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A Comparison Of Various Frontier Estimation Methods 
Under Differing Data Generation Assumptions

Introduction

A major motivation for employing frontier functions is the measure of firm-specific

efficiency that can be obtained from them (Førsund et al., 1980).  Frontier functions are often

used to estimate the extent of inefficiency in an industry or firm (e.g., Hjalmarsson et al., 1996),

or to rank a sample of firms in order of efficiency (e.g., Gong and Sickles, 1989, 1992).  Most

frontier estimation methods fall into two categories:  mathematical programming, commonly

referred to as data envelopment analysis (DEA), and statistically based techniques such as

corrected ordinary least squares (COLS) or maximum likelihood for estimating stochastic frontier

functions.

This study uses a Monte Carlo approach to compare the accuracy of three modeling

techniques, three approximating forms and two stochastic estimators applied to differing data

generation processes (DGP’s).  The literature on frontier methods, with a few notable exceptions,

has been sparse with regard to Monte Carlo comparisons.  A notable exception are a pair of

articles by Gong and Sickles (1989, 1992).  Both studies utilize panel data and employ a variety of

estimators and approximating forms, and compare models based on their ability to rank firms by

level of technical efficiency.

Gong and Sickles (1989) applied several stochastic cost and production frontier estimators

and approximating forms to data sets generated under various input elasticity conditions. 

Furthermore, sample size and simulated technical inefficiency distribution were varied.  The

present study is an extension on Gong and Sickles (1992) which compared the performance of

cost stochastic frontiers and DEA on various panel data sets.  The data were constructed using

various assumptions about production technology and producer behavior.  Our study extends this
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work by relaxing the data requirements (cross sectional as opposed to panel sample) and by

estimating production (rather than cost) functions using different functional forms.  We examine

the implications of simultaneity bias in estimating frontier production functions by creating data

that conform with producer optimization given producer knowledge of their particular level of

technical efficiency.  An analysis of variance approach is employed in testing hypotheses about the

impact of various factors on measuring the accuracy of ranking firms by their technical efficiency

level.  This study provides researchers additional information on how to utilize frontier methods

more confidently and thus be able to rank firms by level of technical efficiency more accurately. 

Data and Methods

The methodology of the experiment can be broken down into three main parts.  First the

producer input, output, and efficiency data are drawn under multiple data generation conditions. 

Second, several types of production frontier methods are applied to each data set and then

estimated firm level efficiency scores are generated.  Rank correlation coefficients (RCC) as

defined in Mood, Graybill and Boes (1974) are calculated between the true and estimated levels of

firm specific inefficiency.  Finally, the RCC observations are used to test hypotheses about factors

influencing ranking accuracy using a seemingly unrelated regression (SUR) analysis framework.

Data Generation

The underlying production technology used to generate the producer level data is a three

input, one output stochastic production frontier.  The functional form used to generate

observations in the Monte Carlo experiments is the generalized constant ratio elasticity of

substitution, homothetic (CRESH) production function (Mukerji, 1963) written as:  
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In (1), yi is the output for the ith firm, xi1, xi2, and xi3 are the three inputs, and ä1, ä2, ä3, ñ1, ñ2, ñ3,

and ñ are the technology specific parameters.  Following Hanoch (1971), ä1+ä2+ä3=1 and ä1=0.3,

ä2=0.3 and ä3=0.4 to conform with Guilkey et al. (1983) and subsequent studies such as Dixon,

Garcia, and Anderson (1987) and Gong and Sickles (1989,1992).  The sample size is set at 100

observations for estimating a given frontier model.  The three sets of technology parameters used

are given in table 1 and are taken from Guilkey et al. (1983).  Each of the three technologies

exhibit differing input substitutabilities.  The ease of substitutability for each technology is

indicated by the overall mean of the Allen-Uzawa partial elasticities of substitution in table 2.  

The statistical noise, represented by vi in (1), is simulated as an independently and

identically distributed (IID) N(0,0.01) across all observations as well as independently of technical

inefficiency (ui).  Technical inefficiency is simulated using three different non-negative, one-sided

distributions: exponential (EX), truncated normal (TN), and half normal (HN).  The EX error

vector was drawn from a distribution with a characteristic parameter è=3.165, which implies a

mean of 0.316.  The TN error vector was calculated as one plus a random vector drawn from a

truncated standard normal distribution (truncated from the left at -1).  This sum was then

multiplied by 0.35.  The HN error vector was calculated as the absolute value of a normally

distributed variable with a mean of 0 and a variance of 0.299.

Technical efficiency (TE) is computed as exp(-ui).  The sample mean and variance of the ui

and TE error terms are presented in table 3.  Depending on the technology, average levels of

technical efficiency are between 61 and 78 percent.  Previous studies (Olsen et al. (1980), Coelli

(1995), and Khoju and Dixon (1994)) have found that the ratio of variances of noise (vi) to TE

(exp(-ui)) is a significant factor in the performance of an estimator.  Hence the variances of all

three TE distributions are fixed at approximately the same level, forcing the variance ratio to be



1  The overall mean of all nine correlation coefficients between the three inputs and the three possible TE
vectors (EX, HN, and TN).
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fixed.  As a consequence, the means of the TE terms vary slightly between different distributions.

A set of three input vectors (x1, x2, and x3) of 100 observations are generated from a

multivariate lognormal distribution as reported in Driscoll and Boisvert (1991).  The observations

on yi are generated by using the xi1, xi2, and xi3, vi, one of the three sets of ui (EX, TN or HN), and

one of the three sets of technology parameters.  One hundred observations on xi1, xi2, xi3, vi, and ui

compose one sample. 

All possible combinations of the three technologies and three technical inefficiency

distributions result in nine data sets, each with 100 observations.  Then, each data set is replicated

100 times by randomly drawing observations on the statistical noise term (vi).  For one half of the

samples, referred to as the uncorrelated data, the ui are fixed in repeated samples for a given

technical efficiency distribution, i.e. the same set of 100 observations for any given TE distribution

is used repeatedly.  These data sets exhibit minimal correlation between the xik’s (k = 1,2,3) and

ui.  An additional nine sets of data, referred to as the correlated data, are constructed that have

correlation between the xik’s and ui.  These correlated data simulate the correlation between the

inputs and technical efficiency that would arise if producers were aware of their efficiency level

and optimized accordingly.  Under these conditions, econometric frontier estimation would

become tainted by simultaneous equations bias.  

These nine sets of correlated data are constructed in a similar manner to the uncorrelated

data.  The correlation is induced by solving for the xk’s assuming producers maximize expected

profit for a given input price vector.  There are nine distinct sets of xi for the correlated data since

the xk vary by the assumed distribution of the ui and by the technology scheme.  The mean level of

correlation between all three input vectors and TE in the uncorrelated data sets1 is -0.05239 with
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a variance of 0.009944, whereas the overall mean level of correlation between all three input

vectors and TE in the correlated data sets is 0.686852 with a variance of 0.051493.  The mean

Allen-Uzawa partial elasticities of substitution for the correlated data were similar to the mean

Allen-Uzawa partial elasticities of substitution for the uncorrelated data reported in table 2.

Frontier Estimation

There are three frontier estimation methods are used in this study.  DEA is a

nonparametric approach to the estimation of frontier functions.  DEA’s major advantage is that no

explicit functional form is imposed on the data other than that the frontier is quasi-convex (Bauer,

1990).  This allows the shape of the DEA frontier to be extremely flexible.  DEA does not require

any distributional assumptions about the way in which producer inefficiency is distributed across

the sample, but is critiqued by econometricians because the estimated frontier lacks statistical

properties. 

COLS is a stochastic method used to impart some statistical properties to the frontier

(Greene, 1997).  The model’s parameters (excluding the constant term) can be consistently

estimated using OLS (Greene, 1997).  To estimate the constant, the OLS intercept is shifted

upward until only one or more observations lie on the frontier and all others lie below it.  This

method ignores the possibility of exogenous shocks, measurement error, and statistical noise since

all deviations from the frontier are attributed to the one-sided error component that captures

producer inefficiency.  

The stochastic frontier specification includes the effects of nontechnically related random

factors.  This model utilizes a two part, composed error term with both symmetric and one-sided

error components.  The symmetric component captures the effects of statistical noise,

measurement error, and random shocks not associated with firm specific characteristics.  The one-
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sided component captures the inefficiency effect and is usually incorporated into the econometric

framework by assuming a one-sided distribution (e.g., HN, EX, and TN).  Given the stochastic

specification in terms of specific distributions, maximum likelihood (ML) estimation may be used.

Each data set is modeled using three approximating forms: the translog (TL), generalized

Leontief (GL), and Cobb-Douglas (CD).  Each approximating form is estimated by two

estimators, ML and COLS.  The ML estimator utilizes a two part, composed error specification

as in Greene (1995).  The one-sided error component in the ML estimator is modeled as an

exponential.  Residuals from the ML estimated models are used to estimate technical efficiency. 

These residuals are predictions of the composed error term (exp(vi-ui)) and can be decomposed

into two parts:  technical inefficiency and statistical noise.  The Jondrow et al. (1982) method of

recovering firm specific measures of technical inefficiency from the residuals is used in this study. 

For COLS, firm level inefficiency is ranked by the size of the residual.  

In addition to the six stochastic methods above, a DEA model is also used on each sample

and replication.  The DEA approach in this study is an output oriented model that satisfies

variable returns to scale (see Charnes et al. (1994)).  The technical efficiency measure for the jth

production plan is given by 1/ö j where j, like i, goes from 1 to 100.  The value ö j is the solution to

the following linear programming model.
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In this model, i,j index the production plans, å is a non-Archimedian constant value, xik is the level

of the kth input used in the ith production plan, and the zi are intensity variables that enable the

creation of feasible production plans through the radial contraction, expansion, or convex

combination of observed production plans.  The sy and sk are slack variables.

For each estimation method applied to a given sample, a RCC is computed between the

true and predicted level of technical efficiency.  The RCC is a distribution free measure of the

performance of the estimation methods which relates the strength of the monotonic relationship

between true and predicted TE.  The RCCs are the dependent variables in the SUR analysis.

SUR Analysis Framework

The hypotheses of the study are tested using a SUR framework.  The ability of SUR to

model inter-equation error term correlations is important in the context of this study because such

correlations are generated by the structure of the experiment.  By design, each individual data set

(combination of technology, correlation structure, technical inefficiency distribution, and noise

term) is estimated seven ways.  This repeated use of each sample enables making direct

comparisons between estimation methods, but it induces correlation among the parameter

estimates used to compare accuracy.  In this setting, the SUR method offers more efficient

hypotheses tests than does a simple ANOVA or OLS system that ignores the correlations when

cross-equation parameter restrictions are maintained.

The dependent variables in the SUR model are the RCC from the estimated frontier and

DEA models.  The observations on the RCCs can be partitioned into seven separate vectors that

constitute the dependent variables of the seven equations in the SUR model.  Let the seven SUR

equations be indexed by the letter m.  For m = 1, the RCC observations are for those frontier

models estimated by ML as a TL approximating form.  Similarly, for m = 2, TL models are
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estimated by COLS.  For m = 3 and 4, GL models are estimated by ML and COLS, respectively. 

For m = 5 and 6, CD models are estimated by ML and COLS, respectively.  Finally, for m = 7,

DEA models are estimated.  The independent variables in each equation are identical.  They are

composed of eight binary variables corresponding to the data generation conditions and a constant

term representing the equation mean.  

Let âmp denote the pth coefficient in the mth equation of the SUR system.  The independent

variables are binary and they are structured such that: âm2 represents the deviation from the

equation mean when the input variables and TE terms are not correlated and âm3 is the deviation

when input and TE terms are correlated.  The âm4, âm5 and âm6 represent the derivations from the

equation mean for technologies 1, 2, and 3, respectively.  Likewise, âm7, âm8 and âm9 are the

deviations when technical inefficiencies are distributed as EX, TN and HN, respectively.  Thus,

the equation restrictions are:  âm2 + âm3 = 0; âm4 + âm5 + âm6 = 0 and âm7 + âm8 + âm9 = 0.   

Using within equation restrictions and an identical set of regressors for each equation,

OLS gives identical parameter estimates to SUR.  However, the SUR approach is used because

information contained in the off-diagonal elements of the error covariance matrix is used in

hypothesis testing.  In doing parameter hypothesis tests from multiple equations, the feasible

generalized least squares (FGLS) parameter matrix provides the correct covariance needed for the

tests.  Efficiency gains are realized when cross equation hypothesis restrictions are imposed to test

for various forms of interaction effects.

Results and Analysis

The summary statistics for the RCC observations partitioned by dependent variable are

found in table 4.  As is evident from the table, ML slightly outperformed COLS for a given

approximating form.  In addition, DEA performed poorly compared with the other methods. 
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The parameter estimates and relevant statistics for the seven SUR equations are presented

in table 5.  Equation fit was generally good and most coefficients were significant at the 0.05 level

or less.  Cross equation parameter tests reflect the overall effect of data generation processes and

modeling choices. 

Single Variable Tests of Hypotheses

Tests of the mean of each of the eight binary categorical variables across all seven

equations yield information about the overall effect of a particular aspect of the DGP on

estimating model performance in general.  Table 6 lists the test variables, values of test statistics,

standard errors, and the associated z and p-values.  As the table illustrates, all hypotheses tested

were significant at the 0.05 level or better.  

Results on hypothesis 1 indicate that the models performed substantially better with input

vectors that were uncorrelated with the level of technical efficiency.  This was true for each

equation.  On average, the RCC of the models estimated under uncorrelated data conditions

exceeded the RCC of the models estimated with correlated data by 0.69574.  This is a large

difference in light of the RCC being bound between negative one and one.  This result is

consistent with other Monte Carlo studies (e.g. Gong and Sickles (1992)).

Mean RCC for technologies 1 and 2 were distinctly inferior to technology 3.  The mean

value of model performance degradation under T1 and T2 are -0.01385 and -0.07931

respectively.  T3 enhanced mean RCC by an average of 0.09316.  This is a substantial

performance increase, which indicates that the models performed the best under conditions of

difficult input substitution.
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Of the three technical inefficiency error distributions, EX was the form that the models had

the most difficulty approximating.  Average performance degradation was -0.02527.   Although

the magnitude of this number is relatively small, the negative sign is contrary to expectations. 

Since the ML estimator assumed that technical inefficiency was distributed exponentially, intuition

suggests that it should perform the best when technical inefficiency was actually generated as an

exponential. Additional computations show the average performance degradation for ML models

with technical inefficiency generated as an exponential is -0.02246.  The HN and TN were

approximated better than the EX, their overall coefficient estimates being 0.01330 and 0.01197

respectively.

One aspect of the tests presented in table 6 is that they are not independent from each

other.  Hypotheses within a given DGP treatment effect are related.  Hence, the overall

significance level of the tests in assessing the significance of the treatment effects is diminished

from the nominal p-value.  To gain information on the overall significance of the tests, Wald tests

are employed.  As indicated in table 7, all three sets of restrictions are significant at the 0.05 level. 

This indicates that the differences found in the data generation categories are statistically

significant.

Multiple Variable Hypothesis Tests

Table 6 presents tests of one independent variable over all seven equations.  It does not

explicitly address comparisons within a treatment effect nor does it examine the relative accuracy

of differing approximating forms or estimation approaches.  To test these hypotheses, multiple

independent variable combinations are tested.  This allows testing if any given estimator,
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approximating form, or DGP give results that are superior to an alternative.  Table 8 lists the

hypotheses, test statistics, standard errors, asymptotic t-values, and the associated p-values. 

 The preferred method of stochastic estimation (ML vs. COLS) is tested by hypothesis 9. 

ML provides an average RCC performance increase over COLS of 0.03366.  The magnitude of

this significant statistic is fairly small, indicating ML is not vastly superior to COLS.  By utilizing

hypotheses 9, 10, and 11, it is clear that ML outperforms COLS, and both substantially

outperform DEA.  Gong and Sickles (1992) found a DEA model to be unaffected by input vector

correlation with technical inefficiency in estimating cost functions.

Hypotheses 12, 13, and 14–which test approximating form–indicate the approximating

forms can be ranked from best to worst performing as follows:  CD, TL, and GL.  The differences

are fairly large, indicating that the CD outperformed the other two approximating forms by a wide

margin.  These results may be due to the lower number of parameters needed to estimate the CD

as opposed to the TL or GL.  Clearly, the TL and GL are characterized by higher levels of

multicollinearity than the CD. 

In a similar manner, model performance by technology can be ranked.  The order of

ranking from best to worst performance is T3, T1, and T2.  All differences are significant at the

0.05 level or better.  Hence, the models performed best under conditions of difficult input

substitution (T3), followed by easy substitution (T1), and finally mixed input substitution (T2).  

Model performance under different inefficiency distributions can also be ranked.  The

models did the worst under the EX distribution, and there was no significant difference at the 0.05

level between the HN and TN distributions. 

Discussion
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Model performance under differing technical inefficiency distributions was surprising. 

Since the ML estimator assumed an exponential distribution, intuition indicates it would

approximate the exponential data sets well, but exactly the opposite was true.  With regard to

underlying production technology, overall model performance was enhanced by difficult input

substitutability, while mixed substitution tended to degrade performance.  

The performance of the approximating forms was also surprising.  The Cobb-Douglas

performed better than the two more flexible forms, even though the CD is simply a restricted

version of the TL.  Apparently the performance of the TL was degraded due to over-

parameterization (multicollinearity).  Across all DGP’s, DEA performed worse on average than all

combinations of approximating form/estimator except the GL/COLS combination, with which its

performance is not statistically different.

Our results indicate the applied researcher may wish to choose the approximating form

based partially upon the intended use of the model.  When the analyst’s main objective is to

examine the level and ordering of technical efficiency, these results suggest that the simple CD

functional form is best.  However, if the object of the study is to estimate elasticities of

substitution, then a CD is obviously inadequate.

Choice of stochastic estimator was not as important for accurately estimating RCC as

expected.  Nonetheless, both stochastic estimators were almost always better than DEA.  The ML

estimator outperformed COLS in terms of RCC, but difference in accuracy was small.  This

suggests that the gains from moving from the simple COLS estimator to the more complex ML

estimator are minimal.

Overall, the largest factor effecting model performance is input vector/technical efficiency

correlation.  Correlated data were the single largest factor in the overall performance of any
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model, with frontiers estimated under uncorrelated conditions outperforming frontiers estimated

under correlated conditions by a wide margin.  The mean RCC for models without input and TE

correlation is 0.69574 higher than models with correlation.  This clearly suggests that simultaneity

bias is a large problem that can result in distinctly inferior results.  The empirical researcher may

wish to test to determine if the exogenous variables and error terms are independent of each

other.  Specification tests such as the Hausman test and the RESET (regression error specification

test) can be employed to determine if correlation is present.  

DEA has been proposed as a possible alternative to econometric methods under input and

TE correlation.  The performance of DEA was actually worse instead of better in most cases in

this study.  Other studies using cost functions instead of production functions found DEA to be

unaffected by simultaneity problems.  Our results indicate that using production functions on such

data may lead to poor results.  Such a finding argues in favor of estimating cost functions when

there is doubt about input exogeneity.
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Table 1.  Technology Parameters

Technology Parameters

ñ1 ñ2 ñ3 ñ

T1 -0.20 -0.30 -0.40 -0.90

T2 -0.80 -0.10 -0.20 -0.80

T3 1.00 2.00 3.00 2.50

Table 2.  Mean Allen-Uzawa Partial Elasticities of Substitution (No Input and TE Correlation)

Input Pair Technology

T1 T2 T3

1,2 1.1735 1.4196 0.4851

1,3 1.3690 1.5970 0.3639

2,3 1.5646 0.3549 0.2426

Table 3.  Mean and Variance of Technical Inefficiency Error Terms

-ui (inefficiency) exp(-ui) (efficiency)

EX TN HN EX TN HN

Sample Mean 0.2964 0.5377 0.3746 0.7753 0.6132 0.7194

Sample Variance 0.1016 0.1052 0.1045 0.0375 0.0334 0.0378

Table 4.   Descriptive Statistics on Rank Correlation Coefficients Partitioned by Dependent Variable

Dependent
Variable Mean Std. Dev. Minimum Maximum Observations1

TLML 0.51282 0.36537 -0.20616 0.94314 1800

TLCOLS 0.51337 0.35912 -0.13134 0.92868 1800

GLML 0.47218 0.47176 -0.96864 0.95154 1800

GLCOLS 0.39385 0.49043 -0.60922 0.93591 1800

CDML 0.57835 0.34741 -0.10973 0.96254 1800

CDCOLS 0.55516 0.34603 -0.29804 0.96268 1800

DEA 0.39917 0.39593 -0.49455 0.86347 1800
1Number of observations on RCC.
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Table 5.  SUR Model Parameter Estimates And Regression Statistics1

Equation 1:  Translog Estimated by Maximum Likelihood (TLML)        Equation R2 = 0.89
Variable Coefficient Estimate St. Er. b/St.Er. P[|Z|>z]

CON B11 0.51282 0.00291 176.20500 0 
NC B12 0.33796 0.00291 116.12300 0 
CO B13 -0.33796 0.00291 -116.12300 0 
T1 B14 0.01193 0.00412 2.89900 0.0037 
T2 B15 -0.07581 0.00412 -18.41900 0 
T3 B16 0.06388 0.00412 15.52000 0 
EX B17 -0.03002 0.00412 -7.29500 0 
TN B18 -0.00152 0.00412 -0.36800 0.7126 
HN B19 0.03154 0.00412 7.66300 0 

Equation 2:  Generalized Leontief Estimated by Maximum Likelihood (GLML)      Equation R2 = 0.55
Variable Coefficient Estimate St. Er. b/St.Er. P[|Z|>z]

CON B31 0.47218 0.00748 63.10100 0 
NC B32 0.31976 0.00748 42.71300 0 
CO B33 -0.31976 0.00748 -42.71300 0 
T1 B34 -0.11505 0.01058 -10.87100 0 
T2 B35 -0.06274 0.01058 -5.92800 0 
T3 B36 0.17778 0.01058 16.80000 0 
EX B37 -0.03089 0.01058 -2.91900 0.0035 
TN B38 0.07856 0.01058 7.42300 0 
HN B39 -0.04767 0.01058 -4.50500 0 

Equation 3:  Cobb-Douglas Estimated by Maximum Likelihood (CDML)                                Equation R2 = 0.88
Variable Coefficient Estimate St. Er. b/St.Er. P[|Z|>z]

CON B51 0.57835 0.00327 176.95900 0 
NC B52 0.30761 0.00327 94.12100 0 
CO B53 -0.30761 0.00327 -94.12100 0 
T1 B54 -0.05186 0.00462 -11.22000 0 
T2 B55 -0.06335 0.00462 -13.70500 0 
T3 B56 0.11520 0.00462 24.92500 0 
EX B57 -0.01462 0.00462 -3.16400 0.0016 
TN B58 0.01119 0.00462 2.42100 0.0155 
HN B59 0.00343 0.00462 0.74300 0.4574 

Equation 4:  Translog Estimated by Corrected Ordinary Least Squares (TLCOLS)          Equation R2 = 0.89
Variable Coefficient Value Estimate St. Er. b/St.Er. P[|Z|>z]

CON B21 0.51337 0.00279 183.78900 0 
NC B22 0.33152 0.00279 118.68500 0 
CO B23 -0.33152 0.00279 -118.68500 0 
T1 B24 0.00494 0.00395 1.25100 0.2110 
T2 B25 -0.07701 0.00395 -19.49400 0 
T3 B26 0.07207 0.00395 18.24300 0 
EX B27 -0.03281 0.00395 -8.30500 0 
TN B28 -0.01593 0.00395 -4.03200 0.0001 
HN B29 0.04874 0.00395 12.33700 0 
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Equation 5:  Generalized Leontief Estimated by Corrected Ordinary Least Squares (GLCOLS)   Equation R2 = 0.89
Variable Coefficient Estimate St. Er. b/St.Er. P[|Z|>z]

CON B41 0.39385 0.00389 101.21100 0 
NC B42 0.44944 0.00389 115.49600 0 
CO B43 -0.44944 0.00389 -115.49600 0 
T1 B44 0.02770 0.00550 5.03300 0 
T2 B45 -0.12665 0.00550 -23.01400 0 
T3 B46 0.09896 0.00550 17.98100 0 
EX B47 -0.03928 0.00550 -23.01400 0 
TN B48 -0.02775 0.00550 -5.04200 0 
HN B49 0.06703 0.00550 12.18000 0 

Equation 6:  Cobb-Douglas Estimated by Corrected Ordinary Least Squares (CDCOLS)           Equation R2 = 0.88
Variable Coefficient Estimate St. Er. b/St.Er. P[|Z|>z]

CON B61 0.55516 0.00286 194.37100 0 
NC B62 0.31759 0.00286 111.19300 0 
CO B63 -0.31759 0.00286 -111.19300 0 
T1 B64 -0.03425 0.00404 -8.47900 0 
T2 B65 -0.04821 0.00404 -11.93600 0 
T3 B66 0.08246 0.00404 20.41500 0 
EX B67 -0.03524 0.00404 -8.72300 0 
TN B68 0.00716 0.00404 1.77200 0.0765 
HN B69 0.02808 0.00404 6.95200 0 

Equation 7:    Estimated by DEA                                                                 Equation R2 = 0.88
Variable Coefficient Estimate St. Er. b/St.Er. P[|Z|>z]

CON B71 0.39917 0.00262 152.28200 0 
NC B72 0.37119 0.00262 141.61000 0 
CO B73 -0.37119 0.00262 -141.61000 0 
T1 B74 0.05963 0.00371 16.08700 0 
T2 B75 -0.10137 0.00371 -27.34600 0 
T3 B76 0.04174 0.00371 11.25900 0 
EX B77 0.00594 0.00371 1.60100 0.1094 
TN B78 0.04139 0.00371 11.16500 0 
HN B79 -0.04732 0.00371 -12.76600 0 

1 St. Er. is the coefficients’ estimated standard error.  
  b/St. Er. is the estimate divided by the estimated standard error, and is asymptotically distributed as a standard   
normal. 
  P[|Z|>z] is the probability level at which the null hypothesis that the coefficient is equal to zero fails to be rejected.
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Table 6.   Hypothesis Tests of Individual Independent Variables

Null 
Hyp.

Test 
Coefficients

Estimated Test 
Coefficient (b) 

Std. Error 
(S.E.) 

z=b/S.E. P[|Z|>z] 

Hyp. 1
NC j

7

m'1

Bm2/7 '0 0.34787 0.00281 123.627 0 

Hyp. 2
CO j

7

m'1

Bm3/7 '0 -0.34787 0.00281 -123.627 0 

Hyp. 3
T1 j

7

m'1

Bm4/7 '0 -0.01385 0.00398 -3.480 0.0005 

Hyp. 4
T2 j

7

m'1

Bm5/7 '0
-0.07931 0.00398 -19.929 0 

Hyp. 5
T3 j

7

m'1

Bm6/7 '0
0.09316 0.00398 23.410 0 

Hyp. 6
EX j

7

m'1

Bm7/7 '0 -0.02527 0.00398 -6.351 0 

Hyp. 7
HN j

7

m'1

Bm8/7 '0
0.01330 0.00398 3.342 0.0008 

Hyp. 8
TN j

7

m'1

Bm9/7 '0 0.01197 0.00398 3.009 0.0026 

Table 7.  Wald Tests for Simultaneous Significance of Hypotheses

Null Hypotheses Wald Statistic Degrees of Freedom Probability From ÷2

Hyp. 1 and 2     15,284 1 0 

Hyp. 3, 4, and 5       638 2 0 

Hyp. 6, 7, and 8       588 3 0 
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Table 8.  Joint Hypothesis Tests

 Null  
Hyp.

Test Coefficient Estimated Test 
Coefficient (b) 

Std. Error 
(S.E.) 

b/S.E. P[|Z|>z] 

Hyp. 9
ML-COLS (B11%B31%B51)&(B21%B41%B61) '0 0.03366 0.00260 12.927 0 

Hyp. 10
ML-DEA

((B11%B31%B51)/3)&B71 '0 0.12195 0.00383 31.878 0 

Hyp. 11
COLS-DEA ((B21%B41%B61)/3)&B71 '0 0.08829 0.00318 27.739 0 

Hyp. 12
TL-GL (B11%B21)&(B31%B41) '0 0.08008 0.00365 21.930 0 

Hyp. 13
TL-CD (B11%B21)&(B51%B61) '0 -0.05366 0.00162 -33.049 0 

Hyp. 14
GL-CD (B31%B41)&(B51%B61) '0 -0.13374 0.00399 -33.534 0 

Hyp. 15
T1-T2 j

7

m'1

Bm4/7 & j
7

m'1

Bm5/7 '0
0.06546 0.00689 9.494 0 

Hyp. 16
T1-T3 j

7

m'1

Bm4/7 & j
7

m'1

Bm6/7 '0
-0.10701 0.00689 -15.525 0 

Hyp. 17
T2-T3 j

7

m'1

Bm5/7 & j
7

m'1

Bm6/7 '0
-0.17246 0.00689 -25.022 0 

Hyp. 18
EX-HN j

7

m'1

Bm7/7 & j
7

m'1

Bm8/7 '0
-0.03857 0.00689 -5.596 0 

Hyp. 19
EX-TN j

7

m'1

Bm7/7 & j
7

m'1

Bm9/7 '0
-0.03725 0.00689 -5.404 0 

Hyp. 20
HN-TN j

7

m'1

Bm8/7 & j
7

m'1

Bm9/7 '0
0.00132 0.00689 0.192 0.8476 



19

References

Bauer, P., 1990, ‘Recent Developments in the Econometric Estimation of Frontiers,’ Journal of
Econometrics, v. 46, pp. 39-56.

Charnes, A., W.W. Cooper, A.Y. Lewin, and L.M. Seiford, 1994,  Data Envelopment Analysis: 
Theory, Methodology, and Application. Kluwer Academic Publishers, Boston.

Coelli, T., 1995, ‘Estimator and Hypothesis Tests for a Stochastic Frontier Function: A Monte
Carlo Analysis,’  Journal of Productivity Analysis, v. 6, no. 3, pp. 247-268.

Dixon, B.L., P. Garcia, and M. Anderson, 1987, ‘Usefulness of Pretests for Estimating
Underlying Technologies Using Dual Profit Functions,’ International Economic Review,
v. 28 no. 3, pp. 623-633.

Driscoll, P.J., and R. Boisvert, 1991, ‘Dual Second-and Third-Order Translog Models of
Production,’ American Journal of Agricultural Economics, v. 73 no. 4, pp. 1146-1160.

Førsund, F., K. Lovell, and P. Schmidt, 1980, ‘A Survey of Frontier Production Functions and of
Their Relationship to Efficiency Measurement,’ Journal of Econometrics, v. 13, pp. 5-25.

Gong, B., and R.C. Sickles, 1989, ‘Finite Sample Evidence on the Performance of Stochastic
Frontier Models Using Panel Data,’ Journal of Productivity Analysis, v. 1, no. 3, pp. 229-
261.

Gong, B., and R.C. Sickles, 1992, ‘Finite Sample Evidence on the Performance of Stochastic
Frontiers and Data Envelopment Analysis Using Panel Data,’ Journal of Econometrics, v.
51, pp. 259-284.

Greene, W., 1995, ‘LIMDEP computer program and manual: Version 7.0,’ (Economic Software
Inc., Bellport, New York).

Greene, W., (H. Pesaran and P. Schmidt, eds.), 1997, Handbook of Applied Econometrics:
Microeconomics Vol 2, Blackwell Publishing.

Guilkey, D.K.., K. Lovell, and R.C. Sickles, 1983, ‘A Comparison of the Performance of Three
Flexible Functional Forms,’ International Economics Review, v. 24, no. 3, pp. 591-616.

Hanoch, G., 1971, ‘CRESH Production Functions,’ Econometrica, v. 39, no. 5, pp. 695-712.

Hjalmarsson, L., S.C. Kumbhakar, and A. Heshmati, 1996, ‘DEA, DFA and SFA: A
Comparison,’ Journal of Productivity Analysis, v. 7, no. 2/3, pp. 303-327.

Jondrow, J., K. Lovell, I.S. Materov, and P. Schmidt, 1982, ‘On the Estimation of Technical
Efficiency in the Stochastic Frontier Production Function Model,’ Journal of
Econometrics, v. 19, no. 2/3, pp. 233-238.



20

Khoju, M., and B. Dixon, 1994, ‘Sensitivity of Rankings of Inter-Firm Efficiency Measurement to
Model Specification.’ Paper Presented at the 1994 Southern Agricultural Economists
Association Annual Meeting.

Mood, A., F. Graybill, and D. Boes, 1974, Introduction to the Theory of Statistics. McGraw-Hill,
New York, New York.

Mukerji, V., 1963, ‘Generalized SMAC Function with Constant Ratios of Elasticities of
Substitution,’ Review of Economic Studies, v. 30, pp. 233-236.

Olsen, J.A., P. Schmidt, and D.M. Waldman, 1980, ‘A Monte Carlo Study of Estimators of the
Stochastic Frontier Production Function,’ Journal of Econometrics, v. 13, pp. 67-82.




