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Abstract 

D. E. Rowe and R. R. Hill, Jr. ,heoretical Improvement of Autotetraploid 
Crops: Interpopulation and Intrapopulation Selection. 1984. U.S. Department of 
Agriculture, Technical Bulletin No. 1689, 32 p. 

This paper presents equatlons for expected genetic progress for interpopulation 
and intrapopulation breeding schemes for autotetraploid crops. Equations are 
developed for the change in the genotypic mdans of a single population, a 
hybrid of two populations, and a synthetic variety of two populations with a 
single cycle of selection as a function of population parameters and change 
in allele frequency. Also, response equations are developed for changes in 
allele frequency and genotypic population means with intrapopulation 
breeding schemes, and more difficult response equations are developed for 
changes in genotypic mean of a hybrid population or synthetic variety as a 
function of breeding method. 

KEYWORDS: autotetraploids, hybrid varieties, phenotypic selection, plant 
breeding, progeny testing, selection response, synthetic varieties. 

Copies of this publication may be purchased from the National Technical In­
formation Service, 5285 Port Royal Road, Springfield, Va. 22161. 
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Theoretical Improvement of .4utotetraploid Crops: 
Interpopulation and Intrapopulation Selection1 

by D. E. Rowe and R. R. Hill, Jr.2 

Introduction 

The number of breeding alternatives that will attain a specific objective in a 
crop development program can be very large. To assist plant breeders in their 
decision making processes of program development, the quantitative geneti­
cists have developed some methodologies and mathematical models for theo­
retically comparing the expected gains of various breeding schemes under 
specific genetic situations. Those theoretical investigations can improve our 
understanding of published results and personal experiences in plant 
breeding. The theoretical investigations also provide a mechanism for making 
observations on and comparisons of breeding schemes in genetic situations 
which are neither possible or desirable in the field. 

Theoretical research has been much more prolific for the diploid than for the 
autotetraploid organism, in part, because of the greater complexity of auto­
tetraploid genetics. For instance, a population of diploid organisms not at 
random mating equilibrium will attain that equilibrium in two generations of 
random mating unlike the population of random mating autotetraploid 
organisms which approach random mating equilibrium only asymptotically. At 
a single locus with two or more different allelomorphs, the diploid has very 
few possible genotypes in comparison with the autotetraploid, and there is 
only one nonadditive genetic effect at a locus unlike the three for the autotetra­
ploid. The diploid gamete of the autotetraploid also complicates the genetics 
of inheritance in comparison with that of the diploid with its haploid gamete. 

In this publication, equations for expected genetic progress ar"l presented for 
interpopulation and intrapopulation breeding schemes for autotetraploid 
crops. Previous publications (Haag 1973; Hill 1971; Hill and Byers 1979; Hill 
and Haag 1974; Rowe 1980; Rowe and Hill 1981),3 present some of the results 
that are reported here in consistent notation and in detail generally not 
possible in journal articles. 

In chapter 1, equations are developed for the change in the genotypic means 
of a single population, a hybrid of two populations, and a synthetic variety of 
two populations with a single cycle of selection as a function of population 
parameters and change in allele frequency. Because each expression is 
dr rived two ways, there is some repetition. 

In chapter 2, response equations are developed for changes in allele frequency 
and genotypic population mean with intrapopulation breeding schemes. 

1Cooperative investigations of the Agricultural Research Serv­
ice (ARS), U.S. Department of Agriculture (USDA), and N.C. 
Agricultural Research Service, Raleigh, N.C. 27650. 

2Research geneticist, USDA/ARS, Reno, Nev. 89557 and 
research agronomist, USDA, ARS, U.S. Regional Pasture 
Research Laboratory, University Park, Pa. 16802. 

3The year in italic, when it follows the author's name, refers 
to List of References, p. 31. 
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Chapter 3 combines results of chapters 1 and 2 for development of the more 
difficult response equations for changes in genotypic mean of a hybrid popu­
lation or synthetic variety as a function of breeding method. 

For those who have difficulty understanding the sometimes complex algebra 
or the basic methodology in this publication, we suggest a review of the 
bulletin by Empig et al. 1972. Calculations for a given breeding situation are 
much less protracted in diploid genetics than in autotetraploid genetics. 
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Introduction 

1. Population Models 

For theoretical investigations of autotetraploid genetics, simplifying assump­
tions of the genetic situation keeps the often protracted mathematical calcu­
lations from being absolutely insolvable. For our purposes, we investigate the 
genetics at a single locus with only two alleles (B and b). The simplifying 
assumptions are (1) all populations are initially at random mating equilibrium 
(RME) with respect to the locus of interest, (2) only random chromosomal 
segregation occurs, and (3) alle~:l frequencies are unaffected by any factor 
other than selection. Other simpl ifying assumptions appear in the text as needed. 

For the modeling, there are three base populations (P, R, and U). The frequen­
cies of alleles Band b are, respectively, p and q in population P, rand s in 
population R, and u and v in population U. The expected frequencies of the 
five possible genotypes with RME are given for each base population in 
table 1. The array of frequencies for each base population is a binomial 
expansion to the fourth power of (p + q), (r + s), or (u + v). 

Table 1.-Notation for genotypic frequencies in each base population at 
random mating equilibrium 

Base populations 
Genotypes 

P R U 

BBBB p4 r4 u4 

BBBb 4p3q 4r3s 4u3v 
BBbb 6p2q2 6f2s2 6U2V2 
Bbbb 4pq3 4rs3 4uv3 

bbbb q4 S4 v4 

The mathematical model used to describe the genetic effects in the five 
genotypes of population P, the equations for the four population parameters 
(a, (3, /" and 0), and the genetic variances, appear in table 2 (H iJl 1971). The R 
population model and equations for population parameters are found by substi­
tuting rand s, respectively, for p and q of table 2; similarly for the U popu­
lation model, u and v are substituted, respectively, for the p and q of table 2. 

The expressions for genotypic values (table 2) of the autotetraploid model 
(Hill 1971) are determined with reference only to the B allele. Terms A, 0, T, 
and F are, respectively, the genetic effects of the individual allele (B), the 
interaction of two alleles (BB), the interaction of three alleles (BBB), and the 
interaction of four alleles (BBBB) at a locus. The coefficients for each of 
those terms indicate the different ways a specific effect can be generated 
from a genotype and can be found by use of combinatorial analysis. For 
instance, the coefficient for the 0 component of the triplex genotype (BBBb) 
is found as the number of ways a grouping of two B alleles can occur in a 
group of three B alleles, that is symbolically C~, which is 3. 

3 



Allele Fre9utmcy and 
Change With Selection 

Table 2.-The mathematical model of genotypic values of genotypes in 

population P and the equations for population parameters and their 

variances (Hill 1971) 


Genotypes Genotypic value1 

BBBB 4A +6D+4T+ F 
BBBb 3A +3D+ T 
BBbb 2A+D 
Bbbb A 
bbbb o 

Genetic effects Genotypic variances2 

Additive (a) =A + 3pD + 3p2T + p3F Additive variance (u~) =4pqa2 

Digeni~ (,8) = D + 2pT + p2F Digenic variance (u~) =6p2q2,82 
Trigenic ('Y) = T+ pF Trigenic variance (u~) = 4p3q3'Y 2 

Quadrigenic (0) = F Quadrigenic variance (u~) =p4q402 

1The A, D, T, and F are genetic effects associated with 

individual alleles, and the interaction of 2, 3, and 4 alleles, 

respectively. 

2The total genetic variance (C1~) is u~ + u~+ u~+ u~. 


With five genotypes, the genetic effect at a single locus of the theoretical 
population can be described completely by four parameters, additive (a), 
digenic (,8), trigenic ('Y), and quadrigenic (0) (table 2). The additive and digenic 
parameters of the autotetraploid population have interpretations that are 
analogous to the additive and dominance parameters of the diploid popula­
tion. The trigenic and quadrigenic parameters have no diploid counterparts. 

The equations for genetic parameters and their variances (table 2) were found by 
the procedure of successive differences that was outlined in detail by Li (1957). 

The equations for genotypic values (table 2) differ from the autotetraploid 
genetic models of Kempthorne (1957) and Li (1957). The Hill (1971) model is a 
one-to-one transformation of the other two-allele models and, from our exp,:)­
rience, has superior characteristics for algebraic manipulations. 

The intent of selection is to improve the genotypic mean of a population by 
increasing the frequency of the desirable allele(s) in a population. With a 
single cycle of selection, the expected change in frequency of one allele, say 
B, is approximated by the following relationship (Falconer 1960, chapter 11). 

(1 ) 
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Change in Genotypic 
Mean of Population 
With Selection 

The dp denotes the changes in frequency of allele B. The S is the selection 
differential expressed as phenotypic standard deviations of the parental 
generation, and u 2Ph is the phenotypic variance. The covariance (U

Xy
) relates 

the frequency of allele B in the selected units (x) to the genotypic values of 
the observed units (y) upon which the selections are based. 

The mean genotypic value of a population is given by Ef,G;(i= 1, ... , 5) where 
fl is the frequency of the ;th genotype and G{ is the mean genotypic value of 
the ;th genotype. For population Pat RME, the frequency of the ;th genotype 
appears in table 1 under P, and the genotypic value of the jth genotype 
appears in table 2 under Genotypic Value. The mean genotypic value (P) of 
population Pat RME is 

P= 4pA +6p2D + 4p3T +p4F. (2) 
With a single cycle of selection, the frequency of allele B will change by a 
quantity dp, and the mean of the improved population (PI) at RME is 

pI =4(P + dp)A +6(p + dp)2D + 4(p + dp)3T + (p + dp)4F (3) 

The change in mean genotypic value (.6.P) of the population is the difference 
between the old and new means (P' - P) =.6.P, thus 

.6.P = 4dpA + (12pdp +6dp2)D + (12p2dp + 12pdp2+ 4dp3)T 
+ (4p3dp +6p2dp2 + 4pdp3 + dp4)F. (4) 

(Throughout this text in each term of an equation, the allele frequency, such 
as p, always precedes the term for change in frequency, such as dp.) 

A single cycle of selection usually results in a small change in allele frequency, 
and the square and greater powers of the change are considered negligible 
and are ignored to simplify the equations. Thus equation (4) can be simplified. 

.6.P = 4dpA + 12pdpD + 12p2dpT + 4p3dpF. (5) 

First the terms of this equation are arranged . 

.6.P = dp(4A + 12pD + 12p2T + 4p3F). Then 

.6.P = 4dpOl(p) (6) 

where Ol(p) is the additive genetic effect of population P (table 2). In 
equation (6), the change in population mean with one generation of selection 
is a function of the additive genetic effect and dp. 

The change in the population mean can also be found by use of a calculus 
method described by Moreno-Gonzalez and Grossman (1976) for a diploid 
population. This method expresses the changes in mean SP with a change in 
p as a Taylor expansion of derivatives to the fourth degree. The Taylor expan­
sion for the change in the mean is 

8P 8 2P 8 3P 8 4P
.6.P = -dp + -(dp)2 +-(dp)3 +_(dp)4

8p 8p2 8p3. 8p4 

5 



Change in Genotypic 
Mean of a Population 
Hybrid With Selection 

where ePl9p, ... 9 4P19p4 are partial deiivatives of the first to fourth degrees, 
respectively, of P with respect to p. 

The solutions for these partial derivatives are as follows: 

9P =4A + 12pO + 12p2T + 4p3F =4a 
9p 

:;=120 + 24pT + 12p2F =12{3 

9 3P 
9p3 =24T + 24pF = 24-y 

4 
9 P =24F =240.
9p4 

Therefore, 615 =4adp + 12{3dp2 + 24-ydp3 + 240dp4. 

If squares and higher powers of dp are ignored as before, 615 is again 4dpa(p)" 
Computationally, the use of the Taylor expansion facilitates analytical solu­
tions in terms of population parameters. The difficulty in the computations 
with the direct subtraction method will become apparent shortly. 

Unpublished results indicate that the use of the approximate equation for 615, 
equation (5), instead of the exact equation, equation (4), has some error.4 For 
certain types of inheritance, the frequency p where 615 was maximized dif­
fered by 7 percentage points for the two methods, but generally the 
difference was very slight. Usually, equation (5) overestimated 615 slightly, but 
in one case it overestimated the maximum 615 by 24 percent. Further 
research may indicate that the error introduced by use of an approximate 
equation for 615 is intolerable. 

The genotypic mean of a hybrid of two populations P and R (hereafter called 
the hybrid mean) is found easily by recalling that P has three types of 
gametes (BB, Bb, and bb), which occur at frequencies of p2, 2pq, and q2, 
respectively, in population Pat RME. In population R, the same gametes 
occur, respectively, at frequencies of (2, 2rs, and S2. Construction of a Punnett 
square with those arrays of gametes and frequencies in the margins of adja­
cent sides will, when multiplied in all combinations, give the genotypic prod­
ucts and their frequencies in a hybrid (see table 3). The hybrid mean is then 
l:-fjG" where fj is frequency of each genotype (table 3) and Gj is the mean 
genotypic value of the respective genotypes (table 2). After simplification, the 
hybrid mean (XHyb) of P x R is 

XHyb = (2p + 2r)A + (P2 + 4pr + (2)0 + (2p2r +2p(2) T +p2r2F. (7) 

4Rowe. D. E. 1980. Calculated inherent error in presently 

used equations for intrapopulation improvement procedures. 

[Unpublished.] 
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Table3.-Punnett square for calculating frequencies ~f genotypes in a hybrid 
of populationP and R 

Population R 
Gametes/(freq uency) 

BB Bb bb 
(r2) (2rs) (S2) 

BB 
(P2) 

BBBB 
(P2r2) 

BBBb 
(p22rs) 

BBbb 
(P2S2) 

Population P 
Gametes/(freq uency) 

Bb 
(2pq) 

BBBb 
(2pqr2) 

BBbb 
(4pqrs) 

Bbbb 
(2pqs2) 

bb 
(q2) 

BBbb 
(q2r2) 

Bbbb 
(q22rs) 

bbbb 
(q2S2) 

The change in the hybrid mean due to changes in allele frequencies in the 
parent populations is found in a manner analogous to that described previ­
ously for selection within a single population. Let dp be the change in allele 
frequency in population P and dr be the change in allele frequency in popu­
lation R. The new hybrid mean (X' HYb) is 

X'Hyb =[2(P + dp) + 2(r +dr)]A + [(P + dp)2 + 4(P + dp)(r + dr) + (r + dr)2]D 
+ [2(P + dp)(r + dr)2 + 2(P + dp)2(r + dr)]T + (P + dp)2(r + dr)2F. (8) 

The change in the hybrid mean (6.XHyb) is found by subtraction, 

6.XHyb =X'Hyb - XHyb 

6.XHyb :::: [2dp + 2dr]A + [2pdp + dp2+ 4rdp + 4pdr+ 4dpdr+ 2rdr+ dr2]D 
+ [2p2dr + 4prdp + 4pdpdr + 2rdp2 + 2dp2dr + 4prdr + 2pdr2 
+ 2r2dp + 4rdpdr+ 2dpdr2]T + [2p2rdr+ p2dr2+ 2pr2dp 
+ 4prdpdr + 2pdpdr2 + r2dp2 + 2rdp2dr + dp2dr2]F. 

If the quadratic and bilinear terms involving dp and dr are considered negli­
gible and ignored, this equation simplifies to 

6.XHyb =2dp(A + 3rD + 3rZT + r3F) + 2dr(A + 3pD + 3p2T +p3F) 
+ 2dp(P - r)(D + 2rT + r2F) - 2dr(p - r)(D + 2pT 
+ p2F). (9) 

Substitution of population parameters into equation (9) gilles 

(10) 

The expression for change in the hybrid mean can be found by use of the 
methodology of Moreno-Gonzalez and Grossman (1976). Tho general expres­
sion for the change in the mean of a population affected by two parameters p 
and r as a Taylor expansion to the fourth degree is 

7 



Change in Genotypic 
Mean of Synthetic 
Variety With Se.lection 

dx =(8X/8p)dp + (8X/8r)dr + (82X/8p2)dp2/2 
+ (82X/8f2)df2/2 + 2(82X/8p81')(dpdr)/2 
+ (83X/8p3)dp3i6 + 3(83X/8p 28r)(dp2dr)/6 
+ 3(83X/8p8f2)(dpdf2)/6 + (83X/8r3)dr3/6 
+ (84X/8p4)dp4/24 + 4(84X/8p38r)dp3dr/24 
+ 6(84X/8p28f2)(df2dp2)/24 + 4(84X/8p8r3)dpdr3/24 
+ (84X/8r4)dr4/24. (11 ) 

The partial derivatives are solved (see table 4) and substituted into 
equation (11). In terms of population parameters, the change in the hybrid 
mean is 

6.XHYb = (2a(R) +2(p - r){3(R)dp + [2a(p) - 2(p - r){3(p)dr 
+ {3(R)dp2 + [2{3(p) + 2{3(R) + 2(p - r)2o]dpdr + {3(p)df2 
-:- 2'Y(R)dp2dr + 2'Y(p)dpdr2+ odp2df2. (12) 

When the bilinear, quadratic, and higher powers of dp and dr are ignored, 
equation (12) will simplify to equation (10). 

Table 4.-Solutions for partial derivativeo used in the calculations of change 
in genotypic mean of a hybrid of populations P and R as a Taylor 
expansion to the fourth degree 

Derivative1 Solutions 

(8X/8p) =2A + 2pO + 4rD + 4prT + 2f2T + 2pf2F =2a(R) + 2(P - r){3(R) 

(eX/8r) =2A + 4pO + 2rD + 2p2T + 4prT + 2p2rF =2a(p) - 2(p - r){3(p) 

(82X/8p2) = 20 + 4rT + 2f2F =2{3(R) 

(82XI8f2) = 20 + 4pT + 2p2F = 2{3(p) 

(82Xf8p8r) = 40 + 4pT+ 4rT + 4prF =2{3(Pl + 2{3(R) - 2(p - r)2o 

(83X/Gp3) =0 

(83XI8p28r) = 4T + 4rF =4'Y(R) 

(83XI8p8f2) = 4T + 4pF =4'Y(p) 

(83XI8r3) =0 

(84XI8p2/jj2) =4F=4o 

(84Xf8p4) = (84XI8p38r) =(84XI8p8r3) =84Xf8r4) =a 


For theoretical purposes, the synthetic variety of interest is deJived with 
quantitatively equal contributions of genetic material from two populations, P 
and R. The frequency of allele B in the synthetic variety will be (p + r)/2. When 
this 2-population synthetic variety attains RME, !til:! genotypic mean is given 
by equation (2) I';.' ~h (p + r)f2 substituted for p, When expanded, this equation 
for the genotypic mean of the synthetic variety (hereafter called synthetic 
mean) is 
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X Syn =[2p + 2r]A + [3/2)p2 + 3pr + (3/2)r2]D + [(1/2)p3 + (3/2)p2r 
+ (3/2)pr2 + (1/2)r3]T + [(1/16)p4 + (4/16)p3r + (6/16)p2r2 
+ (4/16)pr3 + (1/16)r4]F. (13) 

As before, let dp be the change in allele frequency with selection in popu­
lation P and dr be the change in allele frequency with selection in population 
R. The synthetic mean following selection is found by substituting (p + dp) 

and (r+ dr) for p and r, respectively, in equation (13). 


X'syn =[(2p + 2dp) + (2r + 2dr)]A + [(3/2)(P? + 2pdp + dp2) 
+ 3(pr+ pdr+ rdp + dpdr) 
+ (3/2)(r2 + 2rdr -:- dr2)JD + [(1/2)(P3 + 3p2dp + 3pdp2 + dp3) 
+ (3/2)(p2r +p2dr + 2prdp + rdp2 + 2pdpdr + dp2dr) 
+ (3/2)(Pr2 + pdr2 + 2prdr + r2dp + 2rdpdr + dr2dp) 
+ (1/2)(r3+ 3r2dr+ 3rdr2+ dr3)]T 
+ [(1/16)(P4 + 4p3dp + 6p2dp2 + 4pdp3 + dp4) 
+ (4/16)(p3r + p3dr + 3p2dpdr + 3prdp2 + 3p2rdp + 3pdp2dr + rdp3 + dp3dr) 
+ (6/16)(P2r2 + 2p2rdr+ p2dr2 + 2pr2dp + 4prdpdr 
+ 2pdpdr2+ r2dp2+ 2rdp2dr+ dp2d(2) 
+ (4/16)(Pr3 + 3pr2dr+ 3prdr2 + pdr3 + r3dp + 3r2dpdr+ 3rdpdr2 + dpdr3) 
+ (1/16)(r4 + 4r3dr + 6r2dr2 + 4rdr3+ dr4)]F. (14) 

If the bilinear, quadratic, and higher order terms are assumed to be negligible, 

then equation (14) simplifies to 


X'syn =[(2p + 2dp) + (2r + 2dr)]A 
+ [(3/2)(p2 + 2pdp) + 3(pr + pdr+ rdp) + (3/2)(r2 + 2rdr)]D 
+ [(1/2)(p3 + 3p2dp) + (3/2)(p2r + p2dr + 2prdp) + (3/2)(Pr2 
+ 2prdr+ r2dp) + (1/2)(r3+ 3r2dr)]T + [(1/16)(P4+ 4p3dp) 
+ (4/16)(p3r + p3dr + 3p2rdp) + (6/16)(P2r2 + 2p2rdr + 2pr2dp) 
+ (4/16)(Pr3 + 3pr2dr + r3dp) + (1/16)(r4 + 4r3dr)}F. 

The change in the synthetic mean after selection is found by subtraction 

(X'syn - X syn) = L:,.Xsyn 
L:,.Xsyn =2dpA + 3pdpD + 3rdpD + 2drA + 3pdrD + 3rdrD + (3/2)p2dpT +3prdpT 

+ (3/2)r2dpT + (3/2)p2drT + 3prdrT + (3/2)r2drT + (1/4)p3dpF 
+ (3/4)p2rdpF + (3/4)pr2dpF + (1/4)r3dpF + (1/4)p3drF + (3/4)p2rdrF 
+ (3/4)pr2drF + (1/4)r3drF. (15) 

Equation (15) can be expressed in terms of population parameters: 

L:,.Xsyn =2dpcx(R) + 2drcx(p) + (9/4)(P - r)(dpf3(R) - drf3(p) 
+ (3/4)(P - r)(dpf3(p) - drf3(R)) + (1/2)(P - r)3(dpo - dro). (16) 

The change in the synthetic mean via selection in the parental populations 
can be found by use of the Taylor expansion. The general formula for the 
Taylor expansion is equation (11), and the solutions to the partial derivatives 
are found in table 5. Substitution of the partial derivatives into equation (11) 
gives the change in the synthetic mean. 
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Summary 

6Xsyn =[alP} + a(Rl- «3/4)(p - r)2(-y(Pl + 'Y(R~)](dp + dr) 
+ H3/2)f:1(p) + (3/2)f:1(R) - «3/4)(P - r)20)](1/2)(dp + dr)2 
+ [(3/2h(PI + (3/2h(R~(1 16)(dp + dr)3 + [(3/2)0(1/24)](dp + dr)4. 

Ignoring quadratic and higher order terms of dp and dr, the 6Xsyn is 

b.Xsyn =(dp + dr)[a(Pl + a(R)- «3/4)(P - r)2h'w) + 'YIR)))]' (17) 

With considerable algebraic manipulation, equation (16) can be shown to be 
equivalent to equation (17). 

The difference in the expected change in the genotypic mean of the synthetic 
variety (17) and the hybrid (10) is the effect of the disequilibrium of genotype 
frequencies found in the hybrid. 

Table 5.-Solutions for partial derivatives used in the calculations of change 
with selection in the genotypic mean of the 2'population synthetic 
variety as a Taylor expansion to the fourth degree 

Derivative1 Solutions 

(8Xlep) = 2A + 3pD + 3rD + (3/2)p2T +3prT + (3/2)r2T + (1I4)p3F 
+ (3/4)p2rF + (3/4)pr2F+ (1/4)r3F 

=alP) + a(R) - (3/4)(p - r)2('Y(p) + 'Y(R») 
(OXIOr) =2A + 3pD + 3rD + (3/2)p2T + 3prT + (3/2)r2T + (1/4)p3F 

+ (3/4)p2rF + (3/4)pr2F + (1/4)f3F 
= alP) + aIR) - (3/4)(p - r)2('Y(p) + 'Y(R)) 
= 3D + 3p T + 3rT + (3/4)p2F + (3/2)prF + (3/4)f2F 
= (3/2)f:1(p) + (3/2)f:1(R) - (3/4)(P - r)20 

(02XIOp2) = (02XI8pOr) =(02XI8r2) 
(03XIOp3) =3T + (3/2)pF + (3/2)rF =(3/2)('Y(p) + 'Y(R~ 

(03XIOp3) = (03XIOp20r) =(03XIOp0f2) =(03XI0f3) 

(04XIOp4) = (3/2)F= (3/2)0 

(04XIOp4) = (04XIOp30r) ~~~ (04XIOp20f2) =(04XIOpOr3) =(04XIOr4) 


1X = (2p + 2r)A + ((3/2)p2 + (3/2)r2)0 + ((1/2)p3 + (3/2)p2r + (3/2)pr2+ (1/2)r3) r 
+ ((1/16)p4+ (4/16)p3r + (6/16)p2r2 + (4/16)pr3 + (1/16)r4)F. 

Equations (6), (10), and (17) indicate that changes in the genotypic means, 
respectively, of the single population, hybrid, and synthetic variety are deter­
mined by change or changes in allele frequency and the additive genetic 
component or components. When p and r are not equal, the digenic and tri­
genic components in equations (10) and (17), respectively, could significantly 
influence the change in the genotypic mean. Without knowing the mode of 
genetic action at the B locus the positive or negative contribution of the non­
additive genetic effects to the change in the genotypic mea'"! is not predic­
table. As p and r approach equality, the nonadditive effects in equations (10) 
and (17) go to zero and 6XHYb =6Xsyn because alP) =aIR)' 
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2. Intrapopulation Improvement 

Introduction 

Genetic Advance 
With Intrapopulation 
Selection Schemes 

Selection schemes are classified as either intra- or interpopulation improve­
ment methods. The delimiting factor of this classification is the final objec­
tive of the breeding method. An intrapopulation breeding method is for 
improving the mean genotypic value of a single population while an inter­
population breeding method is for improving the mean genotypic value of a 
hybrid or synthetic variety. 

With a single cycle of selection, the change in mean genotypic value of a 
population can be expressed as a function of change in allele frequency. The 
algorithm is to find a solution for equation (1) which corresponds to a partic­
ular breeding method and substitute it into the equation for change in mean 
genotypic value, equation (6). The two important components of equation (1) 
are the covariance (UXy) and the ratio of selection differential to phenotypic 
variance (S/u2

ph)' In this chapter, the influence of breeding method on U
Xy 

is 
demonstrated with S/u2

Ph assigned the constant value of "k". In the summary 
of this chapter, the influence of breeding method on S/u2 is discussed. 

Ph 

The covariances associated with each breeding method are presented in a 
manner that shows their derivation, but the calculation of the covariance is 
sometimes much simplified by the use of two identities. The covariance is 
unaffected by subtraction of a constant from one of the variables, and the 
multiplication of one of the variables by a constant multiplies the covariances 
by the same constant. 

The theoretical response to selection is in terms of gain for a single cycle of 
selection. Since the number of generations of a crop necessary for a cycle of 
selection depends upon the breeding method, meaningful comparisons of 
breeding methods should be on the basis of a gain per generation or some 
fixed period of time, but even this is only approximate. Other factors which 
may unequally affect generation time of breeding schemes are the breeding 
objectives and the procedures and facilities of the plant breeder. 

lViass Selection 1 (Mass 1) 

With this breeding scheme (also known as simple recurrent selection (Allard 
1960) and phenotypic recurrent selection (Penny et al. 1963)), individual plants 
of a population are selected on the basis of their phenotype and then ran­
domly mao ,d to generate the seed for a new, select population. To simplify 
the mathematics, we assume that the selected population, in this case and 
all subsequent cases of intrapopulation selection, has attained RME. 

The covariance (UXy) of equation (1) is found for mass 1 and all other breeding 
schemes as I:,fl gj Pj - gp where fj is the frequency of the ;th genotype, g, is the 
genotypic value of the observed unit corresponding to the ;th genotype, and PI 
is the frequency of the desired allele in the selected unit of ;th genotype. The 
g is the mean genotypic value of the observed units, and Ii is the mean fre­
quency of allele B in units from which selections are made. 
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Thus, for mass 1 selection, the genotype is in column 1 of table 6, the 
frequency of genotype ('i) in column 2, the frequency of the allele B (p;) in the 
respective genotypes in column 3, and the respective genotypic value in col­
umn 4. The mean frequency of allele B among the units from which selec­
tions are made, that is, the individual plants, is p and the mean genotypic 
value among the observed units, the same plants, is the mean genotypic 
value of the population given by equation (2). Thus, this covariance is 
between the genotypic value and frequency of allele B in the individual. The 
covariance for mass 1 selection is 

(Jxy =p4(1 )(4A +60 + 4T + F) + 4p3q(3/4)(3A + 3D + T) + 6p2q2(1/2)(2A + D) 
mass 1 

+ 4pq3(1/4)A + q4(0)(0) - p(4pA +6p20 + 4p3T + p4F) 
= A(4p4 +9p3- 9p4 +6p2_12p3+ 6p4 +P - 3p2 + 3p3- p4_ 4p2) 

+ 0(6p4 + 9p3 - 9p4 + 3p2 - 6p3 + 3p4 - 6p3) + T(4p4 + 3p3 - 3p4 - 4p4) 
+ F(P4 _ p5). 

This simplifies to 

(JXYmass 1=(P - p2)A + (3p2 - 3p3)0 + (3p3 - 3p4) T + (P4 - p5)F 
= pqA + 3p2qO + 3p3qT + p4qF. 

The change in allele frequency expressed in terms of population parameter is 

dp=kpqa.(p) (18) 

where subscript (P) indicates "of population pI! and k is the constant S/(J2ph• 

The change in the genotypic mean of population P with one cycle of selec­
tion with mass 1 selection is, from equation (6), 

b.Pmass 1 =4kpqa.2(p)" (19) 

Thus, the change in population mean with this selection is a function of the 
allele frequency and the square of the additive population parameter or k 
times the additive genetic variance. 

Mass Selection 2 (Mass 2) 

With this scheme, individual plants are selected on the basis of their pheno­
type, but seed is produced from selections which were polycrossed to the 
entire population of selected and unselected plants. The genotypic values of 
the phenotypes are in column 4 of table 6, genotypes of the polycross 
progenies are in column 7, and their respective frequencies are in column 8. 
The frequencies of allele B in polycross progenies of selected plants are in 
column 10, whose entries are the products of columns 8 and 9. The mean fre­
quency of B in column 10 is p, and the mean genotypic value of column 4 is 
given by equation (2). The covariance of mass 2 selection is the corrected 
sum of cross products of columns 2,4, and 10 of table 6. 

(JXYmass 2 =(P4)((P + 1)/2)(4A +60 + 4T + F) + (p3q)(2p + (3/2»(3A +3D + T) 
+ (P2q2)(3p +(3/2»(2A + 0)+(Pq3)(2p + (1/2»A + (q4)(0)(P12) 
- p(4pA + 6p20 +4p3T +p4F). 
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Table 6.-The progenies, frequencies, and genotypic values for calculation of covariances for breeding 
methods involving phenotypic selection or polycross progenies 

Individual plant characteristics Progeny from polycrossing 

Genotype Frequency Gamete Polycross Genotype Frequency Mean FrequencyGenotype Genotypic value Gametesfrequency of 'B' frequency genotypes frequency Mean genotypie: value of 'B' infrequency of 'B' 
of 'B' next polycross 

(1) (2) (3) (4) (5) (6) (7) (S) (9) (10) (11 ) (12) 

BBBB p4 1 4A+60+4T+F BB BBBB p2. (1/2)+ 2(p + 1)A + (1 +4p + p2)O + 1/4 + (3/4)p
BBBb 2pq 3/4 (p12) (2p2 + 2p) T + p2.F 
BBbb q2. 1/2 

BBBb 4p 3q 3/4 3A+30+ T BB 1/2 BBBB p2/2 (3/S) + (2p + (3/2»A + (p2 + 3116 + (3/4)p
Bb 112 BBBb pq 3/4 (P/2) 3p + (1/2»D + ((3/2)p2 + 

BBbb q2/2 112 p)T + (P2/2)F 

BBBb p2/2 314 
BBbb pq 1/2 
Bbbb q2./2 114 

BBbb 6p2q2 1/2 .2A+0 BB 1/6 BBBB p2/6 1 (1/4)+ (2p + 1)A + (p2 + 1/S + (3/4)p
Bb 416 BBBb 2pql6 3/4 (P/2) (1/6))0 + (p2 + (P/3» T + 
bb 1/6 BBbb q2/6 112 (P2/6)F 

BBBb 4p2/6 3/4 
BBbb Spql6 1/2 
Bbbb 4q2/6 1/4 

BBbb p2/6 112 
Bbbb 2pql6 1/4 
bbbb q2/6 0 

Bbbb 4pq3 1/4 A Bb 1/2 BBBb p2./2 3/4 (1/S+ (2p + (1/2»A + (p2. + p)O + 1/16 + (3/4)p
bb 112 BBbb 2pql2 1/2 (P/2) (P2/2)T 

Bbbb q2./2 114 

BBbb p2/2 112 

Bbbb 2pql2 1/4 

bbbb q2/2 0 


q4
bbbb 0 0 bb BBbb p2 1/2 pl2 2pA +p20 (3/4)p
Bbbb 2pq 1/4 
bbbb q2. 0 



This covariance is greatly simplified by subtracting (P/2) from the entries of 
column 10, which are then one-half of column 3, and the covariance for 
mass 2 is one-half of that of mass 1. Thus, 

(Jxy = (pqcx)/2,
mass 2 

and the corresponding change in population mean is 

6Pmass 2 =2kpqcx2
(p)" 

(20) 

(21) 

The polycross pollination of selected individuals prior to selection halves the 
expected change per cycle of selection. 

Mass Selection 3 (Mass 3) 

In this breeding scheme, individual plants are selected on the basis of their 
individual phenotype following self-pollination. The selfed progeny of the 
selected individuals are then randomly intermated to generate the select 
population. With selfing, the allele frequencies of the progeny are expected to 
be the same as those of the parent. Thus, this selection scheme has the 
covariance of mass 1, but the generation time is doubled. 

S1 Progeny Test (81 PT) 

With this breeding scheme, individual plants are selected on the basis of the 
performance of their selfed progenies. The selected individuals are then ran­
domly crossed to generate a select population. Information for calculations 
of covariance is in columns 2 and 3 of table 6, which were used previously, 
and in column 7 of table 7. The mean genotypic value of each progeny from 
selfing is found by noting that the gametes of each genotype, column 3, 
occur at frequencies in column 4, which produce the genotypes in column 5 
with the frequencies in column 6. The mean genotypic value for each parental 
genotype is found by multiplying the genotypic value associated with each 
genotype of column 5 by its frequency, column 6. The frequency of allele B in 
all units of selection is p and the mean genotypic value (g) is determined by 
multiplying the genotypic values of the genotypes in column 5 by their 
respective frequencies in column 6 and the seed parent frequency, column 2. 
The mean is 

g=4pA +p(5p + 1)0 + 2p2(2p + 1)T + (p3 +P'~q2)F. 

The covariance is 

(JXY =(P4)(1 )(4A + 60 + 4T + F) + 4p3q(3/4)[3A + (13/4)0 + (3/2)T + (1/4)F]
(SlPT) 

+ 6p2q2(1/2)[2A + (4/3)0 + (1/3)T + (1/36)F] + 4pq3(1/4)[A + (1/4)0] 
+ q4(0)(0) - p[4pA +p(5p + 1)0 + 2p2(2p + 1)T+ (P2/6)(P2 + 4p + 1)F] 

=pq[A + (3p + (1 - 2p)/4)0 + (3p2 ~ (3p2 - 2p)/2) T 
+ (p3 + ( _ 1Op3 + 6p2 +p)/12)F] 

=pqcx(P) +pq[((1 - 2p)/4)0 - ((3p2_2p)/2) T - ((1 Op3 - 6p2 - p)/12)F]. (22) 
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Table 7.-Products, frequencies, and genotypic values with selfing of population P 

Seed parent 


Genotype Frequency 


(1 ) (2) 

BBBB p4 


BBBb 4p3q 


BBbb 6p2q2 

Bbbb 4pq:' 

bbbb q4 

Gametes with selfing Progeny with selfing 
Genotype Frequency Genotype Frequency Mean genotypic value 

(3) (4) (5) (6) (7) 

BB 1 BBBB 1 4A +60+4T + F 

BB 1/2 BBBB 1/4 3A + (13/4)0 + (312) T + (1/4)F
Bb 112 BBBb 2/4 

BBbb 1/4 

BB 1/6 BBBB 1/36 2A + (4/3)0 + (1/3)T + (1/36)F
Bb 416 BBBb 2/9 
bb 1/6 BBbb 1/2 

Bbbb 2/9 
bbbb 1/36 

BB 1/2 BBbb 1/4 A + (1/4)0 
Bb 112 Bbbb 1/2 

bbbb 1/4 
bb 1 bbbb 1 0 

Thus, the covariance of S1 PT is a function of allele frequency, genetic 
parameter alP), and some portion of nonadditive genetic effects (D, T, and F). 
The change in genotypic mean with selection is 

LJ5SlPT =4kpqa(p)(a(p) + C) (23) 

where C is [((1 - 2p)/4)0 + ((3p2 - 2p)/2) T - ((1 Op3 - 6p2 - p)/12)F]. 

Since C is dependent upon the values of p, 0 , T, and F, it is not obvious when 

C is positive or negative. 


A slight variant of the S1 PT is the selection of best S1 families instead of the 

parental clone. Since the mean allele frequency of selfed progeny is the same 

as that of the parent, the covariance is not changed. 


Half·sib Progeny Test (HSPT) 

With this breeding scheme, also known as polycross progeny test (Tysdal and 
Kiesselbach 1944), individual plants are selected on the basis of their half-sib 
family performance. The half-sib families are produced by polycrossing or 
pollinating the flowers ofeach plant with pollen that is representative of the 
entire population. The selections are then randomly crossed to produce the 
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select population. The information necessary fot covariance calculation is 
found in columns 2,3, and 11 of table 6. The mean genotypic values for the 
half-sib families is found by multiplying the respective genotypic values of 
the genotypes of column 7 by the frequency of the genotype, column B. The 
mean frequency of allele B in all the parental plants is P, and the mean geno­
typic value of progeny with random mating is that of the population mean 
given by equation 2. The covariance is 

(/xy :::: p4(1 )[(2p + 2)A + (p2 + 4p + 1)D + (2p2. +2p) T +p2.F] + 4p3q(3/4)[(2p + (3/2»A
(HSPT) 

+ (p2. + 3p + (1/2»D + «3/2)p2 + p) T + «1/2)p2)F] 
+ 6p2q2(1/2)[(2p+ 1)A + (P2 +2p + (1/6»D + (P2 + (P/3» T + «1/6)p2)F] 
+ 4pq3(1/4)[(2p + (1/2»A + (P2 +p)D + «1/2)p2)T] + q(0)(2pA + p2.D) 
- p[4pA + 6p2D + 4p3T + p4F] 

(/XY(HSpn :::: (pq12)(A + 3pD + 3p2T + p3F):::: (pqI2)cx[pr (24) 

Thus, the change in the genotypic mean of a population with a single cycle of 
selection is 

(25) 

Half-sib Family Selection (HSFS) 

With this procedure, half-sib families are generated and evaluated as in the 
previous breeding scheme, but the half-sib families are selected instead of 
the parent plant. These families are intercrossed to produce the select popu­
lation. Columns 2, 10, and 11 of table 6 contain information for caloulation of 
the covariance_ The mean frequency of allele B in all half-sib families is P, 
and the mean genotype value of these progenies is given by equation (2). The 
covariance is 

CX :::: p4«1 + p)/2)[2(P + 1)A + (1 + 4p +p2)D + (2p2 + 2p) T + p2F]
XY(HSFS) 

+ 4p3q[(3IB) + (P/2)][{2p + (3/2»A + (P2 + 3p + (1/2»D 
+ {(3/2)p2 + p) T + (P2/2)F] + 6p2q2{{1/4» + (P/2))[{2p + 1)A 
+ (p2. + 2p + (1/6»D + (P2+ (P13»T + (P2/6)F] 
+ 4pq3[{1/B) + (P12)] [{2p + (1/2»A + (P2 +p)D + (P2/2) T ] 
+ q4(p12)(2pA + p2D) - p[4pA + 6p2D + 4p3T + p4F]. 

This covariance is simplified by subtracting (P12) from column 10 of table 6 to 
get values that are one-half of those in column 3. Then, the covariance of 
HSFS is one-half of the covariance of HSPT. Thus, 

(26)(/XY(HSFSI:::: (pqI4)cx(p)' 

and the change in the genotypic mean is 

6P(HSFS) :::: kpqcx2(p)' (27) 
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Half-sib Progeny Test With Family Progeny Selection (HSFP) 

This breeding scheme is identical to HSFS selection just described, except 
all families are polycrossed and the seed of superior families are collected. 
The progenies of the selected families are intercrossed to produce the select 
population. Columns 2,11, and 12 of table 6 contain the information for 
covariance calculation. The allele freqt:encies in the progeny of polycrossed 
half-sib families, column 12, were generated in the same manner as frequen­
cies of column 10. The mean genotypic value of the random mating popula­
tion is that of the single population (equation (2)), and the frequency of B in 
progeny of the half-sib families is p. The covariance for HSFP is 

uXY =p4[(1/4) + (3/4)p][2(P +1)A + (1 + 4p + p2)0 + (2p2+ 2p)T + p2F]
(HSFP) 

+ 4p3q[(3/16) + (3/4)p][(2p + (3/2))A + (p2 + 3p + (1/2))0 
+ ((3/2)p2 +p) T + (p2/2)F] + 6p2q2[(1/S) + (3/4)p][(2p + 1)A 
+ (p2 + 2p + (1/6))0 + (P2 + (P/3)) T + (p2/6)F] 
+ 4pq3[(1/16) + (3/4)p][2p + (1/2))A + (p2 +p)O + (p2/2) 71 
+ q4[(3/4)p][2pA +p20] - p[4pA + 6p20 + 4p3T + p4F]. 

This covariance is greatly simplified by subtraction of (3pI4) from each entry 
in column °i2 of table 6 to get values that are one-fourth of those in column 3. 
Thus, this covariance is one-fourth of the covariance of HSPT. Thus, 

Usy =(pqIS)cx(p)' (28)
(HSFP) 

and the change in the genotypic mean of the population with a single cycle 
of selection is 

(29) 

Full-sib Family Selection (FSF) 

With this breeding scheme, full-sib families are generated by the crossing of 
randomly selected pairs of plants from a population of individuals. The best 
full-sib families are selected and randomly crossed to generate the select 
population. The covariance is calculated with the information in columns 2, 3, 
and 4 of table S. With five genotypes, there are 25 possible full-sib combina­
tions, but some of those are reciprocals of each other. Thus, there are only 15 
different full-sib pairings, and they appear in column 1 of table S. The fre­
quency of allele B over all the randomly generated families is that of the 
parent population, p. The mean genotypic value of these families is the same 
as that of the parent population. The covariance is 

UXY(FSF) =p8(1)[4A + 60 + 4T + FJ + (8p7q)(7/8)[7/2)A + (9/2)0 + (5/2) T 
+ (1/2)F] +12p6q2(3/4)[3A + (19/6)0 + (413) T + (1/6)F] + 8p5q3(5/8)[5/2)A 
+ 20 + (1/2) T] + 2p4q4(1/2)[2A + 0] + 16p6q2(3/4)[3A + (13/4)0 + (312) T 
+ (1/4)F] + 48p5q3(5/8)[(5/2)A + (13/6)0 + (314) T + (1/12)F] 
+ 32p4q4(1/2)[2A + (5/4)0 + (1/4) T] + 8p3q5(3/8)[(3/2)A + (1/2)0] 
+ 36p4q4(1/2)[2A + (4/3)0 + (1/3) T + (1/36)F] + 48p3q5(3/8)[(3/2}A (cant.) 
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+ (2/3)0 + (1/12) T] + 12p2q6(1/4)[A + (1/6)0] + 16p2q6(1/4)[A + (1/4)0] 
+ 8pq7(1 18)[(1 12)A] - pI4pA +6p20 + 4p3T +p4F]. 

This lengthy equation simplifies to 

(a =(pqI2)a (30)
XY(FSF) (P)' 

and the expected change in genotypic mean 

t::.P(FSF) =2kpqa2
(p)" (31) 

A slight variant of full-sib family se!ection is the selection of the parental 
clones instead of their families. The expected gain is the same because the 
mean allele frequency of full-sib families is the same as the mean allele fre­
quency of the two parental clones. 

Table 8.-The frequencies and genotypic values for calculation of covariance 
with full-sib family selection 

Full-sib family Frequency of Frequency of Mean genotypic value of 
matings matings Bin matings full-sib families 

(1 ) (2) (3) (4) 

BBBBxBBBB pB 1 4A +60+4T+ F 
BBBBxBBBb 8p7q 7/8 (7/2)A + (9/2)0 + (5/2)T + (1/2)F 
BBBBxBBbb 12p6q2 3/4 3A + (19/6)0 + (4/3)T + (1/6)F 
BBBBxBBbb 8p5q3 5/8 (5/2)A + 20 + (1/2) T 
BBBBxbbbb 2p4q4 1/2 2A+0 
BBBbxBBBb 16p6q2 3/4 3A + (13/4)0 + (312) T + (1/4)F 
BBBbxBBbb 48p5q3 5/8 (5/2)A + (13/6)0 + (314) T +(1 /12)F 
BBBb x Bbbb 32p4q4 1/2 2A + (5/4)0 + (1/4)T 
BBBbxbbbb 8p3q5 3/8 (3/2)A + (1/2)0 
BBbbx BBbb 36p4q4 1/2 2A + (4/3)D + (1/3)T + (1/36)F 
BBbbX Bbbb 48p3q5 3/8 (3/2)A + (2/3)0 + (1/12)T 
BBbbxbbbb 12p2q6 1/4 A + (1/6)0 
Bbbbx Bbbb 16p2q6 1/4 A + (1/4)0 
Bbbbxbbbb 8pq7 1/8 (1/2)A 
bbbb xbbbb qB a a 

Modified Ear-to-Row (MER) 

This breeding scheme is a two-stage breeding method that combined half-sib 
family selection and phenotypic selection of individual plants (Webel and 
Lonquist 1967). In the first stage, half-sib families .are produced for each plant 
by pollinating each with pollen that is genetically representative of the entire 
population. The best half-sib families are selected, and then the best plants 
are selected on the basis of their individual phenotypes. All selections are 
then randomly intercrossed to produce the new, select population. 
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With this breeding procedure, selection occurs twice, and the allele frequency 
is changed twice. The first stage of this procedure is half-sib family selection 
(HSFS), and that covariance was determined earlier as a =(pqI4)a.(p)' The xy(HSFS)
covariance of the second stage is between the genotypic value and thefre­
quency of allele B of the individuals within the half-sib families. Thus, the 
covariance is calculated for each of the five possible genotypes of the seed 
parent (column 1 of table 6), and the covariance for stage 2 of selection is the 
weighted average of those five covariances. 

The information for calculation of the second-stage covariance for MER is in 
table 6. The genotype of the seed parent of each half-sib family is in column 1. 
The genotype and frequencies of the half-sib families are in columns 7 and 8, 
respectively. The frequency of allele B in each genotype is in column 9. The 
mean frequency of allele B within a half-sib family is found by multiplying the 
entries of column 8 by those of column 9; those means are in column 10. The 
mean genotypic value of a half-sib family is found by an analogous method. 
For each genotype in column 7, the frequency of the genotype, column 8, is 
multiplied by its respective genotypic value (table 2), and the sum of those 
products is the mean genotypic value of each half-sib family, column 11 of 
table 6. The frequencies of the half-sib families are in column 2. 

The second stage covariance (aXY) 

a'XY = p4[P2(1 )(4A + 60 + 4T + F) + 2pq(3/4)(3A + 3D + T) + q2(1/2)(2A +D) 
- ((112) + (P12))(2(P + 1)A + (1 + 4p + p2)0 + (2p2 + 2p)T + p2F)] 
+ 4p3q[(P2/2)(1 )(4A + 60 + 4T + F) + ((P +pq)/2)((3/4)(3A + 3D + T) 
+ ((Pq + q)/2)(1/2)(2A + D) + (q2/2)(1/4)(A) - ((3/8) + (P12)) 

((2p + (3/2))A + (P2 + 3p + (1/2))0 + ((3/2)p2 + p) T + (P2/2)F)] 
+ 6p2q2[(P2/6)(1 )(4A + 60 + 4T + F) + ((P +p2)/3)(3/4)(3A + 3D + T) 
+ ((1/6) + pq)(1/2)(2A + D) + ((q2 + q)/3)(1/4)A - ((1 + 2p)/4)((2p + 1)A 
+ (p2 + 2p + (116))0 + (P2 + (P/3)) T + (P2/6)F] 
+ 4pq3[(P2/2)(3/4)(3A + 3D + T) + ((Pq + p)/2)(1/2)(2A + D) 
+ ((Pq + q)/2)(1/4)(A) + (q2/2)(0)(0) - ((1/8) + (P12))((2p + (1/2))A 
+ (P2 +p)O + (P2/2) T)] + q4[P2(1/2)(2A + D) + 2pq(1/4)A + q2(0)(0) 
- (P12)(2pA +p20)]. 

The covariance for stage 2 simplifies to 

a'XY =(3/4)pqa.(p)' (32) 

and the change in the genotypic mean with MER is 

!:"PMER = 4a.(p)(k(1/4)pqa.(p) + k'(3/4)pqa.(p)) (33) 
=kpqa.2(p) + 3k'pqa.2

(PJ" 

The prime on the second k indicates that this k value is not expected to be 
identical to the first k. 

An alternative procedure for MER selection is to save seed from the best 
plants within selected families in the evaluation nursery. If those plants had 
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been randomly intercrossed with all plants of the nursery instead of just the 
selections, the frequencies of B alleles would be one-half of those in column 9 
of table 6 plus (P/2). With subtraction of (P/2), the covariance of the second 
stage of selection is cxxy =(3/8)pqcx(p), and the change in the genotypic mean at 
stage 2 would be half of that with selection prior to pollination. 

Topcross Progeny Test (TX) 

With this breeding scheme, the individuals of population P are pollinated with 
a representative sample of pollen from a different population (U), designated 
the tester population. The best parents are selected on basis of performance 
of topcross progeny. These selected parents are randomly intercrossed to 
produce the select population. The covariance is determined with the infor­
mation in columns 2, 3, and 5 of table 9. The genotypic mean of topcross 
progenies, column 5, is found in a manner analogous to that used for the 
genotypic mean of polycrossed families, column 11 of table 6. In population 
U, the ratio of gametes (BB : Bb : bb) is u2 : 2uv : v2, respectively. Thus, u and v 
are substituted for p and q, respectively, in column 11 of table 6 to give 
means in column 5 of table 9. The frequency of allele B among plants of 
population Pis p, and the mean genotypic value of the topcross progenies is 
the hybrid of two popu lations (from equation (7» which is (2p + 2u)A + (P2 + 
4pu + u2)O + (2p2u + 2pu2)T +p 2u2F. The covariance for the topcross progeny is 

UXY(TX) = p4(1)[(2 + 2u)A + (1 + 4u + u2)O + (2u + 2u2) T + u2F] + 4p3q(3/4) 
[((3/2) + 2u)A + ((1/2) + 3u + u2)O + ((u + (3/2)u2) T + (1/2)u2F] 

+ 6p2q2(1/2)[(1 + 2u)A + ((1/6) + 2u + u2)O + ((1/3)u + u2)T + (1/6)u2F] 
+ 4pq3(1 14)[((1 12) + 2u)A + (u + u2)O + (-1/2)u2T] + q4(O)[2uA + u20] 
- p[(2p + 2u)A + (P2 + 4pu + u2)O + (2p2u + 2pu2)T +p2u2F]. 

Table 9_-Means, allele frequencies, and genotypic values for calculation of covariances for topcross 
selectitln schemes 

Seed parent Polycrossed 
-------------- seed parent Genotypic mean of topcross progeny 

Frequency of (frequency of Genotype 	 Genotype 
frequency allele B allele B) 

(1) 	 (2) (3) (4) (5) 

BBBB p4 1 (1/2) + (P/2) (2 + 2u)A + (1 + 4u + u2)O + (2u + 2u2)T+ u2F 
BBBb 4p3q 3/4 (3/8) + (P/2) ((312 + 2u)A + ((112) + 3u + u2)O + (u + (3/2)u2)T+ (1/2)u2 F 
BBbb 6p2q2 1/2 (1/4) + (P/2) (1 + 2u)A + ((1/6) + 2u + u2)O + ((113)u + u2)T + (1/6)u2F 
Bbbb 4pq3 1/4 (1/8) + (P/2) ((112) + 2u)A + (u + u2)O + (1/2)uQ 
bbbb q4 o (P/2) 2uA +u2D 
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The covariance simplifies to 

UXY(TX) = (1/2)pq(CI.(U) + (p - u)(3(U))' (34) 

and the change in the genotypic mean is 

-6.15(TX) = 2kpqCl.(p)(CI.(U) + (p - u)(3(U)). (35) 

Thl!s, the change in the genotypic mean of population P is a function of addi­
tive effects in both populations, digenic effects in the tester population, and 
the difference in allele frequencies of the two populations. 

Topcross Progeny Test With Polycross Progeny (TXPX) 

With this breeding scheme, the topcross progenies are produced as before, 
but simultaneously the plants of tested populations are polycrossed. The best 
clones are determined as before, but their respective progenies from poly­
crossing are randomly crossed to produce the select population. The informa­
tion for the covariance calculation is in columns .2, 4, and 5 of table 9. The 
frequency of B in the polycrossfamilies is p, and the mean genotypic value 
of topcross progenies is that of the hybrid. The covariance for this procedure is 

U xy (TXPX) =p 4((1/2) + (P12))[(2 + 2u)A + (1 + 4u + u2)O + (2u +2u2)T + u2F) 
+ 4p3q((3/8) + (P12))[((3/2) + 2u)A + \~1/2) + 3u + u2)O + (u + (3/2)u2)T 
+ (1/2)u2 F) +6p2q2((1/4) + (P12))[(1 + 2u)A + ((1/6) + 2u + u2)O 
+ ((1/3)u + u2)T + (1/6)u2F) +4pq3((1/8) + (P12))[((1/2) +2u)A 
+ (u + u2)O + (1/2)u 2 71 + q4(p12)[2uA + u20) - p[(2p + 2u)A 
+ (P2 + 4pu + u2)O + (2p2u + 2pu2) T +p2u2F). 

This covariance is simplified by subtraction of pl2 from entries of column 4 of 
table 9 to get values one-half of those in column 3. Therefore, this covariance 
is one-half of covariance for TX and 

UXY(TXPX) =(pqI4)(CI.(U) + (P - u)(3(U))' (36) 

The change in the genotypic mean is 

-6.15(TXPX) = kpqCl.(p)(CI.(U) + (P - u)(3(U)). (37) 

Topcross Progeny Test With Full-sib Progeny (TXFS) 

This breeding scheme is an alternative to selection of polycrossedfamilies in 
TXPX. With this scheme, random full-sib pairings are made in the population 
which is to be improved while test crosses are made simultaneously as in TX 
and TXPX procedures. The seed from best full-sib families is selected on 
basis of performance of average of respective topcross progenies. The infor­
mation necessary for the covariance calculation is in columns 2, 3, and 4 of 
table 10. The frequency of B in all full-sib families is the same as that of the 
base population, P, and the mean genotypic value of all topcross families is 
that of the hybrid, equation (7). The covariance is 
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Uxy =pB(1)[(2 + 2u)A + (1 + 4u + u2)D + (2u + 2u2) T + u2F]
(TXFS) 

+ 8p7q(7/8)[((7/4) + 2u)A + ((3/4) + (7/2)u + u2)D + ((3/4)u 
+ (7/4)u2)T + (3/4)u2F] + 12p6q2(3/4)[((3/2) + 2u)A + ((7/12) 
+ 3u + u2)D + ((7/6)u + (3/2)u2)T+ (7/12)u2F] + 8p5q3(S/8)[((S/4) 
+ 2u)A + ((1/2) + (S/2)u + u2)D + (u + (S/4)u2)T + (1/2)u2F] 
+ 2p4q4(1/2)[(1 + 2u)A + ((1/2) + 2u + u2)D + (u + U2) T + (1/2)u2F] 
+ 16p6q2(3/4)[((3/2) + 2u)A + ((1/2) + 3u + u2)D + (u + (3/2)u2)T 
+ (1/2)u2F] + 48p5q3(S/8)[((S/4) + 2u)A + ((1/3) + (S/2)u + u2)D 
+ ((2/3)u + (S/4)u2)T + (1/3)u2F] + 32p4q4(1/2)[(1 + 2u)A 
+ ((1/4) + 2u + u2)D + ((1/2)u + u2)T + (1/4)u2F] + 8p3q5(3/8)[((3/4) + 2u)A 
+ ((1/4) + (3/2)u + u2)D + ((1/2)u + (3/4)u2) T + (1/4)u2F] 
+ 36p4q4(1/2)[(1 + 2u)A + ((1/6) + 2u + u2)D + ((1/3)u + u2) T + (1/6)u2F] 
+ 48p3q5(3/8)[((3/4) + 2u)A + ((1/12) + (3/2)u + u2)D + ((1/6)u 
+ (3/4)u2) T + (1/12)u2F] + 12p2q6(1 14)[((1 12) + 2u)A + ((1/12) 
+ u + u2)D + ((1/6)u + (1/2)u2) T + (1/12)u2F] + 16p2q6(1 14)[((1 12) 
+ 2u)A + (u + u2)D + (1/2)u2T] + 8pq7(1/8)[((1/4) + 2u)A + ((1/2)u + u2)D 
+ (1/4)u2T] + qB(O)(2uA + u2D) - p[(2p + 2u)A + (P2 + 4pu + u2)D 
+(2p2u + 2pu2)T + p2u2F]. 

After much simplification, this covariance becomes 

uXY(TXFS) =(pqI4)(cx(U) + (p - u){3(U))' (38) 

which is the same as the covariance for TXPX and therefore 

615(TXFS) =6P(TXPX) =kpqcx(p)(cx(U) + (p - u){3(U). (39) 

Table 10.-Matings, frequencies, and genotypic values for calculation of covariance for topcrossing with 
selection of full·sib families 

Fu"-sib family Frequency of Frequency of Mean genotypic value of topcross families 
matings matings Bin matings 

(1 ) (2) (3) (4) 

BBBBxBBBB pB 1 (2 +2u)A + (1 + 4u + u2)D + (2u + 2u2)T + u2F 
BBBBxBBBb 8p7q 7/8 ((7/4) + 2u)A + ((3/4) + (7/2)u + u2)D + ((3/2)u + (7/4)u2)T + (3/4)u2F 
BBBBxBBbb 12p6q2 3/4 ((3/2) + 2u)A + ((7/12) + 3u + u2)D + {{7/6)u + (3/2)u2)T + (7/12)u2F 
BBBBx Bbbb 8p5q3 S/8 ((S/4) +2u)A + ((1/2) + (S/2)u + u2)D + (u + (S/4)u2) T + (1/2)u2F 
BBBBxbbbb 2p4q4 1/2 (1 + 2u)A + ((1/2) + 2u + u2)D + (u + u2) T + (1/2)u2F 
BBBbxBBBb 16p6q2 3/4 ((3/2) + 2u)A + ((1/2) + 3u + u2)D + (u + (3/2))u2) T + (1/2)u2F 
BBBbxBBbb 48p5q3 S/8 ((5/4) + 2u)A + ((1/3) + (5/2)u + u2)D + ((2/3)u + (S/4)u2)T + (1/3)u2F 
BBBbxBbbb 32p4q4 1/2 (1 + 2u)A + ((1/4) + 2u + u2)D + ((1/2)u + u2)T + (1/4)u2F 
BBBbxbbbb 8p3q5 3/8 ((3/4) + 2u)A + ((1/4) + (3/2)u + u2)D + ((1/2)u + (3/4)u2) T + (1/4)u2F 
BBbb x BBbb 36p4q4 1/2 (1 + 2u)A + ((1/6) + 2u + u2)D + ((1/3)u + u2) T + (1/6)u2F 
BBbbxBbbb 48p3q5 3/8 ((3/4) + 2u)A + ((1/12) + (3/2)u + u2)D + ((1/6)u + (3/4)u2) T 

+ (1/12)u2F 
BBbbxbbbb 12p2q6 1/4 ((1/2) + 2u)A + ((1/12) + u + u2)D + ((1/6)u + ((1/2)u2) T + (1/12)u2F 
Bbbbx Bbbb 16p2q6 1/4 ((1/2) + 2u)A + (u + u2)D + (1/2)u2T 
Bbbbxbbbb 8pq7 1/8 ((1/4) + 2u)A + ((1/2)u + u2)D + (1/4)u2T 
bbbb x,bbbb qB 0 2uA + u2D 
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Summary Any comparison of the relative effectiveness of breeding schemes discussed 
in this chapter should involve the component Sla~h of equation (1) which was 
assigned the arbitrary value k for tile derivation of 6.15's. The response equa­
tion for selection indicated that the desirable properties of a breeding method 
are (1) a large coefficient for the covariance as derived in this chapter and (2) 
a minimal phenotypic variance (a~h). From table 11, it is apparent that the com­
ponents of a~h are not constant for all breeding schemes. To some extent, the 
environmental component of a~h can be reduced by refinement of screening 
methods and choice of experimental design as well as choice of breeding 
method. 

Table 11.-The theoretical expected changes of 12 intrapopulation breeding 
schemes and their phenotypic variances 

Generations
Expected change 

per Phenotypic variance' Method (615) in 
selection (a~h)population P mean 

cycle 

Mass (1) 4kpqafp) 1 a~+a~ 
Mass (2) 2kpqafp) 2 a~+a~ 
Mass (3) 4kpqafp) 2 a;+a~ 
S1PT 4kpqa(p)(a(p) + 2C) 3 (a~ + a~1 - a~lF)/rn + a~/r + a~1F 
HSPT 2kpqafp) 2or3 (a~ + a~ - a~s)lrn + a~/r + a~s 
HSFS kpqafp) 2 or 3 (a~ + a~ - a~s)lrn + a~/r + a~s 
HSFP (1/2)kpqa[p) 3 or 4 (a~ + a~ - a~s)lrn + a~/r + a~s 
FSF 2kpqa~) 2 or 3 (a~ + a~ - a~s)lrn + a~/r + a~s 
MER stage 1 kpqafp) 
MER stage 2 23k'pqafp) \U~ + a~ - a~s)ln + a~ 
TX 2kpqa(p)(a(1J) + (p - u)f3(~ 3 (a~ + a~TX - ah)lrn + a~/r + aix 
TXPX kpqa(p)(a(U) + (p - u)f3(U)) 3 (a~ + a~TX - aix)lrn + a~/r + ah 
TXFS kpqa(p)(a(U) + (p - u)(3(IJ)) 3 (a~ + a~TX - aix)lrn + a~/r + aix 

1~, uZ" (]~1' ~lF' ~s' (]~ <1s' ~TX' <1x' r, and n are, respective­
ly, variance, total genetic variance, total genetic variance in 
an S1 population, variance due to S1 family means, variance 
due to half-sib family mean::;, error variance, variance due to 
full·sib family means, total genetic variance of a set of top. 
cross families, variance due to topcross family means, 
replications of a progeny, and number of plants in a progeny 
plot. 

2C =«1 -2p)/4)D-«3p 2- 2p)/2)T - 1(10p3 - 6p2_ p)/12)F. 


The selection of "best" breeding method in theory is altered in reality by the 
trait for selection, reproductive characteristics of the crop, and limits of the 
breeder's labor, expertise, facilities, and funds. To facilitate a critique of the 
investigated breeding methods, a specific reference crop is needed, in this 
case, alfalfa (Medicago sat.'va L.). Briefly, alfalfa is a perennial that requires 
approximately 4 months from seeding to flowering in the greenhouse, can be 
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cloned easily with stem cuttings, does not reliably produce seed with selfing, 
produces an abundance of flowers on mature plants, and can be clipped back 
severely and brought into flowering several times during a summer. It is com­
monly field-planted in drilled rows or broadcast, but may be space planted for 
breeding purposes. 

The information summarized in table 11 can be used to predict the effec­
tiveness of some breeding schemes for alfalfa. The three versions of mass 
selection have a large covariance, property 1. The covariance of mass 2 is 
half of that of mass 1 and mass 3 but still greater than that of most other 
methods (table 11). Mass 1 is the most attractive of the mass-selection 
methods, since isolation and pollination of selected plants would not normally 
be a problem with alfalfa. M.ass 3 is impractical for alfalfa because it requires 
the production of selfed seed. Mass 2 would be recommended over mass 1 
only if the isolation and crossing of selected individuals took more than twice 
the time of seed production without isolation. These mass-selection methods 
do not have property 2, the minimal phenotypic variance, and may be ineffec­
tive for improvement of some traits because of the large environmental influ­
ence in the variance. 

The S1 PT procedure provides good control of the phenotypic variance and 
has a large coefficient for the covariance. Direct comparison of the 
covariance of S1 PT with covariances of other methods is frustrated by com­
ponent "G" (table 11). Unpublished results by Rowe5 indicate that the 
covariance S1 PT is smaller than that of mass 1 when "B" exhibits monoplex 
dominance to "b"; but with less complete dominance the covariances 
become equal, and with duplex dominance S1PT is superior. With additive 
gene action, the covariances are identical. The S1 PT procedure is probably of 
little value for alfalfa breeding because of the requirement for selfed seed. 

The HSPT procedure provides good control of phenotypic variation and has a 
relatively large covariance. Neither the production of half-sib seed nor the 
saving of parental plants until evaluation of the progenies presents a serious 
problem with alfalfa. The cost in labor, facilities, and time for progeny testing 
will limit the number of plants that can be evaluated in a given period of time. 
Hill et al. (1971) concluded that if HSPT were to be more effective than mass 1, 
the heritability of a trait would have to be very low. 

The HSFS procedure also has good control over phenotypic variance, but the 
covariance is one-half of that for HSPT (table 11). HSFS does not require sav­
ing the parent plants until progenies are evaluated. Saving the parent alfalfa 
plants is not usually a problem, so the HSFS procedure w()uld definitely be 
inferior to HSPT. 

5Rowe, D. E. 1980. Theoretical investigation of the expected 
gains with selfed progeny test selection (81 PT) and pheno­
typic selection (mass(1 )). [Unpublished.) 

24 



The FSF procedure has good control of phenotypic variance, and the 
covariance equals that for HSPT. Unlike HSPT, FSF does not require saving 
the parents for progeny evaluation, but is expected to require more labor to 
produce the full-sib seed. The random pairings could increase bias in the 
progeny evaluation, since the random pairing of good and poor plants would 
produce inferior progenies. 

The MER procedure is a combination of HSFS and mass 1 procedures. With 
alfalfa, the full-sib families could be evaluated in replicated fields, and the 
second stage selections could be made in a space-planted nursery. The same 
trait does not have to be selected at both stages. Hill and Byers (1979) con­
cluded that MER selection would have to operate on a large scale to be more 
effective than mass 1. 

The covariances for the topcross selection procedures are not analytically 
comparable to the procedures just discussed because of the terms involving 
the tester population. The singular comparison was a study by Rowe and Hill 
(1981) which concluded the TX procedure would be superior to HSPT for any 
traits determined by a gene with monoplex dominance, if the frequency of the 
desirable allele were lower in the tester population than in the selected 
population. 
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3. Interpopulation Improvement 

Introduction 

Select and Combine 
Procedures (SC) 

In this chapter, we describe our investigation of the two simplest objectives 
possible for interpopulation improvement, improvement of the mean 
genotypic values of the two-population hybrid and the two-population syn­
thetic variety. The construction of response equations for change in the mean 
genotypic value of either the hybrid or synthetic variety proceeds as outlined 
for the intrapopulated improvement procedures in chapter 2. Briefly, an ex­
pression is developed by use of equation (1) for the change of allele frequen­
cy with selection in two populations, P and R. Those expressions for dp and 
dr are substituted into equations (10) or (17) to predict the change in the 
genotypic mean of the hybrid or synthetic variety, respectively. Equations (10) 
and (17) are reproduced below for reference 

6XHYB = 2dpCi(R) + 2drCifp) + (p - r)(2dp{3(R) - 2dr{3(p))' (10) 
6Xsyn = (dp..;· dr)[Ci(p) + Ci(R) - ((3/4)(P - r)2(-y(p) + 'Y(R))]' (17) 

Theoretical expressions are developed for the change in the means of the 
two-population hybrid and two-population synthetic variety with a single cycle 
of selection with various interpopulation breeding methods. The equations of 
different breeding methods are compared directly where possible. Other com­
parisons which require assumptions of modes of genic action are also 
described. 

With this breeding method, each of the base populations, P and R, is improved 
by use of a single cycle of selection with any intrapopulation improvement 
method, except the topcross, described in chapter 2. The same or different 
intrapopulation breeding methods may be used on the two base populations. 
The two improved populations, pI and R' , are the parents of the improved 
hybrid or synthetic variety. 

For example, if a cycle of mass 1 selection is used in both P and R, dp is 
kpqCi(Pl and dr is krsCi(Rr The expected change in the genotypic mean of the 
hybrid is 

6XHyb = 2kCi(p)Ci(R)(Pq + rs) + (P - r)(2kpqCi(pj3(R) - 2krsCi(R[3(p))' 

and the expected change in the mean of the synthetic variety is 

6.Xsyn =(kpqCi(p) + krsCi(Il)(Ci(p) + Ci(R}- ((3/4)(P - r)2(-y(p) + 'Y(R))))' 

Thus, this interpopulation improvement procedure is a methodology which en­
compasses all combinations of the intrapopulation breeding procedures of 
chapter 2 except topcrosses. If both base populations are selected for the 
same trait with the same intrapopulation breeding method, the attributes, dif­
ficulties, and relative effectiveness described in the summary of chapter 2 
would apply. If different intrapopulation breeding methods are used on the 
base populations, the expected change would be intermediate to the ex­
clusive use of either intrapopulation breeding procedure. 
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Concurrent Topcrosses 
(CT) 

ReCiprocal Recurrent 
Selection (RRS) 

Comparison of 
Interpopulation 
Breeding Procedures 

With this breeding method, populations P and R are improved by use of a top­
cross method of breeding (TX, TXPX, or TXFS). Each population is crossed to 
a common tester population, U. Individuals or polycrossed families are 
selected on the basis of the performance of topcross progeny. The use of a 
common tester is not required but does minimize the number of parameters. 

The equation for the change in the genotypic mean of the hybrid by use of TX 
selection on both base populations is 

6XHYbCTX) =kpq(cx(U) + (p - u){3(U))(cx(R) + (p - r}{3(R)) 
+ krs(cx(U) + (r - u){3(U))(cx(P) - (p - r){3(p)), 

and the change in the mean of the synthetic variety is 

6Xsyn =[kpq(1/2)(cx(U) + (p - u){3(U)) + krs(1/2)(cx(U) 
CTX) + (r - u){3(~][(cx(P) + CX(R) - ((3/4)(P - r)2(-y(p) + 'Y{R))]. 

Selection with TXPX or TXFS instead of TX reduces the gain by one-half. 

With this breeding method, populations P and R are evaluated on the basis of 
the performance of topcross progenies, but the populations are used 
reCiprocally as the tester population (Comstock et al. 1949). That is, popula­
tion R is the tester population for population P, and P is the tester population 
for R. The selected parents or polycrossed families in the base populations 
are combined to produce the. new hybrid or synthetic variety. 

The change in the genotypic mean of the hybrid with RRS procedure selec­
tion of parent plants is 

6XHyb =krs[cx(p) + (r - p){3(pJ2 + kpq[cx(R) + (P - r){3(RJ2, 

and the change in the genotypic mean of the synthetic variety is 

6Xsyn = [(kpqI2)(cx(R) + (p - r){3(R) + (krs/2)(cx(p) 
+ (r - p){3(PJ[cx(P) + CX(R) - ((3/4)(P - r)2(-y(p) + 'Y(RJ. 

The selection of poly crossed progenies or full-sibs instead of the parents will 
reduce the above predictive equations by one-half. 

As the breeding procedures become more involved, expectation equations 
become more complex, and the comparisons are much more difficult and re­
quire deterministic simulation. Comparisons of interpopulation improvement 
methods are meaningful between methods with common generation times 
and other attributes, such as selection of various progenies or parental 
plants. To make such a comparison, the mode of genic action must be de­
fined in advance. One such comparison study now has been completed 
(Rowe and Hill 1981). 

The comparison was among HSPT with the SC procedure, TX selection with 
CT procedure, and parental plant selection, TX equivalent, with RRS pro­
cedure. Four types of genetic action were investigated: additive, monoplex 

27 



dominance, duplex dominance, and one type of overdominance. Comparisons 
among breeding methods were made for each type of genic action. 

For the comparison, we assigned genotypic values to each genotype reflect­
ing the genetic model, and the population effects were solved in terms of h, 
an arbitrary constant for trait expression (table 12). Expressions were 
developed for the change in genotypic mean of a two-population synthetic as 
a function of h, assuming constant selection pressure k. 

Table 12.-Genotypic values and parameters for genetic models 

Genotype Genetic model 1 

and Monoplex Duplex Over-
Additiveparameter dominance dominance dominance 

BBBB 4h h h 0 
BBBb 3h h h 3h 
BBbb 2h h h 4h 
Bbbb h h 0 3h 
bbbb 0 0 0 0 
Additive (a) h q3h 3pq2h 3(p - q)h 
Digenic ({3) 0 -q2h q(1 - 3p)h -2h 
Trigenic (1') 0 qh (1 - 3q)h 0 
Quadrigenic (0) 0 -h 3h 0 

lh is an arbitrary constant, p and q are frequencies of alleles 
"B" and "b," respectively. ~ 

With additive genetic action, all procedures had the same predicted change 
of the population mean 6X =kh2(Pq + r8). 

The equations for the effect of selection, assuming monoplex dominance, ap­
pear in table 13. The equation for SC response is also a component common 
to RRS and CT equations. The RRS equation contains two differences of 
squares, 8 2 - q2 and q2 - 8 2, one of which must be a negative value if not zero. 
When the differences are zero, this equation simplifies to the SC equation. 
With CT selection, the difference in squares, V2_ q2 and V2_ 8 2, could both be 
positive values if v> 8 and v> q. Rowe and Hill (1981) showed that CT was 
superior to either RRS or SC if the right tester population were used. The fre­
quency of b must be greater in the tester than in P or R. 
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Assumptions of duplex dominance and overdominance resulted in very com­
plex response equations (table 14 and 15) and no generalities about superior­
ity of any procedure was possible. With overdominance, response to selec­
tion was negative for some allele frequencies with SC and CT selection, but 
not with RRS. With the more complicated genetic situations, three­
dimensional plots of expected response to selection facilitated comparisons. 
(See Rowe and Hill 1981.) 

Table 13.-Equations for the change of the mean genotypic value of the 

2·population synthetic for SC, RRS, and CT selection methods, 

assuming only monoplex dominance gene action 


Selection 

Response equation'
method 

SC 6X =kh2(Pq4 + rs4)J 
RRS 6X =kh2(Pq4 + rs4 + pq2(S2 - q2) + rs2(q2 _ S2))J 
cr 6X =kh2(Pq4 + rs4+ pq2(V2 _ q2) + rs2(v2 _ S2))J 

J =(q3 + S3) ,- (3/4)(P - r)2(q + s) 

'k, h, p, r, u, q, s, and v are, respectively, ratio of selection 
differential to phenotypic variance, arbitrary constant of 
trait, frequency of allele "B," same, same, frequency of 
allele "b," same, and same. 

Table 14.-Equations for the change of the mean genotypic: value of the 
2·population synthetic for SC,RRS, and CT selection methods, 
assuming only duplex dominance gene action 

Selection 

Response equation'
method 

SC 65( =kh2(3p2q3 + 3r2s3)J 
RRS 65(=kh2(3p2q3 + 3r2s3 + pqrs(2 - 3p) + pqrs(2 - 3r) 

+ p2q(S - 3q2) + r2s(q - 3s2))J 
CT 65(=kh2(3p2q3 + 3r2s3 + pquv(2 - 3p) + rsuv(2 - 3r) 

+ p2q(V - 3q2) + r2s(v - 3s2))J 
J =3pq2+ 3rs2- (3/4)(P - r)2(2 - 3q - 3s) 

1k, h, p, r, q, s, and v are, respectively, ratio of selection dif­
ferential to phenotypic variance, arbitrary constant for trait, 
frequency of allele "B," same, same, frequency of allele "b," 
same, and same. 
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Summary 

Table 15.-Equations for the change of the mean genotypic value of the 
2'population synthetic for SC, RRS, and CT selection methods, 
assuming only overdominance gene action 

Selection 
Response equation' 

method 

SC 6X=kh2(Pq(3 - 6p) + rs(3 -- 6r))J 
RRS 6X=kh2(Pq(3 - 6p) + rs(3 - 6r) + 4pq(p - r) + 4rs(r- p))J 
CT 6X=kh2(Pq(3 - 6p) + rs(3 - 6r) + 4pq(p - u) + 4rs(r - v))J 

J =3((1 - 2p) + (1 - 2r)) 

'k, h, p, r, u, q, 8, and v are, respectively, ratio of selection 
differential to phenotypic variance, arbitrary constant for 
trait, frequency of allele "B," same, same, frequency of 
allele "b," same, and same. 

The obvious complexity of the theoretical equations for interpopulation breed­
ing, even with the assumptions for genetic simplicity, limits generalities 
about the relative effectiveness of the breeding schemes. The change in the 
genotypic mean of the hybrid with selection is a function of allele frequen­
cies in each population involved, the additive and digenic components of the 
base populations, and the genetic components of dp and dr. The change in 
tre genotypic mean of the synthetic is a function of allele frequencies in 
each population, the additive and trigenic components of the base popula­
tions, and the genetic components of dp and dr. 

In any particular case, it is not obvious whether the digenic and trigenic com­
ponents would increase or decrease the rate of gain over that observed with 
only additive genetic effects. Concurrent Topcrossing is not directly com­
parable to either the Select and Combine or Reciprocal Recurrent Selection 
method because of the genetic effects of the tester population, U. Nor is it 
obvious whether the mean of the hybrid or the synthetic variety changes more 
rapidly with selection. 

The alternative approach is deterministic simulation, as described briefly in 
the previous section. Even in that simulation, the number of assumptions was 
increased and the generalities were diminished and reduced in scope. 
Simulation appears to be the only useful solution to many of the current 
questions in the theory of interpopulation improvement and is expected to be 
much used in subsequent theoretical research. 
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