

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

MICROCOPY RESOLUTION TEST CHART
NRTIONAL BUREAll OF STANDARDS-;96:A

MICROCOPY RESOLUTION TEST CHART FIATIONBL BLIREGU OF STAMOAROSN $196 \mathrm{~J}=4$

YIELDS OF SECOND-GROWTH SPRUCE AND FIR IN THE NORTHEAST

By Walmer H. Muyer
Associale Silvicullurist, formerly al Vortheastern Forest Experiment Station, Forest Service
contents

Page			Page
Red spruce tables and their applica	5	Material sod tecmic emptoyed in yield study-	
Age of stand...-.....-----.......	5	Distribution of plots.	36
Site index	5	Alot mancurnmerts.....ili---	38
Degree of stock	7	Alowanco or abmormbltes due to dam-	38
Tables for total stand; all treas above 6.6inct diambet breast high	9	Method of comstruction of tables and charts, and teeir limitations.	8
Tables for trees in and above the 4 -incia diametor class.	13	Statistical analysis of results. \qquad Detersining the period of development	
Trables for trees in and above the 7 -igeh	17	from ground to brenst beight.....-.-.-.	40
Tables for dominants and	19	Bibliography	0
Increments and totations	20	Growth and yeeids of spruce and balsam	
Stand tabls	22	A polication of yided tebies	50
Voiume table	24	Descrition of the region	1
Yiolds of mired stands.	30	Other mistehanoms referenice	52

INTRODUCTION

The phenomenal growth of the pulp and paper industry in the northeastern United States has had many important consequences, among which not the least is a necessity for focusing attention upon adequate supplies of raw materials, upon which the welfare of the industry must be based. According to a late authentic report (36)' the New England States and New York account for 47 per cent of the total pulpwood consumption of the country. According to the same figures the Northeastern States manufacture 53 per cent of the total quantity of wood pulp and 41 per cent of the total quantity of paper. Under these circumstances the effert upon local supplies of raw materials is not surprising. The industry is consuming far more pulpwood than it can harvest in the Northeast, and the quantity of pulpwood being harvested annually in this region already exceeds by a wide margin the estimated growth. Yirgin timber is rapidiy disappearing. Mills are taking more and more of the new timber coming in on the cut-over lands, and the need is already felt to have available correct information regarding the possible yields of this second-growth timber.

[^0]The interest in second-growth yields is especially keen because of the fact that the tree species desired at the present time for pulping processes are very few. Milis manufacturing pulp by the mechanical and sulphite processes are by far the most common in this region, and the limitations of these processes serve further to restrict the desirnble species.

The pulpwood in the Northeastern States most desired is red spruce (Picea rubra). Next in importance is balsam fir (Albies balsamea), and third in importance is white spruce (P. glauca). A fourth species of less importance is black spruce (P. mariana).

Studies of the growth and yields of red and white spruce and balsam fir are nonexistent, with the exception of one set of red spruce yichl tables (15) prepared by L. S. Murphy. ${ }^{2}$ Those tables are based upon 51 sample plots and are applicable to pure second-growth stands on old fields and pastures.

The presentistudy includes Murphy's 51 plots, mensurements of 7 permanent sample plots at Corbin Park, N. H., and the records of some 350 additional temporary sample plots scattered throughout Maine, New Hampshire, and Vermont. (Fig. 1.) Very few plots were taken in New York State, because of the lack of fully stocked second-growth red spruce stands.

Of the entire 400 plots the data from 201 were finally chosen as the basis for the red spruce tables presented here. The first plots to be climinated were those having only moderate proportions of red spruce. Others were rejected because of abnormal basal areas, that is to say, total basal area exceeding or underrunaing the limits set for variation from type values. These piots discarded because of abnormal basal area contributed later, however, to a study of the effect of density of stocking.

The character and composition of these sample plots were found to change in a very interesting manner with changes in region. In southeustern Maine, along the coast, a mixture of balsam fir, white spruce, and red spruce is prevalent. Small pure patches of any of the three species can be expected in many places. On second-growth areas throughout all Maine a mixed stand seems to be characteristic, the percentages of the component species varying greatly even on small areas. The same sort of mixed stand is found in New Hampshire north and east of the White Mountains; but south and west of the main White Mountain range white spruce is almost entirely lacking from the mixture. Even balsam fir is not as important here as it is to the north and east. Pure second-growth red spruce stands occur commonly in this region and in Vermont, but rarely in a fully stocked condition below 1,600 feet elevation.

In all portions of the region, the fully stocked, even-aged stands, pure or mixed, are most commonly foynd on old pastures and old fields and occasionally on old burns, cuttings, and blow downs. The reversion of lands formeris used chiefly for grazing is an interesting study, especially when one finds so often that a fence line may be the division between two distinct forest types, such as a pure hardwood stand and a pure spruce stand. Both portions may have been originally cut clean and grazed, but where the spruce type is, grazing evidently continued for a longer period. The underlying

[^1]reasons for subsequent development into coniferous or hardwood stands are for the present only a matter of conjecture.
The quantity of white spruce in sccond-growth stands in most portions of Maine is also interesting. Although the original forests contained a great deal more red spruce than white spruce, the secondgrowth stands, especiafly on old pastures and ficlds, show a contrary tendency.
In gatherirg the data for this study, pure, fully stocked, even-aged stands were selected, both because this is the form in which many

FIavre i.-Loations of temporary snmple plots in the sproce-fir yiold study, ach spot representing a locality where ono or more plots were takea
second-growth stands occur, and because these fend themselves most. readily to the study of growth and yields. Mistures of several species, varinbility of stocking, and age ndd complexities which are often difficult to solve. it certain freedom of sclection must be maintained in the preliminary field work, since at that time the ideal composition and stocking can not be accurately estimated. Onc
grade of stocking may lead to highest total cubic-foot volume, another to highest total board-foot volume, and still another to highest volume of best-quality lumber. In collecting the data it is necessary to make due allowance for this by some liberality in the determination of what constitutes good stocking. Yield tables made up from data collected in this manuer are lnown as normal-yield tables, since they indicate pields that at least approximate the normal, or those which may be expected of well-stocked stands. It is of course recognized that normal yields can not be realized over any large areas; they are more or less the ideal which stands will approach under good care or uniformly favorable natural conditions.

Some foresters insist that yield tables should be "empirical," or representative of the average conditions. However, average conditions for one area are not the same as average conditions for another. Consequently, an empirical table that is to be used in different places must be adjusted to these different conditions by proper converting factors if it is to be sufficiently accurate. Since converting factors are needed in any event, it is assumed that they may be more casily and accurately employed as between the normal and the particular conditions, than as between two different sets of average conditions.

The character of the reduction which must oxdinarily be made in the application of yield tables to average stands, and the method of its application, are much-ciebated questions. Several investigations are in progress which may develop new and greatly improved methods of applying yield ables, but until these can be more definitely stated than at present, older, if less satisfactory methods must be still relied upon.

The first step in the application of a yield table is to obtain an accurate knowledge of the area to which it is to be applied. If stands already exist on the area a strip survey should be made, in which all nonstocked areas must be determined, site divisions and pronounced differences in stocking mariked out, and ages recorded. Tally sheets should be changed with each change in site, stocking, or age. Further consideration of application of the tables will be given in the course of the discussion.

In this presentation of spruce and fir yields it has seemed best to present the material under two main divisions. The first includes the presenatation of the tables and charts with only a general discussion of their use and a few remarks on the application of yield tables as a whole. The second part takes ap some of the technical considerations of the study, the character of the material upon which the tables are based, the reliability and limitations of the varions wables, and a discussion of several of the tables based on observations of permanent sample plots. Throughout the first part of the bulletin chances for technical discussion are apparent, but will necessarily be postponed for treatment later on.

RED SPRUCE TABLES AND TMEIR APPLICATION
 AGE OF STAND

The age of a stand is taken as the average age of the dominant and corlominant trees. ${ }^{3}$ This age was obtained by boring many of the dcininants and codominants at breasthoight, 4.5 feet above the ground, counting off the age, and then avernging the rarious ages counted. To this average value, called the breastheight nge, a period of 15 years was added to allow for growth from origin of stand to breastheight. The length of this period was based on a seedling study which will be doscribed later in detail. In the following sets of tables whenever age is mentioned, total age is meant, unless otherwise stated.
In the application of yield tables age is obtained either by increment borings or stump counts. If borings are made at breasthoight, 15 years should be added to get total age; if ages are determined on a 1 -foot stump, seven years should be added. Only ages of the dominant and codominant trec classes are taken. An average of all the counted ages is then made and used as the stand age. The range in ages of these dominants should not be much more than 10 years, otherwise the stand will be thrown out of the even-aged class. The stand which is being surveyed should be tested in many places, especially where age class seems to be changed.

SITE INDEX

The indicator of site used in this study is the height in feet of the arerage dominant and codominant red spruce, or the tree having the average basal area of all the dominants and codominants in the stand. The height of this average tree is read from the height curve of the stand. By use of Figure 2 or Table 1 the relative position of the determined height can be found and the site index read off. The site index is numbered from the value of the height of the average dominan. and codominant at 60 years total age. Thus a stand of site index 57 is a stand which at 65 years of age lias a height of average dominants and codominants amounting to 57 feet.

[^2]

Figure 2.-Red spruce site ladex based upon the beight of the average dominant and cotominant tree
For the average quality of site (site index 50), the average heights range from 8 feet at 20 years to 59 feet at 110 years. At 70 years a height of 52 feet is already attained. Beyond this age the rise is much more gradual.

Tabse 1.-Red spruce sitc index based upon height of average dominant and codominant tree

In applying the table, common practice will be simply to average the heights of 20 or more dominant and codominent trees in a stand; but any tendency to take the heights of the largest trees only should bo guarded against, since the average height of the chart refers to all
diameter classes of the dominant and codominant trees. Site determination by use of Figure 2 should be repeated and checked in various portions of the area, especially where there is an apparent change of site.

The total range of sites for red spruce in Figure 2 is somewhat wider than will ordinarily be foum; practically all the second-growth stands lie between site indices 35 and 65 , the most common site index being 50. The outer sites 30 and 70 are given for the sake of interpolation of values which may lie below site index 40 (pl. 1) or above site index 60 . They are very extreme values and should not be included if there is any desire to use the system of classifying sites as I, II, and UII. Site I corresponds to site index 60, Site II to site index 50, and Site UII to site inder 40 .

The relation between site and the recognized forest types (34, 48) is not clear-cut, since the ranges of sitc indices overlap from one type to another. On the whole the majority of stands in the various types have site indices between the following values:

Spruce swamp.	Site index range 30 to 45.
Spruce flat--	Site index range 35 to 50 .
Spruce slope $\left\{\begin{array}{l}\text { Lower portio } \\ \text { Upper portio }\end{array}\right.$	Site index range 35 to 60.
Old pasture trnd old field	Site index range s0 to 65 .

DEGREE OF STOGKING

Basal area is usually taken as a measure of the degree of stocking. Number of trees can be used, but only if the trees are well spaced and not placed groupwise. Where distribution is good a decrease in number of trees would be expected to be accompanied by an increase in average diameter and, further, au increase in total board-foot volume.
The plots of this study were chosen with evenness of stocking as a requisite, and therefore they tend to maintain this relation between number of trees and board-foot volume as is indicated in Figure 3, where number of trees and board-foot volume are expressed in percentages of the normal values, or the values stated in the yield tables. The board-foot curve rises steeply to a maximum at 60 per cent of normal number of trees, then falls offt, passing through the 100-100 per cent point and decreases less rapidiy from this point on. The cubic-foot curve shows an entirely different trend, a rapid increase in the lower percentages slows down at approsmiately 90 per cent, but keeps on rising slowly through the remainder of the range of stocking.

No plots under 45 years total age are included in Figure 3 because the board-foot values for these low ages, although small in absolute amounts, may give unduly high percentages when compared to yicld-table values. Forty-five years was chosen by inspection as the age above which these extreme eceentricities disappeared. Beyond this limit, age was found to have very little effect on the relation between board-foot volume and normal volume.
According to Figure 3, the average full stand of second-growth red spruce is too dense for maximum board-foot volume. The necessity of judicious thimning which is made apparent in this way is also indicated in the continuous decline in rate of diameter growth from the time of origin of the stand and especially after the total age of 75 years.

Unfortunately the quality of the board-foot volume can not be simply shown. If the maximum amount of good-quality lumber is desired, the density of the stand should undoubtedly be kept up until natural pruning has accomplished much of its work, after which the thinnings aiming to maintain the diameter growth and to attain the maximum volume may be started. (Pls. 2 and 3.)

White spruce stands and balsam fir stands studied in the light of the red spruce tables exhibit very similar trends. White spruce attains its maximum board-foot volume at 65 per cent stocking and balsam fir its maximum at 75 per cent. However, most of the balsam fir and white spruce material is between the ages of 45 and 65 years, and therefore these values can be considered to apply only to this range of ages.

In the application of the yield tables degree of stocking is obtained from the strip-suvey tallies after they have been worked up. For

Fiovire 3.-Red gprace. Relation between percentages of normal nurober of iraes and of normal voluries
each subdivision of the stand by age, site, or stocking, the total basal area for the average acre is computed. This value divided by the normal value of the yield table for the site and age in question gives the degree of normality. For instance, if for a stand 65 years old, site index 50 , the total basal area per acre amounts to 190 square feet, ine degree of normality or the grade of stocking is 190 divided by 224 (fig. 4.), or 85 per cent. This computed grade of stocking can then be used for all future predictions, the normal yields at any time in the future development of the stand being reduced by 15 per cent to obtain the predicted yicld. This estimate is conservative, since it allows no growth toward normality, although such growth undoubtedly takes place in any understocked stand, especially if understocking is characterized by evenness of distribution of the trees. There is no doubt that understocked stands will approach

RED SPRUCE ON POOR SITES

Favorably Stocked, Well-pruned Red Spruce on Good Sites
A $70-$ year-old stand on an old pasture in the white Mountans (A), favorably stocked; an S5-year-old stand on a good site in worthern New Tampshire (F), heavily stocked, and with a nataral praning well advanced; and a heavily stocked stand in central New Hampshipe sis years old (C), having good natural ptuning.

A mixture of young balsam fir and spruce (A5 years) Ihe effect of very wide spacing on limbiness and diam- The presenec of much herbage is indicative of too open eter growth of red spruce in a 7 a-year-old stand in west- stocking. This stand in western phaine is 60 years
ern Maine. crn Maine. old, but has not proned well.
a fully stocked condition with advance in age, but only by subsequent study of permanent sample plots oan the rate of approach be satisfactorily determined.
TABLES FOR TOTAL STAND; ALL TREES ABOVE o-G-INCE DIAMETER BREAST FIGH babal arda
The total basal area in square feet per acre is given in Figure 4 and Table 2 for the whole range of sites and ages. The average site index 50 , starting with 22 square feet at 20 years, increases rapidly up to 60 years, and then increases steadily but at a less rapid rate to 250

Figure 4.-Red spruce. Total basal area per acre
square feet at 110 years. With increase in site the distances between the site curves lessen.

Table 2.- Red spruce: Tolal basal area per ace, including all trees aboue 0.6 inch diameter breast high

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{3}{*}{} \& \multicolumn{5}{|c|}{Site index}

\hline \& 70 \& 60 \& 50 \& 40 \& 30

\hline \& \multicolumn{5}{|c|}{Basal area}

\hline \& Square \& Square \& Square \& Square \& Spuare

\hline Years \& seel
25 \& ${ }_{24}$ \& ${ }_{22}$ \& fect
19 \& ${ }_{\text {Jeal }}^{14}$

\hline 30 \& 82 \& 78 \& 73 \& 64 \& 46

\hline 40 \& 149 \& 142 \& 132 \& 115 \& 83

\hline 50 \& 210 \& 200 \& 189 \& 162 \& 117

\hline ${ }^{60}$ \& 245 \& 233 \& 217 \& 188 \& 137

\hline 70 \& 260 \& 247 \& 230 \& 200 \& 145

\hline 80 \& 269 \& 250 \& 238 \& 207 \& 150

\hline 80

100 \& 275 \& 201 \& 243 \& 211 \& 153

\hline 110 \& 279
282 \& 266
269 \& 257 \& 215
418 \& 156

\hline
\end{tabular}

NOMBEF OF TREES

In Figure 5 and Table 3 the total number per acre of trees 0.6 inch and more in diameter breast high is given. Site index 50 , starting with 3,690 trees at 20 years, decreases rapidly up to approximately 60 or 70 years, and then slowly to 628 trees at 110 years. The great increase in number of trees with decrease in site index is strikingly apparent.

Figune 5-Rod sprace. Total number of trees per acre. All trees above dorinch diameter at breast height are included

Table 3.-Red spruce: Total number of trees per acre above 0.6 inch diameter breast high

SIZE OF THE AVERAGE TREE

The size of the average tree can be expressed either by the basal area of the average tree in square feet or by the diameter in inches corresponding to this basal area. (Fig. 6 and Table 4.) Since diameter is of more direct use, this criterion is the one presented. Trees of site index 50 have an average diametor breast high of 1 inch at 20 years, which increases steadily to 80 years, and from then on less rapidly to 110 years, reaching 8.5 inches. Were the size of the

Fioune 6.-Med spruce. Breastheight diameter of average tree
average tree expressed in basal area, the distance between the site curves would be quite regular. If the avorage diameter of stand were computed by averaging all the diameters of the stand, instead of being derived from basal area, the values would be from 0.2 to 0.4 inch lower than those given in the tables.

Table 4.-Red spruce: Size of ayerage tree in terms of breastheight diamoter

Total nge	Site index				
	13inmeter, broast hifin				
Years	Inches	Inches	Juches	Inches	Inches
20	1.1	1.2	1. 0	0.8	0.5
30	2.8	2. 5	$\underline{2} 2$	1.7	1.0
40	t, 4	3.6	3.4	2.6	1.0
50	4.0	5.4	4.7	3.6	2.2
130	7.4	6.8	5.9	4.6	2.8
70	9.1	8.2	7.9	b. 5	3.4
80	10.1	9, 1	7.8	6.1	3.8
90	10.5	0.1	S. 1	0.3	3.6
100	10.8	9.7	8.4	0.6	4.0
110	11.0	9.9	8. 5	0.7	4.1

HEIGHT OF AVERAGE TRED

Athough, of the average-height values, that of the dominants and codominants (Table 1), is the most important, the average height of the whole stand (fig. 7, Table 5) is of some interest. This height is the height of the tree of average basal area. All trees of the stand

FigCre 7.-LRed spruce, licight of the average tree, atl nown classes ineltaded
are included, not only dominant and codominant, but also intermediate and suppressed trees. Height values in the table are rounded off to the nearest foot.

Tabla 5.-Red spruce: Height of the aveage tree, all classes included

Height

Years	Feet	Fed	Frect	Fect	Feel
20	9	¢	7	7	0
30	20	18	15	13	10
10	$3 \cdot 1$	30	25	20	18
50	41	12	36	봉	21
00	63	63	4	35	29
70	70	60	50	30	29
So	75	04	53	12	31
50	77	16	55	4	32
1041	70	0	57	45	43
110	80	69	5	46	33

CUBIC-FOOT VOLUME

Figure S and Table 6 present the total cubic-loot yields of the stand inside bark, including istump and top, but without butt swell. These volumes are the so-called "normal volumes" as defined by C. E. Behre in his work on the conformity of the taper of various species to a mathematical taper curve ($44,45,46$). All cubic-foot volumes mentioned in this bullatin are of this character. To include bark, the cubic-foot yields should be increased by 12 per cent, which is an approximate average valuc, probably affected somewhat by the size of the trees. To include butt sweil, a further addition of 2.6 per cent is necessary. Butt swell is correlated somewhat with the average size of the trees ranging from 1 per cent for the smaller diameters to 5 per cent for the large: diameters.

At 20 years site index 50 has the small volume of 120 cubic feet, which after a short period of development increases rapidly to the 50 -year point, and thercalter less rapidly, until by 90 years only small gains are made.
'Table 6.-Red spruce: Tolal cubic-foot volume inside bark per acre, butl swell not included

Years	Cubic fect	Cubic feed	Cubiofedt	Cubicfeat	Cublefect
20	200	160	120	80	50
30	-,060	560	660	500	280
10	2, 550	2,350	I, 810	1.350	750
50	5.850	4. 430	3.510	2,550	1,440
G0	7,240	6, 030	4,760	3, 490	1,030
70	S, 430	7,030	$5_{5} 590$	4,050	2,260
80	9, 150	7 7, 310	6, 060	1,400	2.450
90	9,580	7, 970	B. 340	4,600	2,560
10t)	0, 370	S, 210	E, 520	$4,7.10$	2,140
110	10,100	S, 210	6, 680	4,860	2,700

TABLES FOR TREES in AND ABOVE THE ANGH DIAMETPR CLASS
Trbles for partial stands are derived from the values of the total staud. Tables $7,8,9,10,11$, and 13 give, respectively, total basal area in square feet per acre, number of trees per acre, average diameter, total and merchantable cubic-foot volumes, and cord volumes for all trees in the stand in and ahove the 4 -inch d. b. h. class, or the equivalent of possiblo pulpwood in fully stoeked second-growth stands.

To obtain merchantable volumes, percentage reductions were applied to total cubic-foot volume. Table 12 presents these percentages of the total volume between 1 -foot stump and 3 -inch top inside bark for trees of various diameters and heights. By taking into consideration the size of the average tree these values can be transformed to age and site percentages and can then be applied to total cubic-foot volume (Table 10) to get an approximation of the merchantable cubicfoot volume. (Table 11.) The reduction perceutages are computed for form class 75 , which is the class within which the majority of the second-growth red spruce stands fall.

CORD VOLUME

By applying the factor 95 to the peeled cubic-foot volumes of Table 11, the cord volumes of Table 13 are oblained. This is on the assumption that 95 cubic feet of wood is equal to 1 cord, s relation of course not altogether constant for various-sized bolts or holts of other than 4 -foot lengths, but sufficientiy indicative, since no satisfactory converting factors for stands of different average sizes are arailable. The fact that volume with bark of a single tree may average 12 per

Frgene 8.-Red spruce. Total cabie-foot volumo insido bark, per acre
cent above the peeled volumes does not mean that cord volumes with bark should be 12 per cent higher. With the inclusion of bark, more roughness must be expected; the bolts of such cordwood will consequentiy fit less closelp than the peeled bolts. The amount of increase in volume is therefore larger than 12 per cent. What the actual increase is can only be guessed, but a reasonable guess is 15 per cent. The cord volume of Table 13 may thas be increased by 15 per cent to obtain approximate cord volume with bark.

Table 7.-Red spruce: Total busal area per acre of afl trees in and above the 4 -inch diameter class

Tabla 8.-Red spruce: Number of trees per acre in and abobe the 4 -inch diameter class

-...-*-					
30	401	363	$20-5$	143	
40	35	760	7103	13,	$\cdots{ }^{170}$
50	y2 2	423	1, 007	003	460
60	760	Stis	0180	1, OH 4	860
70	360	060	811	973	760
80	432	566	71.	913	S15
P0	456	903	(6at	86!	845
100	439	51.5	0 CH	855	870
110	42.3	497	623	810	\$81

Table 9.-Red spruce: Average brast-high diameter of all trees in and abow the h-inch diameter class

	Sitc imke				
rotal :15c	70	(5)	51	40	d
		*	.	.	- .
1)intioter, dreast lagh					
Ycars	Inches	Suches	Afacher	tuches	Inchex
w	-5.	4. 4	4.13	1. 2 -
40	5.3	5. 1	5	4.5	4.2
60	6i. 1	511	4. ${ }^{2}$	4.9	4.3
60	7.7	7.0	(i, 3	5.4	-1.
70	0.7	5. ${ }^{1}$	-7. 2	fi, 0	4.15
31	10.1	(1. 1	7. 8	dis	6. 0
90	10.5	9. 5	S. 2	1. 6	5.1
1160	10.5	10^{7}	5. ${ }^{\text {d }}$	d. 8	5. 1
110	11.0	10.0	S.14	6.1	5 3

Tabre 10．－Red spruce：Total cubic－foot volume inside bark per acte of all trees in and above the 4－inch diameter class

Total age	Site index				
	70	06	50	40	30
	Volume				
Y＇eurs	Cubic fect：	Cubic fecl	Cubic fet	Cubic ject	bic feet
30	$6{ }^{60}$	400	290	125	
40	2， 380	2.020	1，130	805	19%
90	5， 230	438	3， 240	${ }^{2} 100$	8 F
56	7.240	6， 020	4．700	3．200	1， 240
70	8， 190	7，080	5， 590	31.330	1， 750
80	9，160	7，610	6， 0 ¢0	4，360	$\stackrel{3}{2}$ ， 010
90	9，580	7，970	6． 340	4，570	$\stackrel{2}{2} 200$
100	9，Sio	S， 210	6.520	4， 730	2.310
110	10， 100	8.410	－6，680	4．850	2，390

Table 11．－Red spruce：Merchantable cubic－foot volume per acre of trees in and above the 4 －inch diametor class；1－foot stimp allowance， 3 －inch top inside bark

Table 12．－Red spruce：Merchantable cubic－foot volume percentages of lotal cubic－ fool volame of single trees，over a range of diameters and heights； 1 －foot stump allowance，s－inch lop inside burty；for form class 75

	Meight of true					
	Giameter；					
bricast－	vo feet	30 feet	40 feet	50 fuet	60 feet	70 feet
outside bark						
	Aerchantable volume					
－－－－－	－	－			－	
Inches	Per ceat	Per cent	Per cent	Per ceml	Perctal	Per cent
＋	6S	（1）	6x	（1）	（is	86
5	so	8	\＄2	83	8	S
；	89	5	8	S0	50	91
$\overline{7}$	85	00	91	33	93）	4，
8	85	91	3	fl	95	95
4	1 H	（1）	18	近	驁	19
10	10	42	S14．	95	54	10
11	31	［1］	9.1	¢5	5131	S
12	11	48	15	U6	9 ll	y_{7}
13	91	63	355	炦	51	9
1.4	91	W8	¢5	9\％	07	g_{5}^{-1}

Table 13.-Red spruce: Yolume in cords per acre of all trees in and above the 4 -inch diameter class, obtained by applying conversion factor of 95 to Table 11

Total 8 g 0	Site index				
	70	60	50	40	30
	Volume				
Years 30	Cords	Cords	Cords	Cords	Cords
30	5. 3	3.6	2.2	0.9	
40	22.7	17.4	11.7	6.3	1. 5
50	59.3	39.7	29.1	17.6	5.1
¢0	72.1	58.4		28.9	0.9
70	85.3	69.7	54, 2	30.5	14.7
8	03.5	76. 6	60.0	41.3	17.a
90	97.9	80.5	(3. 2	43.8	18.9
100	100.7	82.8	65. 2	45.4	20.0
170	103.2	84.7	06, 8	40.7	20.5

TABLES FOR TREES IN AND ABOVE THE 7 -INCH DIAMETER CLASS
Tables $14,15,16$, and 17 give, respectively, for the partial stand containing all trees belonging to the 7 -inch diameter class and larger, the basal area, number of trees, average diameter, and board-foot volume by the International rule with $1 / 8$-inch saw kerf. Site index 30 , producing a very negligible board-foot volume, if any, is omitted entirely. Like the 4 -inch tables, these 7 -inch tables, with the exception of the board-foot yields, are derived from the total-stand values. Figure 9 presents the board-foot yields graphically. No allowance for cull is included in these volumes. Site inder 00 begins to have

Figure 9 -Red spruce. Total board-foot volume per amo by the Enternationnl rule, 38 -inch 59794-29-3
board-foot volume at the age of 40 years and attains its maximum rate of increase between the ages of 60 and 70. In the later years, as in the early years, rate of increase in volume is definitely determined by site quality.

Table 14.—Red spruce: Tolal basal area per acre of all trees in and above the 7 -inch diameter class

$\begin{aligned} & \text { Total } \\ & \text { age } \end{aligned}$	Site index			
	70	60	50	40
	Besal area			
Years	Squaze	Stuare	Square	Square
40	${ }_{\text {fil }}$	28	${ }_{15}$	
50	119	92	61	25
6_{0}	199	166	317	61
70	242	215	172	97
80	260	238	198	122
90	270	247	231	131
100	275	254	238	142
110	279	259	224	150

Table 15.-Red spruce: Nutmber of trees per acre in and above the 7-inch diameter class

'i'abra 16.-Red sprace: Average breast-high diameters of all trees in and above the 7-inch diameler class

Table 17.-Red spruce: Board-foot bolume per acre of trees in and above the 7-inch diameler class

Total age	Site inder			
	70	60	50	40
	Voluase			
$Y_{\text {ears }}$40405060	Board feet Board feel		Bonrd feet	Board feet
	3,300 13,300	2,200 8,200	1, 20200	
	23, 400	20, 8000	13, 300	5,800
70	43,200	31, 500	20,360	8,800
80	52,500	38, 500	24,800	10, 810
∞	58,300	42,800	27,400	11,900
100	01,500	45, 100	28,800	12,600
110	63, 000	46, 000	20,800	13,000

TABLES FOR DOMINANTS AND CODOMINANTS
A few tables of the dominant and codominant stand are of interest, since the trees which constitute this partial stand form the main canopy and have the best growth.

In Tables 18, 19, and 20 are given the values for basal area, number of trees, and average diameter for this partial stand. Heights have already been given in Table I and Figure 2.

Table 18.-Red spruce: Tolal basal area per acre of all dominant and codominant trees

Total日ge	Site index				
	\% 0	60	60	40	30
	Inasal area				
	Siquare	Square	Square	Square	Siuare
Years	feet.		feet	fcet	feet
20	17	17	15	13	10
30	58	35.	51	45	32
40	110	104	95	82	38
50	184	152	139	117	82
60	203	187	167	140	97
70	231	311	180	153	105
80	250	228	200	113	109
30	201	237	207	167	112
100	268	244	21!	171	114
110	$\underline{74}$	249	218	173	110

Table 19.-Red spruce: Number of trees per acre in the dominant and codominant classes

Table 20.-Red spruce: Average breast-high diameter of all dominant and codominant trees

INGREMENTS AND ROTATIONS

Figures 10, 11, and 12 give graphically the mean annual and the $10-$ year periodic annual increments for total cubic-foot volume, merchantable cubic-foot volume, and board-foot volume computed directly from Tables 6, 11, and 17. For length of rotation the culmination of mean annual growth is chosen. This is also the age of intersection of the curves for periodic annual and mean annual growths.

The best rotation for total cubic-foot production is, therefore, 65 years total age; the rotation for pulpwood production varies with site- 66 years for site index 70,68 years for site index 60,70 years for site index 50,73 years for site index 40 , and 79 years for site index 30. The rotation for quantity board-foot production is 82 years. Quality production is not considered; to produce the maximum amount of good-quality lumber the rotation would undoubtedly have to be greatly lengthened, since natural pruning does not take place at an early age.

Frouar 14--Red spruce. Periodic and mean annual increments for merchantrbla cubic-foot volume of all trees 4 inches in dianeler at breasthelght and larger

Until recently stand tables have had but a small place in yield studies. The present tendency is to observe the conformity of diameter distribution in \mathfrak{a} stand to the normal distribution obtained from the Gauss curve of error or the law of probabilities. Attempts to fit the distribution of trees in second-growth red spruce stands to these normal distributions result in failure, sjace the smaller diameters always have a pronounced tendency to include disproportionately large numbers of trees. This is to be expected with \AA tolerant species such as red spruce, which can ondure a suppressed state much longer than many other species.

Although the species does not conform to the symmetrical distribution, its distribution of diameters can be computed in a simple way by means of Figure 13. The bottom scale indicates the diameter classes in a stand. On the vertical scale may be read the percentages

Fioune 12.--Tied spruce. Periodic and mean anmall increments for tatal board-foot volume
of total numbors of trees in and below the range of diameter limits of the stand tally. The diagonals represent the distribution of trees by diameters in stands with average stand diameters ranging from 3 to 15 inches. The average diameter of the stand is found by dividing the total basal area by the totail number ol trees and then converting the resultant average basal area to diameter in inches. The point where a diagonal crosses a diameter class line gives the percentage of total number of trees in and below that diameter class. For illustration, let a certain site and age class of the tables be taken, for instance site 50 , age 70 , for which the average diameter according to Table 4 is 7 inches. The diagonal 7 is therefore first chosen, and the diameter classes which it crosses are listed. Next, at each diameter class the percentage of total number of trees is read. The total number of trees, which for this site and age class is 849 (Table 3), is multiplied
by each of the percentages. The total number of trees in each class is then determined by subtracting each value from the total in the next larger class. In this way a stand table is obtained. The basal areas may be computed and the results compared with those in Table 2. Table 21 is a sample computation for age 70 and site class 50 .

finure 17.-Basis for red spruce stand hables
From Tables 2, 8, and 15, the normal values for basal area, number of trees 4 inches and over, and number of trees 7 inches and over are found to be, respectively, 230,811 , and 441 , to which the derived values of Table 21 correspond closely.

Table 21.-Sample computation for stand table, illustrating the use of Figure 18 for age 70, site index 50, at which average breast-high diameter of stand is 7 inches and total number of trees 849

$\begin{array}{\|c\|} \text { Diameter: } \\ \begin{array}{c} \text { breaster } \\ \text { bigh } \end{array} \end{array}$	Trees bedianneter class	Trees be- low given điameter class	Trees in dismeter cinss der a	Basal arean in diameter ald class
Inches	Per cent	Number	Number	$\begin{aligned} & \text { Square } \\ & \text { feef } \end{aligned}$
1 2 3	0.2 1.2 4.5	1020		0.2
4	13.0	188 110 128	${ }_{72}^{28}$	${ }_{6.3}^{1.4}$
${ }_{6}^{5}$	27.5 47.5	233 403	123 170	16.7 33.3 3
8	67.5 83	573	170	33.3 45.4
${ }_{8}^{8}$	83.0 92.0	${ }_{781}^{705}$	${ }^{3132}$	4i. 4
10	96.8	882	4	${ }_{22.3}^{32.6}$
12	${ }^{88.9} 8$	8460	${ }_{6}^{18}$	11.7
13	99.9	848		1.7
14	90. 98	\% 49	1	1.1
Total			849	22.18

' Number or trees 4 incles and over, 811 ; 7 inches and over, 446 .
YOLUME TABLES
A multitude of volume tables exist for xed spruce; they are ex pressed in varying units for many localities and conditions. Very few, however, would be applicable to a yield study for the whole region, and in addition, none of them are expressed in terms of the International rule. For this reason new volume tables based on the form-class system as developed by Behre (44, 45, 46) were prepared for use in this study. Tables 22,23 , and 24 contain the normal total cubic-foot volumes of wees and Tables 26,27, and 28 the boardfoot volumes by the International rule ($1 / 8$-inch kerf) for form chasses 65, 70, and 75. Normal roiume may be defined as the volume of a tree the taper of which is expressed by Behre's formula for tree taper. As applied, it is the total volume of a tree inside bark, not including butt swell. The diameters of the tables are so-called normal breast-high dimmeters, which axe the diameters of bodies of the ideal tuper expressed by the formula. A reduction is thercfor, needed for anch species to give the amount of bark thickness and butt swell, since these are considered to be the two important factors in making species tapers nonconformable to the theoretical toper. Table 25 gives the actual and normal diameters for red spruce, white spruce, and balsnm fir.

Table 22.-Form-class volume table for total cubic feet: Form class 65

Normal diame ter breast bigh (inches)	Total hwight, feet													
	20	20	30		40	45	50	55	co	65	70	75	80	85
	Normal volume, ${ }^{\text {a cable feet }}$													
	0, 080	0.077 ${ }^{3} 0.087$		0.089		0.123				--...		--...		
			. 330		. 447									
	1.590	${ }_{1}^{1.82}$.786 1.40	+ ${ }^{880}$	1. 1.00	1.11 1.9	1.22 1.16							
	1.64	1.51	1. 18	1.58	1.78 2.70	3. 1.97	2. ${ }_{3} 16$	2.35	2. 35					
	${ }_{1} 136$	2.76	3.14	3.57	4.01	4.43	4.86	5.29	${ }^{\text {6. }} 74$			7.02		
	3.22	3. 76	4.28	4.80	5.47	6.03	(1. 62	7.21	7.81		9.01	0.50	10.2	10.8
		4,91	5.60	6, 35	7.15	7.89	8.60	9.42	10.2	11.0	11.7	12.5	13.3	14.0
			7.09	7.05	9.00	10.0	10.3	11.8	12,9	13.8	1.48	15.8	I6. 8	17.7
			8.74	9.92	11.2	12.3	13.5	14.7	15.9	17.1	18.3	19.5	20.7	21.9
11				12.0 14.3	13.5 16.1	14.8 17 1	10.3 10.5	17.7	19.3	20.7	221	23.0	25.1	26.4
13					${ }_{18.9}$	$\underline{20.7}$	10.5	${ }_{24 .}^{21.8}$	23	24.6	${ }^{20.4} 8$	338.1	20.8 350	31.6 30
14					21.9	24.2	28.5	28.9	31.3	${ }^{28.6}$	35.9	38.3	40.6	30.9 43.0
					22.1	27.6	30.3	32.0	35.8	S\% 4	41.0	43.9	46. 8	49.0
					28.6	31.6	35.6	37.7	40.8	43.8	40.9	50.0	53.1	66.1
18						35.5 30.9	48.9	42.4	46. 0	49.4	52.8	50.4	59.8	63.1
18						44.9	43.7	47.7 53.0	31.7 67.5	55.5 61.8	59.4	63,3	67.2	71.0
						49.3	51. 1	58.9	63. ${ }^{\text {bid }}$	61.8	${ }_{73.3}^{60.1}$	78.6	74.8 829	
						54.3	50.6	6.1.9	70.1	75.4	80.7	86.2	81.3	96.7
23						50.7	65.5	71.3	77.2	8.9	88.7	94.5	100	106
24						${ }^{05 .} 2$	71.4	77.7 84.8	84.3			103	110	116
						7.0	77.9	84.8	91.8	98.7	106	112	110	126

${ }^{1}$ Total cubic-foot volume without butt swell.
Table 23.-Form-class volume table for lotal cubric feet: Forn class 70

[^3]Table 24.-Form-class volume table for total cubic feel: Form class 75

Normal diame. ter breast high (inches)	Total height, lect													
	20	25	30	35	40	45	50	55	60	65	70	75	\$0	85
	Normal volume,t cubic feet													
1.														
2-...-	. 287	. 342	. 388	. 458		0.569								
3------1	. 815	. 768	. 884	1.02	1.15	1. 28	1. 42							
4---+.	1. 15	1.38	1. 59	1.82	2.04	2.27	2. 60	2. $\overline{3}$	2.97					
5-----1	1. 79	2. 33	2. 48	2.84	3.20	3.55	3.92	427						
6....-	2.58	3.07	3. 88	4. 10	4,60	5.12	5. 64	0.15)		7. 19	7.7	8.2	8.74	9.20
7-----	3. 51	4.19	4.87	5.58	6.27	6.97	7 7. 69	8.38	0.00	0.80	10.5	11.2	31.7	12.5
8		5.47	6.37	7.29	8.20	0.11	10.01	11.0	11.0	12.8	13.7	14.7	15.6	16.4
8			8.07	9.24	10.4	11. 5	12.7	13.9	15.0	16.2	17.4	18.6	19.7	20.4
10.			9.95	11. 4	12.8	14.2	15.7	17.1	IS. 5	20.0	21.4	22.9	24.3	25.8
11.				13.8	15.5	17.2	19.0	20.7	22.5	24.2	25.9	27.7	29.4	31.2
12.				16.4	18, 4	20.5	22.6	24.0	20.7	28.8	30.8	33.0	35.0	37.1
13					21.7	24.0	23.5	28.9	31.4	33.8	36.1	38, 6	41.1	43.4
14					25.1	27.9	30.8	33.6	36.4	39.2	420	44.9	47.7	50.6
15.					2.8	32.0	35.3	43.4	41.8	44.9	48.0	51.3	54.7	58,0
16.					32.8	36.4	40.2	43.8	47.5	51.2	54.9	58.6	62.3	68.0
17.						41. 1	45.4	49.3	53. 6	57.7	61.9	88.0	70.3	74,3
18.						46.1	50.9	5.5	60.1	64.8	63.4	74.2	78.8	83.6
19.						51.3	56.9	61.8	67. 1	72.1	77.5	82.6	88.1	93.0
20						56.9	62.8	68.5	74.2	80.0	85.7	91.7	97.3	103.0
21						62 8	63.5	75.5	82. 1	88.2	94.8	102	108	115
22						68.9	78.0	82.0	89.8	96.9	104	111	118	125
23						75.4	83.5	50.8	98.5	108	113	122	129	137
24						82.0	09.5	98. 7	107	115	123	132	140	149

I Total cuble-foot volumo without but swell.
Table 25.-Normal diameters of red spruce, white spruce, and balsam fir. (Actual breast-high diameters minus bark ihickness and buil swell)

Tho inayy lines indicate tho ortont of tho bosic data.

Table 26.-Form-class volume table for board fect by the International rule, $1 / 8-i n c h$ saw herf: Form class 65

Normal diameter broast high (inches)	Total height, feet										
	30	35	40	\$5	50	55	00	65	70	75	80
	Normal volume, board fect										
	11 '	15	IS	21	25	28	31				
8.	16	21	25	30	35	40	44	49	53		
	21.	23	34	41	47	53	59	${ }^{6} 4$	71		
10.	23.	36	45	53	62	70	77	84	92	101	110
11.----	34 ;	45	50	66	78	88	98	108	118	127	139
12-......	40 :	菏	65	81	93	108	121	123	145	158	172
13	. !	64	81	97	114	130	144	100	175	190	207
14		75	96	215	135	153	170	109	210	223	246
			112	134	157	178	199	222	245	206	287
16			130	155	180	203	330	257	233	307	333
17				170	$\underline{207}$	235	293	293	322	350	379
18				304	230	267	298:	335	363	395	429
19					284	205	334	372	408	441	485
29					204	334	373	414	455	497	540
21					325	369	114 !	460	506	552	S00
2					356	406	$45 \overline{7}$	508	550	610	669
23					386	444	500	558	615	672	731
24					413	485	540	611	874	737	800

Table 27.-Form-class volume lable for board feel by the International tule, $1 / 8$-inch saw kerf: Form class 70

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Normal breast hiph (inches)} \& \multicolumn{11}{|c|}{Total height, feet} \\
\hline \& 30 \& \& 40 \& \& 0 \& 55 \& 60 \& 65 \& \& 35 \& 80 \\
\hline \& \multicolumn{11}{|c|}{Normal volume, board feet} \\
\hline \& \multirow{5}{*}{18} \& 16 \& \multicolumn{2}{|l|}{\multirow[t]{17}{*}{}} \& 28 \& 33 \& \multicolumn{2}{|l|}{37} \& \multicolumn{2}{|l|}{} \& \multirow[t]{2}{*}{\(\ldots\)} \\
\hline \& \& 23 \& \& \& \(40^{\circ}\) \& \multirow[t]{2}{*}{} \& 37
51
50 \& 56 \& \multicolumn{2}{|l|}{\(\cdots{ }^{-1-\cdots-\cdots}\)} \& \\
\hline \& \& \& \& \& 51 \& \& 88 \& 76
98 \& 83 \& 91 \& ------ \\
\hline 10 \& \& 42 \& \& \& \begin{tabular}{l}
70 \\
87 \\
\hline
\end{tabular} \& \({ }_{9} 9\) \& \multirow[t]{2}{*}{111} \& \multirow[t]{2}{*}{128} \& 106 \& 115 \& \multirow[t]{2}{*}{--153} \\
\hline \& \& 81 \& \& \& \(\stackrel{87}{105}\) \& 12 \& \& \& \multirow[t]{2}{*}{165} \& \multirow[t]{2}{*}{180 :} \& \\
\hline 12 \& \& 60 \& \& \& \({ }_{127}^{105}\) \& 129
144 \& 135 \& 150 \& \& \& 195

235

\hline 14 \& \& \& \& \& 150 \& 170 \& 191 \& \multirow[t]{2}{*}{$$
\frac{213}{248}
$$} \& 235 \& 257 \& 235

279

\hline 15 \& \& \& \& \& 174 \& 198 \& 223 \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{315 . 344}} \& 324

\hline 16 \& \& \& \& \& 302 : \& 230 \& 259 \& 287 \& \& \& \multirow[t]{2}{*}{373
425}

\hline \& \& \& \& \& 231 \& ${ }^{263}$ \& 295 \& \multirow[t]{2}{*}{328} \& \multicolumn{2}{|l|}{360 393} \&

\hline \& \& \& \& \& 263 \& 299 \& \multirow[t]{2}{*}{375 !} \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{408: 560}} \& 425
480

\hline 19 \& \& \& \& \& 294 \& 334 \& \& 416 \& \& \& \multirow[t]{2}{*}{541
603}

\hline 20 \& \& \& \& \& 320 \& 372 \& \multirow[t]{2}{*}{418} \& 403 \& \multicolumn{2}{|l|}{510 55?} \&

\hline 2 \& \& \& \& \& 357 \& 409 \& \& 511 \& 564 \& \multirow[t]{2}{*}{680} \& 603

\hline 22 \& \& \& \& \& 388 \& +44 \& \multirow[t]{2}{*}{503

548} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 501 \\
& 613
\end{aligned}
$$} \& 620 \& \& \multirow[t]{2}{*}{739

887
887}

\hline \& \& \& \& \& 419 \& 482 \& \& \& 678 \& ${ }_{806} 7$ \&

\hline \& \& \& \& \& 450 \& 510 \& 500 \& 603 \& 735 \& 806 \& 877

\hline
\end{tabular}

Table 28.-Form-class volume lable for baard feet by the Internalional rule, 36 -inch saw of: Form class 75

Normal dismeter breast high (inctiss)	Totsi hoight, feet										
	30		40	45	50	55		65	70	75	80
	Normal volume, board feet										
	14	18	23	28 !	33	38					
	21	${ }^{27}$	43	44°	46	${ }^{52}$	58	65		77	
10	40	50	60	70	80	80	$100 \cdot$	110	120	232	
11.			73	87	90	113	125	139	151	165	179
12			87	105 !	120	136	153!	170	181	202	219
13			103	125 :	144	103	182 :	209	220	240	262
14.			122	146:	170	192	215 .	235	260	283	318
15			143	170	107	223		278	305	331	$3: 8$
16.			166	196	227	258	${ }^{288}$	320	351	382	413
17				223	2 TS	204	330	360	403	438	473
18.				252	291	3332	374	415	457	498	539
19.					325	372	418	404	511	558	600
20.					363	414	${ }_{564} 5$	515	56 S	620	674
21					400	469 :	515	${ }_{508}$	604	689	740
22					435	50 S	567	625	087	749	805
$\begin{aligned} & 233 \\ & 24 \end{aligned}$					470	557	${ }^{620}$	684	749	813	879
2					593	610	078	747	816	\$8?	930

The computation of separate trbles for each species is made unnecessary by the use of the procedure described below and illustrated in Figure 14. This method has been tried out thoroughly and has been found to be entirely practical and easily applicable after the first principles are mastered.

The values of Table 24 are plotted on logarithmic coordinate paper. The 10 by 10 inch, 1 -cycle paper is the most convenient size for this work. Normal diameters are read along the base, starting with I inch at the left and proceeding to 10 inches at the right, then returning to the left end, starting with 10 inches and ranging to 100 inches at the extreme right. The vertical axis represents cubic-foot volumes with similar ranges. The volumes of each height class fall in a straight line. In addition the lines are parallel to one another. With this mode of form-class volume table, the volume lines can be easily drawn in by pointing off the intercepts on any of the graduations and drawing in the lines with a slope of 2 to the base. If logarithmic paper of several cycles were used these lines would be continuous, but with 1-cycle paper, such as is used here, the lines are interrupted.

As an example, take the line for height 60 which starts at the base of 2.5 inches and runs diagonally to the top to 8 inches; starts again at the base at S inches and runs out at the right edge at 10.87 ; and begins at the left edge at 10.87 and runs out at the top at 25 inches. The next step is to impose upon the diagram (see the scale at the bottom and top of fig. 14) the diameter reductions for the species. (Table 25.) Then, over the respective reduced diameters and at the proper height lines, the volumes for the corresponding species, diameters, and heights can be read. In the figure, for purpose of illustration, broken lines connect several actual diameters. The location of the decimal point is obtained by comparison with the original table and after a little practice can be easily remembered. Figure 14 is for illustration only. When the data are to be applied, finely graduated logarithmic paper should be used.

The total volume of any number of trees of any one diameter and height is read directly from the graph. On the left of Figure 14 there is a scale with the same divisions as the main diagram. Such a scale should be prepared on a separate strip, preferably xylonite, by tracing the original.

As a specific example, it is desired to obtain the volume of 20 red spruces 7 inches d. b. h., heirint 43 feet. Over the diameter 7 inches, as recluced for red spruce, the position of height 43 between the 40 -foot and 45 -foot lines is approximated by eye. Now place the vertical scale on the chart with one of the ends at this point, so that the "2". (representing here 20 trees) falls somewhere on the chart. In this instance the upper end is used. Running along the vertical scale to point 2 read off the volume value and place the decimal point. The result is 112 cubic feet, ascertained, in this way, by a single reading. The principle involved is that of the slide rule.

Board-foot volume tables (Tables 26, 27, and 28) are treated in an exactly similar fashion. These volumes were drawn up according to the International rule for $/ 6$-inch saw kerf, allowing 1 foot for stump, using 16.3 -foot logs scaled as 16 -foot logs, and an odd length section to a 5 -inch top inside bark.

The value of the average form class or form quotient of a stand is necessary in using these tables. ${ }^{*}$ Form class or form quotient is the quotient obtained by dividing the diameter at half the height above breastheight by the diameter at breastheight. Form point is defined as that point in the crown which can be considered the center of wind stress. It will be more or less the geometrical center of the crown.

ACTLAL BREAST-HIGH DIAMETERS
Figure 14,-Normai volume tabie for totnl cubie-foot form chass 75, ploted on logarithmic paper and adapted to red sprues

Form-point height is the percentage of the total height at which this point occurs. In Figure 15, the relation between form-point height and form class is expressed by regression lines. (See p. 30.) In the field measurements the form-point heights of a number of the dominants and codomimants (about 20 in a stand) are taken and averaged. The form class corresponding to this average height is read from the chart and the volume table nearest in form class is then used.

[^4]For fully stocked second-growth red spruce stands, form class 75 was the one which occurred most commonly, and form class 70 occurred occasionally. Balsam fir and white spruce stands, however, averaged 70, occasionally falling oft to $6 \overline{5}$. The lowering of lorm class within a species is ordinarily connected with open stocking or young age.

YIELDS OF MIXED STANDS

The effect of mixtures of white spruce and balsam fir on the yields of red spruce is not guite as definite as may be supposed. A detriled statistical analysis failed to bring out any definite relation with any

Ftouna $15 .-$ Relation betweon form-point height and form chass, expressed by regression lines
of the factors considered. As it is, some of the plots which were used as a basis for the fully stocked red spruce tables, chiefly of the younger ages, were somowhat mixed. All indications lead to the conclusion that the tables presented apply equally well to stands which have moderate amounts of white spruce and batsam fir in them.
The composition found may vary from 100 per cent red spruce through all rades to 100 per cent balsam fir or 100 per cent white spruce. In the same stands, the average dominant and codominant red spruce was found to be on the whole 10 per cent shorter in height than the average dominant and codominant balsam fir and 4 per cent
shorter than average dominant and codominant white spruce. However, in mixed stands of balsam fir and white spruce alone, these species averaged the same height. Therefore, since among the plots measured such mistures were much more common than the mixtures of red spruce and white spruce and since the mixtures of red spruce and balsam fir were also very common, it can be concluded that the heights of the average dominant and codominant balsam fr and white spruce should be reduced 10 per cont to obtain the equivalent red spruce height.

When the stands are predominantly balsam fir or white spruce, the trends of growth have been found to be significantly difierent from

 namt tree
that of red spruce. For this reason tables for total basal areas, number of trees, average tree diancter, and board-foot volume have been drawn up for stands chiefly composed of either of these species. The small mumber of these plots does not permit the more detailed analysis made for red spruce.

In general the same fualifications and definitions hold true for the white spruce and balsam fir tables that are given for the respective red spruce tables. Site is indicated in these two sets of tables by the species in question and not by the equivalent red spruce site.

Figure 16 and Tables 29, 30, 31, 32, 33, and 34 present for white spruce the values for site indices or heights of the dominants, total basal areas per acre, total number of trecs per acee, size of the average
tree, yields of the stand in total cubic fect, and yields of the stand in board feet by the International rule, $\frac{8}{8}$-inch saw kerf. Figure 17 and Tables 35, 36, 37, 38, 39, and 40 give similar balsam fir values. Site 30 is left out in most of the tables for neither species ranges commonly below site 40.

White spruce and balsam fir are evidently both unsuited to maintaining a complete crown canopy. Balsam fir stands especially seem to break up after the early ages have been passed. In the collection

Ftedre 17.-Bnlsam fir site inder based upon the hefght of the a verage dominant and cocioninaui tree
of material for the tables, stands with complete canopies were desired. Consequently there is the chance that these tables do not represent the best conditions for growth, but rather an overstocked condition, resulting in poor individual tree dovelopment. Sufficient satisfactory materina was lacking from which to draw more definite conclusions.

If the volume increments for the white spruce tables and the balsam fir were computed and graphed in figures similar to Figures 10 and 12 , it would be found that the rotation for total cubic feet for white spruce is 58 years and that for balsam fir 55 years, and that the rotations for board-foot volume are, respectively, 78 and 82 years.

Table 29.-While spruce: Site index based upon the height of the average dominant and codominant tree

Table 30.-White spruce: Total basal area per acte of all lrees above 0.6-inch diameler breast high

Table 31.-White spruce: Total number of trees per acre above 0.6-inch diameter breast high

1		Site index		
, Total			-	
$\begin{gathered} \text { ano } \\ \text {;years) } \end{gathered}$	70	00		40
Namber of Lrecs				
00	3,350	4,470	5,880	7,530
30	2,170	2,8\%0	3.784	4.840
46	1,320	1,800	2, $3(60)$	2,480
50	740	J, 090	1,420	1.820
- 60	540	720	$9+5$	9, 210
- 70	420	550	750	tha
- 80	30%	500	1555	845
- 80	$3 \% 5$	410	015	785

Table 32.-White spruce: Breast-high diameter of average trec

Table 33.-White spruce: Total cubic-fool yolume per acre of all trees above 0.6 inch diameter breast high

Table 34.-White spruce: Board-foot volume per acre of all trees in and abone the 7 -inch diameler breast-high class, by the inlernational rule, 1 组inch saw kerf

Table 35.-Balsam fir: Site index based upon the height af the average dominant and codoninant tree

Totel age	Sill index				
	70	0	50	40	30
	Helght				
Yelts	Feet	Feet	Feet	Fret	Beat
20	13	12	10	9	8
30	30	28	22	18	14
40	47	40	34	27	21
50	60	51	43	34	26
60	07	58	48	38	29
70	72	62	52	41	21
80	76	05	54	43	32
80	78	67	50	44	33

Table 36.-Balsam fir: Total basal area per acre of all trees over, 0.6 inch diameter breast high

Total uge	Site index			
	Fo	60	50	40
	Basal arca			
Years	Square	Square	Square	Square
	feet	feti	fett	
20	21	20	18	16
30	99	43	87	78
40	180	170	158	143
50	221	209	194	175
co	238	226	210	129
70	248	23	217	196
(8)	253	240	223	201
90	259	245	297	205

Tabse 37.-Balsam fir: Total number of trees per acre above 0.6 inch diameter breast high

Table 38.-Balsam fir: Breast-high diameter of average tree

Table 39.-Balsam fir: Tolal cubic-fool volume per acre of all trees above 0.6 iach diameter breast high

	Site index			
Totrl nge	70	60	50	40
	Volume			
Years 20	Cubiefert Cubicfeet Cubicfert			Cublefed
	$1+5$	135	110	60
30	5, 405	1.210	Uti0	720
40	3,010	3, 970	2, 500	1,040
50	$5+910$	4.920	3, 020	2,910
1.9	7,100	5, MMO	4,7001	3, 340
70	F.		S, 140	3, 520
80	5, 270	(6. 870	$\mathrm{n}_{1}+80$	-1, ObO
50	8, \% 0	$5+230$	5.76	1, 290

Taure 40.-Balsam fir: Board-foot volume per acre of all trees in and above 7 inch diameter breast-high class, by the International rulc, $1 / 5-$ inch saw kerf

MATERIAL AND TECHNIC EMPLOYED IN YIELD STUDY distrabution of plots

The geographical distribution of all the plots of this yield study has been mentioned previously and is shown in Figure 1. Table 41 gives the distribution of the 201 plots used for normal red spruce yield tables in respect to locality, site, mixture, size, age, and number of trees on the plot. Eighty-one per cent of them lie between the ages of 45 and 84 years, 88 per cent between site indices 40 and 59 , and 79 per cent are practically pure red spruce.

Table 41.-Distribution of plots used for fully stocked red spruce tables

PLOT MEASUREMENTS

In the determination of the size of the plots, an attempt was made to include a minimum of 100 trees. However, as evenness of stocking was another factor to be considered, this minimum number of trees had to be disregarded in about 30 per cent of the plots. It was rreferable to have a small, evenly stocked plot than a large plot with pronounced irregularities, abnormalities, or holes. Horizontal measure was used throughout in laying out the plots.

The method of collection of the data followed the customary routine. Briefly stated, the notes gathered on each plot covered location, size, description, tree tallies, heights, form-point heights, inerement borings, and, for some of the plots, sample trees.

ALLOWANCE FOR ABNORMALITIES DUE TO DAMAGE BY SPRUCE BUD WORM

Over large azeas of Maine and northern New Hampshire the damage done to spruce and fir by the spruce bud worm during the period 1910-1915 was extensive, and because of the character of the damage sample plots taken in such regions were abnormal. Wherever the attack was made practically every tree was affected; if it was not killed, at least its diameter growth was reduced, temporarily if not permanently. It was necessary, therefore, in the computation of the yields of these plots to take into account the reduction of diameter growth as well as the loss in tree numbers. Field tallies included estimates of desth due to bud worm, and increment-core measurements gave the effect on diameter growth. For each affected plot the diamoters were revised so that the reduction in diameter due to the damage was eliminated and the tallies were corrected so as to include trees which were killed by the bud worm and which might have lived had they not been attacked. This was necessarily a procedure to be carried out on the individual plot, as the figures for diameter reduction and death were extremely variable. Badly affected stands were not considered at all. Altogether about 60 of the plots chosen showed bud-worm damage, and very few of them could be included in the red spruce tables because of their composition or because of understocking.

METHOD OF CONSTRUCTION OF tables and charts. and their limitations

 CURVE CONSTRUCTYONSince the methods employed in the office work follow essentially the procedure set forth by Donald Bruce (47) in an article entitled "A Method of Preparing Timber Yield Tables," they will be outlined only briefly. The aim of the procedure is to obtain a set of tables which check with each other and with their own material at the same time. For example, the curves for total basal areas, number of trees, and size of the average tree should check with each other. In addition, each curve should fit its plotted points. In this study all the plots between site indices 45 and 54 were used as a basis for the original curve of trend with age, called the graduating curve. The graduating curves of groups of factors which should check with each other were fitted together and with their own points at the same time. Following this, first estimates for plots of alil sites were made from the graduating curve, and these, grouped and averaged by site classes, gave a means for obtaining correct spacing of the curves for all the site classes represented. The spacings between sites were also made to check among the various groups or curves.

The curves for all site classes were next drawn in by anamorphosis, so that each curve maintained the trend of the graduating curve. A second estimate for all plots was made based upon these final site curves, the computed difference between the estimated total and the actual total giving a gross error of the estimate.

The deviations of the individual plots from the principal curves, such as the curves for total basal area, number of trees, total cubic feet, and total board feet were computed in percentages. The average of these percentage deviations, neglecting the algebraic sign, gave the average error, which when multiplied by 1.253 gave an approximation of the standard error. All plots which had deviations more than twice the standard error in basal area were diseaxded, which necessitated a slight readjustment of the curves.

Other sets of curves besides those mentioned above were balanced. Basal area per acre, height of the average dominant and codominant, and total cubic-foot volume were so balanced that a computed forest form-factor curve took a smooth trend, the forest form factor being derived from the equality that basal area \times height \times forest form factor equals cubic volume. Were it not for the system of volume computation used in this study, an alternative set of check curves might have been those for size of the average tree, height of the average tree, volume of the average tree, number of trees, and total cubic-foot volume. This would assume that the same table of volumes and the same curve of heights were used for all species on each plot. In this study the volume table indicated by the average form-point height of the plot and species in question was used for obtaining the total plot volume. This meant that each of the three species, red spruce, white spruce, and balsam fir, was treated separately. Since mixture of species and lowering of form class of red spruce usually occurred in the lower age classes, it is in these ages that the total cubic-foot curves will vary somewhat from the desired check. A fourth check set composed of curves of total cubic feet, ratio of board feet to cubic feet, and total board-foot volume was used to obtain the proper trend of the board-foot curve.
A summary of the average errors and the aggregate or gross errors of the total estimates is given in Table 42 for the three species. The white spruce errors are based upon use of the white spruce tables (Tables 29-34) and the balsam fir errors on the balsam fir tables. (Tables 35-40.) The errors involved in applying the red spruce tables to white spruce and balsam fir are not given.

Table 42.-Average errors and aggregate ervors of several of the tables

Item	Average error for-			Aggregate error for-		
	$\begin{gathered} \text { Red } \\ \text { spruce } \end{gathered}$	White spruco	$\begin{gathered} \text { Balsam } \\ \text { fir } \end{gathered}$	$\underset{\text { Red }}{\text { Reduce }}$	White spruce	$\begin{aligned} & \text { Balsaun } \\ & \text { flr } \end{aligned}$
	Per cent					
Hasal area	22.4	20.2	18.0	+.00	+2.01	+.58
Nami, cubic-foot volumo	10.0	10.5	10.0	-. 12	+.52	
Total, board-foot volume	21.2	28.6	25.1	-. 69	+2.13	+. 00

The aggregate error of the total estimate stated in Table 42 indicates the difference between the sum of the estimated values of all the plots interpolated for age and site and the sum of the actual values of all the plots. For instance, under red spruce and opposite basal area, -0.22 per cent means that the sum of estimated basal areas of the plots used as basis for the red spruce tables is 0.22 per cent lower than the sum of the actual basal areas of these plots. To a certain extent a list of average and aggregate crrors indicates the fit of a set of data to their curves. The wealoness of the white spruce material is quite evident in that several of the percentage errors are relatively

Figunf. 18. -Red spure aliocment chart for lotal basn] aron per aere
high. Further refinement of curve fitting and computation is of little use, since the plots are few in number and variable in their values.

PRESENTATION OF DLAQRAMS BY ALINEARENT OHARTS
Sets of curves which have been derived by anamorphosis can be easily replaced by alinement charts. Figure 18 illustrates the total basal area curve for red spruce in this form.

The total basal area is first laid of on the left-hand vertical scale in equal graduations. At a convenient distance to the right another vertical scale is erected upon which are marked the site-index graduations that represent the proportionate spacing of the site curves.

In this case, they can be obtained by dividing the total basal-area values for any age by the first of thesc values. For instance, for 110 years these values are $282,269,250,218$, and 158 for the five sites, and the divisor is 2 S 2 . The quotients derived are $1.000,0.954,0.887,0.773$, and 0.560 . On the right-hand vertical axis the base is marked site 70 . Above this at $1.000-0.954$, or 0.046 units, site 60 is placeil. At $1.000-0.887$, or 0.113 units, site 50 is placed, and so on for the remaining sites. The unit used should be large enough to give well-spaced graduations.

The age graduations must next bo determined. For this purpose, for each age place a straightedge between site index 70 and its corresponding basal area. Repent this process for the same age with site 30 . The intersections of the two lines are the positions for the age graduations in question. The intersections will be found to lie in a straight line radiating from the origin of basal-area axis.

The curved lines shown in Figure is are merely for obtaining finer age or site graduations, and are obtained by plotting the age or site graduations at equal horizontal intervals and drawing a curve through the plotted points. Sulsdivision of the equal horizontal intervals into 10 parts, and projection of these subdivisions vertically up to the curve and from this point horizontaly to the age or site axis give the finer graduations desired on the axis.

Similar presentations can be made for tables for total number of trees, dismeter of average trec, total cubic-foot volume, and total board-foot volume.

stand tables

The method of computing stand tables as outlined in the first section of this bulletin was made necessary by the character of stem distribution in red spruce stands. As mentioned previously a common method of studying the distribution of trees in diameter classes is to compare it to a normal distribution as obtained by use of the Gaussian curve or law of probabilities. If the comparison is sufficiently close, the character of this distribution can be very simply stated by giving only the arerage diameter of the stand and the standard deviations of the diameters from this average. However, red spruce does not have this conformity. To use a mathematical expression, it has a skewed distribution. In Figure 13 an eflort was made to present in a simple manner in series of such skewed distributions through the range of average diameter classes.

For the preliminary steps only those plots were taken which were practically 100 per cent pure red spruce and which in addition had no abnormalities in stocking such as holes or exceptionnlly large trees. These plots were grouped into classes, based on the diameter of the average tree. In each group the number of trees in onch diameter class was found and cumulative sums were built up to a complete total for that group. The percentages of these cumulative sums over the group totals were then computed (Table 43) and plotted on arithmetic-probability paper. When the plotted points were connected by straight lines, readings of diameters mude at certain percentage points such as $99.9,99,90,75,50,25$, and 2 were the basis for a new plotting on ordinary coordinates with average diameter of the stand as the horizontal scale and diameter class as the vertical sealc. Straight lines were drawn, one through all the 99.9 per cent points, one through all the 99 per cent points, etc. When
these curved values were read and plotted on logarithmic-probability paper it was found that by the addition of 20 to the diameter classes the straight lines of Figure 13 were formed with practically no deviation. Figure 13 is a section of logarithmic-probability paper with the diameter units 20 to 50 cnlarged and numbered 0 to 30 to represent the actual diameter classes.

Table 43.-Basic data for red sprace stand lables

${ }_{\substack{\text { din }}}^{\text {Diamoter class }}$ (inches)	Average diameter of staud (iocliss)			
	$\begin{array}{rl} 2.38 & 3.88 \\ \hdashline & 4.87 \\ \hline \end{array}$	5.6S $\cdot 0.35^{\prime} 7.10 \quad 7.73 \quad 8.22^{\prime} \quad 8.78: 9.37$. - - -...-- \ddagger.... -... of total number of trees ap to and inelutimg		
3...----------				
		coll	Stiol	
	--7.-7--100.0			
		$\cdots-1$.		
		-1.		
${ }^{\text {number }}$	3 \% 1	$\begin{array}{lllll}12 & 21 & 23, & 21 & 11\end{array}$	21	

The form-class system of normal volume tables has several advantages, a number of which have already been stated or hinted at. This subject has been studied intensively, but as the results have not reached final form at the time of preparation of this bulletin, modifications and improvements of the results adopted in this work may be expected later. These will, however, increase the applicability and accuracy of the system, and will not affect to any appreciable degree the total volumes of stands as given.

The total cubic-foot volume tables were checked for the three species with the results stated in Table 44.

Table 44.-Total cubic-foot volume lable check

[^5]For red spruce the sums of volumes as determined from the tables underrun the sums of sealed normal volumes by 0.81 per cent; the actual volume of trees, including butt swell, overruns the normal volume not including butt swell by 2.63 per cent; and the average error of the normal volumes from the table is 4.7 per cent. White spruce and balsam fir have similar checks. Tho average erors are apparently small. To be made comparable to average error obtained by other systems of volune tables, soveral modifications must be made. In application to stand tallies only one average form class is used for: each. By investigation Behre found that the range of form quotients or form classes of the individual trees of a stand have a standard deviation of 4.5 units, which he further showed to be equivalent to 6.75° per cent of volume. The standard error corresponding to the average error of 4.7 per cent of the check on the volume tables (Table 44) is 5.88 per cent. In combining these two standard deviations of 6.75 and 5.88 per cent by the rule of the square root of the sum of their squares, this result is obtained-

$$
\sqrt{(6.75)^{2}+(5.88)^{2}}=8.95 \text { per cent }
$$

This is equivalent to an average error of 7.16 per cent, which Behre concludes is well below the minimum of 10 per cent, temporarily set up as a standard in volume-table work.
Figure 15 is supported by the data of 670 red spruce, 337 white spruce, and 346 balsum fir. The form-point height and the form class of each were measured and the correlations between them investigated. Table 45 presents the results concisely.

Table 45.-Corvelation compulations supporting figure $1 \overline{0}$ on relation between form point and form quolient

Figure $1 \overline{5}$ gives, as already mentioned, only the regression lines. There is undoubtedly some curvilinearity in the upper portions, evidences of which will be strengthened by more material in the course of the form-class volume-table study. The significance of correlation coefficients is mentioned in the following pages. The error of estimates of individual trees means that single quotient units will have a standard error of so many form-quotient units. If 20 trees in a stand are taken to obtnin the average form quotientis of a stand the standard error of this average is indieated in the last column of the table. This wes obtained by summing the square of error of estimate of single trees and the square of the standard doviation of form quotients in a stand, formerly stated to be 4.5, theu dividing by the number of trees measured (assumed to be 20), and finally taking the square root of it all.

frepalation of tagles for partial stands

The preliminary step in the preparation of tables for separate parts of the total stand was to compute for each plot the percentages of basal aren, number of trees, and volume for the partial stand; also the size of the avcrage tree included in those portions of the stand. Then, regardless of site and age, these percentages and sizes were averaged in classes of average stand dimmeter, and plotted over these average diametors. Smooth curves were drawn through the plotted points. For each partial stand the curves for percentage of basal area, percentage of number of trees, and average size were drawn so as to balance with one another.

The fundanental assumption of this method is that the average diameter is the chief varinble in determining the proportions of basal area, number of trees, and volume represented in any portion of the stand. In several other studies this assumption was found to be entirely sound. In the present study, however, too much faith must not be placed on the cxtreme values. That is to say, some of the results will not be very reliable when applied to site 30 and site 70 and to the very low ages of the other site classes. However, for the sites which are commonly found, and for the eflective ages, the procedure is sound.

LIMLAAMCONS OF TABLES

The specific limitations of some of the tables and charts should be mentioned. For all the red spruce tables, the values for the low ages are weak. The material for stand ages under 35 years total age is very sparse. The material is also scant for the ligh ages, such as ages above 90 years, indicating accorclingly a weakness in the curves at this age. As mentioned previously, the extreme sites 70 and 30 are very seldom found, but are included in the graph and tables in order to furnish a means of interpolation between the adjacent site classes.

statistical analysis of resultas

An attempt was made to study the interrelation of the various stand characteristics by statistical analysis. The characteristics or variables used were percentage of misture (called composition), age, site, basal aroa, number of trees, cubic volume, and board-foot rolume. For the last four the actual values were expressed as percentages of the tabular values interpolated in each case for the age and site of the particular plot. These percentages could be called normality percentages. The sites of the balsam and white spruce plots wero reduced to equivalent red spruce site values and computations were made for these species similar to those for the red spruce from the red spruce tables. Multiple regression equations, correlations, and deviations of several orders were computed for a number of combinations of the varinbles. Only a few of these will be discussed. All plots above 30 years of age at breastheight (45 years total age), whether understocked, fully stocked, or overstocked, were used. For red spruce 257 plots were available, for balsam fir 137 plots, and for white spruce 98 plots.

[^6]A few words are needed in explanation of corrclation coefficients. A correlation coefficient is a computed quantity giving the degree of relationship between two variables. A negative coefficient means that if one of the variables increases, the other decreases. A positive coefficient means that if onc of the variables increases the other increases. The size of the coeflicient indicates to a certain extent the amount of relationship, a zero coefficient indicating no correlation, and small coefficients signifying little or none. Not until the values appronch 0.50 and are larger than three times their probable errors are they ordinarily assumed to have substantial importance. The greater the number of samples used in computing the coefficients, the more significant will these coeflicients be.

As an indication of the fit of the curves to the basic material, the value of the correlation coefficients of several variables to age were considered. Coeflicients of negligible amount with noncurvilinearity of residuals would indicate a good fit. With red spruce the test was satisfactory, as is seen in Table 46.

Table 46.-Correlation coefficients of age with several sland factors

Correlation between ago and-	Ied spruce	White spruco	Balsam Ar
Normality per cent of bayrd-loot volum	- 0 , 06 ± 0.042	-0.26: 20.061	-0.230.t0.051
Normsily per cent of cubic-fool volum		$\stackrel{2}{+24 \pm}+1064$	+.17土 . 0.050
Normality per cent of basal area	-. $10 \pm .04$	-. $35 \pm$.060	-.23土 . 055
Normality per cent of si	- . $03 \pm$. 012	-. $03 \pm$. 069	-. $32 \pm .052$

The coefficients for red spruce are insignificant and therefore the fit of the curves to the material is apparently good. For halsam fir and white spruce, the fit is not so good, the correlation coofficients oxceeding three times their probable errors in aumerous instances. The negative character of the coefficients indicates that the position of the curves in the younger ages for all factors except number of trees is probably a triffe low for these species or that in the higher ages it is a trifle high. The need is thus evident for separate tables for white spruce and balsam fir.

Table 47.-Important correlntion coefficients between various stand factors

The only important correlation cuefficients between any two of the variables tested are thase in Table 47 , which bring out in number of interesting points. Although Figure 3 indientes a decided curvilinear tendency in the board-foot and number-of-trees relation, the coefficient of correlation has a significant value. If the correlation
index, which is to the curved line what a correlation coefficient is to a straight line, were computed, a decidedly significant value could be expected. Board-foot volume and basal area seem weakly related. Curvilinearity may in this case hide the true trends. Basal area and cubic-foot volume are very closely related. For this reason the use of basal area as an index of normality of a stand which is recommended under the discussion of the application of yield is well substantiated, or at least for cubic-foot volumes. For board-foot volume it apparently will not serve so well, unless the curvilinear trend of board-foot volume with basal area be defined. Further study must be made of these factors.

The effect of percentages of mixture of the principal species was also investigated, but no important deductions could be made.

DETERMINING THE PERIOD OF GEVELOPMENT FROM GROUND TO BREASTHEIGHT

sEEDLINGS

The ages of the yield plots were determined by taking increment borings at breasticight. This procedure necessitated the determination of the number of years needed to develop from germination to a height of 4.5 feet. If at all possible, the effect of site on the length of the period would have to be included. For this purpose 218 red spruce seedlings, 95 white spruce, and 152 balsam fir seedlings were analyzed. The majority of these were taken from sites where full benefit of light was obtained, and if any shading or competition was at hand, notes were made to that effect. Of the total number, 168 of those reaching or exceeding 4.5 fect in hoight were red spruce, 79 were white spruce, and 134 were balsam fir. For these groups Table 48 gives the average ages at which stump heights of 1 foot and breastheight were reached.

Table 48.-Number of years required for seedlings to attain heights of 1 fool and 4.5 feet

Species	$\begin{aligned} & \text { Ago to I } \\ & \text { fool } \end{aligned}$	Age, 1 foot to 4.5 feet	"total ege to 4.5 leet
Red spruco.	Fears 6	Yedra ${ }^{\text {a }}$	Years
White spruce	6.9 6.2		14.8
Baisom fir....	6.0	8	13.5

嚴In each locality where seedlings were measured a notation was made of the site as obtained from an adjacent sample plot, if possible, or from a personal estimate of the character of the soil and the soil cover. The results were in a way disappointing for no distinct relation between age of reaching breastheight and site could be determined. At times, in fact, the measurements seemed to be contradictory. For developing seedlings it is apparent that site is much more specialized than for maturing trees. Each pebble, each bunch of grass, each depression may affect its development, so that full access to light alone is not the sole requirement. Large numbers of measurements are needed if any correlation of age with site is desired, as the differences caused by the obscure site factors are large. A single average value of 15 years for development from germination to 4.5 feet height was therefore tentatively taken for all sites.

The variation in height growth of seedlings on areas which have the gross characteristics of equality of site bears out the conclusion that the minor details of site affect seedling development greatly. One area in particular can be mentioned. It was an oid pasture with a scattering of white spruce seedlings over the whole of it, and with no competing vegetation except heavy grass. The shortest scedling taken measured 1.5 feet in height and was 10 years old, the tallest was 9 feet in height and was 13 years old. Intermediate sizes showed an irregular variation between these heights. Usually there is a slight correlation between age and height of seedlings, which, however, is not at all commensurate with their respective diflerences in height development.

Further study will undoubtedly reveal differences in ages upon various sites, or reveal methods whereby the long period of initial development an be decreased. As soon as this is done the total age of the yield tables, which is now 15 years plus the breastheight age, can be easily corrected.

SAMPLE TREES

As the period of seedling development was much longer than that originally estimated, certain comparisons were made to check this value. The sample trees taken with the preliminary data furnish a partial comparison. Since measurements were made on these trees at 1 -foot stump height and at brenstheight, either by actual cutting or by increment borings, there was an approximated measure of development from stump to breastheight. For 84 red spruces this period was 5.3 years, for 42 white spruces 4 years, for 43 balsam firs 4 years. This is to be compared to the values $7.9,7.3$, and 8 of Table 48. The weight of numbers lies, however, with the seedlings; and since it is known that they were necurately taken, the age for development to breastheight must be judged from their measurements. On the other hand, the very apparent indications that this period can be less or can be made less by a little treatment or care of the soil should allow some flexibility in estimating total age.

PERMANEN' SAMPLE PEOTS

A number of permavent sample plots were laid out in 1904 and 1906 in pure second-growth spruce stands at Corbin Park, near Newport, N. H. Since that time cuttings have disturbed several of them very seriously, so that some of the records do not go farther than 1915. Subseguent subdivisions had to be made in some of the plots because the conditions of stocking were judged to vary so widely that the growth in several portions of the same plot might be radically affected. Four of the plots were thimed.

Table 49 gives a list of the total cubic-foot volumes per acre of live trees on the five dates of measurement. Table 50 gives the periodic annual increments computed directly. Each period is assumed to be five years although the months of measurements vary enough to throw them out of an exact 5 -year interval. However, total volume of live trees and periodic increments do not tell the whole story. Mortality is contimually taking place among trees, and at times may involve a considerable volume, which decreases considerably tho net inerement of live trees. In this connection, if Table 51 is observed and the periods of large mortality are noted, it will be seen that the corresponding increment in almost every case is small if not negative.

Table 49.-Statistics of permanenl sample plots, located in a pure red sprace stand, Corbin Park, N. H.

${ }^{1}$ Measured in July, 1900 , and June, 1914 , instead of October, in0t, had July, 1910.
Table 50.-Petiodic annual inerements per acre on permanent sample plots

	Plot No.	1904-1010	1912-1915	1910-1920	1021-1925
Withimmed		Cubicfecl Cubiefect Cubic fect			cubic feet
		-30	26	109	
711 C		76	$\stackrel{3}{4}$	78	8
714.		${ }_{6} 6$	0^{62} ',	$3 \cdot 9$	20
7413.		70	110	-10	-
7174		50	(i2) :	48	14
${ }_{717} 717$		00	51	10	15
723		2	${ }_{18}^{1.84}$	-14	${ }^{2}$
702				81	18
720 A		101	$3{ }^{3}$;		
730 B		102	70 -	116	24
720A.		02	88	32	9
		52			

Table 51.-Volume per acre in dead trees on permanent sample plots

Tables 49 to 51 , inclusive, indicate that the stand was at that age when, according to Figure 10 , periodic increments are rapidly approaching low values and thinning becomes advisable. The thinnings carried out on four of the plots, as shown in the tables, with the grades of thinning given in Table 52, resulted in benefits more apparent than real. The gross average annual increments for plots 711 A to 723 were found to be 72 and for plots 720 A to $726 \mathrm{~A}, 86$; for the very dense plot 762 and its thinned neighbor plot 761 they wore 35 and 100 , respectively. In other words, in the first group of plots the thinnings did only a trifle more than utilize the volume of trees which would have died anyway. In the second group the benefit is much more real, since the gross increment is substantially increased. One must conclude, therefore, that in the first group the thinnings should have been heavier or more consistently repeated throughout the life of the stand.

Table 52.-Grade of thinnings mado on permanent sample plots ${ }^{\text {. }}$

The set of permanent samplo plots can also furnish interesting discussion of the yield tables and their application. In Table 53 there is an effiort to translate a number of plot values in terms of percentages of yield-table values and by moans of this to determine the reliability of the relation between the percentage of normal number of trees or basal area and that of volume. The ages and sites used are indicated for each plot in Table 49. Only the unthinned plots measured through the whole 20 -year period will be considered.
$\mathrm{T}_{\text {AbIE }} 53 .-$ Comparisons of percentages of normal number of irces and basal arca with regard to prediction of cubic-foot volume for a 20 -year period

Columns 2 and 3 of Table 53 give the percentages of the normal number of trees at the first and last measurement. Columns 4 and 5 give the corresponding percentage of volume as read from Figure 3. Columns 6 and 7 are the percentages of normal basal area and 8 and 9 of normal volume. Columns 10 to 15 give the difference of the several column values as indicated. The use of number of trees and the use of basal area as a measure of stocking and for prediction of future volumes can now be compared. According to these limited data, both methods give low estimates. Columns 10, 11, 13, and 14 give the relations of same years, but columns 12 and 15 consider respectively the prediction of volume after 20 years from the number of trees and the basal area at the beginning of the period. In this case the two methods result in strikingly similar values. The basalarea method, however, is the one more commonly used and is probably not affected so much by groupwise stocking of trees; it is therefore recommended until further investigation can disclose more satisfactory methods.

BIBLIOGRAPHY

GROWTH AND yIELDS OF GPRUCE AND BALSAM FIR IN THE NORTHEAST
(1) Belyer, H. C.
1922. cURRENT aNNDAL inCREMENT OF RED SPHUGE AND bal\$AM fir in the western adirondacks. Jour. Forestry 20: 603-605.
(2)

Bentley, J., Jr., and Rechnsahm, A. B.
1917. accelprated ghowth of shruce after curring. Jour. Forestry 15: 896-898.
(3) Gary, A.
1894. on the growth of spruce. Me. Forest Comr. Ann. Rpt. 2: 20-36.
(4) Chandler, B. A.
1919. resulis of cutting at ne-ila-Sa-ne park, in the adimondacks. Jour. Forestry 17: 378-385, illus.
(5) Graves, H. S.
1899. practical forestry in the adinondacks. U. S. Dept. Agr., Div. Forestry Bul. 20, 85 p., illus.
(6) Hosmer, R. S.
1902. A s'tudy of the maine spruch. Me. Forest Comr. Rpt. 4: 63-108, illus.
(7) and Broce, E. S.
1901. a porest working plan for township 40, totten and crossfidld puncilase, hamilton county, new yolek state forest pheserve. U. S. Dept. Agi., Div. Forestry Bul. 30, 64 p., illus.
\qquad and Bruce, E. S.
[1904]. a forest wohking plan for townships 5, 6, and 41, totten and crossfibld purofabe, hamilton county, vew rork. N. Y. Forest, Fish, and Game Comic. Rpt. (1903) 0: 377-456, illus.
(9) McCarthy, E. P .
1918. accelerated growich of balsam fir in the adirondacke. Jour. Forestry 16: 305-307, illus.
1918. obsemvations on wnderned cut-over lands in the adironpacks. Jour. Forestry 17: 386-397, illus.
(11) - and Hoyle, R.J.

1918-19. production of pulp on balsam lands. Paper 23(7): 14-18, illus.
(12) and Robertson, W. M.
1921. volume inglement on cot-over polirwood lands. Jour. Forestry 10: 611-617, illus.
(13) Moore, B.
1917. SOME FACTS INFLUENCING THE REPRODUCTION OF RED SRRUCE, balsam fir, and white pine. Jour Forestry 15: 827-853, illus.
(14) \qquad and Roaers, R. I.
1907. NOTES ON BALSAM FLR. Forestry Quart. 5: 41-50.
(15) Murphy, I. S.
1917. The red sphoce: x g crowth and management. U. S. Dept. Agr. Bul. 544,100 p., illus.
(16) Recknagel, A. B.
1915. forest survey of a pargel of state land. N. Y. State Conserv. Comn. Bul. 11, 19 p., illus.
1922. GROWTH OF SMRUCE AND BALSAM IN THE ADIRONDACKS. Jour.
1922. SAMPLE WORKING PLAN FOR ADIBONDAGK SOFTWOODS. Empire State Forest Prod. Assoc. Bul, 15, 16 p .
\qquad
1923. Ghowth of whirw sprdee in ter adilondadoks. Jour. Forestry 21: 794-795.
\qquad
(21)
-1924 study of adirondack spruce and balsam.
1924. NOTES ON GROWTH OF RED SPRUCE IN FRANKLIN COJNTY, MAINE. Jour. Forestry 22: 810-811.
(22) Riciands, E.
1925. A STUDY OF THE GROWTH OF SPRUCE AND BALSAM PULPWOOD ON CDT-OVDR RIDGE LaND in hewis county, n. y. Jour. Forestry 23: 20-29.
(23) Shepard, H. B.
1921. GHOTCE OF SPECIES FOR USE IN PLANTATIONS OF PULP AND PAPER companies in the norte. Jour. Forestry 19: 519-525.
(24) Zon, R.
1914. balsam fir. U. S. Dept. Agr. Bul. 55,68 p., illus.

APPLICATYON OF YIELD TABLES

(25) Carter, E. E.
1914. TEE USE OF XIELD TABLES In PREDICTING GROWTR. Soc. Amer. Foresters Proc. 9: 177-188.
(26) Chapman, H. H.
1921. Forest mensuration. 553 p., illus. New York.
(27)

1922, APPLICATLON OF YIELD TABLES IN TRE MEASURDMENTG OF GHOWTH ON LARGE AREAE. Jour. Forestry 20: 581-588.
(28) Fengka, R. R., and Lauderburn D. E.
1924. GRUIAE AND YIELD STDDY FOR MANAGEMENT. Jour. Forestry 22: 75-80.
(29) Harg, I. T.
1924. the application of normal yibld tables. Jour. Foregtry 22: 902-906.
(30) Naw, P. T.
1916. THE USE OF yIeld TABLes. Quart. Jour. Forestry 10: 129-130.
(31) Recknagel, A. B.
1913. THE TEEORY AND PRAGTICE OF WORKING PLANS (FOREST ORGANIZATION). 235 p., illus., New York.
(32) - and Bentley, J., Jr.
1919. Forest management. 269 p., illus. New York.
(33) WOoLsey, T. S.
[1922]. ambrican fohest regulation. 217 p., illus. New Haven.
DESCRIPTION OF THE REGION
(34) Bblyea, H. C.
1922. A gUGGEStIon FOR FOREST REGIONS AND FOREGT tYpes as a babis of management in nbw Fouk state. Juur. Foregtry 20: 854-868, ilitus.
(35) Cary, A.
1907. practical forestry on a byruce thact in maine. U. S. Dept. Agr., Forest Serv. Circ. 131, 15 p.
(36) Clapp, E. H., and Boyor, C. W.
1924. how tel United states can meet ixs present and future pulpwood requirmments. U. S. Dept. Agt. Bul. 1241,100 p., illus.
(37) Dana, S. T.
1924. the fonests of maine. Me. Forest Comn. Bul. 2, 28 p., illus.
1926. mmber growing and logaing practice in mie northeast. U. S. Dept. Agr., Forest Serv. [Unpublished manuscript.]
(39) Gurse, C. H.
1916. possibhities of priyate forest management in new york state. N. Y. Cornell Agr. Expt. Sta. Bul. 375, p. 697-746.
(40) Hawley; R. C., and Hawes, A. IT.
1912. forestry in new magland; a handbook of eastern forest management. 479 p., illus. New York.
(41) Moon, F. T., and Belyes, H. C.
1920. forestiy for the phivate owner. N. Y. State Col. Foregtry, Syracuse Univ., Bul. 13, 166 p., illus.
(42) Reynolds, R. V., and Pierson, A. H.
1923. LJMBER OUT Of THE DNTEED STATES 1870-1920. DEGLINING PRODUCtion and higif phices as related to forest exbatistion. G. S. Dept. Agr. Bul. 1119, 63 p., illus.
(43) Society of American Foresters, Comatyeed on Research, New England Secrion.
1922. Revision of a report on a forest region and type olassification for new england. Jour. Forestry 20: 795-798.

other misceleaneous refrrences

(44) Befre, C. E.
1923. preliminary notes on studies of tree porm. Jour. Forestry 21: 507-513.
(45)
1924. is taper based on form ouotment indepgndent of spectes and size: Jour. Forestry 23: 282-280, illus.
1927. form-class taper cunves and volome tables and their apphedrton. Jour. Agr. Research 35: 673-744, illus.
(47) Bruce, D.
1926. a method of preparing thmbib-yibld tablids. Jour. Agr. Research 32: 543-557, ilius.
(48) Keliey, T. L.
1923. statistical afethod. $390^{\circ} \mathrm{p}$, illus. New York.
(49) Katrredge, J., Ji.
1924. use of statistical mighods in forest research. Jour. Forestry 22: 306-314.
(50) Pearla R.
1923. introduction to medical biometry and staristics. 379 p ., illus. Philadelphia and London.
(51) Sociefy of American Foresters. Commitpee on Terminology.
1917. Forest terminology. Jour. Forestry 15: 68-101.
(52) Wriaht, W. G.
1924. suggested applicaptons of statistical methods in forestry practick. (1) (2). Jom. Forestry 22: 372-385.
1925. statistical metrods in forest-investigative work. Canada Dept. Int., Forestry Branch Bul. 77, 36 p., illus.
Yule, G. U.
1922. an introndotion to the thgory of statistics. Ed. 6, 415 p., illus. London.

[^0]: ${ }^{3}$ Italie numerais in parentheses refer to Bibliography, p. 50.

[^1]: ${ }^{2}$ For is deseription of the tilyicul characteristics and the management of red sprube, sue (t6), in which Lhe lables mentioned are included, and, for balsam fir, (24).

[^2]: ${ }^{3}$ Definitic is of the erown classes adopted in this study are briefly as follows:
 Dowinant-The large trees of tha stand with well-developed crowns oxtending thove the general ievel; with full light abore end part on the sides.
 Codominant.-Trees forming the greater part of the maith ennopy, receiving full light from above, and a litito on the sides.
 Intermedhate.- Trecs bolow the main canopy, hat still extending into it, receivfac only a little top light;
 bemmed in on all sides.
 Supprassed.--Trees entirely below the main canopy, practically n no top light; very poor erown development.
 For more detajed dentifions the reader may fefer to tha forest terminology adopted by the Socicty of
 american loresters (of).

[^3]: ${ }^{1}$ Total cubic-foot volume without butt swell.

[^4]: ${ }^{4}$ Tite relation of form-polat hefght and lorm quotiont has beon studied by C. E. Behro, and the prelimpary resuits are given hero. Iater modimeations and rethements tyill budotbtedly bo made, but the
 present conclasions are sumiontly accurato.

[^5]: i"table" volume is tho estimated volume from the tablo interpointiog for 1 -foot botght elass, 1 -fnela linmeter and one unit-form class.
 "tNormal" voluma is the volums of actual scalo reduced for butt swoll and bark.
 2"Actual" volume is tho volumo including butt swell, but not berk.

[^6]: ${ }^{2}$ For more detaled information as to methods, sen $48,49,50,62,54,64$.

