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INTRODUCTION

Man's explosive intrusion into forest ecosystems has not only
aftected the present character of our fovests but in a more pro-
foundly disturbing way has alse affected the evolution of our
future forests. Not only are the trees growing today different
from those of past decades, but we have often lost the resilient
capacity of this renewable resource to respond to the changing
demands of nature and man. When whole forests are lost, the
genes are lost, and replanting the land cannot recover the potential
of any extinct genes. Even during breeding, the genetic resource
may often be so reduced that future evolution is halted. Today,
forests are being more intensively exploited and the forester has
an obligation to safeguard the future of his resource. He can con-
structively divect the evolution of forests toward inereased pro-
ductivity within a genetic system that is capable of cumulative
improvement and of meeting the varying and unecertain demands
of the future.

If the genetic resource is to be effectively used and forest
composition extensively controlled, we must look for ways to
optimally control the evolutionary system of the whole species,
and not just the transient status of any cone genevation. The forest
scientist is thus obliged to understand the forces which have con-
trolled or can control the evolving forest and to predict the conse-
quences of divected or accidental changes in both the genetic
and ecological systems. The potential benefits of tree breeding atre
widely recognized, and forest tree breeders will undeubtedly have
at least partial control of the genetic basis of futyre forests. The
forest geneticist must therefore undevstand the genetic materials
and the manipulative techniques available. Quantitative peneties
can help him to rationalize his tactics and strategies. It provides
a means to construct unifying and explicit theoretical structures
and testable hypotheses of alternate theories and practices.

During the past two decades, fovest geneticists have devoted
most attention to observing inheritance patterns, correlations
among traits, and developmental relations among traits and be-
tween juvenile and mature tree performances. Much work has
also been devoted to estimating the apportionment of genetic
differences belween and within seed sources, the utility of hybrids,
and the economic and biolegical constraints of forest trees which
affect breeding operations. Thus, the forest geneticist has begun
to develop a greater understanding of the organisms hancled and
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a pool of materials for starting a process of controlled avolution,
However, the past two decades have also produced major develop-
ments in the science of genetics and the theoretical foundations of
evolutionary and breeding theory. Thus, the tree breeder often
finds that his initial efforts have provided him with a good basis
for directing the evolution of future forests but that there now
exists a vast array of new selection theories.

This book is a guide for forest geneticists to the more useful
techniques and theories of that collection of applied mathematics,
statisties, population biclogy. and genetics which is collectively
called quantitative genetics. Those parts of the theoretical and
analytical techniques which can be useful in forestry are reviewed.
However, there is no general review of the forest genetics litera-
ture. No detailed instructions on breeding mechanics or seed pro-
duction are given, nor are many specific population or provenance
studies reviewed excent to illustrate how the basic principles and
theories are applied. Within most chaoters, a skeietal guide to the
necessary concepts is given with applications to forestry. Often,
topies which are nof immediately applicable to forestry are dis-
cussed because of their potential future importance as our scien-
tific knowledge increases. Fer the most part, the book requires
underoraduate college-level mathematics, statistics, and genetics.
Several special topics require a background in graduate-level sta-
tistics, but these are not essential to the continuity of subjects.
Such topics are labeled with an asterisk.

The chapters are grouped into two sections. The first section is
devoted to the breeding and population genetic theories applicable
to forest tree breeding. The first chapter is devoted to the basic
models of gene effects and genetic variances which form the basis
for selection and breeding theories. Chapter 2 is devoted to the
application of those statistical and population genetic concepts to
the study of selection effects and how selection can be made
effective in tree breeding. Then, chapter 3 considers selection
theory as applied to plant breeding and tree breeding in particular.
The strategy of breeding is discussed with respect to the objectives
and the tactics available in chapter 4. Some special problems in
developing an optimal breeding program in forestry are discussed
in chapter 5.

The second section is devoted to a deeper examination of the
population ecology moedels on which the genetic models are built
and the statistical models and methods used. These areas of
currently expanding vesearch can clearly affect the breeding
operations of foresters in the near future. Chapter 6 is devoted
to the population ecology related to forest trees. Chaplers 7 and 8
are devoted to the statistical developments which can directly
affect tree breeding. Chapter § is a more detailed examination of
population genetic theories related to forest trees. Finally. chap-
ter 10 considers research in forest genetics needed to fulfill the
forester’s obligation to create an optimal evolutionary system for
future forests.




CHAPTER 1
MODELS OF GENE ACTION

To the unpracticed eye, forests may at first seem to be mono-
lithie, immutable masses with uniferm shape and behavior, How-
ever, a closer look readily reveals tremendous variations in age,
size, and species of trees—even a single stand of trees cannot be
completely characterized by any single concept or measure. Varia-
tions exist around some average form or behavior, and an acute
observer may discern a pattern in the individual-tree deviations
from the norm. Scientists are interested in determining causes
for some of those deviations, and they have found that clusters
of performance types exist. Thus, our knowledge of the nature
of forests has advanced from a perception of uniformity to a
concept of an average with variation, and to an analysis of the
sources of variation. In this scientific search for causes of varia-
tion, models are formulated and tested against reality, and better
models formulated. In forest genetics, we have generally passed
the stage of estimating means and are now estimating variations
and evaluating the relative importance of different sources of
variable behavior.

In this chapter, simplistic concepts of tree populations are
described, along with effects of genetic differences on these popu-
lations. The concepts of mean and variance are used in population
models to ascribe variation to environmental and genetic causes.
The essentials of population genetics are then introduced as a
basis for the subsequent chapters on selection and breeding. These
statistical and population concepts are explored in greater depth
in chapters 6 and 7.

DESCRIPTIVE STATISTICS

Almost any collection of trees varies considerably in a multitude
of traits. The responses of trees to even the same sequence of
environmental conditions usually differ sufficiently to produce
recognizable variations in height, weight, color, ador, or other
measurable traits including the physiological response system
itself. Since trees also grow under different environmental
sequences, even in managed plantations, large variations in indi-
vidual tree behavior commonly exist. Silviculturists fraditionally
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have recognized and used some of the causes of these differences.
The recent history of silvies is largely devoted to effecis of such
factors as age, spacing, and soil type on free behavior. Even
accounting for these major sources of wvariation, considerable
variations still remain unexplained and can often mask even major
site effects.

1f general groups of behavioral types can be recognized, then
it is useful to know the average performance for each group as
well as how tightly clustered the groups are. Traditional and
useful descriptors are the mean {(u) and variance (¢%), which
are defined as:

Mean ==X fia; =y
Variance=23 fi xf—p*=d?%

where f, is the frequency of the i type, and x; is the value of
that type.

If the measurements are made on a continuous scale, the defini-
tiong become:

Mean={zf(x) dx=p

Variance= {22f{x) dx—p?

where f{z) is the probability density function of x, and z is the
value over the whole range.

Once we recognize that the population is not a single, uniform
entity which can be described by a single stafement, the above
two descriptors often suffice for a statement of central location
and degree of dispersion. However, once causes of that variation
ave considered to exist and hypothesized in a conceptual model o
affect the trait, then the mean depends on the level of the causal
mechanism and the variance depends on whether we consider the
dispersion of the whole population or only that around the mean
at one level of the causal factor. If soil fertility affects diameter
of a tree at a given age, then we might conceive of a consistent
increment in size for unit increments in fertility. The population
mean and total variance measured in ignorance of soil fertility
remain as they were, but the informed forester would be interested
in descriptions of the mean for each fertility level and the varia-
tion around those means. He would also be interested in deserib-
ing the reiationship between the fertility levels and those means.
The regression is a useful way to describe these relationships
according to the conceived model of cause and effect, and it is a
useful third measure for describing the true state of the world.

Foresters have traditionally been interested in environmental
or silvicultural control of tree behavior and have frequently used
regression first to describe effects of environmental factors and
then to modify the forest environment for improved performance.
Thus, if potassium levels, for example, affect tree size within a
plantation, and if soil samples can be taken, the potential to
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improve growth may exist. While other factors may continue to
cause vaviations in size even among irees at the same fertility
levels, the total variance ean be partitioned into a part due to
those unexplained other sources of variance, and a part due to
variations in potassium. If the unexplained causes of variation
are unrelated to potassium effects and if they occur independently
of potassium levels, the total variance would simply be the sum
of the two variances. The forester would presumably conclude
that increased yields would follew from increased potassium
applications, and he might even be able to eliminate that as a
source of variance and have a more uniform stand. If he were a
scientist, he would check his deductions against resuits and would
likely find his initially conceived models inadequate, He might
then propose better models of growth and fertilizer response and
develop this branch of science.

In genetics, a similar sequence of development is involved and
can be described by similar kinds of parameters. It is clear that
genes do affect growth behavior, and for some populations of
trees part of the variation in size is due to differences in genes
possessed by individual trees. There may well exist considerable
variations in behavior, even for the same genefic state, but the
total variance would still be partitionable into a part due tfo
genetic causes and a part due to other effects, such as fertility,
and other unexplained differences. I'he forester would then also
be justified in concluding that fixing the correct genes could give
him behavioral improvements.

However, two major differences exist hetween genetic and
environmental sources of variation. First, the genetic sources of
variation are often caused by so many genes that, through proper
breeding, they constitute a renewable resource which can continue
to yield cumulative improvements. Unlike fertilizer treatments,
the objective of gene management often is not just to fix the best
available genotype but to use genetic recombination to generate
more useful variations. The second major difference is our inability
to divectly observe and control most genes and hence our inability
to directly create an ideal genotype, even if one could be defined,
Therefore, to thoroughly understand and use the genetic resources
of tree populations, we reguire more sophisticated concepts of
breeding than simply picking and fixing the best. We must under-
stand how genes act; we must formulate explicit models before
we can establish anything near ideal breeding procedures.

GENETIC SOURCES OF VARIATION

The description of gene actions which shall be used here is
based on the simple Mendelian model of two alieles at a genetically
active locus and the genotypes which may thus exist. Considering
genotypes to be fixed at any one time and describing the variation
caused by the effect that such genotypic differences would have
on average performance differences is similar to describing the
variation due {o any other source, such as soil fertility.




If stem-volume growth averages 100 units per tree and no
recognizable fertility differences exist in the population, the trees
may still vary in performance due to unknown causes. A sample
of these trees might measure 101, 104, 93, 102, 97, 99, 103, etc.,
and carry an average near 100, a range of 11, and a variance due
to unidentified causes of around 10. If the population contained
variations in genetic composition such that some of the trees had
a growth average of 95 units, then a sample of trees with that
genotype might be 96, 98, 99, 94, 88, 92, 97, etc., carrying an
average near 95 and a variance due to those same unidentified
causes (residual variance) of around 10. If another genotypic
variant existed at random in the same population and had an
average growth of 100, 2 sample of its trees raight be 93, 96, 99,
102, 102, 104, 101, efe., with residual variance around 10. If a
third genotype existed and its trees measured 106, 103, 107, 108,
98, 102, 104, ete, averaging 105 with the unexplained residual
variance of around 10, it can be observed that the total variance
has increased if all genotypes are included in the same population
sample. Whereas the range of variation in the initial population
was from 93 to 104, the range now ig 88 to 109. The actual vari-
ance in this more variable population would then depend on the
relative frequencies of the genotypes. If almost all were of any
one type, the variance might not be much different than originally,
but if almost all were equally split between the extreme types,
then the variance would be considerably larger.

Gonsider that the three tvpes described above may be the three
genotypic variants generated from two alleles, 4 and 4’, namely,
ATA', A'A, AA. If they were equally frequent in the population,
then the trees from all types would be roughly equally sampled
and the variance due to genotypic differences would be 16-2/3.
The total variance for a sample, including the residual variance,
would be the sum of the genetic and residual variances, 26-2/3,
if genotypes were randomly located with respect to those unidenti-
fied sources of variance. More typically, however, the relative
frequency of the genotypes ig not equal but is dependent on other
factors such as the relative frequency of the alternafe alleles and
mating patterns. If the alleles were equally frequent (0.5 each)
and mating was random, the relative genotypic frequencies would
be expected to be 0.25, 0.5, and 0.25, respectively, for A'Af A4,
and AA. The variance due to genetic differences would be then
12.5. However, if matings were arranged such that only 0.5 A'4’
and 0.5 A4 existed, then the variance due fo there being just the
two extreme types would be 25.

Gene frequency can affect the variance due to genotypic differ-
ences even with the same model of gene effects. If one allele,
say 4, were at very high freguency in the population, and if mat-
ing were random, then almost all trees would be of genotype A4,
and few of the A’A’ or A’A would exist or be sampled. Then, the
population mean would be close to 105 and the variance not much
more than the residual level of 10, The same, of course, holds true
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if A were at low frequency, though then the mean would be closer
to 85.

Another factor that can affect genetically caused variance is
the gene-action model itself. Clearly, if the mean differences were
80, 100, and 120, the variance would be much greater than if they
were 89, 100, and 101. Also, if genes acted such that the heterozy-
gote, A’4, did not yield an intermediate value between the homo-
zygotes, then the total! variance would change. For example, if
dominance existed, the genotypes A4’ A’A, and AA might have
values like 95, 105, and 105, and the variance can be larger than
for 95, 100, and 105. If the values were 93.5, 101.5, and 103.5 and
frequencies were 0.25, 0.5, and 0.25, the total genotypic variance
would be 14.5 instead of 12.5 as above, even though the mean
stayed at 100 and the difference between extremes remained at 10.

To describe these effects in simple models, it is useful to parti-
tion the genetic sources of variation intc parts ascribable to
clagsical types of additive and dominance types of gene action.
This can be done in several ways, as detailed in chapter 7, and
one particularly eonvenient method uses the following definitions
and assumptions:

Genolypes are A’'A" 1 A’4A : 44
Let g={frequency of one of the alleles, say g..

Assume random mating, which then implies genotypic fre-
quencies {1-¢)? : 2¢(1-¢) : ¢

The measured difference between A’A’ and AA is u so that
if the variable being measured is 98.5 for A’4’ and
108.5 for A4, u=>5.

The value of the heterozygote 4’4 is o » %, a muiltiple of
© and a factor “«” which determines how much greater
or less the heterozygote is than an intermediate, or
no dominance position. If complete, classical dominance
exists, A’4 and 44 are identical, then ¢=1 and ¢ - u=1.
If no dominance exists, A’4 is intermediate befween
—t, and +%, and ¢=0. If overdominance exists, then
A’A is larger than A4 and its measure, ¢ + , has 2 value
larger than w, and hence ¢>1, If A’A is 101.5 exhibiting
only partial dominance, as in the above example, where
u=25, then a=0.6, lying between 0 and 1.

Under these conditions, the portion of the genctypically caused
variance called the additive genetic variance is ai=2¢g{1-g)u?
[1+({1-2¢ja)® This is the part of the total genetic variance which
can be described as having been caused by the average effect of
substituting one allele, say 4, for the other. Hence, it is a measure
of how an allelic substitution in a tree would cause variations in
a tree’s performance, and is similar to the variation in perform-
ance caused by a unif change in fertilizer application. In the
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above example, 0.*=12.5. The complementary portion of the
genetic variation is the dominance genetic variance:

op?=4g2 {1-4)? «® 2

This is the part of the total variation due to the heterozygotes’
failure to behave in a simple intermediate manner. If variations
in performance due to genotypic differences at this locus are not
describable or completely accounted for by a simple model which
adds a unit in yield for an allelic substitution, then dominance
exists, and its effect on genotypic variance is oo° In the above
example, o5 =2.25.

The sbove two partitions of the total variation are analogous
fo a linear and guadratic partitioning of the variance due to any
ordinary type of causal or regression variable. In a soil fertilizer
experiment, it is commion to use a few levels of application of a
particular nutrient, say potassium, and to describe its effectiveness
in terms of sums of squares or variance due to the nutrient and
to the linear and quadratic portions of that variance. In such
experiments, it is also common to use other nutrients such as
nitrogen io study their effect on trees and to similarly describe
their total effect in terms of variances accounted for or caused by
those variations. It is often valuable to know the interactions
among nutrient effects as well as the linear and guadratic effects
of nitrogen. The form of the effect of potassium may change with
nitrogen level. In a similar way, the combined effects of two
genetic loci can be described even if they are not as easy to
control or change as soil fertility is.

MULTIPLE-GENE LOCUS MODELS

Consider two loci with roughly the same kinds of gene action
as described above. Each has some average homozygote and
heterozygote vields, and hence some average effect of alleles which
is measured over all variations in external environments and
over all variationg in genetic differences at other loci. With this
model, it may be more difficulft fo perceive average genotypic
differences at any one locus, because the background variations
are larger due to genetic variations of other loci in addition fo
the otherwise unidentified variations. Similar gene actions would
cause similar variations, but the genetic variations would include
an o,2 and op? at each locus. In addition, if interactions between
loci oceur as between potassium and nitrogen, then additional
effects and their description in terms of variances must be defined.
These genetic interactions are collectively known as episiasis, and
they can be statistically described as:

additive-by-additive epistasis (linear-by-linear interaction},

additive-by-dominance epistasis (linear-by-quadratic inter-
action), and

dominance-by-dominance epistasis {quadratic-by-quadratic
interaction).



http:ITD2=2.25

7

The classical genetic concepts of epistatic interaction, such as
complementary or multiplicative gene action, would be reflected
in the existence of variations in performance above those expected
on the basis of models assuming independent gene actions.

Greater complications are introduced into the model if three
loci are consgidered, since not only are move two-way interactions
generated but triple interactions of various sorts may also exist.
Such extensive models would indeed be complicated, and if we
wished to analyze the detailed interactions, our problems would
increase dramatically with each new locus added. Experimental
models on silvicultural treatments with three kinds of variables
are usually as much as can be handled, and certainly four or more
variables soon become impossible to interpret. Yet in genetical
situations, we often deal with effects whick cannot be easily
handled physically, are often masked by unidentified variations,
and involve the actions of many genes. In such situations, if single-
gene effects are important, the geneticist will try to isolate those
effects by fixing all other sources of variations including genetic
and environmental sources. More commonly, however, the single-
gene effects are not easily studied and greater concern is centered
on the total cumulative effect of all genes which influence a trait,
Thaus, if 20 loci affect growth, the statistic of main interest is the
sum of vaviances due to the additive pene actions at all loci, or
the sum of variances due to the dominance actions at all loci. The

interactions may also be of interest and use, but again, with many
loci, the sum of all two-way interactions, as for example all the
additive-by-additive epistasis, is of greater interest than the form
of the effects at any one pair.

This approach makes the description and analysis of gene
effects much easier, but alsc submerges many substantive ques-
tions about the actual interaction of genes. Within a small range
of gene actions and small changes in the frequency of the genes
in any popuiation, the consolidated statistics may accurately and
consistently describe gene actions. For many breeding systems,
gene frequency at each locus changes slowly, though the total
impact of all loci on the phenotype may be large. Through mating
and recombination, the genetic variance at each locus may change,
hut total variance may remain fairly constant, For any real popu-
lation, however, very complicated interactions are likely to oceur
among loci and are likely fo change whenever any one locus
changes much in genotypic composition. Since foresters commonly
deal with traits with fairly complicated morphogenesis, not only
may many genes affect a single-behavior mode, but many physio-
logical systems may be interacting to produce the composite trait
of growth, resistance, etec. Thus, while genetic variance statistics
are highly useful in condensing meaningful data and modeling
population hehavior, a complete knowledge of genic systems
requires far deeper and more extensive research. It will eventually
be necessary to recognize and study the genic interactions of traits
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and how genes and physiological systems interact in composite
traits.

For many practical purposes, the gross statistics of the collec-
tive genetic variances and environmental variances are useful
descriptors of factors affecting forest tree behavior, and many
studies have indicated that substantial amounts of genetically
related variation exist. Thus, it is reasonable to consider the
variation of free behavior in most forests to be due o many
effects, which are simultaneously varying. The genetic sources
of this variance, which can be used and still provide more varia-
tion for cumulative gains, are the focus of inferest in this book.

Unfortunstely, genetic sources are complex and difficuit to
mensure and use. Other sources of variation, such as soil fertility,
can be examined by chemical and structural analysis of the soil,
and the relation between those variables and growth determined
by experimental control and fest. Genes cannot often be measured
and are generally known only by their action on the traif being
measured. Therefore, instead of directly manipulating genes, other
relationships have o be used to infer something aboul their
effects.

One kind of relationship useful in analyzing the strength of
genetic variation is the tendency of close relatives fo be genetically
more similar than distant relatives or unrelated trees. If genes
have any effect on the trait being studied, then the trait should
show a lower degree of variation within close family groups than
between unrelated trees. Trees with the same ancestors will share
more common genes and hence will behave more similarly to
each other than trees with dissimilar ancestries. However, if the
genes do not affect the trait being studied, then values for the
trait will not be clustered within families. The geneticist, there-
fore, has an instrument by which he can measure the importance
of genetic sources of variation. By comparing the degrees of
variation between related and unrelated trees, the genetic differ-
ences can be seen to have a strong effect if the data cluster in
family groups, or a weak effect if family clusters are diffuse. If
the geneticist can control the degree of relatedness, an exact
relationship between genetic variance and family differences can
be obtained. The closer the family relatedness and the higher the
genetic variance, the higher the variance between the families. If
either relatedness or genetic variance is weak, the variance be-
tween families relative to that within families is small. The rela-
tionship is a multiplicative one:

o=70.2,

where o/ is variance among families, » is coefficient of relation-
ship, and o,? is genetic variance.

This form of relationship is important not only for analyzing
the relative strength of genetic sources of variance, but for also
selecting and breeding. Therefore, before discussing the selection
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process and the relation of gain from selection to gene action and
to genetic variance, let us consider the experimental design and
analysis possible with gene effects,

ESTIMATING GENETIC SOURCES
OF VARIATION

In most studies of response to some manipulated variable, the
variation caused by or attributable to the variable is separated
from the variation caused by other effects or other unidentified
sources. For genefics experiments in which the only controliable
factor is the degree of relatedness within families, the family
groups are the experimental sources of variance which can be con-
trolled and analyzed. The degree of relationship and the strength
of the genetic effects determine the physical distinctiveness of the
family groupings. By knowing or controlling the degree of rela-
tionship, we can study gene effects measuring the similarity of
family members. If —ariation is largely the rvesult of gene effects,
then close relatives like parent-offspring or sib-sib will be very
similar, as compared with unrelated pairs. The variation in an
offspring population will be correlated with parental-behavior
variations. This condition can be expressed in terms of statistical
regression as a high covariance of relatives. In such cases, the
behavior of trees is predictable from the behavior of their siblings.
If both parents are common between sibs (full-sibs), the covari-
ance is higher than if only one parent (half-sibs) is the same. In
turn, the half-sib covariance is higher than for more distantly
related pairs.

If variation among irees is largely the result of nongenetic fac-
tors and is nearly vrandom with respect to ancestral relationships,
then the degrees of relationship can change as above, but the be-
havioral correlations would be lower. More variations due fo
nongenetic effects would reduce the measured covariance of those
relatives, These relationships are derived more extensively in
chapter 7 but can be summarized as follows:

Cov (parent-offspring) =14 et +14 aag+ ...
Cov (fUH-SibS) =1/3 O'Ag‘i'l).i crpz"!'j/;, 04_42"’“1/% 0’_492‘;‘ .

Cov (half-sibs) =14 0,2+ 0442+ . . .

From this point of view, the covariance of relatives reflects the
relative similarity of family associations and hence increases as
family groups become more distinctive due to close relationship,
high genetic variation, or both, The genetic variation is reflected
in the variation between family groups, which increases as the
covariance of relatives increases within groups. Then, by con-
structing family groups, the variation between them is a measure
of the covariance within families. Since the covariances are known
functions of the gerciic variances as given above, the genetic
variances can then be estimated.




10
COEFF1JIENTS OF RELATIONSHIP

Genetic variances can be estimated from measures of common
ancestry. Measures of relationship ecan also indicate the degree of
inbreeding from matings of relatives. Common ancestries are ex-
pressed in terms of probabilities that the trees involved have
alteles derived from common ancestors. Consider that for any two
individuals, a covariance would exist and can be written in terms
of genetic effects if there is some probability that identical genetic
effects occur other than solely by chance in random mating, If
pairs of individuals are randomly chosen from a large population,
then their alleles are expected to occur in the frequencies expected
of the general population, If the pairs have closer relationship, then
the degree of nonrandomness can be measuved by the probability
that the alleles in the two individuals ave identically derived and
exactly alike. Thus, for a linear model of average and dominance
effects, as we have previously defined, we can derive the covari-
ance between two individuals, X and Y, according to the prob-
abilities that their alieles are the same:

J— ] T
X""F“"ﬂ:«-':"a:?_'-s.ro-: o

and Y=p-+g _,-':_ﬂ’yq':-sv:vg
where a., is average effect of male parent gene coniributed to =z,
ar ¢ I8 average effect of female parent gene contributed to z,

[+

v - i average effect of male pavent gene contributed to y, «, ,is

average effect of female parent gene contributed to v, 8:.:5 is
dominance deviation of parental genes contributed fo x, and
8, v, is dominance deviation of pavental genes contributed to y.

As developed in chapter 7, ea®= L3 ou®, and os* o, If the male
parentage of X and Y is identical, nonrandom, or related in some

way, then a certain probability exists that «., =« ,, and the co-

variance of X includes Pr(X.=Y.) (15) o.% If the female
parentage was somehow nonrandom ov related, the PriX.=Y,}
=0 and the variance contains ;P (X,=7Y,;) (42)ed’ Note that
if we took the probability of a random allele from » and random
allele from y being identical by descent, this probability is X,
15 PriX,=Y;), which is Malécot's (1969) coeflicient of co-
ancestry f.. Therefore, 2f ,—Ll, ¥,;Pr{X.=2Y,} which can be
used as the coefficient for the «.* contribution to the covariance
of relatives. If both male and female parventage of X and Y are
related, then (8, .. 8y.y, Yo Prir oy and 2 Ty L) a5’
FPr(x cry.and .oy} e Then for any kinds of relationship,
we ean frace the various probabilities and determine the contribu-
tions of these genetic variances to the covaviance of relatives. For
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example, if the female parent of X and ¥ were the same, then the
only nonzero probability would be Pr (X,=Y.), and it would de-
pend on how the choiee of gametes is made in the production of
eggs of the common mother. If the choice is random, then the
probabilty is 15 that the same allele (either one) is chosen and
the contributions of the genetic variance to the covariance of these
half-sibs are 14 o4% If both the male and female parents of X
and ¥ were common then Pr (X =¥ ) =Pr(X .=¥,)=14 and
the probability that both are ldentlcql is (V) (34)=14, and
the other probabilities are zero. Therefore, the genetlc vau'mce
contributions to the covariance of full-mbs is 15 ¢42+14 o052
For the case of parent-oftspring covariances, if we take the parent
as X and the offspring as Y, the Pr(X Y y=Pr(X. =Y, =14
and all other pr ObabllltIE‘i are zero. Then the covariance of palent
and offspring is (14) 4%

If additional genetic loci affect the genetic variances and co-
variances among relatives and if they are independent loci, then
the probabilities of identity by descent for multiple-locus effects
can be added over the genetic variances at each locus. For multiple-
locus epistatic effects, the probabilities of joint identities by
descent are products of the independent probabilities. In such
cases, for any kinds of relatives which have the additive genetic
variance coeflicient of ¢ and a coefficient for «,? of d, the general
covartance due to all types of genetic variance ean bhe written as:

COV =y 2. dﬂ‘pa - ﬂdc’_ina -~ {ll.sz_.\ _\2 + dzﬂ',r;ge -+ ﬂ,gdd‘{‘tg! ==

or in general Cov==,; ¢'d/ 0% i

Inbreeding nullifies the independence assumptions and the prob-
abilities of drawing identical alleles. It is clear, for example, that
if 7 is defined as the probability that the two alleles at a locus are
identical by descent, the probability that two randeomly drawn
alleles are identical is L% (1~+F) instead of (13). With a
parental inbreeding coefficient of F, even with random choice of
parents and hence no inbreeding of the offspring, the a and d co-
efficients used to compute the covariance of relatives are increased
by factors of (1-+F) and (1--F)2 respectively. The problem re-
mains, however, that the o,* and ¢,? themselves require specifica-
tion with respect to the inbreeding generation they refer to.

Linkage can also affect the probabilities of some gametic com-
binations, the contributions of the epistatic gene effects, as well
as how the additive variances are summed over loci. The manner
in which they affect the covariance of relatives is not an easily
derivable relationship (Cockerham 1956). Nevertheless, if we wish
fo exactly define and estimate meaningful parameters, the broad
effects of such factors as linkage and inbreeding must be con-
sidered.

It is also clear that hyhrid populatiens will engender genetic
variances and covariances among relatives with quite unique
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effects and probabilities of drawing gametic contributions. The
effects of dominance types of infralocus gene actions are unique,
and all types of interlocus epistafic interactions are unique since
the entire genome is a hybrid combination. In addition, gametic
frequencies depend on the differences in gene frequency between
the populations and on the linkage disequilibrium so induced
(Stuber and Cockerham 1966). In our brief review, all of these
effects will be neglected and we shall assume large random-mating
popuiations with independent loci.

DESIGNS FOR ESTIMATION

In the kinds of designs useful with forvest trees, it is offen
possible to derive estimates of variances due fo family differences
where families are structured into half- or full-sib groups. For
example, if female parents are chosen and a different set of male
parents is chosen for each female, then the variation among off-
spring in different female parent groups is the same as the varia-
tion among half-sibs. Similarly, the variations among the families
of different males within the same female family group is the
variance among full-sibs within half-sib groups. It is thus the
variance among full-sibs, less the variance among half-sibs. If
hoth estimators are available, then we can estimate as follows:

Variance (female half-sibs) = (o2 +Ygous®+ . . )

Variance (male full-sibs within
female half-sibs) = (LVhos2 +Weop® +Yioaa®+ ...

— 2 2 a
Vot t Yoot t 3o aat L L)

Thus, the female family variance contains only 14 of the additive
genetic variance and a small fraction of additive types of epistasis,
and the male family variance contains that much plus 14 of the
dominance variaznce. The difference between them therefore con-
tains 1, of the dominance genetic variance and small fractions of
the epistatic variance.

Since many experimental mating designs can be constructed to
provide similar estimates, populations can be examined for their
genetic sources of variation. Not only are analysis of variance
estimators available, but regressions of offsprings, clones, etc,
on parental performances also allow one to estimate the variances.
Since precise estimates require large experiments, efficient experi-
mental design is highly desirable. For purposes of this chapter,
recognition of the existence, descriptive forms, and estimability
of genetic variance parametfers are sufficient.

Using various experimental procedures, large estimates of ge-
netic sources of variation in forest trees have often been derived.
How have forests evolved such a system? It behcoves us to con-
sider the mechanisms by which variations are generated and
maintained. An understanding of the dynamics of forest systems
is desirable for its own sake as well as to help us design more
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efficient manipulative mechanisms to serve the long-term interests
of forests and man.

POPULATION GENETIC BASIS

The basic forces which have molded the system of genetic
variability have been mutation, migration, selection, and random
events, Mutation has rarely been successfully used in breeding
programs and though it is the basic originating mechanism for
new alleles and is occasionally useful, it will be ignored in this
chapter,

Migration, or its lack, and consequent subdivision of the popu-
lation inte intraspecies subgroups, has also been an important
factor in evolution but is not a significant manipulative factor
except for constructing or crossing among subpopulational group-
ings. The lack of complete migration of genotypes through a
species leads fo separate evolutionary paths being taken by sub-
populations as they respond to selection differences or chance
sampling events. The use of variations among these subdivisions
directly as in provenance selection or as a source of genetic varia-
tien is a useful initial stage of breeding and deserves detailed
analysis. However, we shall consider the directive forces of selec-
tion within any given population as the basis for understanding
selective breeding effects.

In simple models of selection where the effect of a gene is easily
recognized, the breeder either simply fixes the good homozygote
by crossing only among the good genotypes or breeds the heter-
ozygole by crossing the different homozygotes. While dominance
effects may mask the heterozygote, the breeding procedures are
simple and the genetic problem is solved in one or relatively few
breeding generations. In natural selection for reproductive fitness,
selection operates by eliminating defective genotypes. However,
environmental effects or genes at other loci cause some errors in
artificial or natural selection. These errors cccur because the
phenotypic expression is different from the average genotypic
expression of the locus, because the selection process is not de-
terministically exact, or because of hoth factors. In any case, a
slower process of allelic substitution occurs, and the average
changes in progress to higher fitnesses, or more economically
valuable trees, occur in smaller steps each generation.

Considering a single locus with two alleles A and A’ and its
three genotypes A4, 4’4, and 4’4’ the change in value from one
generation to the next depends on having more of the preferved
genotypes present. If A4 is preferred over A’A’, or has a higher
probability of being selected, then the contribution of parental
trees with AA to the progeny generation will be higher, the 4
allele will be more frequent, and hence AA genotypes will often
be more heavily represented in the next generation.

Two genetic factors influence the rate of progress, the relative
probabilities of selection or fitness of the genotypes, and the gene
frequencies. The greater the differences between genotypic fit-
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nesses, or in precision and intensify of selection, the greater the
change will be in any one generation. The only compiicating fac-
tor would be the existence of dominance which might mask ‘he
offect of an otherwise unfavorable allele. In the case of over-
dominance, the best genotype is the heterozygote and the general
tendency will be for the population to stabilize gene frequency at
some intermediate level. Otherwise, selection in a consistent di-
rection will tend to eventually fix the favored allele in the popula-
tion, and, in the absence of mutation or immigration, eliminate
the other allele.

The change in gene frequency (g) in response to selection
pressures also affects the rate of change. The change in gene
frequency is a function of the change in fitness and a factor of
q{1-¢). This is a guadratic function with 2 maximum at ¢g=14,
and zero value at ¢==0 or ¢=1. Thus, the most rapid changes in
gene frequency, and hence the most rapid changes in population
fitness, occur in the intermediate ranges of q. Since the actual
response depends on the fitness levels, dominance, ete,, the rate
of change may not be symmetrical with respect to gene frequency,
but only when the frequency is intermediate can rapid response
to selection be expected. We can further imply that genes involved
in selection will exhibit most rupid frequency change when fre-
quency is intermediate and therefore will not usually be found in
the intermediate frequency range unless strong dominance to over-
dominance exists, or unless selection is in a transient state.

These simple models have served as good first approximations
but they have scme obvious shortcomings. Often, as in competitive
situations, a genotype’s fitness depends on its own relative fre-
quency and hence frequency-dependent selection models reqguire
examination. Discussion of this problem is postponed to chapter 2,
A further obvious complicating factor is that genes rarely act
alone, and in almost all investigations highly intricate develop-
mental pathways exist and require that gene actions be coordi-
nated. Fven if the linear gene-action models are accepted within
small changes in gene frequencies in a single physiological sys-
tem, inter«ctions among the genes of the multiple systems must
exist.

When considering even just two loci, the obvious results of the
one-locus case cannot be generally extended. Not only does physical
linkage between genetic loci affect selection, but the dual factors
of epistasis and linkage can form several intermediate frequency
equilibria when an analysis of the individual loci would not reveal
that possibility. It is aiso possible that selection would not maxi-
mize fitness as in the single-locus case, and hence that intermedi-
ate frequencies for the loci may be stabilized at less than optimum
frequeneies. Hence, in the natural evolution of populations, one-
locus analyses may not reveal the reasons for the existence of
stable, intermediate gene frequencies maintained by selection.
Thus, not ouly can selection cause stable equilibria, but directional
selection as practiced by man may be adversely affected.
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If populations have many mechanisms for continuaily generating
variations, they also have others by which genetic variations are
lost. In addition to divectional selection, the accidental loss of
genes from small populations leads to a reduction of variation at
least in the local population. The smaller the popnlation, the
greater the chance that an allele or a genotypic combination of
alletes can be lost. 1f there is a 10-percent chance of a gene being
represented, and only a few trees are sampled, there is & reason-
able finite probability that the gene will be lost in one or a few
generations. Since many investigations on trees have indicated
that small population subdivisions exist, even in continuous stands
{Savrvas 1963 ; Sakai 1971), if is possible that sampling variations
have aflfected the evolution of variation patterns in many forests.

In natural selection, average selective values may indicate the
probabilities of a tree’s surviving and reproducing “on the aver-
age.” Tlowever, any one tree either reproduces or it does not, and
indeed any group of trees with the same selective values may
totally fail or succeed. Thus, the average stutistics are accurate
only for large populations or for many repeated irials of small
groups. If the relative selective values of A4, A’4, and A%, for
example, are 1:1.5:1, we can expect that an average gene fre-
quency of s would exist, and that A4 and 4’A’ would exist in
equal frequency. However, if only a single small population was
reproduced, it would eventually be either all 44 or all A’4A’, with
no A’A heterozygotes, due to natural inbreeding. 44 and A’A’
would not coexist in the small population. If many such small
groups were isolated. each would be either AA or 4’47, and
though they might have the same frequency if all groups were
counted, no A’sl would exist. Thus, any group of trees classified
by variety, age class, genotvpe, or alleles may be lost even though
selection Tavors their survival,

The aceidents of sampling in small populations can therefove
cause more rapid fixation of an allele than might be expected from
selection effects wione. In fact, even if an allele is favored by
selection, it can be lost by aceident, especially if it initially occurs
at low frequency. Similarly, the effects of mutation, migration,
dominance, and epistatic gene actions can be m ,dified by sampling
variations in small populations. in general, more extreme allelic
freguencies, fixations of favored or unfavored alleles, and less
stable frequencies over populations or generations can be expected.

A balance among the simultaneous effects of selection, migra-
tion, mutation, and sampling error is struek in the natural evolu-
tion of populations, and the gene system itself may stowly respond
to any changes in selective pregsures. For breeding purposes, the
gene frequencies made available by the natural processes are the
raw maferials for manipulating future evolution. The limitations
on selective breeding imposed by sampling ervors are important
to consider in deciding how intensive selection should be.




CHAPTER 2
SELECTION THEORY

Since seiection has affected evoiution and can be used to direct
future evolution of populations, the study of selection and its
effects has absorbed morve interest and effort than any other
penetic force, Still, the relationship between the choice of a subset
of all potential parents for repenerating future populations and
its actral effect on changing genotypic frequericies and on eventu-
ally changing a population’s phenotypic distribution is a complex
of interacting factors that remains poorly defined. In this chapter,
we shall investigate the theories of how selection affects popula-
tions and the various parameterizations that have been useful in
studying the effects of selection. Simple one- and two-locus models
of classical tvpes of gene actions are very simply modeled for
cases where such simple actions and environmental factors affect
phenotypic performance, Since average phenotypic performance,
which is genotypic potential, is rarely exactly achieved, variability
causes some difficulty in determining the genol pe from the
phenotype. The effects of selection on the basis of phenotypic
measures are therefore modeled as a probabilistic proecess which,
while inexact, would have an expected change on the gene fre-
quency of the selected versus the unselected population. The conse-
gquent effect on population mean improvements in the short and
long runs is then examined in terms of the effects of ¥, {effective
population size). heritability, and selection intensity on the
improvement, In addition, the general breeding methods which
have been developed in light of their relation to selection theories
are briefly examined.

SINGLE-LOCUS MODELS

We can work most simply with a one-locus genetic model. In
classical genetie theory, the only problem in selection forcing the
population inte homozygosis for the favored allele or some pre-
ferred intermediate frequency is the time it takes to arrive at the
stable state. In the simplest case in which genotypes can be
phenotypically recognized and easily distinguished, selection for
the best homozygote or for an overdominant heterozygote condi-
tion is direct and immediately produces the desired population.
Only under complete dominance would an ‘“‘undesirabie” allele
remain in the population buf that can also be eliminated by simple
test crossing and selection. To more exactly determine the progress
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that can come from selection, consider that generally, each geno-
type may have some possibility of reproducing in the next
generation. From a single genetic locus with two alleles 4 and A’,
the three genotypes would then have selective values of »,, 0.
o, rvespectively. We can then define an average selective value
for the whole population according te the » values and their re-
spective frequencies as »=p% ., + 20 (1-p) 74+ (1-p) 2 4., where
p 18 frequency of the A allele. We might also define an average
selective value of an allele according to the frequency and the
average effect that it has in the zygotes as:

Pa=praa+ (1-2)rag and o= prya = (1—=0) 744
Then r=pry— (1-0)} ry =p2r 429 (1=p) 74, +~ (1-p)Erq 4 .
Also, the variance among the average effects », and r, is

prig- (1-p) 12, — 12, which equals p (1-p) (ro—ry)2.

We can now analyze the changes in selective values by noting
that » is a function of gene frequency and

(1_"7)) d Fa
Jp '

L rg—ra) + ?Jg';" +

d?'A’:?_ g

ap T a4
then “é%: (Fa—ra) T (Paa—raa) + (1-9) (Faa—7a ).
Then %zZ(a'd—m').

Since it is also true *l.at,

d -

T =p (=) =p (1-p) (ra—rs),
we can see that,

dr _ dr dp _ o
E—{ﬁ-&g—ﬂ—%(lm) (ra—rq)?

which is simply twice the variance in average selective effects.
It is particularly interesting to examine the -f—tfunctlon, gince

it would indicale the location of potential stationary points where
P does not change with advancing t. It also indicates that the rate
of change in frequency and fitness with respect to time is partly
controlled by the factor p{1-p), which is a symmetrical quadratic
function of p with a maximum at p close to 15, Hence, intermedi-

ar to be high, andg’ﬂto also be

ate values of » will always force T It
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high relative to the extreme values of P. Hence, » and » change
most rapidly when  is intermediate and slower when o is close to
zero or one. Furthermore, if a profile of gene frequencies is made
among loei which have been subject to selection at one time or
another, the great majority of loci will have moved their gene
frequencies through the middle ranges and would now be at low
or high frequency. This implies that selection is most effective on
genes of intermediate frequeney and that we cannot ordinarily
expect to find many loci kept at these freguencies by directional
seleetion.

However, even the g—? function can be described in terms

dp _p(-p) dr
a2 dp

and hence the movement of p can also be analyzed in terms of the
relationship between selective value and gene frequency. Since 7,
r4, and 74, are all functions of , and the three genotypic values
Tagr Tax, 2nd vy, which we assume are fixed, we can describe
7 in terms of variations in 9 for given relative values of the three
zygotic 7's.

To see the effects of selective values on changing gene fre-
quencies, we can follow seversl sets of relations among the +'s,

for 7, and—di, since
dp

=PI 42D (1p) 7w+ (1—D) 702, and
d,_‘
E;—] =20 (Pag— 27,4 Froay +2(rar— Taa)
If, 7 >700>7 404 ,then » increases monetonically with p in a
form like
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andd—;is a linear funection of p in a form like

dF
dp
P
dp _p(l-p) dr_ .
andaf_ 5 dp is

dp=
dt

P

If, ri <ras<rsa, the reverse relationships hold for similarly
scaled » values:

-1t
o..lcn.
- |=




If, 74 <rqa>7Ta4, the v has a stable peak at an intermediate P
with & maximum to the lef{ or right of p=0.5 according to whether
744+ 18 greater or less than +,,:

P
% remains a linear function of p but now must be scaled to

cross zere to the left or right of p=0.5 according to whether .4
is greater or less than »,..

Generally,
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and hence

P
In this case we can also notice that if % =(, and if we use
Taa=1—8, o =144, =1—t; that p= s-f—t represents the equilib-

rium point for p.
I 7 a>7.4<7rre, the veverse relationships exist and gener-

ally,
7 ‘ V
P

and

di

dp

P

and
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which has an unstable equilibrium at intermediate ».
In all of these cases, the only stable equilibrium, except at p=0,

exists when 7 is at a maximum. The last case is the only one in

which an intermediate » value exists where %‘%=0, but in which

it is also clear that small displacements of p from that point cause
the p to go either to 0 or 1. At the equilibriom p, P and a small
change o the right makes ii—>0 and hence forces ¢ fo go further

dt
fowards 1, and a small leftward change from p. makes %:?_-<0 and
hence forees p further towards 0. In the immediately preceding
case of overdominance, small changes from p, can be seen to have
the opposite effect on% and hence to force p back to p..

It can also be seen at the equilibrium points of frequency ex-
cept at p=9, and%1 ={, that if%:p (ra—) =p(l—p) (ra—rs)
that r=»,=7,.

If particular values for gene frequency and the +'s are known
in populations with discrete generations, more exact analyses of
changes in gene frequency can be made simply by following the
selective process, one generation at a time. The process involved
is to find the gene frequency of the generation following selection,
in terms of the selection and gene frequency prior to selection,
and to then write the relationship in the form of a difference, or
recursion equation. Thus, as in the third case as examined above,
if the heterozyyote is favored and ry =1-s, 10 =1,
ryo=1-¢, then:

Initial Selection Proportions
Zygote proportions  proportions after selection
AA Pa? 1-s 7% {1-5)
4’4 200 (1-1,) 1 2, (1-po)
A4 {1-p,)*? 1-t {1-po) 2 (1-¢)
‘The A alleles come from the A4 parenis with frequency Do (1-8)
and from half of the AA’ for a total new relative frequency of

— poz(l“'s) +?90(1—1?o)
D7 (1-8) +2p, (1-p,) + (1-p,2) (1-1)

The A’ allele’s frequency can be derived similarly as:

Do (10} + (1-po) 2 {1-1)
2" (1-8) +2p, (1-p,) + (1-p.*) {1-£)

These formulas can be simplified to:

py =P (1-sp,}
! L-sp,2—t(1-p,) 2’
1—'}3‘ = 1_2)0 —% (1"*pu) 2
P 1-spr—t{1-p,)?

Y4

I-m=
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We might note that the change in frequency is:

. ?39(1—3?%) _ “_Pa(l_'ﬁ'n) [5Pa_t(1'"?39)]
PP T p 22—t (1-p,)2  1° Tsp2—t(ip)? '

_ Pa{1-p,) [8p.— £ (1-p,) ]
(1—101) '_' (l—pa) - l_spoz_t(l_,pa)z

For any generation of selection, the change is similarly formu-
lated and the A or A7 allele can gain or lose in freqguency according
to the sign of sp,—t(1—,). If sp, is greater than t{1—p,), the
A’ allele gains in frequency. If sp, is less than £ (1—p,), the A
allele gains. And, if sp,=¢(1—p,) the change is zero, and from
this condition,

8pP,+tp,=1

t s
s+t s+’
as previously derived. Other equations for other gene action models
are detailed in several texts (Li 1955).

The foregoing selection models assume that each genotype has
properties which predispose it to given selection frequencies. This
is a kind of “soft” selection among genotypes in which selection is
in proportion to genotypic propensities for success. A different
model of selection is a kind of “hard” selection in which indi-
viduals are selected if they perform over a minimal level regard-
less of how many may be so selected. In breeding practice, a level
of phenotypic performance is often determined when genotypes
cannot be easily distinguished, and any tree exceeding the specifi-
cations is accepted for further breeding. On the other hand, if a
certain proportion of selection is fixed, the breeder is implicitly
following a “soft" selection procedure.

If selection thus actually operates on the phenotypic level, as
is most often the case, then other parameterizations of selection
probabilities ean be made in terms of phenotypic distributions.
Thus, a ecommonly used model of gene effects would specify a mean
effect for a genotype and seme distribution of phenotypes ex-
pressed for that genotype with a variance ¢, The probability of
gelection will differ among genotypes according to the differences
among the means as well as the relative size of o with respect to
the mean differences. If #* ig relatively large, the selective prob-
abilities will be similar, regardless of genotype, while if ¢* is
relatively small, there might be liftle error in assuming that spe-
cific genotypes are recognizable and are being selected. If we
cannot attach high probabilities of selection to genotypic differ-
ences, then we admit a certain degree of error in choosing opti-
mum genotypes. Consider, for example, a genotype with mean
productivity value of 1,000 units and a variance (¢.?) of 1,600
due to various internal and external environmental variations in
expressing its average productive capacity, If this variance of
1,000 has no genetic basis, then, of course, selection of the higher

Po= and 1-p,=
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yielding trees will yield no genetic gain. If three genotypes existed,
AA, A4’, and A’A’, with the same variance but with average
production capacities of 1,005, 1,000, and 995, respectively, then
the variation among genotypic effects can be used. Assuming that
gene frequency ¢=0.5 and that there is random mating in a large
population, then the genetic variance is all additive and equals
2.2=12.5. For the total population which has a mean of 1,000
and a total variance of 1,012.5, selection of all trees above say
1,050 would be expected to truncate the populatior as in figure 1.

1 1 | i
800 300 100 | | noo 1200

Phenotyps t

Mo Ms

5

Figure 1.—A nermal distribution of tree values around a mean of 1,000 and
variance of 1,000, with truncation selection above phenotypic value £

Since the three genotypes differ in average effect, however, the
expected truncation includes different proportions of the expected
genotypic distributions as shown in figure 2, It can be seen that

_~Total Population

Figure 2.—Relative numbers of three genotypes from 2 population with a
norma! frequency distribution of randomt variations around genotypic
means generated by additive gene action and gene freguency 0.5,

while the heterozygote still is relatively heavily represented in the
selected portion, the favorable homozygote is more heavily repre-
sented than the unfavorable homozygote. If wider mean differ-
ences among the genotypes existed relative {o the error
variance, then the proportions expected in the selected populations
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would even more heavily favor the AA genotypes. If the frequency
of the A allele were higher, then proportionately more of the AA
would be selected over the AA’ and A’4’ genotypes, but the change
in relative gene frequencies may be slower. If only the most ex-
treme phenotypes were selected, then the relative gain in gene
frequency would be further increased. Thus, the frequency of the
A allele is expected to increase according to the mean differences
among genotypes, their error vaviances, and the selection in-
tensity; and the selection effect on the locus is a funetion of all
three factors. Thus, selection has less immediate effect when the
genetic variance is low with respect to the error variance, and
progress can be slow even when selection is consistently in the
same direction.

Other gene models may be similarly viewed, including domi-
nance and extending the moedels to include cumulative action of
several loci. For example, if the three genotypes of locus A had
means of: 1,003.5 for AA; 1,001.5 for AA"; and 993.5 for A’A",
and the freguencies were 13:14:1], the total population mean
would be 1,000, but the variance would be 1,014.75, including
a2 =12.5, 7,2=2.25, and the errov variance around each genotype
would be ¢.2=1,000. The effect of selection can be seen in figure 3

1

AR AR AA

Figure 3.—Relative numbers of three genotypes from a population with a
normal freguency distribution around genotypic means generated by
partial dominance pene action and gene frequency 0.5

to be less discriminating among the alleles than under pure addi-
tivity since the relative proportions of A4 and A4’ in the selected
group are more nearly eqgual,

TWO-LOCUS MODELS

Expanding consideration to two loci, a simple additivity of
alleles within loci and among equally effective loci would give
average genotypic means of:

AA A’ AtAS
BE 1,010 1,006 1,000
BEB’ 1,005 1,000 995
B'B’ 1,000 995 990
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If g.=¢5=0.5 and no linkage and random mating existed, figure
4 shows how the genotypes may be distributed. If equivalent levels
of dominance existed in both independent loei, the following
genotypic values would yield the same ¢,2 and ¢,? at each locus as
for the single-locus case with dominance as given above:

44 44’ A4
BB 1,007 1,006 997
BB’ 1,005 1,003 995
BB 297 995 987

Again, selection can be seen to have similar effect on both loci
simultanecusly, but for the same total selection intensity, there is
less effect on each locus’ gene frequency than for the single-locus
case.

I
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Figure 4.—Relative numbers of five genotypic means generated by two loei,
each with additive gene action and gene frequency 0.5,

Various kinds of epistasis may now be inecluded in these models
of mean effects such as complementary dominance:

A4 A4’ ArA!
BB 1,010 1,010 995
BE’ 1,010 1,010 995
B'B’ 995 995 985

In fact, any kind of mixed dominance conditions which change
according fo the allelic combinations of the other locus may he
included:

AA A4’ A4
BE 1,010 1,000 995
BB’ 1,010 1,005 995

yidid 995 990 985
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The effect of epistatic actions on changing gene frequency now
becomes very complicated, since the effect on one locus will depend
on the changing frequencies of the genotypic state at the alternate
locus. Furthermore, linkage can cause the frequencies of the
various genotypes to be nonindependent and variable and, there-
fore, would make selection prediction more complicated and in-
tuitively movre difficult to visualize. Even without epistasis,
however, the addition of genetic loci can be seen fo increase the
genetic extremes and variances and hence can contribute a larger
portion to the total variance even if individual gene actions have
small mean effects.

NONSELECTIVE FACTORS*

Before continuing with mere genetic models and how the effects
of selection are translated into changes in gene frequencies and
hence into population means, a few other complicating effects
should be considered which further inhibit the direct response of
alleles to selection. One factor is the nature of the breeding system
with respeect to inbreeding. For example, if selection is not precise
and only a few individuals are chosen or if those chosen are re-
lated, then there is some chance that the wrong allele will increase
in frequency or even be fixed by accident in the breeding popu-
lation. Since inbreeding would tend to fix homozygotes in the
absence of selection, then selection has to be relatively effective, or
the genetic differences must be large relative {o the error variance,
to assure that the correct allele is going to be fixed. Even if se-
lection is Tor the heterozygote, the pressure of inbreeding towards
homozygosis can fix an aliele by limiting free recombination of
all alleles.

The problem of inbreeding and selection in regular mating
systems (as distinet from completely random mating) may be
analyzed in the form that Fisher (1965) derived for the long-run
hehavior of inbreeding systems. The analysis carries the proba-
bility distribution of zygotes, gametes, or mating types from oue
generation to the next which can be found for any regular mating
system. The transition probabilities or the probabilities of geno-
types or mating types to generate a new array of genotypes or
mating types in the next generation are influenced by the mating
system and selection effects or any other factors which may be
included in the model. These effects can be traced in the eigen-
values and eigenvectors of the matrix. In Mather and Hayman's
{1952) analysis of full-sib mating, for example, if selection was
for hete.e sygotes such that homozygote survival was a fraction,
1-s, of the heterozygotes, the transition probabilities for each of

*Graduate-level statistical training required for thorough understanding.
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the mating types on the left for the next generation arrayed at the
top would be:

Generation 1
Generation ({AAXAA: AAXAq: AaXAa: AaXaa aaxaa

A4d X AA (1-3)

A4 X Aa {1-s)2 (1-8 v

4 2

92 (1) Y
4

Aa X Aa a
16

Aa X ag 14

Caa X as
AA X an

An analysis of the major roots of such a matrix would then re-
veal the eventual stabilities among mating types and hence the
persistence of heterozygosity. The eigenvectors would reveal the
expected changes in frequencies of the mating types from genera-
tion to generation for any given starting frequencies. Alterna-
tively, we may treat the progress of matings as a general stochastic
process with a fixed Markov matrix and can determine for any
time value the probabilities that some of the heterozygote (non-
absorbing) states may exist (Feller 1951). In a similar apalysis,
Hill (1969) traced the progress of changes in gene frequency
using transition matrices and determined the probabilities of
change by assuming a normal error distribution and given levels
of selection intensity. In one-locus models, he confirmed Kojima’s
(1969a) finding that strong overdominance is required to main-
tain genetic variability at a locus under selection.

For single loci, an alternative mechanism for maintaining inter-
mediate gene frequencies is variation in the environments which
cause genoiypic selection probabilities to change over generations.
If the environmental variations are uniform over the population
but affect selection over time within generations and are repeated
each generation, then the net effect of geneotypic differences may
be determined in a more complex multivariate form, but would
nevertheless be translated into constant probabilities of selection.
However, any variations over generations in the life eycle would
induce variations in the transition prohabilities and may affect
the existence of genetic variations. Even such changes as earliness
or duration of reproduction, as well as any changes in survival
probabilities, would affect the relative fitness of genotypes. Then,
even without dominance in any single environment, it is possible
that intermediate gene frequency equilibria would be optimal, If
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environmental variations exist among population subdivisions,
then genetic polymorphisms may also exist. As discussed in chap-
ter 9, populations may evolve stable equilibria under such con-
ditions. In terms of single-locus selection in breeding populations,
there would be little problem if the genotypes could be selected
for specific ecological or economic environments in each genera-
tion, but if there is error in selecting genotypes and error in know-
ing the environments which will be faced, then more difficulties
exist. If environmenis cannot be subdivided for mere uniform
treatment and single populations must be bred for mixed environ-
ments, then intermediate gene frequency optima may well exist.
For multiple-locus traits, selection can have effecis which ecannot
be predicted by simply extending the results of single-locus theory.
As previously discussed, epistasis can generate several local op-
timum points and, with linkage, force populations into permanent
disequilibria. Even without epistasis, cerfain unexpected stabte
equilibria can exist. For example, Wright (1935b) investigated
multiple-locus selection for both additive and complete dominance
gene actions and concluded that all loci would move toward fixa-
tion. Even selecting for an intermediate optimum would lead to
a mixture of homozygous loci with the average gene frequency at
an optimum mean frequency. However, Kojima {1959b) showed
by using a quadratic fitness model that intermediate levels of dom-
inance could lead to stable equilibria. Lewontin {1964) later ex-
tended these analyses to many loci and also found that several
loci can be kept in intermediate frequencies with only partial dom-
inance operating on a quadratic fitness model. Hence, many more
complex polymorphisms may exist even under constant selection
pressures when multiple loci are involved. The analysis of epi-
static models in chapter 9 have direct implications for breeding
theory with mulitiple loei.

SINGLE-LOCUS SELECTION WITH PHENOTYPIC
VARIANCE ARQUND GENOTYPIC MEANS

When error is involved in observing and selecting phenotypes,
some additional complications to the immediate effectiveness of
selection occur, depending on the distribution of the ervors.
Cenetic effects can be modeled in much the same way as the effects
of soil fertilizers or other site factors on tree yields. In a soil
fertility experiment, variations in the yield (Y) of the kth tree
{¥,) might be ascribed to, say, potassiun X, or nitrogen Xa,
and the interaction X,a. In a linear or additive effects model, yield
would depend on the summation of all effects which operate on
the tree, including an ervor term for uncontrolied deviations, ¢,

Yk"—"p“i‘Xl ‘!'Xg‘;‘Xm-i-ek.

In such a model, the effects determine the direction of the tree's
performance from the mean. Similarly, for the alleles at a single
locus, the variations in yield can be ascribed to effect of each allele
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{e; and @), and the interaction §;.:

Y;.;=;.L+a1'5‘ag+ 512‘;"6&'-

Since effective selection requires the existence of variations in
yield and since yield depends on site or genetic factors, it is the
variations in site or genetic effects which determine the potential
gaing. Variation in yvield due to variations in fertilizer affects can
be measured as a variance and is designated as a o.* even though
it is a variance in ¥ due to X, Thus,

o2=S fi X& — 2,

as given in chapter 1, where the X is actually the effect of X on
the ¥ measure of yield. Similarly, the variance due to genetic ef-
fects is designated by s.* and ¢s°> and depends on the frequency
with which those allelic combinations occur as well as on the
size of the effects.

Using the definitions of gene effects given in chapter 1 where
the effect of the genotypes A4 :4AA':A’A" was measured in terms
of u (the difference between 44 and 4’4’)and an (the deviation
of A4’ from the midpoint between A4 and A’A%), the additive
genetic variance was given as:

0.2=2¢{(1—g)e® [1+ (1—2q)al2

Using the average effect of the alleles as the ¢’s given above, the
average effect of an A allele {a,) is:

ay=u(l-q} {1+a(1-2¢)17,
and the average effect of an A7 allele is:
a= —ug [1+a{1-24}].

Then, since the frequency of 4 is g, and the frequency of 4’ is
1-q, the variance of the average effects is:

g+ {(1—qle=g (I—q)uf[1+a(l-2q) ]2
This is exactly 15 of the additive genetic variance, o,

From this simple linear model of gene effects and environmental
variations, the genolypic meuan is defined in terms of the « and 8
effects. Then, the probability of the genotype being selected is
defined in terms of its having those alleles and the phenotype
such that it is included in the selected population. From the arrvay
of probabilities of each genoivpe belonging to the selected popu-
lation, the expected distribution of selected genotypes is derived
in terms of the genetic variances. From this same array, random
mating among those selected is then derived and the mean gain
of the progeny is shown to be well approximated by the familiar
s X heritability formula. The assumptions invelved in the deriva-
tion are noteworthy.
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GRIFFING’S EXPECTED-GAIN FORMULA

Using the above model of gene effects, assuming that the allelic
frequencies are p¢ in the initial generation and using

d;;°=a;°+cx;°+8g;°,
the population mean at the original time (o) is:
w2 =3 ppLdy®,
°
and a;°=21’p;"du".

In the standard definitions of linear effects, the addilive genetic
variance is:

e 2 =23p a?,
and the dominance genetic variance is:

052:_-: piopjosuz_
ix]

As previously described, « is the average effect of allele 7, «; is the
average effect of allele 7, and 3 is the effect of the dominance de-
viation due to the interaction of the 7 and the 7 alleles, The effect
of selection can be described in terms of the probability that a
particular 1 X7 genotype will be included in that part of the pop-
ulation which is selected to be the parents of the next generation.
Once the probability is determined for each genotype, the prob-
ability distribution can be determined, and from any such distri-
bution the mean can be computed. This is the analytical strategy
we follow,

If the genotypes are not directly observable, then selection would
phenotypically resemble the truncation type shown in figure 1,
and the effect on the three genotypes generated by one-locus vari-
ations would resemble the type shown in figure 2. The probability
of selection would be proportional to the value of d;, increasing
for high values and diminishing for low, and would be inversely
related to the total phenotypic variance of which is the sum of o/
and genetic variations and hence includes all genetic and environ-
mental sources of variation. The probability of selection is ap-
proximately:

Pr (select t,9)=v(1+ %‘;— Xs)

where v is the proportion selected, and s is the difference between
the mean of the original population and the mean of the selected
population. Since v is a constant for the population, the relative
selective value of the 1 and 7 genotypes is:

1+% Xs,
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Therefore, the expected relative frequency with which the partieu-
lar genotype occurs in the selected population is:

PP (l-i- 1),

Given this relative freguency of genotypes in the truncated por-
tion, the weighted mean value of the selected, truncated popula-
tion is:

d;
X pops (1+—ts) dy

=3 pepfdyt g% ipepedy?
=U+?ﬂ'g
where a2 is the total genetic variance.

Henee, the expected mean genetic value of the truncated population
before any mating or recombination of these potential parents is
s X broad-sense heritability, because 042 is the total genetic vari-
ance and ¢® is the total phenotypic variance, including all genstie
and nongenetic sources of variation.

If mating is now made among the selected parents, randomly
with respect to genotype, these parents will leave progeny in fre-
guencies determined by their own altered genotypic freguencies.
Assortative mating within the seleeted group invalidates this as-
sumption. The new wxpected gene frequency »,! for allele 1 is de-
termined by the probability that the different carriers of the 4
allele are included in the selected parental group and would be:

Pl =3pLDF (1'1‘ 25)
=pe <1+§m)

8
=Pt ?Pf’m-

We now have a difference equation relating gene frequencies for
two generations. If mating is at random with these new gene fre-
quencies and the number of selected parents is reasonably high,
the progeny generation will have genotypes 4 and 7 according to
the Hardy-Weinberg frequencies:

by T Tl

i

For just twd alleles, this is:
{2)*: 2pd (1—pd): (1—pi)?
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and hence the mean of the progeny population is:
(e )2d42pt (A-pt)dy+ (I-p)? dy.

In terms of the allelic frequencies in the original population, the
frequencies for this population can be generated by the combi-
nations:

s 8
(iﬂs"-f-"—'??ag P} (PP 5P ;)
o
and can be grouped as:

g a
(pf)*+ (?ptam) + 2‘% (D) 2,

for the i genotypes,

s s\
2|:’}9¢"191°+ —=Pp "D (artap) + (?) P:”??jactm;],

for the iy genotypes, and
8 2 8 2
(’3)1")24—(?@}”&;‘) —i—g?(l’;a) s

for the jj genotypes. Multiplying these frequencies by their d,
values provides a progeny population mean;

3
p(progeny) =z p:"w‘du-i-gﬁps”pﬂ (euay) dy
ad ]
5 2
+(“j) 23009, (o) dy
o i

Substituting e+ ;485 for dy,
summing as indicated, and using
2Epia =047,
we derive
regley

s A%
u{progeny} '—‘04‘";-;0,12'5‘ <?) Ej 'pt”ﬁf( o7 )dij'

Then, if the last term’s products are small, a good approximation
to the progeny mean is:

»(progeny) =%ud2=s »* {(narrow-sense heritability).

HERITABILITY

Griffing's derivation, as outlined above, gives flesh to the re-
lationship between the genetic and phenotypic variances and the




progress in the population mean from selection. The change in
the genotypic frequency array is the direct effect of selection
which, in turn, affects gene frequencies of the parents and the
genotypic frequencies of the progeny population, and, consequentty,
the new population mean, Since all of these changes can be written
in terms of the gene-model effects («;) and gene frequencies, the
change in population mean is a product function of the gene
effects and frequencies. In addition to the genetic variance, thera
is a selection differential multiplier and a total variance divisor.
The ratio of the additive genetic variance to the total variance

2
Ta

u'__is—}—cea

is called the narrow-sense heritability and is a useful statistic to
deseribe relative amounts of additive genetic and nongenetic
sources of variance as well as to predict gain from simple selec-
tion procedures.

The selection model thus far considered is a simple method of
recurrent selection in which individuals are selected without re-
gard te the existence of information on relatives or coancestry,
and are simply random mated. We develop more complicated
models in chapter 3. The genetic model is for ene locus; however,
if the trait under selection is affected by several independent loci
without epistasis and without linkage, each of small effect, the
selection effects may be summed over loci and the same formula
would predict one-generation gains for the accumulated action of
all loci. As long as the genes operate in approximately the same
manner and the individual gene frequencies do not change dras-
tically for several generations, the predictions will hold for each
new generation cumulatively, With many loci of small effect, it
is reasonable to expect that the total variance may be quite large
due to the accumnlated genetic variances at each locus. If the se-
lective action at each locus iz such that only small changes in
frequencies occur on each of many loci, however, the net gain in
effect can be large, Hence, continued gain can be obtained in se-
gquential breeding generations as long as some loci continue to
contribute useful genetic variance. In this sense, substantial gains
can be accumulated and the genetic sources of improvement hence
can represent something of a renewable resource for gain if man-
aged in such a way as to preserve variation while still accumulat-

ing pain.

SELECTION DIFFERENTIAL

In populations with fraits which have a normal distribution,
the mean difference between the original and selected parents, s,
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can be computed in terms of the proportion selected very easily.
The mean of the new parental selection is:

oo

[ef(@)da+ [ [(z)da
t t

where x is the phenotypic scale, £ is the truncation peint, and
F{z) is the probability density funection, and in the norrral distri-
bution,

6—32 P

f(x)=\/~2~;

for a population scaled to & mean of zero and variance of one.
Integrating the numerator by using the substitution w=x22/2 gives
us:

2
et 2

Ve =

which is the height of the ordinate of the normal curve at the
point of truncation. Distribution funetions other than the normal
can be directly evaluated or approximated on computers to give
the relationship between the truncation point, proportion selected,
and the selection differential. The denominator is merely the pro-
portion selected and therefore the mean, taken as a deviation from
the original mean, is z/p, where z is height of the ordinate of the
truncation point, and p is the proportion selected, for a standard-
ized phenotypiec variance. If the phenotypic variance is notf stand-
ardized, then s= (z/p)e, where the phenotypic variance=¢". It is
sometimes useful to distinguish between the standardized selection
differential, which is often called the selection intensity i=z/p,
and the nonstandardized selection differential s=is, which is the
difference as measured in the seale of the original units of meas-
urement. This selection differential, s, is thus the difference in
means between what we started with and what we have chosen as
parents of the new generation and represents the amount of change
we “reach” to achieve.

GAIN

Because the phenotypic variance o2 includes nonadditive genetic
and error sources of variation, h.wever, only a fraction of this
“reach” is actually achieved. The fractional achievement expected
under the simple breeding scheme given can now be seen to be
the proportion of the total phenotypic variance which is due fo
additive genetic variances ¢,2 -+ o2, which is otherwise known as the
narrow-sense heritability. This sfands in contrast to the gain
achieved in actual parental genolypic mean values for which the
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fractional achievement rate is oo2+ % and includes all of the non-
additive genetic effects in the numerator,

These concepts of gain have alsc served as the basis for much
plant and animal breeding theory for large-population sizes. For
traits affected by large reservoirs of additive types of genetic
variance, they have served very well. For many species of plants
and animals, the various modifications of the theories have re-
Hably predicted genetic gains (Sprague 1966; Allard 1960). How-
ever, the models are extremely naive in their assumptions of steady
gene frequencies and genetic and phenotypic variances and in their
exclusion of obviously important genetic effects. For exampie,
genes do not all act in small increments. Some must change fre-
guency as selection progresses, they do occur in linkage groups,
and they undoubtedly have some forms of epistatic interactions.
In addition, dominance effects can lead to inbreeding depression
(Kojima 1961) and asymmetrical responses to selection {Curnow
and Baker 1968). While some experiments may tend to confirm
the general adequacy of Griffing’s (1960) theoretical estimates,
the asymmetry of response to selection and lack of confinued gain
in other experiments could be due to any of several factors, If the
genetic variance and gain from selection are due o few alleles
of large effects, the above approximations can be quite inaccurate
as these major loci become fixed (Latter 1965).

It is also clear that any one selection trial samples different sets
of individuals and may therefore start with a distribution of geno-
types, other than what may be expected on the average. In small
populations, the genotypic distribution and ifs concomitant mean
and variance measures may therefore vary from trial to trial
Also, since genotypes are observed with some errvor, the actual
selection differential can vary widely for any given genotypic dis-
iribution. The above measures are therefore good only for large
population sizes but serve as predictors of average resulis.

POPULATION SIZE

Among the more serious difficulties in accurately predicting
gains from selection are the effects of population-size restrictions
on changing gene frequencies. Whenever selected populations are
restricted in size, there is some chance of losing an allele otherwise
faveored by natural or artificial selection, even with simple additive
gene effects. When consideration is extended to several loci, the
chance loss of potentially valuable aileles can severely restrict the
size of the potential gain. Since it is generally assumed that no
single tree possesses all of the desirvable alleles for all trails si-
multanecusly, ultimate progress requires that several genotypes
be used in the breeding population to assure the presence of at
least most of the useful alleles in the breed. Thus, if we had six
equally effective and independent loci with simple additive effects,
the following array of 10 genotypes may exist as randomly drawn
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with gene frequencies 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6:

Locus
Tree Total pius alleles
N | 3 | 4 | 5 | 8
A e« ¥ o= 6
B = i * = * T 3
C = - - - = * 1
D - - - T T + 4
B - - = + I * 4
F ¥ = = ks z ¥ 3
G = = = F * H 4
- - + +
H - i + + 6
I - = i = = H 4
—_ - + —
J ~ + + - B H 1
Total plus
alleles 2 4 & B 10 12 42

In this sample of trees, the best genotype is J and its selection
would assure a good chance to eventually get an all-plus breed
but would not, by itself, give us all of the best alleles. In addition,
with some error in observing true genotypic values, there could
be only a slightly higher probability that tree J is chosen, and not
tree H, A, or G. If the random error has a large variance relafive
to the average genotypic diffevences, the difference in probability
of selection between trees J and C may be quite smail and hence
C may be picked over J amost as often as J over C. In that case,
or in case some mixture of trees is chosen, some good alleles will
be lost in spite of the gain in frequency of good alleles which might
generally be expected, Thevefore, limiting the breeding population
can limit progress even without dominance or inbreeding depres-
sion. Many forest tree breeding operations appear to have popu-
lation sizes that are too small to permif continued breeding
progress for more than a few generations, With few parents, the
subsequent generations will be generated from relatives with
increasingly similar ancestral lineages. The number of independent
genotypes among the parents must then decrease. Thus, the proba-
bility of accidental gene loss would increase even if the physical
number of parents remained the same. Relationships among the
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parents decreased the effective population size (N.) as further
detailed in chapter 3. The population size useful for compuling
probabilities of accidental loss of alleles is N,, which is usually
smaller than the number of parents crossed. On the other hand, it
is intuitively obvious thal greatest progress is expected by the
most intensive selection and the consequently greatest reduction
of breeding population size to only the very best parents. The di-
iemma, therefore, is how to maintain both a large population size
and a large selection differential. The problem is most easily stated
in terms of the special effeets of stochastic variation in small pop-
ulations as discussed in chapter 9. For a large number of inde-
pendent genetic loci affecting a trait under selection with simple
types of gene actions, we could first determine the probabilities of
loss of favorable alleles and then consider more complicated models
incorporating migration, nonadditive gene action, ete. We return
to the applied breeding implications of this dilemma in chapter 3.

DIFFUSION MODELS FOR SELECTION

First, considering a simple diffusion proeess, the effects of se-
lection ave assumed to be such that a constant pressure for a
directed change in gene freguency exists, We can easily conceive
of gene-action models where this is not so, sueh as if dominance
exists, or even as we developed for Griffing’s approximations, the
change in gene frequency:

8
pd—pre P

is a function of « and p,”. Nevertheless, for small changes in gene
frequency and effects, and without dominance, a selection pressurve
on an average change in gene frequency of x may be a reasonably
good approximation, In Kimura's (1964} notation, an additive
gene-action model entailing the following probabilities of selec-
tion would produce an average change in gene frequency of
cp(1-p), where £ is the difference in the probability or expected
frequency of selection against 4’4’ and for AA4. The effect on the
zygotes is expected to be:

(1- %)A'A’: (1)31;1':(14.—:;-);1,1.
That is, from the expected change in gene frequency on a con-

tinuous time scale:

dp
dit
whare » is the relative fitnesses of the alleles, the mean change in
gene frequency, p, ts Jpil-p}, If the variance in gene frequeney

. . . . i— R
is alfected only by binomial sampling error P,_‘f‘)&__}{)_ , then the

=pll-p) {ry—ry),
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probability of fixing the favored allele 4 is:

where p, is the initial gene frequency, and where N, is the effec-
tive population size. As previously suggested, several simplifica-
tions on the formulas can elucidate some relationships among the
variables, p,, N, and ¢. For example, if N.{=0, then the limiting
value of UPF is p,, which is intuitively satisfactory for the case
when selection is not practiced and gene frequency is allowed to
drift at random. In the case of selection, however, with N.{>0,
then UPF becomes a function of p, and the product 2N ip,{1-1,),
as well as other terms of smaller size.

The distribution function for the whole range of gene frequen-
cies under additive gene action reduces to:

he — 4N JIp

P (1-p)
which has peaks at high and low gene frequencies and can be
skewed to either end by the effects of selection. This results in a
J-shaped curve increasing the frequency of the favored altele and
its probabilities of fixation over the alternate aliele.

Using a model with overdominance as: (1) A’4A%: {14+&)A'A: (1)

Ad, the frequency distribution function can be derived to be:

ke AN Lp (1-p)

p(1-p)

In this form of the gene frequencies, the intermediate frequencies
enjoy some greater weight; but the extremes still cecur to provide
a profile as:

(Li 1965).

p

In addition, the joint effects of selection and the various effects
of population size, migration, and mutation rates can be jointly
determined for some simple genetic models. As previously outlined,
migrations or mutations may infroduce genes into a population
at a rate which may either reinforce or act against the effects of
selection. In small populations, all effects are further modified
by the tendency of genes to become randomly fixed simply by
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sampling ervor. Variations in selection coefficients can also produce
a tendency for fixation as analyzed by Levins (1968). If stable
gene frequency distribufions exist for genetic models with con-
stant selection coefficients, then variances in the coefficients tend
to destabilize them. If the variations in the selection coefficients
exist in correlated series, however, the variance effects would be
ameliorated and populations may behave in cyelic patterns.
On the other hand, with moderate directional selection and ad-
ditivity, variance in selection can induece more stability in inter-
mediate gene frequencies than if selection was consistentiy in the
same direction.

The general difficulty that restrictions on population size may
impose on selection advance is the random fixation of alletes which
may not be the favorable ones. Thus, even without considering
epistasis or inbreeding depression, the loss of good alleles can be
a serious problem, especially for long-term prospects of acecumu-
lating maximum improvement, on the basis of cumulatively im-
proved breeding population., Indeed, in the jong run the breeder
will always face the possibilify that by restricting population size,
he will not have the kinds of genetic variations available for fur-
ther improvement that he would like. When economie, ecological,
or environmental changes occur, he would either have to develop
at least some new unselected genotypes with an otherwise less fa-
vorable coliection of alieles in order to introduce new variants for
recombination and selection or else he would have to be content
with his Hmited gains., Thus, the immediate breeding problem
is how to compromise his selection program between the maximi-
zation of immediate gain by the highest selection intensity and
lowest N, as against the maximization of long-run gains by some
partial relaxation of selection in the breeding population. The
long-term problem for the breeder is to develop population mix-
tures which will permit him to continvally develop variations
without excessively sacrificing general fifness or economic value
of the breeding population. The additional problem of develop-
ing populations for short- and long-run objectives when the physi-
cal and economic environments are changing in uncertain ways is
a further problem we posipone to chapter 4. The problem consid-
ered here is the effects of selection on populations assuming some
known direetion. 1t is, therefore, the genetie problem of response
of a population of organisms and not the economic one of the value
of the response.

The appitcation of diffusion-process approximations to the ef-
fects of selection, as proposed by Kimura, was significantly
advanced by Robertson (1960), who considered the ultimate prob-
ability of fixation to be a good criterion for judging the long-term
effects of selection. Only the simplest genetic models of additive
gene action, no migration or mutation, and independent loct were
initially considerved, though subsequent vesearch has amplified
the effects of those forces. The distributions are derived for either
a large sample of genetic loci which together affect a trait in a
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single population or for a large sample of populations with a single
locus displaying the expected distribution of allelic frequencies
among the population, It seems clear that other measures of good-
ness might also serve particular needs including measures such
as skewness, degree of heterozvgosity, duration of allelic varia-
tions, ete,, which may give additional information on rales of
selection advance. Nevertheless, the probability of fixation is a
useful measure which contains much of what breeders are infer-
ested in. We shall consider the probability of fixation, (g}, as the
expected proyortion of equivalent loei which would be fixed in a
single population or as the proportion of sampling populations
which would have the favorable aliele fixed.

As previousiy noted, without selection, N.&=0, and the solution
of the u{g) equation is a function only of g,, the initial gene fre-
quency. Any low initial gene frequency thus has a proportionately
low probability of fxation, a 0.5 initial frequency may go either
way, and a high g, will have a high probability of fixation by ran-
dom events, With positive selection for the allele, g, the u{g)
function increnses approximately as a funetion of g{l-g)N.L
Therefore, u(q) is dependent on the guadvatic function g(l-q)
for any given N.I level, and the change is most rapid in the in-
termediate gene-frequency ranges. The relationship between u (¢)
and N, Z is charted in figure 5 for seven levels of ¢, If duminance
exists, somewhat diffevently shaped curves vesult as the change
#{q}—q function is approximately (2 3)}N,.2(1—¢%) when selection
is for the recessive allele. From these Gzures if ig elear that high
initial frequencies of favorable alleles present little problem in
maintaining them in the selected population and of ultimately
eliminating the altermate alleles., Those alleles which start at tow
frequencies are difficult to advance and are easily lost, especially

chance of fixation

-5

Figure 3.—The chance of fixation of a gene acting additively. The curves are
drawn for different initial gene frequencies. {Rohortson 1560)
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at low N.¢ Both N, and ¢ at high levels are thevefore necessary
to ensure against the loss of useful alleles. The speed with which
the frequency of favorable alleles is fixed is also a function of N,
and {. The time required for L5 of the total gain to be achieved is
approximately N.lq(1-gq), and therefore maintaining large N,
and ¢ will also assure rapid progress.

I favored alleles exist at low initial frequencies, howaever, it is
clear that periods of inbreeding or any veduction of the effective
population size in the early generations can strongly reduce long-
term gain potentials by eliminating alleles before selection has
increased their frequency. Thus, in figure 6, the restriction of
popuiation size is shown to be always debilatory. However, if
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Figure 6.—The effect of various lreatments on the curve of chance of fixation
against AT for a gene with initial Frequency of 0.3. The treatments are
three gencrations of (a) selection with ¢ = 0.4 in a large population, (b)
vestriction of effective populatien size to 5, and (¢) selection with =04
and effective population size 5.0=originral. (Robertson 1960)

alleles are suspected of initially being at low frequencies and a
high N.Z can be initially maintained, then the initial frequencies
can be advanced and less restrictive breeding procedures would
be allowable in future generations. Thus, if initial selection can
advance low gene frequencies into the intermediate range, con-
siderable safety against accidental loss of alleles is assured. Nev-
ertheless, as seen in figure 7, if the initial selection requires a loss
of N,, those early restrictions in N, are always detrimental, es-
pecially for alleles at lower initial frequencies. Thus, previously
unselected populations require large initial efforts to attain large
N more so than previously selected or partially improved breeds,
although all populations respond better to selection with high N,
In tree breeding, high N, is likely to be required to compensate
for low and possibly variabie .
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chanen of fixation

Figure 7.—The effects of “bottlenecks” in population size on the curve of
chance of fixation against caleulated for initial gene frequencies of 0.1,
0.3, and 0.5: (a) initial population, (b) restriction to a single mating for
one generation enly, and (e} restriction to a gingle mating for three
consecutive generations. (Robertson 1960)

In terms of phenotypic gains, the ¢ used here is equivalent to
Griffing's gg and we can compare the relative effect of having
a few alleles of large o; effect versus more alleles with small « of-
fects if the total effect of the genes is the same for both systems.
Robertson (fig. 8) finds that for initial frequencies of 0.5, the
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Figure 8.—TFhe cxpected limits te artificial gelection in a pepulation in which
all genes have initial frequency 0.5 and in which the possibie advance is
contributed equally by genes with afe = 0.1, 0.2, and 0.5, respectively.
(Robertson 1960)

larger effect {larger sel.ection coefficient) genes, although fewer

in number, contribute most heavily at lower values of Ne;-')--,
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Only at high N, ?—zj values do the less heavily selected alleles, but

at more numercus genetic loci, contribute as much. Similarly, com-
paring low versus intermediate initial gene frequency loci of equal
effect, the lower frequency loci contribute significantly only at the

higher NL.~;— levels since the lower frequency alleles are more

easily lost. Thus, N, affects the relative importance of factors
which otherwise would be considered of eguivalent merit.

These basic concepts of course involve many simplifications, but
they have provided a hasis for considering the effects that such
factors as linkage, dominance, changing genetic variances, and
genetic backgrounds can have on the general progress from selec-
tion predicted in these models. In addition, many approximations
involved in the derivations are not Justified, as noted by Robertson
(1960). Hence, alternate derivations and independent tests of the
results have been used to determine the adequacy of the models
and to propose new, more comprehensive and more exact models,
While Ewens (1963) found little error in the diffusion-equation
approximations for an additive gene-action model at very low N,
other effects may distort the expected results. More exact analysis
of selection effects, such as derived by Hill (1969), is instructive
to describe for its explicit statement of assumptions.

OTHER PROBABILITY MODELS
FOR SELECTION #

The first major objective of Hill's (1969) analysis is to derive
the probability that each of the 474, A4’ and AA genotypes is
represented by cractly n,, n., and u; individuals (9 +na+n3=N)
in a new population when they were originally represented by m;,
ms, and m; individuals (m, + Ma+my=M) in the parental popula-
tion. We do this for all possible combinations of My, Na, and ng.
From these probabilities, we can then compute the changing geno-
typic and alielic frequencies for the three types, or more generally
for any of y different genotypes in any multiple allelic series. We
do this for one generation at a time: assuming that the error
variances do not change, and further assuming that these proba-
bilities are independent of n, and m; levels, we can use matrix
methods to project future population behavior.

Since the truncation peint is determined by selecting the top &V
out of the M potential parents, we cannot be sure where the trun-
cation point will come in the rankings of each genotype, nor where
in the entire phenotypic range it may fall. One way to compute
those probabilities is to determine the exact probability that the
point of truncation will produce #, of the first genotype and n. of

“Graduoate-level statistieal training required for thorough understanding,
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the second, etc. Since each genotype would have a slightly different
distribution (fig. 2), the relative probabilities of representation in
the selected population change according to where the truncation
point falls and the various distributional differences. The proba-
Lilities of obtaining n,, 1e, and mny, given N, Mms, and m,, can be
obtained by looking at the mutually exclusive events ; that the low-
est ranked selection is of genotype 1, and n,—1 are higher, and %
and n3 of the other types also rank higher; that the lowest selected
is of penotype 2, and n1 are higher, and =, and ny also rank
higher; and that the lowest selected is of genotype 3, and n,~1 are
higher, and n, and 2. alse rank higher, These probabilities can
be derived from order statistics and for the first kind of event are:

Pr(n, of genotype 1 are selected, and the lowest ranked
selection is of genotype 1 given m, to choose from)

! {Fl (.r)]’"’l""“[l—F. (x)]}“—l fu(e)de

:-(—?Ll_l) !(?n]_ﬂl) !

where f; (x) is the probability density function for genotype 1 and
7. (x) is the integrated form of fi(x) or the cumulative distribu-
tion function for genotype 1.

Pr{nas of genotype 2 are greater than truncation individual
M)

W Mag—Tlu Ha

Pr(n; of genotype 3 are greater than truncation individual
"?H,_';)
Iy !

eyl Ha
. Tr;'!"{'i}}_;-n;}'![F“('I)i| [l—[‘g(.r)]

Since these are order statistics and are all independent, the
probability for the first kind of event is the product of these
probabilities.

The second kind of event puts genotype 2 in fthe position of
having its lowest ranked selected tree also representing the lowest
vanked selected tree for all genotypes, and this joint probability
requires only switching notation between 1 and 2 in the above
equations,

The third kind of event is similarly treated, and if a multiple
allelic series exists, any other genotypes can be similarly handled.

Since each of the kinds of events are mutually exclusive, they
may be summed for all types of evenls, each cvent’s probability
being the product of g terms. For three genotypes {g=:3), the
probability of obtaining i, na, and 1y [rom a given set of my, M,
and ma Lrees when the truncation point is at & is:
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Since the truncation point r may actually oceur over the whole
range of ¥, we can sum or integrate over all x values to determine
the transit'»n probability of going from m,, m., and ni,, to 1, 2a,
and ny, and by the gathering of appropriate terms we can in gen-

eral write this Pr{n, ns, ... 1, , My, Mo, ... m,) as:
g {my M 1y 0 -1
RV FtCY 1-Fe) |8 | 1-F@) | fads
& i=1

The eguations arve exact for the transition from m to =, and the
only remaining problem is how to get the probabilities of transi-
tion from % in a population of trees to a new n in the new popula-
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tion of trees. That is, starting with a parental array n!®l, they mate
to produce a new and presumably larger progeny population of
mi%1 from which we select a new parental population of nl'l, The
above transition probabilities give us the probabilities of #l!], given
the m1 or Pr(ntl | m©), We wish to determine Pr{nll | nl%)
and this can be determined by Pr(nf1) | mi0) X Pr{m9 | nl9}, The
last probability distributions to consider are therefore the Pr(m!]
291}, which are determined by the mating patterns used among
those selected. Assuming randem mating of the nf®! trees simpli-
fies the determination of Pr(m(®! | ni®), but any mating pattern
may be pursued to give the probabilities. The product of
Py (ml® | nlol) with Pr(ni}|mi1) can then be formed to give
Pr{n) ! niol}, The simplification that the random-mating assump-
tion affords is that mi®l is completely determined by the gene fre-
quency {under the Hardy-Weinberg law). If the gene frequency
in the n!! population is p,, we can determine w9 as:

D2t 20, (1—p,) % ¢ {1-p,)t
ot in terms of numbers of alleles:

o g G
Po=—"Fmw1 N1

Given these freguencies, the probabilities for the generation of
ml% are multinomially distributed:

9
f 0] ! 43001 == M 21y mal,  |2ma
By {mf® [nB) (mlmng(p“) [ZP" (1_%)] 1o ,

L M A2 . L Tmef 29y
ot ‘(mlwagma)(zl\f) [N(l zN)] [1 2;\-’]

Since this is a function only of i for any given constant population
size N, we can determine Pr (a1 ni9) for all combinations of =
vectors and for the complete transition matrix for a given N.
This matrix, P, can then be iteratively applied for any consistent
mating system and the nature of the ultimate results can be de-
termined in terms of its roots and eigenveciors.

The method is generally applicable, and some simplifications
are possible with further assumptions on the form of the different
Fi(z). Hil's {1969) results indicate that for alleles of small ef-
fect, and independent loci, N may be as small as 8 before the
diffusion-eguation approximations are bad. The larger the average
effect of an allele is with respect to the variance {«/o close to 1},
the worse the approximation can be. However, the diffusion ap-
proximations cannot be considered poor for these limited models.

The other infinite model approximations as used by Griffing
{1960) to predict response require that gene effects, as a ratio of
&2, be of small magnitude, and Latter (1865) has shown that genes
of large effect can lead to much larger or much smaller gaing than
predicted as well as to differential amounts of change according
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to the direction of selection. Linkage can further resiriet the use-
ful genetic variations and reduce fotal response o selection, but
the effects of restricting population size may outweigh those of
linkage (Latter 1866}, Similarly, an additive gene-action model
on linked loci showed relatively little effect of linkage on response
to selection except when differences in gene effect are large and
when one locus may affect the probability of fixation at the other
(Hill and Robertson 1966}). However, some genetic variances do
change as gene frequencies change in some predictable ways (Nei
1383), and epistatic effects do occur, influencing selection response
as allelic frequencies change. If such conditions as epistasis do
exist, then linkage effects can become important and gain esti-
mates by Griffing’s {1960} approximations can be very poor,
especially in small populations {Gill 1965b).

Thus, predictions based on esoteric formulas must be examined
very closely before too much reliance is placed on specific results.
Most of the difficulties and disagreements among the various an-
alytical and compuler simulation studies, however, occur when
the effective population size is very small, less than 8. In compari-
sons of the various approximate gain estimation procedures, in-
cluding dominance-effect models with a normal error distribution
{Kojima 1961) and iterative transition matrix models based on
them (Curnow and Baker 1968}, little bias is found as contrasted
with Roberison’s predictions when N, >8 (Pike 1969).

Under somewhat more complicated genetic models, including
epistasis or overdominance at some loci, the requirements for rea-
sonable robustness of the various estimators of gain increase the
recommended population size that must be carried (Gill 1965z).
When the more involved genetic models are used, genetic loci do
not behave linearly and additively, and alleles which might be re-
quired for ultimate progress are more easily lost. The genetic
variances themselves change during a selection program, and pre-
dictions based on assumptions of constant variance are unreliable.
The effects of inbreeding depression under various dominanee and
epistatic conditions further complicate the response predictions.
Gill's {1965¢) computer simulation studies indicate that effective
population sizes should be kept above 30 to avoid excessive
joss of otherwise favorable alleles. The trends in linkage effects
and selection on means and variances for 40 loci on 8 chromosomes
clearly indicate that the effects of small N, are rapidly feit and
that alleles are easily lost through the joint action of selective
breeding and drift,

SELECTION MODELS

The results of these thecretical analyses and computer simula-
tion studies may be summarized as suggesting that only for the
simplest gene-action models, and then only for reasonably large
population sizes, do fthe simple models of Griffing (1960) and
Robertson {1860} apply as they recognized themselves. The more
exact analyses indicate that for simple gene models, and ¥, greater
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than 8 to 10, the approximations used in their derivations are nof
bad and the general resuits can be reasonably accurate. However,
extensions of the model {o include large allelic effects, strong dom-
inance to overdominance effects, and epistasis, make the effects of
population size less predictable for means and variances of quanti-
tative traits and for probabilities of fixing the desired allelic
combinations (Latter 1968}, In addition, the utility of Robertson’s
analyses were specifieally investigated by Rawlings (1970) for
plant breeding programs and several of the assumptions and deri-
vations were found wanting. For example, one of the derivations
used by Robertson requires that N.£ be small in order that the
approximations used be accurate, but if N.£ is around 0.6 as re-
quired, then for reasonable levels of heritability and selection
intensity, N, must also be less than 8. Since most tree breeding
will involve N, > 8, the predictions of selection limits may be quite
imprecise. In attempting to account for these errvorg of approxi-

mation, the factor Ne; can be translated inte the multiple-locus

case by dividing the total selection differential effect into as many
loci as desired using the approximation for each locus of:

o 2R m)

o q(l-q)
where h*/m is hervitability divided by number of loci affecting the

trait. For simple additive effect models, and to provide a high
probability of fixing the favored alleles, Rawlings finds the re-

quired minimal Ne% values given in table 1. Thus, at highly in-

fense selections for alleles at low initial frequencies, a guite large
N, is required. When selection intensities are low or when many
traits are simultaneously selected for, the requisite N, increases
rapidly, especially for those low-initial-frequency alleles which can
easily be accidentally lost. The biases are most seriously felt in
predictions of long-term progress and ultimate probabilities of
fixation and less so in gain estimates for a few generations of
selection.

Table 1.—Mininuon values of N to give u{g) >0.95

o rens A
Initial gene Heritability/loei {if/m}

frequency (.}

140 17200 | 1/2,000 L 1/2,000 [ 1/10,000

g 20 28 83
15 33 42 104
26 58 84 188
45 160 138 313
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It may be further remembered that N, refers to the effective
population size, which can be considerably smaller than the actual
number of genofypes used. As relationships among the genotypes
increase due to disproporticnately high representation of some
families, the coancestry within breed populations may not be con-
trollable (Burrows 1970), and the actual numbers required may
be much larger than the N, figures given. By controlling allowable
levels of inbreeding and making family sizes move equal than
would oceur in random mating, some of the expected decreases in
N, can be avoided. By controlled intermating of selected parents
such that each parent is equally represented in the progeny pop-
ulation, N, can be larger than the number of parents at lone
heritabilities and only slightly lower at moderate heritabilities
{Rawlings 1870).

An alternative method for obtaining purebreeding popuiations
with somewhat lower probabilities of loss was suggested by Baker
and Curnow (1969). They suggest splitting the single population
into smaller sets and breeding within each for several generations
and then selecting in only the best subpopulations. While the
smaller subpopulations will lose favorable but low-frequency al-
leles more quickly, the more immediate 5- to 10-generation gains
are made with intermediate-frequency alleles of large and mod-
erate effect anyway. As long as subpopulations are kept at N,>16,
not many of those alieles will be lost though some variations among
the subpopulations can be expected. Thus, the average of all sub-
populations will be slightly lower than the expected gain in a single
large population, but the best one among the several subpopula-
tions is expected to be substantially higher. Furthermore, if several
replicate subpopulations can be developed, the best among these
may then be intercrossed to produce a new base population for
advanced sequences of population improvement, taking advan-
tage of the variations in the loci fixed for alternate alleles and any
formerly low-frequency alleles maintained at higher frequencies
in any of the replicates chosen. However, the advantages may often
be quife minimal (Madalena and Hill 1972) and would certainly
involve more complex breeding programs.

For hybrid breeding programs, selection within populations
which provide the parents for hybrid seed also vequires the ad-
vancement of gene frequencies, and the only major difference in
developing the recurrent selection population is that the gene
frequencies are moved to diverge as much as possible between the
two populations. Otherwise, the cumulative improvement of the
recurrent selection popuintions is under the same restrictions of
selection differential and &', as for purebred populations.

For these simple gene-action modeis and for all hreeding sys-
tems, it seems desirable to keep a high selection intensity by
generating large populations from which to select & minimal
number of parents. Intensive selection may thus be coupled with a
sufficiently large N, that immediate gains can be achieved without
greatly saerificing future gains. At the higher levels of selection
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intensity, vast increases in numbers examined may be required to
significantly increase the selection differential. On the other hand,
increases in selection intensity when the number of parents is
fixed are most easily achieved by increasing population size when
population size is initially relatively small. Hence, subdivision can
yield substantial advantages o breeders. In addition, if time can
be afforded, subdividing selection inte generational sequences may
yield savings in the sizes of populations necessary to carry in each
generation, For tree breeders the time costs may be excessive,
but for short-generation species like cottonwood, the advantages
may be significant.

SELECTION EXPERIMENTS

Theoretical investigations such as we have been reviewing, even
for simple models, lead to seme imprecision in predieting long-
term results, and many variations in gene action, frequencies,
dominance, epistasis, linkage, etc., can occur in actual populations.
Tests of selective predictions with real organisms ave therefore
needed to indicate how well the reaction of rome population svstems
is approximated by the theories. Most of the population testing
has heen done with animal populations in which family sizes and
selection for many generations could be controlled. One of the
primary difficulties in both directly testing theories and in apply-
ing theoretically advantageous breeding methods is a correlated
decline in reproductive fitness as size or other economic measures
are increased. Tree breeders often can partially overcome this
problem through extensive cloning. By deve'oping large numbers
of fruiting branches, he can often obtfain sufficient numbers of
viable seed, even though the genotype is a relatively poor seed
producer. Linkage, epistasis, dominance, and relations with the
fitness factors bias the results of selection. Bven without divect
effects of the trait selected on fitness, an interaction between
them can exist. There seems little doubt that for normally cross-
bred organisms, restriction of population size leads to fixation of
deleterious alleles by either random or divected, correlated selec-
tion effects (Latter and Robertson 1962). Under selection, there
is also a tendency to create more relatedness among parents than
if random mating occurred unless coancestry is strictly controlled.
In addition, by controlling reproductive rates to equalize popula-
tion sizes instead of allowing random selection and mating to
oceur, the hidden effects of natural selection against reproduc-
tively deleterious alleles can be ameliorated in the selected group.
Thus, different traits even with the same heritabilities may ex-
hibit different responses to selection according to their allelic
relations with fitness, linkage, ete. Certainly different species will
respond differently to selection and restrictions of population size,
numbers of alleles, ete.

For hybrid breeding programs in which the product is a cross
between zelection populations, the selection populations themselves
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may be inbred with little consequence of the inbreeding depression
except on seed-production capacity. The deleterious effects of loss
of alleles would be present, but inbreeding depression would not
affect the theory of selection advance.

It is, therefore, clear that wide testing of selection theories
is reguired to determine any generalities about natural popula-
tions from which guidelines may be drawn fer untested popula-
tions.

Among agronomic crops, direct indications of response to selec-
tion and random mating among the parents are available from the
long-term selections in such species as aifalfa, sugar heets, corn,
wheat, and barley. (See Allard 1960; FPenny and others 1962,
1966 ; Sprague 19686, 1867; Smith 1966, for review,) In tests with
relatively mild selection intensities and most often with large
populations, long-term response hes been steady. Even after 100
generations, the populations can respond to mass or bulk selection
in which phenotypic selection and random mating are performed.
While the long-term experiments arve not conducted in strictly
controlled environments, and some environmental variations must
have occurred over the years, the direction of selection has been
persistent and the response alwaye positive. Furthermore, most
shorter duration tests alse show substantial responses to selection
for additivels inherited quantitative traits even for small initial-
population sizes.

However, in the breeding process, possibilities for further
genetic advance can be eliminated, as was particularly evident in
the lack of response in sugar beets to continued intensive selection
for sugar content, roof form, and other traits. While 100 yvears of
mild selection increased sugar content by over 100 percent, from
7.5 to 16 percent, advanced intensive selection has netted relatively
little advance. Failure may have been caused by changes in the
gene effects themselves as major physiologically limiting factors
were metf. Perhaps new combinations of genes and traits are re-
guired for any new advances. Severe inbreeding has persistently
led to loss of genetic variance and inbreeding depression in all
cross-pollinated crops, even when efforts were made to select for
ibreeding ability and to save the lines. The loss in fitness is
partiaily due teo directed selection for traits which divectly affect
survival in noncultivated envirenments. This conelusion was dem-
onstraled in selection experiments in which the selected types
were placed under no selection for a few generations or were
actually placed in direct competition with bullk vavieties. LKither
the trait suffered selection tewards the nonselected mean, the
rariety displayed a relative loss of competitive ability, or both,
However, there are also debilitiex from inbreeding depression in
which even the most strenuous efforts fail to carry lines to sur-
vival without competition, There iz usually some vaviation among
individual lines with some surviving with vigor equivalent to the
bulk variety, hut fitness loss is the common expectation {Laude
and Swanson 1942; Bal and others 1959; Allard 1960), The loss
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in fitness may be related to competitive ability (Harlan and
Martini 1938 ; Lerner 1954 ; Finlay 1963}, susceplibility to preda-
tors, weak reproductive mechanisms, or some combination of
these. In species in which vegetative vigor or stem mass is selected
for, debilities of the reproductive organs down to some Hmit may
not be significant, but any loss of vigor would directly affect the
eflicacy of selection.

The lack of response to selection may sometimes be due to a
loss of alleles which might otherwise provide a basis for continued
response. If traits were affected by a few alleles of large effect,
then Gxation at small population sizes can quickly exhaust the
available variability. Crumpacker and Allard (1962), for example,
estimated that heading date in wheat was controlled by only three
major genes but that many minor genes alse affected its inheri-
tance. When gene frequencies for the major genes can be ad-
vanced close to one, then progress with the action of the minor
genes may then be effective, if somewhat slower,

In tree species, the early indications of inbreeding indicate
that vegetative vigor and survival traits ave divectly aftected by
inbreeding depression (Franklin 1968) and are therefore subject
to both of the detrimental efTects of limited population size.

While many organisms have heen studied in long-term selection
experiments, mice and Drosophile have been intensively worked
orranisms and provide some illuminating experiences in selection
experiments. As in plants, the common experience has been that
with reasonably large populations (N, >-50) and moderate selec-
tion intensities, response for the first 10 or 20 generations is quite
uniform and of a size according to the heritability. Thus, Kojima
and Kelleher (1963a) state: “From these findings it may be
concluded that the total response in the mean of the population
continues to change, on the average, linearly in the direction of
selection during the early period of seclection. regardless of the
kinds of organisms and traits and of the methods of selection.”

However, there are limits to the generality of the results in
loth the physiological gene-action efTects and in the loss of fitness
hy inbreeding depression and the loss of usable genetic variations.
Thus, in mice, both upwurd and downward selection for body
weirght reach limits in 17 to 22 generations (Faleconer 1965} and
in Drosophila o plateau in response also occurs in 20 to 30 genera-
tions. In many such experiments the pepulation carried is rea-
sonably large, and at the stage when platenus occur, genetic
variations still exist {Falconer 1960), sometimes with even higher
heritabilities than were originally present (Robertson and Reeve
1952). Thus, limits te selection which cannot be caused by ex-
haustion of genetic variation, inbreeding depression, or linkage
with deleterious fitness Tactors also exist. These may possibly bhe
the effect of a changed physiological or genetic milieu and hence
diferent gene effects, or due to the existence of complicated
epistasis. If gene actions are s¢ complicated ov if nafural selection
opposes any particularly directed selection, then the relaxution of




selection should cause a decline in mean response. In these cases,
as well as in the case when different alleles may have been fixed
in subdivided populations, a breeding procedure which can utilize
gene differences among subpopulations is required,

A series of studies by Frankham and others (1968a, 1968b. and
1968¢) is particularly enlightening, Those authors conducted
replicated tests of a two-treatment factorial combination of popu-
lation size (10, 20, and 0 pair matings per generation) and
selection intensity {selection proportions of 16, 20, 40, 80, and
100 percent} over 50 generations. Over the first 12 generations,
the strongest effect was that of selection intensity. Gain was
cleavly linearly related to selection percentage, except that the
8-percent selection level ({four-fifths saved) was almost indis-
tinguishable from the control population (100 percent saved).
These results agree well with Kojima and Kelleher's (1963b)
observations. In contrast, the effect of population size is not as
strong as that of selection level in the short run, but the larger
population tends to attain a higher total gain at the same selection
intensities. In fact, the d{-percent selection population with 40
pair matings did exceed the more intensive 20-percent selection
carried with 10 pair maltings. Alse, in terms of the vatio of
achieved gain to selection intensity (the realized heritability). the
milder selections tended to exceed the more intensive percentages
and indicated that a longer period of response, and eventually a
greater tofal response, muy be obluined at the Jd8-percent setection
level than af the 20 or 10 percent. 1t would thus appear that even
in the short run, the increased gain by increasing selection in-
tensity can be detrimentally affected if the populations maintained
are smatl. While milder selection around 50 percent may provide
a long, slow gain, at least the number of pair matings should be
kept lavege.

In geneval, however, the response is a linear function of the
inttially estimated heritability and selection intensity and some-
what less of N, While the effects of selection intensity on realized
heritability (i.e., achieved gain + reach) are not clear, the early
responses suggest that both small N, and high selection intensities
tend to veduce total gain. The variation among replicates of the
populations was so high, however, that no one population could
be expected to follow these average trends very closely. The
smaller population sizes in particular exhibited great variations
in response, indicating that at least sampling variations alTect
the replicate variance in the stochastic provesses involved in the
generational sequences, Even under these controlled environments,
and with an ovganism adapted to those controls, the gene effect,
selection, and mating processes generate substantial varviations
among identically treated (with respect to population size and
selection intensity) populalion trials.

In the Jonger run, of 50 generations, most populations still
appear to be responding to selection. The higher levals of selec-
tion intensity also still produce higher responses per genervation.
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However, the effects of population size, which earlier were not
clearly established, became a major factor in determining re-
sponse. By the 20th genervation, there is a clearly established
effect of larger population sizes on increasing response as lower
selection intensities begin to exceed higher selection intensities
if they alsu have larger population sizes. By the 50th generation,
there is a rough equivalence in response of the main effects of
increasing population size and of increasing selection intensity,
and hence there is a much greater vealized heritability for the
larger populations. In addition, while all populations show some
reduction in genetic variance, the larger populations continue to
display a higher response rafe than the smaller ones. It was clear
that even with 16 percent heritabilities and using simple mass
selection, the population responses of the larger populations under
10 percent selection exceeded the original mean by 1 standard
deviation in two generations and by 2 standard deviations in five
generations, with continued response after that. Thus, in relatively
few generations, the population means far exceeded the original
extremes.

In additional tests of Robertson’s (1960) suggestions that early
selection might advance gene frequencies inte a safer intermedi-
ate range, smaller population replicates were split off from the
10-, 20-, and 10-percent selection populations with 40 pair matings
each after 16 generations, by sampling 10 pair lines and breeding
in those at their same selection intensities. All subpopulation
splits of 10 pair lines immediately fell behind the larger population
and the lag accumulated. This is a clear experimental counter
evidence to the coneept that it is generally safe to restrict popula-
tion size after an initial period of selection in a large population.

The variations among replicate populations, especially smaller
populations, remained very large, tending to increase as a fune-
tion of the mean response and hence increasing as selection in-
tensity increased. The larger populations continued to exhibit less
variation than the small ones. In addition, the variation among
populations was exhibited when temporary plateaus and rapid
responses alternated. While the average vesponse for the rveplicates
at each of the selection intensities svas reasonably smooth, indi-
vidual replicates varied widely in size and period of response. The
average declines in fitness, as tested in lines drawn from the
selected lines and placed under relaxed selection, were moderate
and lasted only a few generations. Therefore, there was only a
moderate amount of natural selection opposing the directed selec-
tion. Some individual lines, however, did regress strongly due to
recessive lethals still being carried and possibly also due to strong
epistasis and linkages.

These long-term results indicate that epistatic interactions and
the formation and destruction of linkage blocks can be Important
in holding genetic variations in populations, at times impeding,
then aiding response to selection. The populations continue to re-
spond to selection and though there is some moderate deeline in
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heritability, large variations among replicates also exist. In check-
ing the state of the populations, it was found that some lethals
were still present and affected selection response, but that the
genetic variance was by no means exhausted. Several loci with
large-effect alleles were still present at intermediate to high fre-
quencies and some at low frequencies. Thus, it was concluded that
several large-effect genes at low initial frequencies can continue
to affect selection response long after one might otherwise assume
their fixation. In addition, the presence of complicated linkage
and epistatic effects can so confound the response to selection that
useful genetic variance can also persist for many generations,
especially at the larger population sizes and lower selection in-
tensities.

From these various theoretical and long-term experimental
studies, the possibilities of progress from selection and simple
mating schemes among selected parents can be broadly sketched,
For traits which are inherited in a truly quantitative manner,
the response to selection is a reasonably linear function of the
narrow-sense heritability or selection intensity, at least in the
short run. If heritability is well estimated, population sizes are
kept high, and truncation selection applied with accuracy, the
average linear estimates of gain, such as by Griffing’s (1960)
formula, should be reasonably close. The effect of severe restrie-
tions on population size, however, is felt even before the 10th
generation, and can have major early effects if there are large-
effect loci at low frequency in the population or if epistasis and
linkage are strong. Thus, even in the early selection generations,
a large N, is required. Furthermore, since large-effect loci may
possess the favored allele at low frequencies for many generations,
a continuously large N, is required for continued selection gain.
Since N, in such sequential breeding populations is sensifive to
occasional botflenecks, a continued monitoring of N, is required.

Since gain is thervefore affected both by the selection differential
and N, and since the two are somewhat antagonistic objectives,
seme compremise is required. That is, the more intengively selec-
tion is applied, the smaller the number of selected parents will be.
The problem is easily avoided by producing and examining large
numbers in the intervening progeny generations between selected
parental generations. Since the selection differential iz a function
of the preoportion selected while N, is largely a function of the
numbers selected, the obvious selution is to increase the hase pop-
ulation from which the parents may be selected. This may be done
to maintain a minimum acceptable effective number of parents
so that the expansion of the population examined increases the
selection differential or may be carried out by proportionately in-
creasing both N, and z¢p. The cost of increasing the selection
differential by inereasing the numbers of trees tested can be very
high, as noted by Shelbourne (1973), where the increase in z/p
by a factor of 2 requires vast incraases in test size (figs, 9 and
10} at higher selection intensities {Namkoong and Snyder 1969),




3.OF
2.81[
R |
S z.sT
= .
S 24
5
S 22p
gy o~
)
23\32.0—\.\
v .
I Q18
2N .
T n |
agl.s
=R 4L S
o
Ll N
- . .
Eg AN
%%iow -
AN N,
&& 0.8 \
Q -
% 0.6 \
\\- -
S O4 N,
E 0.2 \.
5o
I J 1 i 1 I | I I\
0 | 2 3 4 5 6 7 8 9 10

PROPORTION OF POPULATION SELECTED

Figure 9—Relationship of seclection differential to proportion of examined
population which is scleeted. (Shelbeurne 1973)

If the cost of increasing the test population is high relative to the
cost of the generation time, one may save by selecting in tandem
sequences at lower selection proportions (Rawlings 1970). Never-
theless, there is a constant requirement for keeping large V¥, and
as high a selection intensity as compatible for short-run gains
per generation. In the long run, less intensive selections would
give greater total gains, but such plans would require careful
examination for economic evaiuation.
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Continued response from selection due to penes at initially
low frequencies may ulso be expected regardless of the size of
their effect. While large-effect alleles at intermediate frequencies
and with smail &, may De quickly fixed, maintaining larger N,
can keep favorable, low-frequency alleles in the population for
many generations while substantially increasing their frequency.
Therefore, large pepulation sizes, especially in the founder popu-
lations, can significanily affect progress for many generations.
The effect of such low-frequency alleles will also be felt in crosses
among any subdivisions of a larger population as may be de-
veloped. This is especially important if few alleles are expected
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to exist in natural populations at frequencies close fo 1a.

It may be common for frequencies of favorable alieles to form
a bimodal or skewed unimodal curve. Traits presently or recently
under selection would force gene frequencies to exiremes unless
overdominance is strong, which is unlikely to occur for very many
loci. Such traits would tend to exhibit unimodal distributions with
the allele favored by natural selection in relatively high fre-
quency but not necessarily fixed due to the effects of slow re-
sponse at high {requencies. migrations, elc. Loei with little
present selective pressures might be more uniformly distributed
except as drift would cause extreme distributions or as past
selections would cause skewed distributions which have not been
homogenized by gene migrations. It can thus be conjectured that
the maintenance of menetic variance, which requires stable gene
frequencies, and continued response to selection, which requires
changing sene frequencies, are simultaneously possible to achieve,
Both genetic variance and initial responses to selection will depend
on infermediate-frequency genes or large-effect genes at low fre-
quency. As these can change very rapidly, they soon will join
the pool of high-frequency genes with little further effect on
either variance or mean. The pool of genes at low frequency of
favorable alleles must then be moved into the effective frequency
yange and can continue to slowly feed genes inte positions to
affect meuns and variances. Thus, the initial profile of gene fre-
quencies can affect the continuity of response without linkage,
epistasis, or other effects which further complicate the response
patterns over generations. Thus, also correlations can change
rapidly over generations according to whieh logi are changing
frequency, while the total genetic varianece itself remains stable.

In general, it might be concluded that over the generations
of a selection program, the correlations among traits are highly
suseeptible fo change as well as {o very poor initial estimation
(Bohren and others 1966). To effectively select for many fruits
simultaneonsiy, therefore, requires an understanding of the mech-
anisms invoking the correlations to predict their changes as well
as to modify them by selection. This further places a premiam
on keeping a high N, so that the opportunities for special selection
of recombinations might be effective. The special ussociation of
traits under selection with reproductive fitness traits requires
special attention for its modifying effects on selection.

INITIAL SELECTION CONSIDERATION
IN FORESTRY

For most [orest tree species which have not heen heavily se-
lected for fitness in plantation envirvonments, the prospects {or
selection gains by almoest any method for many traits of com-
mercial importance seem temptingly unexploited. As long as
founder population and subsequent eflective population sizes are
kept large, well-estimated heritability selection differential can
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be expected to reliably estimate average gain for quantitatively
inherited traits. If large populations exist from which to select
new generations, then intensive selection from many {rees can
still provide for a relatively large number of selected parents.
Then, at a constant heritability, gain is maximized by maximiz-
ing the size of the populations in which selection is practical, For
minimal breed population sizes, however, increasing the selection
intensity by expanding the progeny populations or the wild, orig-
imal population from which the breed parents are selected may
often cause associated problems in adequately judging the selec-
tive value of candidate trees. Not only is it more difficult and
costly to examine or test large numbers, but the tests cannot be
held to standard conditions very well. Thus, as more numerous
0r more massive tests are run, the ervor in estimating selective
vaiue increases and the heritability of the value measure de-
ereases. In addition, move variable environments are encountered
and less control of age, spacing, or other significant variables
will also decrease the heritability of the traits. Thus, even if costs
of expanding the test populations can be afforded, there is no
advantage to increasing the differential when the decrease in the
heritability exceeds the gain in the differential. A further diffi-
culty in measuring the selection differential oceurs when large
numbers of irees are examined and more errors ave made in
determining the trees which actually rank highest phenotypically.
Tree breeders may therefore be faced with economic and physical
limits due to the size and time requirements of trees not en-
countered to the same degree in other organisms.

The requirement for maintaining large, effective population
sizes, however, is not diminished especially if traits can commonly
be expected to have loel with favorable alleles at low frequencies
and selection pressure per trait, per locus. is not very intense,
Then, the need for large N, for even short-run gain maximization
is acute. Even if breed population crossing programs are con-
sidered for future breed development, the low-frequency alleles
are still required for new recombinations to provide advanced
gains. This is particularly acute lor those species and means
where the main ratural populations are being replaced by the
new hreeds. However, even when large, unselected populations
may remali, the new breeds can be expected to be such improved
forms that any reselections in the original populations will be
costly. [Furthermore, even without the expected existence of in-
breeding depression, the need for ancestral data and control of
ancestral relatedness in future breeding populations is necessavy.
Since inbreeding depression does occur so commonly among forest
tree species {Franklin 1968), and epistasis must eventually affect
selection response, forest tree breeders will be continually select-
ing under some acdverse effects of natural selection, regardless of
any direct associations of the selection goals and reproductive
fitness. Any loss of reproductive fitness may be overcome at a
cost, by special treatment to inereuse fruiting branch tips as by
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cloning, or by enhancing natural reproduction under controlie
environments. Neverthealess, linkage, pleiotropy, and epistasis cai
confound natural angd artificial selection effects.

The tree hreeder does have some considerable advantages in
controlling selection progress which have not been considered in
these simple programs. Breeding programs can be devised that
offer many alternatives to the simple mass selection and random
mating of selected parents which can aid ancestral confrol. Fur-
thermore, the breeder can test and retest an individual and its
relatives in controlled environments and hence increase the herit-
ability of the value measure. By controlled mating, controlling
family size and designing perieds of relaxed selection or crossing
among subdivided populations, or deliberately avoiding or mini-
mizing coancestries, he can inhibit the reduction of N,. Thus,
breeding programs tailored to the organism and traits can have
wide latitude in making the general selection program efficient
and effective. Tree species present particular opervational prob-
lems, and certainly each species and frait selection has unigue
problems in applying the general procedural principles of opti-
mum selection and breeding methods. Nevertheless, within the
limits of the reproductive mode and of extrapolating results too
extensively, the general principles of plant breeding can be de-
veloped from the theories of selection outlined in this chapter
and ean Le applied as ouflined in chapter 3.




CHAPTER 3
BREEDING THEORY

In most breeding programs with large numbers of parents,
inbreeding and coancestry can be maintained at low levels for
many generations. Some mating plans for selected parents can
rapidly lead to high levels of inbreeding or coancestry, however.
Crossing all parents to a single male or female would induce high
inbreeding and quickly create high ancestral relatedness among
all members of the breed population. The effective population size
would be rapidly diminished and selection progress reduced. Only
by introducing new materials would new genetic variants be avail-
able for continued selection, If the new genotypes, however, were
from an unselected or unadapted population, the breeding popu-
lation swould immediately suffer some loss in mean value and
might take several generations to recover its former gains. For
crops in which several cycles of intensive breeding can alter varie-
ties in a few years, this course of action may be feasible. Until
that is possible with forest trees, however, it is far more efficient
to avoid the necessity. Reasonable gains can be achieved in selec-
tion systems that maintain large populations and in mating
systems that minimize inbreeding.

Discussion of breeding methods aimed at fixing optimum com-
binations of major genes is beyond the scope of this book. Major
genes, as contrasted with polygenes, have such a large average
effect relative fo variations in phenotypic expression that the
genotypes can be identified with little error except for dominance
or other masking types of gene effects. Relatively few loci would
affect any single trait, and breeding methods to fix optimum
geunotypes would be simple and are well described in classical
genetic texts. At this time, few economically important traits in
forest trees are known to involve major gene effects but more
will undoubtedly be found as data and measurement technigues
develop. It is assumed that as detection of such genes progresses,
they will be fixed by well-established procedures within breed
popuiations that are also being developed for the totality of traits
requiring genetic improvement. It is expected that many traits
will be improved through a combination of major and polygene
breeding methods, but that in forestry, primary emphasis will
remain on polygene improvements for many generations, Regard-
less of the emphasis placed on one type of gene action or snother,
a continually improving base population is needed from which

68
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subpopulations can be drawn for any speeial breeding procedures.

Our concern here lies with selection and mating programs
designed for sequential development of breeding populations. These
programs are distinguished from those for the expansion of
genotypes into seed orchards for the production of seedlings,
cuttings, ete., for commerecial forests. We shall postpone for later
consideration the problems of measuring economic and ecological
value and temporarily assume that tests and measurements on
trees have been made and that phenotypes have been accurately
observed and evaluated. We shall also assume that all problems
of planting, cloning, pollinating, etc., present no restrictions on
our choice of either selection or mating design.

Regardless of the breeding method, each generation is expected
to produce genotypes with cumulatively better collections of alleles.
Multiple production of sibs by crossing among large numbers of
parents, or among single pairs of genotypes, or by selfing espe-
cially good lines for commercial seed production is a fechnical
problem for the breeder but is not treated here. Similarly, the
best genotypes can be periodically chosen for vegetation repro-
duction, as in poplars, but again, we shall have to consider pro-
duction problems as ones of technique in handling and distributing
what the breeder produces. The concern of this chapter is on
iteratively improving the breed population from which the best
propagules can be drawn for commercial use. The next chapter
focuses on the problems of identifying the best genotypes within
any generation. We would generally expect that only the ex-
tremely best propagules would be used in reforestation in any
one breed generaticn. Some ecological balancing to avoid the
dangers of monocculture has to be considered as well as the
optimum mixture of growth forms to salisfy the multiple ure
requirements of the forest land. In general, we do not expect to
decrease the genetic sources of variance in the basic breeding
populations. Therefore, breeding programs will not generally re-
duce the tree-to-tree variances as has sometimes been claimed.
Only if a restricted subset of the breed is used in plantations
can the genetic sources of variance in plantations be reduced.
Otherwise, genetic uniformity can come only at the expense of
the breeding program.

Three kinds of populations can be envisioned in each cycle of
selection and breeding: (1) the selected parents which are mated
in certain designs to produce the next generation; (2) the next
progeny generation so produced, which serves as the base popu-
Jation for the next cycle of selection; and (3) the population of
genotypes used in the production of propagules for commercial
use. The last may be a subsample of the selected parents set aside
for production matings or vegetative propagation. If may be more
intensively tested and selected to a smaller set of pavents or
ortets for immediate propagation. It may then be used as a base
population in short-term breeding programs for puve-line or
single-cross production. On the other hand, if seed or ramet pro-
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duction needs are pressing, the population for that production
may include all of the parents that are used for the breeding popu-
lation er an even wider sample of trees as may be required for
commercial propagation. We shall be concerned with the first
two kinds of populations and how they are penerated by a selec-
tive reduction fo some minimal set of parents, how the parents
are mated to produce a larger and improved base population, and
how the reselection is to start again. Methods for selection and
breeding are given first for single populations. Distinction is
made between breeding procedures used for the long-term breed
development and breeding within any single generation. Hybrid
breeding methods are then examined as is provenace selection,
before integrated breeding program organizations are reviewed,

SINGLE-POPULATION BREEDING

In general, the breeding system used is highly dependent on
the normal mode of reproduction exercised by the oreganism and
its native sources of genetic variation. For normally crosshred
organisms such as most forest trees, the maintenance of crossing
among a large sample of genotypes can be achieved within a
single population, even though the eventual population composi-
tion may include few genetic variants. Single-population breeding
methods may be maintained for hundreds of generations, and
may even then confain sufficient genetie variations to respond
to changing ecological ov economic objectives, We first examine
the systems involving intensive inbreeding and then other systems
which allew for less inbreeding and more control of coancestries.

In organisms such as corn and sheat, which can be adapted
to selfing or high degrees of inbreeding, pure lines or pedigrees
are commeonly developed, though they may be outerossed for com-
mercial production. Much of the success of these methods lies in
a good selection of the original parenis and in the ability of
breeders to advance many lines for many generations to derive
the final, limited, selected set of genotypes for commercial seed
production. A single inbred is usually grown for produection, hut
the lines may be crossed for the seed released as well as for the
establishment of new segregating populations from which new
seiections for pure-line developments czn begin. If inbreeding
depression or survival and reproduction are not too severe, and
the genotypes selected can be accurately observed in spite of the
opposing depressive effects of homozygosis, then pure-line breed-
ing can be useful, For limited objectives on a few loci where
homozygosis is beneficial, such pure lines may be profitable, If a
line is alveady deveioped and a few loel ot chromosome segments
are to be substituted, then various backerossing schemes may be
useful. Such systems, which rely on the development of invariant
genotypes, are most easily carried out with natural selfers apo-
micts, or those that rely relatively little on genetic recombination
for reproduction. Most such species—tobaceo, oats, peanuts, ete,.—
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exhibit some degree of outerossing but often have relatively low
chromosome numbers and recombination freguencies.

INBREEDING SYSTEMS

Systems of selfing and partial combinations of haif-sib and
progeny testing systems may be constructed to fit the require-
ments of the organism being bred. In forest trees, however, most
such family selection systems are nof reguived since the original,
relatively unselected pavents can be saved. Furthermore, appli-
cation of such systems to trees would often entail severe inbreed-
ing depression. Thus, selfing systems and pure-line breeding, in
which single genotypes are sought for development, ave not often
practical for trees. The half- and full-sib family selection systems
ave uspally not followed by sequential inbreeding within selected
families but rather are used in recuvvent selection schemes for
either general or specific combining ability. Such systems, how-
gver, are possible to develop with forest trees as exemplified by
the Douglas-fr selfing system used by Ovrr-Ewing (1965).

In contrast o recurvent selection systems in which intermating
among selected parents is sequentially used to generate new,
generally cross-pollinated populations in which variability is
maintained, line breeding extracts more purehreeding homozyguus
genotypes either for self-propagation or for use in specific crosses
or in synthetic varieties. Forest geneticists will generally start
with unselected crossbreeding populations, which will generally
resemble the . populations used by pure-line plant breeders. The
emphasis in such breeding systems generally les in maintaining
line samples from as large a proportion of the base population as
possible and not on selection among lines until the final generation
is reached. IHowever, one may select among lines according to
pedigrees or may segregate especiaily good huiked peculations to
concentrate effort on more promising lines even duving the early
generations. The balance achieved would presumably depend on
the need for commercial breeding lines duving the infermediate
generations, and the trustworthiness of early-genevation selec-
tion. The heritahility appropriate for computing gain from selec-
tions includes the fotal genetic variance among lines in the
numerator and the phenotypie variance of ling means in the de-
nominator. Since the genetic vaviance changes with inbreeding
and gene effects and since responses to environments may affect
the phenotypic variance differently from pgeneration to genera-
tion, it will likely be necessarv to reestimate the appropriate
components of variance more offen than in the recurrent selec-
tion systems.

HYBRIDIZING INBREDS

Since gsevere depression is an expected econseguence of inbreed-
ing forest tree species, few tree breeders expect to use inbreds
directly as the commercial material. Instead, inbred lines may be
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used as parenis in some form of crossing system among lines to
create a relatively vigorous hybrid. Single crosses fake but one
generation to develop in contrast to triple, double, and higher
order configurations and might, thevefore, be expected fo be more
commonly used than others. A single cross may be widely planted,
but such a practice would be subject to the same dangers as any
other monocultural system. Instead, sets of single crosses may be
used in commercial plantings. It is also possible to test-cross
among many possible line combinations and use only crosses
among those which combine particularly well in a synthetic vari-
ety. Such synthetic varieties are simply the product of infercross-
ing among a small number of appropriately selected parental lines
and resemble recurrent selection populations except that the
source of material is generally more uniform genetically within
each parental unif. Specific test crosses and plantings for selec-
tion of good hybrid vigor are made and entries into the synthetic
are determined on that basis,

At present, ther is little information on forest trees to indi-
cate that pure breed-hybrid systems can overcome the difficulties
in maintaining such lines (Franklin 1970a) or that selection
among selfs using additive gene effects can be effectively used for
developing synthetic varieties. However, little effort has been
expended in these direefions.

MASS AND SIMPLE RECURRENT SELECTION

Various programs which eventually develop a uniform breed
or variety, but without selfing, are possible to carry out with
forest {rees. Mass selection with a limited number of parents
selected each generation is one example. While these methods
eventually also rely on additive types of gene action and in the
very long run would eventually lead to pure breeding varieties,
inbreeding can be controlled and the normally outerossing behavior
of most tree species can be maintained. Thus, in mass selection,
the open, randomly pollinated seeds from selected parents con-
stitute the progeny generation from which the next generation of
pavents is selected. Simply maintaining 2 large N in the parental
populations assures a reasonably large N. and hence some con-
tinnal variation in the breed. Under recurrent selection, the
matings would always be among the selected parents. With peren-
nial organisms that f* uit repeuatedly, there is no need %o self the
selected parents to keep their genotype intact and hence the only
major diffevence between mass and simple recurrent selection is
that recurrent selection requires the systematic intermating of
all possible selected parents instead of simple random mating with
only female parent identification. Thus, the characteristics of mass
and simple recurrent selection in trees are the lack of test crosging
and the more or less complete intermating of selected parents with
uncontroiled versus controlied pollen parentage,

Mass selection is the simplest system to operate and requires
little time or effort. It may, therefore, be the most common breed-
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ing svstem. However, simple recurrent selection such as practiced
in clonal seed orchards can also be very economical. Agencies that
must provide seed for a planting program with many species
may find that establishment and seed costs are only negligibly
increased, if at all, by establishing clonal seed orchards (Perry
and Wang 1958). Hence, minimal breeding programs with either
of these two methods arve readily justified economically.

At a slightly increased cost, poliination can be partially con-
trolled and parental sources can at least be identified in the field
if planted in blocks or rows and identified for selection. Some
coancestry control and data for testing parents can therefore be
obtained relatively cheaply. Large N is thus generated at a small
loss in future . and precision of selection.

There are alternatives fo testing and {o the patterns chosen
for controlled matings, For instance, determining general com-
bining ability of individuals may require test matings on the trees
in the base population to some general tester set of trees, The
best performers can then be completely intermated as in simple
recurrent selection. Because the base population genotypes of
crop plants often eannot be directly observed or saved, some form
of family selection is practiced. Since the relatives would not have
the same genotypic composition as the original plants but may be
more precisely tested, the expected gain from selection is nc?®
easily derived. For example, if the original plants are lost and
only open-pollinated seed are available for testing and subsequent
use as selected parents, then the selection of sueh a half-sib
family on the basis of performance in a replicated test can be
very precise. However, the individual plant(s) chosen to represent
the family as 2 new parent is only a half-sib of the plants tested.
While such measures arve rarely necessary in tree breeding, the
results are quite similar to the practice of collecting open-
pollinated seed and selecting among these half-sib families on the
hasis of the family performance in test plantations.

To estimate the gains from such procedures, we can develop
the concept of heritabilitv in a somewhat different way than
Griffing (1960} did but with essentially the same approximations
and limitations. The result is easier to apply to plant breeding
situations (Empig and others 1971). If we again consider a
simple genetic model with many independent loci, each affecting
the trait in a similar, small, and cumulative way, then the effect
of selection ean bhe estimated for one locus and added over all
effective loci. Using the model of gene effects as in chapter 7,
the genotypic and phenotypic mean of the population is:

pes il g (1= e 2q (=g} ] = il (-0} -+ 2q:{1-ga) ],
The total genetie variance computed from

» frequenecy » (genetic value)*—pu? is:
H

o= Rl + 20 (1-q ) e fud + (T—q) 22— pl,
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The additive genetic variance is:
e2=2¢: {1-qjw [1+ (1-2q5 a.d2
The remaining dominance variance is:

op?=4{g {1-g) aai]?.

The total phenotypic variance {¢p?)} includes a purely environ-
mental variance component o5?, and assuming no corvelations nor
interactions of genotypes with environments,

b
ops— t:ra2 +a;.;2.

Then the population change under a selection differentialof sisa
function of the change in gene frequency and the change which
those frequencies would have on genotypic or phenotypic means.
In a normally distributed population, £ (s) =i, or {2/g}c as
previously derived in chapter 2. In the following discussions, we
shall assume that the g is appropriately determined for any given
distribution and is determined by considerations of minimum N,
total numbers fo be examined, and cost factors independent of
heritability. We also assume that the populations are large encugh
or are replicated sufficiently that variations in s and ? ave not
important. In forestry, the assumption of independence of s and h?
is guestionabtle, but discussion of this is iemporarily pestponed.

The change in gene frequency can be approximated by a linear
regression of the frequency on genotypic value which would be:

Cov (gene freq., phenotypic value).
Var (phenotypic value)

In mass selection, the allelic frequencies for each genotype and the
selection values are:

Genotype
Item R e
ArAl I Aa | 44
Genotype frequency (f} {1-g)*® 2q (1—y) g*
Mean phenotypic or
genctypic value (&) - @i U

Allele A frequency {y) O Lh 1

The mean frequency of allele 4 is:
v= (%) (2¢(1~q)) +¢*=q.

The mean phenctypic value is:
z={g2— {1-¢)2Tu+2g (1-¢) au.
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The sum of cross products between gene frequency and phenotypic
value is:
s fry=qu-+g{1-q)au,
and therefore the eovariance is:
N fay—ay=q{l-gyull+ (1-2q}al.
The effect of such a gene-frequency change on phenotypic mean
{x) can be approximated by:

dE:-= dlug?r— (1-9)2+2¢ (1-¢q)al]
dg dq

Therefore, the gain is:

=2ull+ (1-8q}al.

s Cov {gene freq., phenotypic value) da

A=~ cr_;;2 d(]

=-%52¢(1-g)w?[1+ (1-2q)al?,
i

and from the definition of o2,

summed over all loci.

Finally, we may observe that the g}t is in effect approximated

by the covariance between the new genotypic values and the gene
frequencies when divided by ¢(1-¢). Therefore, the product of
the two, as used to approximate gain, is:
Cov - %}{'——- (Cov)2=gil-g}.

Since (Cov)? is a function of the additive genetic variance, o4® is
a Tunction of the covariance between the phenotypes selected and
the expected phenotypes or genotypes of the selectively regener-
ated population. This assumes that the selected parents are van-
domly or completely intermated. Thus, the concept of heritability
as a regression coeflicient with Cov (phenotypes selected, geno-
types generated) + phenotypic variance is a useful approxima-
tion to actual expected changes in allelic and genotypic frequencies.

FAMILY SELECTION

In half-sib family selection, as detailed by Empig and others
(1971}, the family means are estimated unsing random matings
with the unselected population, and the best families are inter-
mated to produce the next generation. We ignore individual selec-
tion within families until Jater in this chapter. In family selection
with crops, the common parenis of the families usually are not
available, and the actual units selected arve the open-pollinated or
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randomly mated progeny which are half-sibs of the test materials.
Thus, parents of the 44 genotype occur with frequency ¢° and
have randomly mated offspring of types AA and A4’ at expected
frequencies ¢ and 1-¢, respectively. Expected values of % and az,
respectively, give a weighted mean value of AA parents of 2
Lqu+ (1-g)au], since the AA occurs with frequency g% The
frequency of the A allele in the progeny of this family is ex-
1+g
2
A4’ and A’A’ genotypes gives the following set of values:

pected fo be . Computing the similar expectations for the

Parent genotype
A4 L a4 b 44

Item

Genotype frequency {f) {1-g)2 g {i-g) g2

{2g-11u+an
]

Cfispring mean value {x) gau—{l—-giu qu+ {1—qan
1+2q 1+q

Alleie A frequency (y) _g_ 7 9

The covariance of gene freguency and phenotypic value is;

ﬂl%?}?i[l-% (1-2q) a]-

The C:%

d‘T?;v—- . 1
7 —2:5[1—:— (1—2q)a:|

function remains the same as before:

and hence:

E(AG) =5 Cov(g®) - d—ﬁ

T halt-sib {{15) d

T 2
=—§—2 q—{z——@uﬁ[l +{1-2¢q)a :l

oy 2
38
= —=(34) os®
Ors

This value can be semmed over all independent loci, since the
04" is that which is summed over all loci and +%, is the common
expected denominator. The gain expectdtion could alternatively
have been derived by simply noting that the covariance between
the genetic value of the individual units selected and the test ma-
terials is that of half-sibs, The ratio of this covariance to the
phenotypic variance is a heritability appropriate for half-sib
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family selecfion:

and expected gain of:
E (AG) :shu,\'g.

In general, ¢, is more easily controlled and hence can be much
smaller than o,° if uncontrolluble environmental variances in
a,° are large.

If the original parents ean be saved for breeding by some form
of self-propagation, then the matings for commercial production
can be controlled to include only selected pavents. This occurs, for
example, when open-pollinated or bulk pollen may be used to
produce test seedlings while the original parents’ genotypes ave
grafted or otherwise preserved. Then, the parents are rogued
according to the half-sib family tests and the selected clones
allowed to intermate. In this case, the gene-frequency gain of the
favorable allele is essentially doubed, and hence doubles the co-
variance between valune and favorable allele frequency. Alterna-
tively, the covariance among half-sibs may be viewed as lbeing
essentially constant, but the effective selection differential doubled.
In either way of deriving the expected gain, the preser -ation of
the original, undiluted genotypes and their intermating doubles
the expected gain. This is actually a form of progeny testing
on the basis of half-sib family performance, but the covariance
velationships are most easily derived, as we have above,

It should he noted that while only 1y or 13 of the additive
genetic variance is effective in the numerator of the gain heritabil-
ity, the denominator is the variance of the hatf-sib family means
used in the tests. In the nested design, as reviewed in chapter 8,
the Temale half-sih family variance is:

Gl re, - rmegd,

and the family mean variance with r veplications and using a set
of m male tester pollen per female is:

4
.

EICRS }'(rm2 - }‘Hlﬂ;z _ _ifr,_,?
R ri m

-]

Thus, by increasing the » or m fuctors, this variance of a family
mean can be considerably reduced if o2 is high as it must be if
the Iyt is low.

Iin full-sib family selection, the family means are estimated
for each pair mating and the best families are propagated. 1f
propagation is by random ov complete intermuting among the hest
families and specific dominance effects ave not used, as they may
be in special pair matings, then only the additive genetic variance
is used in the numerator of the gain hevitability since all domi-
nance deviations ave expected to be randomly distributed. Thus,
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the genotypic mean frequencies, values, and the frequencies of
favorable alleles would be given in Empig and others (1971) and
vield an expected gain of:

Yao,?
8- .
ors
In this case, or5° is the vaviance among full-sib family means and
would usually be slightly larpger than oué®, since it uses just one
other parent as a tester source of pollen. In terms of the nested
analysis used for the &, composition, the ous® would include:

]

:: T oL ol
The numerator again is twice the covariance of half-sibs since
the mating is done independently of any dominance or specific
eross combinations which may give high yields due to specific
gene interactions in the progeny.

If the original parents could be saved, or somehow the full-sib
families could be reconstructed by selfed seed or vegefative propa-
gation, the immediate gain could be enhanced with specific crosses
which may have combined especially well. Such interactions, as
measured by the deviation of the specific cross from what may be
expected as the average value of the parents in other random
crosses, is called the specific combining abilify. It is a deviation
from the average of the parental performances, which are their
general combining abilities. In this case, the full covariance of
full-sibs would be used in the numerator of the gain heritability
and would include:

“5’{30‘42 + 1.'3-0'1..2-
ITowever, if cumulative gaing are desired from such initial selec-
tions, the specific crosses have to be reconstructed to select for
heighlened specific combining ability. Otherwise, if a general
crossing system is followed and new seiections are made from a
random or complete crossing scheme, only the 14¢,4% can be used
to predict cummulative gains,

HERITABILITY CONCEPTS

Sinee many types of breeding programs are available, forest
geneticists are sometimes confused over the appropriate definition
and use of heritability for each program. Animal breeders and
geneticists originally defined heritability as either the total genetic
variance + total phenotypic variance (broad-sense heritability),
or total additive genetic variance + total phenolypic variance
{narrow-sense heritability}. Since plant geneticists apply differ-
ent forms of selection and breeding, the proportion of the genetic
variance that can be translated into gain is different for them.
They can aiso change phenotypic varviance at will with plots,
environmental veplicates, ete. Thervefore, the ratio of genetic
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and phenotypic variances requirves further specification in plant
genetics.

In the approximations of Griffing (1960) and Robertson (1960),
simple genetic models were used and allelic effects were summed
over independent loci. The assumed conditions were a form of
mass selection or simple recurrent selection with rundom mating
among the selected parents and ne change in variances over many
selection cyeles, In the regression concept of heritability, as de-
seribed by Fmpig and others (1971), and more explicitly de-
veloped by Ilanson (1963) and Falconer (1960}, continuous
genotypic distributions are assumed; it is further assumed that
recurreni selection procedures will regenerate all variances in
each generation. Since the differvent derivations vary only in the
contribution of N, and in some epistatic eomponents, all provide
the same predictive qualily and all are susceptible to most of the
same limitations and have the same model deficiencies.

THE NUMERATOR

In the regression concept, the numerator of the gain heritability
is the covariance between the genetic value of the planls pro-
duced for uitimate utilization and the phenotypic measures used
to estimate that wenetic value. As noted above, a breeder may be
interested in one of two types of produced materials: (1) the
exact reproductions of the families or clones tested or (2) the
randomily mated or completely intercrossed new population in
which genetie recombination is expected to reduce the effects of
specific combining abilities. When tested families can be repro-
duced by saving pavents and remating according to iest values,
then the full genetic variances indicated by the covariance among
amily members constitute the numerator. If selfs or clones uve
procduced, total genetic varianee is included. If full-sibs are pro-
duced, the array of genelic variances should include:

Lomg® Lioy - [ P

hecause all these slements enter into the variance among full-sib
families. Similarly, for half-sibs or any kinds of families pro-
duced, the genelic variance among the selection units that should
be ealered in Lhe numeralor of the gain heritability is the repeat-
able part of the variution. Oun the other hand, if selected family
representatives are mated or if pavents are completely intermated
to generate a population for the next eyele of recurrent selection,
then the full contributions of epistatic and dominance effects will
he reduced by the extent to which the intralocus and interlocus
allelic correlations are lost in the recombinations and matings.
Then, regardless of whether the parenis weve selected on the hasis
of clonul, full-sib, haif-sib, or other family mean values, most of
the nonadditive genelic contributions {o the differences among
selection unils will be lost in random or compiete intermatings.
Ouly by selfing or selective crossing, as in single crosses or




synthetic variety construction, or by recurrent selection for some
specific combining ability, can the nonadditive variances be effec-
tively used in a cumulative sequence of generational gains.

One factor that can influence the genetic variances in the
numerator is the presence of cryptic differences between the
measured traifs and the traits desired for actual improvement.
Since the performance of an individual or family under forest
conditions may be only partially correlated with performance
under test couditions, the appropriate heritability numerator
should be the genetic covariance and not the genetic variance.
Some compensation for differences between age, condition of test,
efe.. should be made when possib’iities of measuring correlated
instead of divectly mensured traits can be estimated. Further
treatment of selection with corrvelated traits is postponed to
chapter 4.

One cther element may enter the numerator of the gain herita-
bility due to nonlinear of nonadditive velations between genotypic
and environmental effects—the genotype-by-environment interac-
tion. 1f testing and evaluation are performed over a sample of
environments, and genotypic value is determined as the average
of each genotype over the various environments, then the eenetic
variances can be defined in ferms of the plants’ reactions to these
environments. However, particular genotypes may perform espe-
cially well or poorly in certain conditions. If so, their potential
vield on those sites will not be well predicted by an average vield
over all environments, an average of the environments, or the
mean contribution of hoth genotype and environment. Consider,
for example, two families on two sites. If genetic variance exists
on each site and family 4 scores 10 and familv B scores 5 on
site I; but 4 scores 15 and B scores 20 on site II, then the relative
rankings change, average site difference from 7.5 to 17.5 would
be observed, but no overall genetic variance would exist. Since
there is no average difference among genotypes, selection for
average performance would be futile. However, if the sites are
classified and planting zones are distinguished for separate breed-
ing efforts, then the genetic variances within sites can be used to
predict gain and the genotype-environment interaction no longer
is defined. Conversely, if general performance uver all sites is
desired but testing can he made only on a few sites, then genolype-
environment interaction may canse bias in estimating gencral
performance. Nevertheless, the interaction can be useful if it is
recognized and if environments and genotypes can be altered to
take advanlage of especially favorable combinations of special
trees on special sites, On the other hand, if the extra vanations
caused by these interactions ave large, small envivommental sam-
ples will not provide good estimates of trye average genetic
differences. Ilence, the covariance between test performance and
average genetic value is reduced by the extent to which the inter-
action adds to the family differences in the site(s) tested. Thus,
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estimates of genetic variance taken on one site may apply only to
similar sites. Some value for an interaction variance must be
subtracted to predict the gain from selection for planting on
many sifes.

If fertility, stand density, or other controllable site factors
have strong interaction effects such that some genofypes do ex-
ceptionally well under certain regimes, the inferaction effects can
be used to enhance average genetic values and gains. It may then
be possible to select trees with good vesponse to intensive culture,
for exampte, and to combine the improved seed with a cultural
regime recommendation. If so, the interaction effects should re-
main in the numerator.

In a closely related sense, the economic conditions in which the
forests must have adaptive value simply represenf another class
of environments or performance reguirements. However, it may
be easier to project estimated economic values according to models
of forest uses than to predict environmental variations and fre-
quencies. Multiple traits that directly and indirectly influence
some value parameters are easy enough to measure, but breeders
need to know the correlations between such traits and between
juvenile and mature tree charvacteristics. Hence, multivariate
analyses of genetic variances and covariances should be planned
along with measurements of performance in muitiple ecological
envirenments.

THE DENOMINATOR

The denominator of the gain heritability is the variance of the
estimated mean values for the sslection unit. Under mass, or
simple recurrent selection, the individuals are usually assamed
to be randomly located with respect {o all environmental factors;
hence the variance among individual units is simply the sum of
all contributing variance components, genetic and nongenetic
alike. The sampling errors arve both genetic and nongenetic and
can be reduced by extensive sampling {o properly rate a selection
unit with respect to other units. Since trees can often be replicated
in plots and over environments, several components can be recog-
nized. We will usually assume that gross macrosite effects can be
recognized and variations in these adjusted for before estimating
relative values, If adjustments cannot be made or can be made
only with some error, the error variance of the adjustment or
lack of it would have to be included (o). In addifion, any inter-
actions of macrosite effeets and genotypes {vqe’) would contribute
to the variance among units. Both of these components would be
reduced by a good sampling of several environments and, if ¢
environments were randomly sampled, would contribute:

0';_'2+ (}'032
€

to the variance among selection unit means. In replicated tree
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plots, the error variation due to families not behaving the same
way in all replications within macrosites is a plot error variance
{s,"}, which can be reduced by the number of replicates in each

macrosite sampled (») and the number of macrosites ( :e ) An

additional source of variation among units lies in microsite or
otherwise uncontrolled measurement or sampling error among
trees even in the same plot (e.?). This remaining error and the
residual genetic variation among trees within family plots (G}
can be reduced by the number of trees per plot (n) and hence
would affect the phenotypic variance by:

Ot g

nre

A small portion of the within-family genetic variance (1/n) is
carried in o2 The final commonly designated source of variance
among units is the variance component due to genetic differences
among the units themselves (o,2). Together with ¢,,? and the
small portion of the plot error due to genetic sampling, the total
genetic variance is approximately:

gl 0‘92 + crglf.

Thus, for single-tree plots, unreplicated but with adjustments
made for macrosite variations, the phenotypic variance is:

opl=g, 2+ g+ ot topst 6,2 OF o2+ ep2 - oge? + o6k,

If these are n families per plot, with » blocks oi = macrosites, the
variance among family means that should be entered as the
denominator of the regression gain heritability is:

2 2
o= T _Tow + 90
nre

Optimum allocations of n, », and ¢, for different cost constraints
can be developed to maximize efficiency or minimize the variance
for given costs of establishing “n” trees, in “r” reps, in “‘&” sites.
However, the problem of estimating the variance of the heritabil-
ity regression coefficient can be more complicated than the design
considerations reviewed in chapter 8 since both numerator and
denominater are estimated and we require the variance of the
ratio before optimum designs carn be defined. Some simpler de-
signs such as the parent-offspring regressions discussed in chap-
ter 8 lead to some easily derived estimates of the errvor varianee in
heritability estimates and to easily computed optimum allocations
of plant materials to efficiently estimate A2 (Falconer 1960} . Also,
when the heritability can be easily constructed as an intra-class
correlation or as a simple ratio of two mean squares, the distribu-
tions ave well known (Hanson 1963) and optimum allocations of
materials can be derived by standard calculus procedures, How-
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ever, when variance components have to be estimated and geveral
mezan squares have to be used in combination to derive the A% the
variance i move complicated to derive and optimum designs more
difficult to design. Some combinations of numerator and denomi-
nator for different kinds of heritabilities ave listed below.

The forest geneticist may design experiments to estimate the
components in a variety of ways and, independently of such esti-
mation experiments, may construct heritabilities appropriate for
several types of selection and hreeding programs. If the component
estimation program is indeed independent of the breeding pro-
gram, then designs can he constructed to efficiently estimate the
components on the heritabilities, as discussed in chapter 1. Once
such estimates are obtained, the geneticist may then compare the
relative merits of different breeding systems according to their
expected gains by constructing the selection differentials and
heritabilities that apply to those systems. Some numerators and
denominators for different heritabilities for some breeding pro-
grams are:

Numerators Denominators
U".[g o Ta

3/1.0';12 or PE

1/2 aat ot =apr — 092
Y447

U;lz +e oA 32

Yaas®+ Yiop®

Appropriate types of heritability for certain selection methods are:

Type of heritahility Selection method

as®/ ar® Simple recurrent selection

as? / orp’ Recurrent selection with clonal or
selfed family testing

Shau? / opwt Individual-tree selection within
half-gib families

Vaas® / o’ Mass selection without pollen par-
enf control

Vsoa® / are® Mass selection without pollen
parent control, with clonal test-
ing

Vhos® / oru® Cumulative portion of recuvrent,
within full-sib family selection

o4 / orp® Half-sib family selection

(Voo +14es?) / arp® Tull-sib family seleciion




EXPECTED PROGRESS FROM SOME
RECURRENT SELECTION AND
BREEDING SYSTEMS

If the selection differential and heritability are well estimated,
expected gains from various proposed tree-breeding methods can
also be well estimated. However, variance in actual levels of either
factor leads to variance among sample populations. Here, gains
from just one generation of breeding are examined for various
breeding and seed-orchard procedures for their average or ex-
pected results. Then, we consider breeding methods for repeatedly
and cumulatively improving breeding population in particular
mating patterns.

Simple mass selection is perhaps the easiest breeding method
in forestry; phenotypes are selected according to their individual
performance and open-pollinated with unselected pollen. In simple
recurrent selection, selected pavents are systematically crossed
either in the forest or in orchards. In both methods, selection is
based on the individual’s own phenotype only, and both have been
called mass selection in plant and forest breeding. If the pallen
pavents are unselected, the effective gene frequency of the favor-
able allele is halved and the gain is half of the usually computed
mass selection:

AstyﬂLf,‘g
gr”
This value is also essentially the regression of offspring on parents
when the offspring were from unselected, or uncontrolled matings.
The numerator covariance is that of offspring-parents, while the
denominator is the variance among the parents which were used
to estimate the value of their projected offspring.

If the original parents were saved and matings were among
selected trees only, then the full narrow-sense heritability would
apply:

o

AG=gTi |

G
which is double the regression 42 noted above. In this case, the cost
of keeping the same s value increases by the amount requived for
controlled pollination, establishing orchards, ete., but seed collec-
tion costs can actually decrease due to seed production and har-
vesting efficiencies (Perry and Wang 1958). In some species, it
is difficult to cross selected trees except in clonal orchards, and
the cost of establishment iz small enough that mass-selection
clonal seed orchards are standard operations. Other species, how-
ever, may pe easily crossed onsite or may have propagational
problems too difficult or costly to bear in a clonal orchard program.
If onsite crossing is not feasible, a form of selfing or other family
selection may be required. The cost of seed may actually depend
more on vagaries of crop size, species, site, weather, and use of
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mechanized equipment, than on manner of crossing or control of
pollen parent.

One further procedure similar to mass selection in its full
utilization of the additive genetic variance is selection on the basis
of clonal performance, as recommended by Libby (1964). The
great advantage that vegetative propagule testing has is that for
traits with low A2, replications can reduce opp? well below o,* and
hence can increase the heritability that can be translated into gain.
However, the method requires that the performance of vegetative
propagules in tests acecurately reflect that of seedlings or ramets
as used in commetcial production, or at least that the covariance
between genotypic value and performance he close to the full
genetic variance. Topophysis, age effects, rooting or graft compat-
ibility variation, etc., can all reduce the covariance between per-
formance and breeding value and hence reduce the value of the
numerator ¢42. In addition, testing costs are high and should be
offset by later uses such as for seed-orchard materials. Time delays
in generating the new breeding population can also be costly, and
any reduction of numbers of genotypes which can be examined by
these methods may cause the s to be severely reduced, decreasing
the value of the hreeding effort. Nevertheless, for species which can
be easily and cheaply propagated by cuttings, apomictic seed, etc.,
and which perform without much ¢ or special and biasing clonal
effects, the advantages can he great. The covariance between ob-
served performance and breeding value is not a true genetic
variance for clones or different aged materials that are e¢ither more
juvenile or more senile than desived. Gain is made on the basis
of the correlated response of tree value on measured trait, as out-
lined in chapter 4.

In addition to these forms of mass selection, various types of
progeny test selections have been employed, as described by Nam-
koong and others (1966). In these programs, an initial selection
on the basis of individual performance js made, as in mass selec-
tion, but more parents are selected than are actually to be used
in the final breeding population. A second selection is made on
the basis of further family or clonal tests to veduce the pepulation
10 the minimal N, desired. In clonal seed-orchard programs, stich
as described by Zobel and McElwee (1964), the trees originally
gelected in the first phase are crossed to some designated tester
trees, or often, a set of heavy pollen producers serves as pollinators
for the other parents. The families thus produced are evaluated in
field tests and estimates of the combining ability of the parents
are made. The trees which prove to be poor parents are culled
from the orchard, or a new orchard is established with ramets
only from the best parents. From these reconstructed orchards,
the seedlings of the reselected parents can be generally considered
as half-sibs of the seedlings produced for the testing, though a
slight bias exists if any of the testers are also selected. Therefore,
there is a half-sib relationship between the families tested and the
seedlings from the reconstructed orchard, and the appropvriate
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covariance is that of half-sibs. When both parents have been se-

lected, the effect of the selection differential is doubled. Hence, the
gain from the second culling is:
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o/ 18 the male X female interaction variance and m is the number
of male testers. It should be noted that the genetic contribution to
the error is somewhat differently allocated between this factorial
design and either the hierarchical or diallel designs and is some-
what smaller for the factorial than either of the others. However,
the difference is negligible if m is over 3 or 4 in any of the designs.
oa-? is the additive genetic variance in the second-stage materials.
Since no genetic recombination oceurs between the two selection
stages, ¢4? will be less than ¢,* by an amount proportional to the
initial heritability and initial selection intensity, hoth of which
tend fo reduce the amount of genetic variation among the initially
selected trees. The reduction in ¢,.2 is tabulated by Finney (1956)
for various levels of initial ¢4® / ;% and initial selection intensity.

The advantage of this method lies in the gains which may be
achieved in the second stage for traits of low-mass selection
heritability but which can be tested to greatly improve the half-sib
heritability. The method is especially useful for traits such as early
growth, response to seil fertility or spacing, and some pathogen
:esistances that may have very low heritability and may be weakly
correlated with other breeding values. Testing in controlled en-
vironments may then give substantial heritability since orp® may
be very much smaller than ;% such that the only reasonable gain
possible may be in the second stage on those traits. Direct costs
and time costs of such testing, however, are substantial. In addi-
tion, the costs may inhibit the number of entries accepted inte
the testing stage so severely that only a very small second-stage
selection differential can be afforded. Such a limitation would
clearly destroy the value of the testing, because gain is propor-
tional to the product of s and %2 Thus, only if the differences in
h% are large enough to offset the cost of the replicated testing can
the advantages of second-stage testing be utilized.

Since selections in the two stages are based on performance
data which would be correlated to the extent that genetic effects
contro] the phenotypes, it is clear that high heritabilities would
mean a high correlation in the performance data between stages
1 and 2. The correlation is increased even further since the stage 2
selection will be based on both initial and replicated-test perform-
ance. If the additional testing iz needed because of initially low
k%, however, the data will be less well correlated and the additional
gain more significant. By examining a wide range of initial A®
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and post-test A2, it was found by minimization under consiraints
that additional testing costs were offset only when initial 27 was
less than 3 percent (Namkoeong 1970a). Using a linear program-
ming analysis, van Buijtenen and Saitta (1972) similarly found
that progeny testing can often be wasteful. When initial gains
appear diflicult to make, more careful initial examination and
selection should genevally be attempted first since even heritabil-
ities of 5 percent will nsually be enough to make some gain more
quickly and cheaply than progeny testing.

There are some operational advantages to the progeny testing
which some breeding programs ave using. For commercial seed
production, the pavents can be culled or selectively mafed as socon
as reliabie data begin to indicate quality diffevences. Progeny test-
ing can give such data velatively early, and elaborate test designs
may not be necessary. Such advantages in the commercial valvue
of the seed can be applied in each generation, regardless of the
size of the breeding population. In addition, it is possible to begin
intercrossing among u wider sample of potential parents, as may
be present before progeny testing in an orchard, to generate
the breed population, Then, when progeny test data become avail-
able, crosses with the culled pavents can be discarded from the
breeding program while intercrosses among the tested and selected
parents are saved. This step is costly and may reduce the progeny
population of the next generation which can be carried because
of the wasted efforts on crossing among culled pavents. Without it,
however, the benefits of the progeny test cannot be incorporated
into the breeding population until after testing has identified the
proper pavents, those parents have been intercrossed, and the
seedlings have matured. Such delays themselves are costly, and
unless the cost of extra crosses and seedlings is worthwhile or the
time interval for testing and producing a new generation is small,
the breeding population will develop at a faster rate witaout
progeny testing.

One other advantage of progeny testing may exist when selec-
tion is made for traits more readily observable or with higher
heritability in progeny than in older pavents. Thus, traits like
rapid early growth may not be observable in older pavents, and
hence selection in parents is only for a correlated trait, whereas
in juvenile progeny, the genetic variance itself is useful (Snyder
1969},

In future genevations, both pavental selection and progeny test
efficiencies are likely to increase. Initial heritabiiities will be higher
since the material will usuaily be grown in better-known environ-
ments and more measurements will be accurately taken, Testing
wi'! likely be easier and better done and at earlier ages, but some
traits cannot now be imaproved without detailed or complicated
tests. Some agencies will have other uses for the tests which may
be done quickly and cheaply enough to justify the large post-
progeny test selection diffeventials required to achieve reasonable
gains. There appears to be little difference in test estimation ef-
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ficiency among the mating designs used as long as the number
of crosses per eniry and the seedlings per cross are reasonably
high.

A slightly different form of two-stage selection. using seedling
propagules instead of clonal regeneration of the initially selected
genotypes, has also been extensively used in free breeding (God-
dard and Brown 1961; Wright 1964a; Stern and Hattemer 1964).
In these seedling seed-orchard methods, the initial selections may
not be easily propagated other than by seed, and it may be rela-
tively easy fo induce early flowering on the seedlings such that seed
production from the seedling orchard is at least as good as from
any other materials. The seedlings from the initially selected
forest frees serve as their own test performance material.

The heritabilities and gains for initial selection are the same
as in any simple vecurrent selection system except that the male
pellen may be unselected. If the initial selections are intercrossed,
then the full-mass-selection gain is achieved, but if open-pollinated
families ave used, the gain is halved. Then crosses among selected
seedling family members instead of clones produce the commer-
cial seed.

In the second stage, which follows the initial selection, if many
unselected pollens or open-pollinated seeds are used in the orchard-
test plantation and then families are selected on the basis of
average family performance, gain must be computed from half-sib
family covariances, and the variance of the family means is:
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where m, the number of males, is assumed very large. The co-
variance numerator of the gain h? between the commercial and test
material is simply the genetic variance among test units, which is
the covariance of half-sibs. The half-sib families are the units of
test and selection and are to be mated among similarly selected
families as in half-sib family selection. As noted by R. D. Burdon
{personal communication), the variance among these units is re-
duced by the initial selections in the same way as for clonal
selection. Hence, the second-stage gain or family selection is:

Yies?
(82) 5,
Gpr

where s, is limited by the number of families brought into the
family trial and by the number of different families allowed to
pass into the breeding populations.

Since the construction of families would also permit selection
among individual family membeis on the basis of their own per-
formance, an additional selection gain is possible in a form of
mass selection within families. If selection is made in this tandem
fashion—first families, then individuals within families—the gain
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in the last stage of individual selection is:

%lcxg

(83}

where (83} is the differential for selection among family members,

304 is the genetic variance within half-sib families, and «7° is
the variance of individuals within families. ¢,;* should ordinarily
be regenerated by matings and hence should be close fo the original
e Y

Alternatively, if the families entered the orchard as unrelated
full-sibs (or if a full-sib family selection was made), then the
variance among families would be V4,7 plus the dominance and
epistatic variances, while the useful variance within familieg
would be ! 50,2 plus the remaining nonadditive genetic variances,
Hence, the gain from alternative proecedures will vary according
to the selection differentials and control of crossing exercised and
the relative sizes of the heritabilities. Using a single pollen source
would create excessive inbreeding in one generation, but it wouid
generate 1¢,? among the full-sib families within the single half-
sib family, and Lie,” among the individuals within families.

If the operational advantages of secondary selection and propa-
gation do not dictate the choice of infermediate selection stages,
the advantage of the seedling seed-orchard test combinations is in
the additional selections that can be made not only among the
original families but also among individuals within families. By
simply using enough seedlings within each family, the last selec-
tion can have a large g5, and while &* is on an individual tree basis,
a2 may be somewhat reduced by the easier environmental control
and more detailed observations possible within experimental con-
ditions. While both the clonal and seedling seed orchards share
the common problem of having to balance s. and cpr for maximum
gain, it seems that in individual selections, s; and o;® can more
easily be balanced by reasonably large family sizes. It is also likely
for individuals fo be selected on the basis of an index of informa-
tion on family as well as individual performance (Namkoong
1966h). In such cases, it is feasible to construct festing and breed-
ing replicate blocks that contain only one or very few family
members at sexual maturity. Then the combined individual and
family selections can be made and the expected gain approxi-
mated from the average s values per block, or by an s for the
index selection. The chances of rapid inbreeding are enhanced
by heavy family selection. However, if pollination is controlled and
potential inbreeding and spacing are not otherwise serious prob-
lems, the gain from individual within-family selection can be em-
phasized. It can be increased by having many frees per family,
and the k2 for that phase can be maximized by using many seed-
lings per plot if the plot error is high or many plots otherwise.

The method deseribed therefore provides a two-generation se-
quence of selection in one step. Substantial quick gains can be
had if a large selection differential is generated (Namkoong and
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others 1866). Unlike for clonal seed orchards, optimal allecation
of selection intensilies among stages yields relatively equal se-
lection proportions between the stages of selection for reasonable
costs. However, special handling and care are reguired to combine
the objectives of testing and eventual seed production, and more
time or cost is required to generate a completely new recurrent
selection generation than in other methods. The additional time is
required for crossing and establishing a seedling generation, An
alternative is to make crosses for the next generation earlier than
culling allows and hence to make unnecessary crosses which are
subsequently omitted from bLreeding. However, in addition to the
difficuities of establishing seedling seed orchards, the existence
of large genotype-by-environment interactions may require that
seed-production technigues be postponed until testing is finished.
If the interaction is large, poor families in the seed orchard may
be genotypes which should be picked for propagation. If the advan-
tages of substantial improvements in A? and the additional selec-
tion differentials in the seedling generation warrant it, however,
the method merits the work needed to overcome the experimental
problems of simultaneous testing and seed production. In particu-
lar, the use of clonal replicates of seedling entries could substan-
tially improve individual seedling selection heritabilities and make
gains on that basis very strong (Libby 1969).

The time and effort of progeny testing in either clonal or seedling
seed orchards can clearly be subsfantial, but with experience and
data on juvenile-mature correlations, it should be far easier to
handle in future generations. As the breeder develops the capacity
to evaluate more juvenile materials, the value of progeny testing
increases (Nanson 1967}, and the main limitation is to induce
sexnal reproduction in juvenile stages without mitigating the value
of the tests. Clearly, one means would be to have different clonal
replicates for testing and for reproduction to treat each ramet
appropriately for ifs purposes and to develop rapid testing and re-
productive eyveles.

Similar forms of selection among families can be generated
from single pair matings instead of the half-sib forms of the
infercrossing outlined above (Libby 1969). After the initial selec-
tions, possibly at somewhat lower iniensilies, crosses arve made
among them, and fuli-sib family identities maintained in test
crosses. Then several optional sysiems may be followed. The best
full-sibs can be identified, and the specific good combinations se-
lected for reproduction by repeated crossing of the same selected
parental pairs in special, limited combination orchards. The gain
due to additive genetic action is similar to that of the progeny-
tested clonal orchard if the g factors are eguivalent, but a gain of

due to dominance can be added. This gain, due to dominanee, is not
eumulative if the next generation will be created through recur-
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rent selection of completely intercrossed trees, but it can be at
least partially cumulative if the parents are selfed or otherwise
regenerated and new selections arve based on specific cross-test
performance {Namkoong and others 1966). Subsequent generation
gain can then be based only on the genetic variances generaled
among individuals within parental lines.

Selecting within the full-sib families for advanced generation
crossing provides the same advantages and problems as when the
families were generated as half-sibs, except that the family selec-
tion gain is on the Lasis of:

Loo®
5,
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while the within-family individual-tree selection gain is on the
basis of:

A
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Clearly, the benefit of this method over other methods of crossing
and selecting depends on the allecation of the selection intensities
and on the sizes of 0.4% orr?, and or? {Squillace 1973} . For example,
we can contrasi selecting, say, 400 trees and making 200 pair
crosses of 1,000 seedlings each with making a partial diallel in
some partially blocked design such that 5 crosses per entry pro-
duce 200 seedlings per cross for the same number of seedlings.
Further, supposing that in the fivst case we pick the best 100
crosses {1:2) and the best single tree in each, and that ¢,*=1,
o2 =20, op?=22, the additive genetic gain from the progeny test
stage is:

AGrs=lps (VA) 042/ opr+i (Vo) 0s®/ or
=0.80 (0.5) / 1.41+3.37 {0.5) /447
=0.283 +0.377 == (0.66.

Also suppose for the second case that the best 100 enfries were
picked (71:4) and the best full-sib (1:5) family was picked from
those, and the best individual from them chosen (1:200}, and that

=2, o° =3, Then the gain is:
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PTHE)
-’-\Gr)mbzfns (l/i) G’.i2 / O'Nm.\')‘f'fm (I/L) C*’;i2 / FpTErs)
+i (1/_’) 0.12/ ur
=127 ((.25) / 1.41+1.40 (0.258) /173
+-2.89 (0.B6) /447
=0.225+0.202-+0.323-=0.750.
However, if «p2=10 instead of 20, then AG.=0.816 and AGuy

=().884. On the other hand if we selected down to a population of
50, then for o,2=10, AGyy =0.983 and AC 4. =-0.952. If the half-
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sib selections cause inbreeding, these reductions would make the
full-sib system more attractive {Squillace 1973)}. Inbreeding, how-
ever, is induced in the full-sib phases of both systems.

In mating patterns for either progeny test selection or breed-
population generation, partially balanced designs will often be
necessary {Snyder 1966). Thus, for diallels any of the partial and
blocled partial designs described for estimation of variance com-
nonents may be used. For selection among hlocks, check entries
or overlapping blocked subsels can be easily installed. The reduc-
tion of ervor variance in testing among genotypic means by the
use of subblocks can be especially valuable in forestry. However,
if a choice exists between using varietal checks to allow for inter-
block selection and increasing the selection differential by allowing
more entries in the test, greater expected gains will generally fa-
vor the inclusion of more eniries.

The varicus forms of recurrent selection for general combining
ability, or in the one special case of full-sib selection for specific
combining ability, are reviewed by Namkoong and others (1968).
They find that operational and time costs can significantly affect
the choice of breeding method, bezause the forms dictate different
lengths of breeding cycles and the gains due to various selection
stages occur at different times. Fairly complicated considerations
of the relationship between the selection intensity and its effect
on the numbers of entries, and hence on A%, also make it difficult
to generate any general stafements on cheice of method. van
Ruijtenen and Saitta (1972) concluded for their conditions that
heavy progeny testing can be justified only if its primavy use is
for developing advanced breeding generations,

When it is possible to produce clones instead of seeds for com-
mercial reforestuation, additional gains can be achieved from non-
additive genetie vaviations though these gainsg ave not generally
cumulative. The hasic breeding population is expected to develop
mainly from recurrent selections and general crossing among all
selected parents. Only for specific, short-run breeding programs
would groups, [amilies, or individual lines be inbred to cumula-
tively utilize nonadditive gene actions. However, even when a
breeding population is improved by simple recurrent selection
system, specific clones can be picked and their peculiar gene com-
binations used within each generation even though that gene
combination may be superseded in the developing breed. Thus,
for example, the breeder may use the above diallel-crossing pro-
cedure and can expect to accumulate gain in the breeding popula-
fion as computed above, However, in each generation additional
gain can be achieved by selecting for improvements due to the
nonadditive genetic variance among the selection units. While the
selection intensities and the phenotypic variance denominators
wonld remain the same, the genetic variance in the numerator
would be increased. In half-sib family selection, the additive-by-
additive epistasis and other higher order epistatic variances wonid
be added. In full-sib family selection, 14 of the dominance and
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additive-by-additive epistasis, 14 of the additive-by-dominance
epistasis, 14, of the dominance-by-dominance epistasis, efc,
would be added. Finally, in individual-within-family selection, 34
of the dominance and all remaining epistatic variances within
Tull-sib families would be added. If the nonadditive genetic vari-
ances are substantial, the one-generation gains can also be sub-
stantial. Gains in future generations would also be substantial
but would have to start on the basis of the cumulative gain
achieved in the basic reference breeding population.

MATING PATTERNS

Regardless of the method for selecting parents for the next
generation and for any progeny testing, the parents may be fur-
ther used in two distinct ways. The commercial product may be
generated from a subset of those pavents, all of them, or a wider
sample of genotypes than will be retained in the breeding popu-
lation. On the one hand, a single pair may be chosen to produce
all of the commercial seed desired while a separate population is
bred by intercrossing among many trees for future selections and
breeding. On the other hand, it may be difficult to obfain the seed
required even from all of the selected parents, and hence the com-
mercial seed-production orchards may include trees which would
have been culled for breeding purposes.

We distinguish between the seed-production and breeding-
production operation, but they may sometimes be the same, as in
mass selection. In general, however, seed production can be sep-
arated, and such separation is genevally desirable if the seed
produet is noninbred while the breeding population may be inbred.
Hence, actual commercial production, such as with single full-sib
families or with clonal eollections in “synthetic multiclonat hybrid
varieties” (Schreiner 1968), is considered as an alternative only
in its selection and breeding phases and not in production phases
of the material released for commercial propagation.

Since crossing can usually be done immediately before com-
mercial seed production, the only limitations on making many
crosses to generate a breeding population are the costs in time and
effort. The sizes, times, and designs of these crosses are crifical
for breeding advance. Estimation experiments and test-cross de-
signs may be required to yield data as early as possible. Factorial
and dialiel desions may be adequate for estimation, and little
distinction can be made among them for testing purposes.

Designs must be examined, however, for their efficiency in
developing a breeding population from some sets of pavents. The
major criteria are maintaining lavge, effective population sizes
and achieving rapid selection advance in the base populations.
Many breeders will want fo combine af least some of their estima-
tion and test designs with breed-population production and some-
times also with their seed-production operation. At this time, we
shall consider crossing designs only for purposes of generating
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advanced breeding populations and shall generally assume that
some limitations on time and effort exist,

The easiest operation, of course, would be akin to a mass or
simple recurrent selection system in which only the selected par-
ents ave allowed to randomly mate, all seed is used commercially,
and the entire production of seedlings then forms the next popu-
lation for a new generation of selection. However, while the
method is easy, some crosses will be very heavily represented in
the subsequent generation, while others may be absent. Not only
will the expected level of inbreeding increase with inereasing
departures from uniform representation, but stochastic variations
among {rials may he large enough to create unacceptable risks
that a particular breeding population will either lose favorabie
alleles, suiffer excessive inbreeding depression, or both. Since any
recurrvent selection program will eventually accumulate high in-
breeding, ountside sources of genotypic variants may have to be
periodically infused. In some systems, matervials from outside
ancestry are expected to be continuaily available and can be tested
against the breed population. The best of the new introductions
can be used with profit if some of the population proves less
valuable than the new (Burrows 1967). Intreducing new ma-
terials would entail some loss in gain of favorably fixed or other
high-frequency loei, and this loss can be considerable as genera-
tions advance. As the mean is cumulatively improved and mave
forests ave established from the select breed, it becomes less likely
that such materials will be found useful. Therefore, in plans for
developing the main breed, many generations should be selec-
tively advanced without such recourse. Other technigues, such as
replicating breeding populations, should be used to postpone the
erisis, Therefore, controlled crossing programs can be useful if
plans are made to incorporate all useful alleles in the base breed-
ing population and effective population sizes are kept large enough
that they may be expected to advance,

In simple recurrent selection systems, all selected genotypes
are completely intercrossed, and the seed is composited for the
next generation. That generation is later reduced by selection to
about the same number of parents as previously chosen for a new
generation of intercrossing. However, through controlied inter-
crossing and compositing, ancestral controls can he imposed.
Various degrees of control are pussible. At one extreme, bulking
poilen from ali male genotypes and bulking all seeds are almost
like mass selection. At the other extreme are keeping female
parent identities on seed lots and making identifialile crosses with
specific males. Since such care is more expensive, fewer indi-
viduals may be available for selectiv and hence the selection
differential may be redoced. Within these limitations, various
forms of complete crossing and seedling identification have been
proposed which are short of complete intercrussing and complete
control.
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With completely controlled crossing and seedling identification,
pairwis: mating systems which allow some inbreeding but less
than random pairwise malings have also been proposed. Regular
mating systems which can be continuously followed in the whole
population and repeated every generation offer some insights into
how relatedness and inbreeding develop. In such regular systems
as have been studied, selections are genervally assumed to have
Leen made within families, and the number of selected parents
remains constant over generations. Thus, the selection differential
is governed Ly the number of seedlings generated per cross, and
family information is not used in selection except for ancestral
control.

We can thus examine a variety of mating systems according to
the manner in which ancestral control is completely, partially, or
not at all maintained. Among the systems with complete control
of mating and coancestry, differences exist in the numbers of
families generated from each selected parent of the breeding
population. The fewer the crosses or families made per varent,
the less chance for family selection, but, presumably, the greater
the number of individuals to select from within each family.

RECTIRRENT MATING SYSTEMS WITHOUT
FAMILY SELECTION

Complete avoidance of inbreeding by mating only single pairs
from unrelated lines has been recommended at least as a tem-
porary measure for forvest trees. If complete control is main-
tained, however, this system requires that the selected population
shrink by at least half in each genevation or that it be mated in
carefully controlled patterns.

Thus, forgoing any interfamily selections, the proposed matings
would be:

GENERATION

T

Family selection at any stage would, of course, more rapidly lead
to the final necessity of crossing among individuals of a single
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fuil-sib family. A replicate population from the same original
pavents would permit cousin matings at lower nbreeding levels,
which are discussed bLelow,

Replicate populations, however, do not add to the number of
generations which may be developed from a given set of genotypes
without any inbreeding. Such systems contain no early inbreeding
but greatly inerease the common coancestry of breeding popula-
tion penotypes and lead to the accumulation of very small in-
preeding for a few generations, followed by large inereases in
inbreeding (F) when avoidance is no longer possible. Thus, ex-
treme early avoidance of inbreeding with an initial population of
n individuals can be followed without inbreeding for % generations
if n=2* but must thereafter involve high F, Therefore, such
extreme systems may be followed fo temporarily maintain a given
low level of inbreeding but, in recurrent systems, may lead to
higher inbreeding in the longer run {Cockerham 1970).

Such early avoidance systems can be designed to permit only
mating of distant cousing after matings of unrelated pairs are
impossible. Such systems rapidly build up the average coancestry
among trees while avoiding inbreeding.! However, they do ac-
cumulate coancestry more rapidly and for small parental popula-
tion sizes {around 8) do have higher inbreeding than random
pairg after 24 generations.

On the other hand, a regular system of circular half-sib
matings, as described by Kimura and Crow (1963), maintains
the same number of families in each generation if no family
selection is permitted but will immediately lead to higher inbreed-
ing but a slower increase in coancestry. Thevefore, the high initial
inbreeding is thereafter accumulated move slowly, and with N=4,
the inbreeding becomes less than the cousin system of mating by
the 15th generation at F=0.68. With N=8, however, it takes
until the 35th generation (F=0.7) and with N=16, the 95th
generation (F=0.78), Thus, the relationship between early avoid-
ance and eventual inbreeding is clearly an inverse one, but one
which takes many generations for the lower rates of increase of
the coancestries to overcome the initial levels of inbreeding, and
this only occurs at quite high F values. Thus, early avoidance,
cousin systems of matings may be quite feasible in foresivy.
However, regular systems may he requived to assure that the
pairings are made each generation in the desired patterns and
that all families contribute equally to the new generation. For
example, in the following diagrams of eight parents per genera-
tion with one of several hundred individuals from each mating
selected, the cousin systems eliminate inbreeding entirely until
the fourth generation, whereas the circular half-sib system initi-
ates inbreeding in the third generation:

* Cockerham, C. C. 1969, Notes on guantitative genetics. Unpublished
lecture notes, Sect. 5. N.C, State Univ., Raleigh, 29 p.
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For any regular systems of inbreeding in which linear recursion
relations can be established for coefficients of inbreeding or rela-
tionships, asymptotic results can be easily defermined by an
analysis of the roots of the recursion equation matrix (Crow and
Kimura 1970), as shown in chapter 9, for mating frequency
recursion eguations. Inbreeding coefficients for general patterns,
however, may be computed by machine {Cruden 1949}.

Other patterns of pairwise mating can be formed by grouping
subsets of parents in less rigid hierarchies and mauting among
groups when within-group inbreeding exceeds predetermined
levels, Patterns such as proposed by Aalders (1968) have some
merit in compromising between complete avoidance of inbreeding
and minimizing coancestry, and they may be easily handled in
field operations. However, for current tree breeding with large
population sizes, an early avoidance system may be most practical.
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In the early stages of breeding, new genotypes can be infused
into the populations without much loss in value, Early avoidance
systems can give very low inbreeding for at least a dozen genera-
tions. For example, a system can be designed to completely avoid
early inbreeding with separate replicates of full-sibs in the initial
generations. Distant cousin relationships are formed among trees
in the replicate sets. When the inbreeding potential within sets
becomes excessive, crossing of sets will cause little inbreeding
immediately but more rapid increments therveafter. It is then
always possible to change mating patterns, but the effect of
sequences of patterns may not be advantageous.

RECURRENT MATING SYSTEMS WITH
FAMILY SELECTION

Mating and coancestry patterns become far more complicated
when multiple crosses are made among the parents selected to
regenerate the breeding population. In early generations, family
selection is liable to be high as major genes are sorted out and
inexperience with useful selection takes its toll. Family selection
may also be popular for intensive, short-run breeding. However,
the benefits of selection among families must be balanced against
the cost of making many families that are not selected. The cost
must also include any loss in the within-family selection intensity,
which is reduced if limited land and funds are spent on creating
many families, The latter loss may not be too debilitating since
neither selection intensity nor additional experimental cost is
linearly proportional to numbers of families. But a solution that
optimizes gain by balancing selection among and within families
is desirable. As previously shown for seedling seed orchards or for
breeding populations, the balance depends on heritabilities and
selection differentials. We can affect the family selection differ-
entials by creating more or less different kinds of families,

The breeder’s options for multiple crossing among the par-
ents of the developing breed extend from single pair matings
and their reciprocal fullsibs to a full diallel of all possible
n{n-1)

2
terns that lead to immediate and extensive inbreeding should be
avoided. It is clearly better to choose patterns thai reduce early
inbreeding.

As pointed out by Libby (1969), the hierarchal mating design
that may be useful for other purposes holds no particnlar ad-
vantage over single pair matings for breeding population de-
velopment, even if inbreeding problems are ignored. Other erossing
patlerns such as partial, disconnected, or disconnected p.rtial
diallels, on the other hand, make possible alternate sets of pair-
wise matings. The hreeder can select among sets to take advantage
of variations, both within and among families, In such recurrent
selection systems, which develop breeds on the basis of their

crosses and reciprocal full-sibs plus selfs. Crossing pat-
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intrapopulation general combining ability, little advantage can.
be taken of dominance genetic effects expressed in specific com-
bining abilities, but selection for additive gene effects can be
effective. Where multiple crosses arve msde, full- and half-sib
families can be formed in early generations, and more complex
cousin groups can be formed in advanced generations. Some
original families may be disproportionately representfed in suc-
ceeding generations if selection of individuals is based on family
and individual performances. Crossing patterns that include some
inbreeding may be the result. There is no need to produce exactly
the same nuwmbers of families as parents, but fewer families than
parents rapidly lead fo high coancestries. Any such mixed pat-
terns require the careful tracing of coancestries to minimize
inbreeding and the concomilant less of genetic variance. If co-
ancestry records are mainfained, high levels of inbreeding in the
breed pepulation can be veduced for commercial seed produetion
by crossing unrelated tyees in seed orehards, In addition, the seed
production crosses may be designed to utilize nonadditive and
otherwise noncumulative gene effects in specific crosses. Partially
controlled blocked ‘diallels {Braaten 1985) or blocked factorials
(Burdon and Shelbourne 1971) offer many more variations on
partially subdivided mating patterns. However, the elfective popu-
lation should not be inadvertently reduced below the desirved size
by blocking of mating sets in a way that induces positive assorta-
tive mating. IT controlled crossing systems ave feasible for breed-
ing populations and identification of parental sources can be
maintained in commercial seed production, the selection differ-
ential for within-fumily selection is maximized by using all seed
orchard products in selecting the next generation, When carefully
conirolled sites are required for accurate selection and controlled
crossing with identification is not possible, it is impractical to
reselect from the entire population, If costs of such special planta-
tions are low enough and evaluations and seed production can be
early enough, seedling seed orchards may have considerabi. ad-
vantages. However, any of the selection-breeding methods can be
iteratively applied, and subdivision of the breeding population into
breeding units greatly increases the possible variations in crossing
patterns.

For hreeding populations, control of voancestry is requived
even though we have very meager knowledge of the effects of
inbreeding on bolh inbreeding depression and loss of genetic vari-
ance in selected iree populations. Indications thus far favor
minimal inhreeding. In general, since Lreeding generations are
so long and breeders and organizations in forestry do change, it is
likely to be even move important for future genevations that large
populations and striet coancestry control be maintained (Nam-
koong 1971). It may sometimes be possible to hreed with smail
numbers of parents and to tolerate high levels of inbreeding in
some rapid selection and breeding systems. Alethods to achieve
quick gains with small numbers, such as 5 to 10 clone orchards
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with mass or single recurrent selection, may represent viable
short-term alternatives, and requive experimental testing.

PARTIALLY CONTROLLED MATING SYSTEMS

Operational problems ov costs may sometimes prevent a breedey
from maintaining the identity of all parent ancestries. The costs
of maintaining identities in field plots after controlled crosses
can be large. In addition, early selection and early seed produc-
tion can be forced, then the relative costs in time, effort, and
selection differential of making such crosses can be high. How-
ever, the benefits of maintaining identities, or conversely, the risk
of loss in variation and inbreeding depression through unper-
ceived inbreeding, may well justify thorough identification. If
partially controlled breeding programs can partially contrel such
losses, then an optimum intarmediate level of control may exist.

Most analyses of breeding systems are based on average levels
of inbreeding or coancestry, and the results assume a linear
relationship with cost or loss of value. While the relationship
between mean inbreeding and loss due to dominance gene effects
may be linear, a more meaningful loss function might relate
variables in breeding method to risk of achieving homozygosity.
While two methods may be similar in average inbreeding (F) or
expected heterozygosity (1-F), one may generate homozygosity
levels with less variation than another and hence may Le judged
to be a better method if the risk of high homozygosity is costly.
Risk analysis is especially important if breeders cannot fully
identify pavents, Whether or not identification can be maintained,
optimizing selection at the level of inbreeding that ean he tolerated
to achieve selection gain or the functional relationship befween
the two requires far more information than is now available on
inbreeding effects. The critical need is for data on performance
af 7 values below 0.25 (Burrows 1970).

When it is possible to idenlify at least seed parentage, then it
may alsc be possible to partially confrol male parentage by using
different sets of males for mass pollination each year. Then,
identification of seeds by years would identify male sets, at least,
and hence probabilities of parentage would be more closely de-
termined. Alternatively, subsets of factorial mating designs could
be segregated in which the male entries for each subset are pooled
into pollen mixes specific for each subset of females, Variations
on this polycross system ave deseribed by Burdon and Shelbourne
(1971}, wherein subsets are completely separated and no geno-
types oeceur in two sets, or where genotypes may overlap among
subsets with some males or females present in two or more sub-
sets. Such designs can be varied according Lo the availability of
pollen and female flowers. In these systems, as in controlled
crossing, the dangers of rapidly reducing the effective population
size by assortative mating should he recognized. While exact re-
lationships ave not known, the probabilities of selecting closely
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related individuals in subsequent generations ave increased by
selecting among subsets and hence reducing the base population
for further breed development.

When complete records are not feasible, it is profitable to at
least identify the seed {¢) parentage of field stands. The cost
of such records is minimal. Only nursery and seedling lot need be
identified, and sets of females can be confounded with location
and year of planting. The problem in analyzing the alternate
systems for their cost-benefit functions again lies in determining
the loss function af the expected levels of inbreeding. Since varia-
tion in homozygosity level is likely to be much higher than where
identity is controlled, risk analysis may be a more valuable com-
putation of expected loss.

It is instructive to regard average inbreeding level generated
by selection among open-poliinated families as a key criterion,
Even with open pollination and up to 14 family selection, Burrows
(1970} finds that average inbreeding in the third genevation still
lies between 4 and 12 percent in a Fucalypius seedling seed
orchard. Empirical studies are needed on selection methods to
determine if this method, simple mass selection, or any other
systems ean function as expected and with what variation among
replicate trials.

It should be remembered that in a seed-production orchard,
replacement of clones with advanced generation materials is a
continuing operation. New seed-production ramets replace old
ones as the benefits of replacement become ciear. Some genotypes
may remain in the orchard for several generations, because they
continue to rank high genetically. Others are replaced as newer
material proves better. In this situation, inbreeding must be
controlled, because both pavents and their offspring may be
present. Testing and replacement can he programmed to graduaily
change the composition of genotypes making up the breed, and
testing sheuld ineclude samples of generations other than the
eurrent one.

All the above programs use selection among individual trees
within families to some extent. Since selection is most accurate
among contiguous trees, the allocation of trees within plots and
among plots, replicate hlocks, or stands should heavily favor {rees
within plots. To the extent that family selection will be important,
however, site replication will be important and may cause some
reduction in the optimum number of trees per plot,

HYBRID BREEDING SYSTEMS

The foregoing discussion has been concerned with methods of
improving purebred or recurvent-selection populations developed
for general combining ability and using the eumulative effects of
additive gene actions in single populations, While some methods
discussed above may temporarily use any discovered specific com-
bining abilities, they do not cumulatively develop lines ov popula-
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tions for crossing to obtain specific combining ability effects.
For naturally cross-pollinated plants, however, inbreeding is
aberrant, and debilities of inbreds may recur for many genera-
tions. Many lethals and sublethals found under intensive inbreed-
ing destroy lines despite vigorous efforts to save them. Those lines
or populations that do survive, do so with less vicor and size than
the normally outcrossed varieties. All methods for developing
single populations eventually increase inbreeding and coancestry:
the methods discussed only affect the rate of inbreeding. In con-
trast, hybrid systems develop at least two lines or populations for
crossing. These systems use the phenomenon of heterosis, which
is often viewed as the direct opposite of inbreeding depression.
Outerossing vestoves vigor and veproductive fitness, and inter-
vavietal and even inferspecies crosses offen exceed the develop-
ment of both the midparent and the highest parent. If the gene
action that produces the greator value of the hybrid is not
heterosis or if heterozygosity is not necessary, then hybrid su-
periovity may be due to additive gene actions on a combination
of traits. In that case, it is usually far simpler to create a single
base popuniation of F, crosses and to improve that population as
any other single population breed for the combined traits. Only
if heferosis is useful, will it be generally advisable to enter hybrid
programs,

Limits to cross compatibilify arve often wide encugh to aliow
distant evelutionary relations to eross. Stephens (1961) has classi-
fied hybrid breeding programs according to the extent to which
incompatibilities restrict the segregation of new genotypes. Within
species, genetic divergence also may generate a quadratic re-
sponse in vigor as more and more divergent sources are crossed.
In corn, for example, heterosis is measured hy the excess of the
hybrid over the median parent or the F.. In one sindy, heterosis
rose as the varieties which were crossed increased in diversity
of their ovigin up to a peak and declined as the diversity of origin
apparently exceeded an optimal level (Joll and others 1362,
1965}, Thas, at the varietal level of hiological organization, vavia-
tions in heterotic response may be a predictable gquadratic re-
sponse function of diversity, However, it Is also possible for
dominance levels among alleles within pepulations fo he maxi-
mized by natural selection, and to diminish as more foreign alleles
are paired.

At the species level of diversily, less distinet patterns of
heterotic responses are visible, even in tree apecies in which con-
siderable amounts of natural species erossing oceurs, Information
is confounded because species relationships are constructed partiy
ot the hasis of crossability, hut there seems ts be no strongly
defined hierarchy of chromosomal or other incompatibilities
{Wright 1962). Species that cross seem to do so without differ-
ences with respect to origin of parents. Ilowever, hevituble dif-
ferences in morphological traits exist and may sometimes show
heterosis.
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Qelection for hybrid performance can mean selecting among
inbreds for inbred-cross performance, among varieties for varietal
hybrid performance, or among species combinations and sources
within species for specific tree-by-tree crosses. Different deprees
of inbreeding with respect to the outerossing product are there-
fore tolerated to achieve the relatively oufcrossed product, and
variations among hybrid breeding methods exist in the purity or
allelic homogeneity of the parental populations.

In general, selection units will vary within at least one of the
parental populations, and selection is based on tested performance
as potential pavents of hybrids. Further genetic recombinations
are created swithin the selected pavental populations by some
breeding method and a new cycle of selection for cross per-
formance is instigated, Thus, cumulatively better hybrids are de-
veloped from base breeding populations selected to regenerate
variations in hybrid performance. Hybrid systems resemble those
for developing populations with high general combining ability
in the sequence of developing genetically variable populations and
reselecting parents for iterafed cycles of improvement, Hybrid
systems require designs for testing, selection, and intrapopulation
mating to generate the parental population.

In hybrid breeding, production and testing seed are distinet
from hreed population development. Commercial seed production
can similarly come from a subset of either or hoth parental popu-
lations, or a large set of parents if seed demand exceeds produc-
tion capacity from selected parents, As for purebreds, the sex
with larger gametic production will tend to have fewer parental
entries in the commercial seed, but for hybrids a choice exists as
to which population serves as male or female. While some mixture
of sexual role is generally expected, optimum gexual functioning
may reqguire that the population be treated to maximize gametic
production of the less prolific sex. Progeny testing with all of its
attendant costs is always required, hut with reasonable efforts
towards juvenile testing and early reproduction, the costs can be
mitigated as for the recurrent selection programs previously out-
lined.

Among the variocus ways to make the test crosses and to carry
cross identifications into long-term field plots, the individual tree
orosses are most expensive, bhut they afford greatest possibilities
for selecting specific crosses and developing specific combining
abilities among crossed parents. Any of the mating designs may
he used for any level of hyhridization, and since testing is distinet
from breed population development, factorials or blocked fac-
tovials would not carry the inbreeding problems they do for the
single-population recurrent selection programs. Specific crossing
combinations may then he identified for use in special seed
orchards, hut unless those lines are identified and inbred for fu-
ture selection for specific combining ability, that gain is not
cumnlative. The cumulative gain is therefore generally hased on
the cross-general combining ability among generally cross-
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compatible populations. Specific eombinations of cross parents
may be developed in separate subpopulations, requiring that
within the alternate pepulations specific line or subsets be de-
veloped which cumulatively cross well with their opposite numbers
in the other population, These will not be followed in this dis-
cussion, though they represent a viable, short-run alternaftive in
hybrid breeding,

After testing and selection, parental populations in hybrid
programs must be furtheyr developed through a stage of recom-
bination within the source populations. Thus, some degree of
inbreeding will be present in the hybrid seed product when an
established variety or seed source exists and cannot be improved,
only the new population requires the selection and recombination
rhases. Since in forestry this is expected to rarely be the case, the
following discussion will generally refer to improvement of hoth
populations. If single crosses within an adapted variety are the
products, then lines of inbred {for example, selfed) pavents would
be developed and retested for the next generation, and subsequent
selection would he based on lines and individual within lines. If
varieties or species are hybridized for the seed product, then each
selected population would be intercrossed within themselves to
regenerate allelic combinations for advanced generation hybrid
development. If a general cross-performance is desired, inter-
crosses among the selected parents within the population are
necessary. If specific single crosses bhetween individual trees in
the alternate populations are desired, a greater degree of inbreed-
ing within lines within populations is required.

Inbreeding is useful in a breeding program for a cross-pollinated
species only if the hybrid produet is better or more uniform ov
otherwise more easily controlled than what could be developed by
normal outerossing procedures, If the development of pure lines
is feasible, then hybrids may still be sought to improve traits
affected by dominance or overdominance types of gene action.

HYBRIDS OF INBRED LINES

Selection of inbreds for crossbred performance requires either
direct testing in hybrid comhinations or a high cerrelation hetween
inbred and hybrid performances. This correlation can he highly
variable (Allard 1960; Allard and others 1966), and even though
it may take a long time, divect testing iy likely to he hest. Special
care of inbreds and the possibilities of doubling monoploids may
rapidly create relatively homozygous lines for selection in a few
yvears (Stettler and others 1870 Ori-Iawing 1965). Tn that event,
simple selection among lines will be feasibie to produce standard
inbreds for hybrid seed production. Selection on iabred perfovin-
ance may take the form of muss selection in which the indi-
vidual’s own performance is the basiz for seleciion, or, as in
most plants, it may more often take the form of selection on
family performance, including sibs as well as pavents. Eavly
eeneralion selection for inbred performance in liter generualions
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of crosses, however, is difficult and may take too long to be prac-
tieal in forestyy. Only if crosses can be developed each generation
as the inbreds become more selectively homozygous, will long-term
inbred development be worthwhile.

Testing the developing inbred lines in all combinations is
clearly the most desirable way to select among lines for the best
crossers or for the best single-cross combinations. Costs and other
physical limitations, however, generally preclude such complete
testing., Hence, something less than complete testing but more
than selection on individual performance alone is attempted with
other crops than trees. Toperossing has served as both a testing
procedure as well as a form of hybrid seed production in which
the inbreds are crossed to a mixed source as the alternate parent.
The topeross tester may be other standard inbreds, a standard
heterogeneous variety, or any stable mixture of other materials
which gives a mixed genotypic source against which the inbred’s
hybrid performance can be observed. In corn breeding, the tesier
has generally heen a standard variety, but any set of lines can
be used in testing as well as for seed production, If generation
and testing times are short, topcrossing may also be used in
preliminary screening for general combining ability of crosses to
reduce the number of single crosses for testing and to develop the
best single-cross combinations, In forestry, some argument can
be made for local or traditional seed sources or identified cional
sets as being useful as a stable, standard variety, or at least as
the population to develop in the single-population breeding pro-
gram. In most cases, however, considerable room for improving
even these “varieties” exists, and a dual improvement program
will be most appropriate.

Single crosses in advanced generations of inbreeding may not
be sufficiently viable for seed production, or they may not contain
all of the traits desired for commercial seed production. Triple
and double crosses may then be feasible for development through
additional testing, but development time may be too costly fo
support such procedures, If trees can be vegetatively propagated,
it would seem better to develop lines for single crosses and to
expand the number of fruiting branches by such propagation
methods as cloning reproductive tips.

HYBRIDS OF POPULATION

Recurrent selection for specific combining ability is an alterna-
tive to pure-line development for hybrid performance that is
similar to developing recurrent selection populations. In this
case, instead of using a heterogeneous set of testers to select for
general combining ability, a particular line or stock is used and
the genotypes are selected for cross-performance. The best trees
are then completely intercrossed, and the new population is again
reduced to a sef of selected parents according to test-cross results
with the same tester stock. This method thus develops a popula-
tion that complements a specific tester stock. That stock would
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have to be well defined, continuously available, and useful in seed
production as well as testing. Otherwise, direct yvecurrent selection
for general combining ability would be easier and just as effective.

Gains from selection for specific combining ability depend on
differences in hybrid gene effects being accumulated in the paren-
tal populations (Cress 1968b). For most forest tree species which
have not developed standard varieties of any purity, a reasonable
approach to developing high specific combining ability in crosses
would be the mutual development of complementary populations
such as by reciprocal recurrent selection. The operations involved
in this selection system are identical with recurvent selection for
specific combining ability, but instead of using a standard tester
stock, the pairs of developing populations are used as reciprocal
testers, both of which are mutually improved. This method has
become the standard for many cross-pollinated crop plants against
which other methods are compared.

Theoretical comparisons of methods for hybrid population
development methods are difficult to derive, because the specifie
kinds of dominance effects required to make hybrid breeding
advantageous depend upon gene frequency locus and distribution
(Cress 1966a). Therefore, while genetic variances, effects on
covariances of relatives, and selection advances within generations
can be derived (Stuber and Cockerham 1966), the gene fre-
quencies will presumably be diverging in subsequent generations,
relative inbreeding within parvental population will hecome
stronger, and translation of gene effects and variances between
generations will be less well defised. In fact, in the F,, special
dominance eff ;cts exist which may not be seen in the Fi, and varia-
tions will appear in the Fa which were hidden by dominance gene
actions in the /7. Nevertheless, empirical studies on the efficacy of
reciprocal recurrent selection indicate its value when dominance
gene actions are important. Theoretically, the method sheuld be
able fo utilize any within-population general combining ability
not masked by hybrid effects, as well as the interpopulation spe-
cific combining ability between the complementary sets (Kojima
and Kelleher 1863a).

In an actual breeding experiment contrasting reciprocal recur-
rent selection (RR8) with single-population development, Mol
and Stuber (1971) found in covn that for roughly comparable
selection differentials RRS can utilize both general and specific
combining abilities, The hybrid product of RRS was slightly
better than the best popuolation bred Ly full-sib family selectinn
in a recurrent selection system. It was also much better than the
hybrid between the parental populations which had been bred for
generat combining abilitv. Another population was developed by
ordinary full-sib family selection but from an initial population
which was composed of /', of the original parental vavieties. This
selected population performed at ahout the average level of the
two full-silhy family selection pepulations carried within each
parental variety, and not as well as the RRS hybrids, Nevertheless,
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full-sib family selection within each parental line was moderately
effective and utilized general combining ability variations in the
original parental populations. Instead of using the original paren-
tal varieties, the parents developed for RRS were also used to try
full-sib family selection from each parental variety, RRS dis-
played a greater development of heterosis in the hybrids and
created a better hybrid population than the recurrent selections
within the parental or hybrid variety. Iowever, RRS was not as
effective in improving the intravarietal performance as was full-
sib selection. Moll and Stuber (1971) also found for their constant
and moderate selection intensities that the gains by all breeding
methods were reasonably constant and hence may be predicted
for at least six selection eycles from first-generation results.

In such hybrid breeding programs, as in all breeding programs
in forestry, immediate gains in commercial seed are reguived
hecause development of tress through multiple genevations often
reguires more fime than can he justified. Therefore, intermediate
products are always required, and, as suggested by Cress (1967)
for other crops, production of synthetic varieties in the inter-
mediate generations of RRS population development is desirable.
Such synthetic varieties may be composed of entirely different
genotypes for each generaiion, or may include some particularly
good genotypes for several generations, unfil better ones arve
developed. Regardless of the origin of the parental genotypes, or
their homozygosity, commercial seed-production orchards can be
composed of a subset of entries with especially good specific
combining abilities among crossed parents. Seed requirements
would determine whether fewer or more parental combinations
are included in the seed-production phase than in the breed-
production populations. In many tree species, it is pessible to
vegetatively propagate a set of especially good clones instead
of using sexual reproduction. Thus, intermediate stages of
Schreiner’s (1966) “synthetic multicional hybrid varieties” may
also be produced.

The development of hybrid breeds is clearly dependent on the
importance of dominance types of gene actions, which are net
pagy to estimate in the generally heterozygous populations of
cross-pollinated species. Moll and Robinson (1967) clearly show
that initial estimates of dominance levels ran be substantially
affected by linkage, and thut favorable epistatic comhinations of
alleles can be lost during breeding and mating (Gardner and
Lonnguist 1959). Also, dominance levels among alleles within
populations may exceed those hetween populations, Therefore,
hybrid breeding programs developed on the basis of initial esti-
mates of high dominance effects may not he as beneficial as
expected. In a comprehensive review of plant Lreeding in the
TUnited States, Sprague (1968) examined the famous hybrid-corn
hreeding programs of the past and concluded that, strietly from
the viewpoint of genetic progress ohtainable, selection programs
hased on developing general combining ability within single popu-
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lations could have been at least as good. Furthermore, since the
existence of hetercsis does not by itself justify a hybridization
program {Stuber 1970}, we should not assume that the success
which corn hybridization has achieved can be applied to other
species.

Hybridization has played an impressive role in many tree breed-
ing programs and will continue to do so in many cases (Wright
1964b). Most such programs were developed to combine fraits of
different but related species; goals included combining acceptable
growth rates with acceptable resistance to a disease or insect, or
performance in a particularly harsh envivonment {van Buijtenen
1970). Many examples of species hybrids ereated for those pur-
poses exist, but few pregrams have sought cumulutive improve-
ment of the hybrid populations, The ereation of a base hybrid
population through single-population recurrent selection, as
outlined by Stuber (1970), is potentially valuable. Throughout
Europe, extensive plans exist to introduce special traits into
species through species and varietal hybridization. The species
chosen are generally good and may be further bred to produce
base populations for recurrent selection, reciproeal recurrent
selection, or single-cross types of programs (Nilsson and Anders-
son 1970). Among the early programs desigmed to create a hybrid
base population for future recurrent selection were those on the
Pinus radiate 2 P. altenuata hybrids {Righter 1980). Mare
recently, Conkle (1870) suggested that reciprocal recurrent selee-
tion can be profitably applied to those {wo species as the pavental
populations. The extensive development of Pinus rigide ¥ P, taeda
hybrids in Korea has also recently led to the development of
reciprocal vecurrent selection plans in addition to a continu-
ing program of selection within the hybrid base popuintion
{Iyun 1971).

in all these cases, pupulation development still requirves that
the one or several pavental-source populations be large enough
to avoid the loss of faverable alleles. The prublems of recurrent
selection for general combining ability and the strictures on
maintaining large population sizes are as important in hybrid
as in single-population programs. The limitations on crossing
patterns within parental populations and the reguivements for
lavge family sizes and numbers of families are the same as for
single-population recurrent selection, as are the limilations placed
on the selection differential by the requirements of replicated
testing. In fact, these problems are even more acute with hylirid
breeding programs since both pavental populations will often
requirve separate development and testing, and hence some veduc-
tion in capacity to replicale tesls. If a minimum of 50 to 100
genotypes is deemed necessary in single-popuintion Lireeding to
maintain genetic variation withont significant loss of selection
intensity and to preserve genetic variations in traits not presently
under breeding pressure, then approximately the same number
would have to be mainlained in each of the parental populations
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for hybrid breeding. An adequate test size, including numbers of
trees per plot and crosses per parent, would then require about
double the effort of single-population development plus testing
time. The only relief found in hybrid programs is that inbreeding
depression of intrapopulation crosses does not reduce gain in the
seed products.

The possibilities of replicating populations for parallel breeding
programs are the same for hybrid as for single-population breed-
ing. The same advantages of safety exist, since each breeding unit
can be developed for several generations before the parental
populations begin o deplete their genetic variations, and the
possibilities of selecting among fortuitously good units also exist.
Tlowever, the advantages of crossing among the better replicates
to regenerate variations will presumably not exist for hybrid
programs, since they depend on creating complementary gene
arrangements. At this time, no theoretical work has bLeen done
on these topics, however, and variations on the rveplication theme
have not been explored enough to dismiss the possibility that
some forms of replicated reciprocal recurrent selection may be
uniquely advantageous in free breeding.

Except for pure-line development for pavents of singie-cross
hybrids, the performance of parents as individuals is not nearly
as important a basis of selection in hybrid breeding as in single-
population breeding. Thus, only divect testing of cross combina-
tions is veliable for hybrids. The gain in each generation can be
predicted as the variance among selection units, but prediction
for future generations is uncertain. Therefore, only the methods
which utilize some form of progeny or sib testing are useful
Unless required for other reasons, mass selection and seedhing
orchard methods in which the observational or test materials are
also used as parents are not suitable for hybrid breeding. Sepa-
rate seed-production opevations will almoest always be required.
If clonal reproduction of the commercially produced genotypes is
desired, then a separate operation for regenevation is clearly
required affer the best genotypes are chosen. For any program
in which separate commercial seed production is required, there
is no need to maintain this operation in the same areas as the
test sites. In fact, contrelled pollination may be easier outside
the natural range of the species.

A major problem in hybrid breeding occurs after the initial
parents within each population have been intermated. Zach popu-
lation may have several thousand trees available for selection.
A tree’s phenotypic performance is likely to be poorly carrelated
with its performance as a hybvid parent. The crossing and
evaluation phases, therefore, can be massive unless some schemes
for staging sequences of testing can reduce the numbers of entries
which require intensive handling. Various methods are possible
for sequential testing and selecting to reduce their parental
numbers to the minimum sizes requived. If sequential data on
hybrid performance in reciprocal recurrent seleciion or recurrent
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selection for specific combining ability are available, some form
of family selection may be feasible, It may also be desirable or
even necessary to select within parenfal populations for general
vigor hefore making hybrid test crosses and veselecting on progeny
performance. In all such cases, gain can be estimated by the ratio
of the genetic variances of the hybrid generation, as deseribed by
Stuber and Cockerham (1966), and the phenotypic variance of
the test materials. The selection differential requires the same
considerations as for single populations, and the compromise
choices for maximizing s *+ A2 hetween the s and h? elements are
essentially the same and require no development here. In recipro-
cal recurrent selection, for example, the same s may require that
fewer individuals be tested and selected as in single-population
recurrent selection. The denominator variance of A? should be
comparable, and the numerator covariances would he eguivalent
in the additive genetic components to those for progeny-test or
sib selection, The numerator covariances, however, would also
include a dominance variance contribution which swould vary
according to gene-frequency differences among the parental
populations.

The development of selections in a single population of hybrids
is no different from any other single-population breeding program,
except that the F» generation must be used to represent the base,
noninbred population, even though some linkage effects will linger
for several generations.

Otherwise, the same basic considerations of population size
and mating patterss remain, Single pair matings in any of the
various sib or cousin patterns may be duplicated in either kind of
program, and expansions of sets of pair matings in hybrid pro-
grams into multiple cross or partially controlled eross systems are
identical within parental populations. Test matings are the only
distinctive feature,

MIXED BREEDING PROGRAMS

Some traits may be best improved by utilizing hetercsis, and
others by using additive gene effects. If the forest is to be com-
posed of a mixture of tree types, then breeding populations for
different objeciives may be separated. However, If a single-
breeding pepulation is required to simultaneously improve traits
by both hybrid and a single-population breeding, then a mixed
program is requived.

A mixed program may be done by tandem selection, say first
for the additively inhsarited traits in each of the narvental popula-
tions, and then for the heferotic traits in hybrids. Seed production
is then from the hybrid populations in general or specific crosses,
while breed-population regeneration requires intrapopulational
mating. Alternatively, additive and heterotic gene actions can be
simulfaneously selected for if information on all performances is
available. The additional information nn a free’s own performance
and that of other relatives would always be useful for gain in
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traits dependent on additive gene actions, while progenies of
hybrid crosses are required for evaluation of traifs dependent on
heterosis.

CONSIDERATIONS IN CHOOSING
BREEDING METHODS

Mode of reproduction, operational costs, time costs, and types
of gene action will determine the optimal breeding system. While
it may be simple to derive the basic concepts for estimating gain
for any system of s and %%, errors in estimation of parameters,
costs, and operational interactions are considerable. Thus, testing
large numbers of trees increases s but introduces wider environ-
mental and measurement errors and hence decreases k2 Also,
the cost of increasing s by one unit at high levels of seleetion
intensity is very high, because vastly greater numbers and pro-
poitions are needed to change s. Changes in operational costs
affecting 7* are seldom linear; the marginal cost of adding repli-
cates, for example, can be low if other tests and experiments are
to be conducted anyway. Benefits of small increases in breeding
products are also unlikely to be linear functions of gain in physi-
cal parameters, and, thervefore, relative costs and risks are likely
to he nonlinear with respect to experimental size. IHence, small
gain differences even at high immediate land or operational costs
may justify choosing a move expensive breeding program.

The simplest form of breeding is rapid and cheap mass selec-
tion that any intelligent forester can apply to seed collection and
forest regeneration., While clearly the simplest, it may not be as
efficient or as profitable as the more sophisticated methods already
described. There are clear differences in the manner and efficiency
in which the various methods accumulate a favorable set of alleles,
since information is used differently and matings are made differ-
ently. If mass selection is considered as essentially costless or, at
least, no more costly than ofher methods of seed procurement,
then the costs of controlled crossing programs are only the
marginal costs of making specific crosses and keeping ancestval
identities. The benefits of such additional operations lie in the
control of effective population size for any given number of trees
and in the possible uses of family selection to increase herita-
bilities. Of the various crossing methods discussed, from partial
to complete control, fewer parents would be required for breeding
if ancestries are known, because some expected or feared level of
additional inbreeding would have to be assumed without contrel,
thereby decreasing the effective population size. To maintain some
minimal N, more parents would be included in the breeding
population, making less intensive selection desirable for methods
with less ancestral control. In addition, controlled crosses in the
breeding population, especially those of the diallel patterns, allow
the breeder to choose among favorable combinations of family and
individual selection to maximize the product of s and h? and the
sum of gains derivable from each stage. There iz some trade-oft
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between s and A* and between the efforts of making many crosses
with few trees per cross, and few crosses with more trees per
cross, hut optimal combinations do exist. An additional benefit of
controlled crosses is the possible use of specific combining abilities
in temporary or short-run breeding operations. Only if families
are identified can they be used as recombinants for increasing
specific combining ability responses. Indeed, the detection of such
efforts themselves requires controlled intercrossing.

In addition to rapidly improving breeding populations, con-
trolled crossing permits somewhat more precise ssiection if prog-
enies within any generation are fested. General and specific
combining abilities can be estimated and used to improve the
commercial seed product within any one generation. Also, while
siower and more expensive, controlled erossing can achievs more
gain per generation if the s and A% for progeny tests compsnsate
for the time lost in breed develepment,

If the tree breeder is responsible for several species, coordina-
tion of operations can be overwhelmingly complex. He must deter-
mine for each species the unique genetic and phenotypic means
and variances, costs of operation, ete., to arrive at optimal
operational compromises with respect to selecticn differentials,
heritabilities, population sizes, etc. Then, a desirable extent of
controlled erossing desired and its pattern and sequence can be
established for the breeding operation. With limited time and
resources, various strategies may be followed to maximize total
improvement. Some may wish to establish a complete program
for each species, taking them in some order of importance, while
others may wish to atfack all species simultaneously in a single
program, In general, however, efforts must be concentrated on
those most valuable species which can profit most by intensive
breeding programs. Programs for other species usually are limited
to minimal mass selection or simple recurrent selection. For such
multiple species programs, decisions on such auestions as desired
selection differential for family and individual selection affect the
effort affordable on other species. Hence, efficient hreeding of a
key species can determine the form of the entire program. Most
multiple species programs will probably have three classes of
operations. One or two widely planted species with high-genetic-
gain potential will receive maximum effort, Several species will
receive moderate effort to establish breeding populations with
controlled breeding options, And minimal! efforts will be directed
to species that requirve some improvement but for which progress
is limited by lack of knowledge or planting potential. Allocation
of effort among breeding agencies within regional cooperatives or
governmental units could assure the long-term development of all
potentiaily useful populations.

All of the above methods depend completely on additive types
of gene action and eventually lead fo homezygosity within vepli-
cate trials. The choices between them rest on testing efficiencies
and costs, maximizing both s and 2* at minimal costs, maintaining
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genetic variance, and species characteristics of the plants.

A major difference in concept exists if any of the hybrid
systems are pursued. Hybrid selection methods clearly depend on
developing complementary sefs of genes in the parental popula-
tions, If gene actions fturn out to be largely additive, hybrid selee-
tion may produce the same resulis as single-population selection
at a higher cost. However, if overdominant gene actions exist and
can be accentuaied by developing complementary allelic frequen-
cies, these hybrids can offer great advantages. Otherwise, less
than complete dominance and epistasis may not be any better
utilized than in the single population. Various types of semihybrid
programs, however, such as developing single-population breeds
from a hybrid base popuiation, may offer considerable advantages
when species or provenance hybrid combinations bring valuable
traits into the population for further concentration. Eventually,
the hybrid pregrams, too, will lead to homozygosity within paven-
tal sources. In hybrid programs, however, homozygosity will cceur
so far in the future that new variants will be generated if popu-
lations are kept large,

In forest tree breeding, the present need is clearly for experi-
mental evidence on the biological and economic feasibility of the
diverse methods that appear to be available, Responses to mod-
erate selection and inbreeding must be found, and analyses are
needed on the effects of different environments on phenotypic and
genetic variances. Small replicate populations are particularly
well suited to single-population breeding, and the effects of their
use require empirical testing. Organization of hierarchies in such
replicated breeding populations, as recommended by Namkoong
and others (1871), should be explored for single-population breed-
ing and can be adapied to hybrid breeding in which the parental
populations are separately developed, Experimental festing of
breeding reothods on rapid generation sequences is required.

SEED SOURCE SELECTION

The first step in all breeding programs has traditionally been
the choice of provenances to utilize available geographic varia-
tions. Since forest trees have been relatively unselected, unigue
opportunities exist for exploiting natural racial variations within
speciea. Regardless of any other patterns of variation that may be
discerned, it is only reascnable to examine genetic differences
among subpopulations for their possible utility in building hreed-
ing populations and for any limitations which may exist in cross-
ing among them or with other potential parents. One objective of
selecting trees from the best provenances iz to collect the best
alleles into the hase popuiation and to increase their freqguency by
breeding without having to return later to unimproved popula-
tions for useful alleles, It is most practical to start breeding at as
high a level of value as possible. However, proper breeding of
an average provenance will soon yield varieties betler than any
existing unimproved provenance. Therefore, the breeder will have
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to choose between seeking improvement either through an initial
cycle of provenance tests or through immediate breeding of the
best 1 'ovenance he has available. Variation among provenances is
uswally exhausted for purposes of selection among them after
the best have been chosen,

Signifiecant varviations exist among local populations of almost
all wide-ranging forest tree species, While there are some notable
exceptions to this general phenomenon, Wright’s (1962) compre-
hensive review of provenance differences strongly indicates that
it is wiser to assume large subpopulation variations and fo prove
the assnmption wrong than fo ignore the possible existence of
such variations. Variations among provenances and their possible
uzes have already been well described slsewhere. The discussion
here is confined to the discerning of patterns of variation and the
soureces and uses of such patterns.

The traditional concept has been that selection for vegetative
vigor should be limited to local sources, which are presumably
best adapted to local environments. Strong support for this con-
cept came {rom the classical studies on Achillea by Clausen and
others {1948). They suggested that natural selection eliminates ali
migrants and genetic segregants not suited to local environments,
and that vigorous growth was highly correlated with competitive
ability and fitness. Further support for this view with forest trees
was developed by Langlet (1936) and Wakeley (1954}. In any
test, growth would be expected to be best from the local source
with some degree of decrease as a function of environmental
distance.

Conflict with the traditional model was noted by Wright (1862),
who observed that local provenances of Douglas-fir were not al-
ways the most vigovous. Carveful analysis of loblolly pine per-
formance In the “Southwide Pine Seed Source Study,” by Wells
and Wakeley (1866), demonstrated the existence of an optimal
growth zone along the southeastern coastal border of ifs range.
Genotypes from this zone outperformed all others in local tests up
to 200 miles inland. Similarly, growth potentiais for genotypes
from more central populations and moderate ciimatic sources of
black walant were considerably superior for growth vigor far
north of their present range (Bey 1970). In addition, optimal
climatic and soil regions near the centers of the ranges of slash
pine (Sguillace 1966h, 1866c) and of ponderosa pine {Conkle
1973} produced genotypes which are superior far outside of their
local regions.

It would be valuable to know why natural selection has not pro-
duced locally optimal vigor or, perhaps, fitness, It may be that
vegetative vigor is not as well correlated with reproductive fitness
as we foresters might suppose, especially since we measure vigor
in plantations and not under natural conditions (Squillace and
Kraus 1959}, Certainly, however, vegetative vigor and reprodue-
tive fitness cannof be completely independent, More exact models
and tests of the relationship between vigor and fitness are re-
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quired, but the following discussion assumes that less than maxi-
mal fitness is being maintained in some populations. Accidental
drift and vestricted migration could produce random deviations
around generally fit area means, but the regular patterns that
have been observed eannot be so explained. It seems more likely
that variations in environments have more critical effects on fit-
ness values in ecologically marginal aress, and that the lack of
response to selection for vigor is itself a defensive response to
variability in environmental requirements. The concept of the
existence of stable, optimal populations evolving under variable
environments has been extensively developed by Levins (1968),
who showed that maximum fitness over several generations can be
achieved by a population that is not maximally fit in any one en-
vironment but reasonably good in all. If variations in climate, soil,
or other envirenmental factors are large, it can be advantageous
for populations to remain more conservatively adapted to the
harsher envivonments. In forest tree species, especially those on
ecologically marginal and variable sites, it can be advantageous
not to respond to selection for what may be only transiently favor-
able site factors. Only in more stable, optimal areas would fine
adjustments to environments add to the long-term fitness of the
species.

One mechanism to dampen response to selection is a high migra-
tion rate among populations. Antonovies (1968a) has recently
shown that among perennial organisms even limited amounts of
pollen migration can strongly inhibit immediate responses in
gene frequency to selection. Hence, cmrrently unfavorable alleles
can be maintained at intermediate freguencies if migration is
effective. If the correlation between vegetative vigor and fitness is
high, however, strong selection will clearly tend to produce vigor-
ous local performance even with poilen migration {Endler 1973).
But if the corvelation with commercially important traits is low,
the breeder should consider provenance selection in regions of
optimal ecological development and minimal environmental stress
as defined by the species itself.

An altogether different feature of provenances which may re-
quire special measures for selection is the genetic variance within
seed sources which itself may vary among populations. If few
populations ave selected for breeding, then they should contain as
much of the potentially useful genetic variants as is possible to
obtain. In some cases, only large populations of species with con-
siderable migration will be selected, and little exfra care will be
required. In other cases, however, the populations may be relic
stands, plantings of limited parental origins, or even mixtures of
a few clones as sometimes occur in Japanese Cryptomeria stands
(XK. Sakai, personal communication). In those cases, remedial ef-
forts to regenerate genetic variations may be useful. One may
select trees only from those populations with a large effective pop-
ulation size and genetic variance, or select among several stands
of different origins to assure a Jow coancestry among the selects,
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Much provenance research involves the discernment of relations
between environmental and yield factors. For example, after a
local provenance test the breeder often wishes to estimate the re-
lations between environmental varviables at the seed source and
performance in his plantation. The interest for population ge-
netics lies in defermining the extent of genetic segregation in
allelic frequencies and whether substantial genetic variance exists
within or befween stands, The extent o which variation in traits
of interest is determined by environmental factors indicates the
relative strength of directional selection and migration versus
drift and other random forces in determining allelic frequencies.
The analysis of multiple regression in several traits simulia-
neously is therefore of value in interpreting genetic population
structure. The genetic covariance matrix among traits, estimated
after interpopulation effects ave removed, represents the multivari-
ate analog of the simple genetic variance within populational sub-
divisions. One might wish to simplify interpretation by using
canonical or prineipal component analysis, but the total regression
and residual genetic covariance on all the trails should alsc be
estimated.

The matrix of p{p+1} genetic variances and covariances

2

among p iraits is therefore desivable to estimale, and general
linear hypotheses {on additive or dominance effects in multivari-
ate space, for example) can be tested by muitivariate analogs of
univariate analyses of variance. Thus, maximum-likelihood testing
of the dispersion matrix among provenances or among half-sib
families in several traits should be performed, and cluster analyses
shouid be attempted to discern communities of simiiar prove-
nances.

It is often difficult fo define the location of optimum prove-
nances wheve regular patierns of response exist, especially if
plants have been moved much by natural or human endeavors. If
high-vigor zones oceur at random, then only complete or random
sampling would locate them with any Kknown probability. How-
aver, if frends exist, even with local errer variations, the breedey
may wish to weight his sample in favor of areas most likely to
produce good genoctypes.

Variables in seurce environment, such as seasonal rainfall, ele-
vation, soil tvpe, and length of growing season, that infiuence
various expressions of yield ean be identified. And for tests at one
planting location, muitiple regressions of all yield variations on
all environmental-source variables can be determined.

For any one yield variate, the surface of response can be esti-
mated if enough source environments are sampled and maxima
and minima are estimated on those surfaces hy standard linear
or nonlinear regression. The sampling problems are no different
fiom any other muitiple regression problem, except that the com-
binations of environmentul vaviables are not subiect to simple
maniputation but must be sampled as they exist in nature. If the
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objective of provenance testing is to determine general variations
and means, then general, range-wide or random sampling may be
best. However, if the objective is to estimate the location of
optimal regions, then heavier sampling around expected optimal
regions is desirable. For example, if more moderate environments
than available in local sources are expected to yield more vigorous
trees, a pattern of sampling using the local source as an extreme
and suspected optimal regions as centers of sampling may be
feasible. Combinations of environmental variables mmay be sought
which, in the dimensions of those variables, arve constructed in
concentric civeles or rectangles with replicated center points. Such
rariables can be very efficient estimators of the surface for
maxima near the suspected region. The surfaces may be as simple
as the quadratic (Namkoong 1967) or some more compiicated
asymptotic functions (Sarvas 1970) which require heavy sampling
in reoions of maximum curvature, but all benefit from planned
sampling of environmental variables. Provenances can also be
analyzed for not only mean differences, but alsc for differences in
reaction to sites. The results may indicate different levels of
genotype-site interactions which can be studied by regression types
of analyses (Butcher and others 1972)., The problem for most
programs, however, is that several traits are of interest simul-
taneocusly, and that simultaneous estimation and a unified form
of evaluation are required. Estimation problems for the multivari-
ate case are not especially difficult, but they require the estima-
tion of a matrix of regression coefficients instead of a simple
vector (Namkoong 1967). Except for problems with missing data,
the only new concepts involved are associated with the distribu-
tion of multivariate moments, and they should cause little diffi-
culty for the foresler. The greater practical problem is that the
optimum environment for one trait may not be optimum for
others, and hence selection of an optimum set of environmental
variables is not simple.

If the value functions for the combined traits of interest are
independent among traits and can be well approximated by a
linear function, environments can be evaluated in terms of that
linear function. The evaluation can he made as if a single-vaiue
trait was being measured, since, under the assumption of linearity,
relative values of traits do not change, regardless of the actual
levels of the trait variables. Nonlinear value functions are dis-
cussed in greater detail in chapter -1 in the section on evaluation.
For the present discussion, it is sufficient to state that a solution
for an optimal environmental vector may indicate a eombination
of environmental variables which does not exist in nature. For
example, for a given value function, its maximum within the space
of environmental variables may lie at a combination of say low
winter temperatures and high winter rainfall. This combination
may not exist. To obtain trait combinations in provenance selec-
tion, then, mixtures or hybrids from complementary regions may
provide material for future selection, For example, source A may
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promise good growth but little resistance, while source B prom-
ises high resistance buf poor growth. If both traits are necessary
and not otherwise simultaneously available, a hybrid wowu con-
tain both traits at intermediate gene frequencies and could prom-
ise greater breeding gains. While the estimation and selection
problems are general for all breeding evaluations of a multivariate
nature, breeders dealing with provenance selection will immedi-
ately be faced with choices of mixing the most usefni sources for
multiple traits in the base population.

In addition to problems of evaluating a multiple-regression sur-
face for multivariate decisions, a tree hreeder is seldom interested
in one planting site. He must usually have to consider what single
source or combination of sources may he suitable over a range of
sites and how they will change for a set of planting environments.
Complete sampling of all sourees on all sites is desirable but often
not feasible, Efficient sampling for testing suitable provenances on
a segnence of sites wouid require that some changing subset of
sources be tested on each site if some choice in source sampling is
possible. A partial sampling design may be like:

SOURCE
B € D E

I o e O

Overlapping sources among planting sites are required to deter-
mine geneval source effects and to distinguish bebween source X
planting site interaction effeets and general source average per-
formances.

A complete factorial sampling of all sources on all sites would
provide a complele picture of value at each combination, and we
could then describe a 3-dimensional factorial response surface of
value:

\VALUE

SOURCE
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If sources and sites are identically ordered and the order has
some relation to value, some simple surfaces may be described for
some simple hypothetical results.

If sources differed but were identical in response to all sites,
the value surface would be like:

If sites differed but had identical effect on all sources, the value
surface would resemble:

If both sifes and sources differed but no interactions existed, the
value surface would resemble:
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It interaction existed, irregular surfaces would display various
forms. A condition of local sources always being best would look
like:

Less regular and mixed surfaces would have to be generally ex-
pected. To the extent that each site has unigue optimal sources,
the site-by-source interaction can be expected to be high. To the
extent that sources perform consistently over different sites, the
provenance source will have a large effect at the expense of the
interaction component. It is such cases as these which were
ailuded to in the discussion of optimal ecological zones. The gain
achievable is directly estimated by the mean dierences observed.

In tests designed to evaluate provenance selection in which only
a sample of all possible provenances is taken, gain estimation is a
simple analysis of ordinary gain estimates by regression, If the
interaction component is high and selection is to be generally
among the best test sources, then the expected selective advantage
for starting with the best sources is the selection differential X h?

{provenance}; where h? (provenance) is covariance {provenance
test value, breeding value) + wvariance (test values), and where
the selection diffevential is the difference between the population
mean and the mean of the selected provenance. In this case, the
numerator covariance of the provenance A% will be largely the
interaction variance component plus any contributions due to per-
sistent provenance performances.

- If a mixture of sources is selected for starting the breeding
population, materials with different gene frequencies will some-
times be mixed in the breeding. Any dominance and episiatic
effects will then produce genetic recombinations and genetic vari-
ances in the F. generation unforeseen in the parental or initial
crossing generations, If would, of course, be beneficial to start into
recurrent selection either for a hybrid system or for general com-
bining ability with a hybrid base population with some experi-
mental information on the importance of nonadditive effects.
However, if most provenance crossing displays additive and aver-
aging effects and little dominance or heterosis, as appears frue for
most pine species, then provenance selection is simply a higher or-
ganizational form of family selection, Then, selection may be made
in a tandem fashion—first provenance or source, then family and
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individual. Simultaneous selection on an individual-tree basis is
also possible if some index weight is given to family and prove-
nanece collateral relatives in judging individual worth. The effeets
of linkage diseguilibrinm, however, will be felt for several genera-
tions.

To the extent that provenance selection is deemed worthwhile,
some question exists as to how much gain can be achieved by
second or multiple stages of refined selection of stands within gen-
eral provenance atreas. If the initial sampling was small, then the
response surface is poorly estimaled and the model form of the
surface may not even be detectable as being especially good or
poor. In such cases, the breeder may: (1) choose the best among
those he has sampled, (2) estimate and select from an optimum
environment, or (3) resample the population for further testing.
While further testing increases the chances for greater precision
and gain, time and experimental costs also increase, and one might
be better off to start a breeding operation if the benefit of betier
provenance selection can be overcome by a generation of within-
population breeding, Thus, for example, the valae of the selection
of seed-production areas or stands may not be worth much extra
time or testing if stanc heritabilities are jow and pellination is
uneontrolled. The more intensive the initial sampling was, the
less chance that either a more precise surface estimation would
indicate other optima or that stands other than those actually
sampled would be much better for starting a selection program.
Provenance selection may occasionally be all that is desived if
breeding in even minimal programs cannot be supported (Wright
1971). Thus, one generation of well-designed and intensively sam-
pled provenance tests is often as much testing as is desived for
starting either hybrid- or single-population breeding. Subsequent
population <evelopments would then proceed either to develop the
separate parental population for hybrid production or single pop-
ulations for some form of recurrent selection for general combin-
ing ability.




CHAPTER 4
TESTING AND ESTIMATING VALUE
IN FOREST TREE BREEDING

It is clear that defining, measuring, and using gene effects in a
breeding program, or simply understanding the variations and
operations of natural events, invelve highly complicated studies
in which optimum solutions may be difficult to produce. Efficient
estimation, breeding population development, and seed production
in a breeding agency all require careful design. In addition, since
the breeding program reguires that all tasks be integrated, the
various phases of the complete program often reguire simultaneous
operation. Design problems can be highly complicated and ardoous,
since they involve genetics, statistics, and mathematics applied to
the practical problems of festing, selecting, and breeding trees for
a multitude of purposes. Nevertheless, forest tree breeders are
required fo also conduet tests which require unusually large
amounts of time and space, and hence demand efficiency in achiev-
ing all of the experimental gozls sought. Testing trees, families,
or provenances for selection in forestry is complicated by chang-
ing envirenments and changing requirements for data on perform-
ance of different relatives on different planting sites. Because
of these prablems, the plant resources required for testing must
be efficiently allocated.

In this chapler, testing and evaluation fechniques are discussed
as additional objectives of efficient breeding. The use of informa-
tion on relatives in a linear function and the evaluation of multi-
ple traits, also in a linear function, are discussed. The use and
evaluation of correlated trait selection and response are examined
and nonlinear value functions are discussed. Genotype-hy-environ-
ment interaction and competition models are then described. In the
following chapter, strategies for developing integrafed research
and development programs in forest genetics are discussed.

INDEX ON RELATIVES

One method of increasing selection efficiency is to use as much
information as may be available on the performance of various
kinds of relatives. The move relatives that exist, the more precisely
the genetic value is measured, and the closer their relationship to
the units being selected, the more reliance can be placed on their
performance as supplements to the individual’s own performance.
Combining the information, which may indicate for example that
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an individual is good but its half-sib family and parents are
poor, requires that the performances be put in a form that permits
fair weighting of the contrasting data fo give precise selection
and hence maximum gain when the units are selected.

A linear function is a simple, reasonable form for a composite
index value: I=b,x,+baxat . .., where the z; are the variables
for each kind of relative, and the b; are the index weights to be
determined. Then the true value of a tree, ¥, can be estimafed with
some error by ¥=I+e¢, where ¢ is the error in estimating true
value by the I index and is to be minimized. Then, as in any se-
lection scheme, expected genetic gain in value E (AG¢) when some
imprecision in selection exists can be approximated by the regres-
sion function B (AGy) =hF{I,—p )% where /72 is the regression
heritability of the index values, and I,—p, is the selection differen-
tial between the mean index value of those selected and the general
population mean index value. The regression heritability #2=Cov
(I,V}+ Var (I}). For normally distributed traits (z variables can
be expected fo be approximately normally distributed especially if
the z’s are means), the expected selection differential ¥ {l,—w) =
(z/p)a;, where, as previously discussed, z is the ordinate of the
standardized normal distribution at the truncation point, and p

is the proportion selected. Then E (AGy) =2/ —Ei =2/D pyiov.
I

Since o is Axed in the population, and z/p is chosen by the breeder
to satisfy demands previously discussed, we maximize gain by
maximizing the correlation py, or by maximizing the error variance
of I around V. Using least squares procedures as in multiple re-
gression, an underline fo indicate a vector, and a prime to indi-
cate a transposition, the relationships which we require are:

PjIZ:CO\: (2, V)
or  b=Pt Cov (xiV)

az,%

1 Gz

1wy Ty

where P={ 0z,2, s, Frpry

the matrix of phenotypic variances and covariances,

b= b1
- by




the vector of weighting coefficients, and

Cov (a,¥) = Gow (2072

the vector of genetic covariances between the relatives and the
genotypes being tesfed.

It can be further seen that since:
A
E=P‘1Cov (zi, V),
and i =9’_x,
Cov (I, V)=9’Cov {zq, V),
and w?:g’Plz.

Therefore, a_.ﬂzfz’PP*Cov (z, V)
=Cov (I, V),
and therefore, h2=1.
Sinece E{aGy)=(2/p)a:h?,
E(AGy)={z/p)a,

in the scale of the index measures taken on the relatives, and gain
can be estimated as:

E(AGy) = (2/p)/b'Pb

or E(AGy) ={(z/p)/Cov' {z, V}P* Cov (z;, V),
assuming that P, Cov (z,, V), and b are all well estimated.

This kind of index has some potential use in forestry when sib,
parental, and clonal data can all coniribute to the estimate of
value of a tree (Namkoong 1966b). We can get an intuitive feeling
for how the index gives weights to the various relatives if we ig-
nore the phenotypic covariances in P and instead look at only the
phenotypic variances.

Then b= { 00, Cov (21, V)
Cov (24, V)
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Therefore, b, Cov (z,, V)/a;f1
by | =| Cov (s, V}/0r)
b Cov (ma, V) /ou]

We can see that the closer the velationship to the tested genotype
is, the higher the covariance will be. The better we can esfimate
the breeding value of a genotype by reducing nongenetic variation,
the lower the phenotypic variance (o.?)will be, and hence the

greater the b; coefficient will be. For those species which can be
tested clonally, we would have direct measures of the genotype
and hence, the covariance of ramets with ortet would be the total
additive genetic variance. Also, clones can be planted in several
locations and rveplications and their value determined with mini-
mum error. Hence, if clones can be used, their weighting will be
very high (Libby 1964).

The variances in the diagonal of the P matrix are more easily
estimated from the variance of various family means or clonal
means. The covariances as between, say, full-sib and half-sib
family performances in a balanced experiment may be zero but in
unbalanced experiments may not be. Maximum likelihood esti-
mates of the index can still be computed (Henderson 1963). Inde-
pendently estimated means contribute no covariances to the P
matrix. The other genetic covariances between an individual selec-
tion unit value and the various relatives’ means may be simple
genetic covariances as for parent-offspring relations, but may in-
volve more complicated relationships between an individual and
its family if the individual itself contributes to the family mean.
In such cases, finite population correction factors can be used and
the standard indices estimated (Henderson 1963).

The more complicated the relationships involved, and the more
different kinds of relatives are estimated, the less well are the
various covariance mafrices estimated and, therefore, the poorer
are the estimates of the optimal b coefficients. In a fairly ex-
tensive mixture of crossing and selfing data from a diallel estima-
tion experiment, Cockerham and Matzinger (1966) found that
simplified weighting procedures may often prove fo be at least as
good as the complete least squares analyses. In fact, as analyzed
by Williams (1962) and Patel and others (1962, 1969), poor
estimation of the P matrix can, over several trials, lead to poorer
correlations of indices with true breeding value than simplified
weighting procedures on the basis of genefic correlations among
relatives or cost and precision of estimates.

Thus, for selection, very extensive tests of many kinds of rela-
tives may not he worth construction of separate experiments, even
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if they would be useful if they are otherwise available. More
remote relatives have little to add to selection precision and may
cause more problems in estimation of value than their limited
assistance is worth. Furthermore, the use of relatives is most
helpful in cases of low individual heritability, and even progeny
testing may not be worth the cost in time or effort required
(Namkoong 1970a) unless heritabilily is very low. Thus, while it
is useful to have data on relatives, selection gain alone may not
be worth the cost of extra matings and plantings to obtain the
data. Each program, however, must make that cost analysis for its
own benefit valuations. It must also be considered that muitiple
traits are often simuitaneously selected for and that the desir-
ability of using information on relatives usually varies among
traits. For example, selecticn for growth may have a high
heritability while selection for disease resistance may be low.
In addition, if the correlation between them is negative, one may
be foreed to obtain fhe additional information for simultaneous
selection from progeny tests (A, E. Scuillace, personal communica-
tion}. Thus, a complete evaluation of progeny testing for obtain-
ing information on any kinds of relatives generally requires a
multiple-trait evaluation.

INDEX ON TRAITS

In the above discussion, we have generally assumed the ex-
istence of a single measure of value on each unit of selection for
which the various relatives are meuzured in some common way.
In general, however, several traits are selected for and the simul-
taneous improvement of all traits is often desired, Alternatively,
methods of improving one trait at a time in a tandem sequence
or of simply using truncation selection fotr each trait independently
to arrive at the same selection differential have been shown to be
poorer than simultaneous index selection {Young 1961, 19G4).
One method of reducing the several-trait measures to a single
scale is essentially the same as for selection with multiple relatives
—a linear index function with weights estimated to maximize the
gain in value, Similar to the previous discussion, a linear function
is appropriate for independent evaluations of the traits, each of
which increases in value in a linear form. While this is clearly a
poor approximation, it may not be bad For smalt changes in each
component trait.

The index we wish to build would thus weight the trait vari-
ables in a linear function: f=,y,+b.y:~ ..., and each trait
would have some relationship to value V as before. The only added
complication now is that value is some function, presumably linear,
of each trait's true value, V=a.gy, ~ttag=+ ..., where ¢, ave the
inherited or true genetic values in the selection units, and «a; are
the economic weights in the linear value function, As hefore,
the maximization of value requires the leasi squares estimates




or b=P-1Cov {y, V}.

The new problem is that the covariance of each variable y; must
be taken with the linear function of value, V=agi—tg+ ....
Since we are in a breeding operation, the covariance of a pheno-
typic measure (y;) with its genetic value (g} in a selection unit
is the genetic variance or, more often, the additive genetic variance
of the frait ¢, * Similarly, the covariance of a phenotypic measure
on trait i {y) with the genetic value of another trait (g;) is the
genetic covariance or additive genetic covariance between traits

CFFE I
Then, since value V=g, Hanga+ ...,
the Cov iy, V)= Cov {y, g1 +ag2+ .. .)
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where G is the genetic (additive) covariance matrix, and ¢ is the
vector of economic weights.

Then §)=P-iGE.

As before, the expected gain in value, using optimum weights
and assuming a linear economic model, is:

E{sGYy={z/p)orh’

where RiA=Cov{l, V) + Var(l).
Since §= PiGa
and I:Q’E, and V=_(_1’£,
then Cov{I, V) =9’C0v(y{, g;)ia
and Var{l)= _QPE_)

=b'"PPGa

=bGe

=b'Cov (¥, g)a=Cov (L, V).
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Therefore, hr=1
and E(aGY=(z/p) v

in the units of measure used to derive I. Even if a linear economic
functien is adequate, poor estimates of P or (7 lead to the same
problems in estimating the optimum index weights as previously
discussed, The investigations of Williams (1962) and Patel and
others (1962, 1989) were directed to these kinds of indices and
resulted in recommendations that the estimated b weights were

better when the lnear, additive genetic variances were high
relative to nonadditive genetic variances and that estimates of the
voefficients wereg restricted to within reasonable iimits.

A more general condition for selection index construction in-
cludes cases in which it is wished to keep some traits in the popu-
lation unchanged. While essentially similar in form to the indices
constructed above, the value is to be maximized under constraints
which require zere-valued functions to exist (Tallis 1962). Kemp-
thorne and Novdskog (1959) state the restrictions in algebraic
form as linear functions of genotypic values ¢’g=0, and maximize

the value function using Lagrangian multipliers. The optimum b
estimate then is:

§= [[=P'GC(CGP'GC)'C'G] PG,

where C is the matrix of coefficients of the restricting equations
and the other matrices are as previously defined. If =/ as for
the case of no restrictions, the equation reduces to the familiar

E\{:P‘WIE‘

A different kind of index is required if dominance types of gene
action are used, as in hybrid or mixed breeding systems. In such
cases, the genetic vaiue of tha entries is also dependent on domi-
nance cflects and dominance and additive-by-dominance genetic
variances. These genetic variances and covariances, however, are
defined according to their hybrid population statistics as developed
by Stuber and Cockerham (1966).

CORRELATED RESPONSE

The effects of selection for one set of traits on changes in other
traits are cleaviy of great interest to foresters, since many forests
are subject to multiple simultaneous demands and future forests
are subject to selection for different sels of traits. Maintaining
variation in the forests Ly maintuining huge populations or hy
selecting to maintain some intermediate mean values may both
be usefuvl, though large population size is easier to use and likely
motre conserving of variance. A more critical problem is that
genelic corrvelations and hence correlated responses to selection
are notoriously variable from generation to generation. If the
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correlations among traits are due to nongenetic sources, they can
change with environmental or cultural variations, If they are
partly genetic, then they may change as linkages change or as
they influence the relative effects of pleitropy or epistasis on trait
correlations.

It may also be useful to select trees for improvement in one
trait like yield by measuring a more easily chservable associated
trait like height growth, The associated trait may be measurable
under less environmentally variable conditions or measurable
several years earlier than the trait of direct economic value. Selee-
tion efficacy depends on the nature of the correlation between the
traits,

Faced with problems associated with poor estimations and
changing genetic correlations, greater assurance of achieving gains
can be given if the numbers of traits are limited to a few with
relatively assured values and breeding is followed with large
population sizes.

One form of index selection on correlated traits which would
be extremely valuable in forestry is selection on a set of juvenile
traits for mature tree performance. Several juvenile traits that
can be easily measured may, by themselves, have an economic
valge of zero but still be useful if corvelated with one or several
mature tree traits. In terms of single pairs of juvenile-mature
tree traits, Nanson (1970) has clearly demonstrated that for many
traits in a wide variety of forest tree species, these correlations
avce high enough that substantial savings in cost and rate of genetic
gain can be achieved by selection early in the life cycle. The gain
from selection on x on the correlated trait of value ¥, using linear
approximasations, is:

E(AG,) =iah b,y

when h2:70,,2 02, the heritability of trait », and b,, is the
regression hetween the genotvpic value of ¥ on the genotypic
value of x. The numevrator of the regression is usualiy restricted to
the additive genetic covariance hetween the two trait performances
eacap While the denominator is ¢..°, the additive genetic variance
of x.
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NONLINEAR RELATIONS

As suggested in chapter 1, means and variances are deseriptors
of population behaviors useful primarily as initial approximations
fo biological phenomena, Similarily, the linear covariances and
correlations described above are useful first approximstions to
the actual relationships among population measures. True linearity
of relationships among traits should not be assumed; it is a rare
exception in the real world, Few traits are linearly related ang,
even when measuring the same irait in different relatives, the
conditions of the testing or ages of the relatives may differ. Hence,
the covariance lLetween say offspring and pavent is often not
one-half of a genetic variance, but is one-half of a genetic co-
variance. This relationship, however, may not be linear. In such
cases, curvilinear regression adjustments are often made to
linearize the parvameters of the model and multiple regression
coefficients used for each trait. These introduce no new theoretical
probiems, are useful second approximations to reality, and ave
about all that can now be done without using nonlinear mathe-
maties.

If we can then assume that breeding can be efficiently performed
for a given set of values, the central problem in forest tree hreed-
ing is defining and measuring vaiue when the traits themselves
are complicated by environmental interactions and their economic
effects are nonlinear. Several forms of nonlineavities ave faivly
common In forestry. Some such problems cannot be linearized by
togarithmic or polynomial transformations, Slightly move difficuit
to handle are cases in which discontinuities exist in the relation-
ship between physical measures and value, such as between stem
diameter and stem value when it jumps from pulp size to pole,
saw-fog, and veneer-log sizes, In addition, degree of past resisfance
may exhibit a relatively fiat value function until some minimal
levels are reached, after which a linear function may exist until
high resistance levels are reached and inerements in resistance
add little to final crop value, especially if some natural thinning is
expected. In many such cases, approximate value funetions may be
assigned and linearized, even when multiple discontinuities exist,
Only slightly more complicated and difficuit are those cases in
which the value of one trait depends to some extent on the value
of other traits—when trait values are interdependent, The joint
value funetion then requires some iterative evaluation as, [or ex-
ample, when both volume growth and wood quality wre interde-
pendent and bheoth depend on survival and pest resistance levels.
For example, pest vesistance may be of velatively little valye at
low-growth levels but can assume an exponential value funetion at
high-yield levels. Similarly, increasing wood yield under high risk
of mortality may bhe of low value until mortality rates can be
dropped enough fo warrant investment in growth improvement.
However, even such joint value funections, with various peinis
and lines of discontinuities and with various forms of curvature,
present problems only in locating a divection for maximizing value
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on an uneven, but known, surface, Thus, on some nonlinear surface
of value of possible trait combinations, the breeder can seek to
determine the dirvection cosines of the line which would give him
maximum gain. This line may be either in the direction of maxi-
mum value gain for very small changes in trait values, for ex-
ample, the gradient, or in the direction of the optimum trait
combination which may require a long-term breeding effort and
mote than what maximum immediate gains conld promise. In the
case of a truly linear value function, these lines are identical and
the index coefficients which are derived by traditional methods
are the dirvection numbers of the planes of egual value which are
perpendicular to the gradient. Determinations of the direction
numbers of planes of equal value or the associated direction cosines
of the line normal to those planes are essentially similar operations
ag one can be determined from the other. Therefore, cther than
forcing one to work harder to determine the value function and to
change the direction of maximizing value gain according to the
present mean value of the population, the above nonlinearities
cause no theoretical problems in breeding in whatever direction
is determined to be optimum.

A different ciass of problems are generated when, in addition
to any nonlinearities, the actual value function is not precisely
known. In this case, errors in estimating true values can cause
some trait values to be relatively decreased in breeding value if
they happen to be more sensitive to the uncertainties of future
values. This is a particularly acute problem in forest tree breeding
where the time interval for single generations from selection
through breeding, planting, and harvest would often involve 20
to 60 years. While these times can be expected to decrease, the
uncertainty factor will always be present. Since breeding opera-
tions for particular hybrids or with any recurrent selection ob-
jectives obviously require projections of value into an unknown
future, only temporary gains can be achieved if breeding objec-
tives change within genervations, Long-term gains ave necessarily
limited to relatively few traits of persistent value such as survival,
erowth under wide site variations, and perhaps some pest resist-
ances. Short-term objectives can include more traits but even
then must include evaluations based on unknown technologies
applied at vavious stages of forestry between planting and final
conversion to economic return. Any of the stages, including siivi-
culture, harvesting, mill technologies, and marvket variables, which
can change within a generation between seed production and value
conversion, can be more quickly altered than breeders can affect
their produet values { Namkoong and others 1966). In other breed-
ing programs with shorter breeding cycles, such as with dairy
cows biud for high butter fat content in milk or with tobacco hred
for nicotine content, marked changes required strenuous changes
in modifying otherwise adapted breeds and lines. Thus, the choice
of traits for breeding when economic value unecertainty exists can
drastically affect the value of the whole breeding operation, and
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considerable care is required in choosing breeding for long-term
gains on some traits and short-term (one generation or more)
gains on others. Foresters will have to be far more conservative,
since rapid breeding generations to alter breeds will not generally
be possible (Stern 1972).

If some uncertainty is involved in determining a value function
for a given generation of selection and breeding, the optimum
strategy may not be to maximize an expected average gain, which
may be known only with high error of estimate. Clearly, if the
uncertainty were such that the error on predicted values was very
narrowly distributed around a mean, then one might wish to treat
the case as a deterministic one. In what might be the more com-
mon situation, however, a refatively high variance on the value
function exists, and an estimated average function may have too
high an error to attempt a definition of optimunm breeding direc-
tion cosines. An alternative strategy is to determine simultaneous
confidence limits within which, at given probabilities, the optimal
direction exists. Breeding evaluations may then be made on the
assumption that a maximum error and an associated minimal gain
can be made for a given range in direction cosines. Alternatively,
a breeder may swish to minimize the probability of certain errors
occurring, such as some limit on misdirection, and may instead
choose direction cosines with minimal gain ohjectives.

Under conditions of high uncertainty, such that the error dis-
tribution on the predicted value function is too large to reasonably
derive an estimated mean with any reasonable probabhility of
accuracy, the concept of maximizing expected value may have to
be totally disearded. In such cases, it may be possible to describe
several value functions for the combined traits, no one of which
is any more likely than the vest to reflect the actual value function
at harvest time. Then, maximizing a minimum expected gain may
be a more reasonable, if conservative, strategy to follow since it
would guarantee that certain minimal values can be achieved re-
gardless of which value function actually exists at harvest. The
optimum trait direction for the breeder to follow is thus defined
as that which imparts the highest minimal gain which can bhe
achieved. As an oversimplified example, consider only one trait,
wood specific gravity, which is highly covrelated with cell-wall
thickness, and assume that one of four situations illustrated in
figure 11 may occur:

(1) Thin-walled fibers hecome very valuable and wood of
low specific gravity has high value.

{2) Thin-walled fibers are of some value hut the loss in
fiber yield of low-specific-gravity wood almost offsets
the value of the wood-quality eain.

(3) Cell-wall thickness does not affect value and the in-
creased fiber yield of high-specific-gravity wood in-
creases its value.




{4) Thick-walled fibers are of some value and accentuate
the increased value of high-specific-zravity wood.

If these four adequately define all value functions, the X marks
in figure 11 represent the extreme points of the possible solution
set. The value of specific gravity which maximizes the minimum
gain is indicated by a circle and would be the opiimum point
toward which the population should move. It can be seen that
discontinuities in the value functions would canse a problem in
arriving at a solution.
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Figure 11.—Maximin preblem for values of specific gravity in four possible
situations: {I} strongly decreasing value, (2) moderztely decreasing
value, (3) moderately increasing value, and (4) strongly increasing value.

In any real situation, the economic functions would he more
complicated and involve more variables, but they conld be easily
solved since the solution of maximin games can be found by
standard linear programming (Hadley 1984). Difficulties with
continuous, nonlinearizable functions remain (Owen 1968), but
with modern computers good linear approximations for smali
intervals can be made, and the expanded set of restrictions can
easily be handled. All problems of discontinuities and boundary
values have been eliminated. Therefore, solutions for such
linearizable functions in these essentially two-person, zerc-sum
games can ahways be found, and an optimum point or direction
defined. Therefore, a direction for moving the breeding population
can be defined even in these situations.

Therefore, even facing uncertainty of a high degree, the breeder
can determine optimum trait combinations and ean evaluate trees
with respect to the directions so determined. While it is alse clear
that, due to prediction problems and problems of estimating genetic
and phenotypic means and variances, only a restricted number of
traits should be included in breeding programs, it is also true that
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even mild selection pressures can be beneficial in keeping favorable
alleles in population. Such alleles can be useful in later genevations
of breeding or in speecial breeding ovehards and would be ugeful to
maintain even if their immediate usefulness is limited and of
uncertain values. In these cases, once a basic set of traits and
their optimal direction cosines, or associafed direction numbers,
are determined, restricted indices may be additionally useful
{(Tallis 1962).

GENOTYPE X ENVIRONMENT INTERACTION

Economic and estimation uncertainties are not the only factors
which make the direct application of breeding theory especially
comaplicated in forestry. Changes in the environments of forests
are also becoming more rapid and widespread through the direct
efforts of silviculturists as well as through the accidental impact
of human and other influences. The economics of land use with
forestry alternatives clearly depend on forest values which are in
turn affected by genetic potential values and the control exercised
by breeders. At the same time, values cleariy depend on how
society contrels forest operations within the meneral economic
system. Under an intensive system of planning, genetic control of
forest characteristies and values can be one management control
variable for use in conjunction with silviculture and other tech-
nologies capable of affecting forest values. If the environment can
be predicted te change, then ecoordinaled changes in culture and
genetic composition of forests can give extra benefits if geno-
tvpe - environment inferactions exist. Tor example, genotypes
may compose an ordered sel of entries in a field frial in which
several envireunmentul states mav be sampled and relative per-
formances estimated. Regardless of whether either genotipes or
envirenments have any averuge overall eflects, various combina-
tions of particular genotypes on particnlar environments positively
or negatively depart from their average performance due to the
special reaction of one to the other in the combination. If the
envirenments can be ordered, then diffevences amung genotypes’
response funclions other thun general mean or simple seale differ-
ences may bhe congidered to be interaction effects for which some
nonlinear Tunctions may be fit and found to vary among genotypes.
Fovr muny ptant species, velationships among genofypes seem to be
nearly lnear wilh respect to stabilify measures or to measures of
relative performance of genotypes over several environments
{Freeman and Perkins 1971), However, Lhis need not be true for
the range of site vaviahles which forest frees must face. In many
forestyy cases, the entive multivariate response surface to multiple
environmental gradients should be estimated along with differ-
ences hetween genotypes so thal speeific sets of genotypes can he
vecommended For specific classes of environmental factor combi-
nations as previcusly described. Regression analysis would indi-
cate the extent to which rezularity of response can be predicted.
It could also indicate the distribution of the residual errorvs, ac-
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cording to various subdivisions of regression sums of squares and
interactions, and hence the linearity of genotype X environment
interactions (Bherhart and Russell 1966; Freeman and Perkins
1971y, In such cases, the entire package of genotypes with en-
vironmental specifications might he more 2asily developed, as has
been the experience with other crops which are developed for
given fertility and water regimes (Robinson and Moll 1859). For
forest trees, such factors as planting-site preparation, spacing,
fertility, and growing region for general climate or soils might he
sufficiently controllable that testing for respcases to some speci-
fied standardized conditions might give worthwhile benefits. How-
ever, very cilose specification of environments shrinks the area
within which the breeding population is ideally suited, and total
gain may suffar if the breeding program must sustain too many
populations adapted to speciul sites instead of a good overall
average adaptability. An alternative goal of breeding may then he
to select Tor lack of response to a wide variety of conditions and for
zood average performance, as suggested by Finlay and Wilkinson
(1063). In addition to any average value benefits, this system
may have a greater uniformity of response to uncontrolled site
variation, can have value as a movre consistent or reliable planning
factor, and can increase [ovest values by increasing their uni-
formity. For some plant species, however, highest average yield
is associated with instability (Tai 1971), and different environ-
ments may induce different kinds of genetic variance to be dis-
plaved by the same organisms (Perkins and Jinks 1968). Then,
uniformity of performance is most readily produced by different
genotypic mixtures.

It would cleariy he advantageous to use genotypes which uni-
formiy pevform lest in all sites. Therve is some indiecation that
such phenomena may exist, but to the extent that such uniform
goodness does not exist, some compromise is requived between
maximum adaptedness with special breeds and limits to the num-
ber of special populations which can be specified for geographic
areas or other site restrictions. Thus, preliminary surveys of the
dimensions and extent of environmental variations are desirable
to test the form and importance of these genotype  environment
interactions as well as any changes in the genetic variances {King
1965 Ledig 1970; Squillace 1970) . Descriptions and classifications
of genotypes accorcing to similarity of responses can be useful
to determine the existence of subsets of environmental variables
and subsels of genotypes (Hanson 1970). Regression types of
analyses of genotypes on envivonments can greatly benefit both
the analysis of forms of interactions and the practical use in breed-
ing (Perkins and Jinks 1968, Freeman and Perking 1971).

Differences in degrees of stability and response to favorable and
unfavoralde environments have been found for slash pine (Snyder
and Allen 1971). The only major difference between these methods
and standard regression analyses is that the environments are
scaled according to the average performance of the genotypes and
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not by known, measurable variables. Freeman and Perkins (1971)
construct an ANOVA for ¢ genotypes (with t—1 degrees of free-
dom), s environments {(with s-1 df), and an interaction (with
{i-1) (s—1) df). The s—1 df for environments are partitioned
into 1 df for a sum of squares due to an average linear regression
and s-2 df for the remainder. The interaction is partitioned into
sums of squares due to genotypic differences in their linear regres-
siens {(with #-1 df) and a remainder (with (-1} {s-2) 4df).
Eberhart and Russell's (1966} partitioning is slightly different:
the s—2 af of the remainder {rom envivonmental regression and
the {¢-1) (s-2) 4f of interaction remainder are used to construet
a sum of squares of deviations of environments from linearity
with s-2 df for each genotype. Both methods, however. are essen-
tially similar in seeking linear regressions and ANOVA's for
testing those models.

For more general analvses of nonlinear and multiparameter
responses, the same breakdown of degrees of freedom for multiple
regression can be followed. For such cases, unbalanced designs
with several environmental measures may find greater use,
especially for forest frees with complicated response patterns.
These experiments would require a careful allocation of possible
treatments or environmental degrees of freedom into specified
freatment combinations.

While special treatment combinations can be most efficient!
designed for purposes of regression analysis as above, or in more
complicated response surface estimations {Box and Lucas 1939},
it will seldoem be possible to test all genotypes on all site and
silvicultural variak'e levels. The location of replicated treatment
combinations around maximum response and maximum curvature
zones, as previously suggested, may not he feasible. Move often,
it will be necessary fo specify standard environments which can
test the range of responses of inferest or to specify indicator
genotypes which provide some idea of the existence and form of
genetie interactions for given site variations. In addition to the
effects on selection, the existence of interactions causes bias in
estimating genetic variances of single-location experiments as
previously discussed. However, even if the component of variance
due to interactions is small, its effect on selection can be significant
(King 1965). As a minimum program for testing, at least an
average site would have fo be sampled by all genotypes. More
generally, to the extent that seedlings are available for testing,
environmental factor combinations representing the breeder's hest
guesses on major site subdivisions should be sampled. 1f major
genotype ¥ site interactions exist, then selections can he made
for specific sites for special breeds or for a single, generally useful
breed.

Site sampling shownld follow the general principles of Box and
Lucas {1959) to span as many sife dimensions of present and
future utility as possible. If balanced designs incorporating all
genotypes across all selected siles cannot be instalied, then unbal-
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anced designs will find some utility. Recognizing that some inter-
actions of special genotype-site combinations will not be observed,
and if mean estimation is still of major importance, then partially
balanced factorials of genotypes X sites can be profifably used.
These may either involve a single, completely connected, partial
factorial in which some ovevlap bebween genotypes and sife
combinations exists so that complete least squares of main effects
can at least be determined, or some subblocking can be used
instead. If genotypes are subblocked to gain experimental (mean
estimation) efficiency, some loss occurs in that genofypes in
different subblocks cannot be compared. The general design and
analysis problems considered in chapter 7 are divectly applicable
to these problems. Subblocking can be arranged in several ways
to aveid putting all genotypes on all sites. The families may be
completely separated into mutually exclusive sets and each iested
on one set of sites which are also subdivided into mutually exclu-
sive subsets. I-: sneh a pattern, no information on sites or geno-
types in separiee sels can be vecovered. By making partial
overlaps of families among sites, comparisons of families in
different sets can be made, and different average site effects can
also be compared. This can be arranged by using certain families
as common checks on all sites or allernatively, on some sites, using
all families as a basis for adjusting other sites and genotypic
combinations, In complete blocking designs, using a series of dif-
ferent, overlapping families to connect segquences of sites may also
be used. For these festing purposes, various partially balanced
incomplete biocking arrangements can be used. They will be the
same for comparing genotypic means as for any other kinds of
treatment means. In particular, the use of partial balance with
vespect to genetic bloeking or replication within sites can help to
preserve balunce with respect to major site variables (Schutz and
Cockerham 1962). The balanced designs arve distinetly preferable
for testing means, for determining regressions on ordered vari-
ables, and for security of the material and analysis in future years.
If necessary, however, designing partial balance can offer experi-
mental efficiency of secarce materials.

For purposes of estimating the general size and form of
genotype ¥ interactions, unbalance is not as great a problem in the
design and analysis of experiments for estimating variance com-
ponents or regression-type responses as it is for testing. At
least initially, however, installing such experiments will be quite
difficult. Experimental geneticists may be largely limited to pro-
viding some replicated genetic identities to use as split-plots in
large plot silvienltural experiments. Locational or site differences
have been thought to be more significant than year differences in
annual crops because wide site variations can be easily sampled
(Rojas and Sprague 1952}, but persistent site > year ¥ genotype
differences also exist. The form of interaction effects is still highly
variable and can affect experimenial design as well as breeding
procedures (Comstock and Moll 1963 ; Hanson 1964). Within the
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set of factors and variations in each that might be considered,
factors which change within the breeding cycle are generally
considered to be part of the uncontrolled variations contributing
to error variance. Henee, trees with good average response or lack
of response to those factors might he given added wvalue for
uniformity of response to noise variations. Stability over these
and unpredictable future variations is then an important positive
value and can be parameterized and tested (Hanson 197¢). Similar
methods as developed by Finlay and Wilkinson (1963) and Eber-
hart and Russell (1968) have been found useful in siudying
provenance variations in fack pine {Morgenstern and Teich 1969).
Year-to-year climatic vaviations may often be linear, and therefore
easily handled where breeds have to be planted over all of the
years of seed production regardless of the climatic variations.
Major yearly differences, however, may involve drought, fertility,
or early planting effects of major significance which may he
adjustable and hence, if properly sampled, can be a major site
vaviant controllable by silvical measures.

The genotype X site interactions that occur among replicates
within planting zones caunse an additional problem in testing
among a large number of entries within replication blocks. Since
the use of check varieties or genotype entries is limited by their
own interaction potentials, Schutz and Cockerham (1962) recom-
mend the use of blocks of genotypes confounded in replication
blocks, for selection as well as estimation experiments in prefer-
ence to replications of complete blocks of enfries or checks.
They find it more efficient to subblock entries to reduce within-
replication exror at the expense of recovering interhlock informa-
tion and selection among entries in different blocks.

Sampling site variations by splitting major-site plots with
genotypically distinct subplot diffevences may be a satisfactory
compremise between independent experimentation and economic
necessity. Standard split-plot analyses may then be performed
within the treatment level combinations afforded by the silvi-
culturisf. In addition, any family structure such as male full-sibs
within female half-sibs would allow for some further hreakdown
of the genotype > environment interactions into additive and
dominance gene effects. For example, consider two environmental
variables V and W, Let locations, replications in locations, fami-
lies, and individuals in families be considered as random samples
from infinite popnlations and the cultural treatiments be considered
fixed effects,

The linear model yield eguation is:
Y=put Li+RBop+ Vot Wk (VW) ot (VL) -+ (WL)
F(VWLY ot e+ Fy+ (FLY p+ (FV) o+ (FW) 50
+ (FVW) ot (FVL) o+ (FVWL) ey tee
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where L;=Ilth location effect,
E.,=rth replication effect in the Ith location,
V,= vth level effect of treatment V,
W= wth level effect of treatment W,
(VW).w=interaction deviation of the wth with wth
levels of treatments ¥V and W,
{(VL).=interaction deviation of the vth level of treat-
ment ¥V with loecation [,
(WL} .= interaction deviation of the wth level of
treatment W with location
(WVL),..=interaction deviation of the wil level of
treatment V with the wth level of treatment
W with location I,
e,= major plot error,
Fy=fth family effect,
(FL) p=interaction of the fth family with the Ith
location,
{(FV),.=interaction of the fth family with the +th
level of treatment V,
(FW) o= Interaction of the fth family with the awth
level of treatment W,
(FVW) .= interaction of the fth family with the vth and
the 70th levels of treatments of V and W,
(FVL) q=interaction of the fth family with the »th
level of treatment 7 and location I,
(FWL) ;.= interaction of the fth family with the wth
level of treatment W and location I,
(FVWL) = interaction of the fth family with the +th and
awth levels of treaiments ¥V and W and loca-
tion
ey,=minor (family) plot error,
¢,.= within minor plot error,

The location and interactions can then be further partitioned into
linear and nonlinear regression factors, with their associated
sums of squares.

If the family members arve grouped into plots, the analysis may
be made as on a split-split-plot, with the replicate-location plots
designated as major plots, the V by W treatment factorial as
subplots, and families as sub-subplots. If, in addition, reciprocals
or closer relatives are grouped into compact family blocks, a
further degree of hierarchy in genetic and error components
would exist. In the following, we assume random location of all
family plots. The fixed nature of the cultural treatments allows
certain simplifications to be made in the tabulation of expected
mean squares, From the analysis of variance presented in table 2,
estimates of the variance comr.nents can be easily derived. A
slightly different but essentially similar analysis would follow
if the family members were randomly placed within the treat-
ment plots.




Table 2.—Analysis of variance for families

Source of variation . df Expected mean squares

Loecations -1

Replications in locations  [{»-1)

14 v=-1

W w1

VX (v-1) (w-1)

VXL {v-1) (i-1)

WxL {w-1) (I-1)

V<X WxL {v=1) (-1} {I~1)

Majer plot error {(vs=1)i{r-1)

Families {f-1) ald+rowped+rvwple,”
Familiesxlocations (/1) (I-1) gl +rvwpo)”
Familiesx ¥V (f-1) {v-1) g Frpwose - rplwa®
Familiesx W {f=1} (w-1) g+ rpUgru TPVt
Familiesx VTV {f-1) (v-1) (w-1) g+ rpee e+ rplosee”
Pamiliesx VXL (f-1) (v»-1) (I-1) al +rpwar’
Familiesx Wx I, (/-1) {20-1) (I-1) S TPUG eei?
Familiesx Ve WXL (F-1) (v-1) (w-1) {11 ot +9porent®

Minor plet error {f~1) (vw-1) {+-1) g+ pa, ; =af

Within plot error {frwrd) {(p-1) T’

If the sampling of families was structured to reflect a hypothe-
sized structuring of the wild population (i.e., racial hierarchies),
then the ¢ may be broken down into these components. If the
families were structured as to types of relatives, the o,* may be
interpreted in terms of genetic variances. For instance, if the
families were unrelated half-sibs, «,% is the covariance of half-sibs
which, under assumptions of no inbreeding of progenies and insig-
nificant epistatic variances, is one-quarter of the additive genetic
variance (o,%). The single-locus genetic model leading to the latter
covariance interpretation is:

Y=ptay, tay,+ 8y et (ae) ot (a0) it (5€),, 40

where ay, = additive effect of the jth parental allele, j=m, f,
ay,v; = dominance effect of the m with f parental alleles,
e:=a general environment effect,
() v, = interaction of the ith environment with the addi-
tive effect of the jth allele,
(3e),,,4,+= dominance X environment interaction effect.
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The covariances of different individuals under the above
assumptions are:

Cov (maternal half-sibs over treatments) =of=%je.?

Cov (individuals with the same environment over families)
=g,%, and

Cov (individuals with the same envimnment and maternal
pal‘ent) =G;2+U;;2+Ufgﬁ—'}_lﬂ'&"'i"crb ‘JE‘ ,_{{rdg ¥
0;52:]/1.0'552:

where o,z2 18 the interaction of the environmental factor with
additive genetic effects. If the breeding design had been a hier-
archy of females (f) and males (m) within females, the analysis
of variance (table 2} would be exactly the same, bhut with a
subdivision of the family and the family interactions sums of
squares. Such an analysis is presented in table 8 with the major
plot analysis omitted. If ¢.¢® is high, it is included in the estimates
of ,2 made from analyses within location sites, and is properly
included as part of the usable genetic variance for breeding for
specific sites. For general site breeding, however, the o,® estimated
over all sites is the only usable genetic variance for breeding
purposes, However, it should again be noted that these are statisti-
cal averages. The indications of high o,z* will generally warrant
movre detailed investigation of the forms of environmental response
displaved by the sampled genotypes and the existence of different
amounts of genetic variance in different environments.

Again, the environmental and interaction components can be
further partitioned into regression parameters of the interaction
model.

If we again assume the linear model with a generalized environ-
ment effect, the covarviances are:

Cov (maternal half-sibs over environments) =o/2=1e4%

Cov {full-sibs over environments) =, o= 130, + 110,

”mf = ,1(03'*0'9 ):

Cov (individuals in same environment over families) =os*,

Cov (individuals with same envivonment and maternal par-
ent over males) =opt o +of = Woa e ot~ Liodb,

o = Yo%,

Cov {individuals with same environment and maternal and
paternal parvents) =ow. /= op® > 0 o S —0f

], Ua"’ ];ltrn ,—,,E--‘-I er =+ ' 1005 i
UEm/f —*%, TLE +Uof: )

Since these variances can be expected to be different, their
existence implies evror heterogeneities that will cause testing ervor
rates to be Iimprecisely determined. If the .dominance-by-
environment interaction is high, then breeding would have to in-




Table 8.—Analysis of variance for nested sibs

[ P S e ot oo

Source of variance . ’
Females
Males/females
FemalesXlocations
Males,/femalesXlocations
FemalesxV

" Males/females XV

Females X 1" XTocations
Males /females X Vxlocations
Femalesx 1V
Males, femalesX W
Females X IV X locations
Males/fenmiales X W % locations
Femalesx VXV
Males/femalesX VX W
Femnlesx V> Wxlocations
Males/femalesX VX W X locations
Female plot error
Male, Temale plot error
Within male

e ¥ VS P GO U G VU TSI SV

(major plots omitted)

Expected mean squares

-1
d(s~1)
(d-1) (1-1)
d(s-1) (I-1)
(d=1) (v-1)

d(5-1) (v-1)

(d-1) (v-1) (I-1)

Cd(s-1) (v=1) (I-1)

(d-1) (w-1)
d(s-1) (w-1)
(d-1) (w-1) (I-1)
d(s~-1) (w-1) (I-1)

(d-1) (v-1) (w-1)
d(s-1) (v-1) (w-1)
(d-1) (v-1) (w-1) (I-1)
d(s~-1) (v~1) (w-1) (I-1)
(d-1) (vw=1yL{z~1)
d(3-1) (vw-1) (1)
{dwvwlr) (p-1)

e e R . e

o’,' +IPVWE 1y + 1 PVWS T 1y A+ FPVWIG 015+ rRVWIMSY,

o’,m HIPVW tin e 1 PVWLF msy

a’.d +TPVWET 1+ YPVISO By

a",r+'r1)vwzr”¢.w

o’,, FIPWE o tmep F1PWEE s 1¢ + 1PV oy +rplavmo?.,
au¢’ +rPWa s tmep HrplWoteme e
u”,(+v‘pwu“v:mu+rpw30"u/

a”,\'-!-'rp'LUo"'uzm/r

a"'.'-f*’l’p'l‘a'”w;m,rf'?'pvso”.u 1+ rplve? oo+ rplvmo’ e
a".,' +2pratutmer HTplet omit

ana, + 7PV e imer +TPVSO 1y

U:‘q‘ +7‘7)‘U0""m tmet

g’g, + P00 tinap + TPSO w0ty +'rpla”v wmsg rplme®ens
zr’,‘ 1P v atmer +1Dl0% 0 m. s

a’.l+rpa"w imet FTPES vty

i , PP v tmot

a’fl +7)su’.' =0%,

o' +pu’.m =o%,

F
T o
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clude specific combinations of parents or hybrid breeding systems
to utilize their responses to particular environments. In contrast,
general combining ability breeding methods would be applied to
use additive genetic variance-by-environment interactions.

Partially balanced designs would, of course, have diffevent
analyses. The above completely balanced analysis is exceedingly
cumbersome and the variance components estimates weuld carry
high errors. Unbalanced designs could estimate the same com-
ponents with far greater efficiency. Designs for testing can be
amalgamated with designs for wvariance component estimation
through Gaylor and Anderson’s {1960) L-shaped designs. All
genotypes ave represented on a subset of sites, while all sites are
sampled with a subset of genotypes. In addition, where even the
hasic subset of sites cannot be sampled by all genotypes, partially
balanced factorials or blocked factorials should be used.

To the extent that the environmental variables ave ordered and
have some regular form of effect on the yield variables, such as
a polvnomial function, the sum of squares due to the interactions
can be further partitioned into such effects as linear or quadratic
interactions.

Not only do genotypes vary in their average responses to en-
vironmental variations, but the degree and form of that variation
are also genetically determined. Some penotypes are highly vari-
able in their response to a sef of different environments while
others with the same average performance and grown on the same
set of environments are more homeostatic (Butcher and others
1972) . It has been frequently observed that the degree of inbreed-
ing also can affect the general level of response to environmental
differences : the higher the inhreeding, the greater the variation
as measured by the interaction (Allard and Bradshaw 1964).
However, there is no evidence that the type of gene action involved
in average performance determines the degree of the infevaction,
All forms of gene effects have been associated with genotype X
environment interactions {Robinson and Moll 18539).

The utilization of data on the response form in either breeding
for high response to controllable site factors or uniformity of re-
sponse to any kind of site factor depends on how uniformity is
evaluated. If it is of positive value as implied by Hanson (1870},
its value should he considered positive in evaluating trees for use
in an uncertain future environment. However, if the future dis-
tribution of environments is known, then the mean value of the
population will be the determining factor and uniformity of re-
sponse will not affect value except as it can increase mean tree
value directly. If the analysis of value is made under uncertainty
and a value function is taken as some form of a minimax strategy,
then uniformity has some incremental value in that it would give
high minimal values to those trees with high uniformity.

In all of these experiments it is assumed that plot arrangements
permit a complete evaluation of trees or families.over as large 2
part of their life cycle as necessary in what might be understood
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as reasonable competitive and spacing environments, However, it
is clear that these factors are not simply defined, nor are there
uniform conditions for surgesting that standard environments
can bhe found, The effects of missing trees and missing plots are
problems of experimentation which induce estimation problems
and ervor heterogeneities and which affect test error rates. How-
ever, since these are common statistical problems not peculiar to
forestry, the reader is referred to texts on experimental design
and analysis.

Some designs to test spacing effects have been proposed
(Namkoong 19662}, as have plot arrangements that maintain reg-
ular spacing for each family through successive thinnings (W, J.
Libby, personal communication). But litfle work has thus far
been attempted on intergenotypic competition effects among fami-
lies of the same species or provenance.

COMPETITION

Competition effects among genotypes, as distinct from spacing
effects, require that genotypic interacltions be analyzed and that
perfermance be defined in terms of other genotypes. At the inter-
species level, genetic competition effects are clearly significant in
forming planl and animal communities. At the finer levels of te-
strictions on growing space, competition control has been a major
silvicultural teol. While interspecies competition may occur
throughout the life cycle and environmental variables may affect
all factors of a tree's growth and development, spacing effects
themselves invelve crown, stem, and root in complicated inter-
actions (DeWit 1960). However, forest ecologists are still un-
tangling the interrelationships among trees caused by proximity
and eompetition for limited space, other special competitive inter-
actions among specific genotypes caused by chemical or special
fime-dependent effects also have to be studied. In a sevies of
studies on rice, Sakai (1955, 1965) defined intergenotypic compe-
tition as any departure in plant performance exhibited when a
plant is competing against other genotypes rather than in a
pure stand. Thus, ordered or unordered sets of competing geno-
types at the same spacing and constant in other environmental
factors have been neoted to have suppressing or enhancing effects
relative to pure-stand performance, and parameters and genetic
variations with respect to the special competition environment
have been described (Sakai 1961). Extending this work to forest
trees, Sakal and Mukaide (1967) and Sakai and others (1968)
clearly note that these special effects can substantially incrense
the tetal variance in mixed genotype stands over pure stands.
Hence, such effects may be of considerable importance in con-
trolling values and forest uniformity. Not only may uniformity he
increased by selecting similar acting genotypes, but growth may
be enhanced by selecting genotypes which somehow complement
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and mutually benefit their selected neighbors, While too little is
yet known of how the interactions operate and whether they are
atrongly dependent on other site factors of significance, further
investigation is clearly warranted in forest trees (Adams and
others 19738). Huhn (1969, 1970a, 1970b) defined the effect of
genotype X on the growth of another genotype Y as the competi-
tive influence of tree X (Wy) on the tree Y which has a competi-
tive ability #,. His projections suggest that genetic varionces in
both types of competitive effects can stabilize in forests. Similarly,
Mather (1969) indicates that competition can have stabilizing
effects on polymorphisms in natural environments, While his
definitions are different from Sakai’s, the results suggest a useful
parameterization and a method for estimating the significance of
this kind of eompetition in forests.

If competition can have as significant an effect on plant breed-
ing, as suggested by Allard and Adams (1969), such as to force
a complete reevaluation of plant breeding methods due to the
peculiar stabilities that natural stands may have generated, then
tree breeders can start developing their populations with the
precautions of including wide growth variations in competitive
tests using grouped tests, as suggested by Schutz and Brim
(1971). In fact, the expansion of medels to include competition
and its spacing and density-dependent effects have generated re-
newed concern with the classical concepfs of population genetics
and their ability to account for the existing variations in natural
population (Mather 1968; Ayala 1971). If it can clearly have
profound effect on natural evolution, then for foresters starting
with relatively natural populations and selecting for increasingly
cultivated environments, the demand is clear for experimentation
on these effects,

While most of the ahove studies have been made on mixtures of
pure breeding lines, genetic segregation and intermating among
competitors in breeding populations can also be studied as has
Huhn (1970a). In terms of how selection affects the composition
of competitive interactions if the genes which affect competitive
ability are quantitatively inherited, Griffing {1967} has developed
a model which is pavallel to his elassical model of selection effects.
The allelic combinations which result from fruncation selection
and reconstituting a breeding population by crosses among that
comhination of selected individuals is traced. In definitions similar
to Huhn's (19692}, Griffing assumes that alleles have hoth direct
effects on their own genotype’s growth as well as associate effects
on those with which it competes. Thus, instead of a simple

di;= o+ a;+ 8;; genetic model, he defines , ; d.,;, as heing the genetic
value of individual 1 in the presence of individual 2, and hence for

populations of size 2, the array of genotypes with allelic frequen-
cies p; and {; is:

FP{PJ (AiAI) X;‘E_?J:?Jj (AIA,‘) == DDy DDy, (Af‘lA-'lAizAiz)
1 W
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Genotype value A A, as expressed in (4, A4;, ALAy) is «,dy,,
10,8y, = o, F 0y, + a8y, o, oy, FaBig, e (A0 (1,
Fas (@) 1,5, F 0a (B0) jy0,F 20 (06) 15, F 22 {8 11,9,
a0 (88) gy to1, 20 (80} (5,0, F a0 (80) 11,5, F 20 (88) 1,1,0,05
where 1@, = diveet additive effect of allele A,
4815, = direct dominance effect of 4, 4,,

ally, = associate additive effect of A, as measured
on A A,, '

o815, = associate dominance effect of 4,,4,, as
meastred on 4; 4, ,

a (€a), = additive X additive interaction effect between
direct allele A, and associate allele 4,

do (@8) 4,s,5,= additive X dominance interaction between
direct allele 4, and associate genotype A A,

¢ (8@)i 5 4,=dominance X additive interaction effect
between direct genotype A; 4; and associate

allele A,

¢a (88} 1,4,1,5,= dominance X dominance interaction effect
between direct genotype 4; 4, and associate
genotype A, 4,

1;1

These interaction effects are not epistatic effects but average in-
tergenotypic effects due to allelic effects in the sense of affecting
competitive phenotypes. The total genotypic variance for
fifld":fg is:

2

L 2

2 !
Tg™ == a0 TdUDz+ﬂU;12+aﬂ'Dg l daUA.42+duUAD +daVDA2+daUDD2’

and the covariance between direct and associate effects is:
1a0a =23, (o)) (afly,).

The consequences of ignoring the existence of interactions
among competing genotypes in selecting individual trees can then
be traced with the same simplifying assumptions that Griffing
used to derive the noninteractive solution. However, by also trac-

ing the associate effects of the trees selected, he derives a selective
value of:

s
W‘l-’l=1+(;'2_) EI.‘\‘I.d
and the gametic array of selected individuals is:

{18) 2 pupy sy, (A +Ay).
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Random mating among these selected pavents then generates a
new mean of approximately: )

s
S PP, [1 + ?[aﬂn “ay, Fat, T d“}:jl] (1,5, e,)

9 o
_-;2-[:10';1-_%_ daﬂ.{] .

This reduces to the familiar sh? if the covariance of direct and
associate effects is zero, which implies that there is independence
of the fwo effects and that, on the average, we can select on in-
dividual performance with impunity. However, if a strong com-
petitor is a vigorous free which suppresses its neighbor, then a
negative covariance can exist and gain can be substantially re-
duced. If the covariance is positive, a benefit is obtained over the
case of ignoring competition effects.

If some form of group selection is used in which groups of size
{(gr) 2, 3 ... n are chosen for mixed growth properties, the
selective value of groups is taken as the contribution of both direct
and associate effects. Then under group selection:

PR R
Weyhys tahy = 1+ o2 (gr)ta llfldfifz' iz-’zd*xh)

and selection of groups within which randem mating occurs yields
a mean of approximately:

s
b 3 (g7} Iiuﬂ'zl2+2£dc}'7.{+a0'.l2jl-

While the latter factor can never be negative and never smailer
than o,2 in the individual case, the second factor can be small
depending on tesiing ability,

Extenging these results to groups of size n ¢an benefit selection.
However, if testing is limited, it might be easier to use direct
individual selection with separate measurements such as crown
diameter, root exudates, etc., to establish the form of competitive
influence and to compose populations without direct group test-
ing. This is essentially the recommendation of Toda {1956}, who
recommended selection for growth with narrow crowns in
Cryptomeria.

If competition as well as other ecological variables represent
factors affecting uncertain variations in future environments,
breeding goals must be modified either to maximize some criteria
of value in spite of future variations or to interactively develop
breeds capable of responding to changing compelitive environ-
ments. When future trends can he predicted, selection for special
conditions to utilize any interaction effects can he developed and
enhanced as suggested above, Similarly, for pest resistance devel-
opment, the coevolution of predator and prey populations can be
modeled as a special form of competition and dual evolulion de-
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veloped in maximally useful or minimally harmful directions. In
such cases, simple monitoring or directed breeding on predator
populations may be regquired, but coevolutionary systems between
the populations should require only small extensions of existing
theory.




CHAPTER 5
TREE BREEDING PROGRAMS

At best, the formuiation of a tree breeding program is difficult,
Even when gene effects, variances, correlations, ete., are estimable,
sources of genetic variatiens are predictable, and breeding sys-
tems and {esting procedures are also eperable, the integration of
all such functions into a breeding program is lkely to be complex.
The breeder still has the considerable task of integrating his func-
tions into the silvicultural and forest management systems. Even
assuming that a planting program is well established according
to forest removal schedules and sociopolitical necessities, the
breeder must project the desired profile of genotypes as it may
change over many generations, since such profiles can be expected
to change. Since envirenmental and economic changes are pre-
dicted with high ervor, the breeder must determine the relative
merits of developing special breeds for gpecial needs, or more
generally adapted hreeds. In general, one population intended for
long-term development would not be maximally improved for
traits of enduring value if selection for more ephemeral objectives
is alse imposed on that population. Selection for traits that de-
generate in value within a breeding genevation is clearly a costly
waste, since selection effect on other traits is somewhat decreased.
Thus, alternate means of controlling trait characters by silvicul-
ture, harvest or processing and conversion techniques have to be
investigated within an overall forest management system. For
those variations in the physical or economic environment which
remain unpredictahble, we requirve bhreeding strateries that at least
maximize minimum gain or satisfy other less eonservative criteria
which may be developed.

If traits can he initially allocated among the various means
of value control, such as genetic, cultural, and engineering, there
will undoubtedly be further inteructions amonyg such factors as the
form and value of suy silvicultural versus genetic improvement.
Refined management tools such as critical path analyses can be
employed to find the best selutions. Ghviously, a bhreeding program
for improved response to intensive silviculture depends on the
simultaneous application of infensive cultural techniques and on
the existence of particularly responsive trees, In addition, breed-
ing for survival and pest resistance alone may induce cultural
investments not otherwise considered feasible. Henee, joint con-
sideration would require breeding for cultural response as well,
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Breeding to produce commercial seed that is more uniform in some
traits can have an effect on silviculture that is not now foreseen,
Reliable responses to treatments and reduction of tree-to-tree and
stand-to-stand variation can reduce risk and increase the benefit
derived from any management program. In general, reduction in
such variation requires a specinl hreeding or selection effort, since
most breeding programs do not decrease genetic sources of vari-
ance and indeed are designed to aveid that. However, more uni-
form growth types might develop through drastic reduction of
the lower end of the value scale by both silvicultural and genetic
techniques. To some extent, the management control of forest
values must depend on the extent to which the agencies’ breeders
and silviceulturists control forest values. If the agency grows its
own wood, then direct opfimization of all control options can he
utilized. However, if only a small portion of the total product is
self-controlled, then reliance must be placed on uncentrolled or in-
directly controlled sources of wood and other forest products. In
that case, the forest manager may require special breeding op-
portunities to balance a general, uncontrolled, supply profile of
wood types instead of direct manipu'ation of the entire forest
product avray. Public agencies or organizations devoted to a wide
range of uses will clearly have broader objectives than those that
produce only fiber or those that can more closely control the en-
vironments in which the trees will be planted.

An array of methods exists by which the breeder can genetically
manage the character composition of individual trees and the mix-
ture of types in single populations or in sets of separate stand
types. He must coordinate his activities with changes in ecological-
silvienltural management and economic management of various
forest products. According to some general forest systems analy-
sis, an optimum operation would require that some traits be con-
trolled exclusively by product conversion methods, even if genetic
control is potentially useful. Once an array of trait distributions
is determined and site subdivisions are established, some sites may
require breeding for heferosis in many traits while others may
require breeding for additive gene actions on most. For each
population, a mixed hreeding operation may be requirved to de-
liver the trait combinations desired. Each site may also be planted
to a mixed assortment of trees from different populations, but
eac.. breeding population ean also be expected to have to mix trait
types. A mixed breeding system using heterosis for some traits
and additivity for others may then be found useful.

When breeding populations must be kept small because of opera-
tional limitations or hy deliberate choice of maximizing selection
differential at the expense of population size, developing small
local populations split off from a larger vegionally adapted popu-
lation may be a useful way to organize a continuing breeding pro-
gram. Thus, larger immediate eains for traits or sites of special
interest can be attained by intensive hreeding within small popu-
jations. As the smaller populations lose their ability to respond to
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recurrent selection or to selection for new traits, or as inbreeding
depression becomes a more serious problem, the breeder may re-
enter the larger population for at least a partial exchange of geno-
types. The larger population would then have been bred for
general adaptedness and for fewer traits which possess persistent
value, such as total yield and pest resistance. Cooperative regional
programs would thus permit individual agencies to maximize
short-run gains without losing general ecological or economic
adaptation. Furthermore, in the smaller populations, it may be
possible to breed for uniformities which may be too risky for
long-term development (Namkoong and others 1971),

Alternative exchange programs among agencies with small,
different, genotypic compositions are also possibie within ecologi-
cal zones and represent a modification of the replicated breeding
populations proposed by Baker and Curnow (1969). If the breed-
ing objectives have been sufficiently similar, then the selection of
particularly good combiners among replicates expands the parent
population. However, the advantages of replicate selection are not
obtained if the allelic frequencies failed to diverge among repli-
cotes (Madalena and Hill 1972). Therefore, cooperative planning
10 maintain individual and population replicate identities is re-
quired in any kind of segmented population development.

Many selection preblems would be considerably reduced if
breeding generation times were reduced and juvenile-mature tree
correlations increased hy either reduced harvest time or more
precise estimation of harvest values from youthful seedlings. Not
only would gains be more rapidly made, but opportunities for
using a wider range of breeding methods, such as single-cross,
backeross, and rapid breeding, would become available. In addi-
tion, the number of traits it is feasible to include in breeding con-
trol programs would increase as predictions of future sites and
values become more certain, Thus, early flowering experiments,
such as conducted by Stern (1963), and the possibilities of de-
veloping early harvest can provide breeders with many oppor-
tunities to investigate alternate breeding methods for their utility
in forests,

BREEDING PROGRAMS

Breeding programs thus must encompass the whole range of
activities in which breeders must engage. In addition to testing
and selection, which involve economic and silvicultural projec-
tions, the breeder must see that the breed populations are opti-
mally developed, that estimates of genetic means and variances
are obtained with precision, and that commercial seed production
is maintained at acceptable levels. In this hook, the various oper-
ations have been separated in order to describe the separate goals
and methods required for each phase, but most actual! operations
cannect afford to run separate programs for variance component
estimation, controlled crossing to develop breed population, test-
ing for selection, and seed production. Each tree breeder must
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operate within his physical, biological, and financial constraints
to accomplish some minimum objectives. If the primary value of
breeding is genetically improved seed production and some inefli-
ciencies can be tolerated, the breeder may be forced to forgo any
mean, variance, or sile response estimation. By choosing only
traits which he believes have high heritability, he may alse forgo
testing and simply start a mass-selection program. He may even
ignore the development of an ancestrally controlled breeding pop-
ulation and econtinually reselect a few parents for each subsequent
generation without regard to ancestry. Such a minimal program is
essentially the same ancient tradition of farmers who saved the
best seed for the next crop. The modern tree breeder will un-
doubtedly be more aware of both the opportunities and limitations
of various breeding alternatives. He may also be able to make
small jinvestigations on the distinections between genetic and en-
vironmental sources of variation, and he will aveid some of the
limiting effects of inbreeding in smail populations. His methods,
however, may not ultimately be much different than that which
a genetically untrained but intelligent forester might develop. If
by some cooperative programs, or the increase in his own capacify
to develop more sophisticated programs, he can make controlled
matings and experimental plantings, then the alternatives expand
for generating large immediate and future gains and adapting his
population to the changing needs of the forests.

The requirements of seed production will often be an inde-
pendent consideration and may most often be handled in speciaily
constructed orchards involving very few parents. The most ge-
netically restricted type of production orchard would be estab-
lished from cuttings or scions from a single selected genotype or
self-fertilized seed. Such an orchard would cbvicusly have little
potential for generating better genotypes, but would, on the aver-
age, give one of the best gains possible from currently available
genotypes. The next most limited production orchard would con-
tain only two genotypes with only the single-cross seed being com-
mercially produced, More complicated genotypic crossings for
pure- or hybrid-population productions then follow. They may in-
volve varying degrees of controlled pollination ranging from the
production of specified full-sib families, through partial control by
dusting with a selected pollen mix, to open pollination among all
genotypes in an orchard. While it is not always possible, produe-
tion orchards can often be separated from other phases of the
program,

The generation of an optimum breeding population to create
cumulatively better genotypes for production orchards is the prin-
cipal cbjective of the breeder and is the principal problem we
have considered in this boock. The basic operation we have con-
sidered ig the reduction of a base population fo a few parents,
then the regeneration of an improved large population from the
selected parents and the sequentially repeated production of large
populations by crossing among 2 smaller set of selected parenis.
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The number of parents may be only as large as the number of
production orchard parents or may be as large as several hundred
genotypes in a hierarchal or factorial breeding system. The cross-
ing among these parental genotypes may be restricted and
controlled among all possible parental combinations, or even un-
controlled, in which case the production and breeding orchards
may be genetically identical. Since one purpose of breeding control
is to maximize both the recombination of genes and the effective
population size, the control of pollinations among as many crosses
2s possible is generally desirable. This control might be accom-
plished in stages rather than all at once, if time permits. The
earliest crosses may also be done for other purposes, but supple-
mentary crosses to increase the controlled ancestral breeding pop-
ulation can easily form one of the later options for additional
breeding. As large a progeny population as possible would then
be desired, since the reselection of parents for the next generation
will attain maximum progress if the selection differential is large,
Since certain minimal parental numbers are required, we must
have iarge progeny populations to select from and to have repre-
sentation among several full- and haf-sib families, or cousins, as
well as within families. As previously discussed, some compromise
will have to be reached between maximizing the selection dif-
ferential and including a minimum relatedness and number of
parents in the breeding population. The choice of crossing pattern
is clearly affected by the number of parents, since the greater
their number, the more costly it is to make all possible crosses
among them. Thus, a solution for both the mating pattern and
parental number may have to be sought simultaneously. In gen-
eral, however, operating costs may not be affected much by these
choices, and the solutions may often be found independently—
the minimum parental population size can be determined first and
all possible crosses can be made among whatever number is
chosen, as in a large diallel, or possible in some modified form
of the factorial or hierarchal designs. Unbalanced designs can-
not be ruled out as a deliberate choice, and for many purposes
may be most suitable, If the breeding system used is at all com-
plicated, the choice of parental number (and hence, selection dif-
ferential) and mating pattern can be very complicated and would
require that the breeder trace all expected gains against cost
projections.

The testing of genotypes (by using relatives) for inclusion in
a breeding program requires further compromises, since testing
requires both a set of crosses in a mating design and an array of
test sites and time to accomplish the evaluation before the final
breeding population is selected. The problem for the breeder is
that the large population from which he will select his breed
parents must be reduced to a new set of selected parents in several
stages over a longer time period. The overall heritability of traits
will help determine the utility of such additional testing and
may sometimes be high enough that testing for additional data is
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not worthwhile (Namkcong 1970a). However, if testing is cheap
and can be done quickly for low-heritability traits, a good en-
virenmental and mating testing design may be instituted to select
more accurately. A compromise is then required if the same
crossings are to be used for breed production as for testing. Not
only will many crosses have to be discarded because their parents
prove unworthy, but a design which may he good for testing, such
as the factorial North Carolina design II, may be a poor breeding
design since it would include a few common pavents which pro-
duces a breed population with high coancestry. The objectives of
testing may therefore have to be compromised by using estimates
of breeding value which have somewhat higher errors of esti-
mation than what optimally designed experiments may pro-
duce. The various partial and blocked diallels yield moderate test-
ing errors as well as reasonable flexibility in selection for breed
population development. If blocking, replicated subblocking, or
both are desired for test efficiency, then the various disconnected
designs can be used. Within disconnected blocks, partial diallels
can be constructed, and, if desired, partial overlapping of blocks
can also be included without any additional analytieal problems.

The separation of breeding and testing operations is clearly to
be desired, but its cost is higher and the increased testing effi-
ciency would have to be balanced against the direct costs of addi-
tional experimentation as well as costs incurred indirectly in
reduced selection differentials caused by misdirected efforts.

On the other hand, estimation experiments may be reasonably
compatible with good breeding design. We may often wish to draw
a subset of the breeding crosses for estimation of variances to
determine levels and changes in genetie variances and covariances,
particularly if new traits or changes in selection goals are in-
corporated. While the demand for halanced designs seems obvi-
ous, the conflicts may not he serious. Thus, diallel mating designs
may find some favor for breeding programs which require simul-
taneous estimation and breed population production. Again, how-
ever, unbalanced designs can he very efficient for estimating
variances and may be useful in breeding populations if inbreeding
can be controlled.

The conflicts which arise from the contrasting requirements of
testing and variance estimation may also be difficult to resolve
and will more often have to he compromised by the overriding ve-
quirements of breed population production. However, if these two
objectives can be separated from the other functions, the factorial
mating design can he made reasonably efficient for hnth testing
and estimation.

Burdon and Shelbourne (1971) offer a comprehensive review of
some of these alternatives for testing, estimation, and hreeding
and their conflicting problems as they affect a breeding program
in New Zealand. While each breeding agency would have different
constraints and capacities, each breeder should consider the vast
alternatives available for choice to develop his own uniquely suit-




151

able program,

Timing is a very important aspect of the genetics program
itself and of its integration into the general forest management
system. A flow chart or some other device is often useful to assure
that matings for the Lreed popuiation ave properviy timed for
maximum gain rates, or that test data are available when needed
for seed or breed production.

In some situations, no genetic research or development program
is justified or efforts are best limited to provenance selection
{Wright 1971). Product value may be low, genetic-gain potential
may be low, or the efforts may be belter spent in another way.
Provenance selection offers no chance for cumulative improve-
ment by reselecting among provenances, but if seed procurement
and planting are used, mass selection and simple recurrent selec-
tion can provide advances at virtually zero marginal costs, opening
the potential for further gains at higher marginal costs, In cases
where only a small improvement effort is feasible, it would be
highly advantageous for a government agency or regional coop-
erative to estimate genetic potential and preserve gene resources,
For future programs, the assortment of species into programs and
initial breeding steps would be greatiy advanced if such data and
material were available,

Since such activns have not generally been taken, forest genet-
icists have usually been foreced to make preliminary judgments
on scant data. In most cases, an action program sheuld he de-
signed to provide for material and data Tor the next breeding
generation as well as improved stock for current plantings, While
one may usually be able to reduce an operation to simpler mass-
selection schemes, it is often more difficult to expand the com-
plexity of a program unless some degree of cortrolled crossing is
exercised. A precaution to take in reducing = prosram to mass
selection is that the population size be kept much larger to assure
& reasonahle effective population size.

Controlled cvossing and site sampling make possible various
options for selecting among specific crosses and among specific
genolypes for certain sites. Since gain rates will be heavily influ-
enced by time, early selection for seed production and for breed
development will be advantageous. Tlence, the crossing and plant-
ing systems should be forced as early as possible into the opera-
tions. If properiy coordinated, tree bireeders caiy have the data
and matevials for most of their species in one generation,




CHAPTER 6
MODELS OF POPULATION GROWTH

Populations of trees, shrubs, small animals, and even human
beings are composed of individuals that differ from each other
greatly or slightly, depending on the characteristic stndied and
the space and time scales of the observations. Sueh variations are
not only of interest in accurate descriptions of populations, but
are the sources of the capacity to change. Thus, while averages
are valuable descriptions of populations and are usually our first
perceptions of their nature, the variations that exist are more
important to studies of population dynamies. Parameterizing
means and variations in both the spatial and temporal senses is
the subject of this chapter. The simpilest population growth
models are develeped first. Population genetics has been founded
on these models, which are very simple and include no age- or
density-dependent effects. JMove complicated models will increas-
ingly be needed to describe genetic concepts that are being de-
valoped. Several of these concepts and models ave briefly described
in the marked (*) sectiohs.

In the fime scale of human activities, forest tree populations
appear to have stable size and eomposition. In the {ime scale of
the trees, however, the populations behave as most sexually re-
producing organisms. They are constantly changing. As seedlings
replace old patriarchs, as dominant trees suppress their neigh-
bors, or as whole forests die or regenerate after an environmental
disaster, the age and genetic composition change. Such changes
are continually ocenrring by chance, or in direct response to chang-
ing envirenmental pressures. In the scale of human economic
activities, only large-scale catastrophes in forests impinge on the
general public awareness. The exceptionally rapid disappearance
of the American chestnut was fast enough to be widely under-
stood, whereas even the great refreatfs of longleaf pine and eastern
white pine in one generation were less easily perceived. Thus,
major changes in distribution of important species have been
but barely perceived. Large-scale genetic changes which will for-
ever affect the future evelution of our forest resources have also
passed with littie notice. For example, the reoccupation of former
longleaf pine sites which is curvently occurring is generated in
part from introgressants with loblolly pine (Namkoong 19866¢).
The historie record indicates changes of far grealter magnitude
in the loss of whole forests in Western China, in the reduction of
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the Cedars of Lebanon to relic stands, and in the advance of Scots
pine and Norway spruce through Scandinavia. It is thus clear
that grand species movements and fluctuations in population size
and composition do cceur over space and time, in spite of our per-
ceptual limitations, and have molded the evolution of tree species
accordingly. Variations also occur on a smaller scale within
species. Through differential reproduction within gtands, and mi-
gration, isolation, and selection among stands, it has become clear
that a wealth of genetic variation now exists within most of the
species studied Ly foresters (see, for example, “Second World
Consultation on Forest Tree Breeding,” Food and Agriculture Or-
ganization of the United Nations 1970). It 1s evident that most
studies of genetic variation were generated by commercial inter-
ests in tree breeding and that many agencies will be controlling
the evolution of some segment of the forusts through their breed-
ing activities. The growth of forests in the future will therefore
be controlied to some extent by human activity. For this reason,
the forest biclogist will have to understand the dynamics of popu-
lation change to guide future forest compositions.

The precccupation of population analysts is to describe and
predict the changing patferns in relative abundance of genotypes,
forms, and taxa over space and time. This chapter will analyze
relative numbers in pepulation subdivisions as a measure of pop-
plation growth and development. By thus focusing exclusive atten-
tion on such a numerical measure, a presumption is made that
numbers are identified with success. Other criteria of success or
eoodness can he advanced, such as durability on a site or probha-
bility of existence at some future age, and for trees, longevity
may then be a concomitant measure of success. However, num-
bers are relatively easy to analyze and provide a measure of suc-
cess if correlated with probability of aveiding death or extinction
of lines of descent. Thus, when using numbers, we often make
the implicit assumption that random or nondiscriminatory causes
of death will remove individuals in proportion to their occurrence
in the population, that those causes of death are important, and
that we can therefore measure probability of survival by relative
freguency.

Another restriction in the scope of interest will be the exclusion
of the influences of interspecific evolution and interspecific com-
petition on relative survivals of genotypes or age classes within
species. By thus ignoring the substantial effects that interspecies
relationships can have on variation patterns within species, we
severely limit the exact applicability of our analyses to real for-
ests. Recent studies hy Dawson (1969, 1972), Levin (1971},
Pimente]l and Seans (1970), Kojima and Huang (1872), and
Greenwood (1969} have demonstrated that interspecific effects
can be important in the evolntion of a species. They have shown
that competing or predator species such as an insect or disease
can alter the gene frequencies in populations {rom what they
would be in the absence of the alternate species. However, enough
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of the real world may be well approximated by our models with-
out competitive effects of this sort, so that we can deduce the
consequences of reasonably complete models and analyze the
mechanics of a large segment of population growth and evolution,

Within these limitations, the problem is to mathematically ex-
press the biclogical concepts of population growth with param-
eters for response to environmental pressares, and to determine
the stability of relationships among age and genotypic compo-
nents. By analyzing the effect of observable factors on birth, re-
production, and death of individual trees, we expect to derive the
probable behavior of the whole population and even of popula-
tion differences. The origins of group differences are considered
to arise only from differences among individuals which evolve into
separate populations,

Such problems can be most directly analyzed if all trees be-
have exactly as expected and if all environmental factors are
exactly predictable, Even if the interactions were quite complex,
we could deduce exact relationships for any given set of condi-
tions and could describe the populational variations solely in
terms of variation in the external factors. If the external envirvon-
ment were very simple, then we could determine the exact he-
havior of the population. On the other hand, if behavior is not
precisely determined but some elements of chance variation in
response exist, then the average effects do not completely describe
all deviations in any single population. The element of chance or
the probabilistic nature of the response implies an unknown or
unknowable set of causes such that individual events are not pre-
dictable, and that only average, collective tendencies can be de-
seribed. Thus, in a deterministic model, it may be ordained that
during the evolufion of an oak forest, the seedlings will have 20
percent mortality the first year and 20 percent of the remainder
in the second and each succeeding year, and that the survivors will
reproduce one viable seedling in their tenth year, two in their
fifteenth year, ete. Then, we can derive the exact age distribution
of any stand, at any time, by simply following the predetermined
course of any given population. On the other hand, it is often more
reasonable to say that the birth and movtality schedules vary
somewhat from tree fo tree and from stand to stand. We may
say that the process is not exactly determinate but that 20 percent
is an average mortality that is rarely exactly achieved. Then,
the model contains errers in estimating oeccurrences and chance
or stochastic variations in the cause-effect process. While the
average survival may he the same in the deterministic as in the
stochastic processes, we have now genervated a progess in which
variatinn can exist among stands or in which variations from an
average predicted course can exist during the history of a single
stand’s development. In this ease, it will be important to know
the extent of variation around predicted events. The probabhility
of stand extinetion may exist and is of eritical importance to esti-
mate, Hence, analyses of such stochastic processes arve reqguired to
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confirm or modify expectations based on deterministic processes,
We will follow a common sequence of analyses and shall first
examine deterministic models and their analyses, then examine
some stochastic variations and their analyses of the same effects.
Thus, any changes in the age or genotypic distributions which
may have occurred over the past 100 years may be better under-
stood. In addition, more optimal changes in the next 100 years may
then be planned in ferms of averages and expected variations. We
shall therefere be concer. ad not only with the average behavior
of populations but also with such measures of variation as the
variance and correlations of numbers in age classes and genotypes
as they may change over space and time. Also, some populations
and some genes will wax or wane in relative numbers and some
will go to exiinction, requiring us to also consider probabiiities
of those events.

THE SIMPLEST MODEL

As a first approximation, life parameters may be simplified into
general propensities for an individual to survive, reproduce, and
die af any time within some generational timespan. Age-dependent
processes are ignored in this oversimplified concept, and all life
events are lumped into these simple categories without reference
to time of action or to any interrelatedness of action. For exam-
ple, if we were to observe an isolated forest stand at intervals of
20 or 30 vears, many trees would bhe present in sequential ob-
servations, but some would have died. In or near their place,
others would grow and might die. Thus, it is possible to imagine
tree populations as starting from small colonies and increasing
in numbers over several generations by occupying border aress
as well as by increasing stand density, as Bannister (1965) has
observed for populations of Pinus radigta. I it is further assumed
that at some upper limit to population expansion, the members of
the population are removed in proportion to their relative fre-
guencies, then population limitations would be maintained and
predictions of relative frequencies would still be accurate,

Populations growing in such a manner increase at each time
pericd at a logarithmic rate, as determined by the relative pro-
pensities of each tree to regenerate or die. At a rate of increase
of m, an initial population of n individuals would increase fom n
in one time period. Using supersecripts to denote time periods, with
% original trees, nl!) would he equal to mal®l, and in the second
period, n(? is increased to mnlti=m (mnltl) =m0, In general,
for ¢ time periods, nl=m!n!®, or in terms of logarithms:

n {nt} =lnal+t inm, . (1)

which is n linear function of In{m) with time being the only
variable,

We can similarly model the growth of populations which re-
produce, as above but on a more continuous time scale, and define
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a propensity to increzse {(w)} in terms of rates to inerease for
vanishingly small time intervals, Thus, the number at time ¢ is
il and increases after a small time period (8¢) to nU+8) and
the amount of increase ig written as nt+91—nll, Then defining
our propensity to increase {(w) as the ratic of the increase in
numbers to the numbers at the start of the interval, multiplied by
the length of the time interval, we have defined:

e+t — (2
W=

Now aliowing §¢ to become very small, we define w as the limiting
value. As 3t—-0 in the above expression, we derive the differential
form of that equation as:

_dn (&) _[d {n{i})]
YT nydt dt ' (2)

where = is now 2 continuous function of time, » (t), and In is the
natural logarithm. This is analogous to our definition of m in
defining a logarithmie rate of increase in numbers with a rate
parameter w in place of m. The m is often called Malthusian
parameter, We can integrate (2} fo get the same form as for the
diserete process:

m{n(t)y = In(n(0)) +w-atorn (&) = nevt {3}

In either case, the population is expected to grow at an
exponential rate until density-dependent or other processes force a
change in the model. Thus, if two tree species or populations were
to invade a new site, both would increase according to their
propensities fo reproduce (for example, their fitnesses while the
population was expanding), and the one with the higher replace-
ment rate (w) would dominate by occupying increasingly more
territory or by being more heavily represented among the replace-
menis whet.Zver chance mortality reduced total population size,

While this model of population growth has served as the main
basis on which genetic models are built, many more complicated
and more realistic models of population growth have been devel-
oped. They have not yet been extensively used in geneties, This
shortfall of application demands the atfention of foresters and
other geneticists who are familiar with the ecology of their species.
Interspecific competition, for example, can have a major sffect
on relative fitness of genotype and therefore should be included
as a frequency-dependent effect in any generally useful population
model {Dawson 1969; Greenwood 1969; Levin 1971}, In addition,
it is obvious that environments change and alter fitness vaiues,
that age-dependent processes vary significantly, and that competi-
tion and density dependence often induce significant freguency-
dependent effects on survival and germination processes. Ilence,
the extension of models to include the multiple and variable
effects of genes is clearly desirable. Such models should be devel-
oped to better reflect the causes and effects of variations. Recent
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models of genetic fitness that show competition among and within
genotypes in a logistic equation form (Clarke 1972) open many
new channels of investigation into density-dependent gene actions
of simple types. Before discussing the genetic models derived
from the simple population models, some of the complications of
population models deserve discussion.

DENSITY-DEPENDENT AND
COMPETITION MODELS*

It is clear to most foresters that species differ in density-
dependent processes and hence differ in their relative abilities to
exist and reproduce undeyr dense conditions. While many aspects
of tree growth and of the environment are involved, the different
tendencies o increase under crowded conditions may be generally
modeled by decreasing the reproductive rate or increasing mor-
tality as some upper limit in population size is approached. One
commonly used model parameterizes this effect by multiplying the
rate by a factor which decreases as population size approaches an
upper limit «. Thus, the change in n(f) with respect to time of
1t
3

factor of (}.—g) the differential equation of this density-depen-

equation 2 ecan be written as:% =y + 2 and by multiplying by a

dent model is:

dn _ _n
"d—t---ﬂ.?l (1 a )

The two parameters i and « then determine relative population
growth rates and, if survival of genotypes or populations is a
simple function of relative frequencies, relative success is also
dependent on the density of the population. Each genotype, for
example, may endow its possessors with lendencies to larger or
smaller 1 ov ¢ factors. At low density, the type with the larger w
will be increasing faster, but it may suffer relative to any alterna-
tive type with a higher ¢ af some higher density. For populations
which do commenly increase in density to the point where death
or birth is differentially affected, the « values will be important.

In a very rough and oversimplified sense, tree species may he
divided into those with heaviest selection for their 1 factors versus
those with heaviest selection for @ factors. The old-field and
picneer species may be most heavily selected for their ability
to reproduce quickly and invade new territories, Often, such
species of the Salix, Populus, or Pinus genera deteriorate the
environment for their own reproduction and require some disas-
trous type of site clearance in order to veproduce. Among these
species, the more successful types will be those with a high w in
the face of interspecific and intraspecific competition. In contrast,

*Graduate-level stalistical training required for thorough understanding.
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elimax species which are elements of a stable community require
an ability to grow under intense intraspecific competition, and the
more successful of such types will be those with high a parameters.
These models refer only to the effects of numbers regardiess of
the genotype of the competitors. When the type of competitor
affects success, intergenotypic or interspecific effects require
specification of the density of each type of competitor. The classi-
cal model of competition between species in which both self-
regulation and interspecific vegulation cccur is the Gause-Volterra
model (Slobodkin 1961). In this model, the density-limiting effect
that a second genotype has on the first genotype is made propor-
tional to the n of genotype 2, n., and wonld reduce the replace-
ment rate by say on.. Similarly, the depressive effect of genotype
1 on the replacement rates of genotype 2 would be say fn;. Then,

instead of a rate depression of (1_121), the rate would be modi-
1
fled by (1—%‘—11‘?19) for #n,, and by (1—%-—‘6‘111) for ., where
1 a

@, and ¢» are the limiting density effects of their own types. The
two growth rate equations would then be:

dn; _ Ny
E't__“"ﬂ'l(l . ato)

dﬂd} Ma
W = ia7la (l—a—;—ﬁmJ .

Similar equations for as many community participants as desired
can be constructed and a set of first-order, ordinary differential
equations constructed. Community stabilities can then be direetly
analyzed and several have heen (Vandermeer 1972}, but not thus
far in forestry.

While this logistic model may now account for a form of self-
regulation, it is still a crude approximation to reality and is not
unique jn producing the kind of inhibition sought. Any number
of polynomial functions or other nonlinear forms could have
been hypothesized, including the addition of elements for insects
or diseases that cause mortality according to the frequency with
which the host type exists, Nevertheless, studies on the existence
or nonexistence of stable equilibria are often couched in the
terminology of the Gause-Volterra equations (Ayala 1972; Gilpin
1972},

AGE-DEPENDENT MODELS*

A diftevent degree of complexity can be introduced into our
model by considering the changes that occur in the life of indi-
viduai trees in their capacities to survive and reproduce. It has
been pointed out by several authors (for example, Lewontin 1965;

"draduate-level statistical training required for thorough understanding.
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Demetrius 1969; Anderson 1971; Anderson and King 1970) that
life history vaviations can significantly alter the simple parameters
of population growth. It is also apparent that means and variances
in traits which affect life processes drastically change as trees
mature {Namkoong and others 1872) . Therefore, life-cyele effects
must he included in any study of relative population growth rates
and individual survival probabilities. In addition, concepts of
interspecific competition in the logistic form of density dependence
can be affected by age-density changes in competitive effects
(Gilpin and Justice 1972).

If we again veverf to the simplest model of logarithmic popula-
tion growth without density dependence, and assume that pro-
pensities for survival and reproduction exist without any form
of competition or self-regulation, and only add that the processes
are age dependent, we can derive some interesting, limiting forms
of population growth., Te simplify our examples, let us con-
sider that a forest tree grows in only three stages (seedling, 4;
sapling, B; and mature, €) and that survival and reproductive
probabilities can be predicted for each life class. The methods
and theories developed for three classes are directly extendable
to any number of age classes that would be desired for a mere
complete model of truly different growth phases of a forest. Ages,
for example, could be grouped into classes of 5, 10, or 5 vears
or any time intevval, Pursuing our model with only three age
classes A, B, and C, assume that a good measure of class 4
seedling survival into class B is 30 peveent, fov survival of trees
frem periods B to C is 0} percent, and that all trees heyvond
that age died but were able to produce living seedlings of class A
Defore death. Suppose further that trees in the seedlings ot
class A could produce no seed, but that saplings in class B could
produce enough seed to yield an average of four surviving seed-
lings (of class 1) and that trees in the last period, C, would
produce an average of two surviving seedlings (of class A) before
dying. If the population is observed at some starting time with
age class vatios nf 3 seedlings (A} : 2 saplings (8): 1 mature (C)
tree, we could then trace the expected growth of the population,
Tor example, out of a total population of 600 trees, the 300 A
trees allow only 30 percent to survive and to advance into the
next age class, leaving only 90 B trees and producing no new
A trees. Of the 200 B trees, 40 percent would survive leaving
only 80 € trees, but 800 new 4 trees among them, The 100 C trees
would not live beyond this period but would leave 200 A frees.
The next generation would then have an age distribution with
ratios of 10 of class 4: 0.9 of class B: 0.8 of class C. Repeating
the process with the new age class numbers, the subseguent
development of the population can he traced from its original :

M 300 1,000 520 1,272
g J==| 200 § to an | to g 300 | to 156 |, ete.
e 100 g0 36 120
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If the process is continued, a few interesting patterns emerge.
The total population size would tend to increase over the course
of several generations but initially it fluctuates from 600 to 1,170,
to 856, to 1,548, ete, A certain constancy emerges if we take
the numbers in each generation as a ratio of the numbers
in the previous generation. Taking the ratios of 1,170:600, then
856:1,170, this sequence is: 1.95, §.732, 1.808, . . . , which would
fluctuate avound a final value of 1.1196 with smaller and smaller
variations. The increase in size of each age class alse fends fo
fluctuate about the same limiting value of 1.1198, and, if followed
long enough, the ratios of numbers in the age classes would be
seen to setfle down to constant ratios of 1:0.2679:0.0239. If we
had started with other age-class distribution than the (3:2:1)
which we arbitrarily chose, the exact same result would have
ensued and the same asymptotic ratios would have been reached.
We could have predicied these results if we had considered that
the process is simply one of tracing one-generational-step transi-
tions from each age class either o death, or to the next age class,
and alse to their contributions te reproduction., Computation ecan
be done by mulliplying the same life probabilities sequentialiy,
but it is more simply done by matrix multiplication.

[ei
Ns
If the (ns) of the initial population is the source of the

g

seedlings in the next measurement period {n;1*!}), then the egua-
tion relating n,1%} to the initial population is:

N =0« 1, 1914100+ 2 10

14\
={042) (ng) = (0 4 2) nto,
e -
where 1% is the column vector of n for period 0. Similarly, it
can be seen that:
gtt1= 80,01+ 8 « g1+ 0 - M
=(3 0 0) n9
and, ntH=(0 .4 0j ni®

Na rn 042 Ta (o3
Therefore, | ng =1 .300 g
e 0.4 0 Ne

or nM=H} =ni® where M is the matrix of life coefficients and
xnlf) is the expected number vecitor in each class of time ¢ The

matrix M contains reproductive rates for each class on the first
row, and the survival and advancement probabilities for growth
into B and C classes in the second and third rows, respectively.
The eoefficients are defined for the time period considered and
clearly determine the growth rate of the population. Thus, multi-
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plying by a matrix M is equivalent to multiplying by successive
powers of m in the simpler case, We can also project that if a
steady state in the ratios among the age classes exists, then the
vector of numbers must eventually have a common ratio. This fact
can be expressed as:

altl= Mpit-1=0 « M + ni20=M2pl-21 =3¢ « niol
Eventually, if nit'=xnit=1], then substituting in the ahove equation,

Aptt—1—M nf=1=0 and (M —A)nt1=0, and, therefore, M—M=0.

To satisfy this equation for any given M matrix, a certain set
of A values must be found which are called the eigenvalues and
which are comparable to the Malthusian parameter used in sim-
pler population models. Associated with each eigenvalue, there
would be a veetor of age class numbers %, called the eigenvector,
which is useful in determining relative growth of the age classes.
On positive 3 matrices such as would exist for life tables, weg can
invoke Frobenius’ theorem on their eigenvalues (Gantmacher
1964) and can assert that there will always be one eigenvalue
which is positive and noncomplex, with modulus greater than all
other roots and with an associated eigenvector with all positive
elements. Therefove, there always will be a solution to the system
of equations (M—xINn=0 and a vector of age class ratios to

which the population will grow asymptotically. The largest eigen-
-alue A is the asymptotic growth rate of the population, as well as
of the age classes at their equilibrium ratics, and takes the place
of m in projecting future population growth.

The only added complication which we have introduced to the
exponential growth model is the fluctuating patterns that the
actual numbers are expected to take due to the time that it takes
for excessive numbers in any one age class to influence all age
classes. Such fluctuations can strongly influence the population to
endure large changes in total numbers, and if there are any
changes in genetic or other frequencies associated with the ages of
the trees, those measures also will vary until the age class distri-
bution achieves some stability. Anderson and King (1970) have
shown that such variations in age classes affect population gene
frequencies whenever frequencies change with age class and that
any changes in gene frequencies can, in tnren, affect perturbations
in age distributions. Thus, whenever the population is in age-class
or gene-frequency disequilibrium, the time required to achieve
stability can be long and a significant factor in maintaining seme
fluctuations without other cause. If we then look at the other
roots to the matrix equations, we can see that this type of fluctu-
ation can also be predetermined.

Using a matrix of real positive numbers, we can usually ex-
pect that the equations for the sequential replacement of age
classes in trees from each preceding age class will be independent
in the sense that the matrix of transition probabilities will be of
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full rank ». We can also generally expect that all » of the roots of
the matriz M will be distinct. Under these conditions, the transi-
tion matrix can be changed to give the same results in a form in
which the effects of fluctuations can easily be traced in the expected
progress of the population. Where the eigenvalue A; of the matyix M
has an associated eigenvector n;, we can write: (M—x)n=9
For the whole set of eigenvectors then, we ean write: -

A 0
Ao
M- " Uil mayte < = - 2y =001,
O J\-r
which is equivalent to, [M—all N=1{0],
f)u 0 ~
Az
where A= : ,
O ;\r
. -
and N={fgag * ** Ny

The complete set of eigenvectors spans a vector space defined by
M, and any vector of initial age distributions can be written as a
linear function of the eigenvectors, Thus:

MN =N
M :N.{&N—l
M2=NAN-1

M{=NANTL,
In particular, for any given initial age distribution, u!®, the
progress in numbers for each age class can he written either as
ni=Mnl or as aM=NAN-2® which is much easier to defer-
mine once A and N are found. From the latter equation, it is now
clear that each eigenvector contributes its stable age-class dis-
tribution in propertion to the size of its eigenvalue and, hence,
that for any number of time intervals, we can trace the growth of
the population by summing the contribution of each eigenvector
as weighted by its associated eigenvalue raised to the power of
the number of time intervals, It is also clear that as the number
of time intervals gets large, the largest eigenvector dominates the
rest since we continue to increase the power of its eigenvalue con-
tribution. During the initial genervations, however, the effect of
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having a disequilibrium age distribution on the attained age dis-
tributions is determined by the size of the other, often complex
roots,

The development of comparable models for the time-continuous
case is fairly direct and might often be an easier method of deriv-
ing statistics for meaningful cases, especially for those cases in
which the number of age classes is very large or in which birth
and death are continuous in any reasonable time scale. The basic
model simply reduces the time inferval to zero. Hence, the birth
and death processes become continuous functions of time.

The model in which birth and death are continuing events has
some illuminating featuves, If the population growth rate tends
to eventually even out at a rate A, then each age class also neces-
sarily increases at the vate A as the stable age distribution is also
approached. Hence, the same population growth model axists as
for the logarithmically growing population first considered, except
that the age substructure of populations can now affect the growth
of populations.

Two types of functions have been used in traditional popula-
tional and demographic studies. The first is essentially the same as
the matrix model and is a useful introduction to the second, which
is a time-continuous model. The first form uses the convenience
of two time indices or variables, ¢ and z, to distinguish different
points in time. The numbers at time ¢, Ny, and are related to the
numbers which existed z time periods ago, N ({-z), by the popu-
lation growth rate during that time interval, ¢%, the exponential
growth for the simple matrix models, Thus, N (¢} =N (t-x)e™=, or
given the N (f), the numbers which had to exist © time periods
ago had to be N (¢-x) =N (¢) e~ In particular, the newly germi-
nated class B (t-x) =B (#) e~'=. On the other hand, the numbers in
an age class at time ¢ are also a function of the numbers in
younger age classes and their survival rate. In particular, from
germination to age class z, if the survival rate is [ (z), then the
numbers in age class ¢ at time ¢, N(xt), were germinated =
time periods ago and survived for that long and, therefore,
Nz t)=B(t-z) + I (x}. If we defined m(x) as a fecundity meas-
ure, the total number of births at time ¢, B{t), would be the
fecundity of each class multiplied by the numbers in each age class
or N (&,t) m{z,t) for all age classes. Since m(x) is the same for
all time, then B(t)=s N{(zt)m(z) and from above B{t)=

s B(tx) [ (z) - m{x). Then if the B age class also follows the

;imple rules of proportionate growth, B(t)=B({i-z}e™, or con-
versely, B (t=x) =B (f)e~; then B{t} =z B(f)e~™ | (&) - miz}.

T

Division by B (¢} yields 1= ¢~ [ {z)  m(x). Then, population

growth-rate parameter  is a funetion of ! (2) and m{z} sched-
ules, and mathematical analysis indicates that for a stable popu-
lation with B (t) =B (t-z)e=, there is an » that gives £ e="" { (z) *
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m{x}=1for any ! (zYm(e) schedule. In fact, there are as many +
roots as age classes, but the largest pesitive rool again determines
the asymptotic behavior. The X's of the matrix solutions are the
&" rools of these solutions.

In the continuous cases, a population with a given { (z) and
m {x) schedule would produce progeny within a Ax time period at
a rate of [ (xym{z)ax, If ax is reduced to an infinitely small
dx, and we summed the progenies from parents of all ages, then
total births over a single lifetime wounid be expected to be
J I {xym{x)dz. In a population of individual trees of different
ages, and at an instant in time (¢), we might guess thai the
{ {z)m(x) schedules would be operating on an age profile in the
population deseribed by some function of %, say, 7 {z). Then, new
germinations for the whole population with the mixed ages
in frequencies defined by f(z) would be estimated by
[ f{z) I (x)ym{zx)dz. Since f(z) is the numbers of trees now
alive in the z age classes, it must have been produced by the
{ {(z)m(z) schedules of past times. If I (#)m (%) schedules are
constant, then our f{z) might be expected to be proportional to
the f{x) of some time ({) ago. Individuals which are age x now
were germinated r time infervals age and can now be parenis of
new progeny. Therefore, at this time (£} the number of births
b{x}¥ from z aged individuals=b (-2} I {x)m {z) and hence the
total births at time (£}, say, b{¢) for all ages, arve:

J bty - 1 (xy - mix)da.

We also know that growth of any age class is expressed in
our model as a multiple of the instanianeous population growth
rate e for each age class, and therefore that the number of
germinants now (at time £) is equal to the number of germi-
nants in the past (at time ¢-z) multiplied by e Therefore,
b(t)y=0b(f-x)e and, therefore, b(t~-z)=b(#)e—r. Substituting
in the above integral gives jb (¢} e~ (x)m (z)de =05 (£) and hence
dividing by b {¢) gives, 1=fe~= | (z)m {z)}Jz. We can thus write
an integral equation for any { (z)m (2} funetion and solve for the
v roots, the instantaneous intrinsic rate of natural increase.

Since population growth is an exponential function of time, it
can be seen that the major effect of variations in the {(z), m(z)
life table parameters on » is exercised during the early life stages.
Variations in the { (z}m (2) schedule in later Iife stages are rela-
tively ineffectual. This observation was offered by Fisher (1958)
and Lewontin (1965) and was also shown to be true by Demetrius
(1968}, who demonstrated its validity for the Leslie matrix model
of diserete age classes. It can be cleavly inferred from Keyfitz's
(1968) resuits for the integral equation form. Both the { (z) and
m{x} schedules of younger ages are not only most effective in
modifying population growth but are, consequently, also most in-
tensely subjected to selection pressures, those individuals with
maximum 7, dominating those with small ». For example, growth
or other behavior differences which affect successful reproduction
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of loblolly pine would be much more important at age 15 than
similar differences at age 50.

EFFECTS OF VARIATIONS®

For any given life table, variation must be expected in any real
population development. Hence, the expected growth rates will not
he realized with complete precision. For example, if a constant
probability of mortality exists in any population, some variations
from the exact expectation of population size would be common.
Thus, in our previous example, if the probability of survival from
class A to class B was 0.40, the sampling variance in the popula-

3}(1—?)!]_0.2-1:

7 N Hyen

tion could be reasonably expected fo bel:

though survival and reproduction probabilities have such vari-
ances, it is still possible to predict expected population erowth and
an expected profile of population age classes. Pollard {1968) in-
troduced a method for tracing the progress in expected means,
variances, and covariances among the numbers in the various age
classes. When sampling error occurs and each free survives and
veproduces independently with its stated propensities, then the
events for the whole population are sums of binomially distributed
events for all of the age classes. It turns out that the means are
the same as predicted for the deterministic model. However, if
many population trials were conducted, the expected variance
could be large and any single population could develop growth
trends quite different from the average.

In addition to random individual-tree variations around average
survivals, there are variations in the average survival and repro-
duction expectations themselves. These variations can be observed
in the changing conditions of life according to whether a stand
develops on new ground or must develop through overstory com-
petition. Envivonmental conditions vary on different areas at the
same time and on the same avea at different times, affecting sur-
vival and the probabilities of producing viable seedlings. Hence,
variations about some average expected-growth rate and popula-
tion age distribution are created by vaviations in sites over time
and space. The means and variances for age clasges in the future
can he predicted with a deterministic model by varying the Leslie
matrix (Sykes 1969). In general, variations due hoth to sampling
deviations and variations in the actual probabilifies of life events
(Weissner 1971) may cause variance in age class and population
aumbers to increase faster than the squaved population size. The
variances may therefore be so strong that they continually induce
age distribution diseguilibria (Namkoong 1972). Thus, even

*G raduate-level statistical training required for thorough understanding.
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though the average age distribution might be predicled for some
future time if we know or can estimate the parameters and their
variations (Billingsley 1961), large fluctuations can persist,
causing extreme events such as stand or line extinctions to be of
central concern though otherwise not expected. In addition, if
stabilities may only be approximated, then any real demonstration
of population stability must rest on the presence of other factors
such as density-dependent effects and cannot he predicted from
self-induced processes such as we have investigated.

POPULATIONS WITH GENE DIFFERENCES

Another source of variation within the classes considered above
significantly affects population growth. Clearly, the species we
deal with are commonly much more complicated than those we
have been considering. Their members vary in survival and com-
petitive and reproductive capacities. Any genetically variable trait
which affects survival or reproduction possesses genetic variation
with respect to * - replacement rate in the population. Thus,
genotypic or allelic variations affecting that trait can cause meas-
urable variations in fitness values. For simpler models, the popu-
lation can be expected to change its average fitness towards the
more reproductively effective type. It is clear that intraspecies
genetic changes in fitness require some variations in fitness, just
as in interspecies relations. The relationship between variance and
vate of change was derived by Fisher {1958) as the “Fundamental
Theorem of Natural Selection,” which includes the effects of inter-
mating among all possible genotypes.

When considering the growth of a single population with the
simplest model, the rate of increase is a logarithmie function of

T
.

population size: % =rN. With more than one {ype in a popula-
tion, » is dependent on the numbers and growth rates of the differ-
ent member types, and growth is dependent on relative values:
AN \ro A
"E-__;\ fy ;\'3?2
in which » is the weighted mean of r; and », and might be simply
expressed as:
1\r1 “\r"

Y Fy —Fay

N
and where N =N+, and the r, are parameters for the intrinsic

r=

. . . . N
rate of increase specific to each type. Since the proportions '\l
T

Ny o -
and -g- can he expected fo change, » can change and hence we
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can write:

dr . dlpri+ (1-p)rel

dt dt

where pz%, 1—p=%r,;",

dr __dp __ dp
then; E '_‘?‘i?t- ?QE

d
= (r —?'z)d—?g .

Since the proportions depend on the changes in numbers of both
classes,

dp _ d{N,/N)
dt dt
_ 14N, _ N, dN

and, therefore, i—i‘::p(?‘r—?‘z) (rs=71)

=p(1-p) (r1—72)%

7t can also be derived that if »; occurs with frequency p, and 2
occurs with frequency (1-p), the variance in 7:

ot =p (1-p) (r—72)%

Therefore, the rate of change in average population fitness is
exactly equal to the variance in the fitness values among the
various types which exist in the population.

Applying the same principle to the genotypes which exist in
intermating populations requires only the further derivation of the
expected frequencies of the genotypes. Otherwise, we assume that
the simple logarithmic growth potential of the population with
sustained growth rates for each type is a reasonable model. If the
population possesses two alleles (4 :a) at a locus with frequencies
p+{1-p), the three zygotic genotypes, AA4:Aa:an, may occur in
almost any set of relative freguencies according to how the
gametes are combined. If no forces, such as assortative or dis-
assortative mating, or meiotic drive, affect the pairing of gametes,
then the frequencies of the zygotic types in the population would
be expected to be in proportion to the probabilities of random
association, In large populations, these frequencies would be p?
for AA, 2p(1-p) for Ae, and (i-p)? for aa, regardless of the
zygotic arrangements in the parental class, The equilibrium fre-
quencies induced by random mating have been derived elsewhere
very well (in particular, see chapters 1 and 2 in Li (1955)) and
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under the label of Hardy-Weinberg equilibrium. We can then de-
fine an average fitness (1) as:

W=W 4402+ W.,2p (1-9) +Weo (1-p) 2.

It is also necessary to define an average effect of an allele, since
the fitness contribution of an allele can change if the allele is in a
tree with genotype Aac or AA. A reasonable definition for the
average effect of 4 is the fitness of the zygotic types weighted by
the frequency with which it is associated with A (in A4 trees)
and a (in Aa trees) alleles, Thus,

Wi=pWi+ (1-p) W,
Wo=p (Wu) + {(1-p) W,

and w=pW,+ (1-p) W,
=W +2p (1-p) W+ (1-p) 2 W,

Therefore,%can be derived in terms of changes in p and hence

. dw dp
In terms of—@- and-a-t—.
From the above, we can obtain:

dz
-d—p-~—2 (I’?_&" Wa)
and as in the simpler nengenetic cases:
dp_ 14N, pdN
dt N dt T N dt’
Since we assume logarithmie growth rates,
dN,

N
dN . —
and T&——Z\w,
dp _
—[—E-*??WA nw
=p(W.—w)
Therefore dw _ dw dp
’ dt dp di

=2p (Wa—w) (Wa—Wo).
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In Fisher's {1958) notation this is:

dw

= =2n0e

dt p )
where a=W,—1, the average excess of a gene substitution and
a=W,—W,, the average effect of a gene substitution. We can
also rewrite the above formula as:

@
et

which is the variance in average fitness of the alleles. Thus, Fisher
(1958) derives his *Fundamental Theorem of Natural Selection’:
the rate of increase in fitness of any population at any time is
equal to its genetic variance in fitness at that time. This same
result is derived in chapter 2 for selection modeis. If shouid be
noted that the genetic variance used above is the vaviance among
average gene effects and does not include all of the genefic
variances among the three genotypes which may be due to such
gene effects as dominance,

The genetic variation is thevefore of central importance in
predicting and dirvecting future genetic changes in populations.
Our concern in population genetics must therefore be focused on
the variances as well as the means of populations.

The models used to derive these variances are cleariy very
simple ones and refer only to our parameterization of population
arowth. For models of population growth of wider generality, in
which the assumptions of simple logarithmic growth are clearly
not acceptable in important ways, more elaborate models of gene
effects on population behavior are required. Nevertheless, additive
modeis do provide reasonable first approximations which ave of
great divect value and which provide rational first steps in ana-
lyzing population behavior. We use them throughout this book as
first approximations.

=2p (1-p) (Wa—Wa)%




CHAPTER 7
REGRESSION AND REGRESSION
EFFECTS OF GENOTYPIC DIFFERENCES

If mean trends and variances, especially those with genetic
interpretations, are important analytical measures, then their defi-
nitions, derivations from biological models, and estimation must
be well known. In this chapter, the concepts of simple linear
regression are briefly reviewed and extended to gene effects. In
particular, the sum of squares due to regression on genotypes is
related to the concept of measuring the effect of genetic sources
of variation. Several topics of special concern to forest geneticists,
such as weighted and nonlinear regression and multivariate re-
gression, are included but are not necessary for chapter continuity.
Experimental design and variance compenents are treated in chap-
ter &.

LINEAR STATISTICAL MODELS

Genetic and envirenmental factors determine phenotypic expres-
sion through multiple and intricate physiological pathways. For
simple biological madels, mean effects, variances, and covariances
of those causal factorz on the dependent response of any measur-
able trait such as size, vigor, or reproductiveness can begin to
describe the ways variations exist in natural populations. The
sampling and description of a multitude of traits which are
affected hy age-dependent changes in tree populations are well
developed in forestry. The description and analysis of phenomena
such as popuiational cause-effect relationships, or gene actions
which are not directly observable, are less wall developed. To
describe the relationships between such independent variables as
fertilizer levels or genotypes and such dependent variables as
volume growth or disease resistance, a mode! of their actions can
be built and the parameters of the model both estimated and tested.
However, the reduction of such cause-effect relationships lo an
explicit mathematical form is usually a erude approximation. Only
the simplest linear functional velationships have been thoroughly
studied to obtain good estimators and testing procedures. Never-
theless, extensions to nonlinear effects and interactions among
multiple variables are being develeped and are also hecoming mere
generally useful. Linear models remain the basis for these ex-
tensions and have in their own right been found to be generalty
useful.
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The linear model simply assumes that for any level of a causal,
independently manipulatable factor (X)), an average response of a
dependent variable (Y) is expected. Specifically, for any changes
in causal factor X, a proportionate change in dependent factor ¥
is expected. The proportionality factor depends on the scale of
measurement of ;¥ and ¥, but it is assumed either that the factor
is constant over the scope of any experiment or that the variables
can be measured on scales which will linearize their velationship.
Generally, the effect of variations in X on Y cannot be measured
directly, but differences among vepeated trials can be meusured,
and while each trial has some ervor in exactly reflecting the pro-
portionality factor, the average response is assumed to be a more
precise estimate of the proportionality than any subsample. If
another set of trials were maude, however, it would result in a
slightly different cluster of points with which to estimate the
linear regression response. It would therefore be reasonable to
not only want regression-line estimates that are as unbiased and as
precise as possible, but alse to want some idea of how well the
estimation wag done. Then, it would be possible to determine if an
estimate of the regression based on a different sample is close
enough to the first estimate that the two can reasonably be said
to represent the same relationship. If they are too different, some
factors could reasonably be inferred to have influenced the esti-
mated relationships so as fo make the proportionality factors dis-
tinctive, Clearly, the more variation around the regression and the
larger the ervor in estimating the regression, the larger is the
probable errvor of the estimates and the more diffieult it is to dis-
tinguish truly different regressions from poorly measured gnes.

In more explicit language, a single-variable linear regression
model can be written:

Y’,,=m+ﬁxi+s!;

where Y,=dependent variable measured at the jth trial at level
i of the independant variable,

w=base level of response in the absence of X and ¢ effects,
f=proportionality factor (regression coefficient),
X=ith level of the independent variable,

ey—deviation of the jth trial at X, from the exact linear
response,

More generally, there can exist several factors which simul-
taneously affect y, such as different genes ovr site factors. Then, a
simple linear model for multiple X vaviables, say p of them, can
be written:

Yy=peXo + fiXuy + BoXoy~BaXau+ .- BpXpy~ey

where the substitution of g.X, for « is a convenience.
For several samples, say #n of them, and for the general case where
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each sample varies the level of each of the X's sampled, we can
fix the j subseript for each of the m frial samples and drop the {
subscript since levels and samples change together in this simpli-
fied case. Then the equations for each sample are:

Yi=BoXatdAn+heXa +8:8n+ ... +8,X0te
Yo=BoXoa+ 1 X1n+ BoXooF BsXzet . .. +8,Xpet 2
e R . OO R IR S
Y= BoXon+ 1 X 10+ BoXont BaXaat . . . 1-BpXanten

In matrix notation:

Y, KXo XXXy ... Xy B &
Y, Koz X 10X onKnp . . . Xpo B £a
Y:’l X()qunXQnX;;u - Xpn )‘gp En
Y = (X} B + &

Where Y is the nxl column vector of the dependent wvariable or
measures of yield, (X} is the nap matrix of X’s, 8 is the pxl
column vector of regression coefficients, and ¢ is the »zl column
of error deviations. -

Since the X’s and ¥'s are known and we wish to estimate the p
regression coefficients, we should have at least as many equations
as unknowns and, therefore, it is required that sample size a>p+1.
Since each equation also has an unknown error term, however, *he
actual ¥ values are not exactly what they would be predicted to be
by the X and g values. Therefore, even if there are more equations
than regression coefficient unknowns, they cannot be solved very
simply and there actually exists a wide choice of ways to determine
the coeflicients. For one X and one Y variable, only two points are
needed fo determine a straight line rejationship, buf with many
more points, each with some ervor, our choice is not obvious. A
common procedure is to derive the least squares estimators in
which the equations of the model are used to determine a simple
function of the error deviations in terms of the Vs, ¥’s, and g's,
and from which an explicit expression for the g's are derived in
terms of the X’s and ¥’s.

Different criteria of a “good” estimator, such as unhiasedness,
efficiency, consistency, and sufficiency, may be formed. They are
thoroughly discussed in many theoretical statistics texts. Several
methods that accomplish these ohjectives in different ways which
may be more direct or more general than the suggested least
squares have been devised, The generally satisfactory maximum
likelihood estimators arve examples. The inferested reader is ve-
ferred to Kendall and Stuart (1963) for a thorough intreduction to
these concepts and several estimation methods. In the important
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case where the errors are normally distributed, the maximum
likelihood and least squares estimators happen to be the same and
are unbiased, efficient, and sufficient. In the following, the notation
of Searle (1971) is followed closely. A reascnable function to use
is the sum of squares of the error deviations (SSE =e?+e?+ e+
... £,%) since its minimization would give us an intuitively good
result. The least squares refers to the minimizing of these squares,
and by doing so, a function of the X's, ¥'s, and f#'s can be de-
veloped which gives good estimates of the g’s. To do this, it is
convenient to express the ¢'s as follows:

E;-—_—Y[—‘T' ‘B;I i for T::l, 2, e My
i

or E:z_ (X)E

in matrix notation. In this case, the

-
ffl

£

3

SSE=(£1 £n £33 .4 cn)

=(Y-X8) (Y —Xp)

To minimize SSE with respect fo appropriate choices of the gy,

§(SSE) _
38 =0
§(SSEy 8(Y—-XP)' (Y—~XB)
B 8B
_S(YY-2p XY+ X'XB)
5
_ YY) 25(3*X*Y)+a(§’X'X_g)
Y B

Since Y'Y =Y,2+¥.2+ ... +7Y,2 it contains no explicit B values,
and 8(Y'Y)/s58=0.

Since XY= (f; Bx...R,) (X'Y}, the B, factor is a multiplier
for each of the elements of the first row of (X'Y). Therefore,
w is the fivst row of X'Y. Similarly, M

3 830
row of X'Y, and, therefore, for all of the g elements listed in

is the second




colunn order,

BEXY) 4y
&8

Since X' XB= (B, Ba... Bp) (XX

Gy Qyo -

(g flon , . .
and letting A" X =

tp1 Cpa . . - Uy

the B; factor on the left can be seen to be a muitiplier of the first
element of the product:

o
8=

. ﬁv 4
which Is ayfy+asfa+ ... ap,8. The P factor on the right can
be seen to be a multiplier of (BiB= ... B} (XX}, which is

Gnfytasfa+ L tapnfr=anfit et ... T Uipfs.

i I
Therefore, i(ETXEE_} is the first element of 2(X'X) (g).

1

5 (BX'XP)
8

[

Simiiarly, for the , it can be determined that this is

equal to the second element of 2 (X’X") {8), ete., and, hence, that for
ail B listed in column order: B

S (FX'XB)
.___gé
The equation for minimizing SSE can then be written:

8(8sgy _ 3(I'Y) _S(BX'Y)  s(pXXp)

58 ¥ T 88 i
0 0 - 2XY + 2X'Xp

=2(X'X) (8).
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Therefore, 2X'Y =2X'Xp is the equation which must be satisfied
if SSE is to be minimized. Then, this least squares estimate of
Bwould be: JE_?‘= (X’X)-1 (X'Y), assuming that X'X can be inverted,
Tf these estimates are used and are substituted in the SSE equation
for 8:

SSE=Y'Y -2 X'Y +B'X'B;
then using 8, SSE=Y'Y—-X'Y(X'X)1X'Y

=Y'Y-EXY.

The ék’}_’ is called the sum of squares due to regression (SSR) or
the sum of squares of reduction, or any of several terms to denote
the extent to which the errvor or unexplained portion of the original
total sum of squares (1Y) has heen reduced by having adjusted
the variation around the regression.

In summary, the least squares equation,

p=(X'X)"X'Y

is the explicit equation we sought in terms of known X's and Y's.
It leads to a residual sum of squares or sum or squares for ervor
of:

SSE=Y'Y —§(X'Y)

=YY —8SH.

Henece, we maximize SSE and minimize SSE by the choice of ;3
which gives the least SSE. -

Since the population responds imprecisely, any resampling of
the population, even at the same X levels, would produce ¥’s which
would exhihit some variations. Therefore, variations in estimating
B depend on the behavioral variance in Y. Thus, for fixed X’s,

E(}) = (XX)"X'E(Y)
since Y= (X)B+¢
B(f) = (XX) " XE{(X) f+e ]
= (X'X)'X'XE(B)
:E’

proving unbiasedness of the estimator. Also the variance in _,:’\g is:
B{B—E(f)]*=[(X'X) X'E((X)p~e) —B]?
=E[{(XX)X e/ X (X'X) ]
={X'XOH'X'E (s_s’)X(X’X)".

The question of estimation error can now be stated in terms of
the middle element of this equation, E(_si'), the expected nature
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of the squares and cross products of the error terms. If the errors
are random samples of a homogeneous process and are independent
among themselves, then they share a common expectation of &2,
namely ¢%, and a common expectation of the covariance among
any two errors = . ¢, namely 0, when 154j, Then,

E (e')=1o?
and V(B = (XX},

which can be simply written in the more familiar notation for a
single X varijable as:
_ot
X2
& e
With more than one g8, ¥V{(2) is the variance-covariance matrix
of g's.

HETEROGENEOUS AND CORRELATED ERRORS*

It may often occur that the errors are not independent samples
of a common set of ¢, that E (¢*) varies among samples, and also
possibly that they are correlated and hence E (ee;)=%0. In such

cases, if we let E{:)Ss%, then the V(ﬁ) vsing the previously
derived estimators would be:
V(8) = (X'X) X8 X (X'X) a2
Instead of deriving the estimator to minimize I (&) when
4
E‘(i_e_’) =S8¢% it may well be Dbetter to choose B to minimize
E (e_g’S-l) =]o?, Then the sum of the variances is t»(¢'S-?), which
equals tr(e’S¢). This latter function is a quadratic form and in
the regression model is:
f8He=Y'§Y ~Y'SIXB - FX'ST+BX'S1XB.

This error can now be minimized by forming the equation,

§(e87%) _

o
which yields: A= (X'§3X)X'SY.
It can then be shown that E(é) =g

and that V(ﬁ} = {X'S-1X}-14% where V(ﬁ‘) is the
variance-covariance matrix of é's.

If we now consider the design problem of a scientist wishing
to estimate his g#'s particuiarly well, and having some choice in

*Graduate-level statistical training required for therough understanding.




178

how he selects his independent X variables, we have an inverse

of the former problem in that we try to minimize V(8) by choice
of X’s for given ranges of 8. In simple cases such as that of the
simple linear regression, it is only necessary to maximize =X? for
any 8. For more complicated cases, the solutions often ave not
independent of g and require that regions of 8 be specified for any
optimum solution. The design matrix (X) may then be chosen fo
minimize some function of the variance-covariance matrix within
that region. A further problem is then entailed since the rela-
tionship of the (X) matrix to the V matrix is most often nonlinear
and exists in p? dimensional space. Search procedures on irregular
surfaces in n-space are most easily carried out on computers by
procedures such as those developed by Marquardt (1$63) for
single yield variables or single functions of the ¥V matrix.

NONLINEAR REGRESSION#*

Another form of the regression problem is the general nonlinear
regression equation in which the paramefers cannot be trans-
formed into a linear function. While we can offen separate a
linear error element, the other variables are often nonlinearized.
Thus,

Yzﬁu‘i“ﬁlXﬁg +e

is nonlinear in the parameters and cannot be transformed info a
linear form. Therefore, the estimation equations cannot be neatly
separated between the known X and Y versus the g to be esti-

mated, and it is not a simple matter to find g.

Most procedures derive a good approximation which is easy to
compute and then derive successively closer approximations. One
such procedure is to transform the function into an approximately
equivalent but more easily soluble linear form by taking the
function’s Taylor Series expansion and dropping as many terms as
feasible; as more terms ave dropped, the approximation becomes
worse but also easier to compute. The compromise is most often
made heavily in favor of computational ease. Thus, for auny fune-
tion of 2, we can write its Taylor Series expansion as:

_. o0y 2
£(8) =1 (8 + (a—por g (@) + BB g )
— 0y
T il 3',8 Lyorgyr...
where 8° is a first guess at the true g and f'(8°) is the first
derivative of F{(8°, f'(g%) is the second derivative, etc. The
superscript refers to the first guess a.d would advance by one each
time the guessing process is repeuted. In elementary caleulus,
Newton's approximation to the roots of equations required fthat
Y=f(X)=0. Then choosing a guessed root, X9, as the first ap-

*Graduate-level statistical training required for thorough understanding.
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proximation to the roots gives:

FE) =0=F (x0) + (X-x0)7 (x0) + X2y

— ¥Yayo
Then if the first guess is reasonably close, L%f—y—)—

as will all higher coefficients. Then, what we hope is a reasonable
first approximation is:

O=F{X%) +{X-X)f (X

will be small,

—f (X%

—Xo—_JA\S )

or X—X 7 (X0}

In the regression case, we wish to find a minimum for the SSE
and this process gives us a function of #:

3{SSHE)

- =0=F(p).

AN
Then : == —F(B)[F(8%]

is cur first approximation

82 (SSE)
b By ==
where F {9 55 p=p
For the multiple regression case of several B8's, the f{B°%) becomes
the vector of functions 3(SSE), for each B and the f{8%) be-

T

comes the matrix:

3*(SSE) B32(SSK) §°(SSE)
384" 38081 8032

8*(SSE) 3%(SSE) 52°(SSE)
§B:Bo T WA

The subscripts in the matrix refer to the variable of the regres-
sion equation for this estimation. Using the guessed values in
these equations provides an approximation to our best estimator

(8—p°). Increasing f?" by this amount gives us a new approximate
,é‘. Using superscripts to denote the number of iterated estimates,
and recognizing that ,é" is only approximate, another estimate, ,é”,
may be needed. Then, the {3’1 is used in the same formulas to pro-

vide a 8%, etc., where the matrix above of 7 {fi; changes at each
iteration until the pi—p*+1 corrections are negligible.

For the case of Y=p8,+5,X#2+¢, the procedure simplifies still
further (Namkoong and Miller 1968) in that the correction veetor
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gi— g+t is a function of only one of the ,§ coefficients, and, hence,
the sequence of estimates is not difficult to handle on a computer,

For the simple case of linear regression it can readily be derived
that:

8 (SSE) / 3p=2X"(Y—-Xp)
82(SSE) / 82 =—X'X
§2(SSE) / 8p*=0

and the exact solution is:

B—8°=—1[F{Bo)] [F{Bo)]*
and for [°=0,
B =(X'X)X'Y.

For more difficuit nonlinear cases, the gereral problem is to find
the g which minimizes the value of SSE over the entire surface
of SSE values created by all possible choices of 8. In general, the
surface will be irregular. If considered in this way, it is clear
that the linear regression SSE is a simple quadratic surface
(Y—Xg8) (Y—-XpB) where SSE is high at values of g which are
far from our estimator (X’X)-* (X’Y) and low near that vector
value. For example, with two 2’s and a single SSE, we can vis-
ualize a parabaloid, concave upward in the direction of increasing
SSE and coming to a minimum at the point we would choose as
the 8, and 8. coordinates (fig. 12). For less regular surfaces,
search procedures have been developed for computers which use a
variety of techniques to efficiently locate the 8 combination cor-
responding to the minimum SSE. The problems of finding the
lowest minimum are more than computational where more than
one local minimum exists and there are flat areas around the
minima. The existence of such surfaces also indicates that widely
different 8 may be almost equally good and hence that the model
or the data cannot discriminate very well among widely different
8 estimates. In such cases, it behooves the analyst to consider the
adequacy of his mode! or experimental design matrix. Neverthe-
less, programs stuch as Marquardt’s (1963} can be used to estimate
A and approximate variances of the estimates, Hartley’'s (1964,
1969) procedures can often be used to obtain exact confidence
regions for B.

MULTIVARIATE REGRESSION*

An expansion of simple linear regression of a different order is
to multivariate models in which more than one yield variate ¥, is
affected by the X variables, It is a particularly useful extension

*(Graduate-level statistical training required for thorough understanding.
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S§BE

Figure 12.—A simple guadratic error surface created by relationship of the
ervor sum of squares to the choice of 8 and 8: for a set of data.

in forestry where the cost and duration of experiments make it
desirable to measure the response of several dependent yield vari-
ates in any one experiment. For tree breeders, an important prob-
lem lies in determining if between-population selection is more or
iess effective than within-population selection, whether the rela-
tive effectiveness varies among yield traits, and how information
on the source environment can help define provenances and the
location of good sources, When several intercorrelated yield vari-
ates determine the value of a provenance and each variate is af-
fected by the same environmental variables, but in different ways,
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the breeder must parameterize these relations in ovder to select
among provenances. This parameterization is essentially multiple
regression extended fo study several traits simultaneously. For
example, height growth and diameter growth are simultaneously
affected by some independent variables, both are often measured,
and both are often affected by genetic or soil factors in what may
generally be similar ways. Of course, the dependent yield variates
are not exactly correlated in their responses and our interest
therefore centers on the pattern and strength of the joint re-
sponses. The greater the correlation among the vield variates, the
simpler the problem becomes since the results in several variales
can be predicted with increasing accuracy on the bhasis of the be-
havior of any one variate. In such cases, a single {or very few)
functional relationships among variates would reduce cur problem
to univariate analysis, which we can choose either as a linear
function of all the variates or a single convenient variate for re-
gression analysis and predict the behavior of all other variates by
that function. In that case, the only problem for the breeder is
that of determining a value function among the yield variates.
This determination can be an additional and a critical problem if
the values of the variates do not assume a linear form. Consider,
for example, a curvilinear relationship in the set of poinfs repre-
senting the trees in terms of their yield variates such that at low
stem growth rates, fruit yield is low, but that fruit yield increases
with increased growth vigor up to a point beyond which increased
growth rates are made at the expense of a declipe in fruiting. If
managed for the dual yield of stem and fruit, a problem can be
seen to exist in deciding which combinations ave best. The answer
can vary widely, depending on the relative value placed on the two
traits.

The nature of irregular value functions and their uncertainty
is an acute economic problem which we will not consider at this
point. For simpler linear models, however, extensive theory and
methodologies have heen developed. The analytical problem of
describing the joint distributions of points in multivariate fields
and analyzing regression functions on them is immense,

The serious invesiigator would profit by study of the distribu-
tion theory (Anderson 1958) and analytical methods as detailed
in several texts such as Blackith and Reyment (1971).

To briefly familiarize the reader with some of the concepts, a
few of the multivariate analogs of elementary univariate statistics
might be useful o describe. Whereas, in the univariate case, a
normal distribution has a probability density function (pdf) of

1 Cex e
pif=— e e | (X0 /e |

Tn the multivariate normal distribution, there are means and vari-
ances Tor each variate and also, covariances between them. The
covariance matrix (4) takes the place of the variance and the
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vector of (X—u) takes the place of the (X' —u) in the univariate
case. Then for the multivariate case:

1 ’ Ay e
?Jd.fszEXp[h%(X_#) A X ""#:I

In the bivariate case for variates = and ¥, where x=X— . and
y=Y —p,

o o':y)
A—_(O'zy U":.r2
. l‘”” _yy, (22— 23pp 1)
and the pdf= exp s el o (L—p%)
where p=o.,/\/o,%0,% and exp [ ] is the exponentiation operation.

In regression theory, with a single y variate and single =z
variable, we had f{y | «) as a mean of

?+ D.yi (X_ F-x)
oz
and residual variance:
2
o
ot ( n;) =‘7ﬂ2(1_'P2) .
Oy

For multiple 2 variables, we have a regression:
(U;r:i) (E:cx) -1 f{y I XLy, gy *** )
with mean

Oyz, X, — Hay
y'!' Tyzy E:_g_-_l X2__.1L:2

and residual variance:
U'vz_(ﬂy:;)’ Zpet (C"uzi)

where 2., is the covariance matrix among the z’s, Ozy ig the covari-

ance vector between ¢ and the «'s.
For muifivariate regression with several z variables and y
variafes:

f{yl! y2 LI i r"'-"'lj [/ PPN )
has regression matrix estimates: ey Szx?t
has mean vector: iyt 22y Sep™t (6=~ p)

and has residual covariance matrix: S,,~3; S..~! Sy
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whetre 3,, is the covariance matrix of y's
and =,, is the covariance matrix of «#’s and ¥'s.

Simple tests are also closely analogous to the univariate case.
In univariate i-tests, t:vﬁ@

_ 2
or 2= N%}‘i

and 2 is distributed as an F, vy o

In multivariate tests, T2=N(x—p) A"t (z—p)

2 —_

and ‘I\}E‘_Tl‘ &F@"’F(p, N-p)df

where p=number of variates. For our purposes, it is only neces-
sary at this time to consider the desirabilify of reducing the num-
ber of yield variates and how ordinary regression thecry can be
applied to problems involving more than one dependent variafe.
In simple multiple regression it is assumed that the relationships
are linear between the independent regression variables and the
dependent yield variates. Similiarly, for the simpler analyses, it is
also generally assumed that the relationships among the depend-
ent variates are linear. The problem of nonlinearity is exceedingly
difficult to handle, since it reguires that nonlinear multi-
variate distributions be specified in such a way that moments can
be derived and the effects of independent regression variables also
are derivable. It seems best at this time, when few data analyses
are available, to linearize the joint measur<s us much as possible
and to use standard linear theories until the effects of known non-
linearities can be predicted.

The first problem in most practical breeding studies is identi-
fication of the environmental variables of importance fo one or
more of the height, volume, or other dependent yield variates. In
this part of the problem, one use of multivariate fechniques is to
reduce the number of yield variates that must be measured. The
same techniques may be applied to the multiple environmental
variables for elimination of variate redundancies (Kendsll and
Stuart 1966). The reduction can be accomplished by component
analysis rather than by multiple regression. If, to start with,
independent p variables may account for part of the genetic vari-
ance, the problem is to find whether collinearities exist among
any subset of the variables. A collinearity exists between two vari-
ables when the oceurrence of one variable at a specific level fully
determines the other, A single linear relationship that completely
describes the joint varistion can then substitute for the two
original variables, or, conversely, one of the variables is redun-
dant. Similar reductions in redundancies may often be a signifi-
cant aid in data interpretation. If there are three variables and
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one is fully dependent on the other twe, a collinearity in three-
dimensional space exists and all of the variation is in a two-
dimensional plane, Then, a single collinearity is said to exist and
the rank of the space is two. If, in addition, all of the variation
reduces o a single line, a second collinearity exists and only one
dimension is reguired fo include all of the variahility in the three
original traits. In ecomponent analysis, a series of lines {in the
original p dimensions) is successively and orthogonally fit to re-
duce the residual variance about the lines, These lines are the
principal component vectors. If a single line describes all of the
variation in the variables, the first component would be that line.
{The line is given in terms of its direction cosines in the space
defined by the original variables.}) If only a single collinearity
exists, the remnaining variability about the first line is all in one
plane and hence is reducible to a singie line which we choose to
be orthogonal to the first.

These relations are illustrated in figure 13, in which the per-
pendicular line between the sample point and the first principal
component is seen fo lie in three, two, or one dimension as di-
mensionality decreases from three to one. If fewer than p one-
dimensional transforms are reguired to account for almost all of
the variance, then there ave, perforce, linear dependencies among
some of the p original variables. Dependencies imply that some
of the variates which have heen measured can be fully explained
or replaced by & linear function of other variates. Therefore, the
removal of at least one is desirable. A procedure utilizing the
principal components already derived can be useful. The vector
corresponding fo the smallest root of the standardized covariance
matrix (ie., the correlation matrix) presumably represents almost
a random vector in the orthogonal residual space. The variate
whieh, in this vector, has the largest coefficient is that which ecan
presumably be best explained by the others and hence is a likely
candidate for discarding. The estimation of further components
may then be repeated for discarding variates for as long as zero
or near zero roots continue to exist.

This component analysis procedure for reducing dependent
variates can aiso be applied to reduce the number of independent
variables {Kendall 1861). Like other regression techniques which
reduce the variate space, this method is subject to the usual re-
strictions on interpretation of cause and effect or anything other
than simple association. It does possess some advantages over the
more common Stepwise procedures, hut it is scale dependent. The
standard procedures for variable reduction in multiple regression
may therefore be more useful parts of an analytical system. When
interest exists in finding the linear funclion of independent vari-
abies (X) which can best fit a linear function of dependent vari-
ates (Y), the regression coefficients for the X variables and the
component coefficients for the ¥ variates can be simultaneously
chosen {o minimize the error varianee of the principal component,
The technique is known as canonical correlation analysis, and




Figure 13.—Location of five sample points where variation occurs in three
dimensions (A}, two dimensions {B), and one dimension (C).
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though not vet used very extensively in forestry, it is potentially
useful in provenance analyses where several traits vary simul-
taneously in response to several site variables and the greatest de-
gree of explainable variation is desired,

If consideration is restricted to a reasonable number of depend-
ent yield variates and independent environmental variables, the
problem of parameterizing the joint relations is often simply one
of describing the regression effects, In the univariate case, a ve-
sponse surface is estimable and the combination of source-
environment variables which gives the greatest expected progress
in the dependent yield variate is identifiable. For example, if a
simple quadratic surface is hypothesized and estimated, the esti-
mated optimum levels of the X envirenmental variables that would
give a maximum yield are derivable. For example, the dependent
Y variable may be some measure of growth and the independent
X variable may be fertilizer level or the latitude of the seed source,
beth of which may have some intermediate optimum ievel for
maximum Y. The error in estimating the optimum point for maxi-
mum Y is also estimable. If a simple quadratic-response line of
yield to a single environmental variable, for example, latitude,

were to be estimafed by }A’zﬁu-i-in X"i‘f)g X2, then the maximum

likelihood estimate of the X corresponding to a maximum

—

. 3 . .
Y is: —1%-2%. The standard error of the maximum Y can be esti-

bo

mated by such procedures as given by Kendall and Stuart (1963,
ch. 10, p. 232) and the confidence belt estimated as that which
would be appropriate for regressions dervived from a normal dis-
tribution of evrors of Y. Regions in which the envivonmental vari-
ables are of acceptable levels may then be set up by simple
graphical or more sophisticated technigues. We may extend the
number of different environmental variables to two or more, but
remain in the univariate case and describe a guadratic response
surface, for example, by:

f’:i)nu+ i}mXi";.' %goXlz“‘:' ?Jng'L E)';EXQS‘J-' nbliX]XE.

The levels of X, and &, giving maximum Y are:

I:JYI} — _ ]:‘_).Ed)gu I;g_l ] _-1 (bm)
Ko .E‘)u 2?3:12 bo1

Other nonlinear models increase the difficulty of estimation but
are often more precise and useful (Anonymous 1961), The esti-
mation of the regression coefficients of the linear model is well
known and can be written in terms of estimating the vector
,‘3’ by (X'X)—X'Y, where X is the matrix of the levels of the
sampled variables and Y is the vector of the yield variate at each
level of the independent variables. If the model is extended to the
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multivariate case, each dependent yield variate would be charae-
terized in its response to the environmental variables by its specific
vector of regression coeflicients.

The estimation is a simple extension of the uswal univariafe

procedures for estimating a g matrix instead of a vector. In linear

models, the matrix 8 is estimated by (X’X)—'X'Y where the only
difference from the univariate case is that Y is a matrix. Each
row of the ¥ matrix is the vector of yield responses with respect
to a given set of levels of the X variables, and the columns of the
Y matrix represent the response of each yield variate to the series
of sampled X variables. For n samples and one dependent variate,

(Y1) (Xoy Xio Xoo o0 Xn ) {80 e )
Y, Koo Noo Xoo ... Xpo B &2
— - + L]
\_Y"J l.XOp: Xln Xﬂn Xan l..BIJJ i En J
For the same n samples and two dependent variates Y and Z,
Y, Zl ) "Xm Xy Xa .. prﬁ‘ 'ﬁm 829 b (e10  Eo1 h
Yz Zz Xos X;E Xaz ‘e Xp2 .311 Boy £11 Eon
= +
;,Yn ZnJ \.Xﬂn Xlrx -Y‘.Zn LI Xpn; \,.Gln B'.’rx; \. €1n £an J

Qince the N matrix remains the same, (X) can be used as it
was for simple regression, and changing the Y vecltor to Y,, the
Z vector to Y., and the subscripts on the g and ¢ elements by add-
ing 1, 2, ... ete, for the ¥ variate to which they refer,

(Y)=(X) () +(e).

Using Bi= (X' X) XY,

and Ba= (X'X) K'Y, etc,,

the matrix B=(XX)"X' Y. Ys...
= (XX} (X)) (Y),

or in the ¥ matrix notation =Syt Sy

The covariance between the regression coefficients is estimated by
Se 'Sy, where Sy is the residual covariance between fraits

Y;and ¥,
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The data of Wells and Wakeley (1966) on the performance of
loblolly pine of various seed sources in a plantation in Dooly
County, Georgia, will serve as an example. The independent X
variables are the Janunary minimum temperature (X,) and sum-
mer rainfall (X.) of the source locations, and the Y variates are
survival (Y,) and height (¥.). These data are listed in table 4,
and regressions are drawn in figure 14. The regression equations
estimated on the nine source locations are:

i’t: bioot Do+ bing Xy 2+ bror Xo+ Di0aX o + b1 X1 Xz
i"l =62.9+2.91X,—0.06X,2—1.98X.—0.09X,*+ 0.09X, X,

n

Y,=1385.5—6.79X,+0.11X,?+0.59X,+0.09X.>—0.08X, X..

The total variance in ¥, is 27.8, and in ¥, is 3.10, and the covari-
ance between them is —7.89. In matrix form, this total covariance
matrix is:

( 278 —7.89 )
Syy=
— 7.89 3.10

After adjusting for regression, the residual covariance matrix is:

116 —0,452
Sry— ZSpySyxy  Exy= = {8y
—0.45% 0.269

The sampling variance for all of the regression coeflicients involv-
ing ¥, is a product of 11.6 and the appropriate element of
Sxx~1 The sampling variance for those involving Y. is a product
of (.268 and the appropriate element of S;;—*, and the covariance
of ¥, and ¥» is a product of —0.452 and the appropriate element
of Z,U:_l.

The upper triangle of the =;,—! matrix is:

9.812 —0.1528 —2.260 —0.0641 0.1479
0.0025 0.0668 (0.0008 —0.0024

8.895 —0.0877 —0.1876

0.0020 0.0003

0.0048

Hence, the sampling variance of by, for ¥, is (11.6)} (9.819) =
113.9 and of bgye for Ye is (0.269) {9.819)=2.64. The sampling
variance of by, for Y, (11.6) (8.895)=103.24 and bay, for Y. is
(0.269) (B.895)=2.394, The sampling covariances of b, and
bipy are similarly derived as (11.6) {(—2.260), and the sampling
covariance of by for ¥V, and of by for Y is (—0.452) {9.819) =
—4.439.
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Figure 14—Quadratic response surface of the simultaneous effects of rain-
fall and temperature on survival and height growth.

Table 4.—Loblolly pine seed and source performance in Dooly
County, Georgia
(Welis and Wakeley 1966, tables 2 and 13)

Source Performance

January

minimum June-August

temperature rainfall Survival | Height
X)) {X:) (Y1) {¥3)

Seed source

oK Inches Pereent Feet

Eastern Maryland 314 12,9 87.3 22.3
Southeast North Carolina 36.9 19.0 73.3 24.2
Eastern North Carolina 35.9 18.4 82.2 23.2
Southwest Georgia 40.3 154 B0.4 23.2
Northern Alabama {1) a2 127 85.83 20.4
Northern Alabama (2) 34.9 13.9 85.6 20.4
Southeast Louisiana 42,5 16.9 7.3 25.3
Bast Texas ags 9.2 85.3 23.3
Fast Arkansas 33.2 104 91.2 20,6

A problem for the breeder in provenance selection is how best
to find a region for seed source sampling or its unique set of en-
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vironmental conditions that simultaneously, optimally affect the
important yield variates, If we establish a space defined by these
dependent variates, it would be possible to locate a point repre-
senting the vector of the several dependent variates correspond-
ing to each set of environmental conditions. A combination of
independent variables denoted by a vector valued X is thus asso-
ciated with a vectorial representation of the dependent variates.
Changes in X over the independent variables, which may he
environmental variations, define a surface of changing values in
the Y variates. The problem then is to define some joint evalu-
ation of all Y variates and then to find the maximum value of that
joint value function. An optimum X may not be unigue, however,
depending on the shape of this Y surface and the value function

used.

Geometrically, the simple regression problem is to define some
functional relationship between an independent variable X and an
average dependent response variate Y,

Expanding the case to more than one X in multiple regression
requires description of the response surface of ¥ to the X's.

Y

This may be projected onto the Y, X, plane when Xu, Xai, Xen,
and Xo; are the projections of ¥ at the various levels of X.. Con-
sidering now that two dependent ¥ variables may exist for a
single independent X variable, there generally is only one mean
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joint response point (Y,, Y.) for each point in X. In that case,
the response of ¥; and Y. to X, is a line in three dimensions.

X

Yo Y1 *i2 *i3 Mg

This may be projected onto the Y., Y, plane.

Y,

Then similar variations in a second X variable can be projected
onto this plane.

This kind of projection then graphically displays the joint re-
sponse of two dependent ¥ variates to two independent A vari-
ables. Tt should be noted, however, that the proviso was stated that
there is rily one mean joint response peint to each point in X,
In fact, however, there are residual variances, in each Y variate,
and some residual covariances and correlated response of 1'; and
Y. at each X point. In terms of provenance analyses, t'iese are the
intrapopulational variances and covariances which niny be of con-
siderahle inferest,
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More formally, the linear relatinns are describable hy the
equation Y=X {B) where Y is the vector of yield values, X is the

veetor of the environmental variables, and g is the matrix of re-
gression coefficients previously described. The problem is to pick
the vector X which will maximize some appropriate vaiue function
of V. Since these relations are scale/dependent, reduction to a

standardized or other established basis is recommended. Sir.ple
linear combinations of the variates may always be constructed,
but often the gain achieved by selecting for conditions maximiz-
ing one trait will not be optimum for other traits, Tt may oftrn be
best to pick the environmental vector which will assure that none
of the variates suffer much loss and which thus will maximize
the minimum gain. Of course, it is possible to construct solutions
to maximize the sum or product of all variates. For any criteris,
the surface representation will allow one to examine how the
alternative solutions will differ and will be helpful in determin-
ing intermediate solutions.

The conclusion of Wells and Wakeley (1966)-—that the fastest
growing trees in the Dooly County, Georgia, plantation were from
regions with warm winters and wet summers—is generally sup-
ported by the present anaysis. While the guadratic surface model
may not be the best fit for the data, it is evident that warm winter
at the seed source favors growth but not survival and that low
summer rainfall at the seed source favors survival but not growth
(fig. 14.). The sampling of source environments in this plantation
is not sufficient for more precise source evaluations. It is generally
not wise to extrapolate from a model which at best may mimic a
set of data, and to try to discern cause and effect, particularly
when such high residual errors exist, However, the generally nega-
tive correlation between height and survival for both the fotal
variables and the residuals after regression indicates that selec-
tion for both would result in opposing selection forces. The devi-
ations from regression allow for some combined selection, and the
data suggest that deviations exist in the direction of intermediate
to high winter temperature and intermediate to low summer rain-
fall. If selected, these sources might best maintain both height
and survival without great loss in either, Provenance hybridiza-
tion to combine genes for both may be warranted. If survival is
of less importance in this range, the desirable vector of selection
would more heavily favor the warm winter-wet summer scurces.

While the regressions are not well established, it is illuminz'ing
to consider how different vectors might influence the choice of
source environments, An infinite number of functions could be
written for the relationships between the yield variates. If
equivalent and linear economic weight is given to survival in per-
cent and height in feet, the expected value would be:

E (Y,+7Y.)=1984—3.88X,+~0.06X,2—1.39X,~+0.01X, X..

Here X, has about twice the weighting of X.. If height is so im-
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portant that the scale of value is ¥,-+-10Y,, the regression would
be:

E (Y,+10Y.)=1,418—-65.0X,+1.04X,>*+4.0X,
+0.81X,2—0.71X, Xa,

In this linear weighting of ¥, and Y., the value (or objective)
function is a straight line. In a multiplicative model of value,
the value function would be a hyperbolic line, In the linear form,
and with a 1:10 weighting, a negative weighting is given to win-
ter temperature (X)) and a positive weighting to summer rainfall
{X.). Both linear cases indicate that several X,, A» combinations
could provide pood value vields but also that there is a unique
minimum. Since only minima exist, the analysis is useful for indi-
cating unique sources to aveid rather than unique sources fo
choose. On the other haid, hybrids of the alternately good sources
may be quite valuable,

These regression sciutions for provenance selection are simply
multivariate extensions of univariate theory, Estimation problems
in multivariate analysis are only slightly more involved, though
distribution theory is often much more complicated.

In addition to the stafistical questions, the chief difficulties are
in deciding whether to put selection emphasis on between-
provenance or within-provenance differences and in interpreting
the pattern of genetic variance and covariance in terms of popu-
lation structure., These methods merely facilitate consideration
of the joint processes of several variates under the influence of
several environmental variables. Since many problems in forestry
invelve the simultaneous evaluation of several traits on single
trees or populations due to the multiple values that exist in forests,
multivariate analvses are likely to be more commonly impoxstant
in forestrv than in other agricultural sciences. Not only are mul-
tiple uses of forest lands eommonly required, but over the dura-
tion of a single forest population, changing uses will be imposed
by human activities. Thus, for the forester, it would be most ap-
propriate to consider univariate analyses as a special case of
multivariate analyses rather than the multivariate case as an ex-
itension of the univariate case. Regardless of the need, we are
still larpely limited to univariate model approaches to genetic
analyses.

LINEAR GENETIC MODELS

In this section of the chapter, the genetic variances are defined
more exactly than in chapter 2. In the next section, the relation-
ship between genetic variances and the wvariation hetween and
within families is established. In the next chapter, some uses of
the genetic variance between and within families are examined,

The commonly used models of gene action are simple extensions
of the usual linear regression theory with the further complica-
tion that polygenic effects eannot he dirvectly observed. While it iz
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always preferable to work with easily measurable, clear gene dif-
ferences, this is not often possible in forestry and we shall limit
our attention to genes with small effects relative to error vari-
atior in their expression. However, while it may be difficult to
measure single gene effects, families can be created with easily
measurable means and hence also easily measured variances among
family means. It shall generally be assumed that certain kinds of
families can be created and that their means and variances can be
measured. Then family means and variations can be related to
means and variances of gene effects.

The basic statistical method used in defining genetic variances
is to define a linear gene-effect model and to partition the total
variance due to variations in genotypic mean effects according to
the amcunt which can be accounted for by simple linear effects.
More complicated and inclusive medels can then be constructed
by simply extending the linear models. In a similar way to genetic
variables, a variable like soil fertility can be measured and its
effects on growth described not only by means and regression
coefficients hut also by the amount of the variance in tree growth
yvield which is caused by known or measurable variations in soil
fertility, In these more traditional forestry experiments, the im-
portance of controiling fertility is then measurable by the intra-
class correlation which gives the variance caused by the measured
(for example, soil) variable as a ratio of the total uncontrolled
variance. Much quantitative genetics work has a similar objective.
When genetic effects cause some average vield differences and the
variations dve to such differences are identified as the genetic
variances, then genetic contro]l can affect forest yields.

As in all experiments, some more or less normal range of condi-
tions is assumed or defined and extraneous causes of variation are
controlled as much as possible. More complicated modeis which
can account for additional variances are often introduced in fac-
torial arrangements. These main effects due to linear and poly-
nomial responses are measured on the basis of average or marginal
effects over all levels of the other factors., Interactions among
main effects can also be defined and measured. In genetic analyses,
the effects of different loci are similarly structured wheve the main
effects are the linear (additive) effects of each locus as measured
over all other sources of variation, including both environmental
and genetic effects of other loci. Dominance effects at each locus
are analogous to the quadratic deviations of any factorial analysis,
Epistatic effects are analogous to inferactions among the main
effects, and higher order epistatic effects among several loci are
analogous to higher order interactions.

Consider, for example, under some conditions of age, spacing,
and general location, that the average volume vield capacity of
trees with genotype A‘4 at the “A” locus is 1,000 units. Cer-
tainly, not all trees with this allelic combination will yield the
same volume of wood since environmental variables and the
genetic condition at other loci can also strongly affect volume
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growth. As frees may respond to a preponderance of factors giv-
ing more or less than average growth, they will deviate positively
or negatively and will therefore cause us i{o observe actual vol-
umes in some distribution of values around the mean which was
composed of different sources of variation. If the same conditions
were fo exist for trees with genotype AA, its growth might aver-
age 1,005 units. But if other sources of variation caused variances
of 1,000 units in each genotype, the difference between genotypes
would be difficult to distinguish even if we could identify the
genotypic composition of the trees. If, in addition, genotypes with
mean of 995 units also experienced the same variable conditions,
the total populational variation over all genotypes would be enly
sHghtly greater than 1,000 and gene effects at this locus would
have minor importance. If genotypes were randomly distributed
over all other sources of variation, the variances due to genetic
and other sources would simply be summed in the total popula-
tion variance and the proportion of the total variance due to
genetic variations at the 4 locus would be very small.

On the other hand, if variation from other factors were small,
even differences of 5 units wonld be quite distinctive. In such 2
case, genetic sources of variation at locus 4 would make up a
large portion of the total variance. It is also possible that regard-
less of the size of the environmentally induced variations, many
genetic loci may have variations which also affect average volume
production. Thus, a B locus with similar effects o the A locus
in causing =3 unit deviations could give the following average
vields if the effects of A and B loci were independent and if the
trees could be identified:

AA AAl ATA!
BE 1,010 1,005 1,000
BB 1,005 1,600 995
BB 1,000 995 280

Obviously, more extreme averages exist, around which the same
environmental variations may cause dispersal, but the genetic
sources of differences have increased the fotal variation. If the
loci are independent in frequency and action, then the variance is
simply added to the previous total variance and genetic sources of
variation are thereby increased in importance. Several such loci
could easily make the penetic variance a large part of the total
variance. Hence, even if single-locus effects are small and unim-
portant, the total array of genotypes can have a major effect on
volume yield in the population.

For yuantitative genetics and for most breeding work, a useful
working hypothesis has been thaf, unless traits are obviously
controlled by very few loci, they are likely to have relatively small
individual-locus effects with respect to both the environmental
sources of variance and the total genetic variance due to all loci.
Thus, even if environmental effects cause large variances with
respect to individual-locus geunetic effects, the genetic variances
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can still contribute heavily to the total variance.

In addition to the relative effect of single genes versus other
sources of variance, and the number of such genetic loci, the gene
frequency is the third factor affecting the contribution of genetic
sources of variance to the total, If one allele is very common, then
most trees will be homozygotes with that allele and the rare
heterozygotes and the even more rave, alternate homozygotes will
have small effect on the total variance regardless of the size of
their contribution to average growth differences. This effect of
allelic frequency can be more explicitly seen in the exact formula-
tions of genetic variances.

For the simple genelic factors alone, we can define simple
models for single gene effects with average effects defined over
some understood range of more or less normal environmental and
genetic conditions. The three possible genotypes produced by two
alleles, 4 and 4’ at a locus (44, A4’ and 4'4’) can have any
range of action for any kind of dominance relation befween the
alleles. For example, average genotypic performances of
1,005 :1,000: 895 for the three genotvpes AA:AA:A’A’ display a
condition of no dominance, while 1,005:1,005: 985 is a classic con-
dition of one allele exhibiting complete dominance. Overdominance
is classically defined as the condition in which the A4’ has a higher
or lower mean than either AA or 4’A’, (Some authors also use
underdominance to indicate the condition of AA’ having a lowey
mean than either homozygote.) It will always be possible to fit a
linear rearession of vield to a scale of genotypic effects and hence
reduce the total variance due to gene actions at this locus by the
amount due to this regression.

The difference between the homozygotes may be defined in an
arbitrary way to establish a yield scale and define the heterozygote
effect in terms of that scale. Though any syvstem: would be satis-
factory, we adopt the notation of Comstock and Robinson {1948}
and use u:--u io define the deviations of A4 :A’A" around the
mean, and qu to define the mean deviation of the heterozygote AA4"
Then. to describe the total variance in vield due to genelic differ-
ences at this leeus, it is necessary to measure the mean differences
and weight them according to their frequencies. To determine the
portion that can be accounted for by a linear model, let the inde-
pendent X variable take the values 2, 1, and 0, and let ¥ — = u, au,
and —u for genotypes AA, AA", and V', respectively. Then, by
using the frequencies, f, of ¢*:2q(1—¢): {1-¢)* for the three
genotypes, the conventional formula for deriving the total vari-
ance {¢,/} can be applied:

E(Y?) —[B(Y)1P=xfY3-Y",

where Y= Y:L-l) Y,-l.t'- Yaan

respectively, and  Y=¢Y ., *2¢ (1—q@) Y. ~(1-q)2Y |y,
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then the variance due fo all gene effects, o2, is:
o f=2g{1—q) [14+2{1—-2q)a+ (1—2¢+2¢%) a®]n?.
The variance due fo linear regression is the genetic variance of
linear effects only (¢.%).
o Cov? (zy) _ SfXY—XTY
T S fXP— X2
=2¢(1—q) [1+(1—2¢)al*u
If ¢=0.5, then o;7=2g(1—qg)ul
Since the variance due to nenlineay effects can be defined as the
dominance genetic variance oz%, and ¢,>=¢,%+¢5% then
oot =47 (1—q)? a us.
In a slightly more general way, we can tabulate the mean yields,

or average value of the dependent ¥ variables, and their freguen-
cies {P) and define average effects as:

Average
A A’ ; effect Frequency

A Y4 Y. Y, Pi=q
Frequency  Pay WPys

i
!

A Y.a.-i ’ Y.Li’ Y.{‘
Frequency 14P.. Py
= PA.—i Ya.l'l-‘ (I/E)P_-M'Y,u’

P,y

__P.i',;'ya'.i"l‘ {I/Z)Paa‘y.u’
PA'

and define «,=Y,—7Y as the average effect of 4 and o, =YY
as the average effect of 4'.
We can see that SP.e;=0. We can also define a dominance effect as
(YAA “+ Y.l'.l'—'-‘zy‘l.i ) .

Then, in a linear model of these effects for diploid trees we can
write:

Yy

YA'

ij:p+ai+aj+ Sih

where § is the deviation of ¥, from the expected ¥y due only to
» and o effects. The total genetically caused variance is:

G”2=20a2+ a6 +2Cov (anay) +2C0v (o,84) +2Cov (ap84) .

Covariances may exist due to nonrandom freguency of the joint
occurrence of « or § effects. These may he nonrandom due to in-
breeding or nonrandom mating. In that event, the least squares fit
of the model gives us biased estimales for a, «; and §; as previ-
ously defined. If inbreeding exists, o and «; are not independently
drawn, since by inbreeding we mean there exists a higher fre-
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quency of like genotypes mating than expected. Then Cov (eqey)
exists, and using Wright’s (1922) definition of an inbreeding co-
efficient ',

Cov (e ) Cov .1 cr-)
F=Corr{aye;) = () (2 —
To Ta; L

Without dominance effects,
g4¥=2q2+2Cov {ana;)
=262 (14+F) =0, {14+ F).

To include the effects of inbreeding and dominance, we can derive
a more general solulion by considering the complete model and
deriving least squares estimators for all effects. Such a procedure
would yield definitions:

=D (04 F (1-)) (VaamT.)

+(A—g+Fg) (Yoo —Yuu) 12

and  0r=20=0 (4P (1-0)) ((1-0)+Fa) (1-F)]

(Y.id+ Y_:l A 2Y.-i.4')2-

It can be seen in these formulas that inbreeding changes fre-
quencies of genotypes from their random mating frequencies and
therefore affects the definition of o® and o7 such that they may not

be translated easily if we wish to estimate ov define o* or o% for

populations at a diffevent level of inbreeding.

The extension to multiple allelic cases is direct, involving only
the estimation of more interaction on epistatic parameters for
interlocus effects and accumulating more main effects for the
linear-additive components,

For an expanded model including two loci, it is necessary to
consider all the additive and dominance effects at each locus and,
in addition, to consider any interactions between the loci in terms
of their respective additive and dominance effects., If we assume
the simplified conditions of no inbreeding and random mating for
each locus, and further assume that the various zygotic states are
independent gametic associations, then the joint frequencies are
simply products of the frequencies at each locus, and the vari-
ances can he expressed as a sum of the variances at each locus
plus the variances due to the epistatic interactions. Again, least
squares estimators and variances can be directly derived for any
combination of frequencies and effects, as outlined by Cockerham
(1954) and Kempthorne (1957).

A linear model for two loci, say the A and B as in the previocus
example, can be constructed for any kind of dominance effects at
each locus and for any epistatie changes in the average effects
at one locus due to changes in the other locus. Without epistasis
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and with gene effects at the A locus causing average yields of

1,005:1,000:995 for ¥,.:Y.s:¥ ., the linear model would have

YAA""YA'A‘
2

=Y 1 — Yy u=5 au=Y¥Y, — =0, and a=0. If ¢=14, the

frequencies of AA: AA’:A’A’ would be 1:15:14, and the additive
genetic variance would be 12.5. If we were to raise or lower the
average yields by any constant amount, say 5 units, correspond-
ing to changing the state of the B locus from BB’ to BB, or B'E’,
then we would have a similar state of additivity at the B locus
as at the 4 locus and the average Y values for complete additivity
would be:

44 A4’ A4
BB 1.010 1,005 1,000
BE 1,005 1,000 995
By 1,000 995 920

If ¢,=0.5, then o,2 for the B locus is 12.5, and if the loci freely
recombine, the total genetic variance is 25, the sum of the additive
variances at each locus. If dominance existed at one locus, we
might have an average A locus yield of 1,003.5:1,001.5:993.5, so
that its =5, @=0.6, and at g, =0.5, giving ¢,2=12.5, and ¢,2=2.25.
If the B locus were to remain as it was, with partial dominance
at the A locus, additivity of the B locus, no epistasis, and
7.=¢=z=0.5, the table of ¥ values would be:

Ad AA ATA! Mean
BE 1,008.5 1,006.5 998.5 1,005
BE 1,003.5 1,001.5 993.5 1,000
BB 998.5 996.5 988.5 995

Mean 1,008.5 1,601.5 993.5

There is still independence between loci in gene action, and the
total genetic variance is still the sum of the variances at each
locus, ¢,2=25, ¢,2=2.25.

If interactions exist such that genotypic differences at one locus
are not constant, then epistasis exists. For example, when the
additivity at the B locus varies from its constant u=5, a=0 to
some other values, say #=7.5 when the A locus is A4, but then
#=10 when the A locus is AA’, and ©u=2.5 with A’4’, the average
cene effects remain the same but an additional variance is caused
by the interaction between loci. This condition is called interlocus
epistasis or gene interaction. The average yields for this epistatic
model, with g,=g¢z=14, would be:

AA AA' AA’ Mean
BB 1,011.0 1,006.5 996.0 1,006

BE 1,003.5 1,001.5 993.5 1,000
BB 996.0 996.5 991 995

Mean 1,003.5 1,001.5 993.5 1,000
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The total genetic variance is now larger than before while the
genetic variance at each locus, based on average effects of each
locus over all other genetic and nongenetic sources of variance,
remains the same, Thus, even if the loci freely recombine and the
locus means, frequencies, and variances are the same as before,
the total genetic variance of 28.625 includes an additional 1.375
due to epistatic effects. Clearly, an infinite variety of epistatic
models can be written with dominance levels changing at both
loci and varying additivity levels. If the coupling and repulsive
heterozygotes are similar, the nine zygotic states can be listed as:

Locus A Mean of | Frequency
AA Aa aaq B

Locus B

BB Yise8 Y soz8 Y sess Yz p?

Bb Yiin Yians Yeoors Y. 2p{1—2)

bb YY oo Yamws Y savs Yo (1—-p)*
Mean of 4 { Y,... Yio Yoo
Frequency | g2 2¢{(1—¢q) {(1—q)2

The differences among these genotypic states can be described
in terms of a factorial arrangement of genetic effects; the effects
due to Jocus 4 {«) should he averaged over all levels of locus B, the
effects of B (8) should be averaged over 4, and the interactions
hetween 4 and B. The effects of each locus are described as before
in terms of linear additive effects and dominance deviations. The
interactions could be described as interactions among linear ef-
fects at A by linear at B, linear at A by dominance at B, domi-
nance at A by linear at B, and dominance at A by dominance at
B. Thus, we can write the model of gene effects as:

YijkI:P+ai+a}+ 8{j+ﬁﬁ;+ﬁi+?ki
+{eBrut (aB)at (af) et («f)n
+ oy et (ay) at (B8) i+ (B8) in
+ (8v) gt

The variances due to all of these gene effects can then be sum-
marized as:

oy?=04%{4 locus) +o.2 (s locus) +op? (4 locus) +a.% (5 locus)
+0’2‘A+0-2AD+0'2,DD|

The additive and dominance variances at the two loci are simply
added together and their sum is the additive and dominance
variances for the {rait,

The only new variances are the three epistatic interaction
components. These can be derived in exactly the same fashion as
for the general case, Using the notation:
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+{p+F(1-p)] [1—q+Fqlen
+[1-p+Fp} [q+F{(1—q}]en

+[1—p+Fp) Ll—q+Fq]c“]2'

on{l— - —
= 2201 ?})({ig_lqu)(l B la+FA-0)] 1-¢+Fq]
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[q=F{1—q)] {l—q-i-Fq}[822*821—012"811]2'

EXTENSION*

A general algebraic expression for the two-locus model can be
written in terms of more traditional regression effects as the
linear (additive) effects at each locus, the quadratic (dominance)
effects at each locus, the linear-by-linear interaction (additive-by-
additive epistasis), the linear-by-quadratic interaction (additive-
by-dominance epistasis}, and the quadratic-by-quadratic inferaction
(dominance-by-dominance epistasis}. The fotal variance would
now include not only the 0,2, 052, Cov{ans;) effects at the 4 locus
and the og?, as?, Cov{fy, B;), at the B locus, but the oaqp’ 0as
opgats aNd 06 5% which are, respectively, the additive-by-additive,
the additive-by-dominance at both loci, and the dominance-by-
dominance variances. Also, the covariances between any of the
elements due to linkage disequilibrium between the A and B loci
must be included in a general model.

*Graduate-level statistical training required for thorough undersianding.
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Expansion to three loci increases the model elements, not only
by the simple average effects at the new locus, but also by the
new two- and three-way interactions or epistatic effects. The
genetic variances include an additive variance, .2, at each locus;
a dominance variance, o5?, at each locus; an additive-by-additive
variance, e¢,.2, at each pair (4,B; 4,C; B,C) of loci; and additive-
by-dominance variance, o,,%, at each pair of loci; a dominance-by-
dominance variance, ops®, at each pair of loci; an additive-by-
additive-by-additive variance, e¢:.4%; three additive-by-additive-
by-dominance variances, o..0° oipil, and o,,,%; three additive-by-
dominance-by-dominance variances, o.np’, opip’ and opps’; and
finally, 2 dominance-by-dominance-by-dominance variance, apno’.
The total genetic variances are then increased by these new
elements which confribute average performance variations and
are also changed by three-way linkage disequilibrium eifects, Thus,
complete, multilocus systems can be built up. Their complexity
expands rapidly, but they completely account for sources of vari-
ance suggested by basic linear statistical concepts.

Alternatives to the linear statistical models and analysis of
variance types of estimators exist. One alternative system of
defining genetic variances was suggested by Kenneth Mather and
extended by Dickinson and Jinks (1956} and further by Hayman
(1958, 1960b). Mainly applicable to homozygous lines and crosses
among them, a hasic genetic model of d, &, and —d for A4, AA’,
and A’A’, with gene frequency u for 4 and » for A, is used to
derive 6 or 8 variances and covariances. These can be used fo test
hypotheses about the sizes of the additive and dominance effects,
the gene frequencies of favorable alteles, numbers of loci, and the
presence of certain kinds of epistasis. The method is therefore
very comprehensive for estimating gene actions in a sampled
population, but is not likely to he of much use in forestry.

At its simplest, the method consists of estimating variances
among parental means (D}, variance among families made with
a common parental line, say r, {V,), the average of those vari-
ances {V,), variance among the various families’ means (V3),
the covariances of parents with offspring families within parental
line » {W;), and the average of these covariances (¥W,). Each of
these statistics has an expected value in terms of D, H,, and F,
and &k functions which in turn are functions of the gene frequency
and gene-action parameters. While Kearsey (1965) has shown
that translations can he made hetween these sfatistics and the
genetic variances as described hy Cockerham (1959) and Kemp-
thorne (1957}, it is possible to make direct estimates of additive
and dominance effects without the confounding of dominance
effects in the additive genetic variances as involved in those
previously deseribed statistics. In addition, graphical interpreta-
tion of the analyses is particularly illuminating. The crifical
probiem is the extension of such analyses to the general case of
heterozygosity of parents, as partially developed by Dickinson
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and Jinks (1956) and extended by Oakes (1967}, and to the
sampling errors associated with estimates and tests of similar
hypotheses. For some special cases, Kearsey (1965) has examined
the utility of these and the analysis of variance methods and con-
cluded that for the same number of families raised, the Jinks and
Hayman types of diallel analyses gave most information but
severely restricted the population of parvents which could be
sampled.

Thus, the genetic variances can be partitioned into various
measures of how genes affect phenotypes in some sampled popula-
tions as functions of their gene frequencies and genotypic fre-
quencies. The assumptions required for analysis and estimation of
those statistics, however, are often very restrictive, The problems
of estimation will be investigated in the next chapter. It should be
clearly noted that the parameters we speak of and the methods
nsed fo estimate them are not readily separable. Estimation
methods ave often dictated by the model parameterizations. It
should also be emphasized that if inbreeding is an important fac-
tor in populations, a correlation will exist in the frequency with
which the alleles at a locus will associate and that correlation
among alleles at different loci will also occur. The average effects
of alleles will therefore change if inbreeding levels change, caus-
ing the genetic variances to change. In such cases, a trajectory of
genetic variances may be a more interesting statistic to estimate.
In addition, the presence of linkage disequilibria and any dis-
equilibria caused by sampling or by cressing previously isolated
chromosomes generates correlations among loci, also making the
genetic variance nonstationary. It is often impossible, therefove,
to describe and estimate simple parameters relating to general
genetic phenomena, but these first approximations have served
well.

GENETIC VARIANCES IN TREE SPECIES

If we accept a certain vagueness about the exact meaning of
our average statistics like ¢,2, we still cannot escape the strength
of the general conelusion that in almost any trait studied in almost
any tree species studied, considerable variation is due to genetic
gourees. While there are some notable exceptions to this experi-
ence and while the record is somewhat biased because geneticists
generally test fraits they suspect of having some genetic variance,
the results are too broad to dismiss. The current work on the
extent of genetic variation in allelic polymorphisms indicates
large amounts of residual genetic variance in presumably unse-
lected or weakly directionally selected traits in many populations
of plants and animals. The same may be frue in tree populations
with respect to the traits studied. Over the range of tree genera
and species studied, for a variety of traits exhibited at different
times of the life cycle, genetic sources of variance have generally
been found whenever the variation present has been investigated




by appropriate analyses.

Genetic variance estimates have been derived for a broad array
of tree species, but there is a heayy preponderance of commercial
species for which intensive silviculture has led to breeding inter-
est. The pines have been most intensively studied. Estimation
experiments have been done with loblolly (Stonecypher 1966),
slash (Barber 1964), eastern white (Kriebel and others 1972;
Wright 1970), western white (Hanover and Barnes 1969), pon-
derosa (Callaham and Hasel 1961), Monterey (Nicholls and
others 1964), jack (King and Nienstaedt 1965}, Scots {(Wright
1963; Ehrenberg 1866), red (Fowler and Lester 1970), and
patule (Armitage and Burrows 1966) pines. The studies noted,
parenthetically, are by no means all that have been done on even
these pine species, and represent only a fraction of all studies
which have indicated the existence of genetic variance in forest
tree populations.

Other conifers which have been studied to estimate genetie vari-
ances include Douglas-fir (Campbell 1964), Norway spruce
{Saetevstal 1963; Lacaze and Arbez 1971}, and Cryptomeria
(Toda 1961). Among the hardwoods, the various species and hy-
brids of Populus have received widest attention (Hattemer 1976
Wilcox and Farmer 1967). In addition, some estimates of genetic
variances have been published for Acer saccharum (Kriebel and
Gabriel 1969), Juglans nigra (Funk 1970), Liviodendron tulipifera
(Keliison 1970), Quecrcus rubra (Kriebel 1965), Platanus ocei-
dentalis (Webb 1970), Liguidambar styracifiue (Wilcox 1970),
Betule wverrucose (Tigerstedt 1966; Stern 1962), Eucalyptus
regnans (Eldridge 1966), wattle (Moffett and Nixon 1363), and
Gleditsia trincanthos (Grisjuk 1959},

Among these species, many traits have heen studied—again
largely those associated with commercially important features and
mostly restrieled to traits as expressed In young trees. In addi-
tion to the commenly measured growth and survival traits, wood
quality has been widely and intensively studied (Smith 1967) by
Zobel (1961) in conifers and by Bhagwat (1963) in poplars. Esti-
mates have also been derived for root growth (Wilcox and Farmer
1968), stem form (Ihrenherg 1961), crown form (Barber 1961),
branching characferistics (Strickland and Goddard 1966), leaf
form (Kellison 1970), thorn morphology (Grisjuk 1959), seed
morphelogy (Kraus 1967), and froitfulness (Varnell and others
1967). In addition, genetic variances have been estimated for
competitive ability (Sakai and others 1968) ; resistance to cold
(Rudolph and Nienstaedt 1962; Dietrichson 1961), drought
(Texas Forest Service 1957), insects (Wright and others 1967),
diseases {Bingham and others 1969; King and Nienstaedt 1965),
and transplant shock (Beineke 1967) ; rooting ability (Muzik and
Cruzado 1958) ; grafting ability (Hanover 1962); and the vield
of gum exudates (Squillace 1966a) and vubber (Burkill 1959).
Some physioclogical traits have also been studied and genetic vari-
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ances have been estimated for nutrient absorption {Walker and
Hatcher 1965) and photosynthetic and respiratory rates {Ledig
and Perry 1967).

It is also clear that measurements of a trait in different stages
of the life cycle may represent somewhat different phenomena,
Crown and branch characters change very rapidly in the early
years {Snyder 1961), as do wood fiber characteristics {Zobel and
others 1961). While it is reasonable to expect that traits which
develop in sequence are closely correlated, the developmental
mechanisms cannot generally be expected to remain under con-
stant control, and hence something less than perfect correlation is
to be expected. In particnlar, if a trait has different selective pres-
sures with respect to survival at different ages, then we might
expect the various kinds and levels of genetic variances to change
somewhat over the life cycle. Thus, in height growth of Douglas-
fir, the genetic variances among families within populations were
found to decline over a 40-year period (Namkoong and others
1972). It was also found that the error variance tended to decrease
when the trees were 15 to 20 years old, suggesting that height-
growth control mechanisms do change as trees mature. Similar
patterns were found for ponderosa pine up to 28 years of age.
Thus, while some studies indicate little change in genetic vari-
ances through the juvenile period, more advanced ages may indi-
cate quite different apportionments of the genetic and error
sources of variance. It can, therefore, also be expected that the
correlations of traits at the same and at different ages will be
different. They may be expected to be large if the causal mecha-
nisms are similar and small if the causal mechanisms are largely
independent.

COVARIANCES OF RELATIVES

If the genetic variance in a population is defined as the vari-
ance among individuals caused by gene effects, then there would
necessarily be no genetic variance among individuals which are
genetically identical. Conversely, the genetic variance would make
its full contribution to total variance if individuals were ran-
domly chosen. Between these exiremes, the amount of genetic
variance exhibited depends upon the relatedness of individuals—
the closeness of their parentage. In similar environments, close
relatives are generally less variable among themselves than are
nonrelatives hecause their genes were derived from a restricted
population. Therefore, a correlation in their gene effects must
exist. In this section, the correlation among relatives is defined
in terms of genetic variances. In the next chapter, the correlation
among relatives is defined in terms of estimated family variances.
Therefore, relationship of genetic variances fo estimated family
variance components is derived.

For any two individuals, a genetic covariance would exist and
can be written in terms of their genetic effects if there is some
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probability (20} that their genetic effects are more likely o be
identical than what would occur solely by chance in random mat-
ing. If pairs of individuals are randomly chosen from the whole
population, then their alleles are expected to oceur in the fre-
quencies expected of that general population. If the pairs have
a close relationship, then the nonrandomness can be measured by
the frequency or probability that the alleles in the two individuals
are identical in descent and exactly alike. Thus, for a linear model
of average and dominance effects, as previously defined, we ecan
derive the covariance between two individuals, X and Y, accord-
ing to the probabilities that their alleles are the same:

Let X=,u.+axd~+a,1'9+81519
and Y=,u.+ot}-o.+r:ryg+8rd}‘9

where oy ¢y —average effect of allele from male parent of X .
axg  =average effect of allele from female parent of X,
8x,x, =dominance deviation of allelic combination in X,
ar, =—average effect of allele from male parent of ¥,
ary  =average effect of allele from female parent of ¥,
8ryvg =dominance deviation of allelic combination in Y.

With respect to the various genetic effects, the rovariance of

X and Y equals [E(XY)—E(X)E(Y)] which contains:
E(&,\'d, - CX)'H,) ‘E’E(Cx‘xa, . a}-g) +E (a_t? - txpd)
+E(a‘\'9’ ey 9} +E (5_\':._{9' o:;-c,.) +E(S‘td“.9 - 0.’)'9_)
+E(8}‘51'9 * q.\'j) +E(81-_‘:’}'9 * a.\'g) +E(8_‘(5‘r9 M SYC{E'Q)-

The first four elements are additive variances and covariances,
the second four are covariances of additive and dominance effects
(not epistatic interactions), and the last element is the dominance
variance or covariance, If the male parentage of X and Y is not
random, then a certain probability exists that ax.=ay_,, and then
E{ax jav ) =P?‘(X5 =Y.} * E(a?). It was previously derived that
E{(ef) =0a?, and in particulay, was (1)s,% Therefore,

Elax, ;) =P7.(X{=Yf)c“:a_'—_p9.(xf:Yg) (¥2)0,°

Similarly, B (e arg) =Pr(X,=Y,) - tho?
Eorgs ar,) =Pr(X =Y ) - oo
E(axg- ﬂ}'?):PT(X?:Y?) * 1'él;'}[z.
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Also, E(8x o or ) =PrX, =Y, X =Y " Cov(ards},
E (S-YLIXQ . QY 9) :P?.(XgZYQ, XQ =Yr=)) v Cov (‘11'8.\')1
E (8 vq ax,) =Pr(Y,=X, Yo=XJ)- Cov (axdy),
B (8v v g axg) =Pr (Y =X, Y ,=X,) - Cov(asdy).

Flnally, E (8‘]:5:\‘9 * 6}’51‘9) :P?. (Xd':Yd" X.gzi,g) * Uﬁz

or P?‘(XQ:YJ’XgZYQ) '362-

If the female parentage was somehow nonrandom, then
Pr(X.+Yy)s0 and similarly for the others of the first four

expectations. Summing yields b Pr(X,=Y;) * Y2ail
d

¥ X has a & and ¢ parental relationship which itself is re-
lated to the male parentage of ¥, then E (8x o * ay) 1s not zero
and would have to be computed, but these kinds of relationships
can temporarily be ignored if only nonrelatives are crossed. There-
fore, the second set of four elements is assumed to be zero. If
hoth & and ¢ parentage of X and ¥ are identical or related then:

E(S.tj-x;, ‘ 8}',_,.}‘9) =Pr (X’J.=Yd,, X;,:Yg)gaz
+P1‘ (ngyﬂ" X_{:YQ)UIF:

and these contribute to the existence of the last element.

Then for some common Kinds of relationship, we can trace the
various probabilities and determine the contributions of these
genetic variances in terms of the first four and the last elements
of the covariance of relatives. For example, if the female parent
of X and Y was the same, then the only nonzero probability would
be Pr(X,=Y,); its size would depend on how the choice of
gametes is made in the production of eggs from the common
mother. If the choice is random, then the probability ig ¥ that the
same allele {either one) is chosen, and the only contribution of
the genetic variance to the covariance of these half-sibs is o4

If both the 4 and ¢ parents of X and Y were common, then
Pr{X,=Y,) =Pr(X=,=Yf.)=1/_g, and the probability that both
are identical, Pr (X, =Y., X .=Y.),is V4 -15=14, and the other
propabilities are zero. Therefore, the genetic variance contribution
to the covariance of full-sibs is Vhea®+ o’

For the case of parent-offspring covariances, if the maternal
parent is the X individual and the offspring is Y, then
Pr(X,=Y,) =Pr{X,=Y,)=1A, and all other probabilities are
zero. Then, the covariance of parent and offspring is 50,8 The
probability that a random allele from X is jdentical by descent
te a random al. le from Y is:

« Pr (X{—-: Yj)
14,4 4 !
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which is Malécot's (1869) coefficient of relationship Cyy. There-
fore, 2C;y —3/>_4PrX;—Y;) can be used as the coefficient for the

0,42 2 contribution to the covariance of relatives,

1f additional genetic loci affect the genetic variances and covari-
ances among any relatives and if they are independent loci, then
the probabilities of identity by descent for multiple loci are
summed over the genetic variances at each locus. For the multiple-
lociis epistatic effects, the probabilities of joint identities by
descent are products of the independent probabilities. In such
cases, for any kinds of relatives which have the additive genetic
variance coefficient of a, and the coefficient for ¢,* of d, the gen-
eral covariance due fto all types of genetic variances can be
written as:

Co‘a'zac'_g_."‘Tl d092 <+ adﬂ' .“}2 +a20.i _,12_,_ d20'1)02+ E{zd{:’__“,; 52"." N

or in general, Cov== gldis? aini
Tt

As previously noted with respect to the definition of the genetic
variances, inbreeding nullifies the independence assumptions and
the derivations of the probabilities of drawing identical alleles. It
is clear, for example, that if F is defined as the probability that
the two alleles at a locus are identical by descent, the probability
that two alleles in two gametes randomly drawn from an indi-

iy

vidual tree are identical is 1 2‘ instead of 14. Then, with a

parental inbreeding coefficient of F, even with random choice of
parents, and hence no inbreeding of the offspring, the a and d
coefficients used to compute the covariances of relatives are in-
creased by factors of 1+ F and (1+F)?2, respectively, The prob-
lem remains, however, that the +,2 and 0,2 themselves reguire
specification with respect to the inbreeding generations they refer
to,

The effects of linkage also can clearly affect the probabilities
of some gametic combinations and hence the contributions of the
epistatic gene effects and their summations in the additive vari-
ance. The manner in which they affect the covariance of relatives
is not a simple derivable relationship (Cockerham 1956}, Nonethe-
less, if we wish teo define and estimate meaningful parameters, the
hroad effects of such factors as linkage and inbreeding must be
considered.

1t is also clear that hybrid populations will engender genetic
variances and covariances among relatives with quife unigue ef-
fects and probabilities of drawing various gametice contributions.
The effects of dominance types of intralocus gene actions are
unigue, and all trpes of interlocus epistatic interactions would
not only be unigue but their frequencies wouid depend on the dif-
ferences in gene frequencies ameong the populations and on the
linkages disequilibria so induced (Stuber and Cockerham 1966).
For our hrief review purposes, all of these effects will be assumed
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absent as we shall assume large, random-mating populations with
independent loci.

If it is a reasonable approximation to assume independence, it
is clear that we can create families of varying degrees of rela-
tionship and, hence, get a handle on the amounts of genetic vari-
ations that exist within the populations from which the samples
are drawn. By drawing a sample of genctypes which presumably
represents the varicus genotypic effects and their frequencies of
occcurrence in the population, we can only measuye a total variance
unless we can artificiaily construct known families to see how the
genetic sources of variance affect the size of the covariance among
relatives. The larper the genetic variance contributions to the
total variance ave, the larger will e the differences among family
units, and the closer the relationship among family members, the
larger also will be the differences among families. By making sets
of different kinds of relatives, we can then partition the existing
genetic variation according to the contribution of the genetic vari-
ance to the covariance of those relatives, and derive estimators for
the genetic variance. We shall investigate the variety of mating
forms whieli we can use when we consider genetic experimental
designs and analyses, but it is instructive to derive one case in
which a simple experiment provides an estimate of the addifive
genetie variance.

Consider that a random sample of females is drawn from the
population and that each is fertilized by a large number of ran-
domly chosen pollen grains from the general popuiation. In such
a case, we have female haif-sib families, and the covariance among
seedlings within their families is that of half-sibs. If it is also
considered that the variance among these families (/) is due to
some females being AA; others AA’; and others A’A’, then ¢f is
some function of the genetic variance also. In faet, if the females
are random samples from the population and their effects are de-
fined as deviations from the general mean, then from a linear
model of yield for two individuals,

Xij:."_”ft.-:-plllj

YkE:fL'L'fE_LClK'I!
where ,k=1,2 ..p
i =1,2...n,

we can derive that E(f)=0 and E(f*) =¢2 It can also be ob-
served that for two individuals, F (fi+ f.) is zero if { £ k {(by the
randomness assumption) or £ (fi+fi) is ¢f if i=k (if both have
the same mother}. Thus, the variance among female groups equals
the covariance of individuals within groups and, in our case,
would be expected to bhe 1i¢,2 plus any epistatic effects appro-
priate to half-sib relations. We can derive these effects also by
considering the genetic variances we might expect from a popula-
tion of half-sibs.
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Consider the mating frequencies in table 5 in which females
with genotypes A4 are expected to occur with frequency ¢2 in our
population and in cur random sample, and A4 has phenotype «,
AA’ has phenotype ¢u, and A’A’ has phenotype —«. The matings
of AA females with A4 males (which also exist in frequency ¢2)
occur at a frequency of g2 X¢* if male and female were randomly
and independently chosen, Since all offspring are A4, with aver-
age yield u, these progenies would yield ¢*u to the family mean of
AA females. For individuals of crosses of AA females with 44’
males, the frequency is expected to be ¢2 - 2¢ (1 —¢) with half the
progeny being AA and half being AA’. Then, the contribution of
these individuals to the AA female family mean would be
22 (1—q) 14 (u+au). For individuals of crosses of AA females
with A'A’ males, the frequency is expected to be g2X (1—¢)2 and
all individuals would have an average phenotype of au and hence
they would contribute ¢2{1—g)2au to the AA female family mean.
Within the A4 maternal family, all genotypes contribute a col-
lective frequency of ¢® and to a phenotypic mean of
¢*u+2q(1—q) [{5 (u+-au) ]+ (1—g)2eu=qu+ (1—q) cu, as shown
in table 5. Similarly, the frequency and the expected means can
be derived for AA’ female families as frequency=2¢(1—¢) and
mean= (L3} (2¢—1Yn—~1%au, and for A’A’ female families as
frequency= ({1 —g¢}? and mean=— (I1—¢)w-+q (an), and for all in-
dividuals the mean= (2¢—1)u+-2¢{1—¢g)an. Then computing the
variance among the family means as = family frequency X
(family mean)?— {grand mean)?* yields:

g*lgu- (L—q)au]®+2¢{1—q) (14) [(2g—1) u+aunl?
+ (- [~ (I—giu~quul® —[(2¢—L1)u+2¢(1—¢g)au]®

:1(_1?“?_)[1%1—2@@%2.

This value is exactly 1 of the g, we previously derived as the
variance among average effects of alleles. Thus, only 14 of the
a4® 1s contributed to the covariance of half-sibs.

We might also notice that if mating was not at random, then
the mating frequencies are not correctly computed and perhaps
the parental genotypic frequencies are other than the expected
g%; 2¢(1~—¢q}; and (1-—¢)2 In such cases, as we have already
remarked, the genetic variance itself is not simply defined, hut
changes with frequencies of genes, average effects of alleles, ang
the variance of average effects. These possibilities have heen of
some concern in experiments using open-pollinated tree seeds he-
rause effective pollination as well as ancestral relationship may be
highly dependent on distance. While these conjectures seem reason-
able (Wright 1962; Langner 1953; Sakai 1971) there iz not
enough evidence to indicate where or with what species this prob-
lem is serious. A further source of bias in open-pollination tests
is the possibility that limited numbers of males may effectively




Table 5.—Mating frequency table

Matings 1. Values of offspring

Mating : - Family

Female Male frequency A mean

genotype ' genotype

AA qt u
AA’ 2¢*(1-q) 0 Y (u+aun)
¢ (1=q)* au

AA female mean , : q qu+ (1—q)au
AA’ 2¢*(L—q) 14 (an) W% (utau)
4¢°(1—q)*° 1 (an) Yo (au)
2q (1—q)° Y (au) , % (—u+ai)

AA’ female mean 2q (1—q) % (2q—1)ut+Yeau
AA : q*(1-q)* au
12q (1—q)*® 0 Yo (—utau)
(1=q)* , - u

A'A' female mean (1—q)* : - (1—¢q)u+q(an)
Grand means for all progeny (2¢-1Du+2q(1l—q)au
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pollinate any particular femzle in a given year. If this occurs, the
variance among families which is more distinctive due to differ-
ences among male parents will increase {(Namkoong 1965). We
previously assumed a pollen mix from the general stand egqually
effective for all females, but we may realistically wish to con-
sider the effects of such possible factors as few or single males
producing families with close average relatedness, the males heing
related, and possibly even the female being related to whatever
males may be effective. The overriding need seems fo be for data
fo estimate the size of any possible biases. Until such data are
available, the wisest course would seem to be to avoid relatedness
and increase effectiveness of broad population egg and pollen sam-
ples by sampling different years or providing supplemental pollen
dispersals by artificial means when possible and to proceed with
such estimates as may be minimally biased.

MULTIVARIATE VARIANCES*

It is clear that genes, like most control factors, often affect more
than one trait and that genes affecting different traits are often
linked. Therefore, anything done to change one trait by manipu-
lating genes will affect other traits. It therefore behooves us to
consider that genetic covariances among traits provide informa-
tion on the total variability and correlations that exist in forests.
The only element of difference that genetic sources of covariance
among traits creates is the possibility that the covariance is due
to either correlated effects of the same genes, or to the existence
of correlated frequencies among genes at loci which otherwise act
independently. Both genetic sources of correlation among traits
can cause very rapid and large changes in the corvrelation if selec-
tion is applied to the population or if relatively small populutions
are permitted fo breed., Otherwise, we can {reat the analysis of
multivariate systems by siandard means and can treat genetic
sources of variance and covariance as simply another control] vari-
able in multivariate analyses of correlated traits.

Multivariate analysis in genefics has included selection index
construction, cluster and distance analyses, and some attempts to
simply reduce the total number of yield variates to a manageable
number. In this section, we merely wish to develop the basic models
and analysis as extension of the previously introduced concepts of
variances and regression.

If a new equation is written for each of several ¥ variates with
their respective effective loci represented, the covariance befween
fraits may be expressed in ferms of the correlated or pleiotropic
effects of those commonly held genes and their alielic frequencies.

In the above notation, traits 4 and B with a commonly effective

*Graduate-level statistical training required for thorough understanding.
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locus can be written as linear genetic models:
Y= patantey 8y
Y:ri,fz.“-ﬂ';"ﬂ;;i‘i‘ ;™ Sy

The additive genetic variance in the individual traits is 25pie.
Here p, are the allelic frequencies, «, are the average allelic effects,
and summation is over ali alleles. The additive genetic covariance
is:

2% s

Extensions to more inclusive models are direct. Xlost of the
present work on multivarinte genetic analysis is on this simple
genetic basis. If is possible to obtain pseudopleiotropic effects
in estimating additive genetic covariances without true genetic
pleiotropy if linkage disequilibrium or other disequilibrium is
present and causes an association of traits by correlating the
frequency of alleles at different loci. However, if equilibrium con-
ditions are assumed, the covariances of additive, dominance, and
other effects are derivable for pairs of traits in covariance analyses
just as the genetic variances are. The genetic covariance matrix
is our multivariate analog of the simpler univariate genetic vari-
ances and has all of the sampling and interpretation problems of
the univariate models extended into p dimensions.

Aside from distribution and hypothesis testing in multivariate
analysis, the interest of geneticists lies in two main directions.
One is towards reducing the number of variables to a more easily
handled set. In these cases, the technigues of principal component
and factor analvses have been pursued. The other direction of
research is into the matrical representation of genetic effects, such
as might be convenient for linkage studies or any genetic study
extended to the multivariate case. In this direction also, studies of
speciul interest for provenance research lie in determining the
dimensionality of the space defined by species, hybrids, races, or
provenances (for example, Namkoong 1967; Misra 1966). These
latter studies usually employ the technigues of canonical analysis
and use the vectors corresponding to the roots of (B—AW) =0
equations to obtain scales on which to measure divergence or
similarity. Recently, Rouvier (1966) has proposed a canonical
analysis with a rotational transformation to the principal com-
ponent factor of the 1V matrix.

AMuch provenance research involves the discernment of relations
hetween environmental factors and yield factors. For example,
after a local provenance test has heen run, the breeder often
wishes to estimate the relations between environmental variables
at the seed source and performance in his plantation. The interest
for population genetics lies in determining the extent of genetic
segregation in allelic frequencies and whether substantial genetic
variance exists within or between stands, or both. The extent to
which variation in the several traits of interest is determined
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by environmental factors indicates the relative strength of direc-
tional selection and migration versus drift and other random
forces in determining allelic frequencies. The analysis of multiple
regression in several traits simultaneously is therefore of value in
interpreting genetic population structure. The genetic covariance
matrix estimated after interpopulation effects are removed repre-
sents the multivariate analog of the simple genetic variance within
pepulational subdivisions, One might wish to simplify interpreta-
tion by using canonical or component analysis, but estimates of
the total regression and residual genetic covariance on all the
traits should also be made.
p{p+1)
2
therefore estimahle, and general linear hypotheses (on additive or
dominance effects in multivarinte space, for example) can be
tested by multivariate analogs of univariate analyses of variance
tests. Thus, maximum likelihood testing on the dispersion matrix
among provenances or among f half-sib families in p traits is
performed by comparing the statistic:

—2nin[ W/ TW+E ]

with x* with 2(f~1) degrees of freedom,

The matrix of genetic variances and covariances is

where n=total sample size,
f=number of families,
W=dispersion matrix for error,
B=dispersion matrix for families,

Woand W -B =generalized variances of their respec-
tive variates.

Several linear hypotheses can be tested by this criterion (Kendall
and Stuart 1966) as well as by criteria based on the distribution
of the roots of ~ I ~ATF =0 (Roy 1957).

Various kinds of value functions can be made up to provide
simple measures of value by functionally incorporating the joint
values of the several yield variates, The selection index is one
kind of such value function that can he applied, is linear, and is
determined such that it maximizes selection gain, Other criteria
can be applied to nonlinear value functions (Namkoong 1970b)
and will be discussed.

Standard definitions of gene effects and variances can thus be
extended to the multivariate case. This analytical form may well
be very important in forestry. In any case, the gene effects thus
described and the relative allocation of differences (variances)
hetween and within families permit estimation of the strueture of
variation in populations.




CHAPTER 8
ESTIMATING GENETIC PARAMETERS

While it is desirable to measure population means, variances,
covariances, regressions, etc., because they are useful descriptors
of population characteristics, the method of estimating these
parameters is nol immediately obvious, In this chapter, the con-
cept and genetic use of variance components are developed as an
extension of regression concepts. Estimation techniques for stand-
ard, balanced designs are described along with tfechniques fov
analyzing unbalanced experiments. The relationships between
estimable experimental variance components and genetic variances
are shown, and experimental designs suited to estimating genetic
variances are then explored. The principal problem in estimation
is to determine a reasonably good use of the sample data for
accurate estimation of those parameters, at least on the average,
However, the existence of variation in the population necessarily
implies that any resampling or other new independent sampling
of the population will give us a different set of data and therefore
different estimates of any of the parameters. It is useful to know
not only the best estimate of the parameter values, but also how
much variation we might expect any new results to exhibit if new
sample estimates were derived. For example, if breeding program
decisions were to be based on the level of genetic variances and
different estimates of the variances were available, the relative
reliabilities of the estimators would be critical information. How-
ever, variations can be generated by many causal factors. Some
may be controllable or measurable and adjusted for, while others
wonld be uncontrolled and could cause unavoidable error in esti-
mating means or variances.

Thus, there are two general means of reducing errors of estima-
tion. If the sources of variation are identifiable and controllable,
they may then be fixed or their contributions to the variation
adjusted for. On the other hand, if the sources of variation are
not controllable or their variances’ contributions are to be esti-
mated, then sampling among the units of variation may be in-
creased to reduce error in estimuting the vaviance parameters.

As an example of the first case, the variance of estimates of
average wood srecific gravity of slash pine was T3 106-%, but
much of this variation was due to differences among clones. \When
the clonal variations were removed, the residual error variation
due to uncontrelled sources of environment and error was only
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430X 105 (Zohel and others 1962). If the objective is to estimate
a tree's specific gravity precisely and clonal variations are ex-
trinsic to this objective, then clonal differences add to the error of
estimation. In this case, when genetic variations were removed,
the mean specific gravity was more precisely estimable; more
samples from within specific clones would provide greater pre-
cision. Thus, the variation in any parameter estimate is subject to
how the sample is drawn angd how the population is restricted. It
is to be noted, however, that there almost always is a residual
variance which cannot be adjusted for, and even adjusted statistics
rarely estimate a parameter exactiy.

As an example of the alternative case, however, the objective
of the experiment maxv be to estimate the extent of variation
among clones or to include clonal variation in estimates of total
population means. In that case, more ciones rather than fewer
should be sampled to reduce the error of the total population mean
as well as to estimate the variation due to clones. The concern has
shifted from estimating means of a fixed set of units to one of
estimating both means and variances of a more widely sampled
set of units, It is then generally assumed that a random sample
will provide an experimental set of units which will represent the
types and proportions of effects as present in the wider population.
The model and interest have thus shifted from the fixed effects
of specific experimental or test entries fo the random effects of a
variable population,

It may be obvious for estimates of means that larger sample
sizes increase precision within some restricted population. It is
also true for estimates of variances that more samples of clones,
families, or whatever factor causes variation will also increase
precision in estimating the variance due to those factors. When
parameters ave sums of squared effects (i.e, variances) vather
than sums of direct measures, the same resuits hold true with
respect to error of estimation and its contrel. Thus, if sums and
means are estimated with some variance, then sums of sqnares
and mean squares are also estimated with some imprecision. In a
very large experiment with loblolly pine, Stonecypher (1966) ob-
tained a direct measurement of the variance in estimated variances
by analvzing different sample blocks separately and showed that
the variance estimates differed. In that case, some of the differ-
ences were due to variations in sites and years, but a large portion
was due simply to sampling variations in drawing different sample
replicate blocks. Whenever there is variation in the basic data, all
derived estimates of parameters such as means, variances, or
higher moments will exhibit variation. By analyzing the sampling
variance we can help ourselves in two ways, First, we can deter-
mine the reliability of the estimation statistics under the condi-
tions of the experiment and possibly under greater or lesser
sampling restrictions. Second, we can determine what [actors
affect the sizes of the errors of estimation and therefore can plan
future experiments to provide predetermined levels of precision,
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It is beyond the scope of this publication fo construct the
distributions of stochastic processes, There are many texts avail-
able which describe moments and estimators of moments for the
commonly assumed distributions. Some characteristies of error
distributions, parameter estimates, and the variance of the esti-
mators will simply be asserted here. The discussion will generally
be confined to simple, linear models, but some solutions for more
general conditions will be indicated.

In the multiple regression concepts previously outlined, the
independent variables x; were assumed to have some average
proportionate effect (b) on the size of the yield variate Vi
Hence:

Yijzbu‘i‘ b]jXﬁ‘i“bnggj bngg,-'{' oo Bije

The total sums of squares in ¥ was seen to have been reduced by
accounting for the regression effects {(or could be reduced by
adjusting for the regression), by an amount b (X‘Y). The sums of
squares thus derived as being accounted for by the regression
could also have been written as V' (X'X)b. We could just as
reasonably state the relationship between the Y and X variables
as the existence of an average regression effect in Y for each X
variable chosen. If the various X variables are not controlled or
specifically chosen in the experiment or if the X levels in the
experiment are to depend only on the frequency of their occurrence
in nature, then the variation in the X or b effects would itself be
a variance statistic of interest. The emphasis in analyzing the
relationships changes. In simpile regression, a single X variable
has many levels and the ubjective is to estimate an average re-
gression response for a given range in X. In simple analysis of
variance, a single X variable (for example, a family {) has a
single response level (b)) and the objective is to estimate the
variations in ¥ caused by samples of many different b; effects.
For example, family 1 may have an average deviation effect of
+5, and family 2 «—5, etc. Then individual trees would have Y
variate measures of the mean, plus or minus the family effect,
plus an error. Two trees from family 1 would have effects added
as:

Y11={L+bIX1+0+eu
Y12=fx+le1‘i‘0+€12

Family 2 may have several trees:
Yo=p+04-boXoteoy
Yoo=p40-+boXo+€as
Yos=pt+0+bXoteos
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If the size of the fumily effect (for example, ==5) is taken as the
b coefficient, then X, =1 whenever family 1 is measured, and zero
otherwise. Similarly, X>=1 only if the tree measured is family 2
and is zero otherwise. The above set of Y measures would then
carry a model:

Yiu=p+60X3+ 0...4en
Yi=p+b X+ 0...tep
You=pt+ 0+b:Xo... ten
Yoo=p+  0+4+baXa... teem
Yos=p+ O+beXs... Tem

......

------

1 1 ¢ Y (e} [en)

1 1 0 by 812

1 0 1 Ba ex

_ 1 0 1 €an
= e
ORI TPEION ( (PO B POy
Y= (X) (B + (e

The form is the same as for the simple regression except that
the X's are counting indices and are known in the experiment, The
effects of the X’s on the Y are determined by the b's, and these
are expected to reflect some sample of effects from the population
the sample was drawn from. Then, the sum of squares due to
variations in accounting for the regression effects would be:

E{li’(X’z)}=E’[(Xg+g)’X(X’X)—1(X’Xb+X‘§)]
=E(X'Xb+ee)
=E (VX' Xb) + (df)}~
Then, the expected value of the mean square due to regression
effects is:
Eb(X'Y)] , BE{(0'X'Xb)
= — T=gft = =7.
af af




221

This form of the mean square due to regression effects now
requires some concept of what those effects are and how they
were sampled in the population in order to interpret the term
E{b’X'Xb}. It is useful to define the effects arbitrarily as causing

deviations around the general mean. Then the mean of the &

effects would be zero. In addition, if the population is assumed
to have been randomly sampled, then the covariance between the
randomly sampled effects would be zero. If it is further assumed
that the variance throughout the population thus sampled was the
same, that is, the population was not subdivided into segments
with different means or variances, then E{b;—b)2=variance
among regression effects=o,% The definition of effects as devia-
~ tions requires that E(b) =0, and the assumption of randomness
requires that E (bb;) =0 if is£5.

Now, it can be seen from the above definitions of the matrix X
that

fn 2 3 )
2 2 0
X'X=
3 0 3 ..
. o)
rn 2 ) 1!
that (X'X)b= 2 2 b
- 3 ¥ 3 ba
. o4
" np+2b,+8bat . ..
_ 2‘u+2b1+ 0 + e
Sp+ O +3bot ...

NI

that b (X'X)b= (g, by, bo...) [ np+2b,+3b,. ..
2u¥2b O ...
3u+ 0 +8by...

= nu? +2ub; +8pbs L ...
F2ub, +202 + 0 4 ..
+3pbe + 0 +8b% + ...
+.
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If the above assumptions are valid, then
E(bX'Xb) =qp24+2E (bs?) +3E (bP) +. ..
=‘nlu.2+20‘b: '1’30';,2—}' ey

and if the correction factor for the mean is subtracted, this term
includes only ¢ (£X?) where the X/ coefficient is only the num-
ber of independent times each of the b;* elements are included. In
this case, it would be (2-1) for by, (3—1) for b., etc. There-
fore, the expected value of the mean square due to regression is
2+ (2X?), and our only problem is to count the number of
independent «,? elements there are (ie., X2} in what has been
constructed as the mean square. Whatever the effects are which
we try to estimate as a contributor to the population variance,
the furm of the analysis is the same. Our great interest is In
genetically related sources of variation which can be of many
different kinds.

Family differences or fertility variations can be treated as
sources of variance and can come in several forms. Hence, they
would have to be interpreted in terms of the kinds of effects and
variances that they measure. Thus, fertility-caused variations
may be quite different if we measure nitrogen rather than iron
levels in Torests, and genetically caused differences are quite
different if we measure differences among full-sib families rather
than half-sib families. For the moment, however, consider that a

single effect like families is sampled from a large population and
that the vaviance in yield due to family differences {o/)} is to be
estimated. We shall try to compose sguared sums so that we can
estimate the components of variation due to error (¢%) and due to
the variation among the regression or family effects (a; or o/°).

ESTIMATING VARIANCE COMPONENTS IN
ANALYSES OF VARIANCE

Tor the several sources of variance which we wish to estimate
in an experiment, we can compose several analyses of variance to
estimate sizes of the components of variance of those sources.

In general, we should consider that variances zan he estimated
in many different ways. For example, we might construct different
combinations of observations which, when squared, give different
variance functions and whicti may then give estimates of the con-
tribution of each of the component sources of variance. In par-
ticular, for unbalanced experiments, variances can be estimated
efficiently hy constructing sums of squares different from those
that would be constructed for testing significance of treatment
effects. However, foir balanced experiments, it can be shown that
the usual kinds of analyses of variance require mean sguares
which are, in fact, unbiased estimators of the components of va-
riance and that those estimators have jeast sampling variance of
all possible quadratic forms. A familiar example is the randomized
block experiment, where Yie=p bt i bfyte with » blocks
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(i=1,2...r), f families {j=1,2...f) and n seedlings {(k=1,
2 ... n) per family plot. The analysis of variance (ANOVA)
is shown in table 6 in which a dot indicates summation over the
subscript for which it is substituted. Then :

EMS families 1z nr el
EMS plot ervor {={1n0 op”
EMS within 100 oy

Each variance component can then be estimated since there are
three linear equations with only the three unknown components.

Even for unbalanced experiments, a good general procedure
to follow is to write out the linear model of yield for each experi-
mental unit, and to then determine the sums, squared sums, and
differences required in the usual kinds of ANOVA. We must then
compute the expected values of the model components when they
are summed and squared as required by the ANOVA formulations
for obtaining sums of squares. This can always be done regardless
of either the balance of the experiment or the particular sum of
squares computed. It only requires that whateveyr experimental ob-
servations are summed and squared, we also sum and square the
correspending model elements in the same way and hence deter-
mine the expectations of the sums of squares in terms of the ele-
ments in the models. Such procedures are explicitly traced by An-
derson and Baneroft (1952, chs. 17 and 18), Searle {1971, chs.
8 to 11), and Graybill {1961, ch. 16) Tor some common tipes of
experimental designs. If the experiment is unbalanced, the tradi-
tional types of sums of squares can always be computed to give
mean squares which would often unfortunateiy contain all of the
variance components. Since none of the mean squares would con-
tain elean estimates of anyv components, the solution would require
the simultaneous estimation of al] components. Squillace and
others (1967) used this techniyue to estimate several variance
components of height growth in an unbalanced western white
pine experiment. They derived nine swms of squares as if the data
were balanced and found the coefficients for nine variance com-
ponents so derived. Thus, the 971 column vector of mean squares
(MS) was equated to a 99 matrix of coefficients {4) multi-
plied Dby the 91 column vector of variance components
(0,°). Then, since MS - (4)s7, the nine variance components were

estimated hy (A4)- MSHQ,-”. This is a readily usable way to esti-
mate the components, but it involves very high errors of estima-
tion.

A simpler method for caleulating a set of independent sums of
squares, which also provides the expected values of those sums
of squares in terms of the variance components, iz the Abbreviated
Doolittle method. The methed is well described elsewhere and re-
quires no review here (Anderson and Bancroft 1952},




Tabie 6. —Analysis of variance for a randomized block experiment

Source of variance - df Sum of squares Expected mean squares

it o i . e e i 20

Blocks (r—1)

>y te ¥
Families (f—1) R Fe A o not+nraed

‘ s Vij Y..:
Plot error _ (r=1) (f—1) 5 : T+ 10y

Within plot error rf{n—1)
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UNBALANCED DESIGN ANALYSES*

For our purposes, the greatest utility of the Abbreviated Doo-
little procedure lies in composing sets of independent sums of
squares for unbalanced experiments and determining their ex-
pected values in terms of squared components. We can illustrate
its use in a simple experiment where seedlings from open-pollinated
females have heen planted in a randomized block but in ihich
some plots are missing due to causes which are independent of the
measured trait. In the following example, the grand sum (G)
and each block (B;) and family () sum can be seen to contain
the indicated amounts of each y, b, and f; effect. If the data were
balanced, the sum of squares for families (treatments) could be

computed as%}; (F,-*%) ?, or since ¥ B;=(, the sum of squares
J i

for families equals%—._\: (F;——LE By~
H i

l Families ;
Block | ; Block sums
f 1 2 3 4 I
1 Yy Y Y Y B,=Y.,
2 Yo Yoo ¥ga Yo Ba=Y.,
3 Y3 Y.y Yy Y By=Y,

Family sums F,=Y,. F.=¥, Fu=¥, F,=Y. =Y.

Effects included in yield sums
M by ba by i fa fa s Yield

=

CO o 00 00 b W W D
Ll = T ol S e B T NV
[l el S R s SN o I
[ e i o N I -
GO O ==
oc::ccc:-d;—lr—-m!
u:::c.x:c:u::n—u—t»—-xoc.;F

Each F; sum contains 3 . elements and one each of b, effects in
addition to three of its own f; elements, as indicated in the above
table which is essentially the X matrix of cosfficients. Suppose
however, that family 3 is missing from block 1 and family 2 is
missing from block 3. By determining the content of each B,/f, and
subtracting it from F;, the X matriz of coefficient becomes:

*Graduate-level statistical fraining required for thorough understanding.




Effects included in yield sums

be by 5 Fa fs

o
ol

L0 o DD OO 00 GO O
Y Y R LR
Y Y =
WO O
OO O L b O
O OSSR =N
OO O M D
WSO

However, it is still possible to adjust the treatment sums as
to obtain sums (F*) which are clear of x and b, effects as follows:

Adjusted
p b1 ba ba f1 fz fa fi family sums

6 0 0 © ~7/12 —7/12 F,—[1/88,+1/48.
+1/3Bs]=F.*
0 0 0 O 7 17712 —3/12 Fy—[1/38,+1/48:)
_Ft
0

00 0 -3/12 17/12 Fa={1/4B1+1/385)
=

¢ 0 0 0 ~-11712 —7/12  —7/12 /12 F-11/3B,+1/4B:

+1/2B) =F

It is now necessary to derive independent sums for the sums of
squares to be additive, but since the data are unbalanced, the
above sums must be further adjusted. The Abbreviated Doolittle
procedure may be followed a further step to provide the sums of
squares as follows:

f2 fu fs Adjusted family sums
T =72 Titz R
~T725 —7/25 —11/25 F* 1285
376 300 —-124 300 -~ 252,300 FA—T7/25 F\*=["*¥
i —124 376 - 252 ‘378 Fa** - 300/376
196 1198 ~190/1198 Fa*—3.25 (Fi7)
-1 — 1247376 Fo*¥=Fy**
1 Foe% < 1128/126
0 0 0

By sweeping out all but family effects, the adjusted sums of
squares can be computed from the model effects in the left-hand
side of the Abbreviated Doolittle matrix. In our example, the ex-
pected value of the sums of squares for the family effects is:

2.0833f2+1.4167f."+1.4167f,%+2.0833f,*=3.5 of

since E (f,f)) =0, if 4557, but E{f#) =2
We have thus created a sum of squares unconfounded with other
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main effeets (;,4;) which can then be interpreted according to the
meaning of the ¥ af?=X X* o,>. The Abbreviated Doolittle for-
ward solution in effect transforms the X matrix into a matrix Z
in which rows are orthogonal linear functions of the original X
rows. Thus, X=ZF and hence X’X=BR'Z'ZB. Since Z contains
orthogonal rows, Z'Z js a diagonal matrix (D), and X'X =BEDE;
and (X’X)b=X'Y is therefore transformed into B'DBb=R'Z'V.
If B exists, then DBb=Z"Y, and in the Abbreviated Doolittle for-
ward solution, we find the matrix A=DB and DBb=2'Y=4b.
Thus, by transforming the X into ZB, we can see that the corre-
sponding & is transformed into Bb=0* The sum of squares due

to the regression is invariant under these transformations and
can then be seen tg be:

brXf'Yz b*r (B:)-]Brz:y
=b¥Z'Y
or =VB'Ab= V'B'DBb=bX'Xb.
As given in the earlier notation, this is the expected value of the
sum of squares due to regression (SSR) for the regression effects.
E(¢’e} must be added to this to complete sum of squares due to

regression. The Abbreviated Doolittle forward solution provides
the A and B matrices in the form:

XX | XY

An Ay A A
1 B;g B;a Bl-i

Az Ay Ay
1 B. By
Az Ay
1 Ba
(An An Aw Ay L))
A= Avn Asy Ang
Az Ay
L A.H - )
(1 By By By )
B= 1 B. By
1 By
. 1 "
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It can also be observed that the b regression coefficients have been
changed, and that estimates of the new effects, b*, can be con-
verted back to the originally defined ones by the inverse trans-
formation. This is computationally simple in the backward
solution of the Abbreviated Doolittle. Since the sums of squares are
invariant under these transformations, however, we can interpret
the meaning of the Za,f” in teyms-of variances of these fi or b*
effects. If we sampled at random, and all the f; are independent,
then E (ff;,)=0, i==j. If in addition, the f: are deviations from
some general mean, then =f=0, F=0. Hence, E(f*)=E (fi—1)
=g, and the number of such elements in each squared sum is
computed in the Abbreviated Dooclittle by the B'A=3 A; B, for

i
each of the { effects in the kth squared sum. The number of such
squared sums that yield any o/ is the number of degrees of free-
dom,

In general, it is not possible to adjust main effects for inter-
actions. Therefore, while one can adjust any main effeets for all
other main effects simply by listing those desired “clean” effects
last, interactions involving the main effect will be included in its
sums of squares. If nonindependence among the f, is assumed, or
any difference among the E (f2) exists, then these effects too can
be traced by completely writing out the B'A products.

In unbalanced data, the general chjective of the various com-
puting procedures such as the Abhreviated Doolitfle is to adjust
various sums for other extrameans effects. TUnless some of the
effects contain interactions, we can view the prohlem as one of
transforming the A matrix to a partitioned upper-triangular ma-
trix in the eqguation:

Alﬂm: Amq bu _ gm
Ay Aun be Ua

A direct method requives that certain inverses exist or that gen-
eralized inverses be found. Then:

I", 0 Amm A mg bnl
- A lnq"!l e 1 fq- -A-;mr; ;i-qr;- E

whetre A$qq == A!'-q_ J“imq’A T} lAmq
and ﬂ*q B8/ i A m-;!“:1 wm 191‘:-

Other transformations can similarly be made to obtain zeros in
the lower-left partition, hut all require some divect inversien of
cubmatrices. The great advantage of the Abbreviated Doolittle
method is that the inversions do not have to be made directly.
Since almost all ANOVA will have (A) matrices with several
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singularities, direct inversion is very difficult even with generalized
Imverse programs. Thus, when missing plots or otherwise un-
balanced data exist and lineay dependencies are created in forms
difficult to detect, the Abbreviated Doolittle provides sums of
squares with all dependencies removed.

A third possibility in computing sums of squares and their
expectations when unbalance exists js to simply compute the sums
of squares as if no plots were missing. Then the expectations of
the sums of squares can be determined simpty by repeating the
summing and squaring operations on the model components in-
cluded in the appropriate yield variables. \While net an elegant
procedure, this one can be used if all other procedures fail,

For balanced experiments the ANOVA’s are usually easily de-
termined, and various algorithms ave available for finding the
appropriate expectations of the mean squares. Many methods have
been described for determining appropriate ANOVA's for compli-
cated replication, treatment factorial, and nested designs and their
expectations under assumptions of fixed, mixed, or variance com-
ponent models. They are not reviewed here.

DISTRIBUTIONS OF VARIANCE COMPONENTS*

While it is clear that unbiased estimates of the variance com-
ponents can be obtained, it is also clear that a resampling of the
original population would yield different estimates, Like any other
estimator with sampling error, the error distribution is used for
determining reliability of estimates as well as for designing good
experiments. It can be shown that if elements drawn from an
N(0,1) distribution are squared, the distribution of the squared
elements is a X? and that squaring elements from an N (0, ¢2)
vields variates with a X? - o* distribution. In the ANOVA, the
effects of any of the sources of variances are corrected for the
mean. Hence, they have a zero expectation and the variance of
those sums is usually identical to the expected mean square
(EMS). Therefore, these sums ave distributed ~N{, EMS) and
the sum of squares is distributed ~X2 - £MS. The variance of the
sum of squares is (EMS)* + (variance of the X2). Therefore, to
compute the variance of the mean square, we require only the
variance of the X2 which is 2 {df}. The variance of the mean
square is

2-df{EMS)?  2(EMS)?
df? df
Since the variance components are linear funetions of the mean

squares, the variance of those linear funetions would determine
the variances of the comnponents. Thus, if

v BIS} ‘_ﬂ’.{Sg

A
ry -'—-"‘———"—k )

*Graduate-level statistical training required for thorough understanding,
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as is usually the case, then

Vb = %_._,—[V(MS;) +V (MSs) —2 Cov (MS:, MSg)].

If the mean squares are orthogonal, the covariances are all zero,
and

V) = 3| “af vzt ape

L
-

Q [u«:ﬂfsl)2 , (Eﬂfsg)g]

It has been empirically determined that the addition of 2 to the
differences in the denominators gives better fits. The square root
of the variance is the standard ervor of the estimated variance
component, which is frequently used as a measure of the sig-
nificance of the component. Thus, while the distribution of the
variance component is not a X* (since the mean squares are
different), the variance is easily computed and various ways to
estimate confidence intervals are available (Anderson and Ban-
eroft 1952, ch. 22; Grayhill 1961, ch. 17; Searle 1971, ch. 9).
Whenever any unbalances exist in the analysis, it can easily be
seen in the Abhreviated Doolittle that the individual squared sums
do not represent identical estimates of the same X* &* distribution
and, hence, that the mean squares are not X* «° variates. Never-
theless, the variances of each of the independent contrasts can still
be estimated, and if orthogonal sums of squares are computed as
provided in such procedures as the Abbreviated Doolittle, the
different mean squares will be uncorrelated.

Regardless of the method used to obtain the sums of squares,
it is always possible to determine not only the expected values,
but also their variances and whatever covariances exist due to
imbalance and nonorthogonality of the sums of squares. One
method of computing is to write the sum of squares for each
source of variation in quadratic form: ¥'Q,Y where Y is the
vector of all of the observations and Qr is a matrix of coefficients
which gives the appropriate weighting for the observations in the
sum of sguares for the T source of variance.

For example, if an experiment contained four treatments (i)
with three random replicates (j) each, the sum of squares for
trealments (SST) would be:

3
¥4{ 3 Y T {xx) )
i =1 il
85T = 12 TR

= 1204V YY) 4 (Yo Yo Fuy)®
':"‘1: (}.r:“ -+ Y:;g - Y;.;;d_)?"‘:" "}. t‘ Y.” e Y,;g - }’43) 2
—{(Yu+Yie— ... ~Y)?]




231

= (Y, Y. Y43)
4 4 4 -1 -1 -1 -1 —1 ...} Y]
4 4 4 -1 -1 =1 —1 -1, Y.
4 4 4 -1 -1 -1 -1 =1,
-1 -1 -1 4 4 4 -1 —-1.
~1 -1 -1 4 4 4 -1 —-1.
-1 -1 -1 4 4 4 =1 -1 ...
-1 -1-1-1 -1 —-1 4 4 ... .
-1 -1 -1-1 -1 -1 4 d... .
e e e e e e e J LY
=Y'0,Y.

A matrix of covariances over i, j, &, and e, Cov(Yy, YY), can
then also be constructed in which each expected cross product is
derived in terms of the model components. For example:

if Yﬁz‘p.—f—t('f"(‘j;n

then E(Yy YY) —E(Yy)*=0’t0?
E(le * Yxs) "'E(le)E(Ym) =a?
and E(YyY.))—E(Y,)E(Yy)=0.

Then the covariance matrix (V) would have the form:

oz":rz.: -_1‘ |
“ t 3 | |
2 : oz |
L] ° <u"1t |
: |
c? 'Ji 7:“1 !
14 14 t a [
I & H 1 2
Yot i
[ . t |
¥ O |u( 52‘12.43 O
I. + « 4 E
2 ? 2? n +:|? 1
1 I: * H r.' H
?——--—-—---——-——-— — —iia o — — — — et it eee]
1
1 I
' i :Z+r’2c2 Fa
. i ]f £
. 2 H z H
i § |-r [
i i * + 1]
: | : 2
. ! . T 12‘52
L . Ir t 4

It can then be shown that £ (S8T) =VQ,.

It can aiso he shown that V(SST) =i (VQ,* VQ,)
and that Cov (S3T, SSR) =ir(VQ, - V@.)

where ¢ signifies the trace of the argument matrix.

Thus, for any sum of squares, the expectations, variances, and
covariances can always be found though this might he tedious.




Estimates and the variances for variance components can then also
always be derived, even if the distribution is unknown.

For many statistics of interest to geneticists, various functions
of the variance components are constructed and the variance of
these constructed statistics is also often desired. Thus, while
estimates of certain genetic variances are sometimes sufficient
information, ratios of the components in heritabilities are often
also desired. If simple functions of mean squares such as Hanson
{1963) derives can be used, then approximate, noncentral F dis-
tributions will do reasonably well to determine variances and
confidence intervals. If the functions are not simply censtructed,
as is often the case in forest genetics, an appropriate asymptotic
variance, as derived by Kendall and Stuart (1363, ch. 10}, can
often be used. If we take the complicated function of the mean
squares or any other variables X, Xo...tobe g{(X;, X».. .}, and
the expected value (mean) of each of the mean squares or other
variables to be #,, 6. . . .; then the variance of the function
g{X:, Xs...) Is approximately:

Vlg(XXe .. 1= 2 [ 2 Cov X, X)) |
if i i
This relationship holds true as long as the second moments of the
#'s are small relative to the means. The variance approximation
can be extended to the case of the approximate covariance betvreen
two functions say ¢ and ks

b §
Covlg (XX, MKz - )] = 1| 3 20Cov (X)) |
H

In particular, the variance of a ratio: g= Ei{‘; is:
Var{X,;) n 8:°Var{X-:) _ 268,Cov{X,,X:)
322 E G 323

Vig)=

.,,I:E(Xi):l = l: Var{(X,) Var (Xe) 2Cov (X,,X2) ]

E(Xs) [E(Xn]E [B(X2)]® EX)EX)
This is the form used by Osborne and Paterson (1952) and most
heavily used by Namkoong and others (1969) to compute vari-
ances of heritabilities of wood quality traits. For example, assume
the analysis of variance was:

Mean square af Expected mean square
MSM m ot naf +nsen,’
MSF f g+ ?10;2
MSE e o’

2
Tin —

a9 a3 1 *; 5o
am"rcrf-rcrez 072
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Then our estimate of the numerator of h? is (MSM —-MSF)/ ns.
The variance of the numerator iz simply the variance of a
X2

difference of two kinds of variables which have no covariance.

Hence, in the notation of the approximate variance function:

_of LN MSM:z  MSF?
Var(X1)~2(Es-)|: o + 7 :|

We can estimate the denominator of k? (ur*=el+o2+o,%) also as
a linear function of the mean squares as:

MSM+ (s-1)MSF+s(n-1)MSE
e .

The variance of the_ denominator is also the sum of variances of
elements, each of which is known and between which no covariance
exists. Thus,

Var(X.) =

2 FTMSM?  (s—1)*MSF? | s?(n—1)°MSE?
+ +
nis?|  m f e
Since the covariance between balanced mean squares is zero, the
covariance between 3,,,2 and 39.2 is simply

1 V(MSM) (s—1)V(MSF)

n?s? nzsz
Ay s, 2 [TMSM? (s—1)MSF?
or Cov (ow?, os?)= ngsu[ P 7 ]

Then, since £ (X,) is simply o,? and E {(X:) =a;% we substitufe
estimates into the V' (g) function and compute the sampling vari-
ance,

Thus, for almost any kind of experiment, approximate covari-
ances of functions of sums of squares can be estinated. If the
geneticist is fortunate enough to have balanced experiments to
work with, distributions of the sums of squares and sums of
cross products (from the analysis of covariance) are known. If
the vield variates are all distributed as multivariate normal vari-
ables, ~N (g, £), then the distribution of the mean squares and

mean cross products is called the Wishart distribution with two

¢f

parameters [d%;’ -—-:I, where T is the matrix of sums of squares and

cross products, and df is the degrees of freedom appropriate to
the source of variance designated. In general, for any sum of cross
products, A, the covariance between any two sums of cross
products is

E(Ai}_d'f“u) (Aki_dfﬂm) = d'f(ﬂi:cﬂji+ Gi!f’jr;) .
Thus, for the variance of a sum of cross products, when the
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variance implies i=k and 7=,
V{Ay) =df (et ouoy),

where ay; is the covariance of ¢ and § and oy is the variance of 4.

For the variance of a sum of squares, we have i=j=k=1[ and
V{4;) =4df - 2042, where o4 is the mean square expectation for

o
trait 7. Then V(S8 =2df (MS32) and V{(MS:) = —&?’};—(MSF], as be-
fore,

DESIGNING GENETICS EXPERIMENTS

While it is clear that results of almost any kind of replicated
experiments can be analyzed, it is also clear that the nature of
future forestry experiments can be enhanced by appropriate allo-
cation of materials among the sources of variance. If certain
genetic components are important fo estimate with precision, then
obvicusly the degrees of freedom will partly control the variance
of those estimates and should be maximized. Depending on the
objectives of the experiments different allocations of effort would
maximize the benefit/cost ratio. In the extensive studies on varia-
tion in wood quality, Goggans (1981) appropriately allocated
considerable effort to estimate variances due to several hierarchies
of sampling within families, trees, sections, annual rings, and part
of annual rings, but he necessarily sampled genetically distinct
families lightly. Once the sampling variances were estimated,
however, interest in estimating the family variances claimed
higher priority, and he recommended sampling more families with
a reduced amount of within-family sampling. This procedure has
subseguently been followed in the North Carolina State University-
Industry Cooperative Tree Improvement Program. In such pro-
grams where cost factors can be unified in a simple function of
the numbers of samples at each of the sampling levels and benefit
can be measured as an inverse function of the estimator variance,
an optimum sampling system can be derived. If the variance of
the estimator is independent of the parameter being estimated, as
when means or regressions are estimated, the cost/benefit ratio
can be minimized fairly directly when the conditions affecting the
cost of sampling are knewn (Marcuse 184%). However, when
estimating variance components, it can be seen that the size of
the component affects the size of the mean square and, therefore,
affects the variance of its own estimator. The variance can then
he expected to increase with the size of the component, and de-
signs and allocations would have fo be compared on some con-
frived valne function for all levels of the component.

A siill further complicating factor in considering optimizing
an experiment is the common desire fo estimate more than one
component with reasonable precision. In genetics experiments, the
error component is often almost as important to estimate as the
additive genetic variance. The dominance genetic variance may
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also be of some interest. Since most experiments in forestry re-
quire considerable time and space, most are established for a
variety of objectives including the measurement of several traits.
Therefore, it is reasonable {o assume that the prudent forester
will be estimating several covariance components snd will want
to optimize his experimental allocations with respecc to some cri-
terion of goodness for his various objectives. We must therefore
consider an appropriate value function as well as variances and
covariances of estimators in experiments likely to be useful in
forest genetics. In the previous chapter, the covariance of relatives
was taken as a function of the genetic variances. In this section,
variance components due to family effects are taken as functions
of the covariance of relatives. Hence, the direct relations between
estimated family variance and genetic variances are established.

If we are to consider the variances and covariances, we must
first briefly review the kinds of estimators used for the genetic
variances. The commeonly used mating schemes provide a few
mean squares which are functions of the genetic variances. Where-
as in mean or regression estimation problems the investigator
could choose combinations of environmental variables to minimize
errors of estimates, the geneticist chooses to construct different
kinds of families and controls the number of families and family
members. Since the variance components are estimated from
second-order statistics which roughly follow a x2° distributien,
the design variables which the geneticist can choose are the de-
grees of freedom and the composition of the expected mean
squares,

As noted in the previous chapter, the degree to which family
members are closely related is in some sense proportional to the
depgree to swhich the families differ. Thus, measures of variances
among families ohtained in the ANOVA are interpreted in terms
of the covariances of members within those familes, To extend
the simple designs which have already been discussed in the pre-
ceding chapter, consider an experiment in which both male and
female pavental identities are known and arve experimentally
structured so that each female is crossed to a different set of males.
This is a hierarchal or nested design, designated as A/B by
Cockerham (1963), in which each male services only one female,
but each female (f;) is served by several males my,;,. We may dia-
gram the crossing scheme as:

Hierarchal (A/B) mating design
Male trees
E Fr ¢ H T J KL M N
A X X X
Female B X X X
trees ¢ X X X

D X.o..

The linear model for progeny trees assuming a completely ran-
domized experimental design for r progenies of each mating
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(exem) st
Yip =p+fitme e
Yoo =etfotmemFerem
where 4, p =1,2...7,
9 =L,2...m,
kE,r =12...7

The ANOVA for this experiment, as found in texts including
Steele and Torrie (1960}, Cockerham (1963}, and Becker (1967),
is:

Source of variance  df Mean square Expected mean square
Females (f—-1) MS(F) et T ro e
Males/females fim—1) MS{M/F) R T

Error fm(r—1) MSE o

Since there are three kinds of relationships among the seedlings,
we can define covariances of these three relatives in terms of the
variances. Full sibs exist when male and female parents are iden-
tical, and hence i=yp and s=g¢. Then for twe individuals so related,
Y and Y., their covariance is:

Cov (Y, Ypur) =E{p+fitmun +eeunl [u+ftMem +orwm]
—Ep+fitmatewogn] [ptFfo +Mapt gl

We define each effect as a deviation around a mean so that the
individual progeny effects are deviations from the fuil-sib family
mean, the male effects are deviations around the female half-sib
family mean, and the female effects are deviations around the
general experimental mean. Therefore, for this covariance:

Cov (Y, qur) =E*{(fiofny HE* (ftmc(pi)+E (fcerfqm)
+E* (M M) TE* (mynfo) T E (Mypy8rien )
+E* (erinrion ) TE (exynfs) T E{erimem}.

Since all effects are deviations, their expected values are zero, and
we are concerned only with these nine elements. If we can assume
that individual progeny {rees are randomly assigned to experimen-
tal units and their deviations from their family means are not
affected in any way by their male or female parentage, then all of
the remaining expectations which contain cross products of ¢4
or ey, elements are also zero. The remaining five expectations
{*)} may be nonzero, depending on the manner in which the fam-
ilies were constructed, and are the components which generally
determine the utility of the design, In this case, males do not serve
as fernales and if the choice and assignment of males inte single
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female groups are made at random, then
E (fimg) =E (myyf,) =0.

Of the remaining three, consider the case that Y and Y, are
related as half-sibs and hence i=p, but is=q, and ksr,
Then

E(ff5) =E(f®) =E(fi—F)*=ap
and E (MjigMey ) =E {eximrign) =0,
since males and progenies are not identical and are randomly
chosen. Therefore, if ¥, and Yoo are half-sibs, the covariance
between them is ¢,% Next, consider the second kind of relationship
between two individuals which ean exist in our experiment and
allow them to be full-sibs. In this case, two distinct progeny trees

have the same female (1=p) and male (j=¢) parents but Iy,
Then, of the three remaining expectations,

E(ff2) =E (f?) =02,
E(mﬂl‘lﬂlqlp}) :E(?njul'il}" ":U'mﬂ)
and E(‘?kl‘_ﬁ)erlqp)) =0

Therefore, the covariance between full-sibsz= o, n

Finally, consider that the individual seedling’s covariance with
itself {s taken. In this case, the same parentage exists (i=p, j=¢)
and the same individual deviation exists (/c==r}. Then the expecta-
tions of this covariance include

Ef£)=E(f?)=ap,
E‘(nzjtij?”—q{pj:E(nljgilll) oy’
E((’kum’-"r‘qm) :E‘(ﬂ_?u“) =g

Therefore, the sovariance between an individual and itself=g2

T
Fom™ o

We have thus derived covariances among relatives in terms of
the variance components estimated in the ANOVA of our experi-
ment:

Cov{HS) =0,
Cov(FS)=gf+g,t
Cov (individual) = ¢2+q,% + o2

As developed in the preceding chapter, we can always determine
the genetic variance contributions to each of the covariances
among relatives by determining coancestries among the relatives.
For our case, if we assume no inbreeding and no relatedness of the
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parents, we derive the genetic variances of these covariances as:

Cov (HS) =Yjea?+gaas®+ . ..
Cov(FS)y=1s 2+ Yes*+ ..
Cov (indiv) =es2+op?+ . .. 6® enviroument
=ag" + Geny -

Therefore, we can directly identify the design components in
terms of the genetic variances they estimate as:

o= Cov (HS) =V4ou2+Veous+ . ..
on2= Cov{(FS) —of
— Cov (FS) —Cov (HS) =Yos + Yoot + . . .
o= Cov (indiv) — Cov (FS) =lao®+¥os®+ . . . + dens®

To summarize the analysis and interpretation of this design—
variously called the hierarchal or nested mating design or the
North Carolina Design I-—we may lisi:

Mean Expected
Source of variance df square mean square

Females f—1 MSF  of+ren’Trmof
Males/females f{m—1) MSM  ol+7on®
Error mf(r—1) MSE  of
where: of =Cov (HS)
a2 =Cov (F'S) —Cov (HS)
a2 = Cov (indiv) —Cov (F'S)
= gon +ogt—Cov{FS).

A second desism commonly used to obtain similar kinds of
genetic variance estimators is one in which the full factorial com-
binations of all males are crossed with all females. This arrange-
ment has been termed the “factorial mating design,” the "North
Carolina Design I1,” or more rarely, a “diallel design” {Hangver
and Barnes 1962). This mating scheme may be diagramed as:

Male trees
G H
A X X
Female B X X
trees C x X
D X X X

The linear models for two progeny trees in a completely ran-
domized experiment are:
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Y;j;;=;.z+1}1;+fj -i—?nf.-_; + (4712

qu;-"".ﬂ +mp+fq +mf‘ﬂ\‘1 + e;-gpr-

The analysis can be outlined as:

Mean Expected
Source of variance df square mean square
Females f—1 MSF ol Hrons et
Males m—1 MSM ol Trou” T o
Males X females  (m—1){f—1) MSMF o2+%om?
Error mf{r—1) MSE oot

o =on2=Cov{HS)

oms? =Cov{FS) —2 Cov(HS)

o =Cov (indiv) —Cov({FS)
=tenvs ot —Cov (FS).

We can derive the covariance of relatives in terms of the design
components of variance much as was done for the nested design.
If the experiment was properly conducted with respect to ran-
domization of sampling, mating, and planting, and parental sexual
identities were kept distinet, then only the E(mm,), E{(ff.},
E{mfymfy,), and E (epepe) can he nonzero. If Y, and Y, were
half-sibs of the same male parent, E (mm,) =E (mS) =2, and all
others are zero. If Y. and ¥, were maternal half-sibs, E {f.f,)
=g/, and all others are zero. If the two trees are different individ-
vals of the same full-sib family, E {mmn,) =e.2, E(ff,) =v2, and
E{mfymfo,) =o.f, and only the last component is zero. Then if the
two trees were identical, the covariance includes ¢/ 0,2, om? and
oe”. From these identities,

COV (HS) - 0';"2 == 5':::2
Cov (FS) = U';a - Umg - 0':::)‘2

Cov{indiv) = ¢ + a2+ Ginf® 2,

the tabulated expectations can be derived and the genetic variance
contributions computed.

A third design, the diallel, {Griffing 1956) can also provide
similay estimators when the choice of mating patterns is again
limited to progenies from controlled crossing among parents which
exist in a general, random-mating, unstructured population. Par-
ents are assumed to be capable of functioning as both male and
female and sometimes are capable of self-fertilization. The mating
scheme for a modified diallel without selfs or reciprocals can be
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diagramed as:

Male trees

A B C D

X X X

X X

Female X
frees

DG
b B Dt e 11
b b B I D

The linear models for two progeny trees in a completely ran-
domized design are virtually identical to the factorial mating de-
sign but in the more commonly used notation are:

Yin=uptgit+g;+8;+ €
qur:H+gp+gq+5W+emr

in which g; effects are general combining abilities or average per-
formance deviations when the #th parent is erossed with a sample
of the whole population, and the s; effects are specific combining
abilities or the deviation of the cross of { by § parents from the
expected average of the general combining abilities of the parents.
While the mating design is itself unbalanced, the ANOVA for
many diallel arrangements can be performed in such a way as to
give clean mean squares for all of the components. Thus, for the
general case in which there are s crosses for each of ¢ parent trees
serving as both male and female, the ANOVA is:

Mean Expected

Source of variance daf sguare mean square
Among parents r(g—2)s

{gen. comb. g—1 MSGCA ur.,2+*ra,2+—f1—cr,2

ahility) ¢
Interaction 7(5—2) '

(spec. comb. = MSSCA PR

ability)
Error gs(r=1) ?:; D ysE ot

—

a2 =Cov(HS)
o2 =Cov{FS)—2 Cov(HS)
ol =apqtHope— Cov (FSY.

The derivation of the identity between the covariance of relu-
tives and the design components is similar to that of the factorial
design. For half-sibs, the expected covariance contains only o,
For full-sibs, the expected covariance contains the o,° from both
parents plus the ¢,* interaction component. For the same individ-
yal, the expected covariance contains 2 a2+ ol and the in-
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verse relations can then be derived.

Various partial diallel designs and blockings are given by
Braaten (1965) with complete computational formulas and expec-
tations.

In all of these designs, simple modifications of plot structure
can give additional data on replication, plot error, and within-plot
variances. If r randomized complete blocks are used and the
analyses are performed on plot means, the following changes have
to be made in the analyses:

(1) To the ANOVA add the lines “replications” and
“r=1" under the columns headed “source of variance”
and “df.”

(2) Change the error df to {(mf—1) (r—1) for the nested

and factorial designs, and (qiz_-z—) {(r—1) for the

diallel design,
Otherwise, no changes are reguired. If samples of the variance
among trees within plots are obtained, then the composition of
o2 can be broken down into components of between- and within-
piot error variances:
a Uu."g '
(‘7:-}*2 i —-392;
where k is the harmonic mean of numbers of {rees per plot. If the
analyses were done on plot sums,

(082) *= 0'1:2 - ko’p2r

and the coefficients for the other variance components require
multiplication by k. In either case, +,2 now measures a plot mean
error variance and o.’+¢,® has the same composition as we

formerly composed for .2 Thus,

2 —
092:% and awz“—'—kéaf.
The genetic components of within-family variance are thus shared,
k—1

1/k in the o,2 part, and in the ¢,* part. Since many ftree

k
experiments are planned with multiple-tree plots and the usual
experience is for some measurements and trees fo be missing, the
use of plot mean analyses for traits not affected by spacing is
common (Stonecypher 1966). For traits which are affected by
differential mortality or density, adjustments of the data for the
spacing effects should be made hefore analysis. If plot means
are analyzed, the usual procedure is to sample several plots to
estimate the variance among trees within plots (0.2}, and by
computing &k and «° to then fully determine ¢,.* and o,

All of these designs may also be augmented by the inclusion
of reciprocal crosses and selfs and the extension of the linear
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models to account for these effects. Two types of effects are often
defined in terms of contrasts between performance of trees when
serving as male versus female parent. A general maternal effect is
defined as the contrast or difference which exists when the tree
is crossed with a sample of the whole population, first as a male
and second as a female parent. A specifie reciprocal effect is then
defined as the contrast between full-sib families which differ only
by the sexual order of the parents. These augmentations are often
carried in diallel experiments but ean be used with any other
mating design as long as the parental genotypes can function hoth
ways.

The use of subblocking to reduce the error variation within
complete replications is often recommended for estimating means
and may find considerable use in fornstry (Snyder 1966}. How-
ever, for estimating variances, blocking will not generally be use-
ful unless very large errors within replications are otherwise
unavoidable.

The four mating designs are diagramed in figure 15.

The above designs are the ones most immediately useful in
forestry since we generally start with a presumably unstructured
population and we wish to estimate as many genetic variances as
possible. For further details of the analyses, the reader is referred
to the surveys available in Cockerham (1963), Gardner (1963),
or Becker (1967). For the analysis of the nested and factorial
designs, see Comstock and Robinsen (1948), and for the diallel see
Griffing (1956}, and for partial and hlocked partial diallels, see
Braaten (1965). If balanced experiments are created, the different
designs can be easily compared with respect to the hest allocations
of erossing efforts among numbers of males, fernales, and numbers
of crosses per parent as well as the general goodness of the designs
over different levels of the genetic components. In balanced ex-
periments, the sums of squares computed by standard methods are
independent.

Tn all of these cases, the Cov (HS) estimator is used to estimate
04%/4 since it has no deminance variance. If no epistatic variances
are present, or are ignored, the estimator is simply derived. The
Cov (FS) which has both «,% and «,,* is used to estimate ¢, after
any adjustments for the v,* are made as may be necessary,

If the family genetic variations are generated by multinomial
distributions, their means may often approximate a normal dis-
tribution and hence the variance of mean squares would approxi-
mately follow a X%* distribution. For traits with few genes
operating and with few individuals per family, the approximation
holds less well. For our assumed quantitative traits, however, the
normality assumptions will be closely approximated, especially 1f
means are used and skew corrections applied.
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Figure 15.—Schematic diagram of four mating designs.
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ERRORS OF ESTIMATING GENETIC VARIANCES

Using the X2%¢* distributions of the sums of squares for the
nested and factorial designs, and the variance of the sums of
squares of the diallel as traceable by its individual squared sums,
the variances of the additive genetic variance can be derived.
Allowing 3_,2=43,«2 for the nested design, and using a pooled
estimate of 402 and 4¢,.2 to estimate o42 in the factorial, and

A A .
4o, =0,2, the variances are:

Nested design Vi oa2) =

32 X[MSFz MS(M/FV]
mE | F—1 t Fm—1)

32
2l (m—1) +{f—1}]*

Factorial design V{oa?) =

(m—1){f—1) :|

32 MSSCA2(Q 1)®
(g—2)%s?

2 + 1 - 2rs{q—2) ., [q+{g—4)slsr2 “:l
g{s—2) (q—1)2MSSCA’" " (q—1)°MSSCA:"*

A pooling of sums of squares with different expectations produces
a non-X%" variate. The variances are computed as non-X* vari-
Ances.

Similarly, the dominance genetic variances can be estimated
by a linear function of the sums of squares and those variances
can be estimated. Only in case of the nested design are we re-
quired o use move than two sums of squares, since that estimator
contains both 0,2 and ¢p2 and hence requires that we estimate o,2
separately. These sampling variances are:

Nested desion Vo) =§3 %

[Msm( F—1) +MSME (m—1) + =2 proprpe

Partial diallel design V( o4

[(1+m3)MJM2_L MSF® . MSE* }
mf{m—1) [m'-’(f—l) {r—1) (mf—1)

; i _ MSME? MSE®
Factorial design V(o) = I:(m D—D -1 (f—l)]
MSSCA*? MSE® ]
g(s—2) {r—1){gs—2)
MSSCA*  MSE® ]
(s—2)  {r—1){gs—2)

Finally, the a? is estimated dn‘ect]y from the error mean square

VGﬁ=F[

Partial diallel design V(ag") = l:

and its sampling variance is simply the variance of that mean
square. However,if the error is partitioned into o":c, and oi, or
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other components, other appropriate mean square functions would
have to be derived.

It is clear that the variances of the estimated components vary
according to the size of the genetic components themselves, as
well as how the experimental effort is allocated among numbers
of parents, numbers of crosses, crossing patterns, and numbers of
trees per plot. While there would be considerable variation in
actual cost efficiencies according to species, ease of making crosses
and experimental plantings, and how an agency can schedule such
activities, it is instructive to compare sampling errvors of experi-
ments with the same total number of crosses.

For 100 crosses with a randomized block planting design of
8 trees per plot and 10 replications, an analysis of variance with
estimates of 0,2 can be reconstructed. For any given experiment,
the error in estimating 0,2 is also a muitiple of the environmental
sources of variation {s.,.2 above}, and allowing this to equal 1
puts the comparisons of equal-sized experiments on the same basis.
When o,2=1, for example, the use of 25 femaies and 4 males per
female in a nested design yields a variance of the estimates of
only 0.14. However, if the 100 crosses were made by using say 4
females and 25 males per female, the error would he 0.71. At
lower levels of o,2, the female variance and its mean sguare are
lower, and the error variance for estimating ¢,? is therefore also
lower. The higher the .2 is, the larger also is its error of estima-
tion. The relationship of the size of the component to its error of
estimation is thus roughly constant over wide ranges of «,%, and
any design that is good at moderate heritabilities of around 0.5 is
generally good between heritabilities of 0.2 to 0.9. Only at reia-
tively low values of 0,2 do the relative efficiencies of the alloca-
tion of materials change very much. If we were to chart the
variance of estimates of o,2, V (0,2}, as a ratio of o, itself for ali
possible vaiues of heritability (¢,2/(0.2+0.2)), the curves for the
4 males and 25 females per male nested design are shown in figure
16. The curve for the aliocation of 25 males and 4 females per male
would generally be lower, except at low heritabilities, when the
curves cross (fig. 17}. At low heritabilities, the error and female
mean squares are more nearly equal to the male mean square and,
since they influence the error for estimating «.?, also require pre-
cision in estimation. Since precision requires high degrees of free-
dom, relatively more fuli-sib families than half-sib families have
to be sampled,

While the error variance for estimating o,% tends to decrease
rapidly when o,2 itself decreases at very low values of o2, the
curves display a curious reversal of direction. For any mating de-
sign, there is a point in heritability below which the deciine in
V (04?) is more than matched by the decline in .2, and hence the
curve rises for lower heritability. If we wished to design an ex-
periment which would be satisfactory for any level of 42 and we
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Figure 16—Fifticiency of allocating 4 males and 25 females per male in a
nested mating design over all heritability levels,
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Figure 17.—Comparative efficiency of allocating 4 males and 25 females per
male versus 25 males and 4 females per male in a nested mating design.
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use a criterion of satisfaction like the coefficient of variation
(ov=/7ie),
O'Az

the above change in direction implies that no design can be com-
pletely satisfactory. Bogyo (1964) has shown that astronomically
larger experiments would be necessary if CV=0.05 is uniformly
required for low o2 However, other criteria of satisfaction may
gerve as well at low ¢.2. One suggestion is that at low ¢* our con-
cern is to not estimate a high o.?, and hence if ¢,2=0.001, or 0.01,
or (.02, a standard error of estimate of 0.05 may be quite accept-
able, Therefore a reasonable eriterion to suggest is that at herita-
bilities above 0.05, a CV=0.05 or less be used, and below 0.05, a
constant variance be used as a maximum critical curve. Imposing
these criteria on the above comparison of male: female allocations
show that the 25 males and 4 females/male are satisfactory every-
where, while the other is only satisfactory at low ¢,2 (fig. 18).

Other designs and allocations may be compared. Among the bet-
ter allocations of the nested design (A/B), 16 males and 6 fe-
males/male and 50 males and 2 females/male can be compared
with the factorial design (4B} with allocations of 6 males and
16 females or 10 males and 10 females, and compared with the
dialle]l (AA) with =83 parents and s=6 crosses per parent or
with ¢=#66 parents and s=3 crosses per parent {fig. 19).

Similar analyses and interpretations of the estimates and vari-
ances on op can also be made (fig. 20). For these estimates the
full-sib covariance estimator is most critical. All designs require
good estimations of the error component, which is largely a func-
tion of replication numbers for any constant number of crosses.
Thus, the choice of parental allocation affects error variance only
if the crossing pattern is so costly or {ime consuming or, con-
versely, is so cheap and easy as to affect the number of replica-
tions which can be planted. The nested design is the only one
requiring an estimate of 0,2 to estimate 0,2 Hence, it is affected
directly by the precision of estimating the half-sib variance.

Tt can again be observed that as o,? rises, the V (a,%) alse rises,
and that there exist allocations of parents and half-sih versus full-
sib family members which are reasonably good over a wide range
in o2 The actual choice of design will again depend on relative
operational costs and specific criteria of goodness, but there still
seems to be evidence that some design allocations can find wide
favor. Unfortunately, the optimum design for minimizing the er-
rors of estimating o2 are not the same as for estimating op°
Therefore, optimum levels of allocation for estimating o,* and
op? will be in some conflict.

Several other judgments must be made before selecting a de-
sign. These involve such problems as the use of several designs
simultaneonsly for the multiplicity of purposes usually intended
for any experiment, and the effects of inevitable plot mortality or
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Figure 18.—Efficiency of allocating 4 maies and 25 females, per male, and 25
males and 4 females per male, relative to a coefficient of variation (C¥)
of 0,05 and a constant variance at low heritability.
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Figure 19.—Relative design efficiencies {V (¢4°) /0."} for estimating
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missing erosses. The problem of missing {rees in plots has already
been discussed, but the problem of missing plots involves many
analytically significant decisions. We have seen that missing plots
will inevitably cause some difficulty in determining the distribu-
tion and hence the sampling variance of the sums of squares esti-
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Figure 20.—Relative design efficiencies (V (o) /ou®) for estimating
a5’ whent op®=0.% c=100.




mators. Some crossing programs will be more likely than others
to vield unbalance by their difficulty of execution. Regardless of
the method used to obtain sums of squares as previously de-
seribed, the variance components, and hence the genetic variances,
can bhe derived as linear functions of various sums of squares,
some with higher error than others. However, the variances of
linear functions of elements can also be derived if the elements
have variances. This procedure requires that the covariances
among the sums of squares in unbalanced experiments must also
be accounted for. As long as large computers are available, most
analyses and estimates of sampling errors can he derived or other
quadratic estimators derived. For agencies without such facilities,
it might be desirable to choose designs which are relatively unaf-
fected by missing plots. Where computing facilities are lacking,
the diallel eannot be generaily recommended since hoth the nested
and factorial designs can be more easily handled for any missing
plots. With computing facilities, however, other design criteria
can be move significant.

Designs must often be chosen on the basis of only partly known
data because the forest geneticist must often deal with unknown
difficulties, costs, times for making crosses, and actual levels of
the variances. Fach species that he deals with has different polli-
nation and seedling production problems and exhibits different

errvor and genetic variances for each trait. For any one species, the
geneticist may want to estimate means and severa! components
for several traits from a reascnable population sample. Thus,
given the capability for estimating variances and means, hut with
multiple demands for estimators, either some compromises on
efficiency or several different experiments will have to be run.

OTHER ESTIMATORS

Several sources of data on genetic variances can often be ob-
tained or planned to jointly provide estimators of the components.
Thus, several other kinds of relatives and estimators, such as
parent-offspring regressions, clonal variances, and eventnally, var-
ious kinds of cousin relatives, may be made available. It is not
necessary that we use only the three mean squares from the
above mating design ANOVA’s to estimate three components, since
other kinds of estimators are also available. Perhaps the simplest
estimator requiring no relationships at all is that developed by
Shrikhande {1957} and used for forest trees by Sakai and Hata-
keyama (1963). In this method, variances due to systematic soil
gradients and to a random source of variation ave estimated. The
random variation is assumed to include genetic and some en-
vironmental covariances and is taken as an estimate of the total
eenetic variance. While some bias and large sampling ervors exist
{Namkoong and Squillace 1970), some estimates of a total genetic
varinnee have been derived with considerable economy.

More commonly used and only slightly more complicated are
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estimates derived from parent-offspring regressions. The relation-
ship structure we exploit in this case involves only two kinds of
relatives—parent and offspring or unrelated. The sib structures
we first studied involve the three relationships; full-sib, half-sib,
and unrelated. Shrikhande’s (1957) structure involves no rela-
tionships. Whenevar any progeny and their parents can he
measured, the regression can be interpreted genetically in terms
of the covariance between parent and offspring and the variance
of either or both sets. As long as the parents are noninbred, unre-
lated, and randomly mated, the covariance of parent and offspring
Is a2+ 140442+ . . ., as derived in the previous chapter. When
both parents are known and their average is taken for a midparent
value, its covariance with the offspring is the same. Similarly, if
a random set of frees is mated to a common parent, the parent-
oftspring covariance within common parent sets also has the same
genetic variance expectation. It often occurs that the progeny
trees are not truly planted at random but rather in some plot and
replication design which may not be at all similar to the environ-
ments sampled by the parents. Nevertheless, progeny means can
be related to parental values and hence, covariances, parent and
progeny variances, and the regressions and correlations of parent
and offspring can all be estimated by simple standard procedures
{Becker 1967).

The numerator of the regression coefficient is simply the covari-
ance between two variables where one is a measure of potential
performance, and the other is the progeny performance. The de-
nominator of the regression is the variance of the independent
variable. The parent is the independent variable if the parent is
known and the progeny performance is to be predicted or if selec-
tion on the basis of parental phenotypes is made and the expected
response in the progeny is desired. The offspring can be the inde-
pendent varjate if they are known and measured and the response
of relatives such as parents or other sibs is to be predicted.

In forest genetics experiments, it is not always clear whether
the parent or offspring is considered to be the independent vari-
ate. In some genetics experiments, it seems that the parent is as-
sumed 10 be the independent variale, and the variance among
parents is the denominator of the regression of oispring means
on parental values, The use of midparent values reduces this
parental variance by one-half. Since parental genotypes may be
more immediately useful in forestry, and reliable data from plant-
ings in more representative environments are on offspring, the
offspring data can frequently form the independent variable. The
regression estimates will depend on the variance of offspring
means that are often derived from some replicated design and
hence can he some function of geveral design variance components.
Hence, the variance of the estimated means can be quite different
according to whether the parent or offspring means ure heing
estimated, '
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A very useful feature of the parent-offspring covariance is that
we can also determine the covariance between juvenile and ma-
ture characteristics. This parameter is necessary for predicting
the gain to be made in mature growth performance on the basis of
juvenile tests or observations, If juvenile performance is desired,
as for early survival and competition, and juvenile measures are
taken, then the additive genetic covariance between the measured
trees and estimated breeding values is 7e42,, where = is the coeffl-
cient of relationship between the measured trees and the trees
whose value is being estimated, and o4%p is the additive genetic
variance of the juvenile trees. Similarly, if mature performance
is being estimated by mature relatives, the additive genetic covari-
ance is re tim. But if one estimates mature performance from
juvenile reiatives, or juvenile performance from mature relatives,
the covariance iz » Cov [4(§),A(m)] the product of the » and
additive genetic covariance between the juvenile and mature
{raits. If » is known, then the covariance is estimable and the effi-
cacy of selecting on the basis of correlated traits can be deter-
mined. The covariance, in this case. js not a genetic variance and
should not be used as such to estimate heritabilities unless the
same trait is being measured in the relatives or unless one wishes
to obtain a lower bound estimate for the larger genetic variance.

When the covariance actually estimates a genetic variance, then
the variance of either single trees or replicated plots can be
used as the variance dencminator of a regression coefficient. It
sometimes occurs that age or environmental effects cause large
differences in average performances which might induce scale
differences such that the variances are not comparable in the
different materials. In such cases, it is a common procedure to
standardize the units of measure by dividing the z variable by
or and the ¥ by o,* (Frey and Horner 1957). It is also sometimes
done by scaling one of the variables (say x) to the other (say ¥)
by multiplying it by o,/¢. Then, the variances are comparable
and the covariance is multiplied by o,/¢.. When such rescaling is
justified and if the variance denominator of b is e, the regres-
sion can be rescaled and hecomes the correlation coeflicient. If
the variance denominator is o2, then the regression should be
rescaled to have a multiplier of «,/0.% Rescaling should he done
with caution, and the denominator for the regression should he
selected for the specific purposes for which the regression 1s
to be used.

The sampling error of the parent-offspring covariance estimator
is

df

[Covﬂ- V (parents) XV (of‘fspring):l,

which can clearly be guite cheaply reduced by simply increasing
the numher of parent-offspring paivs. If the genetic variance is
estimated by doubling the parent-offspring covariance, the sam-
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pling variance is increased by a factor of 4.

It is often desired to also estimate the parent-offspring regres-
sion coefficient, which can be computed as in any other regression
problem with the same sampling error as in any other regression
problem. The great attraction of computing the regression is that
it can be interpreted in tevms of a ratio of a portion of the genetic
variance to the total variance among the parents or offspring.
Any such funetion which is a ratio of some portion of the genetic
varignce divided by some function of genetic and environmental
variances is called a heritability. Clearly, the portion of the
genetic variance in the numerator and the content and structure
of the total variance in the denominator determine the meaning
and value of heritability. \While a full discussion of different forms
of heritability is included in chapter 3, we can briefly note that
anv procedure which involves estimating the numerator and
denominator separately requires ns to estimate its variance as the
variance of a ratio of tswwo random wvariahles. Thus, the simpler
estimate of heritabilify as a regression of parent and offspring
is not only very simple to compute, but its errors are easily
reducible and the error distribufion is well known. By using a
regression estimator, it is also possible to hias the sample of the
independent variate hy selecting extreme elements to reduce the
error of estimate on the regression. While this does not provide
valid estimates of either the genetie variance of the population in
the numerator or the phenotypic variance of the population in the
denominator, it does provide an unbiased estimate of the regres-
sion with small errer (Hill 1971).

HIGHER-ORDER RELATIVES*

Thus, simpler designs that invelve fewer different kinds of
family relationships than the ANOVA full-sib, half-sib, and no
relationship can give eslimates of one or two genetic variances.
The mating designs among unrelated parents provide three vari-
ance components for estimating the myriad of genetic variances,
and it is elear that the more different kinds of relationship con-
structed, the more different kinds of genetic variances can be
estimated. As long as each variance component, such as the
half-sih covariance, is a different, independent, linear function of
the several genetic varviances, including the different epistatic
types, then the additional design components give us estimates of
more genetic components. Since full-sib covariances contain both
additive and dominance genetic variances, and half-sib covari-
ances do not contain dominance variances, they allow us fo
gseparate additive from dominance variances. However, they still
contain varicus additive tvpes of epistatic variances which cannet
be separated without additional kinds of relationships.

As trees of known parental origin mature, the opportunity for
creating cousin types of relationships also emerges. Since grand-

?;_6;21_(..].;.1;'.”:9-15.’\’31 statistical training required [or thoreugh understanding.
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pavental identities are now known, individuals which have com-
mon grandparents can be created and identified. For example,
in the following diagram,

GIO/GID<(];2 6y 6, G, 6e G,
Po P\ Py Py Py P Pe Ps

if all &, are unrelated, all P and § individuals are not inbred but
do have a variety of relationships. Within the P generation,
P, and P. are full-sibs, as are the pairs Py and P,, and Py and P,
P, is a half-sib of P, and P,, and P; is a half-sib of both P; and P,.
Within the S generation, S; and Sy are full-sibs and S; and S.
are half-sibs. First-cousin relations exist for S» and S;, while
S, and S, are double-first cousins since both sets of grandparents
are common. S» and S; appear to also be double-first cousins but
additionally have a common P, parent and hence may alternatively
be considered as half-sibs with the alternate parents related as
full-sibs. A slightly weaker relationship of S» and S; exists since
the alternate parents are related as half-sibs. An even weaker
relation exists betwveen S, and 8; since their P, and P. parents
are full-sibs while their P, and P; parents are half-sibs. Weaker
still is the relation hetween 8, and S; since their Py and P» parents
ave half-sibs and their P; and P; parents also are haif-sibs.

If it is also reasonable fo assume that the gene frequencies
and genetic variances do not change over the generations, then
a series of pavent-offspring, grandparent-offspring, aunt-niece,
and aunt-half-niece types of relations can also be identified. There-
fore, a very much expanded set of relationships can yield many
new equations for genetic variances among relatives and hence
allow for estimating variances due to a variety of inherited
effects. Eisen (1967) lists most of the above cousin types of
relations anc describes designs to estimate additional genetic and
nongenetic variances.

It is also possible that most epistatic variances can safely be
assumed to he negligible components, and hence that the additional
information on relatives could be used to do a better joh of esti-
mating a restricted set of genetic variances. When the number of
independent equations relating to the experimental design com-
ponents of variance to the genetic components of covariance
equals the number of genetic components, then one can directly
derive estimates of the genetic components.

With a get of mean squares, covariances, or other estimators
(v), the design components of variance d can be estimated by
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v=Cd, where C is a square matrix of coefficients and 2 is the
vector of design components. Since the design components can also
be related to an equal number of genetic components, d= DJ,
where D is g square matrix of coefficients and ¢ is the vector of
genetic variance components. Then v =CDg, or tetting M =CD, then
v=Mg.

If there are more genetic components than estimating functions
of the design, we can only estimate combinations of the genetic
components, for example, Cov (half-sibs) =14¢ 24+ g04,3+ . .
Otherwise, we must reduce the model and estimate only those
components we wish to assume to really exist, for example, assume
cr_.“z=0.

If there are fewer genetic components than estimating func-
tions, we can choose a method to provide a good estimator of each
component. A simple method would simply average any independ-
ent estimates, but this would give equal weighting to all estimates
weak and strong and might not use all the information in the
data. A logical procedure is to consider the mean squares, covari-
ances, and variances as linear functions of the genetic variances
which are essentially constant, regression-like coefficients. Then,
each computed mean square or variance would have an expected,
unique combination of the genetic and environmental variances
pius some component of error variation. This model is essentially
that of a linear regression in which the dependent variate is the
mean square, the constant regression coefficients are the genetic
and environmental variances, the independent variables are the
set of coefficients which determine the contribution of each genetic
component to the mean square, and the error term is the deviation
or variation of the actually computed mean square from its
expectation.

As with any such regression problem, the least squares estima-
tion for the regression coefficients {genetic and environmental
compoenents) can be derived. For the above model we can write:

=Mg-te
when v=vector of mean squares, covariances, etc.,

g=vector of genetic and environmental variance com-
ponents,

M=matrix of coefficients relating the expected value of
2 to its g components,

e=vector of errors around each mean square.

An unbiased and unweighted estimate of ¢ then is:
g= (M'M) =M,

A
When more estimators than g components exist, Nasoetion
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(1965) has shown that it is better to estimate theé directly from
the v rather than to first estimate the experimental design com-

ponents from the » and then to estimate the ﬁ

However, each of the mean squares, variances, and covariances
in v usually has different errors and some may, in fact, be cor-
related. The complete weighted least squares solution would then
require weighting by V, the variance-covariance matrix of the
v vector, and the weighted least squares estimate would be:

g= (M'V—=1M) 13V —tu,

An additional problem created by the use of the V matrix is
that we must now estimate its elements, and the problem is that
the best estimates of those variances and covariances require
estimates of f} That is, the genetic and environmental components
¢ are needed to provide good estimates of V, and the V is needed
to provide good estimates of g. Hayman (1960a) therefore rec-
ommends an iterative procedure whereby initial estimates of g
are used to provide initial estimates of v, which are then used
according to procedures formulated in chapter 7 to estimate g, ete.
This iteration is continued until the g does not change significantly
from one trial to the next,

It is reasonable at this point to question the utility of such
procedures or of generating large and complicated experiments.
Is the additional precision worth the effort, or would it be wiser
to simply create small two-factor designs in each subsequent
generation? Is it necessary to estimate the contribution of epi-
static ecomponents? When no estimates are available, the value of
extra information is much higher than when some estimates and
experience have accumulated. When data are scarce and there are
few designed experiments, then any kind of relative can aid
precision considerably. Therefore, in the beginning stages of pro-
grams, the use of a variety of estimators to estimate many com-
ponents is reasonable. As populations develop, however, primary
concern will be devoted te changes in the genetic components and
more attention then may be given to fewer and simpler designs.
Therefore, in these times of newly developing forestry programs,
the information from sily designs, parental and clonal variances
and covariances with offspring, and eventually grandparental,
cousin, and nephew types of relatives, will be useful. If the time
ever comes that foresters can consider alternate mating designs
for estimation purposes, then the guestion of allocating resources
among the multiplicity of relatives will require optimization, It
seems clear, however, that those relatives with large contrasts in
the contribution of the several genetic variances will generally be
favored.
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Coansidering the array of relatives which might be generated
and the great proliferation of plots and consequent unbalance in
allocating degrees of freedom, some consideration should be given
to unbkalanced designs with a more equal distribution of degrees
of freedom among the various kinds of relatives and sources of
variance, While a set of designs has not been specifically developed
for genetic experiments, the utility of unbalanced designs for
variance component estimation is established for industrial
experiments {Goldsmith and Gaylor 1970). Since most forestry
experiments become unbalanced by mortality or pollination
failures anyway, deliberately designed unbalance may not cause
any extra work and may afford experimental economies.

For estimating variances, it is therefore desirable to consider
designs which do not necessarily satisfy the requirements of test-
ing treatment means very well but which do estimate variances
efficiently even if unplanned imhalances occur. For example, Gold-
smith and Gaylor (1970) examine several combinations of nested
designs, which could easily be implemented in forest genetic
experiments. Tor their particular restrictions, they find that the
balanced design is good for low heritabilities if one wishes to
minimize the unweighted sum of error in estimating the three
design components. lowever, for higher heritabilities, unbalanced
sets can be optimal. Estimation of genetic components has not
lbeen thoroughly examined as yet, nor have many other criteria
of relative value of estimating them. Thus, other combinations of
unbalanced nested designs require investigation for robustness.
In addition, if some random-plot loss can he expecled, then
designs should he examined for the possible configurations of
unbhalance such losses may indure. As for other designs, such as
the factorial ov diallel, only preliminary investigations on the
general utility of unbalanced sets have heen conducted {(Mostala
1967: Gavlor and Anderson 1960} and further examination is
reqguired to determine their value in forest genetics.

If we can accommodate possible imbalances in design configura-
tions, then efficiency of estimation ¢f the variance components
should also be considered. For any given set of datn, it is possible
to construct almost an infinite number of sums of squares as
functiong of the vuriance componentis, and, for unbalanced experi-
ments, it is not immediately ebvious which sum of squares would
minimize the variance of estimators of the variance components.
Some investigations (Rao 1971) indicate that other sum of
squares functions than those traditionally used in analyses of
variance can considerably improve estimates of variance com-
ponents while maintaining unbiasedness of the estimators. Ilow-
ever, the unbiasedness requirement may also impose restrielions
on estimating functions such that even more efficient estimators
may he available. Since forestry experiments are so costly, for-
esters should consider both unbalanced desipgns and minimum
variance estimators for their analyses,
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SPECIAL FORESTRY PROBLEMS

All these designs can be modified in several ways to give
information on additional parameters of environmental sources of
variation, and genotype-by-environmental interactions. Among the
various kinds of environmental effects, it is often desirable to
determine the sizes of random variations among what the forester
would consider to be roughly comparable sites within geographic
planting zones. Often, it is also desirable te estimate variances
among smaller replicates within plantation-sized areas, among
plots swithin replicates, and even among individual trees within
plots. To satsify such demands, the simplest experiment would
replicate the entire genotypic array over as many sites and
plantations with as many plots as feasible. In any large-scale
silvicultural experiment, testing locational or site differences or
soil, spacing, or any treatment differences, the insertion of any
kinds of relatives as split subplots may often be feasible. It might
occasionally be cheaper to allow families to be major plots and
cultural effects to be subplots, but the former case is more likely
to oceur, Thus, partially balanced factorial arrangements of the
envirenmental variables should provide some important efficiencies
in the number of plots required of each family. While it may he
impossible to sample all combinations of all levels of the important
site factors, it may be possible to sample enough variations to
estimate the response surface for each family or veplicated geno-

type. The form and magnitude of genotype-environment inter-
actions could then he examined.

However, even reducing the number of replicated plots required
of each family by judicious sampling of sife factor combinations
may often not be adequate for the crosses with relatively few
seedlings. In such cases, some efficiencies in combining genetic
and cultural variation in the same experiment might be achieved
by at least partial confounding of one with the other. Uninten-
tional mortality and differential planting of families will also cause
some confounding, but the deiiberate planning of unbalance may
be feasible. Partial confounding for mean estimation is a well-
established technigue, but for variance component estimation it
is not well developed in biological experiments. The objective
again is to affect the allocation of degrees of freedom to those
mean squares required to estimate the important variance com-
ponents. Hence, by locating most families on some environments
and a few on many environments, the usual excess of degrees of
freedom on the family-hy-environment interaction mean square is
avoided while more effort can be made to sample either more
families or environments. Nevertheless, the families not rvepre-
sented on some sites cannot be adequately evaluated on those
sites if the interaction is high. The only recourse available for
estimating means or response surfaces would be to model the
interaction forms so that families that behave similarly arve
grouped into homogeneous reaction classes and their response
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estimated relative to their behavior within these classes. It would,
therefore, be desirable to combine complete environmental sam-
pling of all families for response estimation on some minimal set
of sites which span meaningful site variations, with partial geno-
type sampling of more complete site samples.

Another complicating factor in design is that most experiments
are established for several purposes, At least several traits are
usually measured for variances and for the covariances among
traits attributable to various genetic and environmental effects.
A suifable design for one purpose or for a trait with a high
genetic component may not be suitable for another purpose or
trait. Hence, designs usnally have to be chosen to provide reason-
ably precise estimates of variance components for each trait and
for their covariances. Criteria such as minimizing the ervor
volume or minimax criteria may be better than the traditional
criteria of minimizing average error. In general, however, the
simplest, most robust design will be of greatest wutility. Thus,
designs which can be subdivided into balanced subsets can be
easily analyzed within subsets. Also, designs that do not reguire
the use of poorly estimated covariates for adjusting means should
be favored to aveid the additional estimation errors so generated.

An additional type of design and estimation problem exists
when genotypic competitive effects are to be estimated. Two
experimental strategies might be adopted according to whether
estimates of specific interactions between families or a general
level of competitive interaction is to be estimated. If pair-wise
competition estimates are to be tested, the parameterization and
estimation fechniques, outlined by Byrd and others (1965), seem
appropriate and generally applicable. The parameters described
by Schufz and Usanis (1969) and estimated by Schutz and
Brim {1971) for soybeans are further developments deseribing
and measuring competitive effects hetween noninterbreeding ele-
ments. Move direct utility for populational effects with intermat-
ing populations is achieved by Griffing’s (1967) parameterization.
However, estimation is difficult unless methods such as developed
by Sakai and others (1968) can be applied. The genetic conse-
quences of competifion effects, however, have been investigated
by Huhn (1970c).

For estimation purposes, trees also present unique experimental
problems in space and time, especially if plot thinning is expected.
Blocking and planning for spacing for the duration of the experi-
ment require care to assure that reasonable plot sizes are main-
tained for the spacing and other environmental conditions
required for analysis of larger trees. While spacing experiments
themselves might be of interest with respect to genotypic varia-
tions in density response {Namkoong 1966), the more common
consideration is to assure that genotypes are measured under the
environments planned for specific ages. If growth curves or other
time-dependent responses are to be analyzed, extra care is required
to assure that plot integrity is maintained. Similarly, correlation
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analyses among juvenile and mature tree characteristies will
require plots at a variety of ages and will require some plot
continuity. The relative and absolute sizes of variance components
for single traits can generally be expected to change with time.
Some may, in fact, tend to disappear while others maintain their
same relative size according to the form of genstic control of
growth (Namkoong and others 1972).

The duration of tree life also creates a dimension of uncertainty
of future envirenments. Future environments will suvely be differ-
ent from present ones, and vaviations will undoubtedly be con-
trolled by some events not yet discernible. The problem for the
forest geneticist is to determine a reasonable array of environ-
ments for which his estimations will be valid. Therefore, sampling
a wide array of controlled ag well as uncontrolled variables is
desirable to define the kinds of inferactions large enough to worry
about as well as the average performance over uncontrolled
environmental variations. Initially, the geneticist may often
reasonahly guess that location and site differences are larger than
the time-trend differences he can sample and hence that genotypic
interactions with site variations may be most important. Certain
environmental effects that oceur periodically, such as lisease and
ingsect epidemics, however, may reguire special sampling of
periodic environmental events,

Otherwise, estimation probiems for forest trees are not signifi-
cantly diffevent from those for any other crganism. The principal
problems ave as stated in the beginning of this chapter. Perhaps
the greatest problem is how to assure the continuity of experi-
mental administration so that the value of well-designed experi-
ments is not compromised by future neglect or change in personnel.
However, since changes in personnel and organization are to be
expected, greater reliance should he placed on simple, easily
analyzable designs. Considerable sagacity is required to plan for
an ancertain future so that the parameters of future value can be
well estimated.




CHAPTER 9
POPULATION GENETICS

The importance and pervasiveness of genetic effects and sizable
variances in forests are well established. The origins and evolu-
tionary utility of these variances in the evolution of tree popula-
tions, however, are not clear. If we are to control the future
evolution of tree species, it behooves us to know not only the
status of existing genetic variations but how they originated and
may be maintained. It might then bhe easier o direct evolution for
any given set of objectives while we are developing our under-
standing of the dynamics of natural forest evolution. If we accept
the concept of tree populations with siznificantly changing genetic
effects and variations, then we must delermine the nature of the
forces which disturb any stable uniformity. We shall try to under-
stand how variations might originate and be propagated and how
they affect the resulfant distributions of gene effects. We first
consider how the forces might act independently and then consider
how their joint actions might operate. We shall consider the
forces as they operate in large random-mating populations
without linkage disequilibrium and shall therefore assume that
deterministic models are adegquate and genetic and zygotic fre-
quencies are determined by gene frequencies. Finally, expansions
of the analyses to cases in which mating is restricted and
stochastic variations are significant will then be considered for
their effects on the evolutionary processes.

MUTATION

The hasic force which provides alternative aileles to the popula-
tion is mutation. However, single mutations are rare and would
not oceur freguentiy enough to be a major source of variation in
a population without persistent recurrence, While this persistence
depends on the mutabilily of the alleles and their frequency in
the population, it could have cumulative effects on allelic fre-
quency, Not all changes in the molecular structure of the DNA
material result in important differences. Some changes have no
direct effect on amino acid strueture and some have no effect on
function even if an amine acid sequence is disturbed. Thus, we
might expect molecular changes in DNA to occur at a higher
rate than what is actually observable as mutants that might have
any observable selective effect (Kimura 1963). At the functional
cistron level of gene locus definition, the per locus, per generation
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rate of mutation has commonly been estimated at around 10-°
While most studies have been conducted on major genes, there is
little apparent difference in the mutation rate of polygenes. That
is, the polygene which has a2 less visible, individua! effect that
may be partly masked by environmental and other genetic effects
has been estimated to have mutation rates of about the same
magnitude on a per locus per generation basis (Mukai 1969).
The two types of genes are also similar in the existence of varia-
tion in mutability (Russell and others 1963), and the average
mutation rates are similar, On & more readily observable basis
than on the traditional per locus basis, Mukai (1969) estimates
the mutation rate for polygenes per second chromosome of Dro-
sophila per generation to be around 0.14, and for lethal mutations
on the same basis to be around 0.006. On a different but perhaps
more useful basis for plant breeders, Russell and others (1963)
estimated the mutation rate for several quantitative types of
characters in corn populations and found an average per trait,
per gamete, per generation mutation rate of 0.028.

Thus, for any trait that has a large number of loci, persistent
mutation rates of even 10-5 or 10-° per locus, per gamete, per
generation can have some of its variation generated by mutations
alone. It is clear that recurrent mutation from one allele {ay) to
another (as) would eventually either move the population to
homozygosity for as, or the mutation back from @ to @ would
produce a gene frequency equilibrium. Of less practical interest,
but great fun, is the analysis of the fate of nontrecurrent mutations
which we ignore.

To study the effect of mutations, we first ignore the confound-
ing effects of selection and consider how mutants may affect the
population’s genetic means and variances if all producis are
selectively equivalent and populations are large enough that
sampling error can be ignored. In this case, the initial frequency
of an allele g, and its mutation rate p to another allele strictly
deteymine the frequency of the allele in the next generation, the
frequency being decreased by pgo. Hence, G =qo— pdo=go{1—p)
and ge=—pqr=q1{1—p) =s (1—p)? ete. Then, q:=go{l—p)",

To simplify this expression, an approximation can be substituted
to give a useful form to the equation. This approximation depends
on the condition that  is very small and hence that p® and all
higher powers of » are almost zero, If that is true, then the
identity

I S
e #=1 !-L+_é_§ 'S—I'}"

can be approximated by e #=1-—p,
and therefore (I—p)t=e (R} im—M,

Hence, we can trace, with close approximation, the change in gene
frequency from any initial ¢ to the frequency at any time




265

t, g, by gqi=qoe—#. Alternatively, we may wish to approximate
the progress (or regress) of gene frequency under continuous
time or completely overlapping generations and define the rate of

change in gene freguency i—g at a point in time as —pg. Then:

a
or d—q = —‘u.dt.
q

Integrating the equation yields:
log g =C—pt
or  ge=gqoe~ M.

In either case, the eventual result of persistent mutations is that
g approaches zero asg the alternative allele eventually takes over
the population. IT we wish to consider that back mutation occurs
at a rate of v, then the gene frequency decrease of —pug is offset
by the increase v(l1—g) from the other allele which exisfs at
frequency 1—¢. Then:

01 =Go—ngo+y (1—qo)
=y+ ¢ (l—p—y),
and  @=y+q,(1—p—vy),
and we can derive that g:=+f+g¢o(1—p—v)%

It is clear that there must eventually be some equilibrium between
the alternate alleles and hence that ¢,=g¢,; after some large time
period, At that time, the equilibrium frequency g, must clearly be:

Ge=7+qe(1—p—7)

—_ 7
or = .
e - Y

We can also derive that for any intermediate generation 4 between
0 and equilibrium,

gi—ge= (1—p—v) " (¢o—4qc)
or approximately q,—g.=e—¥+1(go—g.).

For continuous time and overlapping generations, we can use the

rate of gene frequency change %from:

G—qe=(1—p—y) (qo—q.)
or approximately:

Gr—Ge=(Go—qe) — (-P~+7) (QD_QB)




or Gi—Go=— (p+tv) (Go—¢e)

d
and E(tzﬁ_ (p+v) (g—q.).

Solving this equation by integration yields:
g—ge=e~ "IN (gy—q.),

as approximated above,

In addition to back mutation, selection against new mutants
can also prevent a complete change to the new allele and can
usually be expected to be a potent force in suppressing the fre-
quency of mutant alleles. Among the molecular variants which
may exist at a locus, many may have the same average fitness-
endowing .nalities. We can generally expect modifications in al-
leles that exist at substantial gene frequency to lead to decreases
in average fitness if the modifications affect differences at the
cistron level. In fact, among any set of alleles, regardless of their
mutation history, frequency will he controlled by the average se-
lective values of their zygotes. Thus, for any two alleles, A and 4/,
with frequency ¢ and 1—g, respectively, three zygotic fitnesses
may exist; W. for AA, W, for A4, and W, for A’A’. For large
populations in random mating, the relative zygotic frequencies are
g* for A4, 2q(1—7) for AA’, and (1—¢)? for A’A". If selection
operates according to the relative fitnesses of the zygotes by re-
ducing their contributions to the next generation, the new fre-
guency of gene 4 will he:

gom [Wag— (12) W2, (1= ¢) 1/ w0,
where 1, a scaling factor of the average fitness, is:
w= Weg+~ W 2¢(1—q) ~ Wy (1—q) =

A simple parameterization of the 1¥'s may help interpretation. Let
Wa=1, W ,=1—h, and 1¥,=1~s so that the contrast between
homozygotes is measured by s, and & defermines the level of domi-
nance (0<h<s) or overdominance (2<0). Then by substituting
these TV valuey inte the above eguation, the effect of selection
produces a gene frequency ¢, of

@+ (1-h)g(l=q)
1-2¢(1—g)h—(1—g)%’

and the one generation change in gene frequency then is

Ay =gs— 4= M[Eﬁ w’;TSZM:ﬁQ] .

We have thus constructed a model for changing gene frequencies
for any s and h values. We can now consider that selection is for

A (therefore 5<0), but that mutation occurs from A to A’ at
frequency », and that simple mutation changes frequency of
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A by Ag,=—pg. Since the nel change in gene frequency is the
sum of Ag,+Ag, and the net change will eventually reach an
equilibrium, ag,+Aq,=0, then Ag,= —Agq,, and hence

AGe=pfe,
or Ay _ _{1—qg){gh+ (s—h) {(1—q.)]
¢ w, ’

at the equilibrium frequencies of ¢(g.) and at those frequencies
w=10,.

Some special cases are illuminating to indicate the effect of

deminance on the value of g¢,. If gene actions of the new mutants

are net masked by any dominance of the original A alleles, then
h=(14)s, all factors are positive, and using these values in the

above equaticon, the equilibrium gene frequency of A’=1~qg=%ﬁd.
&
5 O

%. On the other hand, new mutants are often recessive, mak-

If h is small and px is small, then ¢, is almost 1 and 1-—-g.~

ing & almost zero, and then the above equation solves for

1—-q.=+/{p/ 8). More generally, we can derive approximations
when u is very small with respect to s or k, and hoth ¢ and & are

close to zero themselves, then w.~1. Then, also:
p={1—q.} [hq.+ (s—h} (1—q.) ]
=(1~gJ) [A+(s~2R) (1—q.)].
This is & guadratic eguation for (1—g¢.) and can be solved hy
finding

hA/RE ¥4y (5—2R)
S(s—2h) ‘

1_Qe=_

%. This approximation is a useful
rule of thumb. It is clear that mutations do occur among forest
trees, and may even occur at higher frequencies among some
species (Sorensen 1969). Since trees generally differentiate sexual
organs from their outer branches’ terminal meristems and since
some species are quite susceptible to radiation (DMMergen 1963) and
temperature shocks (Eriksson and others 1972), it might be rela-
tively easy to accumulate mutations in the germ plasm. The effects
of selection on these introduced alleles are complicated hy any
agencies that restrict the randomness with which gametes are
distributed—either through mating pﬂtterns or through recombi-
nations among other genetic loci.

which is approximately 1—¢g.=
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MIGRATION

The simple effects of migration can be similarly modeled as a
source of new alleles which are fed into the local population and
therefore affect the gene frequency. For large populations with
random mating, the encroachment of mutants or migranis must
recur persistently to have much effect, but when they do they can
have cumulative effects on means and variances even if the new
alleles have small effect in any one generation. The effect of low
migration into a population from some constant source is indis-
tinguishable from mulation and is often lumped in the heading
of “mutation” as a souree of new variation. High migration rates
would diminish the value of the approximations and may operate
differently with respect to selection. Entire genome substitution
in gametes {for example, polien flight) or zygotes {for example,
seed dispersal) is the form of migration and can oceur in random
patterns or may flow from high- to low-density areas of allelic
coneentrations. Such clustering of genes and zygotes creates corre-
lations among loci on the one hand, and in the probabilities of
mating among relatives on the other. An adeguate treatment of
migration effects therefore requires consideration of the breeding
structure of populations which we postpone to a later section of
this chapter. The simple treatment of migration rates as another
form of mutation, however, can serve as a reasonable working
model.

In forests, seeds and pollen can migrate by the action of wing,
water, and animals. For the gametes, eggs do not generally mi-
grate, but pollen is offen carrvied long distances and can heavily
influence migration rates of foreign alleles.

While we cannot treat multiple-locus problems adequately, it is
important to point out that when genes migrate into a population
together, as in whole genome substitution, independent treatment
of several loci is inadequate. To see one feature of the phenomenon
we can determine that after one generation of random mating,
each locus is expected fo produce zygotes in their expected
Hardy-Weinberg  equilibria  frequencies: p2{4AA4):2p{1l—p)
(AAY: (1= 2(A’A"Y for whatever their new (p) frequencles
are. We can simply demonstrate this by considering that random
ruating with gene frequeney p necessarily vields the expected
zygotie frequencies. Regardless of the noneguilibrium zygotic fre-
guencies in one generation, the gene frequencies determine the
next generation’s zygotic frequencies at the Hardy-Weinberg
egquilibrium, as long as population size is large and mating is at
random. However, when alleles enfer the population together or
are selected for differently in combination rather than independ-
ently (epistatically), then the frequency of AARD zygotes is dis-
torted with respect to the eight other genotypes, while the 4 and
B loci still occur with their expected distribution.

These considerations are most significant if selection on gene
pairs or on multiple loci is not independent, and we considered
those effects in detail undev epistatic selection theory. For the
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moment, however, it is clear that gene migrations and subsequent
selection can hecome vastly complicated by considering multiple
loci. Another factor which we have thus far assumed absent is
the variation caused by having subdivided or small population sizes
such that sampling error causes gene frequencies to depart from
expectations,

THE SPECIAL RESTRICTIONS OF SAMPLING
ERRORS IN SMALL POPULATIONS

For most species of forest trees, populations are not homo-
geneously distributed and mating is restricted by such external
factors as distance and by such internal factors as phenological
mechanisms. Even if we consider that we have studied onlv o
small part of the history of forest tree matings, the general con-
cept of population regeneration must consider the correlation
hetween mating frequency and geographical or phenological close-
ness, Among trees with little pollen or seed dispersal, such as
yellow-poplar, we might even expect that population islands have
developed in isolated coves. With large distances hetween cove
populations for many generations and litfle indication of past
populations which might have significantly bridged between pres-
ent populational lineages, little gene exchange is likely to have
occurred. In addition, periodic reductions and explosions of popu-
lations can he expected to increase homogeneity within population
segregates unless the explosions were sufficiently large and fre-
quent to induce enough exchange among populations to offset
loss of alleles when populations were small and few progenitors
regenerated the local lineages. Since reducing the number of inde-
pendent or unrelated families is equivalent to increasing the aver-
age relatedness among trees within populations, genetic differences
among populations are generated. Unless the differences are Iater
affected by selection, we would observe populational differences
similar to the family differences observed in estimating experi-
ments. The higher the relationship among trees in a population or
family, the greater the differences will be among pepulations of
families according to the size of the genetic effects we choose to
measure. In experimentation, of course, we can separate enviren-
mental effects and can create known, regular relationships. In
contrast, natural populations have environmental and genetic ef-
fects confounded, and the degree of relatedness and inbreeding
ameng parents is generally unkngwn, In addition to confounding
observed differences among stands, selection may either increase
or decrease the genetic differences themselves either by selecting
for different environmental respenses or by selecting for the same
homeostatic response to different environments, The latter phe-
nomencn is strikingly observed in yvellow-poplar in the contrast
hetween a lightly selected trait, leaf morphology, versus a frait
directly affecting fitness, seedling height growth. While growth
rate exhibited about the same amount of genetic variance among
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stands as among trees within stands, leaf morphology exhibited
much higher variances among stands than among trees within
stands (Kellison 1970). In contrast, slash pine is a more uniformly
distributed species which exhibits about the same levels of genetic
variance among and within stands for the growth and vigor traits
as for leaf morphology (Squillace 1966¢),

The nature and effects of nonrandom mating and any subse-
quent inbreeding, therefore, must be considered toc thoroughly
understand the development of forest iree populations. Since fu-
ture populations may be subjected to even more restricted lineages
by mating only specially selected individuals, the effects of in-
breeding systems must alse be understood to control future popu-
lation evolution.

INBREEDING

Consider that populations have diverged with respect to some
trait so that the gene frequency varies among populations. Re-
gardless of the reasens for the divergence, we can regard each
population as perhaps randomly mating within the neighborhcod
and hence being in Hardy-Weinberg equilibrium with respect to its
particular local gene freguency. Thus, each population has a
gene frequency and p2(44):2p2(1—p;) (AA"): (1—-p)?A'A’ zy-
gotic frequencies. However, there would also exist a variance in
gene frequency among populations, ¢,°>. Because there is a vari-
ance among populations, an excess of homozygotes in the general
population is generated regardless of any random mating within
subpopulations. Within each subpopulation, the frequency of A4
homozygotes is p2, and over all subpopulations, the frequency is
therefore ¥pf, which implies an average over wn subpopulations
of (1/n)spl. Over all of the subpopulations, there is also an aver-
age frequency, p, which is the mean for the whole species and
from which we could estimate the expected frequency of AA
homozygotes if mating was truly random, as p? The average of
the sqguares is not generally equal to the average squared; that is,

= 2
{(1/n)3p# & (%)

Then, since o,?= (1/m)sSpt—p?, the observed frequency of AA can
be expressed as (1/n}3p2=p?+e,2 In other words, the observed
frequency of homozygotes exceeds the random-mating frequency
by an amount equal to o2 This is Wahlund’s principle of the
subdivision of large populations and can be extended to the fre-
quency of 4’4’ as {1—p)2+0,? and to the diminished frequency
of AA’ as 2p{1—p) —2q,%. Thus, inbreeding is reflecled in an
excess of homozygotes at the expense of heterozygotes and exists
when subpopulations differ regardless of any random mating
within the subdivigsions. We have thus also implied that inbreeding
is a general phenomenon which exists whenever the definition of
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population is made bread enough to include genetic differences
among subdivisions. Inbreeding and random mating are thus de-
fined relative to some base population which must be well defined.
Regardless of the size or history of the populations, Hardy-
Weinberg equilibrium within even very small populations simply
means that the zygotes are found at the frequencies expected from
the local gene frequency and independent gametic assoeciation.
Without gene frequency differences, we cannot detect mating pat-
terns except by direct observation of gametic unions, If for any
reason differences exist among populations or groups in gene
frequency, an excess of homozygotes exists, and inbreeding is said
to exist. We ean parameterize the phenomenon by considering the
array of male and female gametes with the same average gene
frequency p and constructing a mating table as follows:

, Male I
Female ¢ Total
A A :
A =K p(1-p)—E ?
A p(1-p)-E (1-p)?+E 1-p
Total ) 1-p 1

Mating A/ A occurs at frequency p»¥p plus some deviation, E.
Since the average gene frequency for A remains constant at 7,
the same deviation Z must occur with opposite sign for the fre-
quency of heterozygote formation when A’ is the other gamete,
Hence, all cells can be parameterized for their expected frequency
=E. To construct a variance and covariance of frequencies, we
can use a dummy variable ¢ which takes the value 1 when A oe-
eurs and 0 when A’ oceurs, Ther,

me= 1 '5"'0 * (1_7?) 25)
and  of=1-p—p=p(1-7)

are the marginal means and variances, and for two samples of
mates, t and '

o =E (') - [E()1[E ()]

=pt+E—pi=E
and the correlation, p= L—E__-_— .
p(1—p)
Hence, E=pp(l-p),

where p is the correlation between uniting gametes. It has also
been defined as F, the inbreeding coefficient (Malécot 1969},
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We can now see that the frequency of AA homozygotes is in-
creased over p2 hy Fp(1—p) as is the frequEncy Q_f A’A’, while the
heterozygote frequency is reduced from 2 p{1—p) by an amount

equal to 2 Fp{1—p). F is a measure of relatedness within mating
groups relative to some base population mating entirely at random.

Mechanisms which can generate variations in zygotic frequen-
cies by sampling different alleles or allelic frequencies can thus
clearly generate measurable variations among subpopulations or
family units.

CORRELATIONS AMONG RELATIVES

It is useful to guantify relationships within groups to describe
the inbreeding structure of breeding populations and to analyze
the genetic variances caused by family differences. A more com-
plete treatment than given thus far on coefficients of relatedness
is needed.

Two measures of relatedness are commonly defined, a retro-
spective coefficient of relationship among individuals and a more
prospective coefficient of inbreeding for individuals which result
if relatives are mated. Maléecot (1969) defines relationships in
terms of probabilities of alleles in two individuals being identical
derivatives from some common ancestor. With this ccancestry
parameter, various degrees of relationships can be expressed and
ecan then be used to examine the effects on inbreeding and homo-
zygosity which are associated but not identical with coancestry.

The coancestry of two trees is the probability that a randomly
drawn allele of one tree is identical by descent to a randomly
drawn allele of the second tree. Identity by descent exists if the
two alleles are copies of an allele that was possessed by some
single progenitor and carried through whatever lineages may
exist. While this implies that the alleles are alike in molecular
compositien, different allelic ancestral histories can still be identi-
cal in the state of their molecules. Thus, we require the existence
of a base population in which no relatedness is assumed to exist
in order to define degrees of relationship.

From any such base population without relationships among
individuals, probabilities of allelic identities by descent are com-
puted to get the coancestry. Thus, for trees A and B with alleles
A,A.and BBy, the coancestry between A and B {f.s) is computed
as the sum of probabilities that A, and B, are chosen at random
(Pr(A, B;)) and are identical by descent Pr(A==B,). Thus,

f,m:‘ZPT' (A.g, B;) (P?' (A;EB,) ) =1/'/L P?'(A;EBi)
Lj :

+]AP?‘ {A;_EB'_#) *’.-]/J_P?‘(A-JEB;) +1/1,P?‘ (AQEBQ) N

If 4 and B are half-sibs from a common parent tree C and the
unrelated alternate parents are D and E, we can diagram their
relationships as:
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b C E
it —r— m——
B D ¢t C EE
I2\/12\./i2
A 8
—— —t—
A A B 8
1 2 b2

Pr(A,=RB,) depends solely on A, and B, being copies of the
same gene from C, either C, or €., and this is the probability that
Ci=4, and C,==B,; or that C.=4, and C.=B,; or that C;=4,,
Co=B,, and C(C=C.; or finally that C.=A,, C,=B, and
C1=C.. Since A, has probability 14 of being from C instead of D,
and the probability iS 14 that it is a copy of C, instead of Cs,
then Pr(C,=4,) =%, and similarly P»(C,=B,) =1/, therefore,
Pr{Ci=4,, and Ci=B,)=1, Also, Pr(Cs=4, Coa=D)=1,,
and for the last two cases, designating f. as the probability that
Cy=C. (the inbreeding of parent C), Pr(Co=A4,, C,=58,;, €,=C,)
=¥ fe and Pr{C,=A4,, Co=8,, C,==C.) =14,f.. Then

+ . ..
Pr{A,=BE, )=L8_{£ Using similar derivations for Pr{4,==8.)},
Pr{A,=B,), Pr{A,=RB,) gives our coancestry of A and B as;

/[m ff>]:1§fc_

For other relatives, or those in which some relationships may
exist among precedent parenis, the stepwise paths may become
rather intricate bui, fortunately, some algorithms reduce the
tedium {Ccckerham 1971; Harris 1961; Li 1855; Maléeot 1969).

The coefficient of relationship therefore expresses the degree to
which alieles have some probability of identity among individuals.
Clearly, if reiatives are mated, then the probability of having
alleles identical by descent in the offspring is the same as the
coefficient of coancestry among its parents. Hence, in the above
example, if A and B mate to produce an offspring X, the inbreed-
ing coefficient of X

f== m"""’*"
8
The coancesiry of an individual with itself is the prohability
of drawing the same allele tivice {1/, for each allele} or drawing
alternate alleles which may be identical (f), and hence
f 1"*/‘,1
A(t_

We can also denve that, in general, the coancestry of two indi-
viduals is the average of the two coancestries hetween one tree
and the parents of the other, or the average of four coancestries
between the parents of both, ete. In Wright's {1922} traditional
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notation, the covariance between individuals A4 and B is 2fie
and the coefficient of relationship is

SRR £ 1 S

: V1+fa 1 fr

In the notation of chapters 7 and 8, the coefficient used for
contributions of genetic variances to the phenofypic covariances
among relations is 2§ 5.

The probability measures of relationship and inbreeding can
he extended to groups of individuals within which some relation-
ships may exist and between which some identical forebears may
also have existed (Cockerham 1967}, Coancestries among groups
may then be computed and would be the same as the inbreeding
of progenies from crosses between the groups. Extensions to
more than one degree of hierarchal relatedness and analyses of
variances in gene frequencies among the various levels of the
hierarchy are alse possible (Cockerham 1973).

In populations in which relationships exist, the associations
among genotypes often are not the same as if truly complete ran-
dom mating in large populations existed. One of the problems in-
duced by the lack of complete and continuous random mating is
that variations in gene frequency are induced and the genetic
variance ean change.

We have already formulated the degree to which increases in
relationship ameong mates inereases the probability of identity
by descent and have examined the rate of increase in homozygosity
(or identity in molecular form) with increased inbreeding as:

Pu=pl2=Fpi(1—p)=Fp,+{1-F}p=

It is also interesting to notice that the difference in the frequency
of homozyeotes caused by inbreeding can be written as:

pE=Fp(l=—ps) —pl2=Fp, {1-p).

Hence, the difference in homozygosity is a linear function of F
at any given gene frequency, In particular, at low gene frequen-
cies, the percentage change in homozygosity can be very large
since the above difference, taken as a ratio of the noninbred fre-
quency of homozygotes

[p2=Fp.(1—ps) —pi®1 / pid
is F{1—p,)/ p, and ean be very large.

The inerease in homozygosity and its effects on genotypic fre-
quencies also afTect the variance in gene frequency amang repli-
cate populations.

Phenotypically, the phenomenon can bhe observed in the in-
ereased variance of an additive gene-action locus as inhreeding
polarizes the population into the two homozygotes. If the zypgatic
ralues wre scaled as 2{AA):10AAD) 0 (AA") with p. average
gene frequency, then within any subpopulation which is randomly
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mated with gene frequency p;, the mean is 2p2+2p(1—p) and
the variance is 4p2+2p:(1—p) —4p2=2p{1—p)). However, over
all populations, the zygotic frequencies are p®+Fp (1—7p) :2p (1)
(1—F): (1—p)2+Fp(1—p). As F approaches 1, the heterozygotes
disappear and each line becomes A4 or A’A’. For any intermediate
value of F, the total genetic mean is again 2p but the variance
is

4P+ FPa (1) |+2p4(1-P,) (1-F) ~4p.2
=2(1+ )P (1-Pa).

If no inbreeding existed, then p,=p, but with inbreeding the
genetic variance is (14+F) times the noninbred variance, Hence,
at F=1, inbreeding can double the additive genetic variance,

In the sense that gene frequeney variations oceur among small
subpopulations, inbreeding can also be expressed in ferms of the
fact that the total population size does not give us an accurate
idea of how many individuals may be considered to be random
mating. Even if mating is at random, the relationships will
inevitably accumulate and result in some levels of inbreeding. To
compare inbreeding populations, it is often useful to use as 2
measure the number of individuals which, in an idealized, com-
pletely random mating population, would produce the gene fre-
quency variations or inbreeding displayed by the actual number
of mating individuals. Two such conceptual population sizes, both
called the effective number, have been used to indicate the in-
creases in homozygosity due to limited numbers in any popula-
tion on the one hand, and to indicate the variance in gene
frequency among finite populations on the other hand,

The first ferm is called the inbreeding effective number and is
less than the census number of parents because a finite number
of parents will produce offspring with different degrees of rela-
tionship among them and unequal representation of parental genes
increases the average degree of relationship. Thus, out of N
monoecious parents, homozygosis is increased when the 2N
gametes randomly associate and create a probability of 14N that
they come from the same individual. Heterozygosis is therefore
decreased by a factor of (1—14N) each generation. Even com-
pletely random mating within a finite population therefore has an
expected rate of increase in inbreeding, If families are created,
then probabilities of random alleles being alike by descent may be
increased above that expected by random mating simply by having
different family sizes. Thus, if average family size produced is

%k, then N parent trees could produce N% trees and then,

yﬁ%{_—l—) pairs of mates. Of all possible such pairings, each

family would produce 55'—(——'1':‘2—1) pairs in which both parents came
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from the same family. In an idealized population, these pairings
within families would occur only 1/N times and by so defining an
effective N,

1N, = Zhlk=1)
NEk(Nk—-1)
Since Sk2—k=¢,2, we can rewrite this equation as
NE(NE—-1)

TUN—1)e 2+ NE2—NE
If o;2=4%, as would be the case if % was Poisson distributed, then
N.=N. If k; was controlled so that ¢2=0, then N.=2N.

Another way in which the census member would not accurately
reflect rates of loss of heterozygotes under conditions of restricted
parental matings oceurs when unequal numbers of dicecious males
and females exist. In such cases

_ AN.N,
Ne= N,+N,'
If N,=N,=N/2, then N.=N. Other effects, such as overlapping
generations, differential reproductive rates among age classes,
ete., would also decrease N, relative to N {Giesel 1971).

The alternative measure of effective numbers is also an abstrac-
tion related to the census number that would exist in an idealized
situation for the variance in gene frequency to he as expecied.
The coneern in this case is that the mrogeny population is expected
to display variations among their suLypopulations according to a
hinomial distribution; a,2= ”—%-g,?il
However, due to the same kinds of influences that make N a
biased number for predicting inbreeding, N is not a good number
to use to predict 4,2 For the case in which family sizes may vary,

for subpopulations of size N,

. : : p(1—p) .
the N, required to satisfy u,,?:ﬁ-(—zwei) is;
N,= - 21\:7 i
a2 (E+F) + (k—F)

k

Again, F is the departure of zygotic frequencies from Hardy-
Weinberg equilibrium frequencies (Crow and Kimura 1870).

If populations undergo sequential, temporal variations in N,
then the variance of » will also change over generations. In order
to determine an N. that would give an average estimate of how
v,® was generated for n such generations, we can estimate the
sampling variance for the sequence as:

o __ }J—(l_‘-?;)r 1 , 1 . _}__
T T |EN TaN, T Taw,
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and define N, as satisfying uf:p—(éz%ﬂ. Then equating the two

0,2 estimates vields N T the harmonic mean of the various
‘!: N{

N/s. The harmonic mean, being more strongly affected by low
numbers than is the arithmetic mean, gives lower values than
the arithmetic mean, and therefore indicates that the effective,
idealized population size is strongly affected by bottlenecks of
low N,

Thus, regardless of present population sizes, iz is quite possible
by a variety of means that the effective population sizes may be
small, homozygosity relatively high, and our forests largely made
up of partially isolated populations with different gene frequencies.
With populational subdivisions, we are required to consider how
multiple subpopulations may have evolved. To formalize considera-
tion of these effects as well as to study the progress of inbreeding
in possible breeding programs, regular systems of mating have
been studied for the rate of increase in F, or homozyegosity
(Li 1955 ; Crow and Kimura 1970 ; Wright 1969), Clearly, systems
that limit the number of parents per group most severely restrict
mating and induce rapid increases in inbreeding. If mating can
be controlled by natural or artificial means, however, several
options are available by which the species or population may
either avoid inbreeding for an initial period of time or allow some
early generational inbreeding and perhaps reduce the rate of
increase in F in the longer run.

For a finite set of parents, it is possible to avoid inbreeding by
simply assuring that matings occur among individualg with no
comimmon ancestors until forced by the limitations of finite initial
population sizes. At that tine, matings among only the most
distant cousins might be permitted. The number of generations
without inbreeding and the closeness of relationships are both
dependent on initial population sizc. Systems that permit no
inbreeding in the early generations force the average relationship
among individuals to build up rapidly. in these systems, inbreed-
ing is avoided and population size is maintained by crossing
among an ever-wideriag set of ancestries. These crosses cause
the average relationsnip among the units of the breeding popula-
tion to increase rapidly.

Alternatively, some controlled inbreeding may be used in each
generation to more slowly and more uniformly allow the inbreed-
ing to increase. Such systems as proposed by Kimura and Crow
(1963), for example, cross trees AXB, BXC, and CXD in one
generation, then (AXB) X (BXC), and (BXC)X (CXD) in the
next, then [(AXB) X (BXCY]X[{BXC)X(CXD)] in the next.
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ete. The relatively early onset of inbreeding is offset in later
generations by slower increases in average relatedness.

For any regular mating system the relationships and inbreed-
ing coefficients can be fraced and the accumulation of homo-
zygosity determined. Algebraic solutions of recursion relations
can then be sought to determine rafes of inecreases in homo-
zvgosity (Malécot 1969 ; Fisher 1965; Hayman and Mather 1953)
by solving difference equations or by solving for the roots of the
mating transition matrices. In particular, if any effects such as
selection have deterministic effects on genotypic composition, the
joint effects of selection and inbreeding can readily be traced.

If inbreeding is considered to occur within small subdivisions
of populations, then the average rate of loss of heterozygotes will
depend on the subdivision sizes, gene frequency and the balancing
effects of selection, new mutations, and new migrant genes, as
well as the forms in which the inbreeding occurs.

PREDICTING INBREEDING*

For deterministic models, the progress of inbreeding can be
dirvectly analyzed by considering that in each generation, the
effects of assortative mating, selection, ete., can be modeled
linearly to give relations between mating frequencies from one
generation to the next. This is essentially the same method of
analysis as used to predict age profiles in chapter 6. Here, it
shows how recurrent systems can be analyzed for their long-term
hehavior. The frequency of various mating types can be written
in a vecior form X': for example:

(fAAXAAN
FlAAXAa)
fldaxAa)
f(AaXaa)
FlauX aa)
f(AAXaa) )

The form of mating and selection then determines the fre-
ruencies with which these matings in genervation 0 will be allowed
to leave progenies and regenerate matings in generation 1. Pre-
sumably, relative frequencies will differ among generations. Thus,
with matings only within full-sib families, say the AAXAA, only
AA types are left, and hence all future matings are of AAXAA
type. The AAXAa type, however, generates equal numbers of
AA and Ae genotypes and hence would generate mating types

+Graduate-level statisiical training required for thorough understanding.
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AAXAA Y, of the time, AAX Aa 14 of the time, and AeXAda 14
of the time. The process can be followed for each mating type to
give us a matrix (4) of coefficients relating the matings in genera-
tion 0 to the matings in generation 1 as:

Generation 0 Generation 1
AAXAA AAXAeg AeXAa AaxXan eoXae AAXan
AAXAA 1

AAXAq 17 145 14

AaXAa Yo % 14, V. K6 Y
AexXaa 14 Yo 14,

o X ug 1

AAXaa 1

If selection was against AA genotypes such that the selective
ratic of A4:A4¢ was 1—s:1, then the frequency of new matings
as genervated from the old would have to be modified such that
AAXAA would oecur {1-s)? of its former frequency, and
(1—s)*

AAXAa matings would generate AAXAA matings

4
of the time; 44X A4¢ (1;8) of the time; and AaxXAa 34 of the

iime. The remainder of the table would have to be similarly
adjusted.
We can then determine the progress of inbreeding since

ali)l= A4 0]

or generally alt+1l = Azl = 4tgl0],

From matrix algebra we know that for any real, nonsingular
matrix, 4, there is a real matrix, U, and a diagonal matrix, D,
such that UDU-1=A. Therefore, for any power of 4, say A?, we
can see that A‘=UD'U~-*, Now let us try to find out what U and D
are by first noting that if proportions among the mating fre-
quencies x ever reach stabilities (which they will do for real,
nonsingular A matrices), eventually, glt+11=)2l where A is a
constant of proportionality. -

Sinee
Agpltl=gplt+1) = Ax[”,
Anxftl =,\x[f]’
and (A-—-AD)zl=Q,
where we can now see that X is an eigenroot of the matrix A with

an associated eigenvector £, In fact, there are » such roots with
associated veclors (where 7 is the rank of A) so that we can write

Az;=\z, for each root Ay, 1=1,2 .. ..
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Hence, we can put the various rools together,
A(Ez, T2, Tg o« ) = Aals, As¥z AgTs .. .
and letting the matrix i, &z, %2 . . - =1,
0

Az
Ag

0
or A=UA)U?
where A is the diagonal matrix of A/s,
or Ar=TT{Ayt U

and At
Agt

(a)+= M

Then g =U (AY U2

and we can now see that as £ increases, the dominating effect that
the largest ); and its z; vector will have on the composition of
=I1), Regardless of ¢, however, the technique is useful in determin-
Tng the status of mating types at any time f, and the decay of
heterozygosity to whatever stabilifies may exist.

SELECTION

Selection itself of course has deterministic results which can
lead to homozygosity or fo the existence of intermediate gene
frequency equilibria. In the simplest cases we only consider one
locus, two alleles, and assume large populations without inbreed-
ing, mutation, or migration effects. The results of simple, one-locus
selection on genotypic and phenotypic performance were outlined
in chapter 2 and require no further review. The principal problem
discussed in achieving the state of stability or fixation determined
by the genes was the accidents of sampling. However, any reason-
able model of population behavior must also account for more
complicated models of how environmental or breeding selection
may vary and how genes may interact.

MULTIPLE ENVIRONMENT SELECTION

Several other kinds of effects can also lead io intermediate
equilibria even with these simple models. For example, consider
the case where variation in the selection effects over different
parts of a population or over different generations is a better
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model of the actual vagaries of population growth than a model
with single constani-selection coefficients. We distinguish these
variations from those in which all organisms must face the same
kinds of variations in each life stage in a single generation and
which can then be studied as if some average fitness of genotypes
existed for the given pattern of variation. These latter types are
fine-prained variations commeon to all individuals in contrast to
coarse-grained variations in which individuals exist largely in
one or another variant of the environment. Coarse-grained varia-
tions may be modeled in several ways, For example, Haldane and
Jayakar {1963) show that if the frequency of environments which
favor first one then another genotype change within certain limits
and if the varying selection coefficients also exist within certain
limits, that relative genctypic frequencies will also remain within
certain intermediate limits. Even when the arithmetic average of
all environments favors one genotype, if the alternate environ-
ments occur often enough that the geometric mean of selection
coefficients favors the other, then selection will maintain zn
equilibrium. This condition might occur, for example, if a site is
generally favorable for one form of growth but occasionally is very
poor for that one form and relatively good for the alternate growth
form. Thus, rare but severe extremes such as untimely frosts or
fires may be enough to maintain alleles that are not advantageous
in common types of competition but that may endow genotypes
with exceptional resistance or reproductive capacity on those rare
occasions when needed. In addition, Li (1967), Prout (1968), and
Levene {1953) have theoretically shown that random mating of
genotypes which undergo selection in different environments can
leac to stable equilibriz even if neither environment alone would
lead to stability. For example, if trees intermate freely, some
located in a gite favoring AA and others in a site favoring A’A’,

it is possible that the geometric mean of r, 7, is maximized at an
intermediate gene frequency.

While the above simple models may accurately deseribe how
some intermediate allelic frequencies are maintained by heteratic
effects, it is also true that if many loci of this sort existed, the
great majority of seedlings would contain many deleterious,
homozygous loci. It is possible, however, that the detrimental
effects of mutations and any conseguent segregations of deleterious
homozygotes can be modified by more exact models of how selec-
tion on fitness actually operates (Wallace 1968) and by synergistic
ge=e actions (Crow 1968). Among forest trees, we lack much data
on single gene actions, but since forestry has been a field of
applied ecology, our knowledge of the detailed ecology and selec-
tive forces in forests can be used to investigate those sources of
genetic variation.

The factor affecting gene frequency distributions which has
received most interest is differential reproduction of genctypes
such that the descendants of one genotype are more likely to have
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higher representation in future forests than now. In an earlier
chapter, selection effects of relative success were described in
terms of the joint effects of individual birth and survival processes,
and average success was measured in terms of the largest eigen-
value of the expected Leslie matrix. Selective effects can also be
exercised in the gametic stage of the life cycle since gene actions
and differential success can also occur among gametes, but this is
usually an exceptional type of selection for organisms in which
the zygotic stage dominates the life cycle in both size and duration.
Therefore, unless forms of meiotic drive or gametic selection are
known to be present, we shall assume that selection operates on
survival and descendant births, between zygote formation and
death or such advanced age that actual death becomes irrelevant to
the genetic composition of future forests.

In studies of genetic differences among forest trees related to
distinet selective histories, there is abundant evidence that climatic
and physiographic effects have differentiated populations of trees
with respect fo length of growing season, growth rate, ete.
(Wright 1962; Stern 1964; Hamrick and Libby 1972). Within
populations it can be expected that generally unfavorable alleles
will be continually eliminated while others of some phenotypic
effect but of equivocal fitness value might manage to coexist.

Among the many traits measured on forest frees, genetic differ-
ences may be caused by cryptic selective factors. Selection at one
stage in the life of trees may affect zygotic frequencies of genes
which cause phenotypic differences at some other life stage.
Among trees within Douglas-fir stands, some genetic variance in
height growth exists when trees are young, but there ig little
genetic variation for height growth within stands for older trees
{(Namkoong and others 1972). Such age-related selection can have
additional unexpected results (Anderson and King 197¢) on the
effect of selection on the stability or instability of gene frequencies.
While different genes operate on the same reactive processes at
different stages of life, some genes can be expected to operate in
a similar way in several life stages. However, the environment
will have changed and the effect and selective advantage of those
alleles can be quite different. Thus, some genes may have average
effects over the lifetime of trees which cannot be predicted by their
effects at any single stage of life. Hence, foresters in particular
may have difficuities in defining effects for genes which aet or
affect fitness differently at different times. The environment can
clearly change for trees, especially for pioneer species which are
often established on open sites but which may have to regenerate
under a closed stand in refuges in the next generation. In gen-
eralizing the effects of selection on evolution, MacArthur (1962)
has emphasized that reproductive success can be far different
under colonizing, low-density conditions than under closed com-
munity, high-density conditions (Pianka 1972). For most forest
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tree species, a mixture of conditions will be present, sometimes
requiring reproduction in a relatively stable environment where
the site is already colonized and intraspecific competition is heavy.
Here, the ability to survive crowding maximizes probabilities of
success, For less stable environments which may be the result of
newly created sites on the decay of established sites, greater sue-
cess in colonizing sites may be required. The k and » types of
selection as defined for logistic growth models in chapter 6 thus
contrast in the kinds of behavior favored by selection. Such varia-
tions in effect imply that intraspecies competition may be im-
portant while selection for « types of interspecific competition may
also be important. Therefore, selection on the basis of competitive
behavior is complicated by intraspecific and interspecific density
dependence. Important selection effects may then depend on the
frequency with which alternate genotypes exist in the forest and
hence will change according to the effects of previous selections.
Thus, frequency-dependent selection can be a significant form of
variation in selection pressures in forests. Thus, varicus forms of
selection have been operating in our forests and require consider-
able analysis of gene actions and environmental variations to de-
fine how selection actually operates. While we generally consider
simpler models of selection effects and generally have to assume
that alleles have simple, average selective differences in some
average environments at some average time of effect, the simpli-
fied models are not reasonable. The following theories then are
usefu] only as first approximations, and even then require caution
in applying to any of the complex phenomena of forest growth
and development.

In the simple case in which one kind of environment almost
exclusively exists with respect to genetically affected fitness, selec-
tion may be essentially unidirectional, and as long as the proper
genotypes exist, a maximally adapted genotype would be expected
to be fixed. If several kinds of environments exist, then the effect
of selection may be either to still favor fitness in the more frequent
environment or to favor an intermediate frequency as Levene’s
(1953) analysis would indicate. The outcome clearly depends on
the fitnesses of each genotype in the various environments and on
the frequency and sequences in which the environments exist.
Levins (1968} describes the two factors in terms of & fitness of
the genotypes in the environments and of a value function of the
environments accounting for the frequency and sequence of the
various environments. In the simplest case of three genotypes
AA:AA:A'A in two environments, the relative fitness values of
each genotype (for example, W,,) scored for each environment
(Wiall), W,oa%1), and the pair of vaiues is located in the two
environmental dimensions. The same is true for W, (1, W, 12,
and for W, 1), Wi, Bl A few cases are illustrated below in
which the A nllele is favored in environment 1 and A’ is favored
in environment 2.
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continuous funciions connecting the points in a set of genotypes.




285

Consider that a genotype attains a maximum fitness at a particular
state of an environmental variable and that its fitness declines
as a quadratic or exponential function of the departure of the
environment from that point. Thus, on an environmental scale, a
genotype’s filness can be determined as a function of the environ-
mental deviation from the optimum as in:

wGENGT‘(F‘E OPTIMUN

EMVIRONMENT

1f several genotypes had differently located but similarly shaped
curves, then at any particular level of the environmental variable,
they would have an array of fitness values. Conversely then, any
environment can be said to be a function of the genotypic fitnesses.
Reducing characterization of the genobypes to their optimum
locations, an environmental curve would attain a maximum for the
genotypes whose optima coincide and would decline for genotypes
with optima elsewhere. Thus, the environmental value would be a
tunction of the distribution of optimum genotypes and may be
similar in shape to the curve of genotypes on environments.

/

GENCTYPIC OPTIMA

Then, two such environmenis would generate two curves for each
genoctypic optimum :
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The two values of each genotypic point may alfernatively be
found in a two-dimensionzal mapping of environments 1 and 2 and
the set of genotypes located in that space:

w E

E 2 2
The closer the environments are, the more convex the set of points
will be. If the environments are identical, the set degenerates to
a line from the origin bisecting the angle of the axes. The further
the environments are apart with respect to the variance of their
optimum distribution, the closer the values around position “BY
will be to the origin and hence the more concave the set will be-
come in this central region.

Given any set of points on a particular straight or curved line
deseribing the way the genotypes react to the environments, a
second function can be drawn on the same graph indicating how
the envirenment affects fitness. If a fine-grained environmental
mixture exists, then the genotypic value simply depends on the
average fitness as determined by the relative frequenecy of the
environments. If p is frequency of environment 1 and {1—p) the
frequency of environment 2, then the fitness value would simply
be pWI+ {1—p) W2l If p is very high, then trees with high Wi
peints have higher value than frees with low W01 even if W) may
be somewhat befter. We can then draw lines of equal value for any
given p to indicate the relative increases required in W, if W,
decreases, such that fitness value remains constant:

A=pWi+(1—p) W,

Wl‘:é" - (-"—"1_-?7) W
o »
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or Y=g-—bz,

, and z=W,.

where Y=W,, a=%, b= 1-p

For a larger fitness value (A) to exist, the line of value must
move to the upper right as indicated.

It is now clear that for a given set of genotypes, the type favored
by selection will be the one which has the largest value function as
determined by environment frequency, p. In all cases except for
double dominance, it is possible that one or the other homozygote
may be favored if the p or 1—p is very high,

A quite different resuit emerges, however, if a coarse-grained
environment exists and the value is determined more by the
sequential fitnesses that occur. Then, fitness is a multiplicative
function of the environments and can be deseribed by a funetion
like (W01)2 - (Wi} 0-p just as derived by Levene (1953) and by
Li (1967) for the case when complete random mating occcurs over
all environments, In this case, the value function is propertional
to a hyperbolic function, p log (W) +{1—p) log (W), as
indicated below with the indicated direction of increases in vaiue:

For coarse-grained environments then, it is far more difficult
to favor a homozygote and selection can be expected to favor
intermediate gene frequencies. Since itrees do not move once
germinated, they are susceptible to the accidents of seed fall and
exist within neighborhoods on quite different soils and moisture
regimes. Any major classification of environments would there-
fore be expected to include coarse-grained environmental varia-
tions. Hence, we might expect this type of environmental selection
to predominate and defermine the intermediacy of gene frequen-
cles affected by soil factors. If the fitness sef of genotypes has
dominance relations such that the set is convex, then either of
the fine- or coarse-grained environmental-value functions would
most often yield optimal infermediate gene frequencies. For more
nearty linear fitness sets, however, the hyperbolie-value function
of the coarse-grained environments would more often yield inter-
mediate gene frequency optima. This is Levene's (1953) case.
Por fitness sets which are concave, as drawn below, only the
hyperbelic function can yield an intermediate optirum but one
which can exist only if the extreme homozygotic types exist as
mixtures.




Thus, intermediate gene freguencies can be favored by simple
kinds of variable selection pressures without other factors like
mutation or migration or even direct selection for intermediate
forms. Genes can be maintained in intermediate equilibria by still
other forms of selection, such as frequency-dependent selection as
induced by competition or predator-prey, pathogen-host, or other
frequency-dependent preferences. The possibility of frequency-
dependent selection having strong, widespread effects in maintain-
ing polymorphisms has been explored by Kojima (1%71) and
Kojima and Huang (1972) in Drosephile populations and for
species with strong overlapping generations (Charlesworth and
Giesel 1972). The effect of competitive interactions on maintaining
selection for otherwise unexpected intermediate optima has been
advanced hy Mather (1969) and explored in trees by Huhn
{1970c}, who also concludes that even moderate levels of genctypic
competition can lead to pelymorphisms in trees.

A further extension of the simple model te include two loci also
restlts in major differences in projected effects of selection that
cannot be foreseen from the single-locus model. The simplest ex-
tension is to consider the loci to be independent in effect as well as
in fregquency. Linear, independent models can thereby be con-
structed for genetic distributions, and selection effects at one locus
can be derived essentially independently of other loci. However,
since genes do not act entirely independently and some exist in
tight linkage groups, these simple, average-effect concepts may not
be adequate, especially if gene frequencies change much and cause
allelic combinations fo interact nonlinearly.

MULTIPLE-LOCUS SELECTION*

In the single-locus case with simple environments, a fitness curve

could be drawn as a function of gene frequency, and a %—?; curve

could also be drawn as a function of gene frequency. In this case,
the curves would show that the maximum fitness occurred at a
value of p which was also at a point where% ={. Thus, any

selectively induced changes in gene frequency would change

*Graduate-level statistical training required for thoreugh understanding.
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the dicection of maximizing fitness, However, in the multilocus
case, the maximization of fitness at the same gene frequency as
where %2;=0 is not a general result and the fitness surface itself
is a function of zygotic frequencies, instead of being independent
as in the single-locus case. These results have the same implica-
tions for breeding theory as for the genetics of natural popula-
tions,

If we first consider mating frequencies reiating gametic {re-
quencies for two generations with selection, we can derive the
changes in gametic proportions and, hence, gene frequencies.

Let  P,z=Tfrequency of AR gametes,
P.y=frequency of Ab gametes,
P, p=frequency of aB gametes,
P=frequency of ab gametes.

Assuming random mating in large populations without selection,
the frequency of ABXAR unions will be P4,% and these unions
will yield all AR gametes. The frequency of ABXADb unions will
he 2P P4, and these unions will yield AB and Ab gametes with
equal frequency of P,pP., each, Similarly, ABXae8 unions occur
with frequency 2P.;P.; and yield 4B and aB gametes with
PP, frequency each. The ABXab unions occur with 2P,zPq
frequency and, with recombination at frequency r, yield 4b and
aB gametes with frequency 7P ;P each. Without recombination,
they yield AB and ab gametes with frequency {1—+)PssPu each.
The others are not affected by recombination. The only other kind
of union that could give us new AB gametes would be recombina-
tions of AbXaE which occur with frequency 2P, yFP.s A recom-
bination frequency » gives us AB half the time or with overall
frequency 7P.pP.s. Hence, the next generation’s

P yM=P 0 (P pl% + P, 104+ Pl +Pab[0])
—?(PABPab_PAbPaB) e
Py Pyplt®

PBB Pab
A4

=P, 01—y =P, 0 —rDio1,

Pa{bPJIb
PaB Pub

All of the other frequencies can be similarly traced, and the col-
lective result is:

where 0=

P P, 0 — Do)
P, 1 P 1% Dol
Poi | | P04y

P, P10 — D103
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The process is nonlinear since DY is a nonlinear function of the
gamete frequencies:

D= (P gPay— PapPep} 1]

= (Ps—rD)® (Pub_?‘D)[M
~ (Pay+7D) 0 (P +7D) 1]

= (PsPas— P 43P0ap) IV
—(Pas+Po+ Py +Pgy) 012 D0

=Dl ppiol

= (1—r)Dl

and Dr= (1—#)rDI01,

Two features of the progress in I are notable, once a D value
exists in a population, the disequilibrium D of gametic frequencies
measured by the difference in coupling-repulsion-phase associa-
tions persists regardless of linkage, Even if unlinked loci recom-
bine freely and r=14, I} will decay at a rate of 14 its former size
per generation. The persistence of D is caused by the nonrandom
association of alleles which cannot be immediately dissipated by
any commonly known means, because increases in + decrease the
yvield of AR gametes from AB Xab unions but increase the yield
of AB from AbXaB unions. Hence, D persists., However, we can
also see that each locus can immediately achieve Hardy-Weinberg
equilibrium with random mating regardless of » because:

(1) AA homozygotes derive from ABXAR at P,s* fre-
quency, ABXAb at 2P, Py frequency, and AbXAb
P42 frequency,

The sum= (P 3+ Ps;)2=P,2, as required.
Ag heterozygotes derive from AB XaB at 2P ,zP,s fre-

quency, ABXab at 2P,zFP.; frequency, AbXaB at
2P P,z frequency, and AbXab at 2P, P,; frequency.

The sum=2P,5 (Post+Pan) +2Psp (PoptPu)

=2P4 (Pa) +2P,, (Pu)

=2P (Psp+Pa) =2P,P,, also as required.
The aa homozygotes derive from aBXaB at P,g? fre-

quency, aB¥ab at 2P,P., frequency, and abXab at
P2 frequency,

The sum = (P, +P,,})2=P.?, as finally required.

The same Hardy-Weinberg equilibrium would be reached by the
locus E also, Hence, with random mating in large populations, all
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individual loci immediately are in equilibrium even if the multiple-
locus combinations are not.

We can now see what happens when epistatic types of selection
are effective by imposing the following selection coefficients on
the zygotic eombinations:

oo | w(28) W) () V()
o | () W) o) ()
o | o(E) w(8) () ()
o | o) w(8) () w(3)

Marginal fitnesses of gametes can be defined by the fitnesses and
frequencies of the zygotic combinations. For example:

e (15) e (38) v (4] 4

AE AB a0 b
AB AB AR AB

A]SO, W:WA_BXPAB-’-WADXPAb+WQBxPaB+WﬂbXPBb-

If the table is simplified slightly by assuming that position ef-

ab abB

lection coefficients can be written more compactly as:

fects are negligible, then W (ﬁ) =W (ﬁ) , then the nine se-

| BB Bb bb
AA Wea War Wan
Aa Wiz Wi Wi
Lrled W02 Wm WD(I

Then the production of gametes for the next generation can be
determined with the same assumption as hefore as:

PAa[l]= EWmPABLE‘W21PAbPAB+W12PAnPaB
+WuPasPay (1—7) + W11PasPos (?')][OJ/W[‘”
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where W is the weighted mean fitness given above. Then,
P =[P, 50W ;10— W, DIol] /i)
Papl) = [P, l00W 190+ ¢, DI01] /T 0]
Pyplt) = [Py l01 W 101 4 r W . DEO1] /TP 1)
Pot) = [Pl0W 0 —y WD 1] /L,

In terms of changes in gametic frequencies:
AP,z =[P5l0 [W 15— W] 01—y W, DI01] /0]
APy =[Pap0 [W 1 — W0+ W, De1] /101
APg5 =[Papl® [Wop — W]+ rWe,D10I] /WO
AP = [Pyl® [Way— W10 — W oo DI /W01,

For all changes in gamete frequencies to be zero, D must be zero

and all W, must equal W. If Ds0, then some W,==W at equilib-
rium frequencies, and hence some V;; values can exist at equilib-
rium and would be associated with a nonzero disequilibrium D
value, Several investigations of equilibria for different patterns
of W, variations have shown that the number of stationary dis-
equilibrium points for a given set of W, values may be as high
as 7 (Karlin and Feldman 1969) while most studies also indicate
that fitness is increased by having D40 (Kimura 1957 ; Lewontin
and Kojima 1960; Bodmer and Parsons 1962; Wright 1967), and

Moran (1964) has also shown that W is not generally maximized
at equilibrium frequencies.

Thus, multilocus genetics presents qualitatively different prob-
lems and results than what might be otherwise expected from
analysis of single-locus behavior. These differences must be con-
sidered if any large changes in gene frequencies or effects oceur.
In the short run, with large populations, the first approximation of
largely independent genes in equilibrium may be reasonably ae-
curate, buf when long-term trends require large changes in allelic
combinations or the introduction of allelic combinations with large
effect on fitness, we cannot ignore the persistence of epistasis and
disequilibria in gametic frequencies.

We should also recognize that dominance and overdominance
relations may not translate directly from a phenotypic scale to a
fitness scale. Wright (1935a) considered, for example, that a phen-
otypic optimum may exist such that phenotypes are maximally fit
at some optimum environmental value and decline in fithess ac-
cording to a quadratic function of the departures from that op-
timum. Thus, dominance and overdominance on the fithess scale
are a quadratic function of the phenotypic scale. On a single-locus
basis, overdeminance on the fitness scale presents no new genetic
features, but on a multiple-locus basis some dominance levels can
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produce intermediate equilibria. Wright (1935a) first observed,
if intermediate optima existed, that populations would evolve into
a mixture of homozygotes at each locus such that the optimum
phenotype was fixed and that at most one locus with overdom-
Inance on the fitness scale could remain segregating. However,
Kojima (1959h) further showed that incomplete dominance at
several loci could exist in an equilibrium, and Singh and Lewontin
(1966) later showed that more equilibria could be expected if link-
age disequilibria existed. Several possible patterns were explored
by Wright (1969) for a two-locus system.

Investigations by Lewontin (1964) on five locus models indi-
cated that large amounts of linkage disequilibrium can be gener-
ated from simple optimum phenotype models with epistasis on the
fitness scale. Further study on even larger systems supported the
long-term importance of epistasis on fitness and strong linkage
disequilibria and led Franklin and Lewontin (1970) to conclude
that, in the long run, the individual gene may be less appropriate
than the whole chromosome for the study of evolution.

SELECTION-INDUCED POLYMORPHISM

Thus, selection models of reasonably simple form can yield
populations with larege amounts of genetic variance without re-
course to mutation, migration, or other effects. The large reser-
voirs of genetic variance in many organisms can thus be explained
by a variety of selection effects as well as other mechanisms. Even
in commonly self-feriilizing organisms like oats (Allard 1965),
there commenly exists sufficient outcrossing to generate reason-
ably large genetic variances. For tree species, there is a great deal
of genetic variation in almost all traits studied. Due to the mul-
tiple mechanisms by which polymorphisms may be maintained,
however, distinction of causes and the chances of the polymor-
phisms being more or less stable or subject to destruction are not
known, Simple epistasis as well as variations in selective forces
of several types can generate polymorphisms with some degree
of stability. However, the study of systematic variations among
poptilations may indicste the existence of some forms of selec-
tion.

We can conclude that many kinds of selection may well lead to
pelymorphisms among forest tree species, but the effects of one
or two genes arve difficult to detect and the existence of poly-
morphisms due to selection effects are diflicult to establish. The
major-gene phenomena associated with inbreeding depression of
chlorophyll deficiencies have heen easily observed, but they have
not been associated in heterozygotes with any obvious heterotic
effects. In fact, no simple cases of single-gene heterosis have heen
found in forest trees. The frequency of single-gene effects, such
as chlorophyll mutants, is apparently more a function of mutation
rates than selection for heterozygous effects (Franklin 1970b).
Other single-gene effects at high frequency, such as olecresin com-
position of slash pine (Squillace and Iisher 1966) and western
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white pine (Hanover 1968) and flower color in Scots pine (Carlisle
and Teich 1970), have not been associated with any observahle
selection pressures. However, for introduced pathogens, some dis-
ease resistances which would have current selective values may in-
volve simple inheritance of one or two loei (Kinlech and others
1970}, and their study over the next generation might be beneficial
to our understanding of tree population dynamies.

If we consider only simple models of selection, we previously
indicated that simple interactions of selection, migration, and mu-
tation can also lead to equilibria. Another factor which we have
not considered can lead to fixatiens—the operations of any of the
above factors in small populations without free intermating. Many
investigations have indicated that populations of trees may be of
limited size (Sarvas 1963), Sakai (1971) concludes from examina-
tions of isozymes in Crypfomeric that his population may exist
with a great degree of isolation among adjacent stands. A more
realistic model of forests would have to include the effects of the
accidents of sampling as they affect small populations in some de-
grees of isolation, S, Wright's (1970) results indicate that varia-
tions in response to selection caused by partial isolations can be
very potent in allowing populations to drift inte gene combinations
which may be useful for further evaluation in response to selec-
tion of types nof possible in large random-mating populations.
Interpopulational variances can thus he important to species evo-
lution.

STOCHASTIC VARIATION

The general tendencies for average, population-wide effects
caused by selection or other forces are not often exactly translated
into events for individual trees. Average selective values for dif-
ferent genotypes may indicate the probabilities of survival on
which trees will survive or reproduce “on the average.” However,
for a specific tree in a struggle for existence, life and death are
- qualitatively different events, and probabilities do not reflect the
physiological nature of individual survivals. An individual lives
or dies regardless of any probabilities, Similarly, for two individ-
uals, they both may live or die, or one live and one die, Henece, the
two may become 0, 1, or 2 individuals when counted again, even
though we might expect an average of say 1.2 individuals. For
larger populations, these accidents of sampling on an individual
basis may lead to resulting numbers guite different from any
average expectation. Thus 10 trees, each with a survival probabil-
ity of 0.5, may all die, or some portion or all may live. While we
may expect an average of 5 trees from very many 10-tree samples,
any one such sample includes 0 to 10 survivors. If the process is
sequentially repeated for the survivors, then again the outside
limits remain 9 to 10 for any sample, though intuitively one
may feel that somehow they should cluster around the average.
Therefore, when variation in the occurrence of an event occurs,
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the exact processes are no longer determined by simple equations
riving some constant survival fractions., Variations in the occur-
rence of events lead to an interest not only in the average outcome
of repeated samples but also in the variations that may occur
among samples, Then, it may be desirable to estimate the proba-
bilities of the population going to one extreme or another, or the
probability of staying above some critically important level, In
additivn, if variations are very wide, they may be so important
in affecting the outcome of population processes that a factor
which might otherwise cause a stable eqnilibrium might become an
unstabilizing force. We cannot review the entire theory of sto-
chastic processes as applied to genetics problems, but rather we
wish to review the basic concepts and tools useful in studying di-
rected selection and other effects.

ANALYSIS OF STOCHASTIC PROCESSES*

To illustrate the kinds of analyses and effects of stochastic
processes in population development, we recall the deterministic
birth process of chapter 6. We originally considered that a growth
rate or propensity to increase on an individual basis could be given
a constant coefficient A which we can consider to be a birth rate
for each of n, individuals alive at time ¢. Then the increase in n is

% = A, Which when integrated vields
logfi =At,
Ny
or Ty =nge,

for the numbers (%) at time ¢ as a function of the numbers (n,)
at some original time {¢=0) and A. The results were considered
to be absolutely predictable and ratios of numbers of different
types of individuals with specific A or (r,74) rates were con-
sidered to provide relative selective values.

Now consider that A actually expresses a tendency which is not
exactly expressed by each tree, and hence in a small population we
lack exact predictability. To estimate an average expectation and
the variance which might be expected, we can analyze how varia-
tions may be generated and how they affect the probabilities of
the possible numbers or gene frequencies and then compute the
mean, variance, etc., of the population. The following example il-
lustrates one approach to solving the problem for exponential
growth by Bailey (1964}, Feller {1957), and Pielou (1969). To
simplify analyses, assume that A is constant for some period and
for some part of the population and that the probabilities of events
are independent among all individuals. The probability of birth
in a At time period then depends only on A and the length of the

*Graduate-level statistical training required for thorough understanding.




296

time period and may be reasonably stated as:
Pr(birth) =i » at.

Then, starting at time ¢, for n trees we may model the birth prob-
ability in a Af interval to he:

Pr(births) =xat,
For there to be % trees after the time interval A¢, there would have
had to have been n trees before the A¢ interval and also no births;
or n—1 trees hefore At and also 1 birth; or n—2 trees before At and
also 2 births; ete., without death. If Af is made sufficiently small

and only 0 or 1 birth is possible in such a small af, then the prob-
ability of having n trees after the At interval is:

Pr(n; t+at)=Pr(n; ) = Pr(0 births) +Pr{n—1; t) +
Pr(1 birth) +Pr(n—wx;t) - Pr{z births) + .. ..
Sinece Pr{z births) =90, for z>1
Prin; t+at) =Pr(n; t) » Pr{0 births)
FPri{n~1;£) « Pr{l birth).
Taking Pr(0 births) =1—Anat
Pr(n; t+ At)=Pr{n; t) + (1—-inad)+Pr(n—1; t) * nat

and hence,

P?‘(n;t'FAjg‘P?'(%; t)=~m * Prin; t)+in « Prin—1; t).

Allowing At to become infinitely small, the left-hand side

becomes ﬂl‘—)’—;:—’f—)—l Alse, considering the initial state of the pop-

ulation, » may be zero after the initial At interval if n was zero
before the At interval. Hence, for any initial size «, Pr(a~1; )
=0. Therefore,

%ﬂ:—laP?'(a; t),

and by integrating ang using the boundary condition that P»(0; 0)
=1, we derive log Pr{e; ¢t} =—xat or Pr{«: £) =e-*. Then from
the initial size, we can set up the probabilities of larger sizes at
time 1. The probability of being size «+1 at time t+.5¢ is the sum
of probabilities:

Pria+1; t+aty=Pr(a; t) + Pr{1 birth)
+Pr{at+1;ty » Pr{0 births)
Pria+1;t+at)y=Pr(a;t) (Aast)
+Pria+1; t} (I1—-x (a+1) Af).
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Using the same assumptions as before, we derive
d[Pr{a+1:8)]
dt

where Pr(e; t) =e¢** on the right-hand side from the above deri-
vation.

Integrating the left element by parts and using the initial con-
dition that Pr(a+1; ¢) =0 at t=0, we can derive that:

Pr(a+1; t) =aet (1—e1),
Repeating the process for a+2 would give us:
a(gt+1)
2

+Xx {a+1) Pr(n+1; ) =qe

Pr{a+2; )= gt (L — g M)2,

and in general for any n>a;

n—1
a1

Prin; t)= ( )e"‘“‘ (1— gy,

We have thus derived the probability function for any = at
time ¢ as a function of ¢ (or m,) and x and we can therefore
determine the mean, variance, and higher moments of the process
at that time. The traditional definitions of mean as = nPr{n; t)

n
and of variance as = n2P» (n; £) —u® can he derived for our case as:

Mean= aet
Variance= ge’ (et —1).

It can be noted that the mean is the same as the deterministic
projection but that the variance can become very large at large ¢
and increases faster than the mean.

A much simpler method of deriving moments is by deriving
the whole sequence of probabilities of n=1, 2, 3 . . ., etc., in the
form of simple linear function. This is one of the few cases in
which the method is often easier done than said since we use a
transforming function which allows us to write the sequence of
probabilities both as a linear function and as an exponential
function. Such an expression is called a probability generating
function (PGF) and can be derived for each probability function.
For example, take a simple Poisson process in which the probabil-
ity that a variable, z, is of size n can be stated as:

—A
Pyr(z=n) ;%,
where A is the parameter of thig distribution. Then its PGF can
be stated as

14 8

Pr(z=n)+g",
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where s is an indicator variable. Substifuting the exponential
function into the PGF, and multiplying by ¢* +*¢ gives:

e_lz(,\s)“ L e et S{As)re~M
n! gria T ghe nl

. ¥ {Ag)rer . . . . s
Since T is the summation over an entire Poisson distri-

bution with parameter As, the summation equals 1, and .ur
PGF=¢*-8 Since the exponential form can be expanded into a
linear function with terms being the probabilities of #=0,1,2. ..

multiplied by 89, s, s2. . ., ete., -2-2 can be identified exactly with
Priz=0}s"+Pr{z=1)s'+Pr(x=2)s*. . ., ete.

Therefore, using
3(PGF)

55 =Pr{z=1)+2Pr{x=2)8

+3Pr{z=38)s*+ ...,

we can see that evaluating ﬂ%}ﬂ at s=1 gives us = nPr{z=n)
T
which is g,. We can also see that:
_ 82{PGF)
Var (’n) —T s=1
+  3(PGF) — P
83 s=1 »

and that Pr(z=0)=PGF |
s=0

While the derivations and uses of these functions will not be
detailed, only a few theorems are required to develop the uses of
the PGF for deriving probabilities of extinetion, expected duration
of processes before extinction or population growth explosion, efc.
More complicated processes in which several types of organisms
may be involved, such as age-dependent processes, genotypic
arrays, etc., require only slightly more advanced consideration but
can be useful in following forest processes (Namkoong and
Roberds 1974).

STOCHASTIC GENETIC PROCESSES*

By determining the propensities for population growth among
competing species or genotypes, or relative selective values, ete,,
and by considering that accidents of sampling oceur according to
some reasonable probability functions, we can examine the ex-

*Graduate-level statistical training required for thorough understanding.
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pected outcome of population behavior in terms of averages,
variances, or probabilifies of extinction and duration of processes.
The interest here is to derive a probability distribution of states of
gene frequencies in a population or of the frequency of a single
gene in several sampled populations. In addition to means and
variances, we may be interested in the existence of gene-frequency
stabilities for selection parameters, the absence of such stabilities,
and the rate of change and approach to end points.

Where we previously considered af to be small, but let \n be
of some size, let us now consider af to be small and the change
in gene frequency also to be small. In a general diffusion process
of this sort, we can consider that many loci may be varying in
gene frequency in a population and that only random variations
cause the frequency at a locus to vary, We can intuvitively expect
that most loci wili remain near their original frequencies, though
there are some small probabilities of rather distant drift, at least
in a limited period of time.

Consider that as an approximation to the gene frequency
process, a particle lies on a line and moves in small steps to the
left or right according to how it is independently and randomly
struck or otherwise moved from the right or left. If we let
»=Pr{one step right), and ¢=1—p=Pr {one step left}, the proba-
bility of being located 0, 1, 2. .. r steps to the left or right after
7 steps is:

Pr(r;n+l)=p-Prir—1;n)+qg Prir+1;n).
Since 7 is the net resuit of several presumably independent steps

to the right, say J, and the remaining n—7J steps to the left, then
the probability of being at » is distributed binomially:

Pri{r: n)= ( "';. )p’q‘"‘”.

Making the changes in small steps, and making A¢ also very
small but such that the step sizes {ax) remain such that {azx)?
approximates Af, while both diminish towavds zere in the limit,
the net motion is paz — ¢z, and the variance is

Az} g —ax) =t =dpg (sz) 2
Then after a time period, ¢, in which '_\if independent events occur,
4ngt(ar)*

Lt . .
the mean motion is At (p—gq) 2z with variance V3
Now allowing Az and Af to simuitaneously become small, but

Ax)? ..
such that %)—=D, and reparameterizing the mean change, we

can express p as a function of the mean change M ;




%
p=Yat (Vo) 2oz

M

o
=146+ (1/D)Cax
and g=14-—(1/D)Cazx

Then the mean is 2Ct, and the variance is 2D¢, since the probability

or letting C=

e s . . . t .,
distribution approximates normality for these =~ independent

trials, and for small Ar, p=~g==14. Now, the probability function
can be rewritten in terms of x steps and time as:

Priz; t+at)=pPr(z—ax; t} +¢Pr{z+Aax; t)

We can now expand the left side around at deviations and the
right side around Az deviations using the general Taylor's series
expansion:

S[f(yo)] 82 [F (w0 ] (ay)*®
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Then; Pr(x;t)+

+Q[Pr(3:; £) -+

=(p+q) Pri{z, i)+ (g—p)
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Therefore,

and dividing by At and Ietting both ax and At get small we can see:
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This is the general Fokker-Planck equation, or diffusion equation,
which Kimura {1957) applied to gene frequency drift by neting
that ¢ is proporticnal to the mean gene frequency change, M, and
D is proportional to the variance, V, and hence can be written as:

8Pr(=z,t) 8% [V -Prixt)]l 3 . p..
TR 5 s I:M Przx, t):l.

Wright (1940) derived these relationships in a slightly different
way, but also sought the solution for the functional form of
Pr(x,t) which satisfied the equation and at the same time repye-

5Pz, t) _
5

The solution for ¢ approaching infinity, Pr(z, «) is

C M
Bl —9 (M ,
peo] =2 [§ ae]

if the process can continue indefinitely. Thus, the expected dis-
tribution function for gene frequencies is dependent on average
gene-frequency changes, M, and on the expected variance of such
changes as may be induced by sampling variances.

We can derive the general behavior of the distribution fune-
tion over time for certain types of conditions. For example, if the
directional changes are small and the process starts at intermedi-

sented a stable condition where 0.

ate gene frequencies, then M=0 and Vzp—(é—ij—) and hence:
8Pr(p,t) 1 &#p(l—-p)Pript)]
52 4N, 5p?

This expression yields a bell-shaped distribution for Pr(p,t),
which is dependent on t and which slowly changes to a rectangular
distribution as the diffusion process makes all values of » equally
likely for large values of N.

= &32

This solution, however, does not account for the fact that the end
points of p=0 or 1 cannot ordinarily be escaped from. By adding
these conditions, Kimura (1957) showed that as the intermediate
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frequencies declined, the end points tended fo absorb a high pro-
portion of the distribution and the shape of distribution became
more bowl-like:

6

/
N y.
X—rvr"

Consider, for example, if M=0 and V=p—(%—N_ﬂ, then the solu-

tion for

_2N. o 2Ne
p(1—p) n{1—7p)

which takes the inverse form of p(1—p).

The solutions for the probability distribution function alse de-
pend on such factors as the initial starting point of the process
and any directional effects in moving the average change towards
an extreme or intermediate equilibrium and hence the process to
some steady state. An initial low frequency might intuitively be
expected to drift equally to the left and right but would tend
to become fixed at zero more often than at one. Hence, a skewed
distribution would be expected to develop for some period until all
genes were fixed at zero more offen than at one. Selection for the
low-frequency allele would be expected to move the mean to the
right and hence to develop a move symmetrical distribution for
some period until the genes were more equally fixed at both ends.
In this case, the tendency to drift rapidly to the left end points can
be somewhat diminished by selection, though the relative effec-
tiveness of drift versus selection will determine the ultimate
success of selection in achieving a desired gene fixation.

To study the balance of forces between directional selection and
diffusion drift, Kimura (1962) parameterized selection in a linear
or additive model of gene effects as:

Priz, )=~

3 N __i ! fa rF
(1+§)AA.(1 2)AA 1AA.

Then for M, the change is the expected ap value as before of

B (1-0) (=),
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and can be parameterized p(1—p)}s. The variance in the change
attributed to sampling variations in small populations is:

Then to determine the probability that the favored gene A will
ultimately be fixed, Kimura (1957) sclved for the density functions
and derived the relative probability of ultimately fixing A as:

Lo
_olsp(1-p)2N, ] d
se’“’ [ 2Nty |
? =ultimate probability of
! fixation (UPF)
S exp [ 25 p(1—p) | ap

o

_ 1— exp[4N.8pd]
or UPF= 1= exp] 4N.5]

where 7, is the initial-gene frequency.

Thus, the relationship between selection and the effective popu-
lation size which determines drift is an intimate, multiplicative
one in which large sizes of both N, and s are required for success-
ful selection. Note in this equation that if Ne¢=0, then UPF=xp,.
However, if Ns>0, then

UPF=94+2Nsp(1—p) +0|:(_%gﬁf pip—1) (Zp—l)]

MUTATION, MIGRATION, SELECTION, AND
STOCHASTIC VARIATIONS

Other effects can algo be studied from this diffusion point of
view such as mutation or migration having some influence on
M{Ap) in contrast to the deterministic models we previously de-
veloped. For example, if » was the mutation frequency of A—-A’
and y of A'—»A, then M{(Ap) =y(1—p)—up and with V{Ap) as
before,

M _ y__ & )
Ve (oot
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2N ¥y
. Ve o —4N, Y _ o #
and Pr(p, t)~p(1 mexp[ [(p = d

=p%h_r_”—m exp[ — 4N, [uin(1—p) +7£’wpl]

__2N,
p(1—p)

(1—p) ¥ eup*¥ey

(4Nep—1) 4Ny —1)
= 2N.(1-p)} D .

One peculiarity of this form of the equation is that if

AN p=1=4Ng, or p=y=yx-,
2N, and is no longer a function of p and therefore Pr(p, t) is
wniform for all ». Thus, if mutation rates are on the order of

then Pr(p, t) is proportional to

N or if migration rates are on the order of one migrant per
E

twice the N, then m=%, and all gene frequencies can be equally
likely. Therefore, such emigration rates are suflicient to hold
almost all allelic frequencies equally likely and therefore can
maintain polymorphisms in spite of tendencies to drift to fixation.

On the other hand, if N or p or m is large such that 4N >1,

then
fI(NE}P*) f2(Ner‘/)
Pr(p,t)=2N.(1-p) P

which is a function of »(1—p) which has a peak in the intermedi-
ate values of p. In fact, at very high values of N the solution for
Pr(p, t) is proportional to:
AN ~—1 4N p—1
Pr(p,t)~u[ln{(dNou—1)]p (1—p)
AN v—1 AN u—1
+y[in(4Ny—11p (1—p)

which is close to zero everywhere except at p= B

o which was
the deterministic solution we previously reached.

We can also see that if Ny is very small, that the solution
for Pr {p,t)=(1—p)~1 p! which is the reciprocal of the peaked
quadratic function and has a deep concavity in the intermediate
ranges of p:




306

Hence, if Ny or Nm is small, the random proeesses of drift fix the
loci at one or the other allele. If N, is low, drift occurs without
much effect of otherwise effective mutation, or migration.

The effects that limited population sizes jointly exercise on
geleetion and mutation-migration can also be examined in the
diffusion medel by hypothesizing that the mean change in gene
frequency

M(ap) =sp(1—p) —pp+v(l—p).

Using V(ap) as theﬂzlg—p)drift funetion, we obtain
M_ M v
-V——2Ng(s 1_p+p),

and' f%dp=2Nes+2Nep log (1—p)+2Na log (p),

4N sp dN—1 4N p—1
so that Prip, t)=2N,.¢ v (1—p) .

This function now shows that the selection and mutation-migration
independently have simple product-like effects on the probability
distribution where a large s can push the distribution to the right-
hand state as long as N is large enough and the effects of mutation
or migration in inereasing the aliernate allele are not high. Con-
sider, for example, that N, is large but that both x and v are small
so that 4N p=4Na=1. Then Pr(p, t) ~2N."*” which is an in-
ereasing function of p and hence tends to decrease the probability
of having low gene frequencies and inereases the probability of
high frequencies:

It also indicates that, if s is on the order of -4%,-, even at low

initial p, the population can keep the favored allele, On the other
hand, if 4N .s is very low such that e—4¥¢,==1, then Pr(p, ) can be
largely determined by the balance hetween drifi and the effects
of mutation-migration. Then, introduction of new alleles through
mutation-migration, even at a low frequency will maintain genetic
variability. Thus, if migration may exist, very strong isolating
mechanisms are required if populations are to diverge in the kinds
of alleles carried. On the other hand, alleles can be lost under
these conditions if breeding populations are developed with either
low N, or low s,

A question of great significance to our understanding of evolu-
tionary mechanisms in tree populations is whether small popu-
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lations have evolved and display divergent allelic frequencies or
selection and migration among breeding units has been under
uniform selection and homogenizing.

MIGRATION, INBREEDING, AND
STOCHASTIC VARIATIONS

Since even small migration rates can affect the existence and
stability of intermediate gene frequencies, we should consider the
effects of migration in terms of its homogenizing effect on the
population, It is conceivable, for example, that occasional pollen.
migrations may be enough to keep even relatively isolated yellow-
poplar stands from diverging. Thus, if small interbreeding units
exist, the divergencies in gene frequency which may otherwise
exist may be nullified by even rare migrants. In subdivided popu-
lations with an overall average gene frequency of p, the variance
among suci samples, Var(yp), due to subdivision is Var(p)=
Fp{1-p) according to Wahlund’s principle as described earlier
in this chapter. However, the variance arrong unit means due to
limitations on random mating within units, for a unit with fre-
quency p; and the sampling variance of

@ 2=?—’i(1_’pt)
i 2N;
Averaged over all units (say k% of them),
p 2:1\' ’.Di(]-_'p)
Mo kT 2Ny
If all N, were equal,
110 S 0
=3 ToNE
Since the frequency of heterozygotes with the random-mating

units is 2p;(1—9), over the whole population the heterozygote

avm. (1 =D,
frequency wounld be M, which must also satisfy

2p(1—p) (1—F). Therefore, we can write

Lo B (1=P) (1=F)

g 2N
We can now determine the relationship of F to migration rate, m,
by defining F as the probability of identity by descent which

increases by —2% each generation in a closed population. The re-

12
maining i‘%}\?— portion of the population presumably does not

increage F, and hence

_ 1 feN-1y,
F‘W*("z‘x_)r'
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However, F can increase only among matings of nonmigrants, and
at equilibrium

P A ()

(1—m)?
2N—(2N-1) (1-m)®

Substituting this value into «,,2 yields:

or F=

e PA=p) (1-m)? =
Tpy _'2N__(2N___1) (I=m)* p(1—p)/ [ANm+1],

for small values of m. Projecting the process from the diffusion
equation approach gives the same approximate results for this
muodel in which each subpopulation is considered to have an in-
tarnal free, intermating system of size N, and a large external
pool of the general species which feeds in migrants which carry
the general species average of the gene frequency. The intimate
relationship between population size and migration rates again
indicates that small migration rates can have some effect in main-
taining intermediate gene frequencies if N is large enough, but
small N can permit fixations of any alleles though large sampling
variations would exist in which alleles are fixed, A major problem
exists in biology in general and in forestry in particular, however,
in estimating both N and m, and hence in determining the effec-
tiveness of migration in preventing genetic loci from becoming
fixed, Pollen and seed dispersal studies, such as carried on by
Sarvas (1963) and summarized by Wright (1962), are required
but alone cannot satisfy the need for independent estimates of
N and m. Furthermore, the effective flow rates on equilibria
achieved are inevitably the resultant function of migration, bal-
anced selections, population size, and mutation.

If the problem can be simplified to isolate just the N and m
factors, however, we can begin to understand the effect of migra-
tions on population evolution. Since the migration model used is
clearly a very simple one, more realistically complicated models
have also been developed to extend the projections of the relation-
ship of migration to gene frequency distributions. An extension of
the previously developed concept of population islands imbedded
in a sea of the general average population is that each subpopula-
tion is partially isolated but can share migrants with immediately
adjacent neighbors to its left and right at one rate, m, and with
the general population at another rate, m.. This model is called a
steppingstone model by Kimura and Weiss (1964), who showed
that the differeniiation among populations expressed as o is
approximately

=p(1—-p)/ [1+4Nm, (1—-)],

where » is a correlativn factor of frequencies among adjacent
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subpopulations and is a function of migrations such that it is

approximately proportional to exp[—~/2m../ m,]. Increases in
m. at the expense of m, would decrease » and make o, close to the
island model selution. If m, is larger relative to m., however, 7
increases and ¢,? increases. If the population is dispersed into
subunits such that migratory exchange can occur in two di-
mensions, the r factor is proportional to exp[ —in/dm.. /. / VK],
where & is a function of step distance between subpepulations. In
such a case, the » increases more rapidly for any incereases in m,
relative to m,, and hence, for the same amount of migration but
split into more adjacent sources, the differentiation among popu-
lation increases. For this two-dimensional dispersal case, Kimura
and Maruyama (1971) have shown that only if Nm is less than
one can pepulation differentiation be expected. This is a slightly
looser condition than previously suggested for the island model of
populations. If Nw>4 the steppingstone model leads to a result
very close to panmixia. More complicated cases and more com-
plete analyses are devived by Weiss and Kimura (1963) which
tend o show the same results.

NEIGHBORHOOD INBREEDING MODELS*

An alternate model of population dispersion and the effects of
migration on maintaining genetic correlations among units is one
in which the larger population is not actually physically dis-
continuous. Rather, the isolation may only he affected by higlher
ot lower probahilities of neighbors heing related than more dis-
tantly located trees. An effective isolation by distance may then
exist, causing some tendency for more distantly dispersed trees to
have drifted te different gene frequencies. The problem addressed
by Wright (1940, 1943, 1949, 1951) was one of defining an effec-
tive population size, N, useful for computing an expected variance
of gene frequencies, "(p), among random neighborhoods of a
larger continuous population. Since N, is a function of the in-
breeding coeflicient, ¥, and the determination of F can be stated
in terms of the probability of common parentage, we can
eventually cdetermine N, as a function of the probability that a
tree’s parents are close enough to have been related. Assuming
that the one-generation change in inbreeding occurs by the union
of gametfes frem the same individual, and assuming that parents
disperse offspring according to a normal distribution, the prob-
ability that an individual is inbred can be computed, If a uniform
density of d trees per unit area exists and offspring dispersal
follows a bivariate normal distribution with each direction having
variance ¢°, then N, can he derived to be N.=.1z¢2d as follows.

Let the distance of a parent to an offspring he distributed with
a proebabhility function of

*Graduate-level statistical training required for thorough understanding,
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W= 1 ex —xﬁ
J{_a\/é;b P D42

and also let the potential number of parents in an area, n, be a
function of the dispersal variance. In particular, let n~4qs or a
square of 2¢ on a side. Then with = parents, in a density of

n .
d-——&—q, each parent occupies an area of
i

a 1
NN +—n xg'l'%
(4% ol ' . . -
= dxdxs in two dimensions.

Then the probability that a gamete at a spot eomes from a particu-

Yr

d
. Then summing this for all parents gives us the probability

lay ith parent is
U
dz
of uniting gametes being identical by deseent or

r + = o+ z
42 1 n - 1
— y;"dI]_de: —_
T N

H o
Fo——
T

and the probability of two such events is

w14

1 _
Vo=
S
Since n=4dde®, N,=4=do*. Since a circle of radius 2v/de? has this
area, N, is equivalent to the number of trees within a ecirele
radius 2v/de®. If only one sex disperses its gametes, N, =2xdo?,
and N, is equivalent to the number of trees within a eircle of
radius 1/2ds* For trees distributed along one dimension as on a
river bank, N,=+/dzed® (or /2z0d? for single sex gametic dis-
persal} and hence is even smaller and generates a greater variance
in gene frequency. Other formulations, such as given by Malécot
(1969), give slightly different parameterizations but provide simi-
lar proportionate effects of density and dispersal distances.

This model is also clearly a crude approximation of actual dis-
persal patterns, as Wright (1962} has noted for pollen and seed
dispersal patterns in many trees, hut Wright (1969) indicates
that relatively little divergencies would result from using the
exponential functions of Bateman (1947). A principal result of
use in investigating these models for forest trees, in which migra-
tion rates are determined by ¢ and ¢, is that if da®>16 then little
differentiation will oceur in two dimensionally dispersed popula-
tions.

GEOGRAPHIC VARIATION IN FOREST TREES

In forest trees, various investigations indicate that while ex-
tremely long-distance pollen and seed migrations have been re-
corded and may be responsible for new colonizations, most indicate
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that established forests do not disperse gametes very widely.
Wright's (1962) summarization of dispersion studies generally
indicates a very strong exponential decay for pollen dispersal re-
gardiess of pollen size, structure, vector, or wind velocity and
hence that pollen flights are similar for trees as for even herbs
and shrubs. Seed dispersal in pines is also restricted and strongly
exponential in its decay rate (Pomeroy and Koerstian 1949),
{Boyer 1966). Wang and others {1960) also suggested that migra-
tion may be very low in established populations. Hence, migration
may not be more effective than mutation in affecting gene-
frequency variations,

However, populations of most subclimax species are not regu-
larly distributed over time or space, and large variations occur in
dispersal behavior. We can expect that neighbors do share gametes
more often then distant trees or stands but that long-distance
migrations are not rare (Sarvas 1967; Lanner 1966). There is
some evidence to suggest that pollen flight characteristies are not
the same at ground level as at upper-crown levels of established
stands where the female fliowers are often borne on wind-pollinated
species. Air turbulences which lift the pollen inte this area can
also effectively carry pollen for many miles (Buell 1947; Boyer
1966}, causing a more diffuse gametic dispersal than might be
expected from ground-level studies., While some loss of viability
should be expected {(Sluder 1970), larger neighborhood sizes
should still be expected.

The direct evidence on actual gene migrations for any iree
species is meager. The possibilities of very restricted as well as
widely dispersed panmixia exist for many tree species without
clear data on the effective migration rates or population sizes. It is
clear that some natural inbreeding can occur in pine stands
(Squiliace and Kraus 1963), and by fracing a mutant spruce al-
lele, Langner (1953) indicated very restricted effective migration.
Siuder’s {1970) literature survey indicated that major migration
effects were most often limited to seed dispersal—often by animal
vectors but also by wind and water movements for those species
s0 adapted. The evidence on stand-fo-stand variations does not
clearly support one hypothesis or the other. Most species disptay
some stand-to-stand genetic differences, but most such differences
only become clear over large distances and on ecologically distinct
areas, and then the confounding effects of selection obscure the
testability of migration hypotheses. Nevertheless, genetic differ-
ences within apparently contiguous stands have been shown to
exist in isozyme differences by Conkle {1971), by Sakai (1971)
and Sakal and others {1971}, while population migration and dif-
ferentiation paths have also been analyzed by tracing isozyme dif-
ferences over widely separated stands of Abies {Matsuura and
Sakai 1972). An exception may be Populus delioides in the Mis-
sissippi Valley where stand differences over a wide geographic
region are very small, This condition may indicate the strength of
river migrations of seed.
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A species in which isolation might be expected to have resulted
in strongly divergent populations is yellow-poplar, which is often
insect pollinated, possesses low stand densities among physically
isolated stands, and displays no effective seed migration mecha-
nisms. For the relatively lightly or currently unselected traits of
leaf shape, Kellison (1970) found that the stand-to-stand variation
within geographic regions, .2, was about the same as the family
variance among trees within stands, ¢ In contrast, the more
selectively critical trait of early height growth had a much smaller
g,? relative to its o2, indicating that selection may be effective in
making stands genetically more uniform for some traits but that
a relatively low N, without selection can cause gene frequency
divergences.

In more widely and uniformly dispersed loblelly pine, old-field
stands tend to display larger N, and lower inbreeding among open-
pollinafed families (Franklin 1968). While gametic unions often
cceur among related trees and even self-pollinations occur, the
inbreds are highly susceptible to zygotic mortality before the seeds
mature and through the first post-germination year. Thus, in-
breeding is largely eliminated in the next generation. The effective
gametic unions are then more likely to be from more distant
migrants than what a poilen survey would indicate. There is, in
fact, considerable evidence that inbreeding is genetically con-
trellable itself and that outerossing as well as isolation can have
some selective advantages and can be selectively changed in popu-
lations (Levin and Kerster 1967, 1969, 1971).

Selection, therefore, considerably influences the expression of
both the dispersive effects of inbreeding in small populations and
the homogenizing effects of migration. This influence is perhaps
most obvicus with respect to migrations across species reproduc-
tive bartiers or the sequences of development and destruetion of
reproductive barriers among partial isolates. Since fitness is only
secondarily associated with reproductive barriers, population re-
sponse to the relative advantages of isolation versus panmixia are
often slow. Many of the hard pines of the Southeastern United
States display a great ambiguity with respect to the status of
species barriers, While the species concept is generally held to be
valid, hybridization is so commonly observed that the barriers
must be quite weak, However, introgression is rare among species
and appears to be responsive to the vagaries of the selective ad-
vantages of hybrid phenotypes. In the Sonderegger pine hybrids,
the parental species generally maintained themselves as distinct
species; but during periods of great environmental disturbances
in certain areas, hybrids and introgressants were very commeon.
Upen restoration of 2 more normal environment, however, the
newer generations were composed of no new hybrids and gave
only weak evidence of any effective or long-lasting introgressive
effects (Namkoong 1966¢).

As a disruptive force, selection, on the other hand, might over-
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come any homogenizing effects of migration. Haldane (1948) and
Fisher {1950) have suggested that one effect may be that if thare
is a sharp reversal in selective advantage of alternate alleles, mi-
gration would tend to produce a gradual clinal shift over the seg-
ment of the population which surrounds the area of selective dif-
ferences. A similar theoretical result was obtained by Hanson
{1966) who investigated an island population within which the
selective advantage was opposite to that in the general population
surrounding it. In such islands, a minimal population radius of
Go Lo 7o is required to avoid being completely swamped by migrants
from the general population.

Clines can be generated by selection in which an environmental
series creates a series of populations with gradual changes in the
optimum gene frequency, In such cases, migration may tend to
homegenize the population, Alternatively, as Endler (1873) sug-
gests, migration could bhe irrelevant to the attainment of a stable
equilibrium series of the sequence of eptimum selection gene
frequencies even at high migration rates among adjacent popula-
tions. It is therefore far from clear in any specific case of clinal
variations, what balaneing of mechanisms between selection, mi-
gration, and drift these resultant clines may represent {Stern
1964). The existence of clines among serial tree populations can
hardly be doubted as a general phenomenen {Langlet 1963; Sar-
vas 1970; Fryer and Ledig 1972), but its causes remain obscure
in forestry. Measurement of presumed selectively different fraits
among adjacent populations along and across environmental gra-
dients is a most useful approach to the problem of the relative
effectiveness of selection versus migration {Hamrick and Libby
1972). However, we may not be ohserving stable population con-
figurations in forest trees, and hence must consider that forest
population strategies may require a slower, or less than immedi-
ate, response to selection pressures in unstable environments. It,
therefore, remains an open qguestion as to whether local popula-
tions possess even currvently optimum gene frequencies (Nam-
koong 1969).

Thus, variation patterns among populations are the response
of those populztions to mutation and drift as confounded by vari-
ations in selection pressures over time and space and by migration
patterns, all of which are further confounded by genetic changes
in capacity to respond to mutagens, selection pressure, migration
rates, and fluctuations in those effects. Therefore, the very simple
concepts of static forest tree populations, in which some form of
a balancing, optimal selection maintains optimal populations, are
often likely to be excessively naive. While steady states may exist
such that large changes in gena frequencies may nof occur, such
steady states are move likely fo vesult from at least migration and
drift forces in addition te selection, rather than from balancing
selection alone. Seleetion for varving environments may itseif
have led to stable equilibria in gene frequencies, but migration and
drift can significantly inhibit responses of perennial organisms to
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local selection pressures (Antonovies 1968h).

We have investigated the models which have been developed for
projecting the effects of the genetic factors influencing population
evolution first as simple, independent effects. More extensive
models of some effects such as multiple-locus selection and various
migration patterns in themselves indicate that qualitatively dif-
ferent results may apply to population projections than would be
indicated from simple effects alene. Thus, the existence of multiple-
loci and varying environments lead to projected equilibria unex-
pected from single-locus or single-environment projections. The
joint effects of selection, mutation, and migration were the simple
resultant of their independent effects if it was assumed that no
feedback mechanisms exist to modify mutation or migration rates
as secondary selection effects, The dispersive effects of drift in
populations of small size may be quite strong in some tree species
and greatly complicate the effects of selection on gene frequency
patterns, The general result of our considerations was that the
combined effect of N, and s, », or m had to be such that the product
exceeded one for the deterministic effects to he significant. How-
ever, this result alse required the assumption that the effects were
constant and no feedback mechanisms existed such that the ef-
fects might change in response to indirvect selection or to N, itself.
Thus, the independent effects were themselves quite complicated
phenomena to which our first approximate models barely do jus-
tice, For joint effects, we often use very simple models which are
known to be excessively naive and to require unrealistic assump-
tions on the independence of effects. Nevertheless, we have been
able to develop models and test some hypolheses about them which
rationalize our hiological concepts and provide testable hypotheses.

Understanding the evolution of tree populations requires study
of means, variances, and entire distributions of traits and genes
as well as the distributiens of the forces affecting them. The
variations that have evolved and the genetic control of responses
to variations determine the capacity of populatiens to vespond to
future variations in the genetic and external eavironments. The
patterns of variation now present have been determined by the
past factors which are rarely separable for convenient testing to
determine the relative strengths of say selection versus migration
in molding ciinal variations. Nevertheless, the relative strengths
of the independent forces acting on populations is an impertant
first step tc determine the causes of any steady or variable states,
and hence the possible stabilities of those states with respect to
variations in selection, migration rates, etc. Eventually, a more
complete systems analysis will have to be made to account for sec-
ondary selective effects on mutation and migration rates as well as
modifications of gene action to affect selection response itself. In
addition, there is still considerable debate not only on the patterns
of variation that may exist but on the presence of large amounts
of genetic variation in all populations currently being studied for
their isozyme gene frequencies. Regardless of what mixfure of
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factors may be responsible for the presence of those genetic vari-
ations, there seems little doubt that a considerable portion of the
genes in a genome has a meaningful frequency of variants. Much
of this variation may be among alleles which offer no selective dif-
ferences. A few loci of detrimental mutants may be held in bal-
ance between selection and mutation rate as suggested by Kimura
and Ohta (1971) or among alleles which at some time may have
been advantageous to have been held in stable polymorphic sys-
tems, but which now exist without elimination {Robertson 1970).
Which of these systems might explain the high rates of lethal
equivalents in Douglas-fir (Sorcnson 1969)? In addition, how
many alleles are maintained in intermediate frequency by varying
envivonments (Levins 1968), or by a combination of a few over-
dominant loci and high epistacy (Franklin and Lewontin 1870),
or by frequency dependent selection (Kejima and Tobari 1968} 7
The stability and utility of those variations remains a critical
question for those concerned with utilizing the system as avolved
to respond o future variations of the environment and of possi-
ble breeding systems,




CHAPTER 10
THE VIEW AHEAD FOR
FOREST GENETICS

At this time, foresters have the unique opportunity of initiating
scientific breeding »f forest tree species with relatively unman-
aged gene pools. This does not mean that the gene pools have not
been evolving to meet new evolutionary demands. They have been
and will continue to do so. The quantification of natural and
human-directed effects on the genetic composition and dynamics
of the forests thus requires both description and model develop-
ment. An understanding of natural evolutionary systems provides
the basic data and model of a functioning genetic system. Such
understanding is required for developi g directed breeding systems
and also helps provide a respect for the beauty and complexity
with which the natural world operates. While the econoric value
of scientific breeding cannot be strongly doubted, the greater task
is to build a more complete understanding of forest tree genetics
so that better models and breeding methods ecan be devised.

Evolutionary genetics has provided the breeder with guidelines
on how his natural populational source of materials may have
evolved into partially segregated subpopulations and hence on how
the structure of his breeding populations may be modified to
maintain or to hybridize among any existing stand differences.
A study of the evolution of his natural populations may also
indicate how the genetic control of traits may change over the
life cycle of individual trees or among environments, Thus, the
bioengineeving of the breeding populations may be a feasible
alternative,

In addition, by understanding the evolution of forest systems,
the forest geneticist can contribute to our general understanding
of the variety of ways our general living systems have evolved.
Indeed, the forest geneticist is obliged to expand our awareness
of and appreciation for the integrated living systems within which
we move. In particular, the evolution of nonequilibrium com-
munities with pioneer species, including overlapping and unstable
age classes, whieh grow in semi-isolated pockets of variable size
and duralion, characterizes common ecosystems of many forests
and is a rich source of diverse life styles available for study,

In the past, as reviewed in this bock, many difficult problems
have been faced by a large number of scientists, and their first
approximations have often been found to be most useful. Foresters
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have primarily concerned themselves with ecological control and
effects, and only in the last 20 years have they begun to extensively
attack the underlying genetic system. Part of their efforts have
been directed to understanding and paramelerizing environmental
variations and the inferactions between sites and genes. The par-
ticularly difficult problems of understanding the nature of geno-
type X environment relationships and choosing the best genolypes
for a given variety of environments have been at least partially
solved by present methods. The main problem of determining the
size of the interactions may not require sophisticated testing, but
determining the form of the response to sampled sefs of environ-
mental variations requires a high degree of skill in design and
analysis. The additional problem of determining whether all indi-
viduals in a breeding population should exhibit homeostasis or
if a mixed populational homeostasis should be sought alsc requires
a high degree of genetic sophistication.

The choice of a breeding system is dependent on the genetic
knowledge of the breeder and the kinds of genetic variations
which he can use. A vast array of opportunities to further in-
crease gain is available to the breeder who may choose to use
breeding methods capable of utilizing any dominance and epistatic
types of gene action which may be present. Various kinds of pure
breeding or hybrid breeding syvstems may be appropriate, and
the separation of the breeding population from the seed-
production orchard further expands the operating options of the
breeder to create maximum long- and short-run gains. His knowl-
edge of theoretical quantitative genetics alsc provides guidelines
on how he may compromise hetween selection intensity and breed
population size. It also suggests methods of subdividing popula-
tions to achieve greater flexibility in long-term breeding programs.

With all of these means by which the trained quantitative
geneticist can affect breeding practices, he is very likely to achieve
greater gains than a person who relies on uninformed intuition.
However, recognifion of the great value that genetic analyses and
the subsequent synthesis of breeding programs may have does not
imply that many problems do not remain before breeders can be
fully effective. Some problems are difficult to solve because we
lack experience with forest trees, and although a general theory
may be available, forestry data may be lacking. Other problems
are particularly difficul because the basic theory is inadequate
to meet our needs. For example, optimal breeding programs must
account for interactions between trees and other organisms, which
themselves are affected by the breeding system. If competitive
effects among genotypes are important, as described by Sakali’s
{1955) distinguished series of studies, then genetic systems, such
as deseribed in a series of studies by Huhn (1970¢) or by Griffing
{1987), will have to be extended and applied to tree breeding
programs. If breeding affects insect or disease pathogen popula-
tions, then we will have to modify the breeding program to
achieve gain while the pathogen evolves in some minimally harm-
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ful directions. Other problems which will require theoretical de-
velopments include the nature of provenance differences and their
use in breeding programs. Problems for which a theoretical foun-
dation may be adequate, but where experience with trees is
lacking, include long-term selection studies in which inbreeding
can adversely affect selection response. Both theoretical and prac-
tical problems of great complexity remain for tree breeders much
as they do for animal breeders (Barker 1967).

In spite of these major problems in achieving maximal gaing,
the remarkable success of modern breeders lies in the application
of genetic principles to the studied and bred organisms. The very
simple models of gene action used have thus led to substantial
improvements through selection and breeding of genotypic com-
positions. More accurate and precise testing methods and wiser
choices of traits and materials for breeding have vastly increased
breeding efficiency. Perhaps the most significant contribution of
quantitative genetic theory to tree breeding has been the adoption
of simple gene models. By applying known principles of gene
action, some predictive power has been achieved for a variety of
breeding precedures. The advance from no genetic model to simple
models has thus fostered considerable economie gains, However,
as old revolutionaries tend to become the new conservatives, new
models tend to generate their own orthodoxies and impese their
own limits on concepts of how breeders may control future popu-
lations. In somewhat oversimplied terms, it may be argued that
the principal effect of quantitative genetics has been to apply a
linear model of gene effects to many genetic loci, As a result,
breeding theory is largely the adaptation of linear statistical
models to crossing and breeding experiments. The fact that the
simple models are not truly adequate may be well recognized, but
our thinking remains limited to approaches available with linear
maodels,

The simple models were never intended to include such compli-
cating effects as nonindependence among alleles and among loci.
However, since linkage groups do exist and inbreeding does occur,
the genetic models are not inclusive of these possibly significant
effects and may not be an adequate basis for predicting selection
effects. The smaller the effective population size and the fewer
genes of large effect there ave, the greater will be the discrep-
ancies. While some theoretical studies have heen conducted {for
example, Gill 1965h; Latter 1966), our thinking is largely re-
stricted to how well the simple models behave under noninde-
pendence conditions, and little has been successfully done to
develop more adequate models for selection. The major effects
of epistasis are similarly inadequately modeled, and except for
computer simulation studies on multiplicative gene-action models
(Frankiin and Lewontin 1970), the combined effects of epistasis,
linkage, and small effective population sizes under selection have
not been adequately studied, Thus, any realistic mixture of effects
with varying gene frequencies are poorly modeled. Studies of
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changes in selection intensity, especially of the kind that switches
from positive to negative over periods of time greater than one
generation, and under competition or other frequency-dependent
effects, have only been studied under the simplest genetic models
but can obviously be of major importance to breeding theory.
Also, as gene frequencies change under the influences of selection,
correlated changes oceur in the genetic variances (Rawlings
1970). They can also be expected to occur in the effects of the
genes themselves, because the entire genetic background of the
individuals in the breeding populations is changing.

It thus seems clear that we should at least determine the ade-
quacy of the presently used models rather than to assume their
restrictive definitions. For example, instead of defining deminance
effects as deviations from the linear, additive effects, we might
construct models where dominance and epistatic second-crder
effects are defined first. Then, fitting alternate models may indi-
cate the adequacy of one or the other model, and means and vari-
ances defined according to the most appropriate mode. Selection
effects may then be more easily modeled if second-order effects are
important. Thus, we need not rely entirely on linear models if
others fit better, and we could begin to develop models of quanti-
tative gene action which are less restricted than our simpler ones.

The use of linear economic models in forestry is obviously a
serious limitation. Yet, breeding theories on several traits requirve
not only linear economic models but also independence of value
among traits. Clearly, nonlinear and dependent models of value
must be developed and used for truly adequate evaluation.

Similarly, the problems of predicting selection effects or model-
ing the evolution of gene systems need not be restricted to such
assumptions as the constancy of gene effects or other parameters
of selection, migration, ete. These parameters do vary, sometimes
randomly and sometimes in correlated patterns. Thus, the dif-
fusion theoretic basis for selection under small population sizes,
as developed by Kimura (1964}, may well be expanded to include
nonrandom parameter variations of certain forms and could en-
compass the variations suggested by Levins (1968). The theoretic
basis for selection and breeding theory is thus likely to expand to
include variations in selection pressure, population size and in-
breeding, and migration or gene-pool exchange rates. The control
of such variations in multiple, small population replicates may be
achievable,

One type of change which hreeders may anticipate is in the
form of the physical and economic environments within which
the future commercial breeds must operate. Since variations of
uncertain form and extent must be anticipated, the problem for
breeders is to determine noi only how their breed populations
change if selection parameters change, but more importantly,
what kind of breed populations should they consfruct to yield
maximum value in an uncertain future. Thus, new concepts of
optimum population forms are required which will include vari-
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ance control and higher moment specifications, in addition to cur
present concern with mean values and maximization prineiples
only. Newer techniques of mathematical programming will likely
be used fo define optimum selections under conditions of both eco-
nomic and envivonmental uncertainty (Namkoong 1970b).

While free breeding itself is explosively advancing, and many
problems require solution, the present state of the theoretical art
can be described as having reached a plateau of development.
We have used linear models with tremendous success in advancing
both our concepts of breed control and development as well as in
vastly increasing operating efficiencies, There remain many prob-
lems in which linear models of independent gene actions can
still be applied for guidance in optimizing breeding practices.
However, forest geneticists cannot afford to assume that the
present models adeguately define all important kinds of genetie
variations. Hence, geneticists should not be limited in their con-
cepts to the restrictions and limifations of linear models. The
biological questions of how breeds actually deveiop and of how
genes actually interact to give responses to selection have not
been solved by the application of linear statistical models to
breeding thecry. The models used have provided a basis for
testing certain hypotheses on the existence of forms of genetic
variances and the efficiency of breeding. The next step in the de-
velopment of a better theory is to conduct experiments on the
adequacy of the models and to propose more inclusive or more
accurate models, Then the scientific process from forming a
model to testing the model, to observation and proposal of better
models can proceed,

At this time, the overriding need in quantiative genetics of
forestry is for biologists and breeders to use and understand the
simple models, to test their adequacy, and to propose models
which more closely fit the biological facts. We require tests of
how inbreeding affects response to selection when both inbreeding
depression and small population sizes have some effect. For gene
actions in populations with hybrid-crossing systems, we require
tests on the nature of any heterotic responses. For long-term
selection programs, we require experiments on the changes de-
veloped in the variances and in the gene effects themselves. The
nature of environmental interactions and age changes still requires
far better definition than now available, and the optimal use of
environmental and economic variations by breed populations re-
quires more imaginative solutions than those developed thus far.
Therefore, the role of quantitative genetics in the future is to
apply quantitative analyses to more inclusive and more accurate
genetic models, as suggested by experimental testing and the fer-
tile minds of foresters.
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