

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

HHE MBORA MOTH H REPLGOLC ESTHONWEFERNPINF RORESTS PITRRSONSW

S
 T A RT

THE PANDORA MOTH, A PERIODIC PEST OF WESTERN PINE FORESTS

By .J. E. Pitreason
Assistant Entomolofisl, Division of Horest Insects, Burean of Eutomology

bigredachan
fletreticy
Duseription
The ent
'chee hars'a
Tho papht, -
91te matise
fiosts nom disiributkon

CONTEN'SS

Inge			Prase
t	Natare mad extent of injury.		- 0
$\underline{\square}$	Primary injury.		6
\cdots	Sisemondary injury		12
- 3	Biolagy-.....		18
- $\quad 3$	Naturat enmmios.		17
\cdots4 	Sietinots of control.		, 18
:	Shmmary internture titai	*	18 18

INTRODUCTION
During the period extending from 19 s to 192 s thousands of aeres of merchantable yellow pine on the Klamath Indian Resenvation and adjoining timbered triets in Oregon wem severely defoldated by the caterpillars of the pandora moth (colorkdia pandora Blake). ${ }^{1}$

This large moth is requarly present in this region, as well as in many other sections of the Wiest, but the history of its past occurrences in destractive nambers reveals the fact that in sonthern Oregon the inseds increase to the propertions of an epidemic at tatery regular intervals of ibout 20 or 30 years, and contime abundant for from 6 to 8 vears.

Indians of the Kiamath region report that the eaterpillats of the
 teresting note regarding these bure caterpithars is found in a letter to the writer from Ji. Marion Wilkes forest toparapher of the Ghited Shates Indian Service, whe states that the Klamath and Mrodoc Indians fommery collected the pupae for tood. These they called "boll quandh." Aldrich ($1, z)^{2}$ and J. M. Miller (in a ketter) state that the diute Indians in the vicinity of Mano Lake, Chaf., collect the mature caterpillars by encireling the infested trees with focp trenches. After desconding the trees to papate, the caterpilhars Fall into these trenches and are nable to eseape. They are then - eq fhered by the Intians, who dry them by burving them in momets

 minnt
of earth which have been previously heated by fire. The drying procuss is completed by spreading the caterpillars in the shade. The dried caterpillars, or "peage", are eaten in the form ot stew made by boiling them with vegetables. The Khamath Indians were not known to cat the caterpillats, though they considered the chrysalids a delicacy when roasted.
('olorudiat pandore has leceme a forest pest of major importance. at Jonst in the Klamath Reservation and adjoining areas, the repeated defoliations in the yats of its aboudance having resulted in greatly retarded tree prowth, with consequent loss of increment, and, in cases of severe defoliation, in the death of the trees. Wen more serions has bern the loss from bark-beetle intestations which have developed as a resalt of the caterpillat's work. Trees which have been weakened by defolation are wery suseeptible to the attacks of badk bedies, ind an epiemic of these bectles which followed the recest moth outbreak has developed to alaming proportions in these stambs during the past lew years.

1BENTITY

Aemoding to 11. (i. I)yar, of the T'nited States National Museum, who has identified suecimens for the writer, the form of Camadia oceurting in Oregon and Califomia is Coloradia pandora Bhake. Packitre (9,7 . $/ 12$) and Chamberlin (G) refer to specimens coliected at Fort Klanath. Orec., as (. pendorer: and in the publica-
 found in ('aliformia this name is rectimed. Recenty (in 1926) Barres and Benjamin (4) in deseribing new speries of Colomadia haw listed specinems from Oregom and califormatas the vew species ('. In indserif.
The diflerent forms of Coloradia are not casily separated, and since the insed foum in the West is wetmally known ats r^{\prime}. pendora. and is thas refered to in eromomic fiterature, it semas best to retain this hame for the present alt leas. The speries which weems in southerol Oergom and (atifornia is therefore referen to in this buthetin as (Ammarem Blake.
 presented in this bultetin apply aperifically th the meset in the region of its oremrence in sentherentral Orem.
Doecor Dyar in a letter states it as his on inion that there an not more than two speries of coloralia in the laited States. of which the larger one. with distinet markings on the limb wings in the mate,
 and wan deseribed from Pikes leak in that siate. Laceal forms.

 chimernhen 13. and 13.. Prom the Chirimhun Montains, (botise Co.,
 Ariz.; f'. pmodorm bouminalli IS. amd B., from Jight Rolle. N. Mex., and f^{\prime}. pemdora lindseype B. and B.. the form here ander comsideration. Chatacters other han lowaty sumatiog the mase are slight. and
 these sabions rabidal manke.
The other firm of condatia referved to. Damely, ('. doris Barnes

with a loral form, ('. doris / whe B. and B., from the White Mountains of Arizona. This species is not discussed in the present bulletin but is mentioned for the sake of completeness. It is not known, even, that it feeds upor pine.

DESCRIPTION

THE EGG
The ergs of Coloradia pandora (fig. 1, O and D) are nearly subspherical or globular in shape, and are slightly compressed on two opposife sides. As incubation progresses the surface has a tendency to shaink, and these flattened sides become strongly depressed. The egges rary in size, averaging e. 5 mm. in length and 2 mm. in width. The color is phte, semitanspatent, bluish green when deposited, later changing to a dulter, more opaque, green. They are deposited in chasters of varying size.

THE LARVA
The lavat, when they emerge from the efrgs, are appoximately G man. long. They ate back or brownish and covered with short dak hairs. The head is broad, 2 man, wide, and shiny black in color. The thomace segment is nearly as brond as the head and the rest of the boly tapers gradnally matuorly. The fan-grown harvae measure trom (6i) to 70 min. in tength and ate vellowish green. (Fig. 2, A, B, and (.)

THE PUPA

The pupae (fig. 3,1), which are datk chocolate brown, range from 13 to 15 Bm . in wilth. and from 25 to 88 mm . in length. The outlines of the fofled wings, eyes, antenme and other characters of the adelt are planly visible on the surface.

THE ADLITT

The adults (fig. A, A and B) are brownish gray. The antemate are biserate am a littie homper than the thorax. The thomas is black, st reaked with gray, and is clothed with short, whe hats. The apex is tufted and extends beyond the wings. The forewiners are brownish gray. with an indistinct, wary blackish band extending obliquely arros them. There is a small. distinct black epot on the discal nevers.
The hind wings are ratoms gray. with an indintinct, combly band taperine from the interior to the exterior margin. Theye is a distinct brownith apot on the disk. The base of the wing and interior margin ar clohed with pinkioh hairs which in the male shade to wine color Lemphat traly of temale 40 mm. of mate 25 mon, wing (xpanse of femate se mm., of male s. mam.

hosts and distribution

C'oloralize pundure attacks onty pines. Western reflow pine (Pinus ponderosa) is the poferred host throughout the greater part of the inser s mange in the Pasific States. Jeffery pine (P. jnftreyi)
 moth. The attak on lengmobe piace appear to be purely incidentat.

 がみ！！

Coloralia pandora has been recorded from various sections in all the Pacific States ${ }^{3}(1,2,5,0,10)$. Its range is probably coincident with that of the western yellow pine, its principal host. The writer has collected the insect throughout the pine belt from the Sierra National Forest in south-centrai California to as fan north as Bend in central Oregon. Though the species is thus shown to be of rather wide distribution, verere infestations of this pine defoliator have been recordeal from only two localities. south-cental Oregon and the Inyo National lorest in east-centeal (aliformia. In the batter section occurenee of the species has not been epidemic in the true sense of the term, but has hat more of the character of a high endemic infestation. There are definite records of the species oceurring in highly epidemie form in the former region only. Packard (0, p. 11.3) states that the insects wete common at Fort Khamath for a few years prior to 1803 . The recent epidemic developed on the Klanath Indian Reservation. Oreg., in 1918 and continued umabated until 1925, when there was a noticeable decline in the number of caterpillars and papac, and the defoliated trees began to show recorery. In 1026 the mamber of arlults was nedigible as compared with the number of those of the previous flight years, and it was apparent that the recent epidemic hat about run its course.

It is possible that the decline of the epidemics and the comparative exmption from moths in the intervening years are due to the activity ot the moth's natural enemies, which under normal conditions may be capable of holding the infestation in check.

I'upation takes place in the ground, and it seems that a loose, pumice soil in which the caterpilhars can easily bury themselves is necessary to the most successful development of the moth. It is significant that epidemics of C'oloradie pandora have oceured only where this type of soil is found.

NATURE AND EXTENT OF INJURY

The following diseussion of the damage done by Goloradia pandora is mot exhanstive. Untortumately it was not possible to stady from its beginning the recent epidemie of this insect on the Klamath Indian Reservation. 'There is need for a more detailed and comprehensive starly of this injury than has been possible in the past.

It must be borne in mind that under nomal conditions infestations of this pine defoliator are of no economic consequence, because defoliations are not then severe enough to have any appreciable eftect on a tree's growth or vitality. It is only during epidemies of the insect that damage results. This damage natumally divides itselt into two phases: The primary injury to the tree, or that resulting directly from its loss of needfes, and the secondary injury, brought about by the wakened condition of the tree, rendering it more susceptible to burk-beetle attacks.

primairy injury

Althongh (\%obradia pandore may at some periods canse practically complete defoliation of the trees whiel it attacks, it is not alwas of

[^0]itself fatal to its host.' 'The amomnt of defoliation which a tree may suffer and yet live is suprising, and the amount of defoliation which accompanies nomat infestations of C^{\prime}. pandores does not affect the trees in the least degree. That even seemingly complete defoliation does not always canse the death of trees is due to two facts: (1) The terminal buds are not eaten by the caterpillars, and the tree thus retains the power to put forth new needles; and (2) the tree has a breathing spell every serom year, even during epidemics, becaluse the inseet has at 2 -year life cyde, and the period of leasy feeding ocetrs only in alternate years.

The areatest economic loss for which foloradia pandore is directly responsible womes about through the suppression of the tree's growth, particatarly during years of severe defolation." The width of the mamal rings maty be as much ans so per eent less than normal, and in sme cases the trees fail to put on any new wood on one or more sides of the tromk. It is evident that it great loss of incrment oxeurs during the period of an eppidemic, and this loss, when sustaned orer large arens of merehatable timber, amonts to many humber thomands of board feet. Nehongh this loss is known to (xist, many complicated factors make it dificult to estimate, even romghly. the total loss oceasioned by the recent pidemic. The greatest differity is encountered in the fact that there is very wide variation in the derree of defoliation of intividual trees. This is one of the most striking features of these epilemics. Frequently a completely defoliated tree or group of trees will be found standing side by side with trees only slightly defolinted. (Fig. 3, A.) The amont of inerement loss is matioly dependent upon the degree of defoliation, and the variableness of this latter factor makes an acrarate estimate of the loss ofer large areas almost impossible.

Some idea of the loss was obtaned by making a stady of individun lrees in areas where the ephemie had oxetured and comparing their rate of growth with that of trees under momal conditions ontside of defolinted areas. As before stated. howerer, the stady does not date from the beginning of the epidemic, and it was not always possible to detemme acemately in what yar the trees seIected for comparison were first attacked. Despife these dificuities, the writer believes it well within conservative limits to place the loss thas far sustiabed during the revent epidemie in the Klamath region at not bess than seyemf budeed thomand dolats. Athough the cpidemic infestation has dedined. it will be a number of years before the tress which bave sulfered serere dofotiation regratin their

[^1]momal growth rate and thas a further los in increment will be sustamed. 'This will depend apon the mpidity of their recovery. which at this time is merely a matter of ronjecture.

 1! $2 \cdot 1$

 A. Apleat perthon of whe shem of re hast wrowhag tree which hat mot

 -

Fache $\overline{5}$ Comparison of anmal matial incremont of yellow pine tros defoliated by coloradia pandora: A to D, Upper portion of stems; E, hase of tree shown in purts of transverse sections, \times t. ; A, tree from Wocus biny showing partha recovery. First heary width of next to the hast rime, indicating recovery. 13 Tree from Black Hills successively defoliated since 1991 Note narrownes of outer five rings, sliowing suppression of increment owing to defoliation, C. Tree from pot indes defolinted during only these yoars, 1923,1924 , ind 1925 . Note suppression fin rings of 1024 and 1925 , and inarrow width of the fall wood of these rings. D,

 ring begase the section was cut in the late summer. E, Section from base of the same tree as shown in D. Note comparative natrowness of the innual rings from 1919 to 1025 , showing the suppressed increment at the base of a defoliated tree

Figend G. Trinsverse sections of pine stems showing increment rings of years of normal growth and of years of defoliation by Colo-
 Noto marrowness of the ring for 1924 . the year which marked the peak of the epidemic. The comparative absence of fall wood is also a conspenous feature of this ring. The last two rings represent the growth of 1925 and 1926 . Their widths indicate that the tree was rapidy recovering. 13 , Midde portion of stem of yellow pine, from Wocus Bay, Orge, defoliated since 1918 . Note norrowness of hat seven rings and the entire absence of the next to the last ring beyond the point marked x. C, Section from
 showing die boss of the earlier ring on one side of the tree. D. Section from top of yellow pine from the flamath Indian Reser Githon, oma defolited since 191s. Jhis tree was atacked and killed by Dendroctonus brevicomis late in the summer of 1924. defolated since 1918 and attacked and killed by D. brevigomis late in the sumber of $102 \overline{0}$. Note the series of narrow annual rinis preceding the attack by the bark beetle
of two yellow pines, selected to show the contrast between the rate of growth of defoliated and that of nondefoliated trees.

The transverse sections in Figure $5, \mathrm{~A}$ to E , and Figure 6, A, illustrate the loss in increment of trees selected from various sections of the defoliated stands. The variation in the ring growth in these pictured sections is due to the variation in the degree of defoliation suffered by the trees in these separate localities.

Sections B and C, of Figure 6, which are transverse sections from trees defolinted since 1918, show the omission of part of an annual ring on one side of the stem. Figrare $6, B$, is a transverse section from the middle portion of the stem. It will be seen that the next to the last ring is missing at the point marked X. Figure $6, \mathrm{O}$, is a transverse section from the top portion of the stem and shows the partial loss of the third ring from the cambium. It fades into the previous ring at the point marked X.

SECONDARY INJURY

That there is close interrelation between the work of this pine defoliator and subsequent attacks by the bark beetle is shown by the abnormal increase of beetle indestations in the stands of defoliated pinc. Bectle infestations became highly epidemic in the stands which had been severely defoliated, while at the same time they showed bat slight increase in stands ontside these areas.

The data on beetle infestations in the defoliated arens were obtained by surrevs of an area of 2,000 acres made annually since 1021 , and by observations made throughout the infested region.

The damage caused by bark beetles has been far greater in its effect than the primary damage of the defoliator. which results in retarded growth biat not always in the death of the trees. Attack by the two species of bark beetles Dendroctonus brevicomis Lec. and D. monticolae Flopk., infesting these stands, always results in the death of the tree.

Sections from defoliated trees, later killed by bark beetles, are shown in Figure 6, D and E. These are typical in that the annual growth for a lew years previous to the attack of the beetles had been greatly retarded.

Pevious to 1023 the detoliated stands were remurkably free from infestations by the bark beetle, and had been so for a long periocl. In 19:3, however, five years after the pine-moth epidemic began, the defoliated stands were invaded by these beetles, and within two years an outbreak of then developed which seriously menaced the entire area. The progress of the outbrenk on the 2,000 -acre area mentioned was as follows: In 1923 the area contained 50 trees infested by beetles, which may be considered a normal infestation in these stands. In 1924 this infestation included in all 301 trees, an increase of 682 per cent. Five hundred and six trees had become infested in 1925, an increase for the year of 29 per cent, and in 1026 a total of 744 trees had been killed, an increase of 47 per cent in the third year. These figures show that in three years the bark-beetle epidemic, which was a secondary result of the defoliations, had increased 1,388 per cent. This is a very abnormal increase in infestations by these beetles.

That a similar increase in infestations by the beetles during the same years occurred throughout all the defoliated stands was shown by observations mado in widely separated sections.
The loss by bark beetles in merchantable trees throughout the defoliated stands from the begimning of the epidemie in 1923 to and including the year 1926 was tremendons. In 1906 this loss amounted to nearly $100,000,000$ board feet of pine on the Klamath Indian Reservation. Itowever. it is not probable that this enormous loss will continue after the trees have recovered trom the effects of the defoliation. It is now believed that a retura to normal growth will very probably be followerl by a sharp decline in the losses due to the beetles. The rapidity of recovery of these stands will depend upon a number of factors dief of which are the disappearance of the defoliator, the physiolonicul comdition of the sererely defoliated trees, soil conditions. and precipitation.

BIOLOGY

The generations of r'olormdia pudtora are biennial. the life cyele of the speries rovering a peried of exactly two years as shown in Figure 7 . The adults cmerye bet wen. Fune 20 and infy 20 of alternate years. On the area studied by the writer. flights of the anduts have oceured in the eren fears- $1920,1922,192+$, and 1926, although it was tound that a fow stragelers departed from the eycle of the main broods and enderged in the ofd years. Howerer. these st tagylers have the same lifo span as the others, and two yeats are regumed to complete their development.

After emerging frm the pupal cases near the surfaer of the soit. the suw whlfserawl through the litter on the ground to the trumks of treas or to bushee, which they aseend. On these they remain at rest for from 20 minutes to an hour while their winge are mbolding, and the seales and hairs on the borly and wings become dry. The adults are serong flem, and are strictly dinmal. In the writer's studies individuals cond never be fomil active at night, nor could they be attractorl to lights displayed in the forest after dark or before daylight. The males take to fight as socm as their wings have hardened,
and fly erratically ubout through the forest, searching for mates. The females, while equal to the males in their ability for sustained flight, usually do not fly until after mating.
The males appear two or three days before the females and die soon after mating. 'The females die shortly after they have finished depositing their eggs. The writer observed that in a lot of 20 individuals, 12 males and 8 females, confined in a wire-screen cage in the open woods, all the males died first, and within the day of mating. The females lived from 5 to 7 days longer, but all died within from 1 to 3 days after oviposition.

Femates have been observed in the act of oviposition in the fied as well as in captivity, and under both conditions the procedure is the same. The moth does not make a preliminary searcin for a suitable location in which to place her eggs, bat deposits them indiscriminately on the bark of tree tranks, in the foliage, on brush and undergrowth, and even on the litter covering the ground. A moth does not always lay all her eggs in one cluster or in one location; a second or even a third cluster may be deposited. It is quite usual, for irstance, for a moth to deposit her first cluster of eggs upon the trunk of a tree, and then crawl or fly to the foliage, where the rest of her eggs are haid. The egrgs ate but loosely attached to the support upon which they are deposited, although they achere to one another very firmly.
The eggs are deposited in clusters containing from 3 to 70 eqgs tach. (Firs. I, C and D.) In one instance a total of 258 eggs were haid by 5 females cated separately, or an average of 51.6 eggs each. The greatest number laid by 1 female was 68 and the smallest, 42. A period of 6 days was covered in the deposition of these eggs, 2 laying all their eggs in 1 day, the other 3 taking 2 days each for the egg litying.
The maximum period of oviposition extends from July 10 to July 20. The incubation period is rather prolonged, lasting approximately 40 days. Egrg deposited by moths in captivity on July 16, 1924, hatched on August 25. Changes in the external appearance of these exfes during incubation were not noticeable until fugust 2 , or 17 days after they were laid. At this time the color had changed to a deep olive, the sides were deeply depressed, and the embryo had taken form. From Auguat 11 to 14 the well-incubated young caterpillars became visible through the eqg walls. On August 2 in all the fertile eygrs hatched. It has been formo that incubation in the field follows the same course and is of the same duration.
A relatively high percentage of the egrss are infertile. Ont of a lot of 200 egrgs taken in the field and put into glass vials. 1 egg in each rial, to egges or 20 per cent, prover to be infertile, while in 58 eggs, or 29 per cent, the embryos partially developed, but died.
The young larvae begin to emerge about lugust 20 and continue emerging until September 15. The maximum emergence oceurs between August 25 and September 5. The Larrac leave the eggs by way of holes gnawed in the ends of the shells (fig. 2, A) and immediately erawl to the tips of the branches and begin feeding on the needles of the current year's arowth. They develop zapidy, and by September 20 reach a Iength of 14 mm . They are gregarious
during the first feeding stage ; from 4 to 20 may be found together on the needles at the terminals of the twigs. They attain a length of 23 mm . by the end of the first feeding season.

When winter conditions set in, which at the altitudes where the species occurs is normally about October 20 , the caterpillars go into hibernation, in clusters of from 4 to 30 individuals, at the base of the needles on the ends of the pine branches, and are more or less dormant during the winter. They have not been obsewed to feed during hibernation and do not increase in size. With the cessation of winter conditions, usually at about April 1, the caterpillars argain become active. The hibernating masses break up and the individuals disperse to some extent and resume feeding.

During the spring feeding period, which lasts until June 20, the caterpiltars consume an enomous quantity of needies and grow rapidly. The following record made of caterpillars which were confined in a wire-screen cage at the Klamath Falls laboratory illustrates the development of the larvae during this second feeding period:

Date $(10 \underline{C})$	A vernge length	Colar	Date ¢ 5263	Atreruge length	C'ulor
. . . .					
	1.19m\%			($M \mathrm{~mm}$)	
Ajpr. 1.	31	olfse greed.	Nas 62	55	Gireetsisls.
Ajor, 1.1.	-3	Юo.	Juthe ft	6in	Tingit green.
Say S.	33	to.	Jume 16	70	Vellowish green.

On Jute 18 ail hat puputed.
Feeding is not confined during the spring period to the needes at the tips of the branches, but the caterpillars work back aloner the stem and consume all needles of whatever previous years growth. (Fig. 2, B.) From about May 1 to the time of papation they also cat the new needles which unfold from the buds and make their greatest growth during this period. The terminal buds, however. are not eaten, aldhough the new needtes are nealy all devoured. (Fig. S. A.) Owing to the e-year life cycle of the insert this wholesale destruction of the new needles at the critical period of the trees growth occurs only on aternate years. the corresponding time of the intervening years being passed by the moth in the pupal stage.

The prepupal caterpilars are excessive feeders and consume an enomots gilantity of needes. A lot of 3 - nearly full-yrown "aterpillars were kept in a cage from June 1 to June 16. During this time they ate an average of too yellow pine needles each yt homs, or an average per caterpillar of 21 needles a day.

The great quantity of food taken by these caterpillars is attested in the firld by the masses of droppings found under inferted teece. These droppinge closely resemble the dried and fallen ande pine catkins, and under large trees completely cover the surface of the ground from the base of the tree outward as far as the brathers exiemol.

When full-grown the caterpillars crawl down the temks of the trees on which they have ben feeding and enter the surface of the soil to prpate. They have newer been obswed io lower thenselves from tree by wilken therads.

sication, revolve in their tunnels, making elliptical cells in which they transform to pupae. Some of these cells are sparsely lined with a silky material, but the greater number are entirely unlined. The pupa rests within the cell, head up, and inclined about 60° from the vertical. Pupae begin to form June 20, and pupation is over by July ${ }^{2}$. This stage lasts one full year, the insects passing the second winter of their life as pupae in the ground.

Natural enemies

Coloradia pandora hats many matural enemies. During the prepupal stage, and while the caterpillars are desconding the trees to pupate, a large percentage of them are attacked by a wilt disease, in ereneral appeatance quite similar to the qipsy-moth polybedrai wilt. Caterpilhas infected with this disease beconte limp. turn black, and shrivel to about one-third the normal size. Great numbers of the caterpiltars are destroyed by this disease during epidemics of O. patalore and it is doubtless a major factor in the deeline of severe infestations.
(fround equirtels (several species of Callowpermophilus) and a chipmank (a species of Eatamias) dig up and eat latge numbers of the pupte. These rodents were observed on many occasions uncovering the pupae; some pupae were eaten at the time they were removed, thomelimany were stoted for future food. A chipmank was seen carying pupae to a rotten lor, and when the cache was examinesi \bar{n} were foumd in a holtes in the interior.

Birde have been olsersed to feed sparingly on the caterpilats. Steller fiass and viroos are known to wat the caterpillats. athough the staff hisistes and hairs on the backe and sides of the larvae are a great protection from hirdi. (reepers and mathatehes feed on the caris. of the moth mat no doubt destroy large numbers of them.

The following inswe ate parasitic on "oloradin patora."
No. 1. Dlepharipeza adusta Lomw. This dipteron is a larval parasite. The magoos rumere lion the prepual caterpillats ater the bater have encered the gronud to papate, and form naked puparia in the soil near the emains of the host. The percentage of patasitisth was not determined. hhough als many asi 41 puparial were taken
 were fomel.

No. 2. A species of Tetrasichus: This is a hymenopterons parasite
 paratitize! by this perids and fom them it total of tes individuals
 the larese 11, the areare benger ${ }^{-1}$.

No. 3. Trichogramma minutem Riley. This small spectes is a cosmopohtan parasite: it breeds in the eqges of (${ }^{\prime}$. pandore ats well ats having many othor host. Of 100 isthated egers of ($($ pondore ; were paranitized ly this epecies. and a total of the individuals emerget froms theni. The sumber ntmber merging from one expr

[^2]So. 4. Hemiteles tenellus Say. Only one individual of this mather large braconid was reared by the writer from a larea of C. pandora. This species is a larval parasite, and its papery cocoons are attached to the body of the caterpiilar. It emerges late in Say. The percentage of parasitism by this species is not known.

METHODS OF CONTROL

It seem: probable that this pine defolintor might be beld in check dming the incipient stages of an epidemic by spraying infested trees with arsenicals. The caterpilars could easily be poisoned by spraying the foliage dmong the spring period of maximum feeding. The spraying of large forested areas, however. it delayed until after an epilimic bat developed, would be impracticabte because of the excessive cosb, of surb operations. dirplane dusting might be done at a reasonable expense. and would probably be effective.

SUMMARY

'lhe Pandorat moth (('oloradia prombora Blake) is an important onemy of pine forswts in certain areats of the West. During the years from 191s to 1925. inclusive a serious epidemic of this moth ocedred in the wellow-pine forests of the Glamath Indian Reservation in sombtern Oreqon.
'lhis incect attacks only pines, its principal hosts being western vollow pinu. (Pinas ponderow and Jeffirer pine (P. jeffieyi). Lotlarpole pine (1 '. murrayma) is sometimes attacked. Infestations by this moth have also necurrel in the Inyo National. Forest of eastriminal (alifomiat. Its range is known to cover the Pacific States, and perintens have been collected in Colorato and Montana.
[ader mormal rombitions infentations of this moth are of no eco-
 Epindemie infestations by this moll are howerer, a serions menace to pione ands. 'The ramare reaulting from such infestations divides finelf into two phases: The primary injury to the free which results dievely from the loss of needles and the secondary injury throush the impated vitatity of the dere whed rencers it susceptible to land-bereta atiferk.
 (ally romplete defoliation of the trees which it attacks. it is not always of atsof latal to its host. This is dele to the fact that the faminal buds ate not gaten by the barvae and that the trees have a bet every allur fatr. Thus the more virorons sperimens surve the
 attacked are mot kilfed. because their growh is areatly fuppressed llmane yeats of heary defoliation. as shown by comparison of the withli of the anmal rings. Losses on the Khamath Thitian Reservalion from this suppresion of erowth during the last pidemis have bern eonservatively ablimated at suremat handred thensamde of dollars.
The damage tarmed bes bark-boule attacks in stands of pine defoliatel be the landaria mots has here far greater than the primaty damage of the tefoliator. Tnfestations of mendroctonus brenicomis and of I . monticolae have shown an abomand inerease
in the defoliated areas studied. These infestations were of far greater intensity thm were contemporary infestations in stands adjoining the defoliated areas, and beetle attacks apon defoliated trees were always fatal.
The hete cycle of this moth covers a period of two years. The adults ate brownish gray with a wing expanse of approximately 3 incher. They are diarnal, and in epidemic infestations countless numbers are seen on the wing. The egrg are deposited on the hark and foliage of trees and bushes, and sometimes on ground litter. The incabation period is approximately to davs. The young larvae feed in colonise apon the needes of the terminal shoots during the fist summer and. when winter sets in, hibernate in clusters at the base ol the needles. Feeding is resumed the following spring, and daring this second feeding periox large quantities of needles are consumed, and the greatest damage is suffered by the host. Pupation begins in Jue of the serond year and takes place in the groum from 1 to in inches below the surface. The pupal stage covers one full year, the species passing the serond winter as pupae in the mround.

The caterpillars are subject to a wilt disease similar in general manifestations to the gipsy-moth wilt. Ground squirrels cat large numbers of the papae and biteds prey upon the caterpilars. The insect enomies of coloradia pathoru are three hymenopterons patasites and one dipteron.

So direct efforts bave been made to control this moth. It seems probable that it might be held in check duriner ineipient stages of its attack by epaying with arsenical: or by arplane dusting.

LITERATLRE CITED

(1) AEbruch, d. M.

(2)

 :15:3s.

 ('allak. Fint, :

 : : $1:$!.:
(5) lifake, ! ${ }^{\circ}$..

(10) म.surresme. I. E.
 (未): 界, illu.

ORGANIZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE

	Anthith M. Ifype
	Director of Scientific Work-_....-............. . A. W, Woons.
	Dirctor of Iersonnel and Rusiness Admin- W. W. Stockrenger. istration.
	Burctue of Duiry Industry---...--...-- -- -- O. E. Rren, Chief.
	Graim fulures Administration... - --....-..... J. W. T. Duser, Chicf.
	Food, Dryg, and Insecticide Administrotion_- Waltel G. Camprest, Director of Regulatory Work. in Charge.

This hullation is a contrilution from

Bircetr of Bmomology
Ditivion of frofest Insects
f'. It. Marlatit, C'hict.
E. C: Cratinibut. Primmipel Futomologint, im. Charge.

[^0]:

[^1]:

 primarlfy to didfolmaton.

 strperyston of the natatal rimss.

[^2]:

