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Abstract

D. E. Rowe and R. R. Hill, Jr. Theoretical Improvement of Autotetraploid
Crops: Interpopulation and intrapopulation Selection. 1984. U.S. Department of
Agriculture, Technical Bulletin No. 1888, 32 p.

This paper presents equations for expected genetic progress for interpopulation
and intrapopulation breeding schemes for autotetraploid crops. Equations are
developed for the change in the genotypic means of a single population, a
hybrid of two populations, and a synthetic variety of two populations with a
single cycle of selection as a function of population parameters and change
in allele frequency. Also, response equations are developed for changes in
aliele frequency and genotypic population means with intrapoputation
breeding schemes, and more difficult response equations are developed for
changes in genotypic mean of a hybrid population or synthetic variety as a
function of breeding method.

KEYWORDS: autctetraploids, hybrid varieties, phenotypic selection, plant
breeding, progeny testing, selection response, synthetic varieties.

Copies of this publication may be purchased from the National Technical In-
formation Service, 5285 Port Royal Road, Springfield, Va. 22161.

The Agricultural Research Service has no additional copies for free distribution.
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Theoretical improvement of Autotetraploid Crops:
Interpopulation and Intrapopulation Selection?
by D. E. Rowe and R. R. Hili, Jr.2

Introduction

The number of breeding alternatives that will attain a specific objective in a
crop development program can be very large. To assist plant breeders in their
decisionmaking processes of program development, the guantitative geneti-
cists have developed some methodologies and mathematical models for theo-
retically comparing the expected gains of various breeding schemes under
specific genetic situations. Those theoretical investigations can improve our
understanding of published results and personal experiences in plant
breeding. The theoretical investigations also provide a mechanism for making
observations on and comparisons of breeding schemes in genetic situations
which are neither possible or desirable in the field.

Theorstical research has been much more prolific for the diploid than for the
autotetraploid organism, in part, because of the greater complexity of auto-
tetraploid genetics. For instance, a poputation of diploid organisms not at
random mating equilibrium will attain that equilibrium in two generations of
random mating unlike the population of random mating autotetraploid
organisms which approach random mating equilibrium only asymptotically. At
a single locus with two or more different allelomorphs, the diploid has very
few possible genotypes in comparison with the autctetraploid, and there is
only one nonadditive genetic effect at a locus unlike the three far the autotetra-
ploid. The dipleid gamete of the autoteiraploid also compticates the genetics
of inheritance in comparison with that of the diploid with its haploid gamete.

In this publication, equations for expected genetic progress ara presented for
interpopulation and intrapopulation breeding schemes for autotetraploid
crops. Previous publications (Haag 7973; Hill 7977; Hill and Byers 1979, Hill
and Haag 7974; Rowe 7980; Rowe and Hili 1981),* present some of the results
that are reported here in consistent notation and in detail generally not
possible in journal articles.

in chapter 1, equations are developed for the change in the genctypic means
of a single population, a hybrid of two populations, and a synthetic variety of
two populations with a single cycle of selection as a function of population
parameters and change in allele frequency. Because each expression is
drrived two ways, there is some repetition.

In chapter 2, response equations are developed for changes in allele frequency
and genotypic population mean with intrapopulation breeding schemes.

1Cooperative investigations of the Agriculturai Research Serv-
ice (ARS), U.S. Department of Agriculture {USDA), and N.C.
Agricultural Research Service, Raleigh, N.C. 27650.

2Research geneticist, USDA/ARS, Reno, Nev. 89557 and
research agronomist, USDA, ARS, U.S. Regionat Pasture
Research Laboratery, University Park, Pa. 16802.

#The year in italic, when H follows the author's name, refers
to List of References, p. 31.




Chapter 3 combines results of chapters 1 and 2 for development of the more
difficult response equations for changes in genotypic mean of a hybrid popu-
fation or synthetic variety as a function of breeding methed.

For those who have difficulty understanding the sometimes complex algebra
or the basic methodology in this publication, we suggest a review of the
bulletin by Empig et al. 7972. Calculations for a given breeding situation are
much less protracied in diploid genetics than in autcotetraploid genatics.




Introduction

1. Population Models

For theoretical investigations of autotetraploid genetics, simptifying assump-
tions of the genetic situation keeps the often protracted mathematical caicu-
lations from being absolutely insolvable. For our purposes, we investigate the
genetics at a single locus with only two alleies (8 and b). The simplifying
assumptions are (1) all populations are initially at random mating equilibrium
{RME) with respect to the focus of interest, {2) only random chromosomal
segregation ocours, and (3) alle's frequencies are unaffected by any factor
other than selection. Other simplifying assumptions appear in the text as needed.

For the modeling, there are three base populations (P, R, and U). The frequen-
cies of aileles B and b are, respectively, p and g in population P, r and s in
poputation R, and v and v in population U. The expected frequencies of the
five possible genotypes with RME are given for each base population in

table 1. The array of frequencies for each base population is a binomial
expansion to the fourth power of (o + g}, {7+ 8), or {u + V).

Table 1.—Notation for genotypic frequencies in each base population at
random mating equilibrium

Base populations

Genotypes ) A U
BBEB ol r Ut
BBBbH 4pig 4138 43y
BBbb 6p2q? Breg? Buve
Bbbb 4pgt 4rs® 4u3
bbbb g4 st w4

The mathematical model used to describe the genetic effects in the five
genotypes of population P, the equations for the four population parameters
{ee 8, v, and &}, and the genetic variances, appear in table 2 (Hill 7977). The R
population model and equations for population parameters are found by substii-
tuting r and s, respectively, for p and g of table 2; similarly for the U popu-
lation model, v and v are substituted, respectively, for the p and g of table 2.

The expressions for genotypic values (table 2) of the autotetraploid model
(Hill 1977) are determined with reference only to the B allele. Terms A, D, 7T,
and F are, respectively, the genetic effects of the individual aliele (B}, the
interaction of two aileles {BB), the interaction of three alleles (BBB}, and the
interaction of four alleles (BBBB) at a tocus. The coefficients for each of
those terms indicate the different ways a specific effect can be generated
from a genotype and can be found by use of combinatorial analysis. For
instance, the coefficient for the D component of the triplex genotype {BBBb)
is found as the number of ways a grouping of two B aileles can occur in a
group of three B alleles, that is symbolically C3, which is 3.




Table 2..—The mathematical model of genotypic values of genotypes in
popuiation P and the equations for population parameters and their
variances (Hill 1971)

Genotypes Genotypic value?

BBBB 4A+ 8D+ 4T+ F
BBBb 3A+30D+T
BBbb 2A+D

Bbbb A

bbbb 0

Genetic effects Genotypic variances?

Additive (a)= A + 3pD + 3p2T + p3F Additive variance (s2) = 4pga?
Bigenic (f) = D+2pT+ p2F Digenic variance (42) = 6p2q242
Trigenic (y) = T+pF Trigenic variance {g2) = 4p3g3y?
Quadrigenic (5} = F Quadrigenic variance {02) = p4q4§2

The A, D, T, and F are genetic effects associated with
individual alleles, and the interaction of 2, 3, and 4 allaies,
respectively. .

#The total genetic variance (¢2) is 6% + 0% + 02 + o2,

With five genotypes, the genetic effect at a single locus of the theoretical
population can be described completely by four parameters, additive {a,
digenic (g), trigenic {y), and guadrigenic (5} (table 2). The additive and digenic
parameters of the autotetraploid population have interpretations that are
analogous to the additive and dominance parameters of the diploid pcpula-
tion. The trigenic and quadrigenic parameters have no diploid counterparts.

The equations for genetic parameters and their variances (table 2) were found by
the procedure of successive differences that was outlined in detail by Li (1857},

The equations for genotypic values (table 2) differ from the autotetraploid
genetic models of Kempthorne (7957) and Li (1957). The Hili (71971) modei is a
one-to-one transformation of the other tweo-alleie modets and, from our expsa-
rience, has superior characteristics for algebraic manipuiations.

Allele Frequency and The intent of selection is to improve the genotypic mean of a population by

Change With Selection  increasing the frequency of the desirable alleie(s) in a population. With a
single cycle of selection, the expected change in frequency of one allele, say
B, is approximated by the following relationship (Falconer 1960, chapter 11).

(1)




Change in Genotypic
Mean of Population
With Selection

The dp denotes the changes in frequency of allele 8. The § is the seiection
differential expressed as phenctypic standard deviations of the parental
generation, and o2, is the phenotypic variance. The covariance (o,,) relates
the frequency of aliele B in the selected units (x) to the genotypic values of
the observed units (y) upon which the selections are based.

The mean genotypic value of a population is given by Lf,G{i=1, ..., 5 where
f, Is the frequency of the /i genotype and G, is the mean genotypic vaiue of
the j** genotype. For population P at RME, the frequency of the / genotype
appears in table 1 under P, and the genotypic value of the genotype
appears in table 2 under Genotypic Value. The mean genctypic vaiue {P) of
population P at RME is

P =4pA + 6p2D + 4p3T + peF. @
With a single cycle of selection, the frequency of allele B will change by g
quantity dp, and the mean of the improved population (P') at RME is
P'=4{p + dp)A + B(p + dp)D + 4(p + dOPT + (0 + dp)F (3)

The change in mean genotypic value (AP) of the population is the difference
between the oid and new means (P'— B} = AP, thus

AP = 4dpA +{12pdp + 6dp?)D + {(12p%dp + 12pdp? + 4dp)T
+ (40%dp + BpRdp? + 4pdp® + dpPAF. 4

{Throughout this text in each term of an equation, the allele frequency, such
as p, always precedes the term for change in frequency, such as dp.}

A single cycie of selection usually resulis in a smali change in allele frequency,
and the square and greater powers of the change are considered negligible
and are ignored to simplify the equations. Thus equation {4) can be simplified.

AP =4dpA + 12pdpD + 12p2dpT + 4p3dpF. (&)
First the terms of this equation are arranged.

AP =dp(4A +12pD + 12p2T + 4p%F). Then
AP =4dpa

7
where o, is the additive genetic effect of poputation P {table 2). In
equation {8}, the change in population mean with one generation of selection
is a function of the additive genetic effect and dp.

()

The change in the population mean can also be found by use of a calculus
method described by Moreno-Gonzalez and Grossman {18786} for a diploid
population. This method expresses the changes in mean AP with a change in
£ as a Tayior expansion of derivatives tc the fourth degree. The Taylor expan-
sion for the change in the mean is

OF o+ O e+ Pty 4 O oy
epd epz(dp) + epa(ﬁ'iﬁ’) + E},04(C3";Ea")




Change in Genotypic
Mean of a Population
Hybrid With Selection

where GP1Op, .. .04PI6p* are partial derivatives of the first to fourth degrees,
respectively, of P with respect to p.

The solutions for these partial derivatives are as follows:

%=4A+ 12p0 + 1202T + 4p°F = 4a
2
8—p§=129+24pT+12pZF=1zﬁ

d

<]
P 24T + 24pF =24
e = 24T+ 24pF =24y

e
O*P
opr = 24F =24,

Therefore, AP = 4adp + 128dp2 + 24~0p? + 246dp".

If squares and higher powers of dp are ignored as before, AP is again Adpo g,
Computationaily, the use of the Taylor expansion facilitates analytical solu-
tions in terms of population parameters. The difficulty in the computations
with the direct subtraction method wiil become apparent shortty,

Unpubiished results indicate that the use of the approximate equation for AP,
equation {8), instead of the exact equation, equation {4}, has some error.? For
certain types of inheritance, the frequency p where AP was maximized dif-
fered by 7 percentage points for the two methods, but generaliy the
difference was very slight. Usually, equation (5) overestimated AP slightly, but
in ong case it overestimated the maximum AP by 24 percent. Further
research may indicate that the error introduced by use of an approximate
equation for AP is intolerable.

The genotypic mean of a hybrid of two populations P and R (hereafter called
the hybrid mean) is found easily by recailing that £ has three {ypes of
gametes (BB, Bb, and bb), which occur at frequencies of p?, 2pg, and g3
respectively, in population P at RME. In population R, the sameg gametes
occur, respectively, at frequencies of r2, 2rs, and s2 Construction of a Punnett
square with those arrays of gametes and frequencies in the margins of adja-
cent sides will, when muHiplied in all combinations, give the genotypic prod-
ucts and their frequencies in a hybrid (see table 3). The hybrid mean is then
Lf G, where f, is frequency of each genotype (labie 3) and G, is the mean
genotypic value of the respective genotypes (table 2}. After simplification, the
hybrid mean (X,,) of Px R is

X = (2P + 2NA + (02 + 4pr + 3D + (2p%r + 2prAT + preF. (7)

“Bowe, D. E. 1980. Calculated inherent error in presently
used equations for intrapopulation improvemeni procedures.
[Unpublishad.]




Table 3.—Punnett square for calculating frequencies =f genotypes in a hybrid
of population P and R

Population R
Gametesf{frequency}
BB Bb bb
{r3) {2rs) {8?)
BB BBBSB BEBbH BBbbH
(p2) Py {p?2rs) {p®s?)
Fopulation £ Bb BBBb BBbb Bbbb
Gametesi{frequency} {2pg) (2pgre) {4pgqrs) {2pgs?)
bb BBbb Bbbb bbbb
(g {g%r%) {g%2rs) {g°s9)

The change in the hybrid mean due to changes in allele frequencies in the
parent populations is found in a manner analogous to that described previ-
ously for selection within a single population. Let dp be the change in aliele
frequency in population P and dr be the change in allele frequency in popu-
lation A. The new hybrid mean (X', .} is

Y’Hyb =[2{p+dp)+2{r+ dr}A +{{p + dp2+ 4{p + dplir + dny + {r + driRiD
+ [2(0 + dpfr + dr? + 2{p + dp¥(r + dn)]T + (0 4 dPY{r + dri2F. {8)

The change in the hybrid mean (AX,,,} is found by subtraction,

Af{nybz X' ugo = Xy

AXy o= (20D + 2d1)A + [2pdp + dp? + 4rdp + 4pdr + 4dpdr 4 2rdr + dr2]D
+ [2p%dr + 4prdp + 4pdpdr + 2rdp? + 2dp2dr + 4prdr + 2pdr?
+ 2r2dp + 4rdpdr + 2dpdrAT + [2p?rdr + p2dre + 2predp
+ 4prdpdr + 2pdpdre + r2dp? + 2rdp?dr + dp2dre)F,

If the quadratic and bilinear terms involving dp and or are considered negli-
gible and ignored, this equation simplifies to

A’Xm,b = 2dp{A + 3rD + 32T 4 13F) + 2dr{A + 3pD 4 3p?T + p3F)
+20p{p — D+ 21T+ r2F)— 2drip — D + 2pT

+ p?F}. (9)
Substitution of population parameters into equation {9} gives
AX,p=2dpay, + 2dra, + (P — 1{2dpB,,, — 2d1B ). (10}

The expression for change in the hybrid mean can be found by use of the
methodology of Moreno-Gonzalez and Grossman {1976). Tho general expres-
sion for the change in the mean of a population affected by two parameters p
and r as a Taylor expansion to the fourth degree is




Change in Genotypic
‘Mean of Synthetic
Variety With Selection

dX = (6X/0p)dp + (BXIOndr + (82XI0p3dp2
+ (82Xi0rdri2 + 2(02XI6ponidpdn)i2
+ (83X/0p3)apy6 + (O XI0p20r)(dp2dni6
+ 3(0°X/BpO R (dpdrais + (B3XIOr)dri6
+ (B4XI8pAdpiI24 + 4(S4XISp 0ndpsdri24
+ 6(94XIOp2Or2)dridpdi24 + MO XIBpOridpdri24
+ (B1Xiar)drii24. (11)

The partial derivatives are solved (see table 4) and substituted into
equation (11). In terms of population parameters, the change in the hybrid
mean is

&R-Hyb = [20c{m + 2(p — r)ﬁm)]dp + [205(9:._ 2(p - r)ﬁ(P)]dr
+ B(H]dpz + [2-8(.0] + 2-8(R] + 2(p - )Zajdpdr + ﬁ("]drz
+ 2y,5d0%dr + 2v,,dpdr + 80P, (12)

When the bilinear, quadratic, and higher powers of dp and dr are ignored,
equation (12) will simplify to equation (10).

Table 4.—Solutions for panial derivatives used in the calculations of change
in genotypic mean of a hybrid of populations P and R as a Taylor
expansion to the fourth degree

Derivative? Solutions

(8X/0p) =2A+2pD + 4rD + 4prT + 277 + 2p1%F = 20 + 2(p — 1B
(8X/6r) =2A+4pD+2rD + 20T + 4prT + 2p%rF = 20, — 2(p — 1},
(62X10p?) _ =2D+4rT+2r°F =28,

(B2Xi6r%) =20+ 4pT + 2p2F = 2,6“,,}

(62X 18080 = 4D+ 4pT + ArT + 4prF =28, + 28,5 — 2(0 — 1)

(63X i5p% =0

(83X 16pp28r) =4T+ ArF =4y,

{@3X10p0re) =4T +4pF =4y,

(03X 10r%) =0

(e Xigpi? =4F =45

(64Xi8p* = (64X [0p0r) = (8*X/0p8 %) =§4X(0r} = 0

1?th ={(2p+ 20A + {02 + 4pr + A0 + (2p%r + 20T + pr2F.

For theoretical purposes, the synthetic variety of interest is derived with
quantitatively equal contributions of genetic material from two populations, P
and R. The frequency of allele B in the synthetic variety will be {p 4+ nf2. When
this 2-populaticn synthetic variety atiains RME, the genctypic mean is given
by equation {2) ». "th {p + r}/2 substituted for p. When expanded, this equation
for the genotypic mean of the synthetic variety (hereafter called synthetic
mean} is




Xsyn = [20 + 2714 + [312)p° + 3pr + (312)r9D + [(1/12)p2 + (312)p2r
+ (312)pr2 + (112)r8T + [(1116)0% + (41168)p3r + (6/16)p2r2
+ {4116)pr? + (1N B)4)F. (13}

As before, let dp be the change in allele frequency with selection in popu-
tation P and dr be the change in altele frequency with selection in population
R. The synthetic mean following selection is found by substituting (p + dp)
and (r+dr) for p and r, respectively, in equation {13).

X'son = (20 + 2dp) + (2r + 201 A + [(3/2)(0” + 200D + dp?)
+ 3(pr+ pdr+ rdp + dpdr)
+ (312)(r? + 2rdr - dr3)ID + [{1/2)(p3 + 3p2dp + 3pdp? + dp?)
+ (3/2)(0%r + p2dr 4 2prdp + rdp? + 2pdpdr + dp2dr)
+ (312)(pr2 + pdre + 2prdr + redp + 2rdpdr + dridp)
+ (1/2){r? + 3redr + 3rdr2 + dr3)]T
+[(1/18){p* + 4p3dp + Bpidp? + 4pdp® + dp?)
+ (41 6}{pr + pidr + 3p2dpdr + 3prdp? + 3p*rdp + 3pdp2dr + rdp? + dpidr)
+ (6/16)(0r2 + 2p2rdr + p2dre + 2predp + 4prdpdr
+ 2pdpdr’ + r2dp? + 2rdpdr + dp2dr?)
+ (4116)(pre + 3predr + 3prdr? + pdrd + Bdp + 3rkdpdr + 3rdpdr? + dpdrd)
+ (11B)r + 4r8dr + 8r2dr2 + 4rdr® + dr)F. (14)

if the bilinear, quadratic, and higher order terms are assumed to be negligible,
then equation (14) simplifies to

')?'Sw =[{2p 4 2dp) + (2r+ 2dn)4
+[{372)(p? + 2pdp) + 3(pr + pdr + rdp) + (312)(r2 + 2rdr)jD
+ [{172)(p* + 3p2dp) + (312)(p%r + p2dr + 2prdp) + (312)pr2
+ 2prdr + r2dp) + {112)(r* + 3r2d0)]T + [(1/16){p* + 4pidp)
+ (4116)(0%r + p3dr + 3prdp) + (BN 6)(p2r2 + 2pirar + 2predp)
+{4116)(pr® + 3pradr 4 r3dp) + (1/18)(r + ArsdniF.

The change in the synthetic mean after selection is found by subtraction

(Y’Syn - YSyn) = AYSYH

AYSW = 2dpA + 3pdpD + 3rdpD + 2drA + 3pdirD + 3rdrD + (312)p2dp T + 2prdpT
+{32)r2dpT + (312)pdrT 4 3prdrT + (32)r2drT + (114)p3dpF
+ (3I)p2rdpF + (314prdpF + (114)3dpF + (114)p3drF + (314)p2rarF
+ (3i4)predrF + (114)r3drF. (15)

Equation (15} can be expressed in terms of population parameters:

DXy = 20pa g + 2010, + (14)(p — PHEPB,, — O1,)
+(3/8)(p — NP8, — dr8 ) +{112)(p — r¥dps — drd). (18)

The change in the synthetic mean via selection in the parental populations
can be found by use of the Taylor expansion. The general formula for the
Taylor expansion is equation (11), and the solutions to the partial derivatives
are found in table 5. Substitution of the partial derivatives into equation (11)
gives the change in the synthetic mean.




DXy = loe + oy — ((314H0 — vy + 76))lldlp + A1)
+ {(3/2)8,p,+ (3/2)8,5, — ((3/4)(p — ry23)I(1/2)(dp + )2
+ [(312)y 5, + (312)y , J(118)(dp + dr} + [(3/2)6(1/24)](dp + dr}.

lgnoring guadratic and higher order terms of dp and dr, the &R—Syn is
DX o= (0P + dlloge, + gy — (314) D — Ny, + v)]- (17)

With considerable algebraic manipulaticn, equation (16) can be shown to be
equivalent to equation (17).

The difference in the expecied change in the genotypic mean of the synthetic
variety (17) and the hybrid {10) is the effect of the disequilibrium of genotype
frequencies found in the hybrid,

Tabie 5.—Solutions for pariial derivatives used in the calculations of change
with selection in the genotypic mean of the 2-popuiation synthetic
variety as a Taylor expansion to the fourth degree

Derivativel Solutions

(0Xi6p) =2A + 3p0 + 3rD + (312)p2T + 3prT + (31227 + (14)p3F
+ (3l4)perF + (3I)preF + (14)r3F
=gy + oy = (3N — Py + i)
(exion =24 4 3pD +3r0 + (312peT + 3prT + (312)r2T + (1/4)p3F
+ {314)p2rF + (314)preF + (1/4)F
= Qi + Qi — {3*"4)(10 - r)z{')’{p} + 7(;:”)
{2X10p?) =30+ 3pT 4+ 3rT + (34)p2F + (312)prF + (3/4)r2F
= (312)B 5, + (312)8 5, — (3140 ~ 1?5
{62X18p% = (82X/8phr) = (82X16r2)
{#°X18p%) = 3T+ (3/2)pF + (312)rF = (312 (v + Vi)
(83X 16p%) = (63X/6p26r) = (83X/6p8r2) = (§2X18r9)
(6*X16p*) = (312)F = (312)5
(64X16p%) = (§*X/0061) == (8*X16p20r%) = (§°XIpOrd) = (§4X/0r")

X = (2p + 2nA + ((312)p2 + (322D + {guz)ps + (32)0%r + (32)pr2 + (12T

+ {{118)0* + (4H18)0%r + (611602 + {4HBJpr + (1HBYYF.

Equations (8), (10), and (17) indicate that changes in the genotypic means,
respectively, of the single poputation, hybrid, and synthetic variety are deter-
mined by change or changes in alleie frequency and the additive genetic
component or components. When p and r are not equal, the digenic and tri-
genic components in equations (10) and {17}, respectively, could significantly
influence the change in the genotypic mean. Without knowing the mode of
genetic action at the B locus the positive or negative contribution of the non-
additive genetic effects fo the change in the genotypic mean is not predic-
table. As p and r approach equality, the nonadditive effects in equations (10)
and (17} go to zero and AX, = AX,  because o=«

) Ry
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2. Intrapopulation Improvement

Selection schemes are classified as either intra- or interpopulation improve-
ment methods. The delimiting factor of this classification is the final objec-
tive of the breeding method, An intrapopuiation breeding method is for
improving the mean genotypic value of a single population while an inter-
population breeding method is for improving the mean genotypic vaiue of a
hybrid or synthetic varisty.

With a single cycle of seiection, the change in mean genotypic value of a
population can be expressed as a function of change in allele frequency. The
algorithm is to find a solution for equation (1) which corresponds to a partic-
ular breeding method and substitute it into the equation for change in mean
genotypic vaiue, equation (8). The two important components of equation {1)
are the covariance (g, ) and the ratio of selection differential to phenotyplc
variance {Sfa?,). In thIS chapter, the influence of breeding method on a1
demonstrated with Sfe?,, assigned the constant vaiue of “k”. In the summary
of this chapter, the influence of breeding method on Ste?,, is discussed.

The covariances associated with each breeding method are presented in a
manner that shows their derivation, but the calculation of the covariance is
sometimes much simpiified by the use of two identities. The covariance is
unaffected by subtraction of a constant from one of the variables, and the
multiplication of one of the variables by a constant multipiies the covariances
by the same constani.

The theoretical response to selection is in terms of gain for a single cycle of
selection. Since the number of generations of a crop necessary for a cycle of
selection depends upon the breeding method, meaningful comparisons of
breeding methods should be on the basis of a gain per generation or some
fixed period of time, but even this is enly approximate. Other factors which
may unequaily affect generation time of breeding schemes are the breeding
objectives and the procedures and facilities of the plant breeder,

Mass Selection 1 {Mass 1)

With this breeding scheme {also known as simple recurrent selection (Allard
1960) and phenotypic recurrent selection (Penny et al. 1963)), individual plants
of a population are selected on the basis of their phenotype and then ran-
domty ma. .d to generate the seed for a new, select population. To simplify
the mathematics, we assume that the selected population, in this case and
all subsequent cases of intrapopuiation selection, has attained RME.

The covariance {g, J of equation (1) is found for mass 1 and all other breeding
schemes as Lf, g, p,— gp where f is the frequency of the jt genotype, g, is the
genotypic value of the observed umt corresponding to the /* genotype, and P,
Is the frequency of the desired allele in the selected unit of /i genotype. The
g is the mean genotypic value of the observed units, and p is the mean fre-
quency of allele 8 in units from which selections are made.
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Thus, for mass 1 selection, the genotype is in column 1 of tabie 6, the
frequency of genotype (f,) in column 2, the frequency of the allele B (p} in the
respective genotypes in column 3, and the respective genotypic value in col-
umn 4. The mean frequency of aliele 8 among the units from which selec-
tions are made, that is, the individual plants, is p and the mean genotypic
value among the observed units, the same plants, is the mean genotypic
value of the popuiation given by equation (2). Thus, this covariance is
between the genotypic value and frequency of alieie 8 in the individual. The
covariance for mass 1 selection is

=pH1){4A + 6D + 4T 4 F)+ 4p°q(3/4)(3A + 30 + T ) + Bp2q(1/12)(2A + D)
+ 4pgi(1{4)A + g40)(0) — p{4pA + 6p2D + 4p3T + p*F)

= A(4p* + 9P~ 9p* + 602 — 12p3 4+ 6p* + p — 3p2 + 3p3 - P4 — 4p?)
+ D{Bp* + 9p?— 9p4 + 3p? — 6p% + 3p¢ — 8p9) + T(dp* + 3p3 — 3p* — 4p9)
+ F(p* — p5).

a
*¥mass 1

This simplifies to

= (p - PYA + (302 — 3p%)D + (30° = 3pYT + (0% — pIF
=pgA + 3p2qD + 3p°qT + p*gF.

7
¥mass ¥

The change in allele frequency expressed in terms of population parameter is
dp = kpqgey, (18}

where subscript (P} indicates “of population P and k is the constant Sle?,,.
The change in the genotypic mean of population P with one cycle of selec-
tion with mass 1 selection is, from equation {6},

Apmass 1 = 4kpqa2|‘.°]‘ (1 9]

Thus, the change in population mean with this selection is a function of the
aliele frequency and the square of the additive population parameter or k&
{imes the additive genetic variance,

Mass Selection 2 {(Mass 2}

With this scheme, individual plants are selected on the basis of their phenc-
type, but seed is produced from selections which were polycrossed to the
entire population of selected and unselected plants. The genotypic values of
the phenotiypes are in column 4 of table 8, genotypes of the polycross
progenies are in column 7, and their respective frequencies are in column 8.
The frequencies of altele B in polycross progenies of selected plants are in
column 10, whose entries are the products of columns 8 and 9. The mean fre-
quency of B in column 10 is p, and the mean genotypic value of column 4 is
given by equation (2). The covariance of mass 2 selection is the corrected
sum of cross products of columns 2, 4, and 10 of table 6.

=(PMp + N2N4A +BD + 4T + F) + (p3g)2p + (312NBA + 3D + T)
+{2g(3p + (312)(2A + D)+ {pg)(20 + (TI2)A + (@H0)pi2)
— plARA + 6P2D + 4p3T + poF).

8
*¥mass 2




Table 6.—The progenies, frequencies, and genotypic values for calculation of covariances for breeding
methods involving phenotypic selection or polycross progenies

Individual plant characieristics Prageny from polycrossing

Mean
frequency Mean genotypic value
of ‘8

Genolype Frequency Gamete Polycross Genotype Freguency

Genotype frequency of '8 Genotypic value  Gametes frequency genotypes frequency of '8’

0] (2 3) {4) {5} {6) {7 8 ) (10) an

Frequency
af ‘8" in
next polycross

{12)

ot AA 48D+ 4T+ F B8 p? 12+ 2+ NA+{14+4p+p3D +
2pq {pi2) (202 +2p)T + p*F
o

114 + (314)p

3A+3D+T pa2 (318} + (2P + (31204 + (p? +
oq (pi2) 3p + (12))D + (312)p2 +
g2 PIT + (p212)F
pire
Pq
g2

316 + (3d)p

P48 i4y+  {2p+ TJA +{p?+
2pql6 (b2} (HENO + (o2 + (pIBNT +
g2i6 (o2B)F
4p2g
8pglc
4g215
o6
2pqt6
26

118 + (3/4)p

pY2 {20+ {H2NA + (0% + 01D +
2p§,u’2 p%2)T

g2

pit
2pqi2

qi2

116+ (id)p

p? 2p4 + p?D
2pq
g?

(314)p
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This covariance is greatly simplified by subtracting {p/2) from the entries of
column 10, which are then one-half of column 3, and the covariance for
mass 2 is one-half of that of mass 1. Thus,

O nass 2 = {pgu)i2, (20}
and the corresponding change in population mean is
L\:‘-jmass 2= QK,OQOF(P!‘ {21

The polycross pollination of seiected individuals prior to selection halves the
expected change per cycle of selection.

Mass Selection 3 (Mass 3)

In this breeding scheme, individual plants are selected on the basis of their
individua! phenotype foliowing seif-pollination. The selfed progeny of the
seiected individuals are then randomly intermaited to generate the select
population, With selfing, the allele frequencies of the progeny are expected to
be the same as those of the parent. Thus, this selection scheme has the
covariance of mass 1, but the generation time is doubied.

$1 Progeny Test (S1PT)

With this breeding scheme, individual plants are selecied on the basis of the
performance of their seifed progenies, The selectad individuals are then ran-
domly crossed to generate a select population. Information for calculations
of covariance is in columns 2 and 3 of table 8, which were used previously,
and in column 7 of table 7. The mean genotypic value of each progeny from
selfing is found by noting that the gametes of each genoctype, column 3,
occur at frequencies in column 4, which produce the genotypes in column 5
with the frequencies in column 6, The mean genotypic value for each parental
genctype is found by muliiplying the genotypic value associated with each
genotype of column § by its frequency, column 6. The frequency of allele B in
al! units of selection is p and the mean genotypic value {g) is determined by
multiplying the genotypic vatues of the genotypes in column 5 by their
respective frequencies in column 6 and the seed parent frequency, column 2.
The mean is

2

— 2
G=4pA +piBp+ 1)D + 20220 + )T+ (p3+9;6q-))=.

The covariance is

= (PY1NLA + 6D + 4T + F) + 4p%qQ(3/4){3A + (1314)D + (312)T + (1/4)F]
+ B2 12)[2A + {413)D + {1/3)T + {1/36)F] + 4pg3{(1id){A + (1/4)D)
+ gUO)N0} — P[4pA + piBp + 1)D + 2022p + 1)T + {PUBYP? + 4p + 1)F)

= pq[A 4 (30 + (1 — 2p)/4)D + {3p2 —~ (3p2 — 22T
+{p3+4 (- 10p3 + Bp? + PI12)F]

= pqo, + PQll(1 — 2p)4)D — {(3p? — 2p)/2)T — {(10p3 —~ 6p2 ~ PY12)F].  (22)

a
XYBIPT)




Table 7.—Products, frequencies, and genotypic values with seifing of population P

Seed parent Gametes with selfing Progeny with selfing
Genotype Frequency Genotype Frequency Genotype Frequency Mean genotypic value
{1 (2) 3) {4) {5 {6) N
BBBB fold 88 1 BBBAB 1 4A+BD+ 4T+ F
BBBb 4pig 88 112 BBBB 1/4 SA+{(13/14)D + {312)T + {114)F
Bb 112 BBBbH 2i4
BBbb 174
BBbb 6p2g? BB 116 8BBB 1/36 2A +{413)D + (13T + (1/136)F
Bb 46 BBBbH 219
bb 116 8Bbb 1/2
Bbbb 219
bbbb 1136
Bbbb dpgt 88 112 BBbb 1/4 A+ (114}D
B8b 172 Bbbb 12
bbbb 1/4
bbbb a? b 1 bbbb 1 0

Thus, the covariance of S1PT is a function of aliele frequency, genetic
parameter «,, and some portion of nonadditive genetic effects (0, 7, and F),
The change in genotypic mean with selection is

AP or = 4kPGat pfct + C) (23)

where C s [(1 - 2p}4)D + ((3p2 — 2p)/2)T — ((10p3 ~ 6p2 — PYI2YF),
Since C is dependent upon the values of p, D, T, and F, it is not cbvious when
C is positive or negative.

A slight variant of the S1PT is the selection of best 81 families instead of the
parental clone. Since the mean allele frequency of selfed progeny is the same
as that of the parent, the covariance is not changed.

Half-sib Progeny Test (HSPT)

With this breeding scheme, also known as polycross progeny test {Tysdal and
Kiesselbach 7944), individual plants are selected on the basis of their half-sib
family performance. The half-sib families are produced by polycrassing or
poliinating the flowers of each plant with polien that is representative of the
entire population. The selections are then randomly crossed to produce the

15




select popuiation. The information necessary for covariance calculation is
found in columns 2, 3, and 11 of table 6. The mean genotypic values for the
half-sib families is found by multiplying the respective genotypic values of
the genotypes of column 7 by the frequency of the genotype, column 8. The
mean frequency of aliele B in all the parental plants is p, and the mean genc-
typic value of progeny with random mating is that of the population mean
given by equation 2. The covariance is

=pi1)[{(2p + 2)A + (p% +4p + 1D + (202 + 2p)T + P2F] + 4p3q(3/4)[(2p + (3/2))A
+{p2+ 3p + (120D + ((3/2)p2 + p)T + {(112)pAF]
+Bp2q2(1/2)[(2p+ DA + (02 + 2p + (1/16))D + (o2 + (PI3NT + ((1/6)p3F]
+ 4pgP(11a)(2p + (12)A + (P2 + p)D + {(112)pAT 1+ g(0)2pA + p*0)
— p[4pA +6p2D + 4p3T + pAF]
= (pgi2){A + 3pD + 3p2T + p*F) = (pgi2)o (24)

a
AYHSPT]

g
*¥(HSPT

Thus, the change in the genotypic mean of a population with a single cycle of
selection is

AP oo = 2kPGeR, (25)

Half-sib Family Selection (HSFS)

With this procedure, half-sib families are generated and evaluated as in the
previous breeding scheme, but the half-sib families are selected instead of
the parent plant. These families are intercrossed to produce the select popu-
lation. Columns 2, 10, and 11 of table 6 contain intormation for calculation of
the covariance. The mean frequency of aliele B in all half-sib families is p,
and the mean genotype value of these progenies is given by equation (2). The
covariance is

=1+ p¥2)2(p + 1A + {1+ 4p + pID + {202 + 2p)T 4 p?F)
+ 4p2q{(3/8) + {pf2)[(2p + (312)A + (p*+ 3p + (1/12))D
+{(312)p% + p)T + (PU2)F] + 6p2q¥(114)) + (pI2))[(2p + 1)A
+(p? + 2p + {11610 + (p2+ (PIA)T + (PUG)F]

+ 4pg[(1/8) + (012)]) [(2p + (1/2DA + (o2 + PID + (2T |
+ q¥pI2)(2pA + piD) — p[4pA + 6p2D + 4p3T + p*F.

44
XHHSFS)

This covariance is simplified by subtracting {p/2} from column 10 of table 6 to
get values that are one-haif of those in column 3. Then, the covariance of
HSFS is one-half of the covariance of HSPT. Thus,

O'*Y{HSFS‘] = (PQ'M)&(P], (26}
and the change in the genotypic mean is

AP grg = kPgaty, {27




Half-sib Progeny Test With Family Progeny Seiection (HSFP)

Thts breading scheme is identical to HSFS selection just described, except
all families are polycrossed and the seed of superior families are collected.
The progenies of the selected families are intercrossed to produce the select
population. Columns 2, 11, and 12 of table 6 contain the information for
covariance calculation. The aliele frequencies in the progeny of polycrossed
half-sib families, column 12, were generated in the same manner as frequen-
cies of column 10. The mean genotypic value of the random mating popuia-
tion Is that of the single population {equation (2)), and the frequency of B in
progeny of the half-sib families is p. The covariance for HSFP is

PU4) + (3I)p][2(0 + 1)A + (1 + 4p + pAD + (202 + 2P)T + pF]
+ 4p*q((3/16) + (3/4)p][(20 + (3/2NA + (p2+ 3p + (112)D
+((312)p% + p)T + (p¥2)F] + Bp%g%(1/8) + (3/4)p]l(2p + 1)A
+{p?+ 2p + (1B)D + (P2 + (DI T + (p¥6)F)
+4pg{(1/16} + (3/4)pli2p + (112DA + (B2 + p)D + (p22) T]

+ q(3/4)0]2pA + p2D] — P[4DA + 602D + 4p5T + p*f,

This covariance is greatly simplified by subtraction of (3pt4) from each entry
in column 12 of table 6 to get values that are one-fourth of those in column 3.
Thus, this covariance is one-fourth of the covariance of HSPT. Thus,

Trsspm = PABt(ey (28)

and the change in the genotypic mean of the population with a single cycle
of selection is

x»\’:H"FP}

AP gem = (kPGI2)0 o, (29)

Fuil-sib Family Selection (FSF)

With this breeding scheme, full-sib families are generated by the crossing ot
randomly selected pairs of plants from a population of individuals. The best
full-sib families are setected and randomly crossed to generate the select
population. The covariance is calcuiated with the information in columns 2,3,
and 4 of table 8. With five genotypes, there are 25 possible full-sib combina-
tions, but same of those are reciprocals of each other. Thus, there are only 15
different full-sib pairings, and they appear in column 1 of table 8. The fre-
quency of allele B over all the randomly generated families is that of the
parent poputation, p. The mean genotypic value of these families is the same
as that of the parent popuiation. The covariance is

PYN)4A + 8D + 4T + F]+ (BpgH7I8)712)A + (9/2)D + (5/2) T

+ (112)F] + 12p62(314)[3A + (19/B)D + (413)T + (1/6)F] + Bp5q(5/8)[5/2)4
+2D + (12T )+ 2pq4(1/2)[2A + D] + 16p°qA(3/4)(3A + (138D + (312)T
+{1/4)F] + 48p°qYS/B)[(S5/2)A + (13/6)D + (3/4)T + (1/12)F]
+320'q(1/2)[2A + (5/4)D + (14T 1+ 8p3g5(3IB)[(3/2)A + (1/2)D]
+36piqH(1i2)[24 + (413)D + (1/3)T + (1/36)F] + 48p%g5(3B)(3/2)4  (cont))

‘Y{FSF}




+ (213D + (1H2)T 1+ 1207251 14)[A + (1/6)D] + 16p2¢(1I4)A + (1/4)D]
+Bpg7{1/8)[(1/2)A] — P{4PA + 602D + 43T + p4F).

This fengthy equation simplifies io
(GXY(FSF_!= (pgl2)ey, {30)

and the expected change in genotypic mean

AP o = 2KpGe? (31)

A slight variant of full-sib family selection is the selection of the parental
clones instead of their families. The expected gain is the same because the
mean allele frequency of full-sib families is the same as the mean aliele fre-
quency of the two parentai clones.

Table 8.—The trequencies and genotypic values for calculation ot covariance
with full-sib family selection

Fuli-sib family Frequency of Freguency of Mean genotypic value of
matings matings 8 in matings fuil-sib families

1) 2 () {4)

BBBB x BBBB ol 4A+B0+AT+ F

BBBEB x BB8BbD 8p'q (7I2)A + (813D + {52)T + (12)F
BBBB x B8bD 12p5G2 3A + (19/16YD + {413)T + (1/6)F
BBBB x BBhb 8psgs (5I2)A + 2D + (11T

BBBB x bbbb 2pigt 2A+ D

BBBb x BBBb 16052 3A + (134D + (2T + (14yF
BBBb x BBbb 48p5q° (5I2)A + (1316)D + (314)T + (1/112)F
BBBbH x Bbbb 32pigt 2A + (BIAD + (114)T

BBBb x bbbb Bprgt (SIDA + (12D

8Bbb x BBbb 36pigt 24 + 4I3YD + (13T + (1/36)F
BBbb x Bbbb 48p°g° (312)A + (213D + (11 2T

BBbb x bbbb 12p2G° A+ {1/8}D

Bbbb x Bbbb 16p%gt A+ (114)D

Bbbb x bbbb 8pg’ (1/12)A

bbbb x bbbb o 0

Modified Ear-to-Row (MER)

This breeding scheme is a two-stage breeding methed that combined hali-sib
family selection and phenotypic seiection of individual plants {Webel and
Lonquist 7967). In the first stage, half-sib families are produced for each plant
by poifinating each with poilen that is genetically representative of the entire
population. The best half-sib families are selected, and then the best plants
are selected on the basis of their individual phenotypes. All selections are
then randomiy intercrossed to preduce the new, setect population.




With this breeding procedure, selection occurs twice, and the aliele frequency
is changed twice. The first stage of this procedure is half-sib family selection
(HSF8), and that covariance was determined earlier as Trymsrs = (pqlb)e,,. The
covariance of the second stage is between the genotypic vaiue and the fre-
quency of allele B of the individuals within the half-sib families. Thus, the
covariance is caiculated for each of the five possible genotypes of the seed
parent {column 1 of table 8), and the covariance for stage 2 of selection is the
weighted average of those five covariances.

The information for calculation of the second-stage covariance for MER is in
table 6. The genotype of the seed parent of each half-sib family is in column 1.
The genotype and frequencies of the half-sib families are in columns 7 and 8,
respectively. The frequency of alleie B in each genotype is in column 9. The
mean frequency of allele B8 within a half-sib family is found by multiplying the
entries of column 8 by those of column 9; those means are in column 10. The
mean genctypic vaiue of a half-sib family is found by an anajogous method.
For each genotype in column 7, the frequency of the genotype, column 8, is
multiptied by its respective genotypic value {table 2), and the sum of those
products is the mean genotypic value of each half-sib family, cotumn 11 of
table 6. The frequencies of the half-sib families are in column 2.

The second stage covariance (0,,)

cr’xy = plp¥1)4A + 6D + 4T + F) 4+ 2pq{3/4)(3A + 3D + T4 q2(112)(2A + D)
= ((U2)+ (P22 + DA + (1 + 4p + p2D + (2p2 + 2p)T + p2F]
+4pgi(pA2)(1N4A + 6D + 4T + F) + ({p + POIN(3/4)3A+ 3D+ T)
+ ((pg + QY2Y1/2}2A + D) + (q22){1/4)(A) — ((348) + (pi2})

((2p + {3I2)A + (p2+ 3p + (1I2))D + ((3/2)p2 + p) T + (p22}F))
+ 602q7(0HB)(1)AA+ 6D+ 4T+ F) 4+ (o + PABN3/AM3IA+3D+T)
+{(H6) + pq)(12)2A + D) + (g2 + q)M3)(1/4)A ~ (1 + 2p)/4)((2p + 1)A
+ (P24 2p + (1B))D + {p2 + (pI3NT + {0/BYF)
+ 4pqP[(p%2)314)3A + 3D + T) + {(pg + pY2)(1/2)(2A + D)
+ ((og + q)2)(1/4)(A) + (g¥2)(0)(0) — ((1/8) + (PI2)((2p + (1/2)A
+ (P + P)D + (PA2) D] + gp*112)(24 + D} + 2pq(1{4)A + g(0)(0)
—{(pI2)2pA + p2D))].

The covariance for stage 2 simplifies to
o'y = (3l4)Pgo, (32)
and the change in the genotypic mean with MER is

AP e = G (k(1/8)pgoc o, + K'(314)oga ) (33)
=kpgo, + 3k'pgat,,

The prime on the second k indicates that this & vaiue is not expected to be
identical to the first k.

An alternative procedure for MER selection is to save seed from the best
plants within selected families in the evaluation nursery. If those plants had




been randomly intercrossed with all plants of the nursery instead of just the
selections, the frequencies of B alleles wouid be one-half of those in column 8
of tabie 8 plus {p/2). With subtraction of {p/2), the covariance of the second
stage of selection is «,, = (3/8)pgc,, and the change in the genotypic mean at
stage 2 would be half of that with selection prior to pollination.

Topeross Progeny Test {TX)

With this breeding scheme, the individuais of population P are pollinated with
a representative sample of pollen from a different population (1), designated
the tester population. The best parents are selected on basis of performance
of topcross progeny. These selected parents are randomly intercrossed to
produce the select population. The covariance is determined with the infor-
mation in columns 2, 3, and 5 of table 9. The genotypic mean of topcross
progenies, column 5, is found in a manner analogous 1o that used for the
genotypic mean of polycrossed families, column 11 of table €. In population
U, the ratio of gametes (BB : Bb . bb} is u?: 2uv: v2, respectively. Thus, v and v
are substituted for p and q, respectively, in column 11 of table 8 to give
means in column 5 of table 9. The frequency of alieie B among plants of
population £ is p, and the mean genotypic value of the topcross progenies is
the hybrid of two populations (frem equation (7)) which s (2o + 2u)A + (P2 +
4pu + uAD + (2p2u + 2pudT + pucF. The covariance for the topcross progeny is

Tayan = PN +20)A +{(1 +4u + uBD + {20 + 203T + ULF] + 4p3q(3/4)
[((312) + 2u)A + {{(172) + 34 + LD + ({u + (32WAT + (12W2F]
+Bp2gA{1/2)[(1 + 2t)A + ((1/8) + 2u + uBD + ({13 + LAT + (1/6)u?F]
+ 4pgA{UA(1/2) + 2WA + (U + A0 + (12)u2T 1+ g4{0Y2uA + u?D]
—pli2p + 2)A + (P2 + 4pu + U D + (2p2u + 2pudT + pPURF].

Table 8.—Means, aliele frequencies, and genotypic values for calcufation of covariances for topcross
selection schemes

Polycrossed
seed parent
Genotype Frequency of {irequency of

Seed parent

Genotypic mean of fopcross progeny

Genotype frequency aliele B allele B)

(1} (2) 3 {4 (5)
BBBB P 1 (112} + (pf2) 2+20A+{1 +du+ 03D+ (2u+ 20T + U3F
BBBb 4p°g 3/4 (3/8) + {p/2} {312 + 2WA + {{(112) + 3u + LD + (U + (32T + {1I2niPF
8Bbb 6p2q? 112 {174} + (p/2) {14 2uA + {(1/6) + 2u + A0 + {{113)u + AT + {116}t F
Bhbb apg? 1/4 (18y+{pi2} {124 20A + (v + 2D + {112)°T
bbbb qt 0 (pi2) 2UA + 2D
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The covariance simplifies to
Term = (H2PGley, + (P — 1)), (34)
and the change in the genotypic mean is
&Em = 2kpgoypfo, + (0 — )8y )- (35

Thus, the change in the genotypic mean of popuiation P is a function of addi-
tive effects in both populations, digenic effects in the tester population, and
the difference in alieie frequencies of the two populations.

Topcross Progeny Test With Polycross Progeny (TXPX)

With this breeding scheme, the topcross progenies are produced as before,
but simultaneously the plants of tested populations are polycrossed. The best
clones are determined as before, but their respective progenies frem poly-
crossing are randomly crossed to produce the select population, The informa-
tion for the covariance calculation is in columns 2, 4, and 5 of tabie 9. The
frequency of B in the polycross families is p, and the mean genotypic value
of topcross progenies is that of the hybrid. The covariance for this procedure is

Ty rexexy = PU12) + (012D(2 + 20)A + (1 + 40 + AD + (2u + 200T + U2F]
+ 4p3G{(318) + (PL2)[((3/2) + 2L)A + (1) + Bu + tAD + (U + (32T
+ (H2)u2F] + 8p2q¥{114) + (RI2)[(1 + 2u)A + {(118) + 2u + WD
+ {18 + uAT + (1B)U2F] + 4pg3((1/8) + (2IZD[({1/2) + 2L)A
+{U+ 0D + (112)02T] + q¥pI2)|2uA + u2D] — pl(2p + 2L)A
+{p2 + dpu + uAD + (2p% + 2puA T + p2uzF].

This covariance is simplified by subtraction of pi2 from entries of column 4 of
tabie 9 to get values one-half of those in column 3. Therefore, this covariance
is one-half of covariance for TX and

Tuyrxen = PNy + (P — U)B, ). {36}
The change in the genotypic mean is

AP ey = kPG fen, + (o — By, ). {37}
Topcross Progeny Test With Full-sib Progeny (TXFS)

This breeding scheme is an alternative to selection of polycrossed families in
TXPX. With this scheme, random fuli-sib pairings are made in the population
which is to be improved while test crosses are made simultaneously as in TX
and TXPX procedures. The seed from best full-sib families is selected on
basis of performance of average of respective topeross progenies, The infor-
mation necessary for the covariance calculation is in columns 2,3, and 4 of
table 10. The frequency of B in ali full-sib families is the same as that of the
base population, p, and the mean genoctypic value of all topeross families is
that of the hybrid, equation (7). The covariance is




a
2YIXFS)

=p¥H{2 + 2L)A + (1 + 4u + DD + 2u + 2u8T + u2F]
+ Bp7q(7B)((714) + 2u)A + ((3/4) + (7120 + w8 D + ((314)u
+ (71T + (314)2F] + 12p5q2(3/4M)((3/2) + 2u)A + ({7112}
+ 30 + a0 + (763 + (312)uA) T + (71 2)uF] + Bpsg3(5/8){(5/4)
+ 2A + {(112) + (B12)u + U3 0 + (U + (B4R T + (112)ueF)
+ 2044 (12)[(1 4+ 21A + {112} + 2u + D + (u + U T + (112)u2F]
+ 16p8q2(3/14)[({3/2) + 2tHA + {112} + 3u + D + (U + (31233 T
+ {1/2)u2F] + 48p5g5/8)[((5/4) + 2w)A + ({1/3) + {5/2)u + uAD
+ {213 + (BIUAT + (13W2F1 + 32p4q(112)[(1 + 24
+ (1) + 2u + 03D + (12 + AT + (H4)u2F] + 8p3q8(3IB)[{(3/4) + 21)A
+{(1/4) + (3120 + 4D + ({(112)u + (34T + (114 u2F)
+36p4g(12)[(1 + 2nA + (118} + 2u + uAD + ({113} + U T + (116)u2F]
+ 483G53BY((3/4) + 2ZWA + ({112} + (3120 + vBD + (1B
+ (31403 T + (112)u2F] + 12p2g8(1IA{({(1/2) + 2u)A +{({1/12)
+ 4+ UBD + (18} + (12)udT + (1N 2)u2F] + 16p2q8{11M[{(112)
+ 2tA + (U + 13D + (112)u2T 1+ Bpg(1/8){{(1/4) + 21A + ({(112)u + AD
+ (1/8)PT 1+ g¥0)2uA + u2D) — Pl(2p + 2U)A + (P2 + 4pu + 43D
+{20% + 2puAT + pRURF).

After much simplification, this covariance becomes

= (PQM-)(CX(U} + (p - U)ﬁ(u;)l (38)

o
XYTXFS)

which is the same as the covariance for TXPX and therefare

APaxesy = DPuex = kPGagpfa, + 0 — U}y, {39)

Table 10.—Matings, frequencies, and genotypic values for calculation of covariance for topcrossing with
selection of full-sib families

FUH'S]b, family Frequgncy of Frz?quenc:,y of Mean genctypic value of topcross families
matings matings B in matings
{1) {2) (3} 4)
BBBB x BBBB feid 1 +2A+ (1 +4u 4 D + (2u + 23T + U2F
BBBB x BBBb 8p7g 718 ({714} + 2i)A + {(3/4) + (7R2)u + 3D + (3120 + (TI4WAT + (31D u?F
BEBB x BBbb 12p5g2 3/4 {312) + 2A + ({(TH2) + 3u + L3BD + {7180 + (3120AT + (TH 23u2F
BBBS x Bbbb Bpsgs 5/8 {{514) + 2L)A + {12} + (BI2)ur + uBD + (L' + (BIAWAT + (112)u2F
BBBB x bbbb 2pigt 172 {(1+2WA+{1/12)+ 2u + A0 + (U + VAT + (112)u2F
BBBb x BBBb 16psq? 34 ({312} 4+ 2tA + ({112} + 3u + 49D + (u + (32T + (1/202F
BBBb x BBbb 48psg’ 5/8 {(5id) + 2tMA + ({(113) + {B/2)u + 1AD + ((213)u + (BT + {113)2F
BBBb x Bbbb 32pigt 172 {1+ 20A + (114} + 2u + D + {(112)u + LT + {114)ueF
BBBb x bbbb 8p3g° 318 {(B8) + 2w)A + {114} + (32 + uBD + (11200 + (3AAT + (1id)uzF
BBbb x BBbb 36p4g? 142 {1+ 204 + (118} + 2u + A0 + {113} + LA T + (1B)uPF
BBbb x Bbbb 48p3gs 38 {(314) + 200A + {1112 + (312w + AL + (1B + (31T
+ (1/12)u2F
8Bbb x bbbb 12p2gs 1/4 {(12) + 2a}A + (1M 2y + v + w0 + (1B + {(1/120WA T + (1N 2W2F
Bbbb x Bbbb 16p2qg8 114 {112} + 20A + (U + D 4 (112)2T
Bbbb x bbbb Bpg’ 1/8 {(1/4Y+ 2u)A + {112 + U330 + [1)4w2T
bbbb x bbbb gt 0 2uA + uzD
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Any comparison of the relative effectiveness of breeding schemes discussed
in this chapter should involve the component Sie?, of equation (1) which was
assigned the arbitrary value k for the derivation of AP’s. The response egua-
tion for selection indicated that the desirable properties of a breeding method
are (1} a large coefficient for the covariance as derived in this chapter and (2
a minimal phenotypic variance {¢2,). From table 11, it is apparent that the com-
ponents of ¢2, are not constant for all breeding schemes. To some extent, the
environmental component of ¢2, can be reduced by refinement of screening
methods anc choice of experimental design as well as choice of breeding
method.

Table 11.—The theoretical expected changes of 12 intrapopulation breeding
schemes and their phenotypic variances

Generations

per Phenotypic variance?
selection {02,}
cycle

Expected change
Method (AP} in
population P mean

Mass (1) 4kpgal, aZ + o2

1
Mass {2) 2kpgol, 2 02 + 0%,
2

Mass {3} dkpgol, 0% + o2

S1PT Akpgople,, +2C) 3 (02 + 02, — ol M+ c¥r+ o2
HSPT 2kpgal, 2or3 {02 + 0% — 6B Mrn + o¥ir + o2
HSFS kpqog, 20r3 {o%, + 0% — o2)irn + o2 + o
HSFP (112)kpqa, Jord (0% + 0% — ai}irn 4 o2r + a?
FSF 2kpqgal, 2or3 (02 + 0% — a2g)rn + o2lr + o2,
MER stage 1 Kpqoz,

MER stage 2 3k'pqol, (92 + 64 — ol )in + o2

TX 2Kpqoypfon, + (P — By, (02 + 03y — a2 Mrn + a2ir + o2,
TXPX kpgapfo, + (P — t)B,,) (03, + 031y — GZMIN + o2r + o2,
TXFS kpgopfay, +1ip — 1B, {02 + 0% — o2 M + a2ir + o2,

o2, a%, 024, 0845, 08ig, 02 9,2__5, Tamy 9o 1, and n are, respective-
ly, variance, total genetic variance, total genstic variance in
an §1 popuiation, variance due to S1 family means, variance
due to half-sib family means, efror variance, variance due to
full-sib family means, total genetic variance of a set of top-
cross families, variance due to topcross family means,
r?piications of a progeny, and number of piants in a progeny
plot.

2C ={(1 - 2p)4)D— (30% ~ 20¥2)T — (10p% — Bp? — PJH2)F.

The selection of “best” breeding method in theory is aitered in reality by the
trait for selection, reproductive characteristics of the crop, and limits of the
breeder’s labor, expertise, facilities, and funds. To facilitate a critique of the
investigated breeding methods, a specific reference crop is needed, in this
case, alfalta {Medicago sat'va L.). Briefly, alfalfa is a perennial that requires
approximately 4 months from seeding to flowering in the greenhouse, can be
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cloned easily with stem cuttings, does not reliably produce seed with selfing,
produces an abundance of flowers on mature plants, and can be clipped back
severely and brought into flowering several times during a summer. It is com-
monly field-planted in drilled rows or broadcast, but may be space pianted for
breeding purposes.

The information summarized in table 11 can be used to predict the effec-
tiveness of some breeding schemes for alfalfa. The three versions of mass
selection have a large covariance, property 1. The covariance of mass 2 is
half of that of mass 1 and mass 3 but still greater than that of most other
methods (table 11). Mass 1 is the most attractive of the mass-selection
methods, since isolation and pollination of selecied plants would not normally
be a problem with alfalfa. Mass 3 is impractical for alfalfa because it requires
the production of selfed seed. Mass 2 wouid be recommended over mass 1
only if the isolation and cressing of selected individuals took more than twice
the time of seed production without isclation. These mass-selection methods
do not have property 2, the minimal phenotypic variance, and may be ineffec-
tive for improvement of some traits because of the large environmental influ-
ence in the variance.

The S1PT procedure provides good control of the phenctypic variance and
has a large coefficient for the covariance. Direct comparison of the
covariance of S1PT with covariances of other metheds is frustrated by com-
poenent "“C" {table 11). Unpublished results by Rowes indicaie that the
covariance S1PT is smaller than that of mass 1 when “B'' exhibits monoplex
dominance to “b'"; but with less compiete dominance the covariances
become equal, and with duplex deminance S1PT is superior. With additive
gene action, the govariances are identical, The S1PT procedure is probably of
littie value for alfalfa breeding because of the reguirement for selfed seed.

The HSPT procedure provides good control of phenotypic variation and has a
relatively large covariance. Neither the preduction of half-sib seed nor the
saving of parental plants untii evaluation of the progenies presents a sericus
problem with alfalfa. The cost in labor, facilities, and time for progeny testing
will {imit the number of plants that can be evaluated in a given period of time.
Hill et al. {7977} concluded that if HSPT were to be more effective than mass 1,
the heritability of a trait would have 1o be very low.

The HSFS preocedure also has good cantrol over phenotypic variance, but the
covariance is one-half of that for HSPT (table 11). H8FS does not require sav-
ing the parent plants until progenies are evaluated. Saving the parent alfalfa
plants is not usually a problem, so the HSFS procedure wauld definitely be
inferior to HSPT.

SRowe, D. £. 1980. Theoretical investigation of the expected
gains with selfed progeny test selection {S1PT) and pheno-
typic selection {mass{i)). {Unpublished.]




The FSF procedure has good control of phenotypic variance, and the
covariance equals that for HSPT. Unlike HSPT, FSF does not reguire saving
the parents for progeny evaluation, but is expected to reguire more labor to
produce the full-sib seed. The random pairings could increase bias in the
progeny evaluation, since the random pairing of good and poor plants would
produce inferior progenies.

The MER procedure is a combination of HSFS and mass 1 procedures. With
alfalfa, the fuli-sib families could be evalyated in repiicated fields, and the
second stage selections could be made in a space-planted nursery. The same
trail does not have to be selected at both stages. Hili and Byers (7979) con-
cluded that MER selection would have to operate on a large scale to be more
effective than mass 1,

The covariances for the topcross selection procedures are not analytically
comparable {o the procedures just discussed because of the terms invotving
the tester population. The singutar comparison was a study by Rowe and Hill
{1987) which concluded the TX procedure would be superior to HSPT for any
traits determined by a gene with monoplex dominarice, if the frequency of the
desirable allele were iower in the tester popuiation than in the selected
population.




introduction

Select and Combine
Procedures {SC)

3. Interpopulation Improvement

in this chapter, we describe our investigation of the two simplest objectives
possible for interpepulation improvement, improvement of the mean
genotypic values of the two-population hybrid and the two-population syn-
thetic variety. The construction of response equations for ¢change in the mean
genotypic value of either the hybrid or synthetic variety proceeds as cutlined
for the intrapopulated improvement procedures in chapter 2. Briefly, an ex-
pression is developed by use of equation (1) for the change of allete frequen-
cy with selection in two populations, P and R. Those expressions for dg and
dr are substituted into equations {10} or (17} to predict the change in the
genotypic mean of the hybrid or synthetic variety, respectively. Equations (10)
and {17) are reproduced below for reference

OXyiye = 200, + 2dra, + (0 — P20DP,,, — 207B,g). (10}
AX gy = (AP 4 Ay + g — (340 ~ N2(yg + v a7

Theoreticai expressions are developed for the change in the means of the
two-population hybrid and two-popuiation synthetic variety with a single cycle
of selection with various interpopulation breeding methods, The equations of
different breeding methods are compared directly where possible. Cther com-
parisons which require assumptions of modes of genic action are also
described.

With this breeding method, each of the base populations, P and R, Is improved
by use of a single cycle of selection with any intrapopulation improvement
method, except the topeross, described in chapter 2. The same or different
intrapopulation breeding methods may be used on the two base populations.
The two improved populations, P and R, are the parenis of the improved
hybrid or synthetic varisty,

For example, if a cycle of mass 1 selection is used in both P and R, dp is
kpqoy, and dr is krse,. The expected change in the genotypic mean of the
hybrid is

AX o = 2ko @ oG + 1S} + (P — 1)(2k0Get e 8,5, — 2KrSarg B0,
and the expected change in the mean of the synthetic variety is

&_}?Syn = (4"(,(3{;&2{;.I + kaam]){o:m + o — {3)p — r)"’('y{,,] + 7(&))))'

Thus, this interpopulation improvement procedure is a methodoiogy which en-
compasses ali combinations of the intrapoputation breeding procedures of
chapter 2 except lopcrosses. If both base populations are selected for the
same trait with the same intrapopulation breeding method, the attributes, dif-
ficulties, and relative effectiveness described in the summary of chapter 2
would apply. If different intrapopulation breeding methods are used on the
base populations, the expected change would be intermediate to the ex-
clusive use of either intrapopulation breeding procedure.




Concurrent Topcrosses
€T

Reciprocal Recurrent
Selection {RRS)

Comparison of
interpopulation
Breeding Procedures

With this breeding method, populations P and R are improved by use of a tep-
cross method of breeding {TX, TXPX, or TXFS). Each population is crossed to
a common tester population, U. Individuals or polycrossed famities are
selected on the basis of the performance of topcross progeny. The use of a
common tester is not required but does minimize the number of parameters.

The equation for the change in the genotypic mean of the hybrid by use of TX
selection on bcth base populations is

= RPQ(a(u; + (p - u)ﬁ(m)(a(m + {p - r)ﬁ(,q;)
+ ka(ch} + (f - u)ﬁ{u})(aim - (p - r)ﬁ(p})s

and the change in the mean of the synthetic variety is

&?Synfrx; = [kpq(1/2)a,,+ (P - B} + krs(12){(ey,
+{r— U),@M)]{(am + oy — ((3M4)p — f)e(’)’m’ + 'Y(R})}]-

Selection with TXPX or TXFS instead of TX reduces the gain by cne-half.

AX,
Hybﬂ. 4

With this breeding method, populations P and R are evaluated on the basis of
the performance of topcross progenies, but the populations are used
reciprocally as the tester population {Comstock et al. 7948). That is, popuia-
tion R is the tester population for population £, and P is the tester population
for A. The selected parents or polycrossed families in the base popuiations
are combined to produce the new hybrid or synthetic variety,

The change in the genotypic mean of the hybrid with RRS procedure selec-
tion of parent plants is

DX yyo = krSfoe, + (r — PIB I + kpgla, + (0 — 8,12
and the change in the genotypic mean of the synthetic variety is

DX, = [(kPGI2) et + (0 — N, + (krsi2){a,
+ =PIl + ety — (BIANP — 7Py, + 7).

The selection of polycrossed progenies or fuli-sibs instead of the parents will
reduce the above predictive equations by one-haif.

As the breeding procedures become more invalved, expectation equations
become more compiex, and the comparisons are much more difficuit and re-
quire deterministic simulation. Comparisons of interpopulation improvement
methods are meaningful between methods with common generation times
and other attributes, such as selection of various progenies or parental
plants. To make such a comparison, the mode of genic action must be de-
fined in advance. One such compariscen study now has been completed
(Rowe and Hill 7987).

The comparison was among HSPT with the SC procedure, TX setection with
CT procedure, and parental plant selection, TX equivaleni, with RRS pro-
cedure, Four types of genetic action were investigated: additive, monaplex
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dominance, duplex dominance, and one type of overdominance. Comparisons
among breeding methods were made for each type of genic action.

For the comparison, we assigned genotypic values to each genotype refiect-
ing the genetic model, and the population effecis were solved in terms of b,
an arbitrary constant for trait expression (table 12). Expressions were
developed for the change in genotypic mean of a twe-population synthetic as
a function of A, assuming constant selection pressure k.

Tabie 12.—Genotypic values and parameters for genetic models

Genotype Genetic model!
and . Monopiex Duplex Over-

pararmeier Additive dominance dominance dominance
BBSB 4h h h 0
BBBb 3h h h 3h
BBbb 2h h h 4h
Bbbb h h 0 3h
bbbb 0 0 0 0
Additive (o) h q*h 3pgeh 3p-g)h
Digenic (3) 0 —g%h (1 — 3p)h —2h
Trigenic {y} 0 gh (1—3g)h ¢
Quadrigenic (8} 0 —h 3h 0

1h is an arbitrary consiant, p and g are frequencies of alleles
“8" and “b,” respactively.

With additive genetic action, all procedures had the same predicted change
of the population mean AX = kh¥pq + rs).

The equations for the effect of selection, assuming monoplex dominance, ap-
pear in table 13, The equation for SC response is also a component common
to RRS and CT equations. The RRS equation contains two differences of
squares, §?— g2 and g2 — s2 one of which must be a negative value if not zero.
When the differences are zero, this equation simplifies to the SC equation.
with CT selection, the difference in sguares, v2— g2 and v2— 352, could both be
positive values if v>s and v> g. Rowe and Hili {7987) showed that CT was
superior to either RRS or SC if the right tester population were used. The fre-
quency of b must be greater in the tester thanin Por R,




Assumptions of duplex dominance and overdominance resuited in very com-
plex response equations ({table 14 and 15) and no generalities about superior-
ity of any procedure was possible. With overdominance, response to selec-
tion was negative for some allele frequencies with SC and CT selection, but
not with RRS, With the more complicated genetic situations, three-
dimensional plots of expected response to selection facititated comparisons.
{See Rowe and Hill 7987.)

Table 13.—Equations for the change of the mean genotypic value of the
2-population synthetic for SC, RRS, and CT selection methods,
assuming only monopliex dominance gene action

Selection

i i
method Response equation

SC AX = kh¥{pg* + rs)J

RRS OX = kh3{pg* + rs* + pqi(s? — g3 + rs?g? — s3)J

cr AX = kh3pqs + rst + pgiv? — g2) + rs?{vi — s)J
J={g°+ 8% — (J4)(p - r)q + 5)

% B p, U, 4, §, and v are, respectively, ratio of selection
differential to phenolypic variance, arbitrary constant of
trait, freguency of aliele “8,” same, same, frequency of
allele “'b," same, and same,

Table 14.—Equations for the change of the mean genotypic value of the
2-population synthetic for SC, RRS, and CT selection methods,
assuming only duplex dominance gene action

Selection

i 1
method Response equation

SC X = kh{3p2gs + 3rasd))
RAS X = kh?(3p2gt + 31283 + pgrs(2 — 3p) + pgrs{2 — 37
+ Pg(s — 3¢?) + ris(q — 3sy)J
CT X = kh?(3p2q3 + 32% + pquvi2 — 3p) + rsuv(2 — 3r)
+ P2y — 3q% + resiv — 3s9)J
J=3pq?+ 3rs? - (3/4)p — n?2 — 3q — 3s)

%, #, b, r, g, 5, and v are, respectively, ratic of selection dif-
ferential to phenotypic variance, arbitrary constant for trait,
frequency of aliele V'8, same, same, frequency of allele “5,"
same, and same,




Table 15.—Equations for the change of the mean genotypic value of the
2-population synthetic for SC, RAS, and CT selection methods,
assuming only overdominance gene action

Selection —
method Response equation
SC AX = kh¥pg{3 — 8p) + rs{3 - Br)J
RRS AX = khApg{3 — 8p) + rs(3 — 60 + 4pglp — 1) + drs{r— p))J
CT AX = khpq{3 — 6p) + rs{3 — 6r} + 4pq(p — U} + 4rs{r — v))J

J=3((1-2p)+ (1 -21)

%, h, p, r. u, g 5 and v are, respectively, ratio of selection
differential to phenotypic variance, arbitrary constant for
traif, frequency of allele *'B,” same, same, frequancy of
aliele “b,"” same, and same.

Summary The obvious complexity of the theoretical equations for interpopulation breed-
ing, even with the assumptions for genetic simplicity, limits generalities
about the relative effectiveness of the breeding schemes. The change in the
genotypic mean of the hybrid with selection is a function of allele frequen-
cies in each population involved, the additive and digenic components of the
base populations, and the genetic components of dp and dr. The change in
the genotypic mean of the synthetic is a function of allele frequencies in
each population, the additive and trigenic components of the base popula-
tions, and the genetic components of dp and dr.

In any particuiar case, it is not obvious whether the digenic and trigenic com-
ponents would increase or decrease the rate of gain over that observed with
only additive genetic effects. Concurrent Toperossing is not directly com-
parable to either the Select and Combine or Reciprocal Recurrent Selection
method because of the genetic effects of the tester population, U. Nor is it
obvicus whether the mean of the hybrid or the synthetic variety changes more
rapidly with selection,

The alternative apprcach is deterministic simulation, as described briefly in
the previcus section. Even in that simuiaticn, the number of assumptions was
increased and the generalities were diminished and reduced in scope.
Simulation appears to be the only useful sclution to many of the current
questions in the theory of interpopulation improvement and is expected to be
much used in subsequent theoretical research.
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