second factor can be small 
depending on testing ability. 

Extending these results to groups of size 11 can benefit selection. 
However, if testing is limited, it might be easier to use direct 
indivjclual selection with separate measurements such as crown 
diameter, root exudates, etc., to establish the form of competitive 
influence and to compose populations without direct group test
ing. This is essentially the recommendation of Toda (1956), who 
recommended selection for growth with narrow crowns in 
Cryptomeria. 

If competition as well as other ecological variables represent 
factors affecting uncertain variations in future environments, 
breeding goals must be modified either to maximize some criteria 
of value in spite of future variations or to interactively develop 
breeds capable of responding to changing competitive environ
ments. \Vhen future trends can be predicted, selection for special 
conditions to utilize any interaction effects can be developed and 
enhanced as suggested above. Similarly, for pest resistance de\'el
opment, the coevolution of predator anel prey populations can be 
modeled as a special form of competition and dual evolution cle



143 

veloped in maximally useful or minimally harmful directions. In 
such cases, simple monitoring or directed breeding on predator 
populations may be required, but coevolutionary systems between 
the populations should require only small extensions of existing 
theory. 



CHAPTER 5 

TREE BREEDING PROGRAlVIS 


At best, the formulation of a tree breeding program is difficult. 
Even when gene effects, variances, correlations, etc., are estimable, 
sources of genetic variations are predictable, and breeding sys
tems and testing procedures are also operable, the integration of 
all such functions into a breeding program is likely to be complex. 
The breeder still has the considerable task of integrating his func
tions into the silvicultural and forest management systems. Even 
assuming that a planting program is ,veIl established according 
to forest removal schedules and sociopolitical necessities, the 
breeder must project the desired profile of genotypes as it may 
change over many generations, since such profiles can be expected 
to change. Since environmental and economic changes are pre
dicted with high error, the breeder must (~etermille the relative 
merits of developing special breeds for special needs, 01' more 
generally adapted breeds. In general, one population intended for 
long-term development would not be maximally improved for 
tralts of enduring value if selection for more ephemeral objectives 
is also imposed on that population. Selection for traits that de
generate in value within a breeding generation is clearly a costly 
waste, since selection effect on other traits is somewhat decreased. 
Thus, alternate means of controlling trait characters by silvicul
ture, harvest or processing and conversion techniques hm'e to be 
investigated within an overall forest management system. For 
those variations in the physical or economic environment which 
remain unpredictable, 've require breeding strategies that at least 
maximize minimum gain or satisfy other less conservative criteria 
which may be developed. 

If traits can be initially allocated among- the various means 
of value control, such as genetic, cultural, and engineering, there 
will undoubtedly he furthel' interactions among stlell factors as the 
form and value of say silvjcultural ver:>us genetic improvement. 
Refinod management tools such itS eritical path analyses can he 
employed to find the best solutions. Obviously, a breeding- program 
for improved tesponse to intensive silvicultul'e depend::; on the 
simultaneous application of inlensh'e cultUral techni(IUeS and 011 

the existence of particularly regpol1sh'e trees. In uddition, hreed
ing for survival and pest resistance alone may induce cultural 
investments not otherwise considered feasible. llelH'f', joint COll

sideration would require breeding- for cultural response tt:-: well. 

H5 
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Breeding to produce commercial seed that is more uniform in some 
traits can have an effect on silviculture that is not now foreseen. 
Reliable responses to treatments and reduction of ti-ee-to-tree and 
stand-to-stand variation can reduce risk and increase the benefit 
derived from any managemellt IJl"ogram. In general, reduction in 
such variation requires a spec ;"1 breeding or selection effort, since 
most breeding programs do not decrease genetic sources of vari
anee and indeed are designed to avoid that. However, more uni
form growth types might develop through drastic reduction of 
the lower end of the value scale by both silvicultural and genetic 
techniques. To some extent, the management control of forest 
values must depend on the extent to which the agencies' breeders 
and silviculturists control forest values. If the agency grows its 
own wood, then direct optimization of all control options can be 
utilized. However, if only a small portion of the total product is 
self-controlled, then reliance must be placed on uncontrolled or in
directly conti-oiled sources of wood and other forest products. In 
that case, the forest manager may require special breeding op
portunities to balance a general, uncontrolled, supply profile of 
wood types instead of direct manipu 'ation of the entire forest 
product array. Public agencies or organizations devoted to a wide 
range of uses will clearly have broader objectives than those that 
produce only fiber or those that can more closely control the en
vironments in which the trees will be planted. 

An array of methods exists by which the breeder can genetically 
manage the character composition of individual trees and the mix
ture of types in single populations or in sets of separate stand 
types. He must coordinate his activities with changes in ecological
silvicultural management and economic management of various 
forest products. According to some general forest systems analy
sis, an optimum operation would require that some traits be con
trolled exclusively by product conversion methods, even if genetic 
control is potentially usefu1. Once an array of trait distributions 
is determined and site subdivisions are established, some sites may 
require breeding for heterosis in many traits while others may 
require breeding for additive gene actions on most. For each 
population, a mixed breeding operation may be required to de
Hver the trait combinations desired. Each .:;ite may also be planted 
to a mixed assortment of trees from different populations, but 
eac .. breeding population can also be expected to have to mix trait 
types. A mixed breeding system using heterosis for some traits 
and addith-ity for others may then be found useful. 

,Vhen breeding populations must be kept small because of opera
tional limitations or by deliberate choice of maximizing selection 
differential at the expense of population size, developing small 
local populations split off from a larger regionally adapted popu
lation may be a useful way to organize a continuing breeding pro
gram. Thus, larger immediate gains for traits or sites of spedal 
interest can be attained b)' intensive breeding within small popu
lations. As the smaller populations lose their ahility to respond to 
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recurrent selection or to selection for new traits, or as inbreeding 
depression becomes a more serious problem, the breeder may re
enter the larger population for at least a partial exchange of geno
types. The larger population would then have been bred for 
general adaptedness and for fewer traits which possess persistent 
value, such as total yield and pest resistance. Cooperative regional 
programs would thus permit individual agencies to maximize 
short-run gains without losing general ecological or economic 
adaptation. Furthermore, in the smaller populations, it may be 
possible to breed for uniformities which may be too risky for 
long-term development (Namkoong and others 1971). 

Alternative exchange programs among agencies with small, 
different, genotypic compositions are also possible within ecologi
cal zones and represent a modification of the replicated breeding 
populations proposed by Baker and Curnow (1969). If the breed
ing objectives have been sufficiently similar, then the selection of 
particularly good combiners among replicates expands the parent 
population. However, the advantages of replicate selection are not 
obtained if the allelic frequencies failed to diverge among repli
cntes (Madalena and Hill 1972). Therefore, cooperative planning 
to maintain individual and population replicate identities is re
quired in any kind of segmented population development. 

Many selection problems would be considerably reduced if 
breeding generation times were reduced and juvenile-mature tree 
correlations increased by either reduced harvest time or more 
precise estimation of harvest values from youthful seedlings. Not 
only would gains be more rapidly made, but opportunities for 
using a wider range of breeding methods, such as single-cross, 
backcross, and rapid breeding, would become available. In addi
tion, the number of traits it is feasible to include in breeding con
trol programs would increase as predictions of future sites and 
values become more certain. Thus, early flowering experiments, 
such as conducted by Stern (1963), and the possibilities of de
veloping early harvest can provide breeders with many oppor
tunities to investigate alternate breeding methods for their utility 
in forests. 

BREEDING PROGRAMS 
Breeding programs thus must encompass the whole range of 

activities in which breeders must engage. In addition to testing 
and selection, which involve economic and silvicultul'al projec
tions, the breeder must see that the breed populations are opti
mally developed, that estimates of genetic means and variances 
are obtained with precision, and that commercial seed production 
is maintained at acceptable levels. In this book, the various oper
ations have been separated in order to describe the separate goals 
and methods l'equired for each phase, but most actual operations 
cannot afford to run separate programs for variance component 
estimation, controlled crossing to develop breed population, test
ing for selection, and seed production. Each tree breeder must 
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operate within his physical, biological, and financial constraints 
to accomplish some minimum objectives. If the primary value of 
breeding is genetically improved seed production and some ineffi
ciencies can be tolerated, the breeder may be forced to forgo any 
mean, variance, or site response estimation. By choosing only 
traits which he believes have high heritability, he may also forgo 
testing and simply start a mass-selection program. He may even 
ignore the development of an ancestrally controlled breeding pop
ulation and continually reselect a few parents for each subsequent 
generation without regard to ancestry. Such a minimal program is 
essentially the same ancient tradition of farmers who saved the 
best seed for the next crop. The modern tree breeder will un
doubtedly be more aware of both the opportunities and limitations 
of various breeding alternatives. He may also be able to make 
small investigations on the distinctions between genetic and en
vironmental sources of variation, and he will avoid some of the 
limiting effects of inbreeding in small populations. His methods, 
however, may not ultimately be much different than that which 
a genetically untrained but intelligent forester might develop. If 
by some cooperative programs, or the increase in his own capacity 
to develop more sophisticated programs, he can make controlled 
matings and experimental plantings, then the alternatives expand 
for generating large immediate and future gains and adapting his 
popUlation to the changing needs of the forests. 

The requirements of seed production will often be an inde
pendent consideration and may most often be handled in specially 
constructed orchards involving very few parents. The most ge
netically restricted type of production orchard would be estab
lished from cuttings or scions from a single selected genotype or 
self-fertilized seed. Such an orchard would obviously have little 
potential for generating better genotypes, but would, on the aver
age, give one of the best gains possible from currently available 
genotypes. The next most limited production orchard would con
tain only two genotypes with only the single-cross seed being com
mercially produced. More complicated genotypic crossings for 
pure- or hybrid-population productions then follow. They may in
volve varying degrees of controlled pollination ranging from the 
production of specified full-sib families, through partial control by 
dusting with a selected pollen mix, to open pollination among all 
genotypes in an orchard. While it is not always possible, produc
tion orchards can often be separated from other phases of the 
program. 

The generation of an optimum breeding population to create 
cumulatively better genotypes for production orchards is the prin
cipal objective of the breeder and is the principal problem we 
have considered in this book. The basic operation we have con
sidered is the reduction of a base population to a few parents, 
then the regeneration of an improved large population from the 
selected parents and the sequentially repeated production of large 
popUlations by crossing among a smaller set of selected parents. 
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The number of parents may be only as large as the number of 
production orchard parents or may be as large as several hundred 
genotypes in a hierarchal or factorial breeding system. The cross
ing among these parental genotypes may be restricted and 
controlled among all possible parental combinations, or even un
controlled, in which case the production and breeding orchards 
may be genetically identicaL Since one purpose of breeding control 
is to maximize both the recombination of genes and the effective 
population size, the control of pollinations among as many crosses 
as possible is generally desirable. This control might be accom
plished In stages rather than all at once, if time permits. The 
earliest crosses may also be done for other purposes, but supple
mentary crosses to increase the controlled ancestral breeding pop
ulation can easily form one of the later options for additional 
breeding. As large a progeny population as possible would then 
be desired, since the res election of parents for the next generation 
will attain maximum progress if the selection differential is large. 
Since certain minimal parental numbers are required, we must 
have large progeny populations to select from and to have repre
sentation among several full- and haf-sib families, or cousins, as 
well as within famHies. As previously discussed, some compromise 
will have to be reached between maximizing the selection dif
ferential and including a minimum relatedness and number of 
parents in the breeding population. The choice of crossing pattern 
is clearly affected by the number of parents, since the greater 
their number, the more costly it is to mal{e all possible crosses 
among them. Thus, a solution for both the mating pattern and 
parental number may have to be sought simultaneously. In gen
eral, however, operating costs may not be affected much by these 
choices, and the solutions may often be found independently
the minimum parental population size can be determined first and 
all possible crosses can be made among whatever number is 
chosen, as in a large diallel, or possible in some modified form 
of the factorial or hierarchal designs. Unbalanced designs can
not be ruled out as a deliberate choice, and for many purposes 
may be most suitable. If the breeding system used is at all com
plicated, the choice of parental !lUmber (and hence, selection dif
ferential) and mating pattern can be very complicated and would 
require that the breeder trace all expected gains against cost 
proj ections. 

The testing of genotypes (by using relatives) for inclusion in 
a breeding program requires further compromises, since testing 
requires both a set of crosses in a mating design and an array of 
test sites and time to accomplish the evaluation before the final 
breeding popUlation is selected. The problem for the breeder is 
that the large population from which he will select his breed 
parents must be reduced to a new set of selected parents in several 
stages over a longer time period. The overall heritability of traits 
,y:j1J help determine the utility of such additional testing and 
may sometimes be high enough that testing for additional data is 
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not worthwhile (Namkoong 1970a). However, if testing is cheap 
and can be done quickly for low-heritability traits, a good en
vironmental and mating testing design may be instituted to select 
more accurately. A compromise is then required if the same 
crossings are to be used for breed production as for testing. Not 
only will many crosses have to be discarded because their parents 
prove unworthy, but a design which may be good for testing, such 
as the factorial North Carolina design II, may be a poor breeding 
design since it would include a few common parents which pro
duces a breed population with high coancestry. The objectives of 
testing may therefore have to be compromised by using estimates 
of breeding value which have somewhat higher enol'S of esti
mation than what optimally designed experiments may pro
duce. The various partial and blocked diallels yield moderate test
ing errors as well as reasonable flexibility in selection for breed 
population development. If blocking, replicated subblocking, 01' 
both are desired for test efficiency, then the various disconnected 
designs can be used. Within disconnected blocks, partial diallels 
can be constructed, and, if desired, partial overlapping of blocks 
can also be included without any additional analytical problems. 

The sepa.ration of breeding and testing operations is clearly to 
be desired, but its cost is higher and the increased testing effi
ciency would have to be balanced against the direct costs of addi
tional experimentation as ,,'ell as costs incurred indirectly in 
reduced selection differentials caused by misdirected efforts. 

On the other hand, estimation experiments may be reasonably 
compatible with good breeding design. \Ve may often wish to draw 
a subset of the breeding crosses for estimation of variances to 
determine levels and changes in genetic variances and covariances, 
particularly if new traits 01' changes in selection goals are in
corporated. While the demand for balanced designs seems obvi
ous, the conflicts may not be serious. Thus, diallel mating designs 
may find some favor for breeding programs which require simul
taneous estimation and breed 110pulation production. Again, how
ever, unbalanced designs can be very efficient for estimating 
variances and may be useful in breeding populations if inbreeding 
can be controlled. 

The conflicts which arise from the contrasting requirements of 
testing and variance estimation may also be difficult to resolve 
and will more often have to be compromised by the o\·er.l'iding re
quirements of breed population production. However, if these two 
objectives can be separated from the other functi011s, the factorial 
mating design can be made reasonably efficient for br)th testing 
and estimation. 

Burdon and Shelbourne (1971) offer a comprehensive review of 
some of these alternatives for testing, estimation, and breeding 
and their conflicting problems as they affect a breeding program 
in New Zealand. While each breeding agency \vould have different 
constraints and capacities, each breeder should consider the vast 
alternatives available for choice to develop his own uniquely suit
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able program. 
Timing is a very important aspect of the genetics program 

itself and of its integration into the general forest management 
system. A flow chart or some other de\'ice is often useful to assure 
that matings for the breed population are properly timed for 
maximum gain rates, or that test data are available when needed 
for seed or breed production. 

In some situations, no genetic research or development program 
is justified or efforts are best limited to pro\'enance selection 
(Wright 1971). Pl'oduct value may be 10"', genetic-gain potential 
may be 10\\', or the efforts may be better spent in another way. 
Provenance selection offers no chance for cumulath'e improve
ment by reselecting among provenances, but if seed procurement 
and planting are lIsed, mass selection and simple recurrent selec
tion can provide adnll1ces at \'irtually zero marginal costs, opening 
the potential for further gains at higher marginal costs. In cases 
where only a small impro\'ement effort is feasible, it would be 
highly acl\'antageous for a go\'ernment age11cy or regional coop
erath'e to estimate genetic potential and preserve gene resources. 
For future programs, the a:;sortment of species into programs and 
initial breeding steps would be greatly advanced if such data and 
material were Hvailable, 

Since such acti\J115 have not generally been taken, forest genet
icists hm·e usually been forced to make l))'eliminary judgments 
011 scant data. In most cnses, an action program should be de
signed to prodde for material and data for the next breeding 
generation as well as impro\'ed stock for current plantings, While 
one may usually be able to rerluce an operation to simpler mass
selection schemes. it is often more difficult to expand the com
plexity of a program unless some degree of c(ll"trollecl crossing is 
exercised. A precaution to take in reducing h j)l'ogram to mass 
selection is that the population size be kept much larger to assure 
a reasonable effective population size. 

Controlled crossing and site sampling make possible \·arious 
options for selecting among specific crosses and among specific 
genotypes for certain site::;. Since gain rates will be he~LYily influ
enced by time, early selection for seed production and for breed 
development will be advantageous. Hence, the crossing and plant
ing s,vstems should he forced as early as possible into the opera
tions. If properly coordinated, tree breeders can have the data 
and materials for most of their species in one generation. 



CHAPTER 6 

IHODELS OF POPuLATION GRO'VTH 


Populations of trees, shrubs, small animals, and eyen human 
beings are composed of individuals that differ from each other 
greatly or slightly, rlepencling on the characteristic studied and 
the space and time scales of the obseryations. Such variations are 
not only of interest in accurate descriptions of populations, but 
are the sources of the capacity to change. Thus, while a\'erages 
are valuable descriptions of populations and are usually our first 
perceptions of theiI: nature, the variations that exist are more 
important to studies of population dynamics. Parameterizing 
means and variations in both the spatial and temporal senses is 
the subject of this chapter. The simplest population growth 
models are developed first. Population genetics has been founded 
on these models, which are very simple and include no age- or 
density~dependent effects. ~Iore complicated models will increas
ingly be needed to describe genetic concepts that are being de
yeloped. Several of these concepts and models are briefly described 
in the marked (") sections. 

In the time scale of human activities, forest tree populations 
appear to have stable size and composition. In the time scale of 
the trees, ho\\,e\'e1', the populations beha\'e as most sexually re
producing organisms. They are constantly changing. As seedlings 
replace old patriarchs, as dominant trees suppress their nejgh~ 
bors, or as whole forests die or regenerate after an elwironmental 
disaster, the age and genetic composition change. Such changes 
are continually occurring by chance, or in direct response to chang
ing envir..:nmental pressures. In the scale of human economic 
activities, only large-scale catastrophes in forests impinge on the 
general public a\\'al'eness. The exceptionally rapid disappearance 
of the American chestnut was fast enough to be widely under
stood, whereas even the great retreats of longleaf pine and eastern 
white pine in one generation were less easily perceived. Thus, 
major changes in distribution of important species have been 
but barely perceived. Large-scale genetic changes which will for
ever affect the future evolution of our forest resources have also 
passed with little notice. For example, the l'eoccupation of former 
longleaf pine sites which is currently occurring is generated in 
part from introgl'essants with loblolly pine (Xamkoong 1966c). 
The historic record indicates changes of far greater magnitude 
in the loss of whole forests in Western China, in the reduction of 
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the Cedars of Lebanon to relic stands, and in the advance of Scots 
pine and Norway spruce through Scandinavia. It is thus clear 
that grand species movements and fluctuations in population size 
and composition do occur over space and time, in spite of our per
ceptual limitations, and have molded the evolution of tree species 
accordingly. Variations also occur on a smaller scale within 
species. Through differential reproduction within stands, and mi
gration, isolation, and selection among stands, it has become clear 
that a wealth of genetic variation now exists within most of the 
species studied ;"'y foresters (see, for example, "Second World 
CO:1sultation on Forest Tree Breeding," Food and Agriculture Or
ganization of the United Nations 1970). It is evident that most 
studies of genetic variation were generated by commercial inter
ests in tree breeding and that many agencies will be controlling 
the t;voJution of some segment of the fo!'\~sts through their breed
ing actidties. The growth of forests in the future \\'ill therefore 
be controlled to some extent by human activity. For this reason, 
the forest biologist will have to understand the dynamics of popu
lation change to guide future forest compositions. 

The preoccupation of population analysts is to describe and 
predict the changing patterns in relative abundance of genotypes, 
forms, and taxa o\'er space and time. This chapter will analyze 
l'elath'e numbers in population subdivisions as a measure of pop
ulation growth and de\'elopment. By thus focusing exclush'e atten
tion on such a numerical measure, a presumption is made that 
numbers are identified \\-ith success. Other criteria of success or 
goodness can be advanced, such as durability on a site or proba
bility of existence at some future age, and for trees, longevity 
may then be a concomitant measure of Sllccess. Howe\'er, num
bers are relatively easy to analyze and provide a measure of suc
cess if correlated with probability of avoiding death or extinction 
of lines of descent. Thus, when using numbers, we often make 
the implicit assumption that random or nondiscriminatory causes 
of death w.ill remove individuals in proportion to their occurrence 
in the population, that those causes of death are important, and 
that we can therefore measure probability of survival by relative 
frequency. 

Another restriction in the scope of interest will be the exclusion 
of the influences of interspecific evolution and interspecific com
petition on relative survivals of genotypes or age classes within 
species. By thus ignoring the substantial effects that interspecies 
relationships can have on variation patterns within species, we 
severely limit the exact applicability of our analyses to real for
ests. Recent studies by Dawson (1969, 1972), Levin (1971), 
Pimentel and Soans (1970), Kojima and Huang (1972), and 
Greenwood (19G9) have (1emonstratec1 that interspecific effects 
can be important in the evolution of a species. They have showl1 
that competing or predator species such as an insect or disease 
can alter the gene fl'equencies in populations from what they 
would be in the absence of the alternate species. However, enough 
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of the real world may be well approximated by our models with
out competitive effects of this sort, so that ·we can deduce the 
consequences of reasonably complete models and analyze the 
mechanics of a large segment of population growth and evolution, 

Within these limitations, the problem is to mathematically ex
press the biological concepts of population growth with param
eters for response to environmental pressures, and to determine 
the stability of relationships among age and genotypic compo
nents, By analyzing the effect of observable factors on birth, re
production, and death of individual trees, we expect to derive the 
probable behavior of the whole population and even of popula
tion differences. The origins of group differences are considered 
to arise only from differences among individuals which e\'oh'e into 
separate populations, 

Such problems can be most directly analyzed if all trees be
have exactly as expected and if all environmental factors al'e 
exactly predictable, Even if the interactions were quite complex, 
we couid deduce exact relationships for any given set of condi
tions and could describe the populational variations solely in 
terms of variation in the external factors. If the extel'llal environ
ment were very simple, then we could determine the exact be
havior of the population, On the other hand, if behavior is not 
precisely determined but some elements of chance variation in 
response exist, then the a\'erage effects do not completely describe 
an deviations in any single popUlation. The element of chance or 
the probabilistic natUl'e of the response implies an unkno\yn or 
unknowable set of causes such that individual events are not p!'e
dictable, and that only average, collective tendencies can be de
scribed, Thus. in a deterministic model, it may be ordained that 
during the evolution of an oak rorest, the seedlings will have 20 
pe:t'cent mortality the first year and 20 percent of the remainder 
in the second and each succeeding year, and that the survivors will 
reproduce one viable seedling in their tenth year, two in their 
fifteenth year, etc, Then, we can derive the exact age distribution 
of any stand, at any time, by simply following the predetermined 
course of any given population, On the other hand, it is often more 
reasonable to say that the birth and mortality schedules vary 
somewhat from tree to tree and from stand to stand. \Ve may 
say that the process is not exactly determinate but that 20 percent 
is an average mortality that is rarely exactly achieved, Then, 
the model contains errors in estimating occurrences and chance 
01' stochastic variations in the cause-effect process, While the 
average survival may be the same in the deterministic as in the 
stochastic processes, we have now generated a 111'OCeSS in which 
variatil)ll can exist among stands 01' in which variations from an 
avel'age predicted course can exist during the history of a single 
stand's development, In this case, it will be impol'tant to know 
the extent of variation around predicted events, The probability 
of stand extinction may exist and is of critical impodance to esti
mate. Hence, analyses of such stochastic processes are required to 
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confirm or modify expectations based on deterministic processes. 
We "'ill follow a common sequence of analyses and shall first 
examine deterministic models and their analyses, then examine 
some stochastic variations and their analyses of the same effects. 
Thus, any changes in the age or genotypic distributions which 
may have occurred over the past 100 years may be better under
stood. In addition, more optimal changes in the next 100 years may 
then be planned in terms of averages and expected variations. We 
shall therefore be concet_ .~c1 not only with the average behavior 
of populations but also with such measures of variation as the 
variance and correlations of numbers in age classes and genotypes 
as they may change over space and time. Also, some populations 
and some genes ,yill wax or wane in relative numbers and some 
will go to extinction, requiring us to also consider probabilities 
of those events. 

THE SIMPLEST MODEL 

As a first approximation, life parameters may be simplified into 
general propensities for an individual to survive, reproduce, and 
die at any time within some generational timespan. Age-dependent 
processes are ignored in this oversimplified concept, and all life 
events are lumped into these simple categories without reference 
to time of action or to any interrelatedness of action. For exam
ple, if we were to observe an isolated forest stand at intervals of 
20 or 30 years, many trees would be present in sequential ob
servations, but some would have died. In or neal' their place, 
others would grow and might die. Thus, it is possible to imagine 
tree populations as starting from small colonies and increasing 
in numbers over several generations by occupying border areas 
as well as by increasing stand density, as Bannister (1965) has 
observed for populations of Pinus radicLta. If it is further assumed 
that at some upper limit to population expansion, the members of 
the population are removed in proportion to their relative fre
quencies, then population limitations would be maintained and 
predictions of relative frequencies would still be accurate. 

Populations growing in SUCll a manner increase at each time 
period at a logarithmic rate, as determined by the relative pro
pensities of each tree to regenerate or die. At a rate of increase 
of m, an initial population of n individuals 'would increase to m' n 
in one time period. Using superscripts to denote time periods, with 
n(fll original trees, n[l] would be equal to m,n[O), and in the second 
period, n(2] is increased to m.n(1) =m (ntn[Ol) =m2n[Ol. In general, 
for t time periods, n(ll =mtn[Ol, or in terms of logarithms: 

In (nUl) =lnn,£ol.+.t In m, (1) 

which is a linear function of In(nt) with time being the only 
variable. 

\Ve can similarly model the growth of populations which re
produce, as above but on a more continuous time scale, and define 



157 

a propensity to increase (70) in terms of rates to increase for 
vanishingly small time intervals. Thus, the number at time t is 
n[tl and increases after a small time period (I.lt) to n[t+6tl, and 
the amount of increase is written as n[t+6t] -net]. Then defining 
our propensity to increase (70) as the ratio of the increase in 
numbers to the numbers at the start of the interval, multiplied by 
the length of the time interval, we have defined: 

n[t+6t] -n[tl 

n[t] • I.lt . 

Now allowing I.lt to become very small, we define 70 as the limiting 
value. As I.lt-70 in the above expression, we derive the differential 
form of that equation as: 

_ dn (t) _ [d In(n(t)) ] (2) 
70- n(t)dt - dt ' 

where n is now a continuous function of time,n (t), and In is the 
natural logarithm. This is analogous to our definition of ?n in 
defining a logarithmic rate of increase in numbers with a rate 
parameter 'W in place of ?n. The ?n is often called Malthusian 
parameter. We can integrate (2) to get the same form as for the 
discrete process: 

noelCtIn(n(t)) = In(n(O)) + 'W' t..torn (t) = (3) 

In either case, the population is expected to grow at an 
exponential rate until density-dependent 01' other processes force a 
change in the model. Thus, if two tree species or popUlations were 
to invade a new site, both would increase according to their 
propensities to reproduce (for example, their fitnesses while the 
population was expanding), and the one with the higher replace
ment rate (10) would dominate by occupying increasingly more 
territory or by being more heavily represented among the replace
ments wheL:.ver chance mortality reduced total population size. 

While this model of population growth has served as the main 
basis on which genetic models are built, many more complicated 
and more realistic models of population growth have been devel
oped. They have not yet been extensively used in genetics. This 
shortfall of application demands the attention of foresters and 
other geneticists who are familiar with the ecology of their species. 
Interspecific competition, for example, can have a maj or effect 
on relative fitness of genotype and therefore should be included 
as a frequency-dependent effect in any general1y useful population 
model (Dawson 1969; Greenwood 1969; Levin 1971). In addition, 
it is obvious that environments change and alter fitness values, 
that age-dependent processes vary significantly, and that competi
tion and density dependence often induce significant fl'equency
dependent effects on survival and germination processes. Hence, 
the extension of models to include the multiple and variable 
effects of genes is clearly desirable. Such models should be devel
oped to better reflect the causes and effects of variations. Recent 
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models of genetic fitness that show competition among and within 
genotypes in a logistic equation form (Clarke 1972) open many 
new channels of investigation into density-dependent gene actions 
of simple types. Before discussing the genetic models derived 
from the simple population models, some of the complications of 
population models deserve discussion. 

DENSITY-DEPENDENT AND 
COMPETITION MODELS~ 

It is clear to most foresters that species differ in density
dependent processes and hence differ in their relative abilities to 
exist and repl'oduce under dense conditions. While many aspects 
of tree growth and of the environment are involved, the different 
tendencies to increase under crowded conditions may be generally 
modeled by decreasing the reproductive rate or increasing mor
tality as some uppel' limit in popUlation size is approached. One 
commonly used model parameterizes this effect by multiplying the 
rate by a factor which decreases as population size approaches an 
upper limit (I. Thus, the change in n (t) with respect to time of 

equation :2 can be written as: ~t~ = le • n and by multiplying by a 

factor of (1-!!:) the differential equation of this density-depen
a 

den t model is: 

dn n
df=u:n (1- a)' 

The two parameters U' and (( then determine relative population 
growth rates and, if survival of genotypes or populations is a 
simple function of relative frequencies, relative success is also 
dependent on the density of the population. Each genotype, for 
example, may endo,,- its possessors with tendencies to larger or 
smaller 1(' or a factors. At low density, the type with the larger w 
will be increasing faster, but it may suffer relative to any alterna
tive type with a higher (L at some higher density. For populations 
which do commonly increase in density to the point where death 
or birth is differentially affected, the (( values will be important. 

In a ,-elY rough and oversimplified sense, tree species may be 
divided into those with heaviest selection for their U' factors versus 
those with heaviest selection for a factors. The old-field and 
pioneer species may be most heavily selected for their ability 
to reproduce quickly and invade new territories. Often, such 
species of the Sa li:c , Populus, or Pinus genera deteriorate the 
environment for their own reproduction and require some disas
trous type of site clearance in order to reproduce. Among these 
species, the more successful types will be those with a high w in 
the face of interspecific and intraspecific competition. In contrast, 

"'Graduate-level statistical training required for thorough understanding. 
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climax species which are elements of a stable community require 
an ability to grow under intense intraspecific competition, and the 
more successful of such types will be those with high a parameters. 
These models refer only to the effects of numbers regardless of 
the genotype of the competitors. When the type of competitor 
affects success, intergenotypic or interspecific effects require 
specification of the density of each type of competitor. The classi
cal model of competition between species in \vhich both self
regulation and interspecific regulation occur is the Gause-Volterra 
model (Sloboclkin 1961). In this model, the density-limiting effect 
that a second genotype has on the first genotype is made propor
tional to the n of genotype 2, 112, and would reduce the replace
ment rate by say rrn2. Similarly, the depressive effect of genotype 
1 on the replacement rateR of genotype 2 would be say [3n1' Then, 

instead of a rate depression of (1-~), the rate would be modi
(£1 

nl nq
fied by (1---n'n2) for n1, and by (1--=-j3n1) for n2, "where 

(£1 a2 

aL and a'.! are the limiting density effects of their o\m types. The 
two growth rate equations would then be: 

nldn l
dt =W1nl (1-u;--rrn 2 ) 

dn" nq--=w"n" (l--=-[3nl)'dt - - a2 

Similar equations for as many community participants as desired 
can be constructed and a set of first-order, ordinary differential 
equations constructed. Community stabilities can then be directly 
analyzed and several have been (Vandermeer 1972), but not thus 
far in forestry. 

While this logistic model may now account for a form of self
regulation, it is stiII a crude approximation to reality and is not 
unique in producing the kind of inhibition sought. Any number 
of polynomial functions or other nonlinear forms eould ha\'e 
been hypothesized, including the addition of elements for insects 
or diseases that cause mortality according to the frequency with 
which the host type exists. Nevertheless, studies on the existence 
or nonexistence of stable equilibria are often couched in the 
terminology of the Gause~Yolterra equations (Ayala 1972; Gilpin 
1972) . 

AGE-DEPENDENT MODELS~ 
A different degree of complexity can be introduced into our 

model by considering the changes that occur in the life of incli
vicluai trees in their capacities to survive and reproduce, It has 
been pointed out by several authors (for example, Lewontin 1965; 

;"Graduate-Ievel statistical training required for thorough understanding. 
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Demetrius 1969; Anderson 1971; Anderson and King 1970) that 
life history variations can significantly alter the simple parameters 
of population growth. It is also apparent that means and variances 
in traits which affect life processes drastica11y change as trees 
mature (Namkoong and others 1972) . Therefore, life-cycle effects 
must be included in any study of relative population growth rates 
and individual surYival probabilities. In addition, concepts of 
interspecific competition in the logistic form of density dependence 
call be affected by age-density changes in competitive effects 
(Gilpin and Justice 1972). 
If 'we again revert to the simplest model of logarithmic popula

tion growth without density dependence, and assume that pro
pensities for sun'ival and reproduction exist without any form 
of competition or self-regulation, and only add that the processes 
are age dependent, we can derive some interesting, limiting forms 
of population gro\yth. To simplify our examples, let us con
sider that a forest tree grows in only three stages (seedling, A; 
sapling, B; and mature. C) and that survival and reproductive 
probabilities can be predicted for each life class. The methods 
and theories developed for three classes are directly extendable 
to any number of age classes that would be desired for a more 
complete model of truly different growth phases of a forest. Ages, 
for example. could be grouped into classes of 5, 10, or 50 years 
or any time inten'at Pursuing our model with only three age 
classes A, B, and C, assume that a good measure of class 1'1 
seedling sunival into dass B is 30 percent, for sUl'Yival of trees 
from periods n to C i8 ·10 pel'C'pnt, ane! that 111\ trees beyond 
that age died but were able to produce living seedlings of class A 
before death. Suppose fUl'ther that trees in the seedlings of 
class ....t could produce no seed, but that saplings in class B could 
produce enoup;h seed to yield an average of four surviving seed
lings (of class ;1) and that trees in the last period, C, would 
produce an average of two sl.ll·viving seedlings (of class A) before 
dying. If the populntion is obsel'Yed at some starting time with 
age class mtios of 3 seedlings (A) : 2 saplings (B): 1 mature (C) 
tree, we could then trace the expected growth of the population. 
For example, out of tt total population of 600 trees, the 300 A 
trees allo,," only 30 percent to survi\'e and to advance into the 
next age class, leaving only 90 R h'ees and producing no new 
A trees. Of the 2(JO B trees, 40 percent would survive leaving 
only 80 C trees, but 800 new A, trees among them. The 100 C trees 
would not live beyond this period but 'would leave 200 A trees. 
The next generation would then have an age distribution 'with 
ratios of 10 of dass A: 0.9 of class B: 0.8 of class C. Repeating 
the process with the new age class numbers, the suhsequent 
development of the population can be traced from its original: 

(ll'l) (:300) (1,000) (;)20) (1,272)
)l" :::::: 200 to 90 to 300 to 156, etc. 
He 100 80 36 120 
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If the process is continued, a few interesting patterns emerge. 
The total population size would tend to increase over the course 
of several generations but initially it fluctuates from 600 to 1,170, 
to 856, to 1,548, etc. A certain constancy emerges if we take 
the numbers in each generation as a ratio of the numbers 
in the previous generation. Taking the ratios of 1,170 :600, then 
856: 1,170, this sequence is: 1.95, 0.732, 1.808, ... , which would 
fluctuate around a final value of 1.1196 with smaller and smaller 
variations. The increase in size of each age class also tends to 
fluctuate about the same limiting value of 1.1196, and, if followed 
long enough, the ratios of numbers in the age classes would be 
seen to settle down to constant ratios of 1: 0.2679 :0.0239. If we 
had started with other age-class distribution than the (3: 2: 1) 
which we arbitrarily chose, the exact same result would have 
ensued and the same asymptotic ratios would have been reached. 
\Ve could have predicted these results if we had considered that 
the process is simply one of tracing one-generational-step transi
tions from each age class either to death, or to the next age class, 
and also to their contributions to reproduction. Computation can 
be done by multiplying the same life probabilities sequentially, 
but it is more simply done by matrix multiplication. 

If the (;:) '" of the initial population is the source of the 

seedlings in the next measurement period (n.{[ll), then the equa·.. 
tion relating n.{ (lJ to the initial population is: 

no! (1] ;::: 0 • n,t [0] -!- 4n8[0] +2ne (0] 

;::: (0 4 2) (~~yO] = (042) 2:[0], 
where n[O] is the column vector of n for period O. Similarly, it 
can be seen that: 

'nn(1]=.3nA(01+0· 'nB[O) +0 • ne(01 

= (.3 0 0) nlO] 

and, ne[l];::: (0 .4 0) n[O] 

Therefore, (~~)(l] = (.~ 65) (~.:)(O] 
ne 0.4 0 ne 

or n(l] =.M n[O], where .M is the matrix of life coefficients and 
nUlis the expected number vector in each class of time t. The 
matrix M contains reproductive rates for each class on the first 
row, and the survival and advancement probabilities for growth 
into Band C classes in the second and third rows, respectively. 
The coefficients are defined for the time period considered and 
clearly determine the growth rate of the population. Thus, multi
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plying by a matrix ill is equh'alent to multiplying by successive 
powers of 111 in the simpler case. vVe can also project that if a 
steady state in the ratios among the age classes exists, then the 
vector of numbers must eventually have a common ratio. This fact 
can be expressed as: 

n[!] =.lvJn[t-l] =llf . ill' n[t-2] =ilf2n[t-2] =il[t . 1/[0]. 

Eventually, if nUl =,\n[l-l], then substituting in theabove equation, 

A~[t-l]-M ~t-l=O and (M -,\I)~[tl=O, and, therefore, M -,\1=0. 

To satisfy this equation for any given M matrix, a certain set 
of A values must be found which are called the eigenvalues and 
"'hich are comparable to the Malthusian parameter used in sim
pler population models. Associated with each eigenvalue, there 
would he a \"ector of age class numbers n, called the eigenvector, 
which is useful ir, determining relative growth of the age classes. 
On positive JJ matrices such as would exist for life tables, wo can 
invoke Frobenius' theorem on their eigenvalues (Gantmacher 
196·1) and can assert that there will always be one eigenvalue 
which is posith'e and noncomplex, with modulus greater than all 
other roots and with an associated eigenvector with all positive 
elements. Therefore, there always wj\l be a solution to the system 
of equations (JI-AI)n=O and a vector of age class ratios to 
which the population "in grow asymptotically. The largest eigen
"alue A is the asymptotic growth rate of the population, as well as 
of the age classes at their equilibrium ratios, and takes the place 
of ilL in projecting future population growth. 

The only added complication which we have introduced to the 
exponential growth model is the fluctuating patterns that the 
actual numbers are expected to take clue to the time that it takes 
for excessh"e numbers in anyone age class to influence all age 
classes. Such fluctuations can strongojy influence the population to 
endure large changes in total numbers, and if there are any 
changes in genetic or other frequencies associated with the ages of 
the trees, those measures also will vary until the age class distri
bution achieves some stability. Anderson and King (1970) have 
shown that such variations in age classes affect population gene 
frequencies 'whenever frequencies change ,dth age class and that 
any changes in gene frequencies can, in tum, affect perturbations 
in age distributions. Thus, whenever the population is in age-class 
or gene-frequency disequilibrium, the time required to achieve 
stability can be long and a significant factor in maintaining some 
t1l1ctuations without other cause. If we then look at the other 
roots to the matrix equations, 'we can see that this type of fluctu
ation can also be predetermined. 

-Csing a matrix of real positive numbers, we can usually ex
pect that the equations for the sequential replacement of age 
classes in trees from each preceding age class will be independent 
in the sense that the matrix of transition probabilities will be of 
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full rank r. We can also generally expect that all l' of the roots of 
the matrix. M will be distinct. Under these conditions, the transi
tion matrix can be changed to give the same results in a form in 
which the effects of fluctuations can easily be traced in the expected 
progress of the population. Where the eigenvalue Ai of the matrix M 
has an associated eigenvector nril> we can write: (M-AJ)n(!)=O 
For the whole set of eigenvectois then, we can write: -

Ai 0 
A2 

M- [1] !!'(11?!:(21··· ?!:(r] = [0], 

which is equivalent to, [M-AI] N= [0], 

A1 0 

A2 

where A= 

o 
and N = {~(1)~(21 ••• :?!:(rJ)' 

The complete set of eigenvectors spans a vector space defined by 
M, and any vector of initial age distributions can be written as a 
linear function of the eigenvectors. Thus: 

MN =NA 
M =NAN-l 
lvf2 =NA2N-l 

Mt=NAtN-l. 

In particular, for any given initial age distribution, nCO], the 
progress in numbers for each age class can be written eIther as 
n[tj =Mtn (01 or as -n[1l =N.\tN-1n[O) which is much easier to deter
mine once A and N are found. From the latter equation, it is now 
clear that each eigenvector contributes its stable age-class dis
tribution in proportion to the size of its eigenvalue and, hence, 
that for any number of time intervals, we can trace the growth of 
the population by summing the contribution of each eigenvector 
as weighted by its associated eigenvalue raised to the power of 
the number of time intervals. It is also clear that as the number 
of time intervals gets large, the largest eigenvector dominates the 
rest since we continue to increase the power of its eigenvalue con
tribution. During the initial generations, however, the effect of 
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having a disequilibrium age distribution on the attained age dis
tributions is determined by the size of the other, often complex 
roots. 

The development of comparable models for the time-continuous 
case is fairly direct and might often be an easier method of deriv
ing statistics for meaningful cases, especially for those cases in 
which the number of age classes is very large or in which birth 
and death are continuous in any reasonable time scale. The basic 
model simply reduces the time interval to zero. Hence, the birth 
and death processes become continuous functions of time. 

The model in which birth and death are continuing events has 
some illuminating features. If the population growth rate tends 
to eventually even out at a rate ,\, then each age class also neces
sarily increases at the rate ,\ as the stable age distribution is also 
approached. Hence, the same population growth model ~xists as 
for the logarithmically growing population first considered, except 
that the age substructure of populations can now affect the growth 
of populations. 

Two types of functions have been used in traditional popula
tional and demographic studies. The first is essentially the same as 
the matrix model and is a useful introduction to the second, which 
is a time-continuous model. The first form uses the convenience 
of two time indices or variables, t and x, to distinguish different 
points in time. The numbers at time t, NUl, and are related to the 
numbers which existed x time periods ago, N (t-x) , by the popu
lation growth rate during that time interval, er:r:, the exponential 
growth for the simple matrix models. Thus, N (t) =N (t-x) e rx 

, or 
given the N (t), the numbers which had to exist x time periods 
ago had to be N (t-x) =N (t) e-r:r:. In particular, the newly germi
nated class B (t-x) =B (t) e- rx • On the other hand, the numbers in 
an age class at time t are also a function of the numbers in 
younger age classes and their survival rate. In partieular, from 
germination to age class x, if the survival rate is l (x), then the 
numbers in age class x at timet, N (x,t), were germinated x 
time periods ago and survived for that long and, therefore, 
N(x,t)=B(t-~;) • l (x). If we defined1n(x) as a fecundity meas
ure, the total number of births at time t, B (t), would be the 
fecundity of each class multiplied by the numbers in each age class 
or N(x,t) 1n(x,t) for all age classes. Since 'In (x) is the same for 
all time, then B (t) =s N (x,t)1n(x) and from above B (t) = 
2: B (t-x) l (x) • 'In (x). 

x 
Then if the B age class also follows the 

x
simple rules of proportionate growth, B (t) =B (t-x) erx

, or con
versely, B(t-x)=B(t)e-r.x; then B(t) =2: B(t)e- rx l (x) • ?/'l,(x). 

x 

Division by B (t) yields 1=2: e- rx l (x) • 'In (x) . Then, population 
a; 

growth-rate parameter r is a function of l (x) and?n (x) sched
ules, and mathematical analysis indicates that for a stable popu
lation with B(t) =B (t-x)erx, there is an r that gives S e- rx l (x) • 

:r; 
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m(x) =1 for any l (x)m(x) schedule. In fact, there are as many?' 
roots as age classes, but the largest positive root again determines 
the asymptotic behavior. The A'S of the matrix solutions are the 

Te roots of these solutions. 

In the continuous cases, a population with a given l (:t) and 
?n (x) schedule would produce progeny within a ~x time period at 
a rate of l (X)111,(X)~X. If ~x is reduced to an infinitely small 
dx, and we summed the progenies from parents of all ages, then 
total births over a single lifetime would be expected to be 
f l (x)m(x)dx. In a population of indivjdual trees of different 
ages, and at an instant in time (t), we might guess that the 
l (x)1n (x) schedules would be operating on an age profile in the 
population described by some function of x, say, I (x). Then, new 
germinations for the whole population with the mixed ages 
in frequencies defined by I (x) would be estimated by
J I(x) l (x)1n(x)dx. Since I(x) is the numbers of trees now 
alive in the x age classes, it must have been produced by the 
l (x) 1n (x) schedules of past times. If l (x) m, (x) schedules are 
constant, then our I (x) might be expected to be proportional to 
the I (x) of some time (t) ago. Individuals which are age x now 
were germinated x time intervals ago and can now be parents of 
new progeny. Therefore, at this time (t) the number of bh-ths 
b(X)[t1 from x aged individuals=b(t-x) l (x)?n{x) and hence the 
total births at time (t), say, b (t) for all ages, are: 

f b (t-x) • l (x) • m(x)dx. 
We also know that growth of any age class is expressed in 
our model as a multiple of the instantaneous population growth 
rate er for each age class, and therefore that the number of 
germinants now (at time t) is equal to the number of germi
nants in the past (at time t-x) multiplied by er;,. Therefore, 
b (t) =b (t-x)erJJ and, therefore, b (t-x) =b (t) e- rx• Substituting 
in the above integral gives 1'b (t) e-rx l (x) m, (x) dx= b (t) and hence 
dividing by bet) gives, l=Je- rx l (x)m(x)dx. We can thus write 
an integral equation for any l (x)m.(x) function and solve for the 
l' roots, the instantaneous intrinsic rate of natural increase. 

Since population growth is an exponential function of time, it 
can be seen that the major effect of variations in the l (x), m (x) 
life table parameters on 'f is exercised during the early life stages. 
Variations in the l (x)m(x) schedule in later life stages are rela
tively ineffectual. This observation was offered by Fisher (1958) 
and Lewontin (1965) and was also shown to be true by Demetrius 
(1969) , who demonstrated its validity for the Leslie matrix model 
of discrete age classes. It can be clearly inferred from Keyfitz's 
(1968) results for the integral equation form. Both the l (x) and 
m (x) schedules of younger ages are not only most effective in 
modifying popUlation growth but are, consequently, also most in
tensely subjected to selection pressures, those individuals with 
maximum 't', dominating those with small 1'. For example, growth 
or other behavior differences which affect successful reproduction 
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of loblolly pine would be much more important at age 15 than 
similar differences at age 50. 

EFFECTS OF VARIATIONS* 
For any given life table, variation must be expected in any real 

population development. Hence, the expected growth rates will not 
be realized with complete precision. For example, if a constant 
nrobability of mortality exists in any population, some variations 
from the exact expectation of population size would be common. 
Thus, in our previous example, if the probability of survival from 
class .!-1 to class B was 0..10, the sampling vr.riance in the popula

. [}J(l~7J)J O.2Ll
bon could be reasonably expected to be N =N""" Even 

though survival and reproduction probabilities have such vari
ances, it is still possible to predict expected population grO\vth and 
an expected profile of population age classes. Pollard (1966) in
troduced a method for tracing the progress in expected means, 
variances, and conuiances among: the numbers in the various age 
classes. When sampling error occurs and each tree survives and 
reproduces independently with its stated propensities, then the 
events for the whole population are sums of binomially distributed 
events for all of the age classes. It turns out that the means are 
the same as predicted for the deterministic model. Ho\,{ever, if 
many population trials were conducted, the expected variance 
could be large and any single population could develop growth 
trends quite different from the average. 

In addition to random individual-tree variations around average 
sUl'vivals, there are variations in the average survival and repro
duction expectations themselves. These variations can be observed 
in the changing conditions of life according to whether a stand 
develops on new ground or must develop through overstory com
petition. Environmental conditions vary on different areas at the 
same time and on the same area at different times, affecting sur
vival and the probabilities of producing viable seedlings. Hence, 
variations about some average expected-growth rate and popula
tion age distribution are created by variations in sites over time 
and space. The means and variances for age classes in the future 
can be predicted with a deterministic model by varying the Leslie 
matrix (Sykes 1969). In general, variations due both to sampling 
deviations and \'ariations in the actual probabilities of life events 
(Weissner 1971) may cause variance in age class and population 
numbers to increase fastel' than the squared population size. The 
variances may therefore be so strong- that they continually induce 
age distribution disequilibria (Namkoong 1972). Thus, even 

'''Graduate-Ievel statistical training required for thorough understanding. 
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though the average age distribution might be predicted for some 
future time if we know or can estimate the parameters and their 
variations (Billingsley 1961), large fluctuations can persist, 
causing extreme events such as stand 01' line extinctions to be of 
central concern though otherwise not expected. In addition, if 
stabilities may only be approximated, then any real demonstration 
of popUlation stability must rest on the presence of other factors 
such as density-dependent effects and cannot be predicted from 
self-induced processes such as we have investigated. 

POPULATIONS WITH GENE DIFFERENCES 
Another source of variation within the classes considered above 

significantly affects population growth. Clearly, the species we 
deal with are commonly much more complicated than those we 
have been considering. Their members vary in survival and com
petitive and reproductive capacities. Any genetically val'iable trait 
which affects survival or reproduction possesses genetic variation 
with respect to ~ ~, replacement rate in the popUlation. Thus, 
genotypic 01' allelic variations affecting that trait can cause meas
Ul'able variations in fitness values. For simpler models, the popu
lation can be expected to change its average fitness towards the 
more l'epl'oductively effective type. It is clear that intraspecies 
genetic changes in fitness require some variations in fitness, just 
as in intel'species relations. The relationship between variance and 
rate of change was derived by Fisher (1958) as the "Fundamental 
Theorem of Natural Selection," which includes the effects of inter
mating among all possible genotypes. 

When considering the growth of a single population \\'ith the 
simplest model, the rate of increase is a logarithmic function of 

population size: ~i~T=I'N. With more than one type in a popula

tion, l' is dependent on the numbers and growth rates of the differ
ent member types, and growth is dependent on relative values: 

~;i ::;:Nt 1\+N2r 2 

in which r is the weighted mean of /'1 and?':? and might be simply 
expressed as: 

and where N=Nl +N2 and the 1'; are parameters for the intrinsic 

rate of increase specific to eaeh type. Since the proportions '\'..1.
,\ 

and .:'J; can be expected to change, r can change and hellcu we 
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can write: 

dr _, dp ,dp
then, dI -1 I dI-12dI 

- (1' 1') clp
- 1- 2d[' 

Since the proportions depend on the changes in numbers of both 
classes, 

clp d(NJ/N) 
dI= dt 

1 dNt NJ dN 
= N (]I"" - N:l df 

=p (1\-r) 

and, therefore, 
dr -
d[=p(1'l-r2) (1'l- r ) 

=p (l-p) (rl-1'2)2. 

It can also be derived that if 1'1 occurs with frequency p, and r2 
occurs with frequency (l-p), the variance in r: 

o/=p(l-p) (1't-r2)2. 

Therefore, the rate of change in average population fitness is 
exactly equal to the variance in the fitness values among the 
various types which exist in the population. 

Applying the same principle to the genotypes which exist in 
intermating populations requires only the further derivation of the 
expected frequencies of the genotypes. Otherwise, we assume that 
the simple logarithmic growth potential of the population with 
sustained growth rates for each type is a reasonable model. If the 
population possesses two alleles (A :a) at a locus with frequencies 
p: (l-p) , the three zygotic genotypes, AA: Aa :aa, may occur in 
almost any set of relative frequencies according to how the 
gametes are combined. If no forces, such as assortative or dis
assortative mating, or meiotic drive, affect the pairing of gametes, 
then the frequencies of the zygotic types in the population would 
be expected to be in proportion to the probabilities of random 
association. In large populations, these frequencies would be p2 
for AA, 2p (l-p) for A a" and (l-p)2 for aa, regardless of the 
zygotic arrangements in the parental class. The equilibrium fre
quencies induced by random mating have been derived elsewhere 
very well (in particular, see chapters 1 and 2 in Li (1955» and 
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under the label of Hardy-Weinberg equilibrium. We can then de
fine an average fitness ('W) as: 

'iiJ= WUp2 +WAa2p(1-p) +Waa (1-p)2. 

It is also necessary to define an average effect of an allele, since 
the fitness contribution of an allele can change if the allele is in a 
tree with genotype Aa or AA. A reasonable definition for the 
average effed of A is the fitness of the zygotic types weighted by 
the frequency with which it is associated with A (in AA trees) 
and a (in Aa trees) alleles. Thus, 

W A=pW.-lA + (1-p) W Aa 

Wa =p (WAa ) + (l-p) Waa 

and 'W=pWA+(l-p)Wa 

=p2WA.~ +2p (l-p) WAa+ (l-p)2Waa. 

Therefore, ~~ can be derived in terms of changes in p and hence 

. dw dp
In terms of dp anddI . 

From the above, we can obtain: 

d'W 
dp =2(WA-Wa) 

and as in the simpler nongenetic cases: 

dp 1 dNA p dN 
dt :::: N (It - N dI' 

Since we assume logarithmic growth rates, 

dNA_ 'N
(ft- W A A 

dN and (J;t=N'W, 

dp 
--=pWA-PW

dt 

=p(WA-W). 

diU _ dw dpTherefore, (ft- dp d1 
::::2p(WA -'W) (WA-Wa). 
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In Fisher's (1958) notation this is: 

dUo
dt =2paa, 

where (( = W,[ - W, the average excess of a gene substitution and 
a= W..t - W a, the average effect of a gene substitution. We can 
also rewrite the above formula as: 

:~ =2p(1-p) (W,[-Wa ) 2, 

which is the variance in average fitness of the a1leles. Thus, Fisher 
(1958) derives his "Fundamental Theorem of Natural Selection": 
the rate of increase in fitness of any population at any time is 
equal to its genetic variance in fitness at that time. This same 
result is derived in chapter 2 for selection models. It should be 
noted that the genetic variance used above is the variance among 
average gene effects and does not include all of the genet;c 
variances among the three genotypes which may be due to such 
gene effects as dominance. 

The genetic \'ariation is thel'efore of central importance in 
predicting and directing future genetic changes in populations. 
Our concern in population genetics must therefore be focused on 
the variances as well as the means of populations. 

The models used to derive these variances are clearly very 
simple ones and refer only to our parameterization of population 
growth. For models of population growth of wider generality, in 
which the assumptions of simple logarithmic growth are clearly 
not acceptable in important ways, more elaborate models of gene 
effects on population behavior are required. Nevertheless, additive 
models do provide reasonable first approximations which are of 
great direct value and which provide rational first steps in ana
lyzing population behavior. We use them throughout this book as 
first approximations, 



CHAPTER 7

REGRESSION AND REGRESSION


EFFECTS OF GENOTYPIC DIFFERENCES

If mean trends and variances, especially those with geneticinterpretations, are important analytical measures, then their definitions, derivations from biological models, and estimation mustbe well known. In this chapter, the concepts of simple lineal'regression are briefly reviewed and extended to gene effects. Inparticular, the sum of squares due to regression on genotypes isrelated to the concept of measuring the effect of genetic sourcesof variation. Several topics of special concern to forest geneticists,such as weighted and nonlinear regression and multivariate regression, are included but are not necessary for chapter continuity.Experimental design and variance components are treated in chapter 8. 

LINEAR STATISTICAL MODELS 
Genetic and environmental factors determine phenotypic expression through mUltiple and intricate physiological pathways. Forsimple biological models, mean effects. variances, and covariancesof those causal factors on the dependent response of any measurable trait such as size, vigor, or reproductiveness can begin todescribe the ways variations exist in natural populations. Thesampling and description of a multitude of traits which areaffected by age-dependent changes in tree populations are welldeveloped in forestry. The description and analysis of phenomenasuch as populational cause-effect relationships, 01' gene actionswhich are not directly observable, are less well developed. Todescribe the relationships between such independent variables asfertilizer levels or genotypes and such dependent variables asvolume growth 01' disease resistance, a model of their actions canbe built and the parameters of the model both estimated and tested.However, the reduction of such cause-effect relationships to anexplicit mathematical form is usually a crude approximation. Onlythe simplest linear functional relationships have been thoroughlystudied to obtain good estimators and testing procedures. Nevertheless, extensions to nonlinear effects and interactions amongmultiple variables are being developed ancl are also becoming moregenerally useful. Lineal' models remain the hasis for these extensions and have in their own right been found to be generallyuseful. 
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The lineal' model simply assumes that for any level of a causal, 
independently manipulatable factor (X), an average response of a 
dependent variable (Y) is expected. Specifically, for any changes 
in causal factor X, a proportionate change in dependent factor Y 
is expected. The proportionality factor depends on the scale of 
measurement of X and Y, but it is assumed either that the factor 
is constant over the scope of any experiment or that the variables 
can be measured on scales which will linearize their relationship. 
Generally, the effect of variations in X on Y cannot be measured 
directly, but differences among repeated trials can be measured, 
and while each trial has some error in exactly reflecting the pro
portionality factor, the average response is assumed to be a more 
precise estimate of the proportionality than any subsample. If 
another set of trials were made, however, it ,yould result in a 
slightly different cluster of points with which to estimate the 
linear regression response. It would therefore be reasonable to 
not only want regression-line estimates that are as unbiased and as 
precise as possible, but also to want some idea of how well the 
estimation was done. Then, it would be possible to determine if an 
estimate of the regression based on a different sample is close 
enough to the first estimate that the two can reasonably be said 
to represent the same relationship. If they are too different, some 
factors coulc1 reasonably be inferred to have influenced the esti
mated relationships so as to make the proportionality factors dis
tinctive. Clearly, the more variation around the regression and the 
larger the error in estimating the regression, the larger is the 
probable error of the estimates and the more difficult it is to dis
tinguish truly different regressions from poorly measured ones. 

In more explicit language, a single-variable linear regression 
model can be \\Titten: 

YiJ= a+ f3Xt -1- I'lj 

where Ytj;;;::dependent \'ariable measured at the jth trial at level 
i of the independent variable, 

a= base level of response in the absence of X and Il effects, 

f3 = proportionality factor (regression coefficient) , 

Xc= ith level of the independent variable, 

I'lj= deviation of the jth trial at Xi from the exact linear 
response. 

More generally, there can exist several factors which simul
taneollsly affect V, sllch as different genes or site factors. Then, a 
simple linear model for multiple X variables, say p of them, can 
be written: 

Y1j = f3oXo ...L f31Xllj + f3 2X 2ij ..l.. f33XSij-l- ..• f3 pX p(J-l- Ejj, 

where the substitution of f3oXo for a is a convenience. 

For several samples, say n of them, and for the general case where 




173 

each sample varies the level of each of the X's sampled, we can 
fix the j sUbscript for each of the 11. trial samples and drop the i 
subscript since levels and samples change together in this simpli
fied case. Then the equations for each sample are: 

Yl=[30XOl+{31Xll+{32X21+{33X31+'" +[3pXpt +El 

Y2=[3oX02+[31X12+[32X22+.BaX32+ ... +{3pXp2 +E2 

... = ... + ... + ... + ... + ... + ... + ... 

Yn=[30XO.+[31Xlll+[3zX2n+[33X311+ .,. +[3pXpn+ En 

In matrix notation: 

[X"X"X"X" ... X"1[:JX02X12X22X32 ... X p2 

= J.. 
I[~:·l [::. 1 

111 ;~n~'~n~~'n;~~ .':'. ;~n 
Y = (X) EIi + -

Where Y is the 11.'\:1 column vector of the dependent variable or 
measures of yield, (X) is the n:t']J matrix of X's, (3 is the ])x1 
column vector of regression coefficients, and is thenxl columnE 

of error deviations. 
Since the X's and Y's are known and we wish to estimate the p 

regression coefficients, we should have at least as many equations 
as unknowns anel, therefore, it is required that sample size 11.2:]) + 1. 
Since each equation also has an unknown error term, ho"wever, +he 
actual Y values are not exactly 'what they would be predicted to be 
by the X and [3 values. Therefore, even if there are more equations 
than regression coefficient unknowns, they cannot be solved very 
simply and there actually exists a wide choice of ways to determine 
the coefficients. For one X and one Y v:1riable, only two points are 
needed to determine a straight line relationship, but with many 
more points, each with some error, our choice is not obvious. A 
common procedure is to derive the least squares estimators in 
which the equations of the model are used to determine a simple 
function of the error deviations in terms of the X's, Y's, and [3's, 
and from "...hich an explicit expression for the [3's are derived in 
terms of the X's and Y's. 

Different criteria of a "good" estimator, such as unbiasedness, 
efficiency, consistency, and sufficiency, may be formed. They are 
thoroughly discussed in many theoretical statistics texts. Several 
methods that accomplish these objectives in different ways which 
may be more direct or more general than the suggested least 
squares have been devised. The generally satisfactory maximum 
likelihood estimators are examples. The interested reader is re
ferred to Kendall and Stuart (1963) fOl' a thorough introduction to 
these concepts and several estimation methods. In the important 
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case where the errors are normally distributed, the maximum 
likelihood and least squares estimators happen to be the same and 
are unbiased, efficient, and sufficient. In the following, the notation 
of Searle (1971) is followed closely. A reasonable function to use 
is the sum of squaTes of the error deviations (SSE=q2+ E22+ E32+ 
... E,n since its minimization would give us an intuitively good 
result. The least squares refers to the minimizing of these squares, 
and by doing so, a function of the X's, Y's, and f3's can be de
veloped which gives good estimates of the f3's. To do this, it is 
convenient to express the c's as follows: 

E[=Y'-! f3Jx fj for i=1, 2, .. . 11., 
j 

or E=Y- (X)f3 

in matrix notation. In this case, the 

1'2 

'3 

=c'1' 

= C!. -Xli)' CK -Xl!.) 

To minimize SSE with respect to appropriate choices of the f31, 

8 (SSE) =0 
8{3 

8(SSE) = 8 (Y-Xf!..)'(Y-Xf3) 

8f3 8f3 

_ 8 (Y'Y -2f3'X'Y+f3'X'Xf3) 

8f3 

_ 8 (Y'Y) 28 (f3'X'Y) 8(f3'X'Xf3) 
- 8f3 - 8f3 + 8f3 . 

Since Y'Y=Y 12+ Y 22+ ••• +Y,,2, it contains no explicit {3 values, 
and 8 (Y'Y)/8f3=0. 

Sincerfx'y-;;' (f31 f32 • •• {3p) (XT), the f31 factor is a multiplier 
for each of the elements of the'"":"first row of (X'Y). Therefore, 

8 (f3'K'Y) 8 (f3'K'Y) 
,f is the first row of X'Y. Similarly, _~ is the second 

8f31 8f32 
row of X'Y, and, therefore, for all of the f3 elements listed in 
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8 (f3' K'Y)column order .< =X'Y. 
'8(3 -

Since f3 'X'Xf3= (f31 f32 ... f3p) (X'X) 

:~: ::: : : : ~~: 1 
and letting X'X = '" ... ... .,. ,[

apl ap2 ••• app 

the f3I factor on the left can be seen to be a multiplier of the first 
element of the product: 

f3i 


f32 


(X'X) 

f3p 

which is (l1lf31 +aI2f32+ ... (lIPf32. The f31 factor on the right can 
be seen to be a multiplier of (f3lf3!! •.• f3p) (X'X), which is 

allf31 +a21f32+ ... +ap1f3p= Cluf31 +aI2f32+ ... + (lIPf3p. 

8 (f3'X'KB)
Therefore, - .L is the first element of 2 (X'X) «(3).I 

8f31 

'X
Similarly, for the 8 (f3 'Xf)), it can be determined that this is 

8f3!! 

equal to the second element of 2 (X'X) «(3), etc., and, hence, that for 
all f3 listed in column order: 

8 (f3' K' K(3) 
- ~i-=-=2 (X'X) U!}. 

The equation for minimizing SSE can then be written: 


8 (SSE) 8 (Y'Y) 8 (f3'X'I') 8 (@.'X'X[}) 
= -2 - 
81i 8J! 82 + 

8,B 

0 = 0 2X'Y + 2X'X@. 
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Therefore, 2X'Y=2X'Xf3 is the equation which must be satisfied 
if SSE is to be minimized. Then, this least squares estimate of 
f3 would be: (3= (X'X)-l (X'Y), assuming that X'X can be inverted. 
If these estimates are used and are substituted in the SSE equation 
for f3: 

SSE = !:'! -2f3'X'~+B'X'I}.; 
., 

then using I}., SSE=Y'Y-X'!(X'X)-lX'Y 

=Y'Y-(3x'T 
.\

The f3X'Y is called the sum of squares due to regression (SSR) or 
the sumof squares of reduction, or any of several terms to denote 
the extent to which the error or unexplained portion of the original 
total sum of squares (Y'Y) has been reduced by having adjusted 
the variation around the regression. 

In summary, the least squares equation, 

~= (X'X)-lX'Y, 

is the explicit equation we sought in terms of known X's and Y's. 
It leads to a residual sum of squares or sum or squares for error 
of: 

SSE=T!:-/i' (X'!,) 

=Y'Y-SSR. 

Hence, ,ve maximize SSR and minimize SSE by the choice of (3 
which gives the least SSE. -

Since the population responds imprecisely, any resampling of 
the population, even at the same X levels, would produce Y's which 
would exhibit some variations. Therefore, variations in estimating 
f3 depend on the behavioral variance in Y. Thus, for fixed X's, 

E(@) = (X'Xj-lX'E(!) 

since Y= (X)!!.-l..!.. 

E(P) = (X'X)-lX'E[(X)/i+=. J 
= (X'X) -lX'XE (/!) 

=/i, 
/I. 

proving unbiasedness of the estimator. Also the variance in !!. is: 

E[~-E (~)]2= [(X'X)-lX'E «X)/i+:) -liP 
=E [(X'X)-lX'Ef"X (X'X) -1J 
= (X'X) -lX'E (fe')X(X'X)-l. 

The question of estimation error can now be stated in terms of 
the middle element of this equation, E (Efl), the expected nature 
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of the squares and cross products of the errOl' terms, If the errors 
are random samples of a homogeneous process and are independent 
among themselves, then they share a common expectation of £2, 

namely 112 , and a common expectation of the covariance among 
any two errors Iii • Ii], namely 0, when i=Fi, Then, 

E (::.,') = 1112 

and V (~) = (X'X) -1 112, 

which can be simply written in the more familiar notation for a 
single X variable as: 

112 

IXi
2 -

With more than one ~, V (~) is the variance-covariance matrix 
of f3's. 

HETEROGENEOUS AND CORRELATED ERRORS~ 
It may often occur that the errors are not independent samples 

of a common set of e, that E (en varies among samples, and also 
possibly that they are correlated and hence E (EiEJ) =/;=0. In such 
cases, if we let E (d) Sa2 , then the V (~) llsing the previously 
derived estimators would be: 

V (~) = (X'X)-lX'S-IX(X'X)-la2 , 

Instead of deriving the estimator to minimize 2: (.:!') when 
lj 

E(ee')=Sa2 , it may well be better to choose ~ to minimize 
ECEE'S-l) =la2• Then the sum of the variances is tr(ee'S-l), which 
equals tTCe'S-Ie). This latter function is a quadratic form and in 
the regression -model is: 

~S-l.:= Y'S-ly - ~'S-lX!i-!!.'X'S-l+f!'X'S-IX~. 

This error can now be minimized by forming the equation, 

8{:.S-ls) =0 
of!. 

which yields: 

It can then be shown that E Cd) =f!. 

and that V(~) =CX'S-lX)-l~, where V(~) is the 

variance-covariance matrix of ~'s. 
If we now consider the design problem of a scientist wishing 

to estimate his f3's particularly well, and having some choice in 

"Graduate-level statistical training required for thorough understanding. 
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how he selects his independent X variables, we have an inverse 

of the former problem in that we try to minimize V«(3) by choice 
of X's for given ranges of (3. In simple cases such as that of the 
simple linear regression, it is only necessary to maximize ~X2 for 
any p. For more complicated cases, the solutions often are not 
independent of (3 and require that regions of (3 be specified for any 
optimum solution. The design matrix (X) may then be chosen to 
minimize some function of the variance-covariance matrix within 
that region. A further problem is then entailed since the rela
tionship of the (X) matrix to the V matrix is most often nonlinear 
and exists in ])2 dimensional space. Search procedures on irregular 
surfaces in n-space are most easily carried (lut on computers by 
procedures such as those developed by Marquardt (1963) for 
single yield variables or single functions of the V matrix. 

NONLINEAR REGRESSION¥ 
Another form of the regression problem is the general nonlinear 

regression equation in which the parameters cannot be trans
formed into a linear function. While we can often separate a 
linear error element, the other variables are often nonlinearized. 
Thus, 

Y=(30+[JIXr. 2 +8 
is nonlinear in the parameters and cannot be transformed into a 
linear form. Therefore, the estimation equations cannot be neatly 
separated between the known X and Y versus the (3 to be esti

mated, and it is not a simple matter to find ~. 
Most procedures derive a good approximation which is easy to 

compute and then derive successively closer approximations. One 
such procedure is to transform the function into an approximately 
equivalent but more easily soluble linear form by taking the 
function's Taylor Series expansion and dropping as many terms as 
feasible; as more terms are dropped, the approximation becomes 
worse but also easier to compute. The compromise is most often 
made heavily in favor of computational ease. Thus, for any func
tion of (3, we can write its Taylor Series expansion as: 

1«(3) =f «(30) + (/3-(3°) I' «(30) + «(3; fO) 2I" «(30) 

+ «(3~r)31"'(f3°)+'" 

where (30 is a first guess at the true (3 and I' «(30) is the first 
derivative of 1«(3°), I" ((30) is the second derivative, etc. The 
superscript refers to the first guess add would advance by one each 
time the guessing process is repeated. In elementary calculus, 
Newton's approxili.~,tion to the roots of equations required that 
Y=I(X) =0. Then choosing a guessed root, XO, as the first ap

*Graduate-level statistical training required for thorough understanding. 
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proximation to the roots gives: 

f(X) =O=f(XO) + (X-XO)f' (XO) + (X ~~O) 2f" (X) + .... 

Then if the first guess is reasonably close, (X~~O) 2will be small, 

as will all higher coefficients. Then, what we hope is a reasonable 
first approximation is: 

O=f(XO) + (X-XO)f'(XO) 

-f(XO) 

or X-XO f'(XO)' 


In the regression case, we wish to find a minimum for the SSE 
and this process gives us a function of {3: 

8 (S~E) =0=/({3). 

A 
Then: {3-{30= - f ({30) [I' (,8°)]-1 

is our first approximation 

where 

For the multiple regression case of several {3's, the f ({30) becomes 

the vector of functions 8 (SSE) for each f3 and the [' ({30) be8p 
comes the matrix: 

82 (SSE) 82 (SSE) 82 (SSE) 
8{302 0{30{31 0{30{32 

02 (SSE) 82 (SSE) 82 (SSE) 
0{31{30 8f312 8/31{32 

The subscripts in the matrix refer to the variable of the regres
sion equation for this estimation. Using the guessed values in 
these equations provides an approximation to our best estimator 
(f3-f30). Increasing ~o by this amount gives us a new approximate 
~1. Using superscripts to denote the number of iterated estimates, 
and recognizing that pI is only approximate, another estimate, ~2, 
may be needed. Then, the ~1 is used in the same formulas to pro-

A 

vide a f32, etc., where the matrix above of f' (f3) changes at each 
iteration until the {3i- {3i+1 corrections are negligible. 

For the case of Y={30+{31Xff2 + c , the procedure simplifies stilI 
further (Namkoong and Miller 1968) in that the correction vector 
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[3!- [31+1 is a function of only one of the ~ coefficients, and, hence, 
the sequence of estimates is not difficult to handle on a computer. 

For the simple case of linear regression it can readily be derived 
that: 

8 (SSE) / 8/3=2X' (Y-X~) 

82 (SSE) / 813 2 = - X'X 

83 (SSE) / 8!!..3= 0 

and the exact solution is: 

13 - [30 = - [f ([30)] [I' ([30)] -1 

and for [30 = 0, 

f3 = (X'X) -lX' Y. 

For more difficult nonlinear cases, the geLeral problem is to find 
the f3 which minimizes the value of SSE over the entire surface 
of SSE values created by all possible choices of [3. In general, the 
surface will be irregular. If considered in this-way, it is cleal' 
that the linear regression SSE is a simple quadratic surface 
(Y_X[3)'(Y_X[3) where SSE is high at values of [3 which are 
far from our estimator (X'X) -1 (X'Y) and low near that vector 
value. For example, with two [3's and a single SSE, we can vis
ualize a parabaloid, concave upward in the direction of increasing 
SSE and coming to a minimum at the point 'we would choose as 
the [31 and 132 coordinates (fig. 12). For less regular surfaces, 
search procedures have been developed for computers which use a 
val'iety of techniques to efficiently locate the [3 combination cor
responding to the minimum SSE. The problems of finding the 
lowest minimum are more than computational where more than 
one local minimum exists and there are fiat areas around the 
minima. The existence of such surfaces also indicates that widely 
different [3 may be almost equally good and hence that the model 
or the data cannot discriminate very well among widely different 
[3 estimates. In such cases, it behooves the analyst to consider the 
adequacy of his model or experimental design matrix. Neverthe
less, programs such as Marquardt's (1963) can be used to estimate 
[3 and approximate variances of the estimates. Hartley's (1964, 
1969) procedures can often be used to obtain exact confidence 
regions for f!: 

MULTIVARIATE REGRESSION¥ 
An expansion of simple linear regression of a different order is 

to multivariate models in which more than one yield variate Yj is 
affected by the X variables. It is a particularly useful extension 

"Graduate-level statistical training required for thorough understanding. 
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SSE 


Figure 12.--A simple quadratic error surface created by relationship of the 
error sum of squares to the choice of f31 and f3. for a set of data. 

in forestry where the cost and duration of experiments make it 
desirable to measure the response of several dependent yield vari
ates in anyone experiment. For tree breeders, an important prob~ 
!em lies in determining if between-population selection is more or 
less effective than within-population selection, whether the rela
tive effectiveness varies among yield traits, and how information 
on the source environment can help define provenances and the 
location of good sources. When several intercorrelated yield vari~ 
ates determine the value of a provenance and each variate is af
fected by the same environmental variables, but in different ways, 
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the breeder must parameterize these relations in order to select 
among provenances. This parameterization is essentially multiple 
regression extended to study several traits simultaneously. For 
example, height growth and diameter growth are simultaneously 
affected by some independent variables, both are often measured, 
and both are often affected by genetic or soil factors in what may 
generally be similar ways. Of course, the dependent yield variates 
are not exactly correlated in their responses and our interest 
therefore centers on the pattern and strength of the joint re
sponses. The greater the correlation among the yield variates, the 
simpler the problem becomes since the results in several variates 
can be predicted with increasing accuracy on the basis of the be
havior of anyone variate. In such cases, a single (or very few) 
functional relationships among variates would reduce our problem 
to univariate analysis, which we can choose either as a linear 
function of all the variates or a single convenient variate for re
gression analysis and predict the behavior of all other variates by 
that function. In that case, the only problem for the breeder is 
that of determining a value function among the yield variates. 
This determination can be an additiona1 and a critical problem if 
the values of the variates do not assume a linear form. Consider, 
for example, a curvilinear relationship in the set of points repre
senting the trees in terms of their yield variates snch that at low 
stem growth rates, fruit yield is low, but that fruit yield increases 
with increased growth vigor up to a point beyond which increased 
growth rates are made at the expense of a decline in fruiting. If 
managed for the dual yield of stem and fruit, a problem can be 
seen to exist in deciding which combinations are best. The answer 
can vary widely, depending on the relative value placed on the two 
traits. 

The nature of irregular value functions and their uncertainty 
is an acute economic problem which we will not consider at this 
point. For simpler linear models, however, extensive theory and 
methodologies have been developed. The analytical problem of 
describing the joint distributions of points in multivariate fields 
and analyzing regression functions on them is immense. 

The serious investigator would profit by study of the distribu
tion theory (Anderson 1958) and analytical methods as detailed 
in several texts such as Blackith and Reyment (1971). 

To briefly familiarize the reader with some of the concepts, a 
few of the multivariate analogs of elementary univariate statistics 
might be useful to describe. Whereas, in the univariate case, a 
normal distribution has a probability density function (pdf) of 

pclj= u(2!)1/2 exp [-1;2(X-')Y/~ ] 

In the multivariate normal distribution, there are means and vari
ances for each variate and also, covariances between them. The 
covariance matrix (A) takes the place of the variance and the 
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vector of (X- p.) takes the place of the (X-I).) in the univariate 
case. Then for the multivariate case: 

pdf= 1./:1.11/2 ~21i") p/2 exp [ -112 (X- ,u)'A -leX - ~t ] 
In the bivariate case for variates x and y, where x=X-~x and 
y=y -fJ-v, 

A=(a:r:
2 

a",~) 
aXil ay 

and the 

where p=a"y/ya,!2ai, and exp [ ] is the exponentiation operation. 

In regression theory, with a single y variate and single x 
variable, we had f (y I x) as a mean of 

y + ay: (X- fJ.:r:) 
ax~ 

and residual variance: 

2_ (O""y)2 - 2(1- 2)all a 2 -all p. 
x 

For multiple x variables, we have a regression: 


(aIlX;) (!"'X) -1 f (y I Xl, X2, ••• ) 


with mean 

O"yx1 Xl-~Xl 


y+ O"yx !x",-1 X 2 -{tx2
z 

and residual variance: 

where !xx is the covariance matrix among the x's. axy is the covari
ance vector between y and the x's. 

For multivariate regression with several x variables and y 
variates: 

f(Yi, yz ... I Xl, X2 ••• ) 

has regression matrix estimates: !"y !:r:x- 1 

has mean vector: £v+2:"y 2:x",-1 (X-{t) 

and has residual covarjance matrix: !vy- !Xy !xx -1 !XII 
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where !yy is the covariance matrix of y's 

and !.rv is the covariance matrix of x's and y's. 

Simple tests are also closely analogous to the univariate case. 

In univariate t-tests, t=VN(x-P.) 
U' 

or 

and t2 is distributed as an F (1, 1>'-1) dl' 

In multivariate tests, T2=N (x- p.) A -1 (x- p.) 

(N-p)
and P r-'F(p, N-p)dl 

where p=number of variates. For our purposes, it is only neces
sary at this time to consider the desirability of reducing the num
ber of yield variates and how ordinary regression theory can be 
applied to problems involving more than one dependent variate. 
In simple multiple regression it is assumed that the relationships 
are linear between the independent regression variables and the 
dependent yield variates. Similiarly, for the simpler analyses, it is 
also generally assumed that the relationships among the depend
ent variates are linear. The problem of nonlinearity is exceedingly 
difficult to handle, since it requires that nonlinear multi
variate distributions be specified in such a way that moments can 
be derived and the effects of independent regression variabl,es also 
are derivable. It seems best at this time, when few data analyses 
are available, to linearize the joint mea.sures f!.S much as possible 
and to use standard linear theories until the effects of known nOll
linearities can be predicted. 

The first problem in most practical breeding studies is identi
fication of the environmental variables of importance to one or 
more of the height, volume, or other dependent yield variates. In 
this part of the problem, one use of multivariate techniques is to 
reduce the number of yield variates that must be measured. The 
same techniques may be applied to the multiple environmental 
variables fol' elimination of variate redundancies (Kendall and 
Stuart 1966). The reduction can be accomplished by component 
analysis rather than by multiple regression. If, to start with, 
independent p variables may account for part of the genetic vari
ance, the problem is to find whether collinearities exist among 
any subset of the variables. A collinearity exists between two vari
ables when the occurrence of one variable at a specific level fully 
determines the other. A single linear relationship that completely 
describes the joint variation can then substitute for the two 
original variables, or, conversely, one of the variables is redun
dant. Similar reductions in redundancies may often be a signifi
cant aid in data interpretation. If there are three variables and 
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one is fully dependent on the other two, a collinearity in three
dimensional space exists and all of the variation is in a two
dimensional plane. Then, a single co11inearity is said to exist and 
the rank of the space is two. If, in addition, all of the variation 
reduces to a single line, a second collinearity exists and only one 
dimension is required to include all of the variability in the three 
original traits. In component analysis, a series of lines (in the 
original p dimensions) is successively and orthogonally fit to re
duce the residual variance about the lines. These lines are the 
principal component vectors. If a single line describes all of the 
variation in the variables, the first component would be that line. 
(The line is given in terms of its direction cosines in the space 
defined by the original variables.) If only a single collinearity 
exists, the remaining variability about the first line is all in one 
plane and hence is reducible to a single line which we choose to 
be orthogonal to the first. 

These relations are illustrated in figure 13, in which the per
pendicular line between the sample point and the first pTincipal 
component is seen to lie in three, two, or one dimension as di
mensionality decreases from three to one. If fewer than 1) one
dimensional transforms are required to account for almost all of 
the variance, then there are, perforce, linear dependencies among 
some of the 7J original variables. Dependencies imply that some 
of the variates ,"hich have been measured can be fully explained 
or replaced by a linear function of other variates. Therefore, the 
removal of at least one is desirable. A procedure utilizing the 
principal components already derived can be useful. The vector 
corresponding to the smallest root of the standardized covariance 
matrix (Le., the correlation matrix) presumably represent" almost 
a random vector in the orthogonal residual space. The variate 
which, in this vector, has the largest coefficient is that which can 
presumably be best explained by the others and hence is a likely 
candidate for discarding. The estimation of further components 
may then be repeated for discarding variates for as long as zero 
or neal' zero roots continue to exist. 

This component analysis procedure for reducing dependent 
variates can also be applied to reduce the number of independent 
variables (Kendall 1961). Like othel' regression techniques which 
reduce the variate space, this method is subject to the usual re
strictions on interpretation of cause and effect or anything other 
than simple association. It does possess some advantages over the 
more common stepwise procedures, but it is scale dependent. The 
standard procedures for variable reduction in multiple regression 
may therefore be more useful parts of an analytical system. \Vhen 
interest exists in finding the linear function of independent vari
ables (X) which can best fit a linear function of dependent vari
ates (Y), the regression coefficients for the X variables and the 
component coefficients for the Y variates can be simultaneously 
chosen to minimize the error variance of the principal component. 
The technique is known as canonical correlation analysis, and 
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Figure la.-Location of five sample points where variation occurs in three 
dimensions (A), two dimensions (B), and one dimension (C). 
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though not yet used very extensively in forestry, it is potentially 
useful in provenance analyses where several traits vary simul
taneously in response to several site variables and the greatest de
gree of explainable variation is desired. 

If consideration is restdcted to a reasonable number of depend
ent yield variates and independent environmental variables, the 
problem of parameterizing the joint relations is often simply one 
of describing the regression effects. In the univariate case, a re
sponse surface is estimable and the combination of source
environment variables which gives the greatest expected progress 
in the dependent yield variate is identifiable. For example, if a 
simple quadratic surface is hypothesized and estimated, the esti
mated optimum levels of the X environmental variables that would 
give a maximum yield are derivable. For example, the dependent 
Y variable may be some measure of growth and the independent 
X variable may be fertilizer level or the latitude of the seed SO~lrce, 
both of which may have some intermediate optimum le\'el for 
maximum Y. The error in estimating the optimum point for maxi
mum Y is also estimab1e. If a simple quadratic-response line of 
yield to a single environmental variable, for example, latitude, 
were to be estimated by Y=bo+b 1 X+b 2 X2, then the maximum 

likelihood estimate of the X corresponding to a maximum 

Y is: -1/:~ ~~l • The standard error of the maximum Y can be esti
b2 

mated by such procedures as given by Kendal1 and Stuart (1963, 
ch. 10, p. 232) and the confide11ce belt estimated as that which 
would be appropriate for regressions derived from a normal dis
tribution of errors of Y. Regions in "which the environmental vari
ables are of acceptable levels may then be set up by simple 
graphical or more sophisticated techniques. 'Ye may extend the 
number of different environmental variables to two or mOl'e, but 
remain in the univariate case and describe a quadratic response 
surface, for example, by: 

y='boo + b10X1+b~OX12+b01X2 + bIJ2X22+ bn X 1X 2 • 

The levels of Xl and X 2 giving maximum Yare: 

Other nonlinear models increase the difficulty of estimation but 
are often more precise and useful (Anonymous 1961). The esti
mation of the regression coefficients of the linear model is well 
known and can be written in terms of estimating the vector 
~ by (X'X) -lX'Y, where X is the matdx of the levels of the 
sampled variablesand Y is the vector of the yield variate at each 
level of the independentvariables. If the model is extended to the 



188 

multivariate case, each dependent yield variate would be charac
terized in its response to the environmental variables by its specific 
vector of regression coefficients. 

The estimation is a simple extension of the usual univariate 
A 

procedures for estimating a [3 matrix instead of a vector. In linear 
models, the matrix ~ is estimated by (X'X) -lX'Y where the only 
difference from the univariate case is that Y is a matrix. Each 
rO\v of the Y matrix is the vector of yield responses with respect 
to a given set of levels of the X variables, and the columns of the 
Y matrix represent the response of each yield variate to the series 
of sampled X variables. For n samples and one dependent variate, 

Y1 XOl Xn X!!1 Xp1 f3() E1 

(31 

= + 

Y n XOn X ln X!!11 Xpn [3p En 

For the same n samples and two dependent variates Y and Z, 

( Y 1 Zl X 01 X ll X!! 1 X p1 [310 820 E10 E21 

Y 2 Z2 XO!! Xl!! X2!! X;>2 (311 f3!!1 Ell E2!! 

= + 

Y n Zn XOn Xln X:!1l XPII (31n [3!!n Eln E2n 

Since the X matrix remains the same, (X) can be used as it 
was for simple regression, and changing the Y vector to Yb the 
Z vector to Y!!, and the subscripts on the [3 andc elements by add
mg 1, 2, .. -: etc., for the Yvariate to which they refer, 

(Y) = (X) «(3) + (E). 

Using El = (X'X) -1X'YlJ 

and ~2= (X'X) -lX'Y2, etc., 
A 

the matrix [3 = (X'X) o-1X' Y1~2 ... 

= (X'X) -1 (X') (Y), 

= 2,xx -1 2,.'(}••or in the 2: matrix notation 

The covariance between the regression coefficients is estimated by 
2.xx-1Sij, where Sij is the residual covariance between traits 

Y, and YJ• 
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The data of Wells and Wakeley (1966) on the performance of 
loblolly pine of various seed sources in a plantation in Dooly 
County, Georgia, will serve as an example. The independent X 
variables are the ,January minimum temperature (Xd and sum
mer rainfall (X2 ) of the source locations, and the Y vadates are 
survival (Y1 ) and height (Y2 ). These data are listed in table 4, 
and regressions are drawn in figure 14. The regression equations 
estimated on the nine source locations are: 

Y1 =62.9 +2.91X1 - 0.06X12-1.98X2 - 0.09X22 +0.09X1X 2 

Y2 =135.5 - 6.79Xl +0.l1XI2+ O.59X2 +0.09X22- 0.08X1X 2. 

The total variance in Y1 is 27.8, and in Y2 is 3.10, and the covari
ance between them is -7.89. In matrix form, this total covariance 
matrix is: 

27.8 -7.89)
2yy= ( 

- 7.89 3.10 

After adjusting for regression, the residual covariance matrix is: 

11.6 -0.452) ( )!yy- 2X1"2XX-1 2X1"= = S!j( -0.452 0.269 

The sampling variance for all of the regression coefficients involv
ing Y 1 is a product of 11.6 and the appropriate element of 
2xx- 1• The sampling variance for those involving Y2 is a product 
of 0.269 and the appropriate element of ~n·-l, and the covariance 
of Y 1 and Y2 is a product of -0.452 and the appropriate element 
of 2xx-1 • 

The upper triangle of the 2xx- 1 matrix is: 

9.819 -0.1528 -2.260 -0.0641 0.1079 
0.0025 0.0668 0.0008 -0.0024 

8.895 -0.0677 -0.1876 
0.0020 0.0003 

0.0048 

Hence, the sampling variance of buo for Y1 is (11.6) (9.819) = 
113.9 and of b210 for Y2 is (0.269) (9.819) =2.64. The sampling 
variance of blol for Y1 (11.6) (8.895) =103.24 and b201 for Y2 is 
(0.269) (8.895) =2.394. The sampling covariances of uuo and 
blOl are similarly derived as (11.6) (-2.260), and the sampling 
covariance of bIOI for YI and of b201 for Y2 is (-0.452) (9.819) = 
-4.439. 
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Figure 14.-Quadratic response surface of the simultaneous effects of rain
fall and temperature on survival and height growth. 

Table 4.-Loblolly pine seed and source performance in Dooly 
County, Georgia 

(Wells and Wakeley 1966, tables 2 and 13) 

Source Performance 

Seed source January 
minimum June-August 

temperature rainfall Survival Height 
(X,) (X,) (Y,) (y,) 

OF Inches Percent Feet 

Eastern Maryland 31.4 12.9 87.3 22.3 
Southeast North Carolina 36.9 19.0 73.3 24.2 
Eastern North Carolina 35.9 18.4 82.2 23.2 
Southwest Georgia 40.3 15.4 80.4 23.2 
Northern Alabama (1) 32.7 12.7 85.8 20.4 
Northern Alabama (2) 34.9 13.9 85.6 20.4 
Southeast Louisiana 42.5 16.9 77.3 25.3 
East Texas 38.8 9.2 85.3 23.3 
East Arkansas 33.2 10.4 91.2 20.6 

A problem for the breeder in provenance selection is how best 
to find a region for seed source sampling or its unique set of en
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vironmental conditions that simultaneously, optimally affect the 
important yield variates. If we establish a space defined by these 
dependent variates, it would be possible to locate a point repre
senting the vector of the several dependent variates correspond
ing to each set of environmental conditions. A combination of 
independent variables denoted by a vector valued X is thus asso
ciated with a vectorial representation of the dependent variates. 
Changes in X over the independent variables, which may be 
environmental variations, define a surface of changing values in 
the Y variates. The problem then is to define some joint evalu
ationof all Y variates and then to find the maximum value of that 
joint value function. An optimum X may not be unique, however, 
depending on the shape of this Y surface and the value function 
used. -

Geometrically, the simple regression problem is to define some 
functional relationship between an independent variable X and an 
average dependent response variate Y. 

y 

Expanding the case to more than one X in multiple regression 
requires description of the response surface of Y to the X's. 

This may be projected onto the Y, Xl plane when X~o, X 21 , X 22 , 

and X 23 are the projections of Y at the various levels of X 2 • Con
sidering now that two dependent Y variables may exist fol' a 
single independent X variable, there generally is only one mean 
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joint response point (Y1, Y~) for each point in X. In that case, 
the resp::mse of Y1 and Y 2 to Xl is a line in three dimensions. 

y 

This may be projected onto the Y 2 , Y1 plane. 

\ I 7'i'--i /
'I I I-r-

--,II I / 
---, II /

--_"":::. ................ l! 
x - - - - ---=-

Then similar variations in a second X variable can be projected 
onto this plane. 

This kind of projection then graphically displays the joint re
sponse of two dependent Y variates to two independent X vari
ables. It should be noted, however, that the proviso was stated that 
there is flIlly one mean joint response point to each point in X. 
In fact, however, there are residual variances, in each Y variate, 
and some residual covariances and correlated response of 1'1 and 
y 2 at each X point. In terms of provenance analyses, t'lese are the 
intrapopulational variances and covariances which 111:.1.Y be of con
siderable interest. 
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More formally, the linear relations are describable by the 
equation Y =X ([3) where Y is the vector of yield values, X is the 
vector oftheenvironmental variables, and [3 is the matrix of re
gression coefficients previously described. The problem is to pick 
the vector X which will maximize some appropriate value function 
of Y. Since these relations are scale/dependent, reduction to a 
standardized or other established basis is recommended. Sir iple 
linear combinations of the variates may always be constructed, 
but often the gain achieved by selecting for conditions maximiz
ing one trait will not be optimum for other traits. It may oftr'n be 
best to pick the envil'onmental vector which will assure that none 
of the variates suffer much loss and which thus will maximize 
the minimum gain. Of course, it is possible to construct solutions 
to maximize the sum or product of all variates. For any criteria, 
the surface representation will allow one to examir...t; how the 
alternative solutions will differ and will be helpful in determin
ing intermediate solutions. 

The conclusion of Wells and Wakeley (1966)-that the fastest 
growing trees in the Dooly County, Georgia, plantation were from 
regions with warm winters and wet summers-is generally sup
ported by the present anaysis. While the quadratic surface model 
may not be the best fit for the data, it is evident that 'warm winter 
at the seed source favors growth but not survival and that low 
summer rainfall at the seed source favors survival but not growth 
(fig. 14.). The sampling of source environments in this plantation 
is not sufficient for more precise source evaluations. It is generally 
not wise to extrapolate from a model which at best may mimic a 
set of data, and to try to discern cause and effect, particularly 
when such high residual errors exist. However, the generally nega
tive correlation between height and survi\'al for both the total 
variables and the residuals after regression indicates that selec
tion for both would result in opposing selection forces. The devi
ations from regression allo ........' for some combined selection, and the 
data suggest that deviations exist in the direction of intermediate 
to high winter temperature and intermediate to low summer rain
fall, If selected, these sources might best maintain both height 
and survival without great loss in either. Provenance hybridiza
tion to combine genes for both may be warranted. If survival is 
of less importance in this range, the desh'able vector of selection 
would more heavily favor the warm winter-wet summer sources. 

While the regressions are not weIJ established, it is illumim::ing 
to consider how different vectors might influence the choice of 
source environments. An infinite number of functions could be 
written for the relationships between the yield variates. If 
equivalent and linear economic weight is given to survival in per
cent and height in feet, the expected value would be: 

E (Y1 +Y 2 ) =198.4-3.88Xl":"'O.05XI2_1.39X~":"'O.OlX1X!!. 

Here Xl has about twice the weighting of X'!.. If height is so im
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portant that the scale of value is Y1 +lOY!!, the regression would 
be: 

E (Y1 -l-I0Y2 ) =l,41S-65.0X1 +1.04X1'l-l-4.0X2 

+0.81X22-0.71XIX2' 

In this linear "weighting of Y1 and Y 2 , the value (or objective) 
function is a straight line. In a multiplicative model of value, 
the \'alue function would be a hyperbolic line. In the linear fonn, 
and with a 1: 10 weighting, a negative weighting is given to win
ter temperature (Xl) and a positive weighting to summer rainfall 
(X2 ). Both linear cases indicate that several XI, X'!. combinations 
could pro\'ide good value yields but also that there is a unique 
minimum. Since only minima exist, the analysis is useful for indi
cating unique sources to avoid rather than unique sources to 
choose. On the other ha1:d, hybrids of the alternately good sources 
may be quite valuable. 

These regression solutions for provenance selection are simply 
multivariate extensions of univariate theory. Estimation problems 
in multi\'ariate analysis are only slightly more involved, though 
distribution theory is often much more complicated. 

In addition to the statistical questions, the chief difficulties are 
in deciding whether to put selection emphasis on bet\\'een
provenance 01' within-provenance differences and in interpreting 
the pattern of genetic variance and covariance in terms of popu
lation structure. These methods merely facilitate consideration 
of the joint processes of several variates under the influence of 
several environmental variables. Since many problems in forestry 
involve the simultaneous evaluation of several traits on single 
trees or populations clue to the multiple values that exist in fo~·osts, 
multivariate analyses are likely to be more commonly impo.l.·~,lI1t 
in forestry than in other agricultural sciences. ~ot only are mul
tiple uses of forest lands commonly required, but over the dura
tion of a single forest population, changing uses "'ill be imposed 
by human activities. Thus, for the forester, it would be most ap
propriate to consider univariate analyses as a special case of 
multh'ariate analyses rather than the multi\'uriate case as an ex
tension of the unh'<u'iate case. Regardless of the need, \\'e are 
still largely limited to univariate model approaches to genetic 
analyses. 

LINEAR GENETIC MODELS 
In this section of the chapter, the genetic variances are defined 

more exactly than in chaptul' 2. In the next section, the relation
ship between genetic variances and the variation between and 
within families is established. In the next chapter, some useR of 
the genetic variance between and within families ate examined. 

The commonly used models of ~'ene action are simple extenRions 
of the usual lineal' regression theory with the further complica
tion that polygenic effects cannot be; directly obsen'ed. \\'hile it is 
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always preferable to work with easily measurable, clear gene dif
ferences, this is not often possible in forestry and we shaH limit 
our attention to genes with small effects relative to error vari
atioD in their expression. However, while it may be difficult to 
measure single gene effects, families can be created with easily 
measurable means and hence also easily measured variances among 
family means. It shall generally be assumed that certain kinds of 
families can be created and that their means and variances can be 
measured. Then family means and variations can be related to 
means and variances of gene effects. 

The basic statistical method used in defining genetic variances 
is to define a linear gene-effect model and to partition the total 
variance due to variations in genotypic mean effects according to 
the amount which can be accounted for by simple linear effects. 
More complicated and inclusive models can then be constructed 
by simply extending the linear models. In a similar ,yay to genetic 
variables, a variable like soil fertility can be measured and its 
effects on growth described not only by means and regression 
coefficients but also by the amount of the variance in tree gro,vih 
yield which is caused by known or measurable variations in soil 
fertility. In thege more traditional forestry experiments, the im
portance of controlling fertility is then measurable by the intra
class correlation which gives the variance caused by the measured 
(for example, soil) variable as a ratio of the total uncontrolled 
variance. Much quantitative genetics work has a similar objective. 
\Vhen genetic effects cause some a\'erage yield differences and the 
variations due to such differences are identified as the genetic 
variances, then genetic control can affect forest yields. 

As in all experiments, some more or less normal range of condi
tions is assumed or defined and extraneous causes of variation are 
controlled as much as possible. More complicated models which 
can account for additional variances .are often introduced in fac
torial arrangements. These main effects due to lineal" and poly
nomial responses are measured on the basis of average or marginal 
effects over all levels of the other factors. Interactions among 
main effects can also be defined and measured. In genetic analyses, 
the effects of different loci are similarly structured where the main 
effects are the linear (additive) effects of each locus as measured 
over all other sources of variation, including both environmental 
and genetic effects of other loci. Dominance e.ffects at each locus 
are analogous to the quadratic deviations of any factorial analysis. 
Epistatic effects are analogous to interactions among the main 
effects, and higher order epistatic effects among several loci are 
analogous to higher order interactions. 

Consider, for example, under some conditjons of age, spacing, 
and general location, that the average volume yield capacity of 
trees with genotype AlA at the "A" locus is 1,000 units. Cer
tainly, not all trees with this allelic combination will yield the 
same volume of wood since environmental V~lr:iahles and the 
genetic condition at other loci can also strongly affect volume 
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growth. As trees may respond to a preponderance of factors giv
ing more or less than average growth, they will deviate positively 
or negatiYely and will therefore cause us tv observe actual vol
umes in some distribution of values around the mean which was 
composed of different sources of variation. If the same conditions 
were to exist for trees with genotype AA, its growth might aver
age 1,005 units. But if other sources of variation caused variances 
of 1,000 units in each genotype, the difference between genotypes 
would be dHficlllt to distinguish even if we could identify the 
genotypic composition of the trees. If, in addition, genotypes with 
mean of 995 units also experienced the same variable conditions, 
the total populational \'ariation over all genotypes would be only 
slightly greater than 1,000 and gene effects at this locus would 
have minor importance. If genotypes were randomly distributed 
over all other sources of variation, the variances due to genetic 
and other sources would simply be summed in the total popula
tion variance and the proportion of the total variance due to 
genetic variations at the A locus would be very small. 

On the other hand, if variation from other factors were small, 
even differences of 5 units would be quite distinctive. In such a 
case, genetic sources of variation at locus A would make up a 
large portion of the total variance. It is also possible that regard
less of the size of the environmentally induced variations, many 
genetic loci may have variations which also affect average volume 
production. Thus, a B locus with similar effects to the A locus 
in causing -'--5 unH de\'iations could give the following average 
yields if the effects of A and B loci were independent and if the 
trees could be identified: 

AA AA' A'A' 
BB 1,010 1,005 1,000 
BB' 1,005 1,000 995 
B'B' 1,000 995 990 

Obviously, more extreme averages exist, around which the same 
environmental variations may cause dispersal, but the genetic 
sources of differences have increased the total variation. If the 
loci are independent in frequency and action. then the variance is 
simply added to the previous total variance and genetic sources of 
variation are thereby increased in importance. Several such loci 
could easily make the genetic variance a large part of the total 
variance. Hence, even if single-locus effects are small and unim
pOl·tant, the total alTay of genotypes can have a major effect on 
volume yield in the population. 

For quantitative genetics and for most breeding ,,'ork, a useful 
working hypothesis has been that, unless traits are obviously 
controlled by very fe\\' loci, they are likely to have relatively small 
individual-locus effects 'with respect to both the environmental 
sources of variance and the total genetic variance due to all loci. 
Thus, even if environmental effects cause large variances \yjth 
respect to indh'idual-locus genetic effects, the genetic variances 
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can still contribute heavily to the total variance. 
In addition to the relative effect of single genes versus other 

sources of variance, and the number of such genetic loci, the gene 
frequency is the third factor affecting the contribution of genetic 
sources of variance to the total. If one allele is very common, then 
most trees will be homozygotes with that allele and the rare 
heterozygotes and the even more rare, alternate homozygotes will 
have small effect on the total variance regardless of the size of 
their contribution to average growth differences. This effect of 
allelic frequency can be more explicit1y seen in the exact formula
tions of genetic variances. 

For the simple geneUc factors alone, we can define simple 
models for single gene effects ,dth average effects defined over 
some understood range of more or less normal em'ironmental and 
genetic conditions. The three possible genotypes produced by two 
alleles, A and f1' at a locus (AA, AA', and A'A') can have any 
range of action for any kind of dominance relation between the 
alleles. For example, average genotypic performances of 
1,005 :1,000: 995 for the three genotypes AA :AA':A'A' diwlay a 
condition of no dominance, while 1,005 :1,005: 995 is a classic con
dition of one allele exhibiting complete dominance. Oyerdominance 
is classically defined as the condition in which the AAJ has a higher 
or lower mean than either AA or A'A'. (Some authors also use 
underdominance to indicate the condition of AA' having a lower 
mean than either homozygote.) It will always be possible to fit a 
lineal' regression of yield to a scale of genotypic effects and hence 
reduce the total variance due to gene actions at this locus by the 
amount due to this regression. 

The difference between the homozygotes may be defined in an 
arbitrary way to establish a yield scale and define the heterozygote 
effect in terms of that scale. Though any system would be satis
factory, we adopt the notation of Comstock am! Robinson (1948) 
and use II: --u to define the deviations of ....1 ....1 :A'....1' around the 
mean, and au to define the mean deviation of the heterozygote All'. 
Then, to describe the total variance in yield due to genetic differ
ences at this locus, it is necessary to measure the mean differences 
and weight them according to their frequencies. To determine the 
portion that can be accounted for by a linear model, let the inde
pendent X variable take the val ues 2, 1, and 0, and let Y -It=11, au, 
and -11 for genotypes A.A., A...fl', a11d .:1'...1', regpectiYely. Then, by 
using the frequencies, f,. of q2: '2q (1- q) : C1 ... q) 2 for the three 
genotypes, the COI1Yentional formula for cleriying the total vari
ance (cr/) can be applied: 

ECY2) - [E(Y)J2=~fcYi2_··y-2, 

respectively, and Y=q2Y,UI-'2q (l-q)YA .l ·;... (1-q) 2Y t t, 
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then the variance due to all gene effects, a/, is: 

ai=2q(1-q) [1+2(1-2q)a+ (1-2q+2q2)a2J1t2. 

The variance due to linear regression is the genetic variance of 
linear effects only (aA2). 

2- Cov2 (xy) _ ! fiX;Yi-X iT
aA - ., 

ax- ~ fiXi2_X2 

=2q (l-q) [1 + (1-2q) aJ2 1t2. 

If q=O.5, then aA 2 =2q (1-q)u2 • 

Since the variance due to nonlinear effects can be defined as the 
dominance genetic variance an2, and ag 

2 =aA 2 + an2 , then 
an2 =4q2(1_q)2 a~u2. 

In a slightly more general way, we can tabulate the mean yields, 
or average value of the dependent Y variables, and their frequen
cies (P) and define average effects as: 

A A' 
I Average 

effect Frequency 
A P},.=q 
Frequency 

A' Y.u YA'.I' 
Frequency l;~PA.l' PA'.l' 

Y _ 
A-

PAA Y A .t + (lh)P.4.A Y U
P 

' 

A 

y. P.~AY,!'.C+" (lh)P,1.-1'Y.4.A· 
A, P ' 

A 

and define 0:.1 = YA- Y as the average effect of A and a.~ = Y A - Y 

as the avemge effect of A'. 

vVe can see that 5.P,a,=O. We can also define a dominance effect as 

(YAA +Y.1'.I'-2Y.u '). 


Then, in a .linear model of these effects for diploid trees 'we can 
write: 

Y'J=p.+a,+aJ+8i/, 

where 8 is the deviation of Yo from the expected YiJ due only to 
p. and a effects. The total genetically caused variance is: 

Covariances may exist due to nonrandom frequency of the joint 
occurrence of a or 8 effects. These may be nonrandom due to in
breeding or nonrandom mating. In that event, the least squares fit 
of the model gives us biased estimates for a" aj, and 8u as previ
ously defined. If inbreeding exists, ai and aJ are not independently 
drawn, since by inbreeding we mean there exists a higher fre
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quency of like genotypes mating than expected. Then COy (a;,aj) 

exists, and using \Vright's (1922) definition of an inbreeding co
efficient P, 

F -C .. ( ) - COV(aj,aj) = COV(ahaj) 
- 011 ai,CXj - ~_2 

Ucr, Uai v ... 

Without dominance effects, 

UA 2=2u,,2+2Cov (CXhCXj) 

=2u",2 (1 +F) = (J".{2 (1 +F). 

To include the effects of inbreeding and dominance, \\-e can derive 
a more general solution by considering the complete model and 
deriying least squares estimators: for all effects. Such a procedure 
would yield definitions: 

(J"A 2 = 2qi:~q) [(q+F (l-q» (YAA - Y A•1 ,) 

+ (l-q+Fq) (YAA - Y.4.'A') F 

and un2 = q i1.,L-:) [(q+F (1- q» «l-q) +Fq) (1-F) ] 

(Y.u ";' Y A .4. - 2YA.{)2. 

It can be seen in these formulas that inbreeding changes fre
quencies of genotypes from their random mating frequencies and 
therefore affects the definition of ~ and ~ such that they may not 

.1 II 

be translated easily if we wish to estimate or define u2 or (J"2V for 
.1 

populations at a different leyel of inbreeding. 
The extension to multiple allelic cases is direct, inyolving only 

the estimation of more interaction on epistatic parameters for 
interlocus effects and accumUlating more main effects for the 
linear-additiye components. 

For an expanded model including two loci, it is necessary to 
consider all the additive and dominance effects at each locus and, 
in addition, to consider any interactions between the loci in terms 
of theh' respective additive and dominance effects. If \ye assume 
the simplified conditions of no inbreeding and random mating for 
each locus, and further assume that the various zygotk states are 
independent gametk associations, then the joint frequencies are 
simply products of the frequencies at each locus, and the vari
ances can be expressed as a sum of the variances at each locus 
plus the variances due to the epistatk interactions. Again, least 
squares estimators and variances can be directly derived for any 
combination of frequencies and effects, as outlined by Cockerham 
(1954) and Kempthorne (1957). 

A linear model for two loci, say the A and B as in the previous 
example, can be constructed for any kind of dominance effects at 
each locus and for any epistatic changes in the average effects 
at one locus due to changes in the other locus. \Yithout epistasis 
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and with gene effects at the A locus causing average yields of 
1,005 :1,000 :995 for Y.u :Y.H': Y.I,"!', the linear model would have 

YAA+YA'A' I/. hU,= YA.-I.- Y.{'A.=5, au= Y,lA' 2 0, and a=O, If q=~2, t e 

frequencies of AA:AA':A'A' would be 1,4.:1;2:1,4, and the additive 
genetic variance would be 12.5. If we were to raise or lower the 
average yields by any constant amount, say 5 units, correspond
ing to changing the state of the B locus from BB' to BB, or B'B', 
then we would have a similar state of additivity at the B locus 
as at the .4 locus and the average Y values for complete additivity 
would be: 

AA AA' A'A' 
BB 1.010 1,005 1,000 
BB' 1,005 1,000 995 
B'B' 1,000 995 990 

If qn=0.5, then <T.-I 2 for the B locus is 12.5, and if the loci freely 
recombine, the total genetic variance is 25, the sum of the additive 
variances at each locus, If dominance existed at one locus, we 
might haye an average A locus yield of 1,003.5: 1,001.5 :993.5, so 
that its 1£=5, a=0.6, and at qA =0.5, giving <TA2=12.5, and <Tv2=2.25. 
If the B locus were to remain as it was, with partial dominance 
at the A locus, additivity of the B locus, no epistasis, and 
qa =qB=0.5, the table of Y values would be: 

AA AA' A'A' Mean 
BB 1,008.5 1,006.5 998.5 1,005 
BB' 1,003.5 1,001.5 993,5 1,000 
B'B' 998.5 996.5 988.5 995 

Mean 1,003.5 1,001.5 993,5 

There is still independence between loci in gene action, and the 
total genetic variance is still the sum of the variances at each 
locus, <TA 2=25, <TD2=2.25. 

If interactions exist such that genotypic differences at one locus 
are not constant, then epistasis exists. For example, when the 
additivity at the B locus varies from its constant u=5, a=O to 
some other values, say u=7.5 when the A locus is AA, but then 
1t=10 ·when the A locus is AA', and u=2.5 with A'A', the average 
gene effects remain the same but an additional variance is caused 
by the interaction between loci. This condition is called interlocus 
epistasis or gene interaction. The average yields for this epistatic 
model, with qA=qB=%, would be: 

AA AA' AlA' Mean 
BB 1,011.0 1,006.5 996.0 1,005 
BB' 1,003.5 1,001.5 993.5 1,000 
B'B' 996,0 996.5 991 995 

Mean 1,003.5 1,001.5 993.5 1,000 

http:TD2=2.25
http:Tv2=2.25
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The total genetic variance is now larger than before while the 
genetic variance at each locus, based on average effects of each 
locus over all other genetic and nongenetic sources of variance, 
remains the same. Thus, even if the loci freely recombine and the 
locus means, frequencies, and variances are the same as before, 
the total genetic variance of 28.625 includes an additional 1.375 
due to epistatic effects. Clearly, an infinite variety of epistatic 
models can be written with dominance levels changing at both 
loci and varying additivity levels. If the coupling .and repulsive 
heterozygotes are similar, the nine zygotic states can be listed as: 

Locus A Mean of Frequency 
AA Aa aa B 

Locus B 

BB Y AABB Y AaBB Y aaBB Y BB p2 

Bb YA.{Bb YJ.aBb Y aaBb Y'Bb 2p(1-p) 

bb YYA,4bb Y Aabb Y aabb Y bb (1-p) 2 

Mean of A Y AA.' Y Aa, Y aa, 

Frequency q2 2q(1-q) (1_q)2. 

The differences among these genotypic states can be described 
in terms of a factorial arrangement of genetic effects; the effects 
due to locus A (a) should be averaged over all levels of locus B, the 
effects of B (f3) should be averaged over A, and the interactions 
between A and B. The effects of each locus are described as before 
in terms of linear additive effects and dominance deviations. The 
interactions could be described as interactions among linear ef
fects at A by linear at B, linear at A by domina.nce at B, domi
nance at A by linear at B, and dominance at A by dominance at 
B. Thus, we can write the model of gene effects as: 

Y ijkZ = /-l +ai+a,+ Bf,+ f3k+ f3Z+YkZ 

+ (af3) fk+ (af3Lz+ (af3) !k+ (af3))z 

+ (aY)ikz+ (ay) 'kZ+ (f3 B)ijk+ (f3B) fjZ 

+ (BY)i!kZ. 

The variances due to all of these gene effects can then be sum
marized as: 

O'l=O'A2(A locus) +O'A2(B locus) +O'D2(A locus) +O'D2(B locus) 

+~A-A +~.{D +~DD. 

The additive and dominance variances at the two loci are simply 
added together and their sum is the additive and dominance 
variances for the trait. 

The only new variances are the three epistatic interaction 
components. These can be derived in exact:y the same fashion as 
for the general case. Using the notation: 
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c~!!= (Y"AJ!J!- Y.\,Illb) - (Y.\nllll- Y AaIJb ) 

C!!\ = (Y. L4IJb - Y.Hl>b) - (YAnlJb- Y Anbb ) 

Cl!!= (YAal!b- Y AaIJI,) - (Y"GIJll- Yanlll!) 

Cll = (Y,IaIJb- Y Aabb ) - (YaaBb - Yaabb) ' 

then: 

a.H!!= 4q (1(1~~~;-1)[ [p -l-F (l-p)] [q+ F (l-q)] C!!!! 

+ [1) +F (1-p)] [1- q+ Fq] C21 

+ [l--p+Fp] [q+F(l-q)]e12 

+ [l-p+Fp] [1-Q+Fq1ClIT' 

aAD2 2p(1-p)Q(1-Q) (l-F) [ +F(l- )] [l-q+Fq](1+F)2 q q 

[[p+F(l-P)] [e2:!-e21J+ [l-p+Fp] [e21-cllJT 

-l-2q(1-q)p(1-p) (l-F) [ +F(l- )] [1- -l-F ] 
, (1+F)2 P P P P 

[[q+F (l-q)] [e:!2- e!!1] + [l-q+Fq] [C!!I- Cll] T 
2.. p (1-])q(1-q) (1-F)2[ F(l )] [1-1)-l-Fp]

aDD - (1+F)2 1),
I 

-p , 

[q+F(l-q)] [l-q+Fq] [C22- eZl- C12- CllT' 
EXTENSION~ 

A general algebraic expression for the two-locus model can be 
written in terms of more traditional regression effects as the 
linear (additive) effects at each locus, the quadratic (dominance) 
effects at each locus, the linear-by-linear interaction (additive-by
additive epistasis), the linear-by-quadratic interaction (additive
by-dominance epistasis), and the quadratic-by-quadratk interaction 
(dominance-by-dominance epistasis). The total variance would 
now include not only the aa2, aa2 , Cov (a;,aj) effects at the A locus 
and the af32, aa2, COY «(3i, (3i), at the (3 locus, but the aa1l'J.,aao/, 

a/36 A2, and ao ,10 2, which are, respectively, the additive-by-additive, 
8 

the additive-by-dominance at both loci, and the dominance-by
dominance variances. Also, the covariances between any of the 
elements due to linkage disequilibrium between the A and B loci 
must be included in a general model. 

*Graduate-level statistical training required for thorough understanding. 
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Expansion to three loci increases the model elements, not only 
by the simple average effects at the new locus, but also by the 
new two- and three-way interactions or epistatic effects. The 
genetic variances include an additive variance, a,12, at each locus; 
a dominance variance, av'l., at each locus; an additive-by-additive 
variance, a.1A 2, at each pair (A,B; A,C; B,C) of loci; and additive
by-dominance variance, a,lD2, at each pair of loci; a dominance-by
dominance variance, aDv2, at each pair of loci; an additive-by
additive-by-additive variance, a.Lu2 ; three additive-by-additive
by-dominance variances, a.l.lv2, aAvA 2, and aV,l,12; three additive-by
dominance-by-dominance variances, aJD02, av.w2, and avvA2; and 
finally, a dominance-by-dominance-by-dominance variance, avvv'}.. 

The total genetic variances are then increased by these new 
elements which contribute average performance variations and 
are also changed by three-way linkage disequilibrium effects. Thus, 
complete, multilocus systems can be built up. Their complexity 
expands rapidly, but they completely account for sources of vari
ance suggested by basic linear statistical concepts. 

Alternatives to the linear statistical models and analysis of 
variance types of estimators exist. One alternative system of 
defining genetic variances was suggested by Kenneth Mather and 
extended by Dickinson and Jinks (1956) and further by Hayman 
(1958, 1960b). Mainly applicable to homozygous lines and crosses 
among them, a basic genetic model of d, h, and -d for AA, A.A', 
and A'A', with gene frequency u for A and 'lJ for A', is used to 
derive 6 or 8 variances and covariances. These can be used to test 
hypotheses about the sizes of the additive and dominance effects, 
the gene frequencies of favorable alleles, numbers of loci, and the 
presence of certain kinds of epistasis. The method is therefore 
very comprehensive for estimating gene actions in a sampled 
population, but is not likely to be of much use in forestry. 

At its simplest, the method consists of estimating variances 
among parental means CD), variance among families made with 
a common parental line, say J', (VI") , the average of those vari
ances (Vr ), variance among the various families' means (Vi') , 
the covariances of parents with offspring famHies within parental 
line l' (TV;), and the average of these covariances (W r ). Each of 
these statistics has an expected value in terms of D, Hi! and Fh 
and h functions which in turn are functions of the gene frequency 
and gene-action parameters. 'Vhile Kearsey (1965) has shown 
that translations can be made between these statistics and the 
genetic variances as described by Cockerham (1959) and Kemp
thorne (1957), it is possible to make direct estimates of additive 
and dominance effects without the confounding of dominance 
effects in the additive genetic variances as involved in those 
previously described statistics. In addition, graphical interpreta
tion of the analyses is particularly illuminating. The critical 
problem is the extension of such analyses to the general case of 
heterozygosity of parents, as partially developed by Dickinson 
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and Jinks (1956) and extended by Oakes (1967), and to the 
sampling errors associated with estimates and tests of similar 
hypotheses. For some special cases, Kearsey (1965) has examined 
the utility of these and the analysis of variance methods and con
cluded that for the same number of families raised, the Jinks and 
Hayman types of diallel analyses gave most information but 
severely restricted the population of parents which could be 
sampled. 

Thus, the genetic variances can be partitioned into various 
measures of how genes affect phenotypes in some sampled popula
tions as functions of their gene frequencies and genotypic fre
quencies. The assumptions required for analysis and estimation of 
those statistics, however, are often very restrictive. The problems 
of estimation will be investigated in the next chapter. It should be 
clearly noted that the parameters we speak of and the methods 
used to estimate them are not readily separable. Estimation 
methods are often dictated by the model parameterizations. It 
should also be emphasized that if inbreeding is an important fac
tor in populations, a correlation will exist in the frequency with 
which the alleles at a locus 'will associate and that correlation 
among alleles at different loci will also occur. The average effects 
of alleles will therefore change if inbreeding levels change, caus
ing the genetic variances to change. In such cases, a trajectory of 
genetic variances may be a more interesting statistic to estimate. 
In addition, the presence of linkage disequilibria and any dis
equilibria caused by sampling or by crossing previously isolated 
chromosomes generates correlations among loci, also making the 
genetic variance nonstationary. It is often impossible, therefore, 
to describe and estimate simple parameters relating to general 
genetic phenomena, but these first approximations have served 
well. 

GENETIC VARIANCES IN TREE SPECIES 
If we accept a certain vagueness about the exact meaning of 

our average statistics like <T,12, we still cannot escape the strength 
of the general conclusion that in almost any trait studied in almost 
any tree species studied, considerable variation is due to genetic 
sources. While there are some notable excepbons to this experi
ence and while the record is somewhat biased because geneticists 
generally test traits they suspect of having some genetic variance, 
the results are too broad to dismiss. The current work on the 
extent of genetic variation in allelic polymorphisms indicates 
large amounts of residual genetic variance in presumably unse
lected 01' weakly directionally selected traits in many populations 
of plants and animals. The same may be true in tree populations 
with respect to the traits studied. Over the range of tree genera 
and species studied, for a variety of traits exhibited at different 
times of the life cycle, genetic sources of variance have generally 
been found whenever the variation present has been investigated 
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by appropriate analyses. 
Genetic variance estimates have been derived for a broad array 

of tree species, but there is a heavy preponderance of commercial 
species for which intensive silviculture has led to breeding inter
est. The pines have been most intensively studied. Estimation 
experiments have been done with loblolly (Stonecypher 1966), 
slash (Barber 1964), eastern white (Kriebel and others 1972; 
Wright 1970), western white (Hanover and Barnes 1969), pon
derosa (Callaham and Hasel 1961), Monterey (Nicholls and 
others 1964), jack (King and Nienstaedt 1965), Scots (Wright 
1963; Ehrenberg 1966), red (Fowler and Lester 1970), and 
patuln (Armitage and Burrows 1966) pines. The studies noted, 
parenthetically, are by no means all that have been done on even 
these pine species, and represent only a fraction of all studies 
which have indicated the existence of genetic variance ill forest 
tree populations. 

Other conifers which have been studied to estimate genetic vari
ances include Douglas-fir (Campbell 1964), Norway spruce 
(Saetel'stal 1963; Lacaze and Arbez 1971), and Cryptmneria 
(Toda 1961). Among the hardwoods, the various species and hy
brids of Populus have received widest attention (Hattemer 1976; 
Wilcox and Farmer 1967). In addition, some estimates of genetic 
variances have been published for Acer sacch(l.1"wn (Kriebel and 
Gabriel 1969) ,Juglans nigra (Funk 1970), Li1'iodendron tUlipiJera 
(Kellison 1970), Quc/'cus;'nbm (Kriebel 1965), PZcdcLnuS occi
dentalis (Webb 1970), Liquida1l1 bm' styraci/lua (\\Tilcox 1970), 
Betuln vel'1'UCOSCL (Tigerstedt 1966; Stern 1962), Eucalyptus 
?'egnans (Eldridge 1966), \\Tattle (Moffett and Nixon 1963), and 
Gleditsia triacCLnthos (Grisj uk 1959). 

Among these species, many traits have been studied-again 
largely those associated with commercially important features and 
mostly restricted to traits as expressed in young trees. In addi
tion to the commonly measured growth and survival traits, wood 
quality has been widely and intensively stucTied (Smith 1967) by 
Zobel (1961) in conifers and by Bhagwat (1963) in poplars. Esti
mates have also been derived for root growth (Wilcox and Farmer 
1968), stem form (Ehrenberg 1961), crown form (Barber 1961), 
branching characteristics (Strickland and Goddard 1966), leaf 
form (Kellison 1970), thorn morphology (Grisjuk 1959), seed 
morphology (Kraus 1967), and fruitfulness (Varnell and others 
1967). In addition, genetic variances have been estimated for 
competitive ability (Sakai and others 1968) ; resistance to cold 
(Rudolph and Nienstaedt 1962; Dietrichson 1961), drought 
(Texas Forest Service 1957), illsects (Wright and others 1967), 
diseases (Bingham and others 1969; King and Xienstaedt 1965), 
and transplant shock (Beineke 1967) ; rooting ability (Muzik and 
Cruzado 1958) ; grafting ability (Hanover 1962) ; and the yield 
of gum exudates (Squillace 1966a) and rubber (Burkill 1959). 
Some physiological traits have also been studied and genetic vari
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ances have been estimated for nutrient absorption (Walker and 
Hatcher 1965) and photosynthetic and respiratory rates (Ledig 
and Perry 1967). 

It is also clear that measurements of a trait in different stages 
of the life cycle may represent somewhat different phenomena. 
Crown and branch characters change very rapidly in the early 
years (Snyder 1961), as do wood fiber characteristics (Zobel and 
others 1961). While it is reasonable to expect that traits which 
develop in sequence are closely correlated, the developmental 
mechanisms cannot generally be expected to remain under con
stant control, and hence something less than perfect correlation is 
to be expected. In particular, if a trait has different selective pres
sures with respect to suryival at different ages, then we might 
expect the various kinds and levels of genetic variances to change 
somewhat over the life cycle. Thus, in height growth of Douglas
fir, the genetic variances among families within populations 'were 
found to decline over a 40-year period (Namkoong and others 
1972). It was also found that the error variance tended to decrease 
when the trees were 15 to 20 years old, suggesting that height
gro'wth control mechanisms do change as trees mature. Similar 
patterns were found for ponderosa pine up to 29 years of age. 
Thus, while some studies indicate little change in genetic vari
ances through the juvenile period, more advanced ages may indi
cate quite different apportionments of the genetic and errol' 
sources of variance. It can, therefore, also be expected that the 
correlations of traits at the same and at different ages will be 
different. They may be expected to be large if the causal mecha
nisms are similar and small if the causal mechanisms are largely 
independent. 

COVARIANCES OF RELATIVES 
If the genetic variance in a population is defined as the vari

ance among individuals caused by gene effects, then there would 
necessarily be no genetic variance among individuals which are 
genetically identical. Conversely, the genetic variance would make 
its full contribution to total variance if individuals were ran
domly chosen. Between these extremes, the amount of genetic 
variance exhibited depends upon the J'elatedness of individuals
the closeness of their parentage. In similar environments, close 
relatives are generally less variable among themselves than are 
nonrelatives because their genes were derived from a restricted 
population. Therefore, a correlation in their gene effects must 
exist. In this section, the correlation among relatives is defined 
in terms of genetic variances. In the next chapter, the correlation 
among .relatives is defined in terms of estimated family variances. 
Therefore, relationship of genetic variances to estimated family 
variance components is derived, 

For any two individuals, a genetic covariance would exist and 
can be written in terms of their genetic effects if there is some 
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probability (#0) that their genetic effects are more likely to be 
identical than what would occur solely by chance in random mat
ing. If rail's of individuals are randomly chosen from the whole 
population, then their alleles are expected to occur in the fre
quencies expected of that general population. If the pairs have 
a close relationship, then the nonrandomness can be measured by 
the frequency or probability that the alleles in the two individuals 
are identical in descent ~md exactly alike. Thus, for a linear model 
of average and dominance effects, as previously defined, we can 
derive the covariance between two individuals, X and Y, accord
ing to the probabilities that their alleles are the same: 

Let X=p.+ax,;+ax$'+ll xox9 

and Y=p.+ay d' +ar,? +Il1'o 1"9 

where axe =average effect of allele from male parent of X, 

ax$' =average effect of allele from female parent of X, 

Ilxox9 =dominance deviation of allelic combination in X, 

al-e = average effect of allele from male parent of Y, 

ay,? =average effect of allele from female parent of Y, 

lh-oY,? = dominance deviation of allelic combination in Y. 

With respect to the various genetic eff€cts, the f:ovariance of 
X and Yequals [E(XY) -E (X)E (Y)] which contains: 

E (axo' aY:f) +E (ax:!' ay..,) +E (ax", • al':f) 

+E(ax", , ar",>+E(llx;;ox:;>' al'o) +E(llxox,? • al"\?) 

+E( Il Y d'r,? 'axd >+E( ll r J"r,? 'ax~,)+E(llxcfXI' • hoi'S?)' 

The first fOUl' elements are additive variances and covariances, 
the second four are covariances of additive and dominance effects 
(not epistatic interactions), and the last element is the dominance 
variance or covariance, If the male parentage of X and Y is not 
random, then a certain probability exists that ax", = ar", and then 
E (axd'ar c) =Pt' (X:! = Y d) • E (aj2) , It was previo'usly derived that 

2E (aI2) =ua , and in particular, was (Ih. )",,2, Therefore, 

E (a.roa:Y d) =Pr (Xo = Y 1) u(r2=P?, (X,:! = Yd) (Ih.) u~2. 

Similarly, E (axc' ayS?) =Pr (X:! = Y,?) • Ih. 11..12 , 

E(ax ,?' arc) = PI' (X,.., =Y -1) • Ih.I1A2, 

E(ax,?' ar",)=Pr(X,?=Y;?) ·1h. U..12• 
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Also, E(8x,:),x", .al':f)=Pr(Xo'=Yo'X~=Yo) 'COv(ayBx}, 

E (Bxc~x$' • ay$') =PrCxe= Y"" X", = Y ,) • COy (al'Bx), 

E(h 1'", .ax)=Pr(Yc=Xd" Y$'=X:) • COv(ax8y ) , o
E (1h Y$' • ax$') =P''f' (Ye=X"" Y ",=X 'i') • Cov(ax8~·),o 

Finally, E(Bx;:,x'i" BYe}""') =P?' (Xo= Yd" X¥=Y",) • u{j2 

or P7'(X",=Yd"X =Y$') 'u{j2,o

If the female parentage was somehow nonrandom, then 

PI" (X ~ • Y ",) : 0 and similarly for the others of the first four 

expectations, Summing yields~. P?'(Xt=Y j ) • 1hu.{2.
".J 

If X has a cf and ~ parental relationship which itself is re
lated to the male parentage of Y, then E (B:Ci X'j' • ay) is not zero 
and would have to be computed, but these kinds of relationships 
can temporarily be ignored if only non relatives aTe crossed. There
fore, the second set of four elements is assumed to be zero. If 
both e and ~ parentage of X and Yare identical or related then: 

E (S'~:fx 'i' • Byd1'$') =Pl' (Xo= Yp' X'j' = Y'i') (T6 
2 

+Pl'(X",= Y 0' X:,=Y "') (T{j2, 

and these contribute to the existence of the last element. 
Then for some common kinds of relationship, we can trace the 

various probabilities and determine the contributions of these 
genetic variances in terms of the first four and the last elements 
of the covariance of relatives. For example, if the female parent 
of X and Y was the same, then the only nonzero probability would 
be P'r (X 'i' = Y", ); its size would depend on how the choice of 
gametes is made in the production of eggs from the common 
mother. If the choice is random, then the probability is 112 that the 
same allele (either one) is chosen, and the only contribution of 
the genetic variance to the covariance of these half-sibs is 14, (TA2. 

If both t11e e and Ii? parents of X and Y were common, then 
Pr (X? = Y",) =Pr (X 0 == Y:, ) =1j.2, and the probability that both 
are identical, Pl' (X:;> = Y? ' X J== Y >? ), is 1/2 •% == %., and the other 
probabilities are zero. Therefore, the genetic variance contribution 
to the coval'iance of full-sibs is V~u.42+14(Tf)2. 

For the case of parent-offspring covariances, if the maternal 
parent is the X individual and the offspring is Y, then 
Pr (X~. =Y'j' ) =Pr (X", == Y¥ ) =lA, and all other probabilities are 
zero. Then, the covariance of parent and offspring is 1/'2u,1

2
• The 

probabiHty that a random allele from X is identical by descent 
to a random ar Ie from Y is: 

~ Pr (Xi = Y j ) 


i,j 4 
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which is Malecot's (1969) coefficient of l'elationship CXy• There
f01'e, 2C.n -=%SPrX,=Yj ) can be used as the coefficient for the 

i ..J 
0",t2 contribution to the covariance of relatives. 

If additional genetic loci affect the genetic variances and covari
ances among any relatives and if they are independent loci, then 
the probabilities of identity by descent for multiple loci are 
summed ove1' the genetic variances at each locus. For the multiple-
10C1:S epistatic effects, the probabilities of j oint identities by 
descent are products of the independent probabilities. In such 
cases, for any kinds of relatives which have the additive genetic 
variance coefficient of a, and the coefficient for O"D2 of d, the gen
eral covariance due to all types of genetic variances can be 
written as: 

or in general, Cov=~ {~!dj~,t![)j. 
1.J 

As previously noted with respect to the definition of the genetic 
variances, inbreeding nullifies the independence assumptions and 
the derivations of the probabilities of drawing identical alleles. It 
is clear, for example, that if F is defined as the probability that 
the hvo alleles at a locus are identical by descent, the probability 
that two alleles in two gametes randomly drawn from an indi

vidual tree are identical is l~F instead of 112. Then, with a 

parental inbreeding coefficient of F, even with random choice of 
parents, and hence no inbreeding of the offspring, the a and d 
coefficients used to compute the covariances of relatives m'e in
creased by factors of 1 -+ F and (l-l-F)2, respectively. The prob
lem remains, however, that the O"A 2 and O"D?' themselves require 
specification with respect to the inbreeding generations they refer 
to. 

The effects of linkage also can clearly affect the probabilities 
of some gametic combinations and hence the contributions of the 
epistatic gene effects and their summations in the additive vari
ance. The manner in which they affect the covariance of relatives 
is not a simple derivable relationship (Cockerham 1956). Nonethe
less, if we wish to define and estimate meaningful parameters, the 
broad effects of such factors as Jinkage and inbreeding must be 
conside}·ed. 

It is also clear that hybrid populations will engender genetic 
variances and coval'iances among J'elatives \dth quite unique ef
fects and probabilities of drawing various gametic contributions. 
The effects of dominance types of intralocus gene actions are 
unique, and all types of interlocus epistatic interactions would 
not only be unique but their frequencies would depend on the dif
ferences in gene frequencies among the populations and on the 
linkages disequilibria so induced (Stuber and Cockerham 1966). 
For our brief review purposes, all of these effects will be assumed 
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absent as we shall assume large, random-mating populations with 
independent loci. 

If it is a reasonable approximation to assume independence, it 
is clear that we can create families of varying degrees of rela
tionshjp and, hence, get a handle on the amounts of genetic vari
ations that exist within the populations from which the samples 
are drawn. By drawing a sample of genotypes which presumably 
represents the nlrious genotypic effects and their frequencies of 
occurrence in the population, 'we can only measure a total variance 
unless we can artificiaily construct known families to see how the 
genetic sources of nuiance affect the size of the covariance among 
relath·es. The larger the genetic variance contributions to the 
total varianr:e are, the larger will be the differences among family 
units, and the closer the relationship among family members, the 
larger also will be the differences among families. By making sets 
of different kinds of relath'es, \\"e can then partition the existing 
genetic \'ariation according to the contribution of the genetic vari
ance to the covariance of those relath'es, and derh'e estimators for 
the genetic \'ariance. \Ye shall iIwestigate the variety of mating 
forms "'hich \\"e can use when we consjder genetic experimental 
designs and analyses, but it is instructive to derive one case in 
"'hich a simple experiment provides an estimate of the additive 
genetic variance. 

Consider that a random sample of females is drawn from the 
population and that each is fertilized by a large number of ran
domly chosen pollen grains fl'om the general population. In such 
a case, we have female half-~ib families, and the covariance among 
seedlings within their families is that of half-sibs. If it is also 
considered that the \'al'iance among these families (ol) is due to 
some females being Ar1; others AA'; and others A'A', then 0/ is 
some function of the genetic \'ariance also. In fact, if the females 
are random samples from the population and their effects are de
fined as deviations from the general mean, then from a linear 
model of yield for t,,·o individuals, 

X ij = 1'-it ....-elil} 

Y k1 =w-L- fk+ e,k,l 

where i,k = 1, 2 . , . ]J 

j,l =1,2, .. n, 

we can derive that E (f) =0 and E (N) ::::: rrl. It can also be ob
served that for two individuals, E <It· fk) is zero if i ~ k (by the 
randomness assumption) or E (Ii ·fk) is rrl if i=k (if both have 
the same mother). Thus, the variance among female groups equals 
the covariance of indh'icluals \\-ithin groups and, in our case, 
would be expected to be J 1.rr1 2, plus any epi5tatic effects appro
priate to half-sib relations. \\'e can derive these effects also by 
considering the genetic \'ariances we might expect from a popula
tion of half-sibs. 
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Consider the mating frequencies in table 5 in which females 
with genotypes AA are expected to Occur with frequency q2 in our 
population and in our random sample, and AA has phenotype a, 
AA' has phenotype UU, and A'A' has phenotype -a. The matings 
of AA females with AA males (which also exist in frequency q2) 
occur at a frequency of q2Xq2 if male and female were randomly 
and independently chosen. Since all offspring are AA, with aver
age yield tt, these progenies would yield q4u to the family mean of 
AA females. For individuals of crosses of AA females with AA' 
males, the frequency is expected to be q2. 2q(1-q) with half the 
progeny being AA and half being AA'. Then, the contributjon of 
these individuals to the AA female family mean would be 
2q3 (1-q) l/du+au). For individuals of crosses of AA females 
with A'A' males, the frequency is expected to be q2X (1-q)2 and 
all individuals would have an average phenotype of au, and hence 
they would contribute q2 (1- q) 2a1t to the AA. female family mean. 
Within the AA maternal family, all genotypes contribute a col
lective frequency of q2 and to a phenotypic mean of 
q2u.+2q (1-q) [1/:? (1t+mL)] + (1-q)2au=qu+ (1-q) (lU, as shown 
in table 5. Similarly, the frequency and the expected means can 
be derived for AA' female families as frequency=2q (1-q) and 
mean= (l;i) (2q-l)n'7%ct1L, and for A'A' female families as 
frequency= (1-q)2, and mean=- (1-q)u+q(au), and for all in
dividuals the mean= (2q-1)u":-2q(1-q)all. Then computing the 
variance among the family means as :£ family frequency X 
(family mean) 2_ (grand mean) 2 yields: 

q2[q1/.+ (1-q)cm]2+2q (1-q) (l,(l,) [(2q-l) U+ CL1L] 2 

+ (1-q)2[ - (1-q)'lt-l-qClU]2 - [(2q-l)u-l-2q(1-q)an]2 

q(1;q) [1+ (1-2q)a]2n2. 

This value is exactly IJt. of the UA 2 we previously derived as the 
variance among ayerage effects of alleles. Thus, only 1/J. of the 
UA 2 is contributed to the covariance of half-sibs. 

We might also notice that if mating was not at random, then 
the mating frequencies are not correctly computed and perhaps 
the parental genotypic frequencies. are other than the expected 
q2; 2q(1-q); and (l_q)2. In such cases, as we have already 
remarked, the genetic variance itself is not simply defined, but 
changes with frequencies of genes, average effects of al1eles, and 
the variance of average effects. These possibilities have been of 
some concern in experiments using open-pollinated tree seeds be
(,'luse effective pollination as well as ancestral relationship may be 
highly dependent on distance. While these conjectures seem reason
able (Wright 1962; Langner 1953; Sakai 1971) there is not 
enough evidence to indicate where or with what species this prob
lem is serious. A further source of bias in open-pollination tests 
is the possibility that limited numbers of males may effectively 
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I:\:)Table 5.-Mating !1'equency table 

-
Values of offspringMatings 


Mating 
 --.---~..--~-----
frequency

Female Male AI1 AA' A'A' 
genotype genotype I 

0 0q' uAA AA 


AA' 2q" (l-q) % (It) % (au) 0 


0 a1t 0
A'A' q'(l-q) • 

q'AA female mean 

AA' .11 A 2q3 (l-q) %(u) % (au) 0 

AA' 4q'(1-q)' % (u) % (an) %(-u) 

.-1'A' 2q (l-q)' 0 % (au) %(-u) 

2q (l-q)AA' female mean 

AA q'(l-q)' 0 au. 0
A'A' 


AA' 2q (l-q)' 
 0 % (a.n) %(-u) 

-uA'A' (l-q)' 0 0 
~.~~--~-

(l-q)'A'A' female mean 

Grand means for all progeny 

Family 
mean 

u 

% (u+au) 

au 

qu+ (l-q)au 

lh(u+au) 

%(au) 

%(-u+uu) 

% (2q-l)u+ %att 

au 

%(-u+au) 

-u 

- (l-q)1t+q(au) 

(2q-l)tt+2q(1-q)au 
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pollinate any particular female in a given year. If this occurs, -Ihe 
variance among families which is more distinctive due to differ
ences among male parents will increase (Namkoong 1965). We 
previously assumed a pollen mix from the general stand equally 
effective for all females, but we may realistically wish to con
sider the effects of such possible factors as few or single males 
producing families with close average relatedness, the males being 
related, and possibly even the female being related to whatever 
males may be effective. The overriding need seems to be for data 
to estimate the size of any possible biases. Until such data are 
available, the wisest course would seem to be to avoid relatedness 
and increase effectiveness of broad population egg and pollen sam
ples by sampling different years or providing supplemental pollen 
dispersals by artificial means when possible and to proceed with 
such estimates as may be minimally biased. 

MULTIVARIATE VARIANCES~ 
It is clear that genes, like most control factors, often affect more 

than one trait and that genes affecting different traits are often 
linked. Therefore, anything done to change one trait by manipu
lating genes will affect other traits. It therefore behooves us to 
consider that genetic covariauces among traits provide informa
tion on the total variability and correlations that exist in forests. 
The only element of difference that genetic sources of covariance 
among traits creates is the possibility that the covariance is due 
to either correlated effects of the same genes, or to the exfstence 
of correlated frequencies among genes at loci which otherwise act 
independently. Both genetic sources of correlation among traits 
can cause very rapid and large changes in the correlation if selec
tion is applied to the population or if relatively small populations 
are permitted to breed. Otherwise, we can treat the analysis of 
multivariate systems by standard means and can treat genetic 
sources of variance and covariance as simply another control vari
able in multivariate analyses of correlated traits. 

Multivariate analysis in genetics has included selection index 
construction, cluster and distance analyses, and some attempts to 
simply reduce the total number of yield vari.ates to a manageable 
number. In this section, we merely wish to develop the basic models 
and analysis as extension of the previously introduced concepts of 
variances and regression. 

If a new equation is written for each of several Y variates with 
their respective effective loci represented, the covariance between 
traits may be expressed in terms of the correlated 01' pleiotropic 
effects of those commonly held genes and their allelic frequencies. 

In the above notation, traits A and B with a commonly effective 

*Graduate-level statistical training required for thorough understanding. 
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locus can be written as linear genetic models: 

The additive genetic nn:iance in the individual traits is 2~]JI(Xi2. 
Here IJ, are the allelic frequencies, (Xi are the average allelic effects, 
and summation is oyer all alleles. The additive genetic covariance 
is: 

Extensions to more inclusive models are direct. Illost of the 
present work on multi\·ariate genetic analysis is on this simple 
genetic basis. It is possible to obtain pseudopleiotropic effects 
in estimating additive genetic covariances without true genetic 
pleiotropy if linkage disequilibrium or other disequilibrium is 
present and causes an association of traits by correlating the 
frequency of alleles at different loci. However, if equilibrium con
ditions are assumed, the cO\'ariances of additive, dominance, and 
other effects are derivable for pairs of traits in c(J\"ariance analyses 
just as the genetic variances are. The genetic covariance matrix 
is our multh'ariate analog of the 8im}ller unh'ariate genetic vari
ances and has all of the sampling and interpretation problems of 
the univariate models extended into]) dimensions. 

Aside from distribution and hypothesis testing in multivariate 
analysis, the interest of geneticists lies in two main cUrections. 
Oue is towards reducing the number of yariables to a more easily 
handled set. In these case!", the techniques of principal component 
and factor analyses have been pursued. The other direction of 
research is into the matrical representation of genetic effects, such 
as might be com'enient for linkage studies or any genetic study 
extended to the multh'ariate case. In this direction also, studies of 
special interest for provenance research lie in determining the 
dimensionality of the space defined by species, hybrids, races, or 
provenances (for example, Kamkoong 1967; ~Iisra 1966). These 
latter studies usually employ the techniques of canonical analysis 
and use the vectors corresponding to the roots of (B - AIV) = 0 
equations to obtain scales on which to measure divergence or 
similarity. Recently, Rouder (1966) has proposed a canonical 
analysis with a rotational transformation to the principal com
ponent factor of the TV matrix. 

~ruch provenance research im'o1\'es the discernment of relations 
between environmental factors and yield factors. For example, 
after a local proyenance test hat; been run, the breeder often 
wishes to estimate the relations between environmental variables 
at the seed source and performance in his plantation. The interest 
for population genetics lies in determining the extent of genetic 
segregation in allelic frequencies and whether substantial genetic 
yariance exists within or between stand:;, or both. The extent to 
which variation in the several traits of interest is determined 
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by environmental factors indicates the relative strength of direc
tional selection and migration versus drift and other random 
forces in determining allelic frequencies. The analysis of multiple 
regression in several traits simultaneously is therefore of value in 
interpreting genetic population structure. The genetic covariance 
matrix estimated after interpopulation effects are removed repre
sents the multivariate analog of the simple genetic variance within 
populational subdivisions. One might wish to simplify interpreta
tion by using canonical or component analysis, but estimates of 
the total regression and residual genetic covariance on all the 
traits should also be made. 

· f P (]J + 1) 	 t" d . .The mat rIX 0 	 2 gene IC val'lances an covanances IS 

therefore estimable, and general linear hypotheses (on additive or 
dominance effects in multivariate space, for example) can be 
tested by multivariate analogs of univariate analyses of variance 
tests. Thus, maximum likelihood testing on the dispersion matrix 
among provenances or among f half-sib families in 7) traits is 
performed by comparing the statistic: 

-2nln[' l'V';· W+B ] 

with x2 with 2 (/-1) degrees of freedom, 

where 	 n=total sample size, 

f= number of families, 

TV= dispersion matrix for error, 

B= dispersion matrix for families, 

W: 	and TV~,.. B = generalized variances of their respec
th"e variates. 

Several linear hypotheses can be tested by this criterion (Kendall 
and Stuart 19(6) as well as by criteria based on the distribution 
of the roots of •E,,\lV =0 (Roy 1957). 

Various kinds of value functions can be made up to provide 
simple measures of value by functionally incorporating the joint 
values of the sevel'al yield variates. The selection index is one 
kind of such value fun'etion that can be applied, is linear, and is 
determined such that it maximizes selection gain. Other criteria 
can be applied to nonlinear value functions (N"amkoong 1970b) 
and will be discussed. 

Standard definitions of gene effects and variances can thus be 
extended to the multivariate case. This analytical form may well 
be very important in forestry. In any case, the gene effects thus 
described and the relative allocation of differences (variances) 
between and within families permit estimation of the structure of 
variation in populations. 



CHAPTER 8 

ESTIMATING GENETIC PARAMETERS 


'Vhile it is desirable to meaSLlre population means, variances, 
covariances, regressions, etc., because they are useful descriptors 
of population characteristics, the method of estimating these 
parameters is not immediately obvious. In this chapter, the con
cept and genetic use of variance components are developed as an 
extension of regression concepts. Estimation techniques for stand
ard, balanced designs are described along with techniques for 
analyzing unbalanced experiments. The relationships between 
estimable experimental variance COml)Onents and genetic variances 
are shown, and experimental designs suited to estimating genetic 
variances are then explored. The principal problem in estimation 
is to determine a reasonably good use of the sample data for 
accurate estimation of those parameters, at least on the average. 
However, the existence of variation in the population necessarily 
implies that any resampling or other new independent sampling 
of the population will give us a different set of data and therefore 
different estimates of any of the parameters. It is useful to know 
not only the best estimate of the parameter values, but also how 
much variation "'e might expect any new results to exhibit if ne,\' 
sample estimates ,,'ere derived. For example, if breeding program 
decisions were to be based on the level of genetic ,Tariances and 
different estimate!" of the variances were available, the relath'e 
reliabilities of the estimators would be critical information. How
ever, variations can be generated by many causal factors. Some 
may be controllable or measurable and adjusted for, while others 
would be uncontrolled and could cause unavoidable errol' in esti
mating means or variances. 

Thus, there are two general means of reducing errors of estima
tion. If the sources of variation are identifiable and controllable, 
they may then be fixed or theh' contributions to the variation 
adjusted for. On the other hanel, if the sources of variation are 
not controllable or their variances' contributions are to be esti
mated, then sampling among the units of variation may be in
creased to reduce errol' in estimating the variance parameters. 

As an example of the first case, the variance of estimates of 
average wood sl,ecific gravity of slash pine was 793 Y 10- 6, but 
much of this variation was due to differences among clones. When 
the clonal variations were removed, the residual error variation 
due to uncontrolled sources of environment and error was only 
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430X10- 0 (Zobel and others 1962). If the objective is to estimate 
a tree's specific gravity precisely and clonal variations are ex
trinsic to this objective, then clonal differences add to the error of 
estimation. In this case, when genetic variations were removed, 
the mean specific gravity was more precisely estimable; more 
samples from within specific clones would provide greater pre
cision. Thus, the variation in any parameter estimate is subject to 
how the sample is clmwn and how the population is restricted. It 
is to be noted, ho\\-ever, that there almost always is a residual 
variance which cannot be adjusted for, and even adjusted statistics 
rarely estimate a parameter exactly. 

As an example of the alternative case, however, the objective 
of the experiment may be to estimate the extent of variation 
among clones or to include clonal variation in estimates of total 
population means. In that case, more clones rather than fewer 
should be sampled to reduce the error of the total population mean 
as well as to estimate the variation clue to clones. The concern has 
shifted from estimating means of a fixed set of units to one of 
estimating both means and variances of a more widely sampled 
set of units. It is then generally assumed that a random sample 
\\"iII provide an experimental set of units which will represent the 
types and proportions of effects as present in the wider population. 
The model and interest have thus shifted from the fixed effects 
of specific experimental or test entries to the random effects of a 
variable population. 

It may be obvious for estimates of means that larger sample 
sizes increase precision within some restricted population. It is 
also true for estimates of variances that more samples of clones, 
families, or whatever factor causes variation will also increase 
precision in estimating the variance due to those factors. 'Vhen 
parameters are Slans of squared effects (Le., variances) rather 
than sums of direct measures, the same results hoTel true with 
respect to error of estimation and its control. Thus, if sums and 
means are estimated with some variance, then sums of sqnares 
and mean squares are also estimated with some imprecision. In a 
very large experiment with loblolly pine, Stonecypher (1966) ob
tained a direct measurement of the variance in estimated variances 
by analyzing different sample blocks separately and showed that 
the variance estimates differed. In that case, some of the differ
ences were clue to variations in sites and years, but a large portion 
was due simply to sampling variations in drawing different sample 
replicate blocks. Whenever there is \"ariation in the basic elata, all 
derived estimates of parameters such as means, variances, or 
higher moments will exhibit variation. By (1nalyzing the sampling 
variance we can help ourseh'es in two ways. First, we can deter
mine the reliability of the estimation statistics under the condi
tions of the experiment and possibly under greater or lesser 
sampling restrictions. Second, we can determine what factors 
affect the sizes of the errOl'S of estimation an[l therefore can plan 
future experiments to provide predetermined levels of precision. 
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It is beyond the scope of this publication to construct the 
distributions of stochastic processes. There are many texts avail
able which describe moments and estimators of moments for the 
commonly assumed clistributions. Some characteristics of error 
distributions, parameter estimates, and the variance of the esti
mators will simply be asserted here. The discussion will generally 
be confined to simple, linear models, but some solutions for more 
general conditions will be indicated. 

In the multiple regression concepts previously outlined, the 
independent variables Xi were assumed to have some average 
proportionate effect (b) on the size of the yield variate Y;j. 
Hence: 

The total sums of squares in Y was seen to have been reduced by 
accounting for the regression effects (or could be reduced by 
adjusting for the regression), by an amount b' (X'Y). The sums of 
squares thus derived as being accounted for bythe regression 
could also have been written as b' (X'X) b. We could just as 
reasonably state the relationship between tl1e Y and X variables 
as the existence of an average regression effect in Y for each X 
variable chosen. If the various X variables are not controlled or 
specifically chosen in the experiment 01' if the X levels in the 
expel'iment are to depend only on the frequency of their occurrence 
in nature, then the variation in the X or b effects would itself be 
a variance statistic of interest. The emphasis in analyzing the 
relationships changes. In simple regression, a single X variable 
has many levels and the 0bjective is to estimate an average re
gression response for a given range in X. In simple analysis of 
variance, a single X variable (for example, a family i) has a 
single response level (b i ) and the objective is to estimate the 
variations in Y caused by samples of many different b, effects. 
For example, family 1 may have an average deviation effect of 
+5, and family 2 n-5, etc. Then individual trees would have Y 
variate measures of the mean, plus or minus the family effect, 
plus an error. Two trees from family 1 would have effects added 
as: 

Yn =p.+b1X1+O+en 

Y 12=p.+b1X 1 +O+e12 

Family 2 may have several trees: 

Y 21 =p.+O +b2X 2 +e21 

Y22 = p.+ 0 + b2X 2+e22 

Y23= p.+O+b 2X 2+e23 
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If the size of the f~c.nily effect (for example, +5) is taken as the 
b coefficient, then Xl = 1 whenever family 1 is measured, and zero 
otherwise. Similarly, X2=1 only if the tree measured is family 2 
and is zero otherwise. The above set of Y measures would then 
carry a model: 

Yll =p.+b1X1 + 0 ... +en 

Y12=P.+b1X 1 + 0 ... +e12 

Y21 =P.+ 0+b2X 2 ... +e21 

Y 22 =P.+ 0+b 2X 2 • •• +e22 

Y 23 =P'+ 0+b2X 2 . .. +e23 

1 1 0 P' en 

1 1 0 b1 e12 

1 0 1 b2 e21 

1 0 1 e22 
Y= 

1 0 1 + e23 

l'..... 
Y= (X) (b) + (~) 

The form is the same as for the simple regression except that 
the X's are counting indices and are known in the experiment. The 
effects of the X's on the Yare determined by the b's, and these 
are expected to reflect some sample of effects from the population 
the sample was drawn from. Then, the sum of squares due to 
variations in accounting for the regression effects would be: 

E[~(X'Y)] =E[ (X~+~)IX(X'X) -1 (X'Xb+X'!!.)] 

= E (~X'X!!..+~'~) 

=E(~X'X~) + (df)~. 

Then, the expected value of the mean square due to regression 
effects is: 

E[b'(X'Y)] E(b'X'Xb)
-=-"':"7"=---~+ .dt dt 



221 

This form of the mean square due to regression effects now 
requires some concept of what those effects are and how they 
were sampled in the population in order to interpret the term 
E (b'X'Xb ). It is useful to define the effects arbitrarily as causing 
devTations around the general mean. Then the mean of the b 
effects would be zero. In addition, if the population is assumed 
to have been randomly sampled, then the covariance between the 
randomly sampled effects would be zero. If it is further assumed 
that the variance throughout the population thus sampled was the 
same, that is, the population was not subdivided into segments 
with different means or variances, then E (b;- b)2 = variance 
among regression effects=ub2• The definition of effects as devia
tions requires that E (b) =0, and the assumption of randomness 
requires that E (b;b j ) =0 if i=l=i. 

Now, it can be seen from the above definitions of the matrix X 
that 

2 0 " .X'X~ U. 
2 3 

'''j0 3 

2 0 . . . b1(X'X)b~ [; 
2 3 

that 
- 3 "j [ " 10 3 

.~2.: : : 

n,tt+2bl +3b2 + oj00 

2,u+2b1 + 0 + .. 0 

3ft+ 0 +3b2 + 000[ 
... '" '" '" 

that b' (X'X) b= (,tt, bl> b2 'n,tt+2b 1 +3b20 0 .) [ 00 'j
2,tt+2b1 0 000 

3ft+ 0 +3b2 o.o 

... '" ..... . 
= n,tt2 +2 fl.b 1 +3,ttb2 + 000 

+2,ub1 +2b1
2 + 0 + 00, 

+3jJ.b2 + 0 +3b2
2 + 0 0 • 

+00. 
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If the above assumptions are valid, then 

E (ltX'X"E) =np.2+2E (b1
2) +3E (b22) +... 

=nfl2+2(Tb~";-3(Tb2+ ... , 

and if the correction factor for the mean is subtracted, this term 

includes only (Tb2(!X,2) where the !X/! coefficient is only the num

ber of independent times each of the b,2 elements are included. In 

this case, it would be (2-1) for blJ (3-1) for b2 , etc. There

fore, the expected value of the mean square due to regression is 

(T2+(Tb2(!Xn, and our only problem is to count the number of 

independent (Tb2 elements there are (Le., !Xn in what has been 

constructed as the mean square. Whatever the effects are which 

we try to estimate as a contributor to the population variance, 

the form of the analysis is the same. Our great interest is in 

genetically related sources of variation which can be of many 

different kinds.
Family differences or fertility variations can be treated as 

sources of variance and can come in several forms. Hence, they 

would have to be interpreted in terrnsof the kinds of effects and 

variances that they measure. Thus, fertility-caused variations 

may be quite different if we measure nitrogen rather than iron 

levels in forests, and genetically caused differences are quite 

different if we measure differences among full-sib families rather 

than half-sib families. For the moment, however, consider that a 

single effect like families is sampled from a large population and 

that the val'iance in yield due to family differences «(T/) is to be 

estimated. We shall try to compose squared sums so that we can 

estimate the components of variation due to error «(T2) and due to 

the variation among the regression or family effects «(Tb2 or (Tn. 

ESTIMATING VARIANCE COMPONENTS IN 

ANALYSES OF VARIANCE 


For the several sources of variance which we wish to estimate 

in an experiment, we can compose several analyses of variance to 

estimate sizes of the components of variance of those sources. 

In general, we should consider that variances ,:;an be estimated 

in many different ways. For example, we might construct different 

combinations of observations which, when squared, give different 

variance functions and which may then give estimates of the con

tribution of each of the component sources of variance. In par

ticular, for unbalanced experiments, variances can be estimated 

efficiently by constructing sums of squares different from those 

that would be constructed for testing significance of treatment 

effects. However, fOl" balanced experiments, it can be shown that 

the usual kinds of analyses of variance require mean squares 

which are, in fact, unbiased estimators of the components of va

riance and that those estimators have least sampling variance of 

an possible quadratic forms. A familiar example is the randomized 

block experiment, where Yuk=p.+b,+fJ+bf!J+eIJk, with l' blocks 
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(i=1,2 ... r),.f families (.i=1, 2 ... f) and n seedlings (k=1, 
2 ... /1) per family plot. The analysis of yariance (ANOVA) 
is shown in table 6 in '\'hich a dot indicates summation OWl' the 
subscript for which it is substituted. Then: 

EMS f~m1i1ies ] [ 1 n 111"] [U'/]
EMS plot error = 1 11 0 u/

[ 
EMS within 1 0 0 ul 

Each variance component can then be estimated since there are 
three linear equations with only the three unknown components. 

E\"en for unbalanced experiments, a good general l)rocedure 
to follow is to write out the linear model of yield for each experi
mental unit, and to then determine the sums, squared sums, and 
differences required in the usual kinds of ANOVA. \Ve must then 
compute the expected yalues of the model components when they 
are summed and squared as required by the AXOVA formulations 
for obtaining sums of squares. This can all\'ays be done regardless 
of either the balance of the experiment or the particular sum of 
squares computed. It only requires that whateyer experimental ob
seryations are summed and squared, we also sum and square the 
corresponding model elements in the same \"ay and hence deter
mine the expectations of the sums of squares in terms of the ele
ments in the models. Such procedures are explicitly traced by An
derson and Bancroft (1952, chs. 17 and 18), Searle (1971, chs. 
9 to 11), and Graybill (1961, ch. 16) for some common types of 
experimental designs. If the experiment is unbalanced, the tradi
tional types of sums of squares can always be computed to gi\'e 
mean squares which would often unfortunately contain all of the 
yariance components. Since none of the mean squares would con
tain clean estimates of any components, the solution would require 
the simultaneous estimation of all components. Squillace and 
others (1967) used this technique to estimate se\'eral yariance 
components of height growth in an unbalanced western white 
pine experiment. They derived nine sums of squares as if the data 
were balanced and found the coefficients for nine \"ariance com
ponents so deri\'ed. Thus, the 9>' 1 column \'ettor of mean squares 
(MS) was equated to a 91'9 matrix of coefficients (A) multi
piled by the 9/1 col umn vector of yariance components 
(un. Then, since MS .. (A) (J,~, the nine variance components were 

- -- A
estimated by (;1) -1 JfS::;-:: Uj'2. This is a reaclilr usable way to esti
mate the components, but it involves very high errors of estima
tion. 

A simpler method for calculating a set of independent sums of 
squares, which also proddp ,) the expected \'alues of those sums 
of squares in terms of the \'ariance components. is the Ahbl'edated 
Doolittle method. The method is we]] described elsewhere and re
quires no review here (Anderson and Bancroft 1%2). 
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TaNe 6.-Analysis of va'l'iance for a 'l"andom:ized block expm'irnent 
--~----------------

Expected mean squaresSum of squaresdfSource of variance 

~ Yi .." Y ..." . .--- ·~-·=SSB(r-l)Blocks 1 fn rfn 

Y'" Y .,~ _...:2.::.. _ _ ·...::.:=SSF 	 O'","+nO';+nrO','
(/-1)Families 	 1 1"1t 1'fn 

~ Yij.' Y ..." a,,'::l+nap~..---- -SSB-SSF+~---=SSE(r-l) (f-l)Plot ('rror 	 1} n 1'fn 

tk Yijk' _ ~ Yij" 	 0',.•}" .. --_.,.-
Within plot ('rror rf(n-l) 	 1} n 

• __ ............._,. _ •• ________ ____ • _ _ Or
~_~ "~ ~~ 

____~___.~__.--____,.__-~~~. "" __ L' 
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UNBALANCED DESIGN ANALYSES¥ 
For our purposes, the greatest utility of the Abbreviated Doo

little procedure lies in composing sets of independent sums of 
squares for unbalanced experiments and determining their ex
pected values in terms of squared components. We can illustrate 
its use in a simple experiment where seedlings from open-pollinated 
females have been planted in a randomized block but in which 
some plots are missing due to causes which are independent of the 
measured trait. In the following example, the grand sum (G) 
and each block (E,) and family (Fj ) sum can be seen to contain 
the indicated amounts of each fL, bh and Ii effect. If the data were 
balanced, the sum of squares for families (treatments) could be 

computed as1-! (Fj - G ) 2, or since! Bi=G, the sum of squares
r j I i 

for families equals ;. T (Fj - ~ 7ElF. 

Families 	 ! 
Block !Block sums 

1 2 3 4 

1 Y u Y 21 Y:H Y~I B1=Y'1 

2 Y 12 Y 22 Y3:! Y 42 B 2=Y'2 

3 Y 13 Y:!3 Y:I:1 Y 43 E J =Y'3 

Family sums F1=Y1• F2 =Y2• F 3 =Ya• F4 =Y4• G==l'. 

Effects included in yield sums 
b1 b2 b:1 11 f..l fa 14 	 Yield 

sums 
___~_....,____.~__ .,_ m~' ~_______-_ 

12 4 4 4 3 3 3 3 G 
4 4 0 0 1 1 1 1 BI 
4 0 4 0 1 1 1 1 B2 
4 0 0 4 1 1 1 1 B3 
3 1 1 1 3 0 0 0 Fl 
3 1 1 1 0 3 0 0 F2 
3 1 1 1 0 0 3 0 Fa 
3 1 1 1 0 0 0 3 F4 

Each F j sum contains 3 l~ elements and one each of b, effects in 
addition to three of its own Ij elements, as indicated in the above 
table which is essentially the X matrix of coefficients. Suppose 
ho'wever, that family 3 is missing from block 1 and family 2 is 
missing from block 3. By determining- the content of each B,//, and 
subtracting it from Fj , the X matrix of coefficient becomes: 

*Graduate-level statistical training required for thorough understanding. 
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Effects included i.n yield sums 

~l b1 b2 ba it f2 /a 1-1 	 Yield 
sums 

10 3 3 3 3 .2 2 3 G 
3 3 0 0 1 1 0 1 H1 
4 0 4 0 1 1 1 1 B2 
3 0 0 3 1 0 1 1 H3 
3 1 1 1 3 0 0 0 F1 
2 1 1 0 0 2 0 0 F2 
2 0 1 1 0 0 2 0 Fa 
3 1 1 1 0 0 0 3 F-I. 

However, it is still possible to adjust the treatment sums as 
to obtain sums (F*) which are clear of IL and bi effects as follows: 

Adjusted 
fa family sums 

o 0 0 0 25/12 -7/12 -7/12 -11,12 F,-[1/3B,+l/4B, 
+1/3B.] =F,* 

o 	 0 0 0 -7/12 17/12 -3/12 -7/12 F.- [l/3B,+1/4B.] 
=F!' 

o 	 0 0 0 -7/12 -3/12 17/12 -7/12 F.- [1/4B.+1I3B,) 
=F.* 

o 0 0 0 -11/12 -7/12 -7/12 25/12 F.- [1/3B,+1/4B. 
+1/3E.] = F.* 

It is now necessalY to derive indepehdent sums for the sums of 
squares to be additive, but since the data are unbalanced, the 
above sums must be further adjusted. The Abbreviated Doolittle 
procedure may be followed a further step to provide the sums of 
squares as follows: 

f2 	 f-l Adjusted family sumsi1 	 fa 
25.'12 -7·12 -7/12 -11/12 F,* 

1 -725 -7/25 -11/25 F/' • 12125 
376.3UO -124.300 -252/300 F,*-7/25 F,*=F."* 

1 -124/376 -252/376 F."'''' • 3QO/376 
126.1128 -126/1128 F.*-7/25 (FI"') 

-1 -1241376 F2·" = F.** 
1 F.** • 1128/126 
0 a 0 

By sweeping out all but family effects, the adjusted sums of 
squares can be computed from the model effects in the left-hand 
side of the Abbreviated Doolitt1e matrix. In our example, the ex
pected value of the sums of squares for the family effects is: 

2.0833/1
2 +1.4167h2 +1.4167/:12 +2.0833{42 

;:::: 3.5 al 
since EUdJ) =0, if i:f=j, but EUn ;::::al· 

We have thus created a sum of squares unconfounded with other 
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main effects (}L,b i ) which can then be interpreted according to the 
meaning of the :£ a.J,2=:£ Xi2 II/-. The Abbreviated Doolittle for
ward solution in effect transforms the X matrix into a matrix Z 
in which rows are orthogonal linear functions of the original X 
rows. Thus, X=ZB and hence X'X =B'Z'ZB. Since Z contains 
orthogonal rows, Z'Z is a diagonal matrix (D), and X'X=B'DB; 
and (X'X)b=X'Y is therefore transformed into B'DBb=B'Z'Y. 
If B-1 existS:- thenDBb=Z'Y, and in the Abbreviated Doolittle for
ward solution, we find ~he matrix A=DB and DBb=Z'Y=Ab. 
Thus, by transforming the X into ZB, we can see that thecon·e
sponding b is transformed into Bb=b*. The sum of squares due 
to the regression is invariant under these transformations and 
can then be seen to be: 

b'X'Y=b*' (B')-lB'Z'Y 

=b*'Z'Y 

or = b'B'Ab= b'B'DBb = b'X'Xb. 

As given in the earlier notation, this is the expected value of the 
sum of squares due to regression (SSR) for the regression effects. 
E (e' e) must be added to this to complete sum of squares due to 
regression. The Abbreviated Doolittle forward solution provides 
the A and B matrices in the form: 

(X'X) ! X'Y 

All A12 A13 A14 

1 B12 B13 B14 

A22 A 23 Au 

1 1123 B24 

A33 A34 

1 B34 

A13 A14 

A 23 A24
A= 

A33 A34 

AH 

1 Bl2 B13 B14 

B= 
1 B 23 1124 

1 B31 

1 
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It can also be observed that the b regression coefficients have been 
changed, and that estimates of the new effects, b*, can be con
verted back to the originally defined ones by the inverse trans
formation. This is computationally simple in the backward 
solution of the Abbreviated Doolittle. Since the sums of squares are 
invariant under these b'ansformations, however, we can interpret 
the meaning of the ~(ldl in terms of variances of these It or b* 
effects. If we sampled at random, and all the II are independent, 
then E U;/j) =0, i-!-j. If in addition, the Ii are deviations from 
some general mean, then ~f;=0, 1=0. Hence, E (112) =E (Ii-f) 
= a/l, and the number of such elements in each squared sum is 
computed in the Abbreviated Doolittle by the B'A=~ 

/ 
AhiBhi for 

each of the i effects in the hth squared sum. The number of such 
squared sums that yield any a/- is the number of degrees of free
dom. 

In general, it is not possible to adjust main effects for inter
actions. Therefore, while one can adjust any main effects for all 
other main effects simply by listing those desired "clean" effects 
last, interactions involving the main effect will be included in its 
sums of squares. If nonindependence among the 11 is assumed, or 
any difference among the E U(!) exists, then these effects too can 
be traced by completely writing out the B'A products. 

In unbalanced data, the general objecth'e of the various com
puting procedures such as the Abl)Teviated Doolittle is to adjust 
yarious sums for other extrameans effects. Unless some of the 
effects contain interactions, we can view the problem as one of 
transforming the ...1 matrix to a partitioned upper-triangular ma
trix in the equation: 

A direct method requires that certain inverses exist or that gen
eralized inyerses be found. Then: 

where A*""=A'i'I-·4 m,/A wn lA",,, 

and g*q::-; 0'1- A ",,/.4 1/1 111-1 gn. 

Other transformations can similarly be made to obtain zeros in 
the lower-left partition, but all require some direct inversion of 
submatl'ices. The great advantage of the Abbreviated Doolittle 
method is that the l11Yersions do not have to be made directly. 
Since almost all A,XOVA will have (A) matrices with several 
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singularities, direct inversion is very difficult even with generalized 
inverse programs. Thus, when missing plots or otherwise un
balanced data exist and linear dependencies are created in forms 
difficult to detect, the Abbreviated Doolittle provides sums of 
squares with all dependencies remo\"ed. 

A third possibility in computing sums of squares and their 
expectations when unbalance exists is to simply compute the sums 
of squares as if no plots were missing. Then the expectations of 
the sums of squares can be cletennined simply by repeating the 
summing and squaring operations on the model components in
cluded in the appropriate yield variables. While not an elegtUlt 
procedure, this one can be used if all other procedures fail. 

For balanced experiments the ANOVA's are usually easily de
telmined, and various algoritluns me available for finding the 
appropriate expectations of the mean squares. Many methods have 
been described for determining appropriate ANOVA's for compli
cated replication, treatment factorial, and nested designs and their 
expectations under assumptions of fixed, mixed, or variance com
ponent models. They are not reviewed here. 

DISTRIBUTIONS OF VARIANCE COMPONENTS~ 
While it is clear that unbiased estimates of the variance com

ponents can be obtained, it is also clear that a resampling of the 
original population would yield different estimates. Like any other 
estimator with sampUng error, the error distribution is used for 
detelmining reliability of estimates as well as for designing good 
experiments. It can be shown that if elements drawn from an 
N(O,I) distribution are squared, the distribution of the squared 

x2elements is a and that squaring elements from an ..V (0, ~) 
X2yields variates with a distribution. In the ANOVA, the • fT2 

effects of any of the sources of variances are corrected for the 
mean. Hence, they have a zero expectation and the variance of 
those sums is usually identical to the expected mean square 
(EMS). Therefore, these sums are distributed .......\'(0, EMS) and 
the sum of squares is distributed _X2 . EMS. The val"iullce of the 
sum of squares is (EMS)2 . (\'ariallce of the X2), Therefore, to 
compute the variance of the mean square, we require only the 
variance of the x2 which is 2 (d!). The variance of the mean 
square is 

2· dt(Ell1S)2 2(EMSP

df2 :-- dt 


Since the \'ariance components are linear functions of the mean 
squares, the variance of those linear functions would determine 
the variances of the cOIflponents. Thus, jf 

jvlS1 -MS2 

k 

"'Graduate-level statistical training required for thorough understanding. 
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as is usually the case, then 

V(~12)= ,;:![r(MSJ)":-V(MS2)-2 Cov (MS1,MS'2)} 

If the mean squares are orthogonal, the covurlances are all zero, 
and 

It has been empirically determined that the addition of 2 to the 
differences in the denominators gives better fits. The square root 
of the variance is the standard error of the estimated variance 
component, which is frequently used as a measure of the sig
nificance of the component. Thus, while the distribution of the 

x 2variance component lS not a (since the mean squares are 
different), the variance is easily computed and various ways to 
estimate confidence intervals are available (Anderson and Ban
croft 1952, ch. 22; Graybill 1961, eh. 17; Searle 1971, ch. 9). 
\Vhenever any unbalances exist in the analysis, it can easily be 
seen in the Abbreviated Doolittle that the individual squared sums 
do not represent identical estimates of the same x:! ,r. distribution 
and, hence, that the mean squares are not x:! ,r. variates. Never
theless, the variances of each of the independent contrasts can still 
be estimated, and if orthogonal sums of squares are computed as 
provided in such procedures as the Abbreviated Doolittle, the 
different mean squares will be uncorrelated. 

Regardless of the method used to obtain the sums of squares, 
it is always possible to determine not only the expected "alues, 
but also their variances and whatever covariances exist due to 
imbalance and nonorthogonality of the sums of squares. One 
method of computing is to write the sum of squares for each 
source of variation in quadratic form: Y'QrY where Y is the 
vectol' of all of the obsen'ations and Qr isa matrix of coefficients 
which gives the appropriate weighting for the observations in the 
sum of squares for the T source of variance. 

For example, if an experiment contained four treatments (i) 
with three random replicntes (j) each, the sum of squares for 
treatments (SST) would be: 

3 
~4 { ~ Y )2 (~~y )2 
i j:=l ij ij ij

SST ---r212 

'- 1/12[i1(Yll" Yl:!~' YJa)2·'-4(Y!!J..)... Y:!!!'" Y:!aP 

...;...4 (Y31 +- Y 32 +- Y 33 )2+ 4 (YH - Y4!!~' Yd 2 

- (Yll + Y 12 "'· , •• ..)... 1'I:l)2J 
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= (Yl1, Y12 ... Y43) 
4 4 <1-1 -1 -1 -1 -1 
<1 ~1 "1-1 -1 -1 -1 -1 
·1 4 4-1 -1 -1 -1 -1 

-1 -1 -1 "1 i1 4 -1 -1 
-1 -1 -1 4 ·1 4 -1 -1 
-1 -1 -1 4 "1 ~1 -1 -1 
-1 -1 -1 -1 -1 -1 4 4 
-1 -1 -1 -1 -1 -1 i1 4 

= Y'QrY . 

A matrix of covariances over i, j, k, and e, Cov(YIj, Ykl ), can 
then also be constructed in \\'hich each expected cross product is 
derived in terms of the model components. For example: 

if Ytj=Jd... t l + I'J Ii I 

then E(Yll " Y Il ) -E(YlI )2=ai-t uc2 

E(Y12 " Y 13 ) -E(YdE(Y13 ) =u/2 

and E(Yll " Y~l) -E(Yll)E(Y!!l) =0. 

Then the covariance matrix (V) would have the form: 

y • 

It can then be shown that E(SST) =VQ/. 


It can also be shown that V(SST):::~t1'(VQ/' VQI) 


and that Cov (SST, SSR) =i1' (VQI " VQ.) 


where tr signifies the trace of the argument matrix. 


Thus, for any sum of squares, the expectations, variances, and 
covariances can always be found though this might be tedious. 
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Estimates and the variances for variance components can then also 
always be derived, even if the distribution is unknown. 

For many statistics of interest to geneticists, various functions 
of the variance components are constructed and the variance of 
these constructed statistics is also often desired. Thus, while 
estimates of ceri:.:'lin genetic variances are sometimes sufficient 
information, ratios of the components in heritabilities are often 
also desired. If simple functions of mean squares such as Hanson 
(1963) derives can be used, then approximate, noncentral F dis
tributions will do reasonably well to determine variances and 
confidence intervals. If the functions are not simply constructed, 
as is often the case in forest genetics, an appropriate asymptotic 
variance, as derived by Kendall and Stuart (1963, ch. 10), can 
often be used. If we take the complicated function of the mean 
squares or any other variables Xl> X2 ... to be g (Xl> X'}. ... ), and 
the expected value (mean) of each of the mean squares or other 
variables to be O}, 82 . . .; then the variance of the function 
g (Xl, X2 ... ) is approximately: 

- ~ [8 g 8g ]V[g (XlIX 2 ••• )] - 1.1 88 88 COY (X"XJ) • 
1 j 

This l'elationship holds true as long as the second moment:; of the 
8's are small relative to the means. The variance approximation 
can be extended to the case of the approximate covariance behT!een 
two functions say g and h: 

~ [8 g 8h ]Cov[g (X-,X 2 ••• ), h (XI ,X2... )] = i,J Be; 80 Cov (X"XJ) 
j 

In particular, the variance of a ratio: g= ~~~~ is: 

=Var(X1 ) ..;.. OI2Var(X2) _ 20 1Cov(Xr,X2 )
V( )g 0 2 ' 8~ OS2 2 2

=[E(XdJ 2 [var(xl ) + Var(X'}.) _ 2Cov(XI ,X'}.) ] 
E (X!!) [E (Xl) ] 2 [E (X 2 ) ] 2 E (Xl)' E (X2 ) 

This is the form used by Osborne and Paterson (1952) and most 
heavily used by Namkoong and others (1969) to compute vari
ances of heritabilities of wood quality traits. For example, assume 
the analysis of variance was: 

Mean square dt Expected mean square 

MSlvI 'm fTe2 +nfTl +nsfTm 
2 

MSF t fTe2+nfTl 

ll'ISE e fTe2 

and h2 = 
~ um 

fTm2+fT/+fTe2 

_ 

-

q 

am'" 

fTT!!' 
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Then our estimate of the numerator of h2 is (MSM - MSF) / ns. 
The variance of the numerator is simply the variance of a 

difference of two x~~ kinds of variables which have no covariance, 

Hence, in the notation of the approximate variance function: 

Var(Xl ) =2(!) 2 [M!M2 +M~F2J 

We can estimate the denominator of h2 (UT2=ue2+o/+um2) also as 

a linear function of the mean squares as: 

MSM+ (s-l)MSF+s (n-l) MSE 

ns 


The variance of the denominator is also the sum of variances of 
elements, each of which is known and between which no covariance 
exists. Thus, 

_ 2 [MSM2 (s-1)2MSF2 S2(n-1)2MSE2]
Var(X2 ) -2"2 + f +n s 1n e 

Since the covariance between balanced mean squares is zero, the 
A A 

covariance between um 
2 and 1Y1,2 is simply 

1 V (MSM) (s-l) V (MSF) 
2s2 2s2n n

A A 2 [MSM2 (S-1),MSF2]or Cov (um2, UT2) =-2 --qn S~ m 

2Then, since E (Xl) is simply u m and E (X2 ) =UT2, we substitute 
estimates into the V (g) function and compute the sampling vari~ 
ance. 

Thus, for almost any kind of experiment, approximate covari~ 
ances of functions of sums of sqUal'es can be estimated. If the 
geneticist is fortunate enough to have balanced experiments to 
work with, distributions of the sums of squares and sums of 
cross products (from the analysis of covariance) are known. If 
the yield variates are all distributed as multivariate normal vari~ 
ables, ,....-N (}J., !), then the distribution of the mean squares and 
mean cross products is called the Wishart distribution with two 

parameters [~' dfJ where! is the matrix of sums of squares and 

cross products, and df is the degrees of freedom appropriate to 
the source of variance designated. In general, for any sum of cross 
products, Aij, the covariance between any two sums of cross 
products is 

E (AI}-djulj) (Akl-dfuk/) = df (UikUjl+ UilCTjk)' 

Thus, for the variance of a sum of cross products, when the 
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variance implies i=k and j =l, 

V (Aij) =df (CTil+ CT.IiCTjj), 

where CTil is the covariance of i and j and CTii is the variance of i. 

For the variance of a sum of squares, we have i=j=k=l and 
V (Aii) =dj • 2CTU2, where CTIl is the mean square expectation for 

<;> 
trait i. Then V (SS/) = 2df (MSn and V (MS;) = :if (MS;2), as be

fore. 

DESIGNING GENETICS EXPERIMENTS 
While it is clear that results of almost any kind of replicated 

experiments can be analyzed, it is also clear that the nature of 
future forestry experiments can be enhanced by appl'opriate allo
cation of materials among the sources of variance. If certain 
genetic components are important to estimate with precision, then 
obviously the degrees of freedom will partly control the variance 
of those estimates and should be maximized. Depending on the 
objectives of the experiments, different allocations of effort would 
maximize the benefit/cost ratio. In the extensive studies on varia
tion in wood quality, Goggans (1961) appropriately allocated 
considerable effort to estimate variances due to several hierarchies 
of sampling within families, trees, sections, annual rings, and part 
of annual rings, but he necessarily sampled genetically distinct 
families lightly. Once the sampling variances were estimated, 
however, interest in estimating the family variances claimed 
higher priority, and he recommended sampling more families with 
a reduced amount of within-family sampling. This procedure has 
subsequently been followed in the North Carolina State University
Industry Cooperative Tree Improvement Program. In such pro
grams where cost factors can be unified in a simple function of 
the numbers of samples at each of the sampling levels and benefit 
can be measured as an inverse function of the estimator variance, 
an optimum sampling system can be derived. If the variance of 
the estimator is independent of the parameter being estimated, as 
when means or regressions are estimated, the cost/benefit ratio 
can be minimized fairly directly when the conditions affecting the 
cost of sampling are known (Marcuse 1949). However, when 
estimating variance components, it can be seen that the size of 
the component affects the size of the mean square and, therefore, 
affects the variance of its own estimator. The variance can then 
be expected to increase with the size of the component, and de
signs and allocations would have to be compared on some con
tl'ived value function for all levels of the component. 

A still further complicating factor in considering optimizing 
an experiment is the common desire to estimate more than one 
component with reasonable precision. In genetics experiments, the 
error component is often almost as important to estimate as the 
additive genetic variance. The dominance genetic variance may 
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also be of some interest. Since most experiments in forestry re
quire considerable time and space, most are established for a 
variety of objectives including the measurement of several traits. 
Therefore, it is reasonable to assume that the prudent forester 
will be estimating several covariance components ?nd will want 
to optimize his experimental allocations with l'especc to some cri
terion of goodness for his various objectives. We must therefore 
consider an appropriate value function as well as variances and 
covariances of estimators in experiments likely to be useful in 
forest genetics. In the previous chapter, the covariance of relatives 
was taken as a function of the genetic variances. In this section, 
variance components due to family effects are taken as functions 
of the covariance of relatives. Hence, the direct relations between 
estimated family variance and genetic variances are established. 

If we are to consider the variances and covariances, we must 
first briefly review the kinds of estimators used for the genetic 
variances. The commonly used mating schemes provide a few 
mean squares which are functions of the genetic variances. Where
as in mean 01' regression estimation problems the investigator 
could choose combinations of environmental variables to minimize 
errors of estimates, the geneticist chooses to construct different 
kinds of families and controls the number of families and family 
members. Since the variance components are estimated from 
second-order statistics which roughly follow a x 2a2 distribution, 
the design variables which the geneticist can choose are the de
grees of freedom and the composition of the expected mean 
squares. 

As noted in the previous chapter, the degree to which family 
members are closely related is in some sense proportional to the 
degree to which the families diffe:r. Thus, measures of variances 
among families obtained in the ANOVA are interpreted in terms 
of the covariances of members within those familes. To extend 
the simple designs which have already been discussed in the pre
ceding chapter, consider an experiment in which both male and 
female parental identities are known and are experimentally 
structured so that each female is crossed to a different set of males. 
This is a hierarchal or nested design, designated as AlB by 
Cockerham (1963), in which each male services only one female, 
but each female (fi) is served by several males ?njliJ' We may dia
gram the crossing scheme as: 

Hierarchal (AlB) mating design 
Male trees 

EFGHIJKLMN 
A X X X 

Female B X X X 
trees C X X X 

D X ... 

The linear model for progeny trees assuming a completely ran
domized experimental design for r progenies of each mating 
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(ekUO) is: 

Y ijh =.JL+fi+mj(l) +ekUi) 

Y pqr =.JL+fp+mq(p) +er(qp) 

where i, p =1,2 ... f, 
f, q =1,2 ... m, 

k, r =1,2 ... 1'. 

The ANOV A for this experiment, as found in texts including 
Steele and Torrie (1960), Cockerham (1963), and Becker (1967), 
is: 

Source of variance df Mean square Expected mean square 

Females (f-1) MS(F) rre2 +rrrm2 +rmu? 

Males/females f(m-1) MS(M/F) ue!!+1'um2 

Error fm(r-1) MSE 

Since there are three kinds of relationships among the seedlings, 
we can define covariances of these three relatives in terms of the 
variances. Full sibs exist when male and female parents are iden
tical, and hence i=p and j=q. Then for two individuals so related, 
Y;Jk and Ypqr, their covariance is: 

Cov (YiJk, Y pqr) =E [I-' +fi+mJ(1) +ek(H!] [JL+fl'+mq(p) +e,.(qp)] 

- E [I-'+fi+rnj(1) +ek(JO] [JL + fp +mq(p) +e(rqp)]' 

We define each effect as a deviation around a mean so that the 
individual progeny effects are deviations from the full-sib family 
mean, the male effects are deviations around the female half-sib 
family mean, and the female effects are deviations around the 
general experimental mean. Therefore, for this covariance: 

COV(Y1Jk, Y pqr ) =E* (f(i)f(p» +E* (f,mq(p» +E (fler(qp» 

+E* (mj(!)Mq(p) +E* (mj(ofp) +E(mj(i)er(qp) 

+ E* (e/djljer(qp» +E (ekf}!)fp) +E(ekr}i)mq(p»' 

Since all effects are deviations, their expected values are zero, and 
we are concerned only with these nine elements. If we can assume 
that individual progeny trees are randomly assigned to experimen
tal units and their deviations from their family means are not 
affected in any way by their male or female parentage, then all of 
the remaining expectations which contain cross products of er(qp) 
or ek(ij) elements are also zero. The remaining five expectations 
(*) may be nonzero, depending on the manner in which the fam
ilies were constructed, and are the components which generally 
determine the utility of the design. In this case, males do not serve 
as females and if the choice and assignment of males into single 
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female groups are made at random, then 

E (firnq(p)} =E (mj(ilfp) =0. 

Of the remaining three, consider the case that Yijk and Ypqr are 
related as half-sibs and hence i=p, but j-,!-q, and k=!=1"' 
Then 

E (fdp ) =E (fn =E(fi-{P=rrl 

and E(mjU)1nq(p)}=E (ek(ji)er((IP)} =0, 

since males and progenies are not identical and are randomly 
chosen. Therefore, if Yilk and Y pq,. are half-sibs, the covariance 
between them is rr/. Next, consider the second kind of relationship 
between two individuals which can exist in our experiment and 
allow them to be full-sibs. In this case, two distinct progeny trees 
have the same female (i=p) and male (j=q) parents but lc-;-r. 
Then, of the three remaining expectations, 

and E (ek(ji)e,.,qp,) =0. 

Therefore, the covariance between full-sibs =a/-l-rr",2. 
Finally, consider that the individual seedling's covariance with 

itself is taken. In this case, the same parentage exists (i =1), j = q) 
and the same individual deviation exists (lc=-c r). Then the expecta
tions of this covariance include 

Therefore, the ~ovariance between an indi vid ual and itself=rr/ 
+um2 + (je2,. 

vVe hm'e thus derived co\'ariances among relatives in terms of 

the variance components estimated in the ANOVA of our experi

ment: 

Cov (HS) = rr/ 

Cov(FS) = rrl-l-rr,,:'; 

Cov (individual) = rr/-rrrJ1l2+ crl. 

As developed in the preceding chapter, we can always determine 
the genetic variance contributions to each of the covariances 
among relatives by determining coancestries among .the relatives. 
For our case, if we assume no inbreeding and no relatedness of the 
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parents, we derive the genetic variances of these covariances as: 

Cov (HS) =14uA2+~'I6uAA2+ .. . 

Cov(FS) = l!2A2 +14uD2 + .. . 

Therefore, we can directly identify the design components in 
terms of the genetic variances they estimate as: 

ul= Cov (HS) =14uA2+~~6UAA2+ 

Um2= Cov(FS) -ul 

= Cov (PS) -Cov (HS) =l!j,uA 2+ 1!j,uD2+ 
2 u.2= Cov(indiv) -Cov(FS) =!j2UA2+%,UD2+ ... + uen... • 

To summarize the analysis and interpretation of this design
variously called the hierarchal or nested mating design or the 
North Carolina Design I-we may list: 

Mean Expected 
Source of variance d/ square mean square 

Females /-1 MSF u/+rum2+rmul 

Males/females /(m-1) MSM u.2+ t ·Um2 

Ue~Error m/(?'-l) MSE 
q 

where: ul =Cov (HS) 

Um2 =Cov (FS) -Cov (HS) 

u.2 = Cov (indiv) - Cov (FS) 

=Ueny.2+ ua2-Cov(FS) . 

A second design commonly used to obtain similar kinds of 
genetic variance estimators is one in which the full factorial com
binations of all males are crossed with all females. This arrange~ 
ment has been termed the "factorial mating design," the "North 
Carolina Design II," or more rarely, a "diallel design" (Hanover 
and Barnes 1962). This mating scheme may be diagramed as.: 

1Iale trees 

E F G H I J 


A X X X X X X 

Female B X X X X X X 

trees C X X X X X X 


D X X X X X X 

The linear models for two progeny trees in a completely ran~ 
domized experiment are: 
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Yijk=P.+m'+!J+m!ij+erjk 

Y pq/"+ p.+mp+!q +m!'P q+ellpr• 

The analysis can be outlined as : 

Mean Expected 
Source of variance d! square mean square 

Females !-1 lvISF 

Males 1n-l lvISlvI 

Males X females (112-1) ([-1) lvISlvIF ai+1'aml 
Error m,[(1'-I) lvISE 

u/ = a",'2= Cov (HS) 

um/=Cov(FS) -2 Cov(HS) 

ae
2 =COy (indiv) - COy (PS) 

=ueo\·2+ uo2_COV (FS). 

We can derive the covariance of relatives in terms of the design 
components of variance much as was done for the nested design. 
If the experiment was properly conducted with Tespect to ran
domization of sampling, mating, and planting, and parental sexual 
identities were kept distinct, then only the E (m,mp) , E ctiq) , 
E (1n!I/I11,!pq), and E (ejjhepqr) can be nonzero. If Y Uk and Y pqr were 
half-sibs of the same male parent, E (monp) =E (m;':!) = a",':!, and all 
others are zero. If Y'}h and Y w1r were maternal half-sibs, E (f;[q) 
= a/, and all others are zero. If the two trees are different individ
uals of the same full-sib family, E (mi1np) =am2, E ctJq) =a/, and 
E (m!ljm!PlI) =am/, and only the last component is zero. Then if the 
two trees were identical, the covariance includes a/, am!!, um/, and 
u/. From these identities, 

the tabulated expectations can be derived and the genetic variance 
contributions computed. 

A third design, the diallel, (Griffing 1956) can also provide 
similar estimators when the choice of mating patterns is again 
limited to progenies from controlled crossing among parents which 
exist in a general, random-mating, unstructured population. Par
ents are assumed to be capable of functioning as both male and 
female and sometimes are capable of self-fertilization. The mating 
scheme for a modified diallel without selfs 01' reciprocals can be 



240 

diagramed as: 

Male trees 
A BCD E F 

A X X X X X 
B 	 X X X X 

X X 	 XFemale 	 C 
X Xtrees 	 D 


E 
 X 
F 

The linear models for two progeny trees in a completely ran
domized design are virtually identical to the factorial mating de
sign but in the more commonly used notation are: 

YUh. = fL +g,+ gj+8ij+eijh 

Ypqr= fL +gp +gq +8 pq +epqr 

in which gi effects are general combining abilities or average per
formance deviations when the ith parent is crossed with a sample 
of the whole population, and the 8!j effects are specific combining 
abilities or the deviation of the cross of i by j parents from the 
expected average of the general combining abilities of the parents. 
While the mating design is itself unbalanced, the ANOV A for 
many diallel arrangements can be performed in such a way as to 
give clean mean squares for all of the components. Thus, for the 
general case in which there are 8 crosses for each of q parent trees 
serving as both male and female, the ANOV A is: 

Mean Expected 
square mean squareSource of variance df 

Among parents 2+ 2+ 1'(q-2)8 2
(gen. comb. q-l MSGCA CT. rUB q- 1 U u 

ability) 

Interaction q (8-2) 	 2
(spec. comb. 2 

MSSCA ue 2 + rUa
 

ability) 


qs (1'-1)
Error 	 MSE CTe2 

2 

U/ =Cov(HS) 

U/i2 =Cov(FS)-2 Cov(HS) 

U.2=l7en\"2+CTd~-Cov (FS). 

The derivation of the identity between the covariance of relu
tives and the design components is similar to that of the factorial 
design. For half-sibs, the expected covariance contains only CTu

2 
• 

For full-sibs, the expected covariance contains the CTl from both 
parents plus the CT/ interaction component. For the same individ
ual, the expected covariance contains 2 CT1/ -r CT/' + CTc

2
, and the in
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verse relations can then be derived. 
Various partial diallel designs and blockings are given by 

Braaten (1965) with complete computational formulas and expec
tations. 

In all of these designs, simple modifications of plot structure 
can give additional data on replication, plot error, and within-plot 
variances. If r randomized complete blocks are used and the 
analyses are performed on plot means, the following changes have 
to be made in the analyses: 

(1) 	To the ANOVA add the lines "replications" and 
"r=I" under the columns headed "source of variance" 
and "df." 

(2) 	Change the error df to (mf-l) (r-l) for the nested 

and factorial designs, and (QS;2) (1'-1) for the 

dia1lel design. 
Otherwise, no changes are required. If samples of the variance 
among trees within plots are obtained, then the composition of 
0'.2 can be broken down into components of between- and within
plot error variances: 

., 
CT 

(CTe
2)*= Ie ..LCTl, 


where k is the harmonic mean of numbers of trees per plot. If the 
analyses were done on plot sums, 

and the coefficients for the other variance components require 
multiplication by k. In either case, CTl now measures a plot mean 
error variance and CTIC2 +CT/ has the same composition as we 

formerly composed for CTe2• Thus, 

2- CTe
2 d 2_k-l 2 

Up -T an CTw -~CTe • 

The genetic components of within-famHy variance are thus shared, 

11k 	in the 0'/ part, and k7c 1 in the uw2 part. Since many tree 

experiments are planned with multiple-tree plots and the usual 
experience is for some measurements and trees to be missing, the 
use of plot mean analyses for traits not affected by spacing is 
common (Stonecypher 1966). For traits which are affected by 
differential mortality or density, adjustments of the data for the 
spacing effects should be made before analysis. If plot means 
are analyzed, the usual procedure is to sample several plots to 
estimate the variance among trees within plots (CTI'?) , and by 
computing Ie and CTe

2, to then fully determine CTI/ and CT/. 

All of these designs may also be augmented by the inclusion 
of reciprocal crosses and selfs and the extension of the linear 
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models to account for these effects. Two types of effects are often 
defined in terms of contrasts between performance of trees when 
serving as male versus female parent. A general maternal effect is 
defined as the contrast or difference which exists when the tree 
is crossed with a sample of the whole population, first as a male 
and second as a female parent. A specific reciprocal effect is then 
defined as the contrast between full-sib families which differ only 
by the sexual order of the parents. These augmentations are often 
carried in diallel experiments but can be used \\Tith any other 
mating design as long as the parental genotypes can function both 
ways. 

The use of subblocking to reduce the errol' variation within 
complete replications is often recommended for estimating means 
and may find considerable use in fornstry (Snyder 1966). How
ever, for estimating variances, blocking will not generally be use
ful unless very large errors within replications are otherwise 
unavoidable. 

The fout mating designs are diagramed in figure 15. 

The above designs are the ones most immediately useful in 
forestry since 'we generally start with a presumably unstructured 
population and we wish to estimate as many genetic variances as 
possible. For further details of the analyses, the reader is referred 
to the surveys ~wai1able in Cockerham (1963), Gardner (1963), 
or Becker (1967). For the analysis of the nested and factorial 
designs, see Comstock and Robinson (1948), and for the diallel see 
Griffing (1956), anel fOr partial and blocked partial diallels, see 
Braaten (1965). If balanced experiments are created, the different 
designs can be easily compared with respect to the best allocations 
of crossing efforts among numbers of males, females, and numbers 
of crosses per parent as well as the general goodness of the designs 
over different levels of the genetic components. In balanced ex
periments, the sums of squares computed by standard methods are 
independent. 

In all of these cases, the Cov (HS) estimator is used to estimate 
aA 2/4 since it has no dominance variance. If no epistatic variances 
are present, or are ignored, the estimator is simply derived. The 
COy (FS) which has both a,l!! and ar)'.!. is used to estimate all'! after 
any adjustments for the a,!2 are made as may be necessary. 

If the family genetic variations are generated by multinomial 
distributions, their meanS may often approximate a normal dis
tribution and hence the variance of mean squares would approxi
mately follow a X2(]'.!. distribution. For traits with few genes 
operating and with few individuals per family, the approximation 
holds less well. For Ollr assumed quantitative traits, however, the 
normality assumptions will be closely approximated, especially if 
means are used and skew corrections applied. 
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Females 	 Nested mating design (A/8) 

A 	 8 0 E r G H I J K L •• 

)(A X 
No female serves as a male, 

C a 
8 	 a 

No male serves as a female, 
M 0 X X No fema I e serves more than one ".a Ie, 

E 0 Each rna I e serves the sal'e no".tee of 
F a different females, 

e G X X Reciprocal .crosses possible (a's), 
5 H a Subblocking different sets ray be 

a accomplished by blocking different 
J 
I 

X X rna 1 e groups. 
K a 

0 

Females 	 Factorial Il'ating design (AB) 

A 	 8 .C 0 F G H K 

A X X X X X X X X 
8. X X X X X X X X 110 female serves as a rale, 
C X X X X X X X X No rrale serves as a fel"ale, 

M 	 0 X X X X X X X X Each female serves the sa"e set of ~ales, 
E 	 a a a a Each male serves the sa"e set of ferales, 
F a a a a Reciprocal crosses possible (O·s). 

e G a a a a Subblocking sets ray be accorpllsred by 
s 	 H a a a a blocUng male or ferale gr'J"ps or by 

I a a a a blocking separate ,,-ale acd fer-ale 
J a a a a factorials. 
K 	 a a a a 

Females Partial dial leI desl,n (AA) 

A B C 0 E F G H J K L 

A X X 
8 X X X 
C X X ".ales and females act both ways, 

M 0 
E 

X X 
X 

Overlapping crossing al'Oong parents 
creates chains of relationships, 

F X X X Reciprocal crosses possible, 
e 
s 

G 
H 

X 
X 

X 
X 

X X SubblocUng sets "'ay be accol'"plished by 
blading chains into sro"ps. 

I X X 
J X X X 
I( X X X X 

Females 	 0; sconnec ted d i a 11 e I des i gn 

A 0 E f G H I J K L ••• 

A X X 
8 a X 
c a 	 Same as partial dialle! but separated 

M 	 0 a a into groups of small partial diallels, 
E X X Reciprocal crosses oossible (O's), 
F a Subblocking sets ray be a(coMpl ished bl 

e G blocking separate dial1els. 
s H 0 X 

I a 0 
J X X 
K 0 X 

a 

Figure 15.-Schematic diagram of four mating designs. 
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ERRORS OF ESTIMATING GENETIC VARIANCES 
Using the x2t? distributions of the sums of squares for the 

nested and factorial designs, and the variance of the sums of 
squares of the diallel as traceable by its individual squared sums, 
the variances of the additive genetic variance can be derived. 

A A 
Allowing u.4 2 =4ul for the nested design, and using a pooled 
estimate of 4ul and 4um2 to estimate U.4 2 in the factorial, and 

/I. h • 

4u/=u.4 2 , the varIances are: 

Nested design V(~ 2) =~x[MSF2 + MS(M/F)2J
.4 r2m2 f-l f(m-I) 

h 32 
Factorial design V (U.4 

2 
) = r U (m-I) + (1-1) J2 

[ MSF2(1-I) +MSM2 (m-I) + (m+f-2)2 MSMF2J 
(m-I) (1-1) 

• ., , A 2 _32 MSSCA2(q-I)2
PaItIal dIallel deslgn V (U.4 ) --., ( 2) 2 2

1'- q- S 

2 1 21'S(q-2) 2...1- [q+ (q-4)s]sr2" 4JA 
g g[ q(s-2) + q-I + (q-l)2MSSCA u (q-I)2MSSCA2 UI 

A pooling of sums of squares with different expectations produces 
a non-X2u2 variate. The variances are computed as non-X2 vari
ances. 

Similarly, the dominance genetic variances can be estimated 
by a linear function of the sums of squares and those variances 
can be estimated, Only in case of the nested design are we re
quired to use more than two sums of squares, since that estimator 
contains both U.4 2 and UD 2 and hence requires that we estimate U.4.2 

separately. These sampling variances are: 

A 32
Nested design V(UD2) =-,X 

1'2 

(1+m2) MdM2 + MSF2 + MSE2 ]
[ m2f(m-I) m2 (1-1) (1'-1) (mf-I) 

Factorial design V (~D2) = 32 [ MSMF2 + MSE2 J 
1,2 (m-I) (1-1) (1'-1) (f-l) 

2
V (~ 2) = 64 [MSSCA + MSE2 J 

D 1'2 q(s-2) (1'-1) (qs-2) 

" , h ~ 64 [MSSCA 2 MSE2 JPartIal dIallel deSIgn V(UD-) =-., ( 9) + ( 1) ( 2)
1'- q s-~ 1'- qs-

Finally, the t? is estimated directly from the error mean square
e 

and its sampling variance is simply the variance of that mean 
square. However,if the error is partitioned into 0 2 

Ie 
, and 0 2 

p 
, or 

http:4u/=u.42
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other components, other appropriate mean square functions would 
have to be derived. 

It is clear that the variances of the estimated components vary 
according to the size of the genetic components themselves, as 
well as how the experimental effort is allocated among numbers 
of parents, numbers of crosses, crossing patterns, and numbers of 
trees per plot. While there would be considerable variation in 
actual cost efficiencies according to species, ease of making crosses 
and experimental plantings, and how an agency can schedule such 
activities, it is instructive to compare sampling errors of experi
ments with the same total number of crosses. 

For 100 crosses with a randomized block planting design of 
8 trees per plot and 10 replications, an analysis of variance with 
estimates of u,j2 can be reconstructed. For any given experiment, 
the error in estimating u,j2 is also a multiple of the environmental 
sources of variation (uPIl,2 above), and allowing this to equal 1 
puts the comparisons of equal-sized experiments on the same basis. 
When u,j2=1, for example, the use of 25 females and 4 males per 
female in a nested design yields a variance of the estimates of 
only 0.14. However, if the 100 crosses were made by using say 4 
females and 25 males per female, the error would be 0.71. At 
lower levels of u,j2, the female variance and its mean square are 
lower, and the error variance for estimating u,j2 is therefore also 
lower. The higher the u,j2 is, the larger also is its error of estima
tion. The relationship of the size of the component to its error of 
estimation is thus roughly constant over wide ranges of u,j2, and 
any design that is good at moderate heritabilities of around 0.5 is 
generally good between heritabilities of 0.2 to 0.9. Only at rela
tively low values of UA 2 do the relative efficiencies of the alloca
tion of materials change very much. If we were to chart the 
variance of estimates of u,j2, V (U_4 2 ) , as a ratio of u,j2 itself for all 
possible values of heritability (UA2/(u,l+ue2», the curves for the 
4 males and 25 females per male nested design are shown in figure 
16. The curve for the allocation of 25 males and 4 females per male 
would generally be lower, except at low heritabilities, when the 
curves cross (fig. 17). At low heritabilities, the error and female 
mean squares are more nearly equal to the male mean square and, 
since they influence the error for estimating IT,j2, also rE..quire pre
cision in estimation. Since precision requires high degrees of free
dom, relatively more full-sib families than half-sib families have 
to be sampled. 

While the error variance for estimating u,t2 tends to decrease 
rapidly when u,j2 itself decreases at very low values of U_42, the 
curves display a curious reversal of direction. For any mating de
sign, there is a point in heritability below which the decline in 
V (U,4.2) is more than matched by the decline in U,4.2, and hence the 
curve rises for lower heritability. If we wished to design an ex
periment which would be satisfactory for any level of u,j2 and we 
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Figure I6.-Efficiency of allocating 4 males and 25 females per male in a 
nested mating design over all heritability levels. 
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Figure 17.-Comparative efficiency of allocating 4 males and 25 females per 
male versus 25 males and 4 females per male in a nested mating design. 
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use a criterion of satisfaction like the coefficient of variation 

the above change in direction implies that no design can be com
pletely satisfactory. Bogyo (1964) has shown that astronomically 
larger experiments would be necessary if CV=0.05 is uniformly 
required for low (T,1 2 • However, other criteria of satisfaction may 
serve as well at low (T..12. One suggestion is that at low (TA2 our con
cern is to not estimate a high (T..1 2 , and hence if (T.4.2 =0.001, or 0.01, 
or 0.02, a standard error of estimate of 0.05 may be quite accept
able. Therefore a reasonable criterion to suggest is that at herita
bilities above 0.05, a CV=0.05 or less be used, and below 0.05, a 
constant variance be used as a maximum critical curve. Imposing 
these criteria on the above comparison of male: female allocations 
show that the 25 males and 4 females/male are satisfactory every
where, while the other is only satisfactory at low (T..j2 (fig. 18). 

Other designs and allocations may be compared. Among the bet
ter allocations of the nested design (A/B), 16 males and 6 fe
males/male and 50 males and 2 females/male can be compared 
with the factorial design (AB) with allocations of 6 males and 
16 females or 10 males and 10 females, and compared with the 
diallel (AA) with q=33 parents and 8=6 crosses per parent or 
with q=66 parents and 8=3 crosses per parent (fig. 19). 

Similar analyses and interpretations of the estimates and vari
ances on (TD 

2 can also be made (fig. 20). For these estimates the 
full-sib covariance estimator is most criticaL All designs require 
good estimations of the error component, which is largely a func
tion of replication numbers for any constant number of crosses. 
Thus, the choice of parental allocation affects error variance only 
if the crossing pattern is so costly or time consuming or, con
versely, is so cheap and easy as to affect the number of replica
tions which can be planted. The nested design is the only one 
requiring an estimate of (TA 2 to estimate (TD2. Hence, it is affected 
directly by the precision of estimating the half-sib variance. 

It can again be observed that as (TD 2 rises, the V «TD2) also rises, 
and that there exist allocations of parents and half-sib versus full
sib family members which are reasonably good over a wide range 
in (TD2. The actual choice of design will again depend on relative 
operational costs and specific criteria of goodness, but there still 
seems to be evidence that some design allocations can find wide 
favor. Unfortunately, the optimum design for minimizing the er
rors of estimating (T..1 

2 are not the same as for estimating (TD2. 

Therefore, optimum levels of allocation for estimating (T..1 
2 and 

(TD 2 will be in some conflict. 
Several other judgments must be made before selecting a de

sign. These involve such problems as the use of several designs 
simultaneously for the mUltiplicity of purposes usually intended 
for any experiment, and the effects of inevitable plot mortality or 
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Figure lS.-Efficiency of allocating 4 males and 25 females. per male, and 25 
males and 4 females per .male, relative to a coefficient of variation (CV) 
of 0.05 and a constant variance at low heritability. 
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Figure 19.,-Relative design efficiencies (V (u/) /u/) for estimating 
u,," when UIJ"=U,l", 0=100. 

missing crosses. The problem of missing trees in plots has already 
been discussed, but the problem of missing plots involves many 
analytically significant decisions. We have seen that missing plots 
will inevitably cause some difficulty in determining the distribu
tion and hence the sampling variance of the sums of squares esti
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Figure 20.-Relative design {'fficiencies (V (O'D') 10'0") for estimating 
O'D' when O'D'=O',,", c=100. 
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mators. Some crossing programs will be more likely than others 
to yield unbalance by their difficulty of execution. Regardless of 
the method used to obtain sums of squares as previously de
scribed. the variance components, and hence the genetic variances, 
can be deri,'ed as linear functions of various sums of squares, 
some with higher error than others. However, the variances of 
linear functions of elements can also be derived if the elements 
haye variances. This procedure requires that the covariances 
among the sums of squares in unbalanced experiments must also 
be accounted for. As long as large computers are available, most 
analyses and estimates of sampling errors can be derived or other 
quadratic estimators derh'ed. For agencies ,dthout such facilities, 
it might be desirable to choose designs which are relath'ely unaf
fected by mh;sing plots. ,"Vhere computing facilities are lacking, 
the diallel cannot be generally recommended since both the nested 
and factorial designs can be more easily handled for any missing 
plots. \Vith computing facilities, however, other design criteria 
can be more significant. 

Designs must often be chosen on the basis of only partly known 
(lata because the forest geneticist must often deal with unknown 
difficulties, costs, times for making crosses, and actual leyels of 
the variances. Each species that he deals with has different polli
nation and seedling production problems and exhibits different 
error and genetic variances for each trait. For anyone species, the 
geneticist may want to estimate means and several components 
for se\'enll traits from a reasonable population sample. Thus, 
giYen the capability for estimating variances and means, but with 
multiple demands for estimators, either some compromises on 
effidency or several different experiments will have to be run. 

OTHER ESTIMATORS 
Several sources of data on genetic variances can often be ob

tained or planned to jointly provide estimators of the components. 
Thus, seyeral other kinds of relati\'es and estimators, such as 
parent-offspring regressions, clonal variances, and eventually, var
iOLlS kinds of cousin relath'es, may be made available. It is not 
necessary that we use only the three mean squares from the 
aboye mnting design ANOVA's to estimate three components, since 
other kinds of estimat.ors are also ayailable. Perhaps the simplest 
estimator l'e(luiring no relationships at all is that developed by 
Shrikhande (1957) and used for forest trees by Sakai and Hata
keyama (1963). In this method, vadances due to systematic soil 
gradients anel to a random source of variation are estimated. The 
random variation is assumed to include genetic and some en
vironmental coval'iances and is taken as an estimate of the total 
genetic \'al'iarh::e. While Rome bia::; and large sampling errors exist 
(Namkoong and Squillace 1970), some estimates of a total genetic 
variance have been cled\'ec1 \\'Hh considerable economy. 

1\lore commonly used and only slightly more complicated are 
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estimates derived from parent-offspring regressions. The relation
ship structure we exploit in this case involves only b,'o kinds of 
relatives-parent and offspring or unrelated. The sib structures 
we first studied involve the three relationships; full-sib, half-sib, 
and unrelated. Shrikhande's (1957) structure invoh'es no rela
tionships. Whene\'cr any progeny and their parents can be 
measured, the regression can be interpreted genetically in terms 
of the covariance bebyeen parent and offspring and the variance 
of either or both sets. As long as the parents are noninbred, unre
lated, and randomly mated, the covariance of. paTent and offspring 
is 1/zu.;2+1/kUA42-i- •.. , as derived in the previous chapter. When 
both parents are known and their nverage is taken for a midparent 
value, its covariance with the offspring is the same. Similarly, if 
a random set of trees is mated to a common parent, the parent
offspring covariance "within common parent sets also has the same 
genetic variance expectation. It often occurs that the progeny 
trees are not truly planted at random but rather in some plot and 
replication design which may not be at all similar to the environ
ments sampled by the parents. Nevertheless, progeny means can 
be related to parental values and hence, covariances, parent and 
progeny variances, and the regressions and correlations of parent 
and offspring can all be estimated by simple standard procedures 
(Becker 1967). 

The numerator of the regression coefficient is simply the co\'ari
ance between two variables where one is a measure of potential 
perfonnance, and the other is the progeny performance. The de
nominator of the regression is the variance of the independent 
variable. The parent is the independent variable if the parent is 
known and the progeny performance is to be predicted or if selec
tion on the basis of parental phenotypes is made and the expected 
response in the progeny is desired. The offspring can be the inde
pendent variate if they are known and measured and the response 
of relatives such as parents or other sibs is to be predicted. 

In forest genetics experiments, it is not always clear whether 
the parent or offspring is considered to be the independent vari
ate. In some genetics experiments, it seems that the parent is as
sumed to be the independent variate, and the variance among 
parents is the denominator of the regression of offspring means 
on parental values. The use of midparent values reduces this 
parental variance by one-half. Since parental genotypes may be 
more immediately useful in forestry, and reliable data from plant
ings in more representative environments are on offspring, the 
offspring data can frequently form the independent variable. The 
regression estimates wjJ] depend on the variance of offspring 
means that are often derived from some replicated design and 
hence can be some function of several design variance components. 
Hence, the variance of the estimated means can be quite different 
according to whether the parent or offspring means are being 
estimated. 
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A very useful feature of the parent-offspring covariance is that 
we can also determine the covariance between juvenile and ma
ture characteristics. This parameter is necessary for predicting 
the gain to be made in mature growth performance on the basis of 
juvenile tests Or observations. If juvenile performance is desired, 
as for early survival and competition, and juvenile measures are 
taken, then the additive genetic covariance between the measured 
trees and estimated breeding values is rerA2(j), where l' is the coeffi
cient of relationship between the measured trees and the trees 
"whose value is being estimated, and UA2{j) is the additive genetic 
variance of the juvenile trees. Similarly, if mature performance 
is being estimated by mature relatives, the additive genetic covari
ance is I·O'A2 ",,). But if one estimates mature performance from 
juvenile reiatives, or juvenile performance from mature relatives, 
the covariance is l' Cov [A (j) ,A (1'1'1,) ] the product of the l' and 
additive genetic covariance between the juvenile and mature 
traits. If r is known, then the covariance is estimable and the effi
cacy of selecting on the basis of correlated traits can be deter
mined. The covariance, in this case, is not a genetic variance and 
should not be used as such to estimate heritabilities unless the 
same trait is being measured in the relaUves or unless one wishes 
to obtain a lower bound estimate for the larger genetic variance. 

When the covariance actually estimates a genetic variance, then 
the variance of either single trees or replicated plots can be 
nsed as the variance denominator of a regression coefficient. It 
sometimes occurs that age or environmental effects cause iarge 
differences in average performances which might induce scale 
differences such that the variances are not comparable in the 
different materials. In such cases, it is a common procedure to 
standardize the units of measure by dividing the x variable by 
err and the y by uvlJ (Frey and Horner 1957). It is also sometimes 
done by scaling one of the variables (say x) to the other (say y) 
by multtplying it by eryl err. Then, the variances are comparable 
and the covariance is multiplied by erilierx, When snch rescaling is 
justified and ii the variance denominator of b is er/, the regres
sion can be rescaled and becomes the correlation coefficient. If 
the variance denominator is eri, then the regression should be 
rescaled to have a multiplier of Uy/u.r3, Rescaling should be done 
with caution, and the denominator for the regression should be 
selected for the specific purposes for which the regression is 
to be used. 

The sampling error of the parent-offspring covariance estimator 
is 

;f[COy2+ V (parents) XV (OffSpring)], 

which can clearly be quite cheaply reduced by simply increasing 
the number of parent-offspring pairs. If the genetic Yarinnce is 
estimated by doubling the parent-offspring coYariance, the sam
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piing variance is increased by a factor of 4. 
It is often desired to also estimate the parent-offspring regres

sion coefficient, which can be computed as in any other regression 
problem with the same sampling error as in any other regression 
problem. The great attraction of computing the regression is that 
it can be interpreted in tel'ms of a ratio of a portion of the genetic 
variance to the total vandllce among the parents or offspring. 
Any such function which is a ratio of some portion of the genetic 
variance divided by some function of genetic and environmental 
variances is called a heritability. Clearly, the portion of the 
genetic variance in the numerator and the content and structure 
of the total variance in the denominator determine the meaning 
and value of heritability. While a full discussion of different forms 
of heritability is included in chapter 3, we can briefly note that 
any procedure which im'olves estimating the numerator and 
denominator separately requires us to estimate its variance as the 
variance of a ratio of two random variables. Thus, the simpler 
estimate of heritability as a regression of parent and o~spr.ing 
is not only ver~r simple to compute, but its errors are easily 
reducible and the error distribution is well known. By using a 
regression estimator, it is also possible to bias the sample of the 
independent variate hy selecting extreme elements to reduce the 
error of estimate on the regression. While this does not provide 
valid estimates of either the gEnetic variance of the population in 
the numerator or the phenotypic \'al'iance of the population in the 
denominator, it does provide an unbiased estimate of the regres
sion with small error (Hill 1971). 

HIGHER-ORDER RELATIVES~ 
Thus, simpler designs that 1m'0lve fewer different kinds of 

family relationships than the AXOVA full-sib, half-sib, and no 
relationship can give estimates of one or two genetic Yal'iances. 
The mating designs among unrelated parents provide three yari
ance components for estimating the mydad of genetic variances, 
nnd it is clear that the more different kinds of relationship con
structed. the more different kinds of genetic variances can be 
estimated. As long as each variance component, such as the 
half-sib co,'al'iance, is a different, indepencient, linear function of 
the se,'eral genetic variances, including the different epistatic 
types, then the additional design components give liS estimates of 
more genetic componeds. Since full-sib covariances contain both 
additive and dominance genetic variances, and half-sib covari
ances do not contain dominance variances, they allow us to 
separate additive from dominance variances. However. they still 
contain various additive types of epistatic variances which cannot 
be separated without additional kinds of relationships. 

As trees of known parental origin mature, the opportunity for 
creating cousin types of relationships also emerges. Since grand

*Oraduate-level statistical training required for thorough understanding. 
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parental identities are now known, individuals which have com
mon grandparents can be created and identified. For example, 
in the following diagram, 

if all G{ are unrelated, all P and S individuals are not inbred but 
do have a variety of relationships. Within the P generation, 
PI and P!!. are full-sibs, as are the pairs P a and P.j, and Po and Pi' 
Po is a half-sib of PI and P2, and P" is a half-sib of both Pa and Pi' 
Within the S generation, Si) and So are full-sibs and S4 and S6 
are half-sibs. First-cousin relations exist for S2 and S5, while 
SI and S4 are double-first cousins since both sets of grandparents 
are common. S2 and S.j appear to also be double-first cousins but 
additionally have a common P 2 parent and hence may alternatively 
be considered as half-sibs with the alternate parents related as 
full-sibs. A slightly weaker relationship of S2 and Sa exists since 
the altel'l1ate parents are related as half-sibs. An even weaker 
relation exists between SI and Sa since their P l and P 2 parents 
are full-sibs ",hiie their Pa and Po parents are half-sibs. Weaker 
still is the relation between So and Sa since their Po and P2 parents 
are half-sibs and their Pa and Pi) parents also are half-sibs. 

If it is also reasonable to assume that the gene frequencies 
and genetic variances do not change over the generations, then 
a series of Pllrent-offspring, grandparent-offspring, aunt-niece, 
and aunt-half-niece types of relations can also be identified. There
fore, a \'ery much expanded set of relationships can yield many 
ne\\' equations for genetic variances among relatives and hence 
allow for estimating variances due to a variety of inherited 
effects. Eisen (1967) lists most of the above cousin types of 
relations ane; describes designs to estimate additional genetic and 
nongenetic variances. 

It is also possible that most epistatic \'ariances can safely be 
assumed to be negligible components, and hence that the additional 
information on l'elath'es could be used to do a better job of esti
mating a restricted set of genetic variances. ,Yhen the number of 
independent equations relating to the experimental design com
ponents of variance to the genetic components of covariance 
equals the number of genetic components, then one can directly 
derive estimates of the genetic components. 

\Vith a set of mean squares, coval'iances, or other estimators 
(!:) J the design components of variance d can be estimated by 
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v=Cd, where C is a square matrix of coefficients and d is the 
vector of design ~omponents. Since the design components can also 
be related to an equal number of genetic components, d=Dg, 
where D is a square matrix of coefficients and g is the vector o"f 
genetic variance components. Then v =CDg, or letting iltI =CD, then 
v=Mg. - -

If there are more genetic components than estimating functions 
of the design, we can only estimate combinations of the genetic 
components, for example, Cov (half-sibs) =1,4CT.-t2+1't6CT.-L.,\3...L •••• 

Otherwise, we must reduce the model and estimate only those 
components we wish to assume to really exist, for example, assume 
CT.U 

2 =O. 
If there are fewer genetic components than estimating func

tions, we can choose a method to provide a good estimator of each 
component. A simple method would simply average any independ
ent estimates, but this would give equal weighting- to all estimates 
weak and strong and might not use all the information in the 
data. A logical procedure is to consider the mean squares, covari
ances, and variances as linear functions of the genetic variances 
which are essentially constant, regression-like coefficients. Then, 
each computed mean square or variance would have an expected, 
unique combination of the genetic and environmental variances 
plus some component of error variation. This model is essentially 
that of a linear regression in which the dependent variate is the 
mean square, the constant regression coefficients are the genetic 
and environmental variances, the independent variables are the 
set of coefficients which determine the contribution of each genetic 
component to the mean square, and the error term is the de\Tjation 
or variation of the actually computed mean square from its 
expectation. 

As with any such regression problem, the least squares estima
tion for the regression coefficients (genetic and environmental 
components) can be derived. For the above model we can write: 

v=Mg+e 

when ~=vector of mean squares, covariances, etc., 

g=vector of genetic and environmental variance com
ponents, 

M =matrix of coefficients relating the expected value of 
! to its f!. components, 

~=vector of errors around each mean square. 

An unbiased;md unwelghted estimate of g then is: 

" When more estimators than g components exist, Xasoetioll 
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(1965) has shown that it is better to estimate the g " directly from 
the ~. rather than to first estimate the experimental design com-

A 

ponents from the l' and then to estimate the g. 

Howe\"er, each Of the mean squares, variances, and co\"ariances 
in v usually has different errors and some may, in fact, be cor
related. The complete weighted least squares solution would then 
require weighting by V, the variance-covariance matrix of the 
~' vector, and the weighted least squares estimate would be: 

A 

g= (1Y1'V-IM) -liWV-1v. 

An additional problem created by the use of the V matrix is 
that we must now estirr.ate its elements, and the problem is that 
the best estimates of those variances and covariances require 
estimates of g." That is, the genetic and environmental components 
g are neecledto provide good estimates of V, and the V is needed 
to provide good estimates of g. Hayman (1960a) therefore rec
ommends an iterative procedure whereby initial estimates of g 

are used to provide initial estimates of 7.', which are then used 
according to procedures formulated in chapter 7 to estimate g, etc. 
This iteration is continued until the g does not change significantly 
from one trial to the next. -

It is reasonable at this point to question the utility of such 
procedures or of generating large and complicated experiments. 
Is the additional precision worth the effort, or would it be wiser 
to simply create small two-factor designs in each subsequent 
generation '? Is it necessary to estimate the contribution of epi
static components? \Yhen no estimates are available, the value of 
extra information is much higher than when some estimates and 
experience have accumulated. \Vhen data are scarce and there are 
few designed experiments, then any kind of relative can aid 
precision considerably. Therefore, in the beginning stages of pro
grams, the use of a variety of estimators to estimate many com
ponents is reasonable. As populations develop, however, primary 
concern will be de\"oted to changes in the genetic components and 
more attention then may be given to fewer and simpler designs. 
Therefore, in these times of newly developing forestry programs, 
the infOl1nation from sib designs, parental and clonal variances 
and covariances with offspring, and eventually grandpnrental, 
cousin, and nephew types of relati\"es, wiII be useful. If the time 
ever comes that foresters can consider alternate mating designs 
for estimation purposes, then the question of allocating resources 
among the multiplicity of relatives "will require optimization. It 
seems clear, however, that those relatives with large contrasts in 
the contribution of the sever.al genetic variances will generally be 
favored. 

http:sever.al
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Considering the array of relatives which might be generated 
and the great proliferation of plots and consequent unbalance in 
allocating degrees of freedom, some consideration should be given 
to unbalanced designs with a more equal distribution of degrees 
of freedom among the various kinds of relatives and sources of 
variance. \-Vhile a set of designs has not been specifically developed 
for genetic experiments, the utility of unbalanced designs for 
variance component estimation is estabJjshed for industrial 
experiments (Goldsmith and Gaylor 1970). Since most forestry 
experiments become unbalanced by mortality or po11ination 
failures anyway, deliberately designed unbalance may not cause 
any extra ,,'ork and may afford experimental economies. 

For estimating variances, it is therefore desirable to consider 
designs which do not necessarily satisfy the requirements of test
ing treatment means very well but which do estimate variances 
efficiently e\'en if unplanned imbalances occur. For example, Gold
smith and Gaylor (1970) examine se\·eral combinations of nested 
design8, which could easily be implemented in forest genetic 
experiments. For their particular restrictions, they find that the 
balanced design is good for low heritabilities if one wishes to 
minimize the ul1\\"eighted sum of error in estimating the three 
design components. However, for higher heritabilities, unbalanced 
sets can be optimal. Estimation of genetic components has not 
been thoroughly examined as yet, nor have many other criteria 
of relative value of estimating them. Thus, other combinations of 
unbalanced nested designs require investigation for robustness. 
In addition, jf some random-plot loss can be expected, then 
designs should he examined for the possible configurations of 
unbalance stich losses may induce. As for other designs, such as 
the factorial or c1iallel, only preliminary investigations on the 
general utility of unbalanced sets ha\"e heen conducted ()'Io::::tafa 
1967; Gaylor and Anderson 19()O) and further examination is 
required to determine their value in forest genetics. 

If we can accommodate possible imbalances in design configura
tions, then efficiency of estimation of the variance components 
should also be considered. For any given set of data, it is possible 
to construct almost an infinite number of sums of squares as 
functions of the variance components, and, for unhalanced experi
ments, it is not immediately ohviolls whieh sum of squares would 
minimize the variance of estimators of the variance components. 
Some iJwestigations (Rao 1971) indicate that other sum of 
squares functions than those traditional1y used in analyses of 
variance can considerably improve estimates of variance com
ponents while maintaining unbiasedness of the estimators. How
ever, the unbiasedness requirement may also impose restrictions 
on estimating functions such that even more efficient estimators 
may be available. Since forestry experiments are so costly, for
esters should consider both unbalanced designs and minimum 
variance estimators for their analyses. 
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SPECL.\L FORESTRY PROBLEMS 
All these desigLs can be modified in several ways to give 

information on additional parameters of environmental sources of 
variation, and genotype-by-environmental interactions. Among the 
various kinds of environmental effects, it is often desirable to 
determine the sizes of random variations among what the forester 
,,'ould consider to be roughly comparable sites within geographic 
planting zones. Often, it is also desirable to estimate variances 
among smaller replicates within plantation-sized areas, among 
plots within replicates, and even among individual trees within 
plots. To satsify such demands, the simplest experiment would 
replicate the entire genotypic array over as many sites and 
plantations with as many plots as feasible. In any large-scale 
silvicultural experiment, testing locational or site differences or 
soil, spacing, or any treatment differences, the insertion of any 
kinds of relath'es as split subplots may often be feasible. It might 
occasionally be cheaper to allow families to be major plots and 
cultural effects to be subplots, but the former case is more likely 
to occur. Thus, partially balanced factorial arrangements of the 
environmental variables should provide some important efficiencies 
in the number of plots required of each family. While it may be 
impossible to sample all combinations of all levels of the important 
site factors, it may be possible to sample enough variations to 
estimate the response surface for each family or replicated geno
type. The form and magnitude of genotype-environment inter
actions could then be examined. 

However, even reducing the number of replicated plots required 
of each family by judicious sampling of site factor .combinations 
may often not be adequate for the crosses with relatively few 
seedlings. In such cases, some efficiencies in combining genetic 
and cultural variation in the same experiment might be achieved 
by at least partial confounding of one with the other. Uninten
tional mortality and differential planting of families will also cause 
some confounding, but the deliberate planning of unbalance may 
be feasible. Partial confounding for mean estimation is a well
established technique, but for variance component estimation it 
is not well developed in biological experiments. The objective 
again is to affect the allocation of degrees of freedom to those 
mean squares required to estimate the important variance com
ponents. Hence, uy locating most families on some environments 
and a few on many environments, the usual excess of degrees of 
freedom on the family-by-environment interaction mean square is 
avoided while more effort can be mane to sample either more 
families or environments. Xevertheless, the families not repre
sented on some sites cannot be adequately evaluated on those 
sites if the interaction is high. The only recourse available for 
estimating means or response surfaces would be to model the 
interaction forms so that families that behave similarly are 
grouped into homogeneous reaction classes and their response 
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estimated relative to their behavior within these classes. It would, 
therefore, be desirable to combine complete environmental sam
pling of all families for response estimation on some minimal set 
of sites which span meaningful site variations, with partial geno
type sampling of more complete site samples. 

Another complicating factor in design is that most experiments 
are established for several purposes. At least several traits are 
usually measured for variances and for the covariances among 
traits attributable to various genetic and environmental effects. 
A suitable design for one purpose or for a trait with a high 
genetic component may not be suitable for another purpose or 
trait. Hence, designs usually have to be chosen to provide reason
ably precise estimates of variance components for each trait and 
for their covariances. Criteria such as minimizing the error 
volume 01' minimax criteria may be better than the traditional 
criteria of minimizing average enol'. In general, however, the 
simplest, most robust design will be of greatest utility. Thus, 
designs which can be subdivided into balanced subsets can be 
easily analyzed within subsets. Also, designs that do not require 
the use of poorly estimated coval'iates for adjusting means should 
be favored to avoid the additional estimation errors so generated. 

An additional type of design and estimation problem exists 
when genotypic competitive effects are to be estimated. Two 
experimental strategies might be adopted according to whether 
estimates of specific interactions between families or a general 
level of competitive interaction is to be estimated. If pair-wise 
competition estimates are to be tested, the parameterization and 
estimation techniques, outlined by Byrd and others (1965), seem 
appropriate and generally applicable. The parameters described 
by Schutz and Usanis (1969) and estimated by Schutz and 
Brim (1971) for soybeans are further developments describing 
and measuring competitive effects between noninterbl'eeding ele
ments. ?rlore direct utility fOl' populational effects with intermat
ing populations is achieved by Griffing's (1967) parameterization. 
However, estimation is difficult unless methods such as developed 
by Sakai and others (1968) can be applied. The genetic conse
quences of competition effects, however, have been investigated 
by Huhn (1970c). 

For estimation purposes, trees also present unique experimental 
problems in space and time, especially if plot thinning is expected. 
Blocking and planning for spacing for the duration of the experi
ment require care to assure that reasonable plot sizes are main
tained for the spacing and other environmental conditions 
required for analysis of larger trees. While spacing experiments 
themselves might be of interest with respect to genocypic "aria
tions in density response (Namkoong 1966), the more common 
consideration is to assure that genotypes arc measured under the 
environments planned for specific ages. If growth cun'es 01' other 
time-dependent responses nre to be analyzed, extra care is required 
to nssure that plot integrity is maintained. Similarly, correlation 
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analyses among juvenile and mature tree characteristics will 
require plots at a variety of ages and will require some plot 
continuity. The relative and absolute sizes of variance components 
for single traits can generally be expected to change with time. 
Some may, in fact, tend to disappear while others maintain their 
same relative size according to the form of genetic control of 
growth (Namkoong and others 1972). 

The duration of tree life also creates a dimension of uncertainty 
of future environments. Future environments will surely be differ
ent from present ones, and variations will undoubtedly be con
trolled by some events not yet discernible. The problem for the 
forest geneticist is to determine a reasonable array of environ
ments for which his estimations will be valid. Therefore, sampling 
a wide array of controlled as well as uncontrolled variables is 
desirable to define the kinds of interactions large enough to worry 
about as well as the average performance over uncontrolled 
environmental variations. Initially, the geneticist may often 
reasonably guess that location and site differences are larger than 
the time-trend differences he can sample and hence that genotypic 
interactions with site variations may be most important. Certain 
environmental effects that occur periodically, such as '1isease and 
insect epidemics, however, may require special sampling of 
periodic environmental events. 

Othenyise, estimation problems for forest trees are not signifi
cantly different from those for any other 0rganism. The principal 
problems are as stated in the beginning of this chapter. Perhaps 
the greatest problem is how to assure the continuity of experi
mental administration so that the value of well-designed experi
ments is not compromised by future neglect or change in personnel. 
However, since changes in personnel and organization are to be 
expected, greater reliance should be placed on simple, easily 
analyzable designs. Considerable sagacity is required to plan for 
an uncertain future so that the parameters of future value can be 
well estimated. 



CHAPTER 9 

POPULATION GENETICS 


The importance and pervasiveness of genetic effects anG. sizable 
variances in forests are well established. The origins and evolu
tionary utility of these variances in the evolution of tree popula
tions, however, are not clear. If we are to control the future 
evolution of tree species, it behooves us to know not only the 
status of existing genetic variations but how they originated and 
may be maintained. It might then be easier to direct evolution for 
any given set of objectives while we are developing our under
standing of the dynamics of natural forest evolution. If we accept 
the concept of tree populations with significantly changing genetic 
effects and variations, then we must determine the nature of the 
forces which disturb any stable uniformity. We shall try to under
stand how variations might originate and be propagated and how 
they affect the resultant distributions of gene effects. \Ve first 
consider how the forces might act independently and then consider 
ho'w their joint actions might operate. We shall consider the 
forces as they operate in large random-mating populations 
without linkage disequilibrium and shall therefore assume that 
deterministic models are adequate and genetic and zygotic fre
quencies are determined by gene frequencies. Finally, expansions 
of the analyses to cases in which mating is restricted and 
stochastic variations are significant will then be considered for 
their effects on the evolutionary processes. 

MUTATION 
The basic force which provides alternative alleles to the popula

tion is mutation. However, single mutations are rare and would 
not occur frequently enough to be a major source of variation in 
a population without persistent reCUlTence. While this persistence 
depends on the mutability of the alleles and their frequency in 
the population, it could have cumulative effects on allelic fre
quency. Not all changes in the molecular structure of the DNA 
material result in important differences. Some changes have no 
direct effect on amino acid structure and some have no effect on 
function even if an amino acid sequence is disturbed. Thus, we 
might expect molecular changes in DNA to occur at a higher 
rate than what is actually observable as mutants that might have 
any observable selective effect (Kimura 1969). At the functional 
cistron level of gene locus definition, the per locus, per generation 
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rate of mutation has commonly been estimated at around 10-5 
• 

While most studies have been conducted on major genes, there is 
little apparent difference in the mutation rate of polygenes. That 
is, the polygene which has a less visible, individual effect that 
may be partly masked by environmental and other genetic effects 
has been estimated to have mutation rates of about the same 
magnitude on a per locus per generation basis (Mukai 1969). 
The two types of genes are also similar in the existence of varia
tion in mutability (Russell and others 1963), and the average 
mutation rates are similar. On a more readily observable basis 
than on the traditional per locus basis, Mukai (1969) estimates 
the mutation rate for polygenes per second chromosome of Dro
sophila per generation to be around 0.14, and for lethal mutations 
on the same basis to be around 0.006. On a different but perhaps 
more useful basis for plant breeders, Russell and others (1963) 
estimated the mutation rate for several quantitative types of 
characters in corn populations and found an average per trait, 
per gamete, per generation mutation rate of 0.028. 

Thus, for any trait that has a large number of loci, persistent 
mutation rates of even 10-5 or 10-6 per locus, per gamete, per 
generation can have some of its variation generated by mutations 
alone. It is clear that recurrent mutation from one allele (al) to 
another (a2) would eventually either move the population to 
homozygosity for a2, or the mutation back from fL2 to al would 
produce a gene frequency equilibrium. Of less practical interest, 
but great fun, is the analysis of the fate of nonrecurrent mutations 
which we ignore. 

To study the effect of mutations, we first ignore the confound
ing effects of selection and consider how mutants may affect the 
population's genetic means and variances if all products are 
selectively equivalent and populations are large enough that 
sampling error can be ignored. In this case, the initial frequency 
of an allele qo and its mutation rate p. to another allele strictly 
determine the frequency of the allele in the next generation, the 
frequency being decreased by ,uqo' Hence, ql=qo-p.qo=qo(l-p.) 
and q2=ql-,u.ql=ql(1-p.)=Qo(1-.JJ.)2, etc. Then, qt=qo(l-p.)t. 

To simplify this expression, an approximation can be substituted 
to give a useful form to the equation. This approximation depends 
on the condition that J.L is very small and hence that p.2 and all 
higher powers of p. are almost zero. If that is true, then the 
identity 

can be approximated by e-P.=l- p., 


and therefore (1_p.)t=(e-/I)t=e-/1t . 


Hence, we can trace, with close approximation, the change in gene 

frequency from any initial qo to the frequency at any time 
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t, qt, by qt::=qoe-p.t. Alternatively, we may wish to approximate 
the progress (or regress) of gene frequency under continuous 
time or completely overlapping generations and define the rate of 

change in gene frequency ~i at a point in time as - p.q. Then: 

dq
dt =-,p.q 

dq
or -=-j.ldt.q 

Integrating the equation yields: 

log q =C-p.t 

or qt=qoe-p.t. 

In either case, the eventual result of persistent mutations is that 
q approaches zero as the alternative allele eventually takes over 
the population. If we wish to consider that back mutation occurs 
at a rate of y, then the gene frequency decrease of -,p.q is offset 
by the increase I' (1-q) from the other allele which exists at 
frequency 1-q. Then: 

ql =qo-p.qo+y (1-qo) 

=l'+qo (1-.p.-I') ' 

and qt =1'+qt-d1-,,u.-I') ' 

and we can derive that qt=yt+qo(1-,p.-y)t. 

It is clear that there must eventually be some equilibrium between 
the alternate alleles and hence that qt=qt-l after some large time 
period. At that time, the equilibrium frequency qe must clearly be: 

q.=y+qe(1-p.-y) 

or qe=-l'-.
p.+y 

We can also derive that for any intermediate generation i between 
o and equilibrium, 

qi-qe= (1-p.-I')I(qo-qe) 

or approximately ql-q.=e- (P.+y)t (qo-qe)' 

For continuous time and overlapping generations, we can use the 

rate of gene frequency change ~~ from: 

Ql-q.=(l-p.-y) (qo-qe) 

or approximately: 

ql-qe= (qo-qe) - (p.+y) (qo-qe) 
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or ql-qO= - (J.l+Y) (qo-q.) 

dq
and dt=- (J.l+y) (q-q.). 

Solving this equatio)1 by integration yields: 

q-qe=e-(f1+"tJl (qo-q.), 

as approximated above. 
In addition to back mutation, selection against new mutants 

can also prevent a complete change to the new allele and can 
usually be expected to be a potent force in suppressing the fre
quency of mutant alleles. Among the molecular variants which 
may exist at a locus, many may have the same average fitness
endowing . ;lalities. We can generally expect modifications in al
leles that exist at substantial gene frequency to lead to decreases 
in average fitness if the modifications affect differences at the 
cistron level. In fact, among any set of alleles, regardless of their 
mutation history, frequency will be controlled by the average se
lective values of their zygotes. Thus, for any two alleles, A and A', 
\dth frequency I] and 1-q, respectively, three zygotic fitnesses 
may exist; W 2 for AA, WI for AA' , and Wo for A'A'. For large 
popUlations in random mating, the relative zygotic frequencies are 
q2 for AA, 2q (1-1]) for AA', and (1- q)2 for AlA'. If selection 
operates according to the relative fitnesses of the zygotes by re
ducing their contributions to the next generation, the new fre
quency of gene A \\'111 be: 

1].= [lV2rf..;... (1(~) lV12'1 (1-q) ] / w, 

where u., a sc~~1ing factor of the average fitness, is: 

lC= lV21]L- H\2q (1- q) -l- WI) (1- q) 2, 

A simple parameterization of the W's may help interpretation. Let 
TY2=1, ll'l""'l-h. and lVo=l-s so that the contrast between 
homozygotes is measured by s, and h determines the level of domi
nance (O<h<s) or overc1ominance (h<O). Then by substituting 
these TV \'alL:el into the above equation, the effect of selection 
produces a gene frequency f[. of 

q2+ (i-h) q (I-f[) 
1-2q(1-q)h- (l-qT28' 

and the one generation change in gene frequency then is 

j.q.=q._q q (l-q) [qh .... (~-h) (1-q) J. 
IV 

\Ve have thus constructed a model for changing gene frequencies 
for any sand lz values. \lVe can now con:;ider that selection is for 
A (therefore s<(), but that mutation OCCLlrs from A to A' at 
frequency Il, and that simple mutation changes frequency of 
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A by .6.ql/l= - J.tq. Since the net change in gene frequency is the 
sum of t>.q.+6.qm, and the net change will eventually reach an 
equilibrium, t>.q.+t::.qm=O, then !:1q.= -.6.q"" and hence 

t>.q.=p.q., 

t>.q4_ (l-q.) [q.h+ (s-h) (I-q.)]
or '--p. 

q. We 

at the equilibrium frequencies of q (qo) and at those frequencies 

Some special cases are illuminating to indicate the effect of 
dominance on the value of qo. If gene actions of the new mutants 
are not masked by any dominance of the original A alleles, then 
h= (112) s, all factors are positive, and using these values in the 

above equation, the equilibrium gene frequency of A1=1-qe=XWe. 

If h is small and /.t is small, then 1.Ve is almost 1 and l-qe~~ or 

2J.l. On the other hand, new mutants are often l"ecessive, mak
s 
ing h almost .zexo, and then the above equation solves for 
1- qe=V(P. / s). More generally, we can derive approximations 
when /.t is very small with respect to s or h, and both sand hare 
close to zero themselves, then 11.'.=1. Then, also: 

J.l= (l-qp) [hqc+ (s-h) (l-q.)] 

= (l-q.) [h+ (s-2h) (l-Ch)]. 

This is a quadratic equation for (l-q.) and can be solved by 
finding 

1- - _ h+Vh2 +4J.l(s-2h) 

qe- 2 (s-2h) 
 J 

which is approximately 1-q.=l This approximation is a useful 

rule of thumb. It is clear that mutations do occur among forest 
trees, and may even occur at higher frequencies among some 
species (Sorensen 1969) . Since trees generally differentiate sexual 
organs from their outer branches' tenninal meristems and since 
some species are quite susceptible to radiation (Mergen 1963) and 
temperature shocks (Eriksson and others 1972), it might be rela
tively easy to accumulate mutations in the germ plasm. The effects 
of selection on these introduced alleles are complicated by any 
agencies that restrict the randomness with which gametes are 
distributed-either through mating patterns or through recombi
nations among other genetic loci. 

http:t>.q.+6.qm


268 

MIGRATION 
The simple effects of migratiJn can be similarly modeled as a 

source of new alleles which are fed into the local population and 
therefore affect the gene frequency. For large populations with 
random mating, the encroachment of mutants or migrants must 
recur persistently to have much effect, but when they do they can 
have cumulative effects on means and variances even if the new 
alleles have small effect in anyone generation. The effect of low 
migration into a population from some constant source is indis
tinguishable from mutation and is often lumped in the heading 
of "mutation" as a source of new variation. High migration rates 
would diminish the value of the approximations and may operate 
differently with respect to selection. Entire genome substitution 
in gametes (for example, po1len flight) or zygotes (for example, 
seed dispersal) is the form of migration and can occur in random 
patterns or may flow from high- to low-density areas of allelic 
concentrations. Such clustering of genes and zygotes creates corre
lations among loci on the one hand, and in the probabilities of 
mating among relatives on the other. An adequate treatment of 
migration effects therefore requires consideration of the breeding 
structure of populations which we postpone to a later section of 
this chapter. The simple treatment of migration rates as another 
form of mutation, ho·wever, can serve as a reasonable working 
model. 

In forests, seeds and pollen can migrate bv the action of wind, 
,vater, and animals. For the gametes, eggs do not generally mi
grate, but pollen is often carried long distances and can heavily 
influence migration rates of foreign alleles. 

While we cannot treat multiple-locus problems adequately, it is 
important to point out that when genes migrate into a population 
together, as in whole genome substitution, independent treatment 
of several loci is inadequate. To see one feature of the phenomenon 
we can determine that after one generation of random mating, 
each locus is expected to produce zygotes in their expected 
Hardy-Weinberg equilibria frequencies: p2 (AA): 2p (l-p) 
(A.fi'): (l-p)2(A'A') for whatever their new (]» frequencies 
are. We can simply demonstrate this by considering that random 
mating with gene frequency p necessarily yields the expected 
zygotic frequencies. Regardless of the nonequilibrium zygotic fre
quencies ]n one generation, the gene frequencies determine the 
next generation's zygotic frequencies at the Hardy-\Veinberg 
equilibrium, as long as population size is large and mating is at 
random. However, when alleles enter the population together or 
are selected for differently in combination rather than independ
ent!;\' (epistatically), then the frequency of .f1.flBB zygotes is dis
torted with respect to the eight othel' genotypes, while the A and 
B loci still occur with their expected distdbution. 

These considerations are most significant if selection on gene 
pairs or on multiple loci is not independent, and we considered 
those effects in detail under epistatic selection theory. For the 
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moment, however, it is clear that gene migrations and subsequent 
selection can become vastly complicated by considering multiple 
loci. Another factor which we have thus far assumed absent is 
the variation caused by having subdivided or small population sizes 
such that sampling error causes gene frequencies to depart from 
expectations. 

THE SPECIAL RESTRICTIONS OF SAMPLING 
ERRORS IN SMALL POPULATIONS 

For most species of forest trees, populations are not homo
geneously distributed and mating is restricted by such external 
factors as distance and by such internal factors as phenological 
mechanisms. Even if we consider that we have studied onl\r :.!. 

small part of the history of forest tree matings, the general con
cept of population regeneration must consider the correlation 
between mating frequency and geographical or phenological close
ness. Among trees with little pollen or seed dispersal, such as 
yellow-poplar, we might e\'en expect that population islands have 
developed in isolated coves. With large distances between cove 
populations for many generations and little indication of past 
populations which might have significantly bridged between pres
ent populational lineages. little gene exchange is likely to have 
occurred. In addition, periodic reductions and explosions of popu
lations can be expected to increase homogeneity within population 
segregates unless the explosions were sufficiently large and fre
quent to induce enough exchange among populations to offset 
loss of alleles when populations were small and few progenitors 
regenerated the local lineages. Since reducing the number of inde
pendent or unrelated families is equivalent to increasing the aver
age relatedness among trees within populations, genetic differences 
among populations are generated. Unless the differences are later 
affected by selection, we would observe populational differences 
similar to the family differences observed in estimating experi
ments. The higher the relationship among trees in a population or 
family, the greater the differences will be among populations of 
families according to the size of the genetic effects we choose to 
measure. In experimentation, of course, we can separate environ
mental effects and can create known, regular relationships. In 
contrast, natural populations have environmental and genetic ef
fects confounded, and the degree of relatedness and inbreeding 
among parents is generally unkno\vn. In addition to confounding 
observed differences among stands, selection may either increase 
or decrease the genetic differences themselves either by selecting 
for different environmental responses or by selecting for the same 
homeostatic response to different environments. The latter phe
nomenon is strikingly observed in yellow-poplar in the contrast 
between a lightly selected trait, leaf morphology, versus a trait 
directly affecting fitness, seedling height growth. While growth 
rate exhibited about the same amount of genetic variance among 



270 

stands as among trees within stands, leaf morphology exhibited 
much higher variances among stands than among trees within 
stands (Kellison 1970). In contrast, slash pine is a more uniformly 
distributed species which exhibits about the same levels of genetic 
variance among and within stands for the growth and vigor traits 
as for leaf morphology (Squillace 1966c). 

The nature and effects of nonrandom mating and any subse
quent inbreeding, therefore, must be considered to thoroughly 
understand the development of forest tree populations. Since fu
ture populations may be subjected to even more restricted lineages 
by mating only specially selected individuals, the effects of in
breeding systems must also be understood to control future popu
lation evolution. 

INBREEDING 
Consider that populations have diverged 'with respect to some 

trait so that the gene frequency varies among populations. Re
gardless of the reasons for the divergence, we can regard each 
population as perhaps randomly mating within the neighborhood 
and hence being in Hardy-Weinberg equilibrium with respect to its 
particular local gene frequency. Thus, each population has a Pi 
gene frequency and 1)/2 (AA) :2p2 (I-Pi) (AA'): (l-PI)2A'A' zy
gotic frequencies. However, there would also exist a variance in 
gene frequency among populations, ap2. Because there is a vari
ance among populations, an excess of homozygotes in the general 
population is generated regardless of any random mating within 
sUbpopulations. Within each subpopulation, the frequency of AA 
homozygotes is p?, and over all subpopulations, the frequency is 
therefore "i.Pr2, which implies an average over n subpopulations 
of (lin) ~,1)? Over all of the subpopulations, thel'e is also an aver
age frequency, p, which is the mean for the whole species and 
from which we could estimate the expected frequency of AA 
homozygotes if mating was truly random, as p2. The average of 
the squares is not generally equal to the average squared; that is, 

(1In)!Pi2~ ( 
"'Pi)2-n 

Then, since a/= {l/n):s.p?-p2, the observed frequency of AA can 
be expressed as (1In):s.p,2=p2 ..J- ap

2• In other words, the observed 
frequency of homozygotes exceeds the random-mating frequency 
by an amount equal to a/. This is Wahlund's principle of the 
subdivision of large populations and can be extended to the fre
quency of A'A' as (1-p)2+ a/, and to the diminished frequency 
of AA' as 2p (I-V) -2a/. Thus, inbreeding is reflected in an 
excess of homozyg-otes at the expense of heterozygotes and exists 
when subpopulations differ regardless of any random mating 
within the subdivisions. We have thus also implied that inbreeding 
is a general phenomenon which exists 'whenever the definition of 
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population is made broad enough to include genetic differences 
among subdivisions. Inbreeding and random mating are thus de
fined relative to some base population which must be well defined. 
Regardless of the size or history of the populations, Hardy
\Veinberg equilibrium within even very small populations simply 
means that the zygotes are found at the frequencies expected from 
the local gene frequency and independent gametic association. 
Without gene frequency differences, we cannot detect mating pat
terns except by direct observation of gametic unions. If for any 
reason differences exist among populations or groups in gene 
frequency, an excess of homozygotes exists, and inbreeding is said 
to exist. We can parameterize the phenomenon by considering the 
array of male and female gametes with the same average gene 
frequency 1J and consh·ucting a mating table as follows: 

Male 
Female Total 

A AI 

A p2..!..E p(1-p)-E 1J 
AI p(l-p)-E (l-p)2+E 1-p 

Total p 1-p 1 

Mating r1/':'A occurs at frequency pYp plus some deviation, E. 
Since the average gene frequency for A remains constant at ii, 
the same deviation E must occur with opposite sign for the fre
quency of heterozygote formation when AI is the other gamete. 
Hence, all cells can be parameterized for their expected frequency 
±E. To construct a variance and covariance of frequencies, we 
can use a dummy variable t which takes the value 1 when A oc
curs and 0 \\'hen AI occurs. Then, 

fLt= l' p":"O' (l-p) =p, 

and a/2= l' p_p2=p (1-p) 
are the marginal means and variances, and for two samples of 
mates, t and t' 

all' = E (ttl) - [E (t) ] [E (tl) ] 

=p2+E-p2=E 

Eand the correlation, p==---=::.
p(1-p) 

Hence, E= p P(l-p), 

where p is the correlation between uniting gametes. It has also 
been defined as F, the inbreeding coefficient (:;\Ialecot 1969). 
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We can now see that the frequency of AA homozygotes is in
creased over p2 by Fp(l-p} as is the frequency of A'A', while the 
heterozygote frequency is reduced from 2 P(l-p) by an amount 
equal to 2 Fp(l-p). F is a measure of relatedness within mating 
groups relative to some base population mating entirely at random. 

Mechanisms which can generate variations in zygotic frequen
cies by sampling different alleles or allelic frequencies can thus 
clearly generate measurable variations among subpopulations or 
family units. 

CORRELATIONS AMONG RELATIVES 
It is useful to quantify relationships within groups to describe 

the inbreeding structure of breeding populations and to analyze 
the genetic variances caused by family differences. A more com
plete treatment than given thus far on coefficients of relatedness 
is needed. 

Two measures of relatedness are commonly defined, a retro
spective coefficient of relationship among individuals and a more 
prospective coefficient of inbreeding for individuals which result 
if relatives are mated. MalE~cot (1969) defines relationships in 
terms of probabilities of alleles in two individuals being identical 
derivatives from some common ancestor. With this coancestry 
parameter, various degrees of relationships can be expressed and 
can then be used to examine the effects on inbreeding and homo
zygosity which are associated but not identical with coancestry. 

The coancestry of two trees is the probability that a randomly 
drawn allele of one tree is identical by descent to a randomly 
drawn allele of the second tree. Identity by descent exists if the 
two alleles are copies of an allele that was possessed by some 
single progenitor and carried through whatever lineages may 
exist. While this implies that the alleles are alike in molecular 
composition, different allelic ancestral histories can still be identi
cal in the state of their molecules. Thus, we require the existence 
of a base population in which no relatedness is assumed to exist 
in order to define degrees of relationship. 

From any such base population without relationships among 
individuals, probabilities of allelic identities by descent are com
puted to get the coancestry. Thus, for trees A and B with alleles 
AIA2 and B 1Bz, the coancestry between A and B (/,18) is computed 
as the sum of probabilities that AI and B, are chosen at random 
(Pr (AI. B1» and are identical by descent Pr (A1=B,). Thus, 

iAB='1.Pr'(A 1, B,) (Pr(A! Bi » =1/.j, P1'(A 1-B1 ) 

I,J 

+l/.j,Pr (Al==B~) +1,4Pr (.4 2==B t ) +%.Pr (A 2=B2 ). 

If A and B are half-sibs from a common parent tree C and the 
unrelated alternate parents are D and E, we can diagram their 
relationships as: 
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o c E 
r--'--o, o 0 

r--'--o, 
c C 

r--'--o,
E E 

I 2 I 2 I 2 

A B 
r--'--o, 
A A 

,............, 
B B 

I 2 I 2 

P~'(Al==BI) depends solely on Al and BJ being copies of the 
same gene from C, either C I or C'l , and this is the probability that 
C1=A L and C1=B1 ; or that C'l_AI and C2-==BI ; or that CI==At, 
C2=Bl! and CI=C2 ; or finally that C2=A 1, CI=Bt, and 
C1=C2• Since Al has probability lh of being from C instead of D, 
and the probability is lh that it is a copy of Ct instead of C'2, 
then Pr(C1==rl l ) =1jt, and similarly Pr(CI=BI ) =]/j., therefore, 
Pr(CI-A L, and CI=BI) = 1116 , Also, Pr (C2=A I, C'2~Dl) =1~6' 
and for the last two cases, designating Ie as the probability that 
C1=C2 (the inbreeding of parent C), Pr(C2=.=Al! C1==:Bt, CI==C2 ) 

=VI6 Ie and Pr(C1:==A 1, C2=BI, C1=C!!) =lj.rJc. Then 

Pr(A 1==BJ ) =1~/r. Using similar derivations for Pr(A 1=B2 ), 

P?'(A 2=B1 ) , Pr(A.:!"==B2 ) gives our coancestry of A and Bas: 

=11 [4(1+ fc )]= 1+fcf All j'.j, 8 8 . 

For other relatives, or those in which some relationships may 
exist among precedent parents, the stepwise paths may become 
rather intricate but, fortunately, some algorithms reduce the 
tedium (Cockerham 1971; Harris 1961; Li 1955; l\'Ialecot 1969). 

The coefficient of relationship therefore expresses the degree to 
which alleles have some probability of identity among individuals. 
Clearly, jf relatives are mated, then the probability of having 
alleles identical by descent in the offspring is the same as the 
coefficient of coancestry among its parents. Hence, in the above 
example, if A and B mate to produce an offspring X, the inbreed
ing coefficient of X, 

l+f()
l:r= fAlJ=-8-' 

The coancestry of an individual with itself is the probability 
of drawing the same allele twice (1;'. for each allele) or drawing 
alternate alleles which may be identical (f) I and hence 

_l+fA
fA'l-~. 

We can also derive that, in general, the coancestry of two indi
viduals is the average of the two coancestries between one tree 
and the parents of the other, or the average of four coancestries 
between the parents of both, etc. In Wright's (1922) traditional 
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notation, the conlriance between individuals A and B is 2/AB 
and the coefficient of relationship is 

l' (8 =: __ _ 2/.1B __ 
. yl':"'/'4 Vl~/B' 

In the notation of chapters 7 and 8, the coefficient used for 
contributions of genetic \'ariances to the phenotypic covariances 
among relations is 2/.(8. 

The probability measures of relationship and inbreeding can 
be extended to groups of individuals within which some relation
ships may exist and bet\\'een which some identical forebears may 
also have existed (Cockerham 1967). Coancesb'ies among groups 
may then be computed and would be the same as the inbreeding 
of progenies from crosses between the groups. Extensions to 
more than one degree of hierarchal relatedness and analyses of 
variances in gene frequencies among the various levels of the 
hierarchy are also possible (Cockerham 1973). 

In populations in which relationships exist, the associations 
among genotypes often are not the same as if truly complete ran
dom mating in large populations existed. One of the problems in
duced by the lack of complete and continuous random mating is 
that \Tariations in gene frequency are induced and the genetic 
variance can change. 

We have already formulated the degree to which increases in 
relationship among mates increases the probability of identity 
by descent and ha\'e examined the rate of increase in homozygosity 
(or identity in molecular form) with increased inbreeding as: 

P.I..J. =: p,\2 ,- Fp,{ (l-p,!) =Fp.l·1- (1- F) P.12. 

It is also interesting to notice that the difference in the frequency 
of homozygotes caused hy inbreeding can be written a~: 

P}.:...Fp.4 (1-P.-1) -p.12 =Fp.-l (1-P.l)' 

Hence, the difference in homozygosity is a linear function of F 
at any gi\'en gene frequency. In particular, at low gene frequen
cies, the percentage change in homozygosity can be very large 
since the above difference, taken as a ratio of the noninbred fre
quency of homozygotes 

[p,!2~FpA (1-p.4) _P.l2 ] / P,12, 

is F (1- P.I) / P,l and can be very large. 
The increase in homozygosity anclits effects on genotypic fre

quencies al:;o affect the vHri(lllce in gene frequeney among repli
cate populations. 

Phenotypically, the phenomenon can be o\)selTecl in the in
creased \'I\1'ian0e of an acldith'e gene-action locus as inbreeding 
polal'izes the population into the two homozygotes. If the zygotic 
values are scaled as Z(AA):lCflA'):O(A'}l') with lit average 
gene frequency, then within any subpopulation which is randomly 

http:P}.:...Fp
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mated with gene frequency Pi, the mean is 2PI2..J-· 2Pi (I-PI) and 
the variance is 4PI2 +2Pi(1-pt) -4PI2=2PI(1-Pi). However, over 
all populations, the zygotic frequencies are p2+Fp(1-p) :2p(1-p) 
(I-F): (1-p)2+F1J(1-p). As F approaches 1, the heterozygotes 
disappear and each line becomes AA or A'A'. For any intermediate 
value of F, the total genetic mean is again 2p' but the variance 
is 

4[PA2+Fp.4.(1-PA) ]+2PA(1-PA) (1-F) -4PA2 

=2(1+F)PA (l-PA)' 

If no inbreeding existed, then PI=P, but with inbreeding the 
genetic variance is (1 +F) times the noninbred variance. Hence, 
at F=1, inbreeding can double the additive genetic variance. 

In the sense that gene frequency variations occur among small 
subpopulations, inbreeding can also be expressed in terms of the 
fact that the total population size does not give us an accurate 
idea of how many individuals may be considered to be random 
mating. Even if mating is at random, the relationships will 
inevitably accumulate and result in some levels of inbreeding. To 
compare inbreeding populations, it is often useful to use as a 
meaSUl'e the number of individuals which, in an idealized, com
pletely random mating population, would produce the gene fre
quency variations or inbreeding displayed by the actual number 
of mating individuals. Two such conceptual population sizes, both 
called the effective number, have been used to indicate the in
creases in homozygosity due to limited numbers in any popula
tion on the one hand, and to indicate the variance in gene 
frequency among finite populations on the other hand. 

The first term is called the inbreeding effective number and is 
less than the census number of parents because a finite number 
of parents will produce offspring with different degrees of rela
tionship among them and unequal representation of parental genes 
increases the average degree of relationship. Thus, out of N 
monoecious parents, homozygosis is increased when the 2N 
gametes randomly associate and create a probability of Y2N that 
they come from the same individual. Heterozygosis is therefore 
decreased by a factor of (l-lhN) each generation. Even com
pletely random mating within a finite population therefore has an 
expected rate of increase in inbreeding. If families are created, 
then probabilities of random alleles being alike by descent may be 
increased above that expected by random mating simply by having 
different family sizes. Thus, if average family size produced is 
k, then N parent trees could produce Nk trees and then, 

Nk(~Tc-1) pairs of mates. Of all possible such pairings, each 

family would produce kl(k~-1) pairs in which both parents came 
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from the same family. In an idealized population, these pairings 
within families would occur only liN times and by so defining an 
effective N e, 

liN = ~ki(ki-l) . 

e Nk(Nk-l) 


Since !k?-k2=17k2, we can rewrite this equation as 

Nk(Nk-l) 

(N -1) 17k2+Nk2_Nk 


If Uk2 =k. as would be the case if k was Poisson distributed, then 
Ne=N. If k; was controlled so that 17k2=0, then Ne=2N. 

Another way in whkh the censns member would not accurately 
reflect rates of loss of heterozygotes under conditions of restricted 
parental matings occurs when unequal numbers of dioecious males 
and females exist. In such cases 

N - 4NmN, 

e- Nm+N,' 


If Nm="N,=N 12, then Nr=N. Other effects, snch as overlapping 
generations, differential reproductive rates among age classes, 
etc., would also decrease Nc relative to N (Giesell971). 

The alternative measure of effective numbers is also an abstrac
tion related to the census number that would exist in an idealized 
situation for the variance in gene frequency to be as expected. 
The concern in this case is that thf' ;;~'!ll!eny population is expected 
to display val'iatiol1s among their 6i.l;;ljopulations according to a 

binomial distribution; 17l= 1)(;;';P)f01' subpopulations of size N. 

However, due to the same kinds of influences that make N a 
biased number for predicting inbreeding, N is not a good number 
to use to predict 17/. For the case in which family sizes may vary, 

the No required to satisfy 17/= p(~;;:) is: 

N - 2N 

e- 17l (k+F) + (k-F)' 


k 

Again, F is the departure of zygotic frequencies from Hardy
\Veinberg equilibrium frequencies (Crow and Kimura 1970). 

If populations undergo sequential, temporal variations in N, 
then the variance of ]J will also change over generations. In order 
to determine an Nc that would give an average estimate of how 
17/ was generated for n such generations, we can estimate the 
sampling variance for the sequence as: 

2- p(l-P)[ 1 . 1..L ,1 ]
17;> - n 2N1-r 2N2 i ••• T 2Nn 
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and define Ne as satisfying ai= P<i;;:) .Then equating the two 

ai estimates yields Ne ~ n 1 ,the harmonic mean of the various 

'i Ni 

N/s. The harmonic mean, being more strongly affected by low 
numbers than is the arithmetic mean, gives lower values than 
the arithmetic mean, and therefore indicates that the effective, 
idealized population size is strongly affected by bottlenecks of 
low N i • 

Thus, regardless of present population sizes, i.t is quite possible 
by a variety of means th:'~t the effective population sizes may be 
small, homozygosity relatively high, and our forests largely made 
up of partially isolated populations with different gene frequencies. 
With populational subdivisions, we are required to consider how 
multiple subpopulations may have evolved. To formalize considera
tion of these effects as well as to study the progress of inbreeding 
in possible breeding programs, regular systems of mating have 
been studied for the rate of increase in F, or homozygosity 
(Li 1055; Crow and Kimura 1970; Wright 1969). Clearly, systems 
that limit the number of parents per group most severely restrict 
mating and induce rapid increases in inbreeding. If mating can 
be controlled by natu.ral or artificial means, however, several 
options are available by which the species or population may 
either avoid inbreeding for an initial period of time or anow some 
early generational inbreeding and perhaps reduce the rate of 
increase in F in the longer run. 

For a finite set of parents, it is possible to avoid inbreeding by 
simply assuring that matings occur among individuals with no 
common ancestors until forced by the limitations of finite initial 
population sizes. At that tj-:ne, matings among only the most 
distant cousins might be permitted. The number of generations 
wjthout inbreeding and the closeness of relationships are both 
dependent on initial population size. Systems that permit no 
inbreeding in the early generations force the average relationship 
among individuals to build up rapidly. In these systems, inbreed
ing is avoided and population size is maintained. by crossing 
among an ever-wider illg set of ancestries. These crosses cause 
the average relationship among the units of the breeding popula
tion to increase rapidly. 

Alternatively, some controlled inbreeding may be used in each 
generation to more slowly and more uniformly allow the inbreed
ing to increase. Such systems as proposed by Kimura and Crow 
(1963), for example, cross trees A XB, BXC, and CXD in one 
generation, then (AXB) X (BXC), and (BXC)X (CXD) in the 
next, then [(AXB) X (BXC)] X [(BXC) X (CXD)] in the next. 
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etc. The relatively early onset of inbreeding is offset in later 
generations by slower increases in average relatedness. 

For any regular muting system the relationships and inbreed
ing coefficients can be traced and the accumulation of homo
zygosity determined. Algebraic solutions of recursion relations 
can then be sought to determine rates of increases in homo
zygosity (Malecot 1969; Fisher 1965; Hayman and Mather 1953) 
by solving difference equations or by solving for the roots of the 
mating transition matrices. In particular, if any effects such as 
selection have deterministic effects on genotypic composition, the 
joint effects of selection and inbreeding can readily be traced. 

If inbreeding is considered to occur within small subdivisions 
of populations, then the average rate of loss of heterozygotes will 
depend on the subdivision sizes, gene frequency and the balancing 
effects of selection, new mutations, and new migrant genes, as 
well as the fonns in 'which the inbreeding occurs. 

PREDICTING INBREEDING~ 
For deterministic models, the progress of inbreeding can be 

directly analyzed by considedng that in each generation, the 
effects of assortative mating, selection, etc., can be modeled 
linearly to give relations between mating frequencies from one 
generation to the next. This is essentially the same method of 
analysis as used to predict age profiles in chapter 6. Here, it 
shows how recurrent systems can be analyzed for their long-term 
behavior. The frequency of various mating types can be written 
in a vector form X; for example: 

f(AAXAA)") 

f(AAXACL) 

f(AcLXAa)
X= 

f (A.aXaa) 

f (aaXaa) 

f(AAXaa) 

The form of mating and selection then determines the fre
quencies with which these matings in generation 0 will be allowed 
to leave progenies and regenerate matings in generation 1. Pre
sumably, relative frequencies will differ among generations. Thus, 
with matings only within full-sib families, say the AA X AA, only 
AA types are left, and hence all future matings are of AAXAA. 
type. The AA XAa type, however, generates equal numbers of 
AA and Aa genotypes and hence would generate mating types 

*Graduate-level statistical training requil'~d for thorough understanding. 
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AAXAA 14 of the time~ AAXAa 1;2 of the time, and AaXAa 1,4 
of the time. The process can be followed for each mating type to 
give us a matrix (A) of coefficients relating the matings in genera
tion 0 to the matings in generation 1 as: 

Generation o Generation 1 
AAXAA AAXAa AaXAa AaXaa ac~Xaa AAXaa 

AAXAA 1 
AAXAa 14, 112 1,4 
AaXAa 1;16 14 14 1;4 ¥i6 1Ia
Ao.Xaa 1,4 1f2 1,4 
aaXaa 1 
AAXaa 1 

If selection was against AA genotypes such that the selective 
ratio of AA: Act was 1-8: 1, then the frequency of new matings 
as generated from the old would have to be modified such that 
AAXAA would occur (1-8)2 of its former frequency, and 

(1-8)2
AAXAa matings would generate AAXAA matings 4 

of the time; AAXAcL (1~8) of the time; and AaXAa % of the 

time. The remainder of the table would have to be similarly 
adjusted. 

We can then determine the progress of inbreeding since 
x[l]=Ax[O] 

or generally X[t+l] =Ax[t) =AtxLO]. 

From matrix algebra we know that for any real, nonsingular 
matrix, A, there is a real matrix, U, and a diagonal matrix, D, 
such that UDU-I=A. Therefore, for any power of A, say At, we 
can see that At= UDtU-I. Now let us try to find out what U and D 
are by first noting that if proportions among the mating fre
quencies x ever reach stabilities (which they will do for real, 
nonsingular A matrices), eventually, X[t+l) =AX[t), 'where A is a 
constant of proportionality. --

Since 

Ax[t) =X[t+l] = AX[t] 
- - - ' 

AX[t)=AX[t], 

where we can now see that A is an eigenroot of the matrix A with 
an associated eigenvector x[l). In fact, the:re are r such roots with 
associated vectors (where r is the rank of A) so that we can write 

AXi=AeXc fm' each root A;, i=l, 2 .... 
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Hence, we can put the various roots together, 

A (~l' ~2' ~s ...) =Al~l' A2~2' AS~S ••. 

and letting the matrix ~l' ~2' ~3 ••• = U, 

AU~U[A'A' ] 
or A=U(A)U-l 

where A is the diagonal matrix of ,\,;'s, 

or 

and 

..J 

Then x[t1=U(A)tU-1X[O] 

and we can now see that as t increases, the dominating effect that 
the largest 14 and its Xi vector will have on the composition of 
x[t]. Regardless of t, however, the technique is useful in determin
Ing the status of mating types at any time t, and the decay of 
heterozygosity to whatever stabilities may exist. 

SELECTION 
Selection itself of course has deterministic results which can 

lead to homozygosity or to the existence of intermediate gene 
frequency equilibria. In the simplest cases we only consider one 
locus, two alleles, and assume large populations without inbreed
ing, mutation, or migration effects. The results of simple, one-locus 
selection on genotypic and phenotypic performance were outlined 
in chapter 2 and require no further review. The principal problem 
discussed in achieving the state of stability or fixation determined 
by the genes was the accidents of sampling. However, any reason
able model of population behavior must also account for more 
complicated models or how environmental or breeding selection 
may vary and how genes may interact. 

MULTIPLE ENVIRONMENT SELECTION 
Several other kinds of effects can also lead to intermediate 

equilibria even with these simple models. For example, consider 
the case where variation in the selection effects over different 
parts of a population or over different generations is a better 
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model of the actual vagaries of population growth than a model 
with single constant-selection coefficients. We distinguish these 
variations from those in ·which all organisms must face the same 
kinds of variations in each life stage in a single generation and 
which can then be studied as if some average fitness of genotypes 
existed for the given pattern of variation. These latter types are 
fine-grained variations common to all individuals in contrast to 
coarse-grained variations in which individuals exist largely in 
one or another variant of the environment. Coarse-grained varia
tions may be modeled in several ways. For example, Haldane and 
Jayakar (1963) show that if the frequency of environments which 
favor first one then another genotype change within certain limits 
and if the varying selection coefficients also exist within certain 
limits, that relative genotypic frequencies will also remain within 
certain intermediate limits. Even when the arithmetic average of 
all environments favors one genotype, if the alternate environ
ments occur often enough that the geometric mean of selection 
coefficients favors the other, then selection will maintain an 
equilibrium. This condition might occur, for example, if a site is 
generally favorable for one form of growth but occasionally is very 
poor for that one fo!'m and relatively good for the alternate growth 
form. Thus, rare but severe extremes such as untimely frosts or 
fires may be enough to maintain alleles that are not advantageous 
in common types of competition but that may endow genotypes 
with exceptional resistance or reproductive capacity on those rare 
occasions when needed. In addition, Li (1967), Prout (1968), and 
Levene (1953) have theoretically shown that random mating of 
genotypes which undergo selection in different environments can 
lead to stable equilibria even if neither environment alone would 
lead to stability. For example, if trees intermate freely, some 
located in a site favoring AA and others in a site favoring A'A', 
it is possible that the geometric mean of T, rg , is maximized at an 
intermediate gene frequency. 

While the above simple models may accurately describe how 
some intermediate allelic frequencies are maintained by heterotic 
effects, it is also true that if many 10ci of this sort existed, the 
great majority of seedlings would contain many deleterious, 
homozygous loci. It is possible, however, that the detrimental 
effects of mutations and any consequent segregations of deleterious 
homozygotes can be modified by more exact models of how selec
tion on fitness actually operates (Wallace 1968) and by synergistic 
g,?,}e actions (Crow 1968). Among forest trees, we lack much data 
on single gene actions, but since forestry has been a field of 
applied ecology, our knowledge of the detailed ecology and selec
tive forces in forests can be used to investigate those sources of 
genetic variation. 

The factor affecting gene frequency distributions which has 
received most interest is differential reproduction of genotypes 
such that the descendants of one genotype are more likely to have 
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higher representation in future forests than now. In an earlier 
chapter, selection effects of relative success were described in 
terms of the joint effects of individual birth and survival processes, 
and average success was measured in terms of the largest eigen
value of the expected Leslie matrix. Selective effects can also be 
exercised in the gametic stage of the life cycle since gene actions 
and differential success can also occur among gametes, but this is 
usually an exceptional type of selection for organisms in which 
the zygotic stage dominates the life cycle in both size and duration. 
Therefore, unless forms of meiotic drive or gametic selection are 
known to be present, we shall assume that selection operates on 
survival and descendant births, between zygote formation and 
death or such advanced age that actual death becomes irrelevant to 
the genetic composition of future forests. 

In studies of genetic differences among forest trees related to 
distinct selective histories, there is abundant evidence that climatic 
and physiographic effects have differentiated populations of trees 
with respect to length of growing season, growth rate, etc. 
(Wright 1962; Stern 1964; Hamrick and Libby 1972). Within 
populations it can be expected that generally unfavorable alleles 
will be continually eliminated while others of some phenotypic 
effect but of equivocal fitness value might manage to coexist. 

Among the many traits measured on forest trees, genetic differ
ences may be caused by cryptic selective factors. Selection at one 
stage in the life of trees may affect zygotic frequencies of genes 
which cause phenotypic d.ifferences at some other life stage. 
Among trees within Douglas-fir stands, some genetic variance in 
height growth exists when trees are young, but there is little 
genetic variation for height growth within stands for older trees 
(Namkoong and others 1972). Such age-related selection can have 
additional unexpected results (Anderson and King 1970) on the 
effect of selection on the stability or instability of gene frequencies. 
WhEe different genes operate on the same reactive processes at 
different stages of life, some genes can be expected to operate in 
a similar way in several life stages. However, the environment 
will have changed and the effect and selective advantage of those 
alleles can be quite different. Thus, some genes may have average 
effects over the lifetime of trees which cannot be predicted by their 
effects at any single stage of life. Hence, foresters in particular 
may have difficulties in defining effects for genes which act or 
affect fitness differently at different times. The environment can 
clearly change for trees, especially for pioneer species which are 
often established on open sites but which may have to regenerate 
under a closed stand in refuges in the next generation. In gen
eralizing the effects of selection on evolution, MacArthur (1962) 
has emphasized that reproductive success can be far different 
under colonizing, low-density conditions than under closed com
munity, high-density conditions (Pianka 1972). For most forest 
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tree species, a mixture of conditions will be present, sometimes 
requiring reproduction in a relatively stable environment where 
the site is already colonized and intraspecific competition is heavy. 
Here, the ability to survive crowding maximizes probabilities of 
success. For less stable environments which may be the result of 
newly created sites on the decay of established sites, greater suc
cess in colonizing sites may be required. The k and r types of 
selection as defined for logistic growth models in chapter 6 thus 
contrast in the kinds of behavior favored by selection. Such varia
tions in effect imply that intraspecies competition may be im
portant while selection for IX types of interspecific competition may 
also be important. Therefore, selection on the basis of competitive 
behavior is complicated by intraspecific and interspecific density 
dependence. Important selection effects may then depend on the 
frequency with which alternate genotypes exist in the fore;st and 
hence will change according to the effects of previous selections. 
Thus, frequency-dependent selection can be a significant form of 
variation in selection pressures in rorests. Thus, various forms of 
selection have been operating in our forests and require consider
able analysis of gene actions and environmental variations to de
fine how selection actually operates. While we generally consider 
simpler models of selection effects and generally have to assume 
that alleles have simple, average selective differences in some 
average environments at some average time of effect, the simpli
fied models are not reasonable. The following theories then are 
useful only as first approximations, and even then require caution 
in applying to any of the complex phenomen,~ of forest growth 
and development. 

In the simple case in which one kind of environment almost 
excIu!'lively exists with respect to genetically affected fitness, selec
tion may be essentially unidirectional, and as long as the proper 
genotypes exist, a maximally adapted genotype would be expected 
to be fixed. If several kinds of environments exist, then the effect 
of selection may be either to still favor fitness in the more frequent 
environment or to favor an intermediate frequency as Levene's 
(1953) analysis would indicate. The outcome clearly depends on 
the fitnesses of each genotype in the various environments and on 
the frequency and sequences in which the environments exist. 
Levins (1968) describes the two factors in terms of a fitness of 
the genotypes in the environments and of a value function of the 
environments accounting for the frequency and sequence of the 
various environments. In the simplest case of three genotypes 
AA: AA' :A'A' in two environments, the relative fitness values of 
each genotype (for example, Wu ) scored for each environment 
(WAA[lJ, W AA[21) , and the pair of values is located in the two 
environmental dimensions. The same is true for WAA,[l], W AA ,[21, 

and for W A 'A,[11, W A 'A,[21. A few cases are illustrated below in 
which the A allele is favored in environment 1 and A' is favored 
in environment 2. 
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W[I] 

AA 


W[I]

ENV.I H' 

[I] 

VIA' A' 
,. 

W[2] W[2] W[2] 
AA AA' A' A' 

ENV.2 

Additivity in both environments. 

w[l] W[I] 


AA I AA' 
 x--r 
ENV.I 

[I] X 
W,A'A

\II[2J W[2] 
AA AA' 

ENV.2 
Dominance in both environments. 

W[I) W[I] 

AA AA' X 


ENV.I x~ 
[I] X 

VI A'A' 

2 2 2W ,VIA A WA'A'AA
ENV.2 

Dominance in environment 1 
Additivity in environment 2 

Alternate definitions of fitness sets by Levins (1968) create 
continuous functions connecting the points in a set of genotypes. 
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Consider that a genotype attains a maximum fitness at a particular 
state of an environmental variable and that its fitness declines 
as a quadratic or exponential function of the departure of the 
environment from that point. Thus, on an environmental scale, a 
genotype's fitness can be determined as a function of the environ
mental deviation from the optimum as in: 

WGENOTYPE 

ENVIRONMENT 

If several genotypes had differently located but similarly shaped 
curves, then at any particular level of the environmental variable, 
they would have an array of fitness values. Conversely then, any 
environment can be said to be a function of the genotypic fitnesses. 
Reducing characterization of the genotypes to their optimum 
locations, an environmental curve would attain a maximum for the 
genotypes whose optima coincide and would decline for genotypes 
with optima elsewhere. Thus, the environmental value would be a 
function of the distribution of optimum genotypes and may be 
similar in shape to the curve of genotypes on environments. 

W 
ENVIRONMENT 

GENOTYPIC OPTIMA 

Then, two such environments would generate two curves for each 
genotypic optimum: 

ABC 
GENOTYPIC OPTIMA 
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The two values of each genotypic point may alternatively be 
found in a two-dimensional mapping of environments 1 and 2 and 
the set of genotypes located in that space: 

E
I 

A 
8 


W 
 C 
E 

I 

WE E2 
2 

The closer the environments are, the more convex the set of points 
will be. If the environments are identical, the set degenerates to 
a line from the origin bisecting the angle of the axes. The further 
the environments are apart with respect to the variance of their 
optimum distribution, the closer the values around position "B" 
will be to the origin and hence the more concave the set will be
come in this central region. 

Given any set of points on a particular straight or curved line 
describing the way the genotypes react to the environments, a 
second function can be drawn on the same graph indicating how 
the environment affects fitness. If a fine-grained environmental 
mixture exists, then the genotypic value simply depends on the 
average fitness as determined by the relative frequency of the 
environmepts. If p is frequency of environment 1 and (l-p) the 
frequency of environment 2, then the fitness value would simply 
be p W[l] + (l-p) W[21. If p is very high, then trees with high W[l] 

points have higher value than trees with low WIll even if W[2] may 
be somewhat better. We can then draw lines of equal value for any 
given p to indicate the relative increases required in W2 if Wl 

decreases, such that fitness value remains constant: 

A=PWl+(l-p) W2 

W1=A - (l-p) Wz 
p p 
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or Y=a--bx, 

where Y=WlI a=A, b=l-P, and x=W2 • 

P P 
For a larger fitness value (A) to exist, the line of value must 

move to the upper right as indicated. 
It is now clear that for a given set of genotypes, the type favored 

by selection will be the one which has the largest value function as 
determined by environment frequency, p. In all cases except for 
double dominance, it is possible that one or the other homozygote 
may be favored if the p or 1-p is very high. 

A quite different result emerges, however, if a coarse-grained 
environment exists and the value is determined more by the 
sequential fitnesses that occur. Then, fitness is a multiplicative 
function of the environments and can be described by a function 
like (W[l])!> '(W[2 J ) (1-)1) just as derived by Levene (1953) and by 
Li (1967) for the case when complete random mating occurs over 
all environments. In this case, the value function is proportional 
to a hyperbolic function, p log (W[lJ) + (l-p) log (W[2]), as 
indicated below with the indicated direction of increases in value: 

\ 

\. 
"
,7t'--

-

For coarse-grained environments then, it is far more difficult 

to favor a homozygote and selection can be expected to favor 
intermediate gene frequencies. Since trees do not move once 
germinated, they are susceptible to the accidents of seed fall and 
exist within neighborhoods on quite different soils and moisture 
regimes. Any major classification of environments would there
fore be expected to include coarse-grained environmental varia
tiuns. Hence, we might expect this type of environmental selection 
to predominate and determine the intermediacy of gene frequen
cies affected by soil factors. If the fitness set of genotypes has 
dominance relations such that the set is convex, then either of 
the fine- or coarse-grainp.d environmental-value functions would 
most often yield optimal intermediate gene frequencies. For more 
nearly linear fitness sets, however, the hyperbolic-value function 
of the coarse-grained environments would more often yield inter
mediate gene frequency optima. This is Levene's (1953) case. 
For fitness sets which are concave, as drawn below, only the 
hyperbolic function can yield an intermediate optimum but one 
which can exist only if the extreme homozygotic types exist as 
mixtures. 
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Thus, intermediate gene frequencies can be favored by simple 
kinds of variable selection pressures without other factors like 
mutation or migration or even direct selection for intermediate 
forms. Genes can be maintained in intermediate equilibria by still 
other forms of selection, such as frequency-dependent selection as 
induced by competition or predator-prey, pathogen-host, or other 
frequency-dependent preferences. The possibility of frequency
dependent selection having strong, widespread effects in maintain
ing polymorphisms has been explored by Kojima (1971) and 
Kojima and Huang (1972) in Drosophila populations and for 
species with strong overlapping generations (Charlesworth and 
Giese11972). The effect of competitive interactions on maintaining 
selection for otherwise unexpected intermediate optima has been 
advanced by Mather (1969) and expiol'ed in trees by Huhn 
(1970c), who also concludes that even moderate levels of genotypic 
competition can lead to polymorphisms in trees. 

A further extension of the simple model to include two loci also 
results in major differences in projected effects of selection that 
cannot be foreseen from the single-locus model. The simplest ex
tension is to consider the loci to be independent in effect as well as 
in frequency. Linear, independent models can thereby be con
structed for genetic distributions, and selection effects at one locus 
can be derived essentially independently of other loci. However, 
since genes do not act entirely independently and some exist in 
tight linkage groups, these simple, average-effect concepts may not 
be adequate, especially if gene frequencies change much and cause 
allelic combinations to interact nonl:inearly. 

MULTIPLE-LOCUS SELECTION~ 
In the single-locus case with simple environments, a fitness curve 

could be drawn as a function of gene frequency, and a ~~ curve 

could also be drawn as a function of gene frequency. In this case, 
the curves would show that the maximum fitness occurred at a 

value of 1) which was also at a point where ~~ =0. Thus, any 

selecti vely induced changes in gene frequency would change 

*Graduate-level statistical training required for thorough understanding. 
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the di l'ection of maximizing fitness. However, in the multilocus 
case, the maximization of fitness at the same gene frequency as 

where ~ =0 is not a general result and the fitness surface itself 

is a function of zygotic frequencies, instead of being independent 
as in the single-locus case. These results have the same implica
tions for breeding theory as for the genetics of natural popula
tions. 

If we first consider mating frequencies relating gametic fre
quencies for two generations with selection, we can derive the 
changes in gametic proportions and, hence, gene frequencies. 

Let PAB=frequency of AB gametes, 

PAb=frequency of Ab gametes, 

PaB=frequency of aB gametes, 

P ab = frequency of ab gametes, 

Assuming random mating in large lJopulations without selection, 
the frequency of AB XAB unions will be P AB2, and these unions 
will yield all AB gametes. The frequency of AB XAb unions wiII 
be 2P.~BPAb, and these unions will yield AB and Ab gametes with 
equal frequency of P,IBPAb each. Similarly, ABXaB unions occur 
with frequency 2P,wPaB and yield AB and aB gametes with 
P,wPaB frequency each. The ABXab unions occur with 2PABP ab 

frequency and, with recombination at frequency r, yield Ab and 
aB gametes with frequency 1PABPab each. Without recombination, 
they yield AB and ab gametes with frequency (l-r)PABPab each. 
The others are not affected by recombination. The only other kind 
of union that could give us new AB gametes would be recombina
tions of AbXaB which occur with frequency 2P,lbPaB' A recom
bination frequency l' gives us AB half the time or with overall 
frequency 1'PABPaB• Hence, the next generation's 

P,uP] = P AB[O] (PAB[O] +P Ab[O] +P aB[O] +P ab[O]) 

-r(PABPab-PA"paB) [0] 

PAB PAB 1[0]
=PAB[O]-r =PAB[O]-rD[O], 

P aB PabI 
where D[O] = IP Ab P,lb 1[0] 

PaB Pab 

All of the other frequencies can be similarly traced, and the col
lective result is: 

PAB[I] 1 [PAB[O]-rD[O] 1 

P Ab[l] = P Ab[O] +1'D[0] 


PaB[l) PaB[O] + 'rD [0]
[ 

Pab[l] Pab[O]-rD[O] 
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The process is nonlinear since DrO) is a nonlinear function of the 
gamete frequencies: 

D[l]= (PABPab - PAbPaB ) [1] 

= (P.w-rD) [0] (Pab-rD) [0] 

- (PAb+rD) [0] (PaB+rD) [0] 

= (PABPab-PAbPaB) [0] 

- (PAB+Pab+PAb+Pab) [O]rD[O] 

=D[O]-rD[O] 

= (l-r)D[O] 

and Dn= (l-r)nD[O]. 

Two features of the progress in D are notable, once a D value 
exists in a population, the disequilibrium D of gametic frequencies 
measured by the difference in coupling-repulsion-phase associa
tions persists regardless of linkage. Even if unlinked loci recom
bine freely and r= %, D will decay.at a rate of % its former size 
per generation. The persistence of D is caused by the nonrandom 
association of alleles which cannot be immediately dissipated by 
any commonly known means, because increases in r decrease the 
yield of AB gametes from ABXab unions but increase the yield 
of AB from Ab XaB unions. Hence, D persists. However, we can 
also see that each locus can immediately achieve Hardy-Weinberg 
equilibrium with random mating regardless of r because: 

(1) 	AA homozygotes derive from ABXAB at PAB2 fre
quency, ABXAb at 2PABP AB frequency, and AbXAb 
PAb2 frequency. 

The sum= (P,IB+PAb )2=P.tl?, as required. 

(2) 	 Aa heterozygotes derive from ABXaB at 2PABP aB fre
quency, ABXab at 2PABPab frequency, AbXaB at 
2PAbP aB frequency, and AbXab at 2PAbP ab frequency. 

The sum=2PAB (PaB+Pab ) +2PAb (PaB+Pab ) 

=2PAB (Pa) +2PAb (Pa) 

=2Pa(PAB+PAb) =2PaPM also as required. 

(3) 	The aa homozygotes derive from aBXaB at PaB2 fre
quency, aBXab at 2PaBP ab frequency, and abXab at 
Pab2 frequency. 

The sum= (PaB+Pab)2=Pa2, as finally required. 

The same Hardy-Weinberg equilibrium would be reached by the 
locus B also. Hence, with random mating in large populations, all 

http:decay.at
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individual loci ilmnediately are in equilibrium even if the multiple
locus combinations are not. 

We can now see what happens when epistatic types of selection 
are effective by imposing the following selection coefficients on 
the zygotic combinations: 

AB Ab aB ab 

AB w(!~) w(1~) w(1~) w(1~) 
Ab W(!!) w(1t) w(1~) w(1~) 
aB w(~:) w(::) w(~~) w(:~) 
ab w(!~) w( ~~) w(:!) w( ~t) 

Marginal fitnesses of gametes can be defined by the fitnesses and 
frequencies of the zygotic combinations. For example: 

WAB=W(!~) xP (~~) +w(!!) xP (!!) 
+w(!:) XP (!:) +w(!:) xP (!~). 

Also, W=WABXPAB+WAbXPAb+WaBXPaB+WabXPab. 
If the table is simplified slightly by assuming that position ef

fects are negligible, then W ( !:) = W ( ~; ) , then the nine se

lection coefficients can be written more compactly as: 

BB Bb bb 
AA W 21 
Aa Wu 

aa W01 

Then the production of gametes for the next generation can be 
determined wi:h the same assumption as before as: 

PAB[ll= [W22P,tB2+W21PA~AB+W12PABPaB 
+WnPABPab (l-r) +WllPAbPaB ('r)] [OJjW[Ol 
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where W is the weighted mean fitness given above. Then, 

P AB[I] = [PAB[O]WA.B[0]-1·WllD[0]] /W[O] 

PAb[l] = [PAb [0]WA.b[01+1·W10D[0]]/W[0] 

P aB[I] = [PaB[O] WaB[O] +l'WOlD [0]] /W[O] 

Pab[l] = [Pab[0]Wab[01-1'WooD[0]] /W[O]. 

In terms of changes in ga.metic frequencies: 

tl.PAB = [PAB[O] [WAB - W] [O]-rWllD[O]]/W[O] 

tl.P.H = [PAb[O] [w'.u- W] [0] +rW1oD[0]] /W[O] 

tl.PaB = [PaB[O] [WaB - W] [0] +rW01D[0]] /W[O] 

tl.Paa = [Pab[O] [Wab - W] [0]-1·WooD[0]]/wrol. 

For all changes in gamete frequencies to be zero, D must be zero 
and all W ij must equal W. If D=I=O, then some W;J=I=W at equilib
rium frequencies, and hence some Wlj values can exist at equilib
rium and would be associated with a nonzero disequilibrium D 
value. Several investigations of equilibria for different patterns 
of Wi} variations have shown that the number of stationary dis
equilibrium points for a given set of W,I} values may be as high 
as 7 (Karlin and Feldman 1969) while most studies also indicate 
that fitness is increased by having D=I=O (Kimura 1957; Lewontin 
and Kojima 1960; Bodmer and Parsons 1962; Wright 1967), and 
Moran (1964) has also shown that W is not generally maximized 
at equilibrium frequencies. 

Thus, multilocus genetics presents qualitatively different prob
lems and results than what might be otherwise expected from 
analysis of single-locus behavior. These differences must be con
sidered if any large changes in gene frequencies or effects occur. 
In the short run, with large populations, the first approximation of 
largely independent genes in equilibrium may be reasonably ac
curate, but when long-term trends require large changes in allelic 
combinations or the introduction of allelic combinations with large 
effect on fitness, we cannot ignore the persistence of epistasis and 
disequilibria in gametic frequencies. 

We should also recognize that dominance and overdominance 
relations may not translate directly from a phenotypic scale to a 
fi~ness scale. Wright (1935a) considered, for example, that a phen
otypic optimum may exist such that phenotypes are maximally fit 
at some optimum environmental value and decline in fitness ac
cording to a quadratic function of the departures from that op
timum. Thus, dominance and overdominance on the fitness scale 
are a quadratic function of the phenotypic scale. On a single-locus 
basis, overclominance on the fitness scale presents no new genetic 
features, but on a multiple-locus basis some dominance levels can 



293 

produce intermediate equilibria. Wright (1935a) first observed, 
if intermediate optima existed, that populations would evolve into 
a mixture of homozygotes at each locus such that the optimum 
phenotype was fixed and that at most one locus with overdom
inance on the fitness scale could remain segregating. However, 
Kojima (1959b) further showed that incomplete dominance at 
several loci could exist in an equilibrium, and Singh and Lewontin 
(1966) later showed that more equilibria could be expected if link
age disequilibria existed. Several possible patterns were explored 
by Wright (1969) for a two-locus system. 

Investigations by Lewontin (1964) on five locus models indi
cated that large amounts of linkage disequilibrium can be gener
ated from simple optimum phenotype models with epistasis on the 
fitness scale. Further study on even larger systems supported the 
long-term importance of epistasis on fitness and strong linkage 
disequilibria and led Franklin and Lewontin (1970) to conclude 
that, in the long run, the individual gene may be less appropriate 
than the whole chromosomt' for the study of evolution. 

SELECTION-INDUCED POLYMORPHISM 
Thus, selection models of reasonably simple fonn can yield 

populations with large amounts of genetic variance without re
course to mutation, migration, or other effects. The large reser
voirs of genetic variance in many organisms can thus be explained 
by a vadety of selection effects as well as other mechanisms. Even 
in commonly self-fertilizing organisms like oats (Allard 1965), 
there commonly exists sufficient outcrossing to generate reason
ably large genetic variances. For tree species, there is a great deal 
of genetic variation in almost all traits studied. Due to the mul
tiple mechanisms by which polymorph isms may be maintained, 
however, distinction of causes and the chances of the polymor
phisms being mOl'e or less stable 01' subject to destruction are not 
known. Simple epistasis as well as variations in selective forces 
of several types can generate polymorph isms with some degree 
of stability. However, the study of systematic variations among 
populations may indic~te the existence of some forms of selec
tion. 

We can conclude that many kinds of selection may well lead to 
polymorphisms among forest tree species, but the effects of one 
or hvo genes are difficult to detect and the existence of poly
morphisms due to selection effects are difficult to establish. The 
major-gene phenomena associated with inbreeding depression of 
chlorophyll deficiencies have been easily observed, but they have 
not been associated in heterozygotes with any obvious heterotic 
effects. In fact, no simple cases of single-gene heterosis have been 
found in forest trees. The frecl'Jency of single-gene effects, such 
as chlorophyll mutants, is apparently more a function of mutation 
rates than selection for heterozygous effects (Franklin 1970b). 
Other single-gene effects ~\t high frequency, such as oleoresin com
position of slash pine (Squillace ane! Fisher 1966) and western 
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white pine (Hanover 1966) and flower color in Scots pine (Carlisle 
and Teich 1970), have not been associated with any observable 
selection pressures. However, for introduced pathogens, some dis
ease resistances which would have current selective values may in
volve simple inheritance of one or two loci (Kinloch and others 
1970), and their study over the next generation might be beneficial 
to our understanding of h-ee population dynamics. 

If we consider only simple models of selection, we previously 
indicated that simple interactions of selection, migration, and mu
tation can also lead to equilibria. Another factor which we have 
not considered can lead to fixations-the operations of any of the 
above factors in small populations without free intermating. Many 
investigations have indicated that populations of trees may be of 
limited size (Sarvas 1963). Sakai (1971) concludes from examina
tions of isozymes in C1'yptome1'ia that his population may exist 
with a great degree of isolation among adjacent stands. A more 
realistic model of forests would have to include the effects of the 
accidents of sampling as they affect small populations in some de
grees of isolation. S. Wright's (1970) results indicate that varia
tions in response to selection caused by partial isolations can be 
very potent in allowing populations to drift into gene combinations 
which may be useful for further evaluation in response to selec
tion of types not possible in large random-mating populations. 
Interpopulational variances can thus be important to species evo
lution. 

STOCHASTIC VARIATION 
The general tendencies for average, population-wide effects 

caused by selection or other forces are not often exactly translated 
into events for individual trees. Average selective values for dif
ferent genotypes may indicate the probabilities of survival on 
which trees will survive or reproduce "on the average." However, 
for a specific tree in a struggle for existence, life and death are 
qualitatively different events, and probabilities do not reflect the 
physiological nature of individual survivals. An individual lives 
or dies regardless of any probabilities. Similarly, for two individ
uals, they both may live or die, or one live and one die. Hence, the 
two may become 0, 1, or 2 individuals when counted again, even 
though we might expect an average of say 1.2 individuals. For 
larger populations, these accidents of sampling on an individual 
basis may lead to resulting numbers quite different from any 
average expectation. Thus 10 trees, each with a survival probabil
ity of 0.5, may all die, or some portion or all may live. \-Vhile we 
may expect an average of 5 trees from very many to-tree samples, 
anyone such sample includes 0 to 10 survivors. If the process is 
sequentially repeated for the survivors, then again the outside 
limits remain 0 to 10 for any sample, though intuitively one 
may feel that somehow they should cluster around the averagE'. 
Therefore, when variation in the occurrence of an event occurs, 
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the exact processes are no longer determined by simple equations 
giving some constant survival fractions. Variations in the occur
rence of events lead to an interest not only in the average outcome 
of repeated samples but also in the variations that may occur 
among samples. Then, it may be desirable to estimate the proba
bilities of the population going to one extreme or another, or the 
probability of staying above some critically important level. In 
additiun, if variations are very wide, they may be so important 
in affecting the outcome of population processes that a factor 
which might otherwise cause a stable equilibrium might become an 
unstabilizing force. We cannot review the entire theory of sto
chastic processes as applied to genetics problems, but rather we 
wish to review the basic concepts and tools useful in studying di
rected selection and other effects. 

ANALYSIS OF STOCHASTIC PROCESSES~ 
To illustrate the kinds of analyses and effects of stochastic 

processes in population development, we recall the deterministic 
birth process of chapter 6. We originally considered that a growth 
rate or propensity to increase on an individual basis could be given 
a constant coefficient ,\ which we can consider to be a birth rate 
for each of nt individuals alive at time t. Then the increase in n is 

~~ = Ant, which when integrated yields 

or nt =noeXt , 

for the numbers (nt) at time t as a function of the numbers (no) 
at some original time (t=O) and A. The results were considered 
to be absolutely predictable and ratios of numbers of different 
types of individuals with specific A or (1'a,1'A) rates were con
sidered to provide relative selective values. 

Now consider that ,\ actually expresses a tendency which is not 
exactly expressed by each tree, and hence in a small population we 
lack exact predictability. To estimate an average expectation and 
the variance which might be expected, we can analyze how varia
tions may be generated and how they affect the probabilities of 
the possible numbers or gene frequencies and then compute the 
mean, variance, etc., of the population. The following example il
lustrates one approach to solving the problem for exponential 
growth byBailey (1964), Feller (1957), and Pielou (1969). To 
simplify analyses, assume that ,\ is constant for some period and 
for some part of the population and that the probabilities of events 
are independent among all individuals. The probability of birth 
in a t;:,.t time period then depends only on A and the length of the 

"'Graduate-level statistical training required for thorough understanding. 
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time period and may be reasonably stated as: 

Pr(birth) =,\ • t::.t. 

Then. starting at time t, for '11 trees we may model the birth prob
ability in a t::.t interval to be: 

P'r(births) =,\t::.t, 

For there to be '11 trees after the time interval t::.t, there would have 
had to have been '11 trees before the t::.t interval and also no births; 
01''11-1 trees before Dot and also 1 birth; 01''11-2 trees before t::.t and 
also 2 births; etc" without death, If t::.t is made sufficiently small 
and only 0 or 1 birth is possible in such a small t::.t, then the prob
ability of having '11 trees after the t::.t interval is: 

Pr(n; t+t::.t) =P7'(n; t) • P7"(O births) +Pr(n-l; t) • 

Pr(l birth) +P1'(n-x; t) • P1'(X births) + , , .. 
Since P1'(X births) =0, for x>l 

Pr(n; t+t::.t) =P'r(n; t) • P1-(0 births) 

+Pr(n-l; t) • Pr(l birth), 

Taking P1"(O births) =l-xnDot 

P1"{n; t+At)=Pr(n; t) • (l-Xnt::.t)+Pr(n-i; t) • nDot 

and hence, 
P1'(n; t+At) -P1'(n; t) 

-Xn' P1'(n; t) +Xn' P1'(n-l; t),t::.t 

Allowing At to become infinitely small, the left-hand side 

becomes d[
P1"d:,t)], Also, considering the initial state of the pop

ulation, 'It may be zero after the initial t::.t interval if 'It was zero 
before the Dot interval. Hence, for any initial size a} P1'(cL-l; t) 
=0, Therefore, 

dP1'(a' t)
----'-;7'--..:. = - ~aPr (a' t)dt '." 

and by integrating and using the boundary condition that P1' (0; 0) 
=1, we derive log Pr'(a; t) = -,\.cd or Pr(re; t) =e-;"(lt, Then from 
the initial size, we can set up the probabilities of larger sizes at 
time t, The probability of being size a+l at time t+tit is the sum 
of probabilities: 

Pl'(a+l; t+Dot)=P1'(CL; t) • Pr(l birth) 

+P1'(cL+l; t) • Pr(O births) 

or Pr(a+l; t+t::.t) =Pr(a; t) (XMt) 

+P1'(a+l; t) (I-X (a+l) ~t), 
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Using the same assumptions as before, we derive 

d [Pr(~tl; t)] +,\ (a+l) Pr(a+l; t) =ae->.at 

where P1'(a; t) =e-·\at on the right-hand side from the above deri
vation, 

Integrating the left element by parts and using the initial con
dition that P1'(a+l; t) =0 at t=O, we can derive that: 

Pr(a+l; t) =ae->.at (l-e->'t). 

Repeating the process for a+2 would give us: 

Pr(a+2; t) a(a: 1) e->.at (1- e->'t)2, 

and in general for any 11.>a; 

11.-1)Pr (11.; t) = (~_ 1 e->.at (1 - e->'t) n-a • ( 

We have thus derived the probability function for any 11. at 
time t as a function of (~ (or n~) and ,\ and we can therefore 
determine the mean, variance, and higher moments of the process 
at that time. The traditional definitions of mean as ~ 11.Pr(11.; t) 

11. 
and of variance as ! 11.2P1' (11.; t) - p.2 can be derived for our case as: 

11. 

Mean=ae>.t 


Variance= aeAl (eM-I). 

It can be noted that the mean is the same as the deterministic 
projection but that the variance can become very large at large t 
and increases faster than the mean. 

A much simpler method of deriving moments is by deriving 
the whole sequence of probabilities of 11.=1, 2, 3 ..., etc" in the 
form of simple linear function. This is one of the few cases in 
which the method is often easier done than said since we use a 
transfol1ning function which allows us to write the sequence of 
probabilities both as a linear function and as an exponential 
function. Such an expression is called a probability generating 
function (PGF) and can be derived for each probability function. 
For example, take a simple Poisson process in which the probabil
ity that a variable, x, is of size 11. can be stated as: 

e->'11. 
P1'(x=11.) ::;:-

11.! ' 

where ,\ is the parameter of this distribution. Then its PGF can 
be stated as 

Cf.) 

! Pr (x=n)· s", 

11.=0 
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where s is an indicator variable. Substituting the exponential 
function into the PGF, and multiplying by (;'\'+h' gives: 

~(AS)n e-l,. e-l, ~(AS)ne-'\'

e-A • - - -----'----'-;;- n! e~l,· - e-l,· n! 

. ! (AS)ne-l,·
Smce , is the summation over an entire Poisson distri

n. 

bution with parameter AS, the summation equals 1, and Jur 
PGF=e->.(l-.). Since the exponential form can be expanded into a 
linear function with terms being the probabilities of x=O, 1, 2 ... 
multiplied by so, s\ S2 •• " etc., e-),(1-8) can be identified exactly with 

Pr(x=0)so+p.r(x=1)sl+Pr(x=2)s2 ..., etc. 

Therefore, using 

8 (PGF) 
Pr(x=1) +2P'r(x=2)81 

88 

+3Pr(x=3)82 + ..., 

we can see that evaluating S(~GF) at 8=1 gives us ~ nPr(x=n) 
8 n 

which is }In. We can also see that: 

Var(n) 8
2 
(PGF)1

8s2 8=1 

+ 	 8 (PGF) I _p.2 
88 8=1 n 

and that Pr(x=O)=PGF I 
8=0. 

While the derivations and uses of these functions will not be 
detailed, only a few theorems are required to develop the uses of 
the PGF for deriving probabilities of extinction, expected duration 
of processes before extinction or population growth explosion, etc. 
More complicated processes in which several types of organisms 
may be involved, such as age-dependent processes, genotypic 
arrays, etc., require only slightly more advanced consideration but 
can be useful in following forest processes (Namkoong and 
Roberds 1974). 

STOCHASTIC GENETIC PROCESSES~ 

By determining the propensities for population growth among 
competing species or genotypes, or relative selective values, etc., 
and by considering that accidents of sampling occur according to 
some reasonable probability functions, we can examine the ex

"'Graduate-level statistical training required for thorough understanding. 
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pected outcome of population behavior in terms of averages, 
variances, or probabilities of extinction and duration of processes, 
The interest here is to derive a probability distribution of states of 
gene frequencies in a population or of the frequency of a single 
gene in several sampled populations, In addition to means and 
variances, we may be interested in the existence of gene-frequency 
stabilities for selection parameters, the absence of such stabilities, 
and the rate of change and approach to end points, 

Where we previously considered :::..t to be small, but let An be 
of some size, let us now consider ::.t to be small and the change 
in gene frequency also to be small. In a general diffusion process 
of this sort, we can consider that many loci may be varying in 
gene frequency in a population and that only random variations 
cause the frequency at a locus to vary, vY~ can intuitively expect 
that most loci will remain near their original frequencies, though 
there are some small probabilities of rather distant drift, at least 
in a limited period of time, 

Consider that as an approximation to the gene frequency 
process, a particle lies on a line and moves in small steps to the 
left or right according to how it is independently and randomly 
struck 01' otherwise moved from the right or left, If we let 
1J=P1'(one step right), and q=l-p=Pt'(one step left), the proba
bility of being located 0, 1, 2 , , , )' steps to the left or right after 
1'1 steps is: 

Pr (1'; n+1) =p • Pr(?'-l; n) +q. P1'(-r+ 1; n), 

Since r is the net result of several presumably independent steps 
to the right, say j, and the remaining n- f steps to the left, then 
the probability of being at r is distributed binomially: 

P1' (t'; n) = ( 1J ) l)Jqrn-JJ , 

Making the changes in small steps, and making M also very 
small but such that the step sizes (AX) remain such that (AX)2 
approximates ~t, while both diminish towards zero in the limit, 
the net motion is p::,x - q::..x, and the variance is 

1) (::..x) 2+ q (-::..x) 2_p.2=4pq (AX) 2, 

Then after a time period, t, in which ;t independent events occur, 

th t " t ( ) 'th ' 41)qt (::..,r) 2 

e mean mo IOn IS ~t p-q ~x WI varIance ~t 

Now allowing AX and ~t to simultaneously become small, but 

(::"x) 2 

such that --t-=D, and reparameterizing the mean change, we::.. 

can express p as a function of the mean change M; 
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WI 
p= 112 + (l/2D) -t~X 


M 

or letting C=- ,

2t 

p=1f2+ (lID)C~x 

and q= 1/2- (liD) C::'x 

Then the mean is 2Ct, and the variance is 2Dt, since the probability 

distribution approximates normality for these ~t independent
,j. 

trials, and for small ::'x, p=q=1i2. Now, the probability function 
can be rewritten in terms of x steps and time as: 

Pr(x; t+tlt)=pP1'(X-~X; t) +qP1'(X+~X; t) 

We can now expand the left side around tlt deviations and the 
right side around ::.x deviations using the general Taylor's series 
expansion: 

fey) =f(yo) + /3 [f~Yill ~y+ 1l2[~(~O) ](::'2~)2
uy y-. 

1l3[f(yO)] (,j.y)3
+ Ily 3 -3-1-+'". 

Tl .p.( .t)+IlP1"(x;t) t,1l2P r (x;t)(::.t)2
len, 1 X, Ilt::" Ilt~ 2! 


IlP1'(x, t) 1l2P1'(X, t)(~X)2 - ]

Il ~x+ ~ ~ 21 ...x ox. 

+ [p .( .t) + IlPr(x, t) .J.. 1l2Pr (:i;, t)(.:l.;~)2 + ]
q 1 x, Ilx ~x! Ilx:! 2 ! ... 

/3(Pr(x t» 
= (p+q)P1"(x, t) + (q-p) IlX' ~x 


..L/32(Pr(x,t»(. )~I 

I Il:c:! ~x -, ... 

Therefore, IlPr(x, t) t+ 1l 2 Pr(x, t)(::.t)2 _ - (1J -q)IlPr(x, t).

Ilt ::.. Ilt:! ~! - Ilx .:l.X 


J.. 1l 2Pr(x, t) (~ )2+
• Ilx:! X ... 

and dividing by ::.t and letting both::.x and ~t get small we can see: 

IlPt(:r, t) __ ( _ )::..1: IlPr(:r, t) + DIl 2Pr(x, t) 

Ilt - ]) q ::.t Ilt Ilx:! 


or IlP?" (x, t) _ 2CIlPr(:c, t) . DIl2Pr( X, t) 

Ilt - Ilx " Ilx:! 
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This is the general Fokker-Planck equation, or diffusion equation, 
which Kimura (1957) applied to gene frequency drift by noting 
that c is proportional to the mean gene frequency change, M, and 
D is proportional to the variance, V, and hence can be written as: 

8P1'(X,t) 8~ [V·Pr(x,t)] 8 [ ]
8t 8x:! 2 ax M' Pr (x, t) . 

Wright (1940) derived these relationships in a slightly different 
way, but also sought the solution for the functional form of 
P1'(X, t) which satisfied the equation and at the same time repl'e

8Pr (x t)sented a stable condition where 8t' =0. 

The solution for t approaching infinity, Pr (x, 00) .is 

~ exp [ - 2 J~ dxl 
if the process can continue indefinitely. Thus, the expected dis
tribution function for gene frequencies is dependent on average 
gene-frequency changes, M, and on the expected variance of such 
changes as may be induced by sampling variances. 

We can derive the general behavior of the distribution func
tion over time for certain types of conditions. For example, if the 
directional changes are small and the process starts at intermedi

ate gene frequencies, then M=O and V P(i;;eP) and hence: 

8Pr(p, t) _ 1 82 [p(1-p)P1'(p, t)] 

8t - 4Nc 8p2 


This expression yields a bell-shaped distribution for Pr (p, t), 
which is dependent on t and which slowly changes to a rectangular 
distribution as the diffusion process makes all values of p equally 
likely for large values of N. 

3 
2 

This solution, however, does not account for the fact that the end 
points of p = 0 or 1 cannot ordinarily be escaped from. By adding 
these conditions, Kimura (1957) showed that as the intel1nediate 



302 

frequencies declined, the end points tended to absorb a high pro
portion of the distribution and the shape of distribution became 
more bowl-like: 

Consider, for example, if M=O and V= p(i~P) , then the solu
•

tion for 

Pr(x, t) 2N. e-2/Odp = 2N. 
p(l-p) p(l-p) 

which takes the inverse form of p (1- p) . 
The solutions for the probability distribution function also de

pend on such factors as the initial starting point of the process 
and any directional effects in moving the average change towards 
an extreme or intermediate equilibrium and hence the process to 
some steady state. An initial low frequency might intuitively be 
expected to drift equally to the left and right but would tend 
to become fixed at zero more often than at one. Hence, a skewed 
distribution would be expected to develop for some period until all 
genes were fixed at zero more often than at one. Selection for the 
low-frequency allele would be expected to move the mean to the 
right and hence to develop a more symmetrical distribution for 
some period until the genes were more equally fixed at both ends. 
In this case, the tendency to drift rapidly to the left end points can 
be somewhat diminished by selection, though the relative effec
tiveness of drift versus selection will determine the ultimate 
success of selection in achieving a desired gene fixation. 

To study the balance of forces between directional selection and 
diffusion drift, Kimura (1962) parameterized selection in a linear 
or additive model of gene effects as: 

( 1 + ~) AA : ( 1- ~ ) A'A': lA'A. 

Then for M, the change is the expected up value as before of 

dp _
dt -p (l-p) (r,l-r,l') , 
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and can be parameterized p(l-p)s. The variance in the change 
attributed to sampling variations in small populations is: 

V(~p) = p(l-p) 
2N. 

Then to determine the probability that the favored gene A will 
ultimately be fixed, Kimura (1957) solved for the density functions 
and derived the relative probability of ultimately fixing A as: 

Po 

(
)exp [ - 2 ( sp (1 - p ) 2Ne 

) p(l-p) 
d 

p 
] dp 

o __________ =ultimate probability of_ 
1 fixation (UPF) 

( [ - 2 ( sp (1 - p ) 2NCd] dp
) exp ) p (1 _ p ) p 

o 

or UPF= 1- exp[-4No8poJ 
1- exp[-4No8] 

where Po i.s the initial-gene frequency. 

Thus, the relationship between selection and the effective popu.
lation size which determines drift is an intimate, multiplicative 
one in which large sizes of both Ne and s are required for success
ful selection. Note in this equation that if Ns=O, then UPF=po. 
However, if Ns>O, then 

UPF=Po+2Nsp(1-p} +o[ (2~8)2 p (p-l) (2p-l) ] 

MUTATION, MIGRATION, SELECTION, AND 
STOCHASTIC VARIATIONS 

Other effects can also be studied from this diffusion point of 
view such as mutation or migration having some influence on 
M(Ap) in contrast to the deterministic models we previously de
veloped. For example, if fl. was the mutation frequency of A~A' 
and y of A'~A, then M(~p) =y(l-p) -/LP and with V(Ap) as 
before, 

M =2N (1.__/L )
V e p 1-p 
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and P?'(p t)= 2Ne exp[-4N !(r.--P.-)dP]'p(l-p) e p l-p 

= p (i~ep) exp [ -4Ne[p.ln(l-p) +ylnp]] 

= 2N. (1-p)4N p.p4N y
p(l-p) • e 

(4Nep.-l) (4NeY -1) 
= 2Ne (1-p) p 

One peculiarity of this form of the equation is that if 

4Ncp.= 1=4Ney, orp.=y=4~c' then P'r(p, t) is proportional to 

2N e and is no longer a function of p and therefore Pr (p, t) is 
uniform for all p, Thus, if mutation rates al'e on the order of 

4~e or if migration rates are on the order of one migrant per 

twice the N c, then m=2~e' and all gene frequencies can be equally 

likely, Therefore, such migration rates are sufficient to hold 
almost all allelic frequencies equally likely and therefore can 
maintain polymorphisms in spite of tendencies to drift to fixation, 

On the other hand, if N or p. or m is large such that 4Nep.> 1, 
then 

11 (N., p.) 12 (Ne, y) 
Prep, t)=2Ne (1--p) p 

which is a function of p (1-p) which has a peak in the intermedi
ate values of p, In fact, at very high values of N the solution for 
P1' (p, t) is proportional to: 

4Ncy-l 4Nep.-l 
Prep, t)=p.[ln(4Nep.-l)]p (1-p) 

4Ncy-1 4Nep.-l 

+y[ln(4Ney-l]p (I-p) 


which is close to zero everywhere except at p= !:. ,which was p..y 
the deterministic solution we previously reached, 

We can also see that if Np. is very small, that the solution 
for PI' (p,t)= (l-p)-1 p-1 which is the reciprocal of the peaked 
quadratic function and has a deep concavity in the intermediate 
ranges of p: 
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Hence, if Np. or Nm is small, the random processes of drift fix the 
loci at one or the other allele. If Ne is low, drift occurs without 
much effect of otherwise effective mutation, or migration. 

The effects that limited population sizes jointly exercise on 
selection and mutation-migration can also be examined in the 
diffusion model by hypothesizing that the mean change in gene 
frequency 

M(.6.p) =sp(l-p) -p.p+v(l-p). 

Using V (.6.p) as the p (i;eP) drift function, we obtain 

MV =2Ne(S--P.-+~)I-p p , 

and' f~dP=2NeS+2Nep.lOg (l-p) +2Nev log (p), 

4Nesp 4Nev-l 4Nep.-l 
so that Pr (p, t) =2Nee p (l-p) 

This function now shows that the selection and mutation-migration 
independently have simple pl'oduct-like effects on the probability 
distribution where a large s can push the distribution to the right
hand state as long as N is large enough and the effects of mutation 
or migration in increasing the alternate allele are not high. Con
sider, for example, that Ne is large but that both p. and v are small 
so that 4N.p.=4Nev=1. Then Pr(p, t)=2Nee'·>;e'p which is an in
creasing function of p and hence tends to decrease the probability 
of having low gene frequencies and increases the probability of 
high frequencies: 

It also indicates that, if s is on the order of 4~e' even at low 

initial p, the population can keep the favored allele. On the other 
hand, if 4Ncs is very low such that e-4NeRP=1, then Pt'(p, t) can be 
largely determined by the b?.lance between drift and the effects 
of mutation-migration. Then, introduction of new alleles through 
mutation-migration, even at a low frequency '\yill maintain genetic 
variability. Thus, if migration may exist, very strong isolating 
mechanisms are required if populations are to diverge in the kinds 
of alleles carried. On the other hand, alleles can be lost under 
these conditions if breeding populations are developed with either 
low Ne or low s. 

A question of great significance to our understanding of evolu
tionary mechanisms in tree populations is whether small popu
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lations have evolved and display divergent allelic frequencies or 
selection and migration among breeding units has been under 
uniform selection and homogenizing. 

MIGRATION, INBREEDING, AND 
STOCHASTIC VARIATIONS 

Since even small migration rates can affect the existence and 
stability of intermediate gene frequencies, we should consider the 
effects of migration in terms of its homogenizing effect on the 
population. It is conceivable, for example, that occasional pollen 
migrations may be enough to keep even relatively isolated yellow .. 
poplar stands from diverging. Thus, if small intel'breeding units 
exist, the divergencies in gene frequency which may otherwise 
exist may be nullified by even rare migrants. In subdivided popu
lations with an overall average gene frequency of p, the variance 
among SUC:l samples, Var(p), due to subdivision is Var(p) = 
Fp(l-p) according to Wahlund's principle as described earlier 
in this chapter. However, the variance arrong unit means due to 
limitations on random mating within units, for a unit with fre
quency Pi and the sampling variance of 

2- p;(1-p,) 
Up; - 2Ni . 

Averaged over all units (say k of them), 

2_ 1"Pi(1-p) 
Up, -k- 2Ni 

If all Ni were equal, 

2-" Pi (1-Pi) 

UPl -- 2Nk 


Since the frequency of heterozygotes with the random-mating 
units is 2Pl (1-p,), over the whole population the heterozygote 

frequency would be 2!Pl (1-Pi) which must also satisfy
Ie ' 

2p(1-p) (1-F). Therefore, we can write 

p(1-p) (1-F) 
Up 2N 

We can now determine the relationship of F to migration rate, m, 
by defining .F as the probability of identity by descent which 

increases by 2~ each generation in a closed population. The l'e

maining 2~;;1 portion of the population presumably does not 

incl'ease F, and hence 

F= l:...-+ (2N-l)Ff.
2N 2N 

2 
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However, F can increase only among matings of nonmigrants, and 
at equilibrium 

F= (l-m)2 [2~+(2~;1)F ] 

(l-m)2
or F=2N-(2N-1) (l-m)2 

Substituting this value into up/ yields: 

p(1-p) (l-m)2 
2N-(2N-1) (l-m)2 p(l-p)/ [4Nm+1], 

for small values of m. Projecting the process from the diffusion 
equation approach gives the same approximate results for this 
model in which each subpopulation is considered to have an in
ternal free, intermating system of size N, and a large external 
pool of the general spec.ies which feeds in migrants which carry 
the genel'al species average of the gene frequency. The intimate 
relationship between population size and migration rates again 
indicates that small migration rates can have some effect in main
taining intermediate gene frequencies if N is large enough, but 
small N can permit fixations of any alleles though large sampling 
variations would exist in which alleles are fixed. A major problem 
exists in biology in general and in forestry in particular, however, 
in estimating both Nand m, and hence in determining the effec
tiveness of migration in preventing genetic loci from becoming 
fixed. Pollen and seed dispersal studies, such as carried on by 
Sarvas (1963) and summarized by Wright (1962), are required 
but alone cannot sati,sfy the need for independent estimates of 
Nand m. Furthermore, ti~e effective flow rates on equilibria 
achieved are inevitably the resultant function of migration, bal
anced selections, population size, and mutation. 

If the problem can be simplified to is01ate just the Nand m 
factors, however, we can begin to understand the effect of migra
tions on population evolution. Since the migration model used is 
clearly a very simple one, more realistically complicated models 
have also been developed to extend the projections of the relation
ship of migration to gene frequency distributions. An extension of 
the previously developed concept of population islands imbedded 
in a sea of the general average popUlation is that each subpopula
tion is partially isolated but can share migrants with immediately 
adjacent neighbors to its left and right at one rate, m, and with 
the general population at another rate, m",. This model is called a 
steppingstone model by Kimura and Weiss (1964), who showed 
that the differentiation among populations expressed as u p 

2 is 
approximately 

u p 
2 =p(1-p)/ [1+4Nmd1-1')J, 

where l' is a correlatiun factor of frequencies among adjacent 
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sub populations and is a function of migrations such that it is 
approximately proportional to exp [ -y2m", / md. Increases in 
1n", at the expense of nll would decrease r and make up

2 close to the 
island model solution. If nLI is larger relative to 1n"" however, l' 

incr~ases and u/ increases. If the population is dispersed into 
subunits such that migratory exchange can occur in two di
mensions, the r factor is proportional to exp [ -1,;y4m", / 1nt / ,/kJ, 
where k is a function of step distance between subpopulations. In 
such a case, the l' increases more 1"apidly f01" any increases in nlt 

relative to ?net;, and hence, for the same amount of migration but 
split into more adjacent sources, the differentiation among popu
lation increases. For this two-dimensional dispersal case, Kimura 
and Maruyama (1971) have shown that only if Nm. is less than 
one can population differentiation be expected. This is a slightly 
looser condition than previously suggested for the island model of 
populations. If Nm>4 the steppingstone model leads to a result 
very close to panmixia. More complicated cases and more com
plete analyses are derived by Weiss and Kimura (1965) which 
tend to show' the same results. 

NEIGHBORHOOD INBREEDING MODELS~ 

An alternate model of population dispersion and the effects of 
migration on maintaining genetic correlations among units is one 
in which the larger population is not actually physically dis
continuous. Rather, the isolation may only be affected by higher 
or lower probabilities of neighbors being related than more dis
tantly located trees. An effective isolation by distance may then 
exist, causing some tendency for more distantly dispersed trees to 
have drifted to different gene frequencies. The problem addressed 
by Wright (1940, 1943, 19,19, 1951) was one of defining an effec
tive population size, X e, useful for computing an expected variance 
of gene frequencies, V (p), among random neighborhoods of a 
larger continuous population. Since "Vr is a function of the in
breeding coefficient, F, and the determination of F can be stated 
in terms of the probability of common parentage, we can 
eventually determine Xc as a function of the probability that a 
tree's parents are close enough to have been related. Assuming 
that the one-generation change in inbreeding occurs by the union 
of gametes from the same individual, and m;suming that parents 
disperse offspring according to a normal distribution, the prob
ability that an individual is inbred can be computed. If a uniform 
density of cl trees per unit area exists and offspring dispersal 
follows a bivariate nonnal distribution with each direction having 
variance ~, then Ne can be derived to be S,,=·hu2d as follows. 

Let the distance of a parent to an offspring be distributed with 
a probability function of 

"'Graduate-level statistical training refjuired for thorough undergtanding. 
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Yi= exp (-2 Xf ),1
UV21T u

and also let the potential number of parents in an area, n, be a 
function of the dispersal variance. In particular, let 11.=402 or a 
square of 2u on a side. Then with 11, parents, in a density of 

n
d= 4 ." each parent occupies an area of u-

Then the probability that a gamete at a spot comes from a particu

lar ith parent is ~ and the probability of two such events is 

~:. Then summing this for all parents gives us the probability 

of uniting gametes being identical by descent or 

Xl+~~X"+~1 ~ 4u2 n - n 1 
-r=-. - Yi2dxldx2=-.~\ e L 11, u u n-;o

Xl-- x.,-~ 
11, - n 

Since n=4du~, N e=4«clo2. Since a circle of radius 2\ldu2 has this 
area, Ne is equivalent to the number of trees within a circle 
radius 2Ydu2. If only one sex disperses its gametes, N e=2-;odu2, 
and Ne is equivalent to the number of trees within a circle of 
radius ,\/2du'.!. For trees distributed along one dimension as on a 
river bank, Ne=\l4«ud2 (or y2«ud~ for single sex gametic dis
persal) and hence is even smaller and generates a greater variance 
in gene frequency. Other formulations, such as given by lVIalecot 
(1969), give slightly different parameterizations but provide simi
lar proportionate effects of density and dispersal distances. 

This model is also clearly a crude approximation of actual dis
persal patterns, as Wright (1962) has noted for pollen and seed 
dispersal patterns in many trees, but Wright (1969) indicates 
that relatively little divergencies would result from using the 
exponential functions of Bateman (1947). A principal result of 
use in investigating these models for forest trees, in which migra
tion rates are determined by d and u~, is that if du2> 16 then little 
differentiation will occur in two dimensionally dispersed popula
tions. 

GEOGRAPHIC VARIATION IN FOREST TREES 
In forest trees, various investigations indicate that while ex

tremely long-distance pollen and seed migrations have been re
corded and may be responsible for new colonizations, most indicate 
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that established forests do not disperse gametes very widely. 
,\-Vright's (1962) summarization of dispersion studies generally 
indicates a very strong exponential decay for pollen dispersal re
gardless of pollen size, structure, vector, or wind velocity and 
hence that pollen flights are similar for trees as for even herbs 
and shrubs. Seed dispersal in pines is also restricted and strongly 
exponential in its decay rate (Pomeroy and Korstian 1949), 
(Boyer 1966). Wang and others (1960) also suggested that migra
tion may be very low in established populations. Hence, migration 
may not be more effective than mutation in affecting gene
frequency variations. 

However, populations of most subclimax species are not regu
larly distributed over time or space, and large variations occur in 
dispersal behavior. We can expect that neighbors do share gametes 
more often then distant trees or stands but that long-distance 
migrations are not rare (Sarvas 1967; Lanner 1966). There is 
some evidence to suggest that pollen flight characteristics are not 
the same at ground level as at upper-crown levels of established 
stands where the female flowers are often borne on wind-pollinated 
species. Air turbulences which lift the pollen into this area can 
also effectively carry pollen for many miles (Buell 1947; Boyer 
1966), causing a more diffuse gametic dispersal than might be 
expected from ground-level studies. While some loss of viability 
should be expected (Sluder 1970), larger neighborhood sizes 
should still be expected. 

The direct evidence on actual gene migrations for any tree 
species is meager. The possibilities of very restricted as well as 
widely dispersed panmixia exist for many tree species without 
clear data on the effective migration rates or population sizes. It is 
clear that some natural inbreeding can occur in pine stands 
(Squillace and Kraus 1963), and by tracing a mutant spruce al
lele, Langner (1953) indicated very restricted effective migration. 
Sluder's (1970) literature survey indicated that major migration 
effects were most often limited to seed dispersal-often by animal 
vectors but also by wind and water movements for those species 
so adapted. The evidence on stand-to-stand variations does not 
clearly support one hypothesis or the other. Most species display 
some stand-to-stand genetic differences, but most such differences 
only become clear over large distances and on ecologically distinct 
areas, and then the confounding effects of selection obscure the 
testability of migration hypotheses. Nevertheless, genetic differ
ences within apparently contiguous stands have been shown to 
exist in isozyme differences by Conkle (1971), by Sakai (1971) 
and Sakai and others (1971), while population migration and dif
ferentiation paths have also been analyzed by tracing isozyme dif
ferences over widely separated stands of Abies (Matsuura and 
Sakai 1972). An exception may be Populu.s deltoides in the Mis
sissippi Valley where stand differences over a wide geographic 
region are very small. This condition may indicate the strength of 
river migrations of seed. 
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A species in which isolation might be expected to have resulted 
in strongly divergent populations is yellow-poplar, which is often 
insect pollinated, possesses low stand densities among physically 
isolated stands, and displays no effective seed migration mecha
nisms. For the relatively lightly or currently unselected traits of 
leaf shape, Kellison (1970) found that the stand-to-stand variation 
within geographic regions, rr.2, 'was about the same as the family 
variance among trees within stands, rr/. In contrast, the more 
selectively cr1tical trait of early height growth had a much smaller 
rr.2 relative to its rr/, indicating that selection may be effective in 
making stands genetically more unifol1n for some traits but that 
a relatively low N r without selection can cause gene frequency 
divergences. 

In more widely and uniformly dispersed loblolly pine, old-field 
stands tend to display larger Nc and lower inbreeding among open
pollinated families (Franklin 1968). While gametic unions often 
occur among related trees and even self-pollinations occur, the 
inbreds are highly susceptible to zygotic mortality before the seeds 
mature and through the nrst post-germination year. Thus, in
breeding is largely eliminated in the next generation. The effective 
gametic unions are then more likely to be from more distant 
migrants than what a ponen survey would indicate. There is, in 
fact, considerable evidence that inbreeding is genetically con
trollable itself and that outcrossing as well as isolation can have 
some selective advantages and can be selectively changed in popu
lations (Levin and Kerster 1967, 1969, 1971). 

Selection, therefore, considerably influences the expression of 
both the dispersive effects of inbreeding in small populations and 
the homogenizing effects of migration. This influence is perhaps 
most obvious with respect to migrations across species reproduc
tive barriers or the sequences of development and destruction of 
reproductive barriers among partial isolates. Since fitness is only 
secondarily associated with reproductive barriers, population re
sponse to the relative advantages of isolation versus panmixia are 
often slow. Many of the hard pines of the Southeastern United 
States display a great ambiguity with respect to the status of 
species barriers. While the species concept is generally held to be 
valid, hybridization is so commonly observed that the barriers 
must be quite weak. However, introgression is rare among species 
and appears to be responsive to the vagaries of the selective ad
vantages of hybrid phenotypes. In the Sonderegger pine hybrids, 
the parental species generally maintained themselves as distinct 
species; but during periods of great environmental disturbances 
in certain areas, hybrids and introgressants were very common. 
Upon restoration of a more normal environment, however, the 
newer generations were composed of no new hybrids and gave 
only weak evidence of any effective or long-lasting introgressive 
effects (Namkoong 1966c). 

As a disruptive force, selection, on the other hand, might over
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come any homogenizing effects of migration. Haldane (1948) and 
Fisher (1950) have suggested that one effect may l'e that if there 
is a sharp reversal in selective advantage of alternate alleles, mi
gration would tend to produce a gradual clinal shift over the seg
ment of the population which surrounds the area of selective dif
ferences. A similar theoretical result was obtained by Hanson 
(1966) who investigated an island population within which the 
selective advantage \vas opposite to that in the general population 
surrounding it. In such islands, a minimal population radius of 
6a to 7a is required to avoid being completely swamped by migrants 
from the general population. 

Clines can be generated by selection in which an environmental 
series creates a series of populations with gradual changes in the 
optimum gene frequency. In such cases, migration may tend to 
homogenize the population. Alternatively, as Endler (1973) sug
gests, migration could be irrelevant to the attainment of a stable 
equilibrium series of the sequence of optimum selection gene 
frequencies even at high migration rates among adj acent popula
tions. It is therefore far from clear in any specific case of clinal 
variations, what balancing of mechanisms between selection, mi
gration, and drift these resultant clines may represent (Stern 
1964). The existence of clines among serial tree populations can 
hardly be doubted as a general phenomenon (Langlet 1963; Sar
vas 1970; Fryer and Ledig 1972), but its causes remain obscure 
in forestry. ThIeasmement of presumed selectively different traits 
among adjacent populations along and across environmental gra
dients is a most useful approach to the problem of the l'elative 
effectiveness of selection versus migration (Hamrick and Libby 
1972). However, we may not be observing stable population con
figurations in forest trees, and hence must consider that forest 
population strategies may require a slower, 01' less than immedi
ate, response to selection pressures in unstable environments. It, 
therefore, remains an open question as to whether local popula
tions possess even currently optimum gene frequencies (Nam
koong 1969). 

Thus, variation patterns among populations are the response 
of those populp,tions to mutation and drift as confounded by vari
ations in selection pressures over time and space and by migration 
patterns, all of \vhich are further confounded by genetic changes 
in capacity to respond to mutagens, selection pressure, migration 
rates, and fluctuations in those effects. Therefore, the very simple 
concepts of static forest tree populations, in which some form of 
a balancing, optimal selection maintains optimal populations, are 
often likely to be excessively naive. While steady states may exist 
such that large changes in gene frequencies may not occur, such 
steady states are more likely to result from at least migration and 
drift forces in addition to selection, rathe.r than from balancing 
selection alone. Selection for varying environments may itself 
have led to stable equilibria in gene frequencies, but migration and 
drift can significantly inhibit responses of perennial organisms to 
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local selection pressures (Antonovics 1968b). 
We have investigated the models which have been developed for 

projecting the effects of the genetic factors influencing population 
evolution first as simple, independent effects. More extensive 
models of some effects such as multiple-locus selection and various 
migration patterns in themselves indicate that qualitatively dif
ferent results may apply to population projections than would be 
indicated from simple effects alone. Thus, the existence of multiple
loci and varying environments lead to projected equilibria unex
pected from single-locus or single-environment projections. The 
joint effects of selection, mutation, and migration were the simple 
resultant of their independent effects if it was assumed that no 
feedback mechanisms exist to modify mutation or migration rates 
as secondary selection effects. The dispersive effects of drift in 
populations of small size may be quite strong in some tree species 
and greatly complicate the effects of selection on gene frequency 
patterns. The general result of our considerations was that the 
combined effect of Ne and s, p" or m had to be such that the product 
exceeded one for the deterministic effects to be significant. How
ever, this result also required the assumption that the effects were 
constant and no feedback mechanisms existed such that the ef
fects might change in response to indirect selection or to 'He itself. 
Thus, the independent effects were themselves quite complicated 
phenomena to which our first approximate models barely do jus
tice. For joint effects, we often use very simple models which are 
known to be excessive1y naive and to require unrealistic assump
tions on the independence of effects. Nevertheless, we have been 
able to nevelop models and test some hypotheses about them which 
rationalize our biological concepts and provide testable hypotheses. 

Understanding the evolution of tree populations requires study 
of means, variances, and entire distributions of traits and genes 
as well as the distributions of the forces affecting them. The 
variations that have evolved and the genetic control of responses 
to variations determine the capacity of populations to respond to 
future variations in the genetic and external blVironments. The 
patterns of variation now present have been determined by the 
past factors which are rarely separable for convenient testing to 
determine the relative strengths of say selection versus migration 
in molding cHnal variations. Nevertheless, the relative strengths 
of the independent forces acting on populations is an important 
first step to determine the causes of any steady or variable states, 
and hence the possible stabilities of those states with respect to 
variations in selection, migration rates, etc. Eventually, a more 
complete systems analysis will have to be made to account for sec
ondary selective effects on mutation and migration rates as well as 
modifications of gene action to affect selection response itself. In 
addition, there is still considerable debate not only on the patterns 
of variation that may exist but on the presence of large amounts 
of genetic variation in all populations currently being studied for 
their isozyme gene frequencies. Regardless of what mixture of 
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factors may be responsible for the presence of those genetic vari
ations, there seems little doubt that a considerable portion of the 
genes in a genome has a meaningful frequency of variants. Much 
of this variation may be among alleles which offer no selective dif
ferences. A few loci of detrimental mutants may be held in bal
ance between selection and mutation rate as suggested by Kimura 
and Ohta (1971) or among alleles which at some time may have 
been advantageous to have been held in stable polymorphic sys
tems, but which now exist without elimination (Robertson 1970). 
,\Yhich of these systems might explai:l the high rates of lethal 
equivalents in Douglas-fir (SorC'nson 1969)? In addition, how 
many alleles are maintained in intermediate frequency by varying 
environments (Levins 1968), or by a combination of a few over
dominant loci and high epistacy (Franklin and Lewontin 1970), 
or by frequency dependent selection (Kojima and Tobari 1969) ? 
The stability and utility of those variations remains a critical 
question for those concerned with utilizing the system as evolved 
to respond to future variations of the environment and of possi
ble breeding systems. 



CHAPTER 10 

THE VIEW AHEAD FOR 


FOREST GENETICS 


At this time, foresters have the unique opportunity of initiating 
scientific breeding !)f forest tree species with relatively unman
aged gene pools. This does not mean that the gene pools have not 
been evolving to meet new evolutionary demands. They have been 
and will continue to do so. The quantification of natural and 
human-directed effects on the genetic composition and dynamics 
of the forests thus requires both description and model develop
ment. An understanding of natural evolutionary systems provides 
the basic data and model of a functioning genetic system. Such 
understanding is required for developi 'lg directed breeding systems 
and also helps provide a respect for the beauty and complexity 
with which the natural world operates. While the economic value 
of scientific breeding cannot be strongly doubted, the greater task 
is to build a more complete understanding of forest tree genetics 
so that better models and breeding methods can be devised. 

Evolutionary genetics has provided the breeder with guidelines 
un how his natural populational source of materials may have 
evolved into partially segregated subpopulations and hence on how 
the structure of his breeding populations may be modified to 
maintain or to hybridizp among any existing stand differences. 
A study of the evolution of his natural populations may also 
indicate how the genetic control of traits may change over the 
life cycle of individual trees or among environments. Thus, the 
bioengineering of the breeding populations may be a feasible 
alternati ve. 

In addition, by understanding the evolution of forest systems, 
the forest geneticist can contribute to our general understanding 
of the variety of ways our general living systems have evolved. 
Indeed, the forest geneticist is obliged to expand our awareness 
of and appreciation for the integrated living systems within which 
we move. In particular, the evolution of nonequilibrium com
munities with pioneer species, including overlapping and unstable 
age classes, which grow in semi-isolated pockets of variable size 
and duration, characterizes common ecosystems of many forests 
and is a rich source of diverse life styles available for study. 

In the past, as reviewed in this book, many dift1cult problems 
have been faced by a large number of scientists, and their first 
approximations have often been found to be most useful. Foresters 

315 



316 

have primarily concerned themselves with ecological control and 
effects, and only in the last 20 years have they begun to extensively 
attack the underlying genetic system. Part of their efforts have 
been directed to understanding and parameterizing environmental 
variations and the interactions between sites and genes. The par
ticularly difficult problems of understanding the nature of geno
type X environment relationships and choosing the best genotypes 
for a given variety of environments have been at least partially 
solved by present methods. The main problem of determining the 
size of the interactions may not require sophisticated testing, but 
determining the form of the response to sampled sets of environ
mental variations requires a high degree of skill in design and 
analysis. The additional problem of determining whether all indi
viduals in a breeding population should exhibit homeostasis or 
if a mixed populational homeostasis should be sought also requires 
a high degree of genetic sophistication. 

The choice of a breeding system is dependent on the genetic 
knowledge of the breeder and the kinds of genetic variations 
which he can use. A vast array of opportunities to further in
crease gain is available to the breeder who may choose to use 
breeding methods capable of utilizing any dominance and epistatic 
types of gene action which may be present. Various kinds of pure 
breeding or hybrid breeding systems may be appropriate, and 
the separation of the breeding population from the seed
production orchard further expands the operating options of the 
breeder to create maximum long- and short-run gains. His knowl
edge of theoretical quantitative genetics also provides guidelines 
on ho\,{ he may compromise between selection intensity and breed 
population size. It also suggests methods of subdividing popula
tions to achieve greater flexibility in long-term breeding programs. 

'.Yith all of these means by which the trained quantitative 
geneticist can affect breeding practices, he is very likely to achieve 
greater gains than a person who relies on uninformed intuition. 
However, recognition of the great value that genetic analyses and 
the subsequent synthesis of breeding programs may have does not 
imply that many problems do not remain before breeders can be 
fully effective. Some problems are difficult to solve because we 
lack experience with forest trees, and although a general theory 
may be available, forestry data may be lacking. Other problems 
are particularly difficult because the basic theory is inadequate 
to meet our needs. For example, optimal breeding programs must 
account for interactions between trees and other organisms, which 
themselves are affected by the breeding system. If competitive 
effects among genotypes are important, as described by Sakai's 
(1955) distinguished series of studies, then genetic systems, such 
a;; described in a series of studies by Huhn (1970c) or by Griffing 
(1967) J will have to be extended and applied to tree breeding 
programs. If breeding affects insect or disease pathogen popula
tions, then we will have to modify the breeding program to 
achieve gain while the pathogen evolves in some minimally harm
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ful directions. Other problems which will require theoretical de
velopments include the nature of provenance differences and their 
use in breeding programs. Problems for which a theoretical foun
dation may be adequate, but where experience with trees is 
lacking, include long-term selection studies in which inbreeding 
can adversely affect selection response. Both theoretical and prac
tica1 problems of great complexity remain for tree breeders much 
as they do for animal breeders (Barker 1967). 

In spite of these major problems in achieving maximal gains, 
the remarkable success of modern breeders lies in the application 
of genetic principles to the studied and bred organisms. The very 
simple models of gene action used have thus led to substantial 
improvements through selection and breeding of genotypic com
positions. Ivlore accurate and precise testing methods and wiser 
choices of traits and materials for breeding have vastly increased 
breeding efficiency. Perhaps the most significant contribution of 
quantitative genetic theory to tree breeding has been the adoption 
of simple gene models. By applying known principles of gene 
action, some predictive power has been achieved for a variety of 
breeding procedures. The advance from no genetic model to simple 
models has thus fostered considerable economic gains. However, 
as old revolutionaries tend to become the new conservatives, new 
models tend to generate their own orthodoxies and impose their 
own limits on concepts of how breeders may control future popu
1ations. In somewhat oversimplied terms, it may be argued that 
the principal effect of quantitative genetics has been to apply a 
linear model of gene effects to many genetic loci. As a result, 
breeding theory is largely the adaptation of linear statistical 
models to crossing and breeding experiments. The fact that the 
simple models are not truly adequate may be well recognized, but 
our thinking remains limited to approaches available with linear 
models. 

The simple models were never intended to include such compli
cating effects as nonindependence among alleles and among loci. 
However, since linkage groups do exist and inbreeding does occur, 
the genetic models are not inclusive of these possibly significant 
effects and may not be an adequate basis for predicting selection 
effects. The smaller the effective population size and the fewer 
genes of large effect there are, the greater wjJl be the discrep
ancies. While some theoretical studies have been conducted (for 
example, Gill 1965b; Latter 1966), our thinking is largely re
stricted to how well the simple models behave under noninde
pendence conditions, and little has been successfully done to 
develop more adequate models for selection. The major effects 
of epistasis are similarly inadequately modeled, and except for 
computer simulation studies on multiplicative gene-action models 
(Franklin and Lewontin 1970), the combined effects of epistasis, 
linkage, and small effective popUlation sizes under selection have 
not been adequately studied. Thus, any realistic mixture of effects 
with varying gene frequencies are poorly modeled. Studies of 
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changes in selection intensity, especially of the kind that switches 
from positive to negative over periods of time greater than one 
generation, and under competition or other frequency-dependent 
effects, have only been studied under the simplest genetic models 
but can obviously be of major importance to breeding theory. 
Also, as gene frequencies change under the influences of selection, 
correlated changes occur in the genetic variances (Rawlings 
1970). They can also be expected to occur in the effects of the 
genes themselves, because the entire genetic background of the 
individuals in the breeding populations is changing. 

It thus seems clear that we should at least determine the ade
quacy of the presently used models rather than to assume their 
restrictive definitions. For example, instead of defining dominance 
effects as deviations from the linear, additive effects, we might 
construct models where dominance and epistatic second-order 
effects are defined first. Then, fitting alternate models may indi
cate the adequacy of one or the other model, and means and vari
ances defined according to the most appropriate mode. Selection 
effects may then be more easily modeled if second-order effects are 
important. Thus, we need not rely entirely on linear models if 
others fit better, and we could begin to develop models of quanti
tative gene action which are less restricted than our simpler ones. 

The use of linear economic models in forestry is obviously a 
serious limitation. Yet, breeding theories on several traits require 
not only linear economic models but also independence of value 
among traits. Clearly, nonlinear and dependent models of value 
must be developed and used for truly adequate evaluation. 

Similarly, the problems of predicting selection effects or model
ing the evolution of gene systems need not be restricted to such 
assumptions as the constancy of gene effects or other parameters 
of selection, migration, etc. These parameters do vary, sometimes 
randomly and sometimes in cOl'l'elated pattern::;. Thus, the dif
fusion theoretic basis for selection under small population sizes, 
as developed by Kimura (1964), may well be expanded to include 
nonrandom parameter variations of certain forms and could en
compass the variations suggested by Levins (1968). The theoretic 
basis for selection and breeding theory is thus likely to expand to 
include variations in selection pressure, population size and in
breeding, and migration or gene-pool exchange rates. The control 
of such variations in multiple, small population replicates may be 
achievable. 

One type of change which breeders may anticipate is in the 
form of the physical and economic environments within which 
the future commercial breeds must operate. Since variations of 
uncertain form and extent must be anticipated, the problem for 
breeders is to determine not only how their breed populations 
change if selection parameters change, but more importantly, 
what kind of breed populations should they construct to yield 
maximum value in an uncertain future. Thus, new concepts of 
optimum population forms are required which will include vari
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ance control and higher moment specifications, in addition to our 
present concern with mean values and maximization principles 
only. Newer techniques of mathematical programming will likely 
be used to define optimum selections under conditions of both eco
nomic and environmental uncertainty (Namkoong 1970b). 

While tree breeding itself is explosively advancing, and many 
problems require solution, the present state of the theoretical art 
can be described as having reached a plateau of development. 
We have used linear models with tremendous success in advancing 
both our concepts of breed control and development as well as in 
vastly increasing operating efficiencies. There remain many prob
lems in which linear models of independent gene actions can 
still be applied for guidance in optimizing breeding practices. 
However, forest geneticists cannot afford to assume that the 
present models adequately define all important kinds of genetic 
variations. Hence, geneticists should not be limited in their con
cepts to the restrictions and limitations of linear models. The 
biological questions of how breeds actually develop and of how 
genes actually interact to give responses to selection have not 
been solved by the application of linear statistical models to 
breeding theory. The models used have provided a basis for 
testing certain hypotheses on the existence of forms of genetic 
variances and the efficiency of breeding. The next step in the de
velopment of a better theory is to conduct experiments on the 
adequacy of the models and to propose more inclusive or more 
accurate models. Then the scientific process from forming a 
model to testing the model, to observation and proposal of better 
models can proceed. 

At this time, the overriding need in quantitative genetics of 
forestry is for biologists and breeders to use and understand the 
simple models, to test their adequacy, and to propose models 
which more closely fit the biological facts. We require tests of 
how inbreeding affects response to selection when both inbreeding 
depression and small population sizes have some effect. For gene 
actions in populations with hybrid-crossing systems, we require 
tests on the nature of any heterotic responses. For long-term 
selection programs, we require experiments on the changes de
veloped in the variances and in the gene effects themselves. The 
nature of environmental interactions and age changes still requires 
far better definition than now available, and the optimal use of 
environmental and economic variations by breed populations re
quires more imaginative solutions than those developed thus far. 
Therefore, the role of quantitative genetics in the future is to 
apply quantitative analyses to more inclusive and more accurate 
genetic models, as suggested by experimental testing and the fer
tile minds of foresters. 
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