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Impacts of Microbial Inoculants as
Integrated Pest Management Tools

in Apple Production

Holcer Chavez, Denis Nadolnyak, and Joseph W. Kloepper

This article analyzes the impacts of microbial inoculant (MI) technology, which is a part of
integrated pest management, on the U.S. apple production using farm-level data. To test the
likely production impacts suggested by agronomic literature, we estimate a pesticide use
function and stochastic production functions with damage control input specification. The
results show that although adoption of the MI technology does not reduce the use of pesti-
cides, the technology has a significant positive impact on yields and is associated with higher

technical production efficiency rates.
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Disease management in crops worldwide is
heavily dependent on application of synthetic
pesticides for pathogen and insect control.
However, excessive application of pesticides
contributes to the development of pest resistance
leading to higher chemical input use. At the same
time, strict environmental legislation such as the
Federal Insecticide, Fungicide, and Rodenticide
Act, the Food Quality Protection Act, and the
Federal Food, Drug, and Cosmetic Act can dis-
courage the use of chemical inputs (White, 1998;
EPA, 2012; FDA, 2012). Moreover, there is
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a concern about increasing concentration of
international agricultural chemical input mar-
kets (Just, 2006; Fernandez-Cornejo and Just,
2007; Marcoux and Urpelainen, 2011). As a
result, producers are seeking alternative pest
and weed control technologies.

In this context, biological control products
offer an attractive alternative to synthetic pes-
ticides. Biological control agents (BCAs), by a
broad definition, are living organisms or natu-
ral products derived from them that can be used
against plant-damaging agents. Over the last
two decades, biological control of plant path-
ogens has emerged as a viable pest (insect and
disease) control strategy (Harman et al., 2010;
Singh, Pandey, and Singh, 2011). Microbial
inoculants (MIs) are a technology that can be
used as a biofertilizer and/or as a BCA. The MI
technology includes viruses, bacteria, and fungi
whose application holds a promise of reducing
the adverse effects associated with traditional
chemical input use (Berg, 2009). Because all
the MI agents used in apple production are
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registered as a BCA and not biofertilizer, for
the present purpose, MI is strictly defined as a
BCA.

Quantifying economic impacts of the MI is
necessary for the assessment of potential eco-
nomic viability of the MI as a substitute for
chemical pesticides. In agronomic research, the
impact of biological control is assessed through
cost—benefit analysis using experimental data
and farm budgets. Empirical research in ap-
plied economics uses historical farm-level data
in estimating production, cost, or profit func-
tions. In this study, a pesticide use function and
different production functions, including a sto-
chastic frontier, are estimated. The chosen crop
is apples because the technology is already
being adopted by producers and because,
according to the U.S. Department of Agricul-
ture Pesticide Data Program, apples rank as
the most contaminated fruit and vegetable pro-
duce (USDA, 2013).

The rest of the article is structured as follows.
The “Background” section briefly reviews MI
and pesticide use in apple production. The
“Data” section describes the data and summa-
rizes the use of different biological control
products. Models used in empirical estimation
are described in the “Methodological Frame-
work” section. Results are discussed in the fol-
lowing section. The last section concludes.

Background

Apples’ major insect pest is codling moth. Ap-
ples also host over 70 infectious diseases,
fireblight, scab, and powdery mildew being the
major ones (Ohlendorf, 1999). The primary
means of controlling these insect and pathogen
threats is synthetic pesticide application. How-
ever, a holistic approach, using tools such as
biological control, may reduce pesticide appli-
cation rates allowing application of only selec-
tive chemicals.

Integrated pest management (IPM) is a holis-
tic approach that integrates several methods of
insects and diseases management. IPM is for-
mally defined as “an effective and environmen-
tally sensitive approach to pest management that
relies on a combination of common-sense prac-
tices. IPM programs use current, comprehensive
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information on the life cycles of pests and their
interaction with the environment. This in-
formation, in combination with available pest
control methods, is used to manage pest damage
by the most economical means, and with the
least possible hazard to people, property, and the
environment” (EPA, 2013). The use of resistant
rootstocks and scions, fungicides, bactericides,
BCAs, environmental modification, and site se-
lection are some of the means used to control
apple damage factors (Grove et al., 2003).

According to the International Biocontrol
Manufacturers’ Association, BCAs can be di-
vided into three categories: macrobial (insects,
mites, nematodes, other nonmicrobial organ-
isms), microbial (virus, fungi, bacteria), and
biorational (natural products and semichemicals)
(Guillon, 2008). However, according to several
pest management researchers (Copping and
Menn, 2000; Chandler et al., 2008), genetically
modified organisms (GMOs) are recognized as
a separate BCA category in some countries such
as the United States (this association will be
useful later in the article). BCAs are used in two
types of agriculture. The first one is organic
farming where using chemical inputs is not
permitted. The second, which is the focus of this
study, is integrated crop production programs.
This type of agriculture includes IPM strategies
focusing on reduction in pesticide use and
resulting in improved environmental and food
quality. BCAs can be applied together with
chemicals, either in rotation to reduce the pos-
sible development of pathogen resistance or in an
IPM strategy with the goal of minimizing the use
of synthetic pesticides.

MiIs are control agents of agricultural pests
developed from microbial natural enemies in
the bacteria, fungi, and viruses. Only a very
small fraction of the known potential MIs have
been investigated for practical use (Chandler
et al., 2008). Although widespread adoption of
the microbial control agents is still facing some
technical and ecological challenges, this tech-
nology is already an important part of the IPM.
According to Bailey, Boyetchko, and Lingle
(2010), there are approximately 225 microbial
biopesticides being manufactured in the Orga-
nization for the Economic Development and
Cooperation countries. Currently, 53 microbial
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biopesticides are registered in the United States.
On the other hand, the synthetic pesticide mar-
ket has been declining slowly and continuously
after reaching a volume of $34 billion in 1995
(Guillon, 2008). In 2005, the volume of syn-
thetic pesticide sales was only $26.1 billion, in
part as a result of the increased adoption of IPM
practices (Thakore, 2006). Although there are
more than 1,000 different products available
from more than 350 manufacturers worldwide,
BCAs accounted for only approximately 2.5%
of the plant protection input market in 2005,
amounting to approximately $588 million at
end-user prices (Guillon, 2008). However, the
use of BCAs has been growing at an annual rate
of 10% reaching 4.25% of the pesticide market
in 2010 (Ongena and Jacques, 2008; Bailey,
Boyetchko, and Lingle, 2010).

MIs represented 30% of the total sales of
biocontrol pesticides in 2006, of which bacteria
accounted for 75%. The total value of sales for
MI was $205 million. Most of the bacterial
strains exploited as biopesticides belong to the
genera Agrobacterium, Bacillus, and Pseudo-
monas (Fravel, 2005). Bacillus thuringiensis
(Bt), specifically devoted to insect pest control
and also used in crop genetic modifications,
accounts for more than 70% of total biocontrol
sales (Thakore, 2006; Ongena and Jacques,
2008; Bailey, Boyetchko, and Lingle, 2010).

In 2006, the EPA banned the use of a pesti-
cide called Azinphos-Methyl (AZM) in apple
production since September 30, 2012. Al-
though AZM provides important pest control
benefits to apple and other crop growers, it can
also potentially harm farm workers, pesticide
applicators, and water ecosystems (Cassey,
Galinato, and Taylor, 2010). This regulation is
expected to have significant economic conse-
quences and bring changes in apple production
praotices.] In addition, in 2011, the National
Organic Standard Board voted to phase out the
antibiotics streptomycin and oxytetracycline by
2014, which are the primary tools used by

I'For example, AZM has been the pesticide most
used by Washington State apple growers since the late
1960s and, in 2008, 80% of Washington apple growers
used AZM primarily to control codling moth (Cassey,
Galinato, and Taylor, 2012).
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conventional and organic apple producers to
prevent fireblight (Washington State Univer-
sity, 2012).This may be the niche opportunity
for the MI technology in apple production.

Data

The USDA’s Agricultural Resource Manage-
ment Survey (ARMS) data on apple production
were used for this study. This survey contains
information on production practices, inputs and
costs, and financial performance of the U.S.
farm households. Data on most direct inputs
and farm characteristics come from the Phase 11
part of the survey, whereas other variables such
as yields and area harvested come from the
Phase III part of the survey. Data from the latest
commodity survey of apple production in 2007
were used in the analysis. The ARMS data have
unique characteristics that make it well suited
for this research. First, the data set covers more
than 90% of the acreage of targeted commod-
ities. Second, it uses a stratified random sample
in which each farm represents a known number
of similar farms in the population based on
their probability of being selected (weights).
Using this statistic, the ARMS sample can be
expanded to reflect the targeted population.
Lastly, the enterprise costs-of-production data
contain sufficient detail about specific inputs to
isolate the seed and pest control costs used to
produce a given commodity.

Seven states were represented in the survey:
Michigan, Oregon, New York, Pennsylvania,
North Carolina, California, and Washington.
Washington was used as the base (benchmark)
for its continuous and successful production
history and because it is the state with the
highest total production (Economic Research
Service, U.S. Apple Statistics, ERS-USDA,
2012).

Only conventional (nonorganic) farmers are
considered in this study as the intent is to es-
timate the supplemental effect of MI on pes-
ticide use.? The use of biological control is

2Pesticides refer to chemical insecticides and
fungicides. Although insecticides and fungicides have
different impacts on outputs, we pool them as MlIs
because they have the potential to substitute both.
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defined as “1” if the farmer was using the
technology and “0” otherwise in the “Pest
Management Practices” section of Phase II of
the survey. Although we would prefer to use
a quantitative measure of the MI applications,
the small percentage of farmers using this
technology in 2007 makes a dummy variable
more appropriate. In the sample of 547 con-
ventional farms, 197 farms were using on av-
erage three MI products, from which the main
ingredient included one of the following:
Granulovirus, Bt, Bacillus subtilis, Bacillus
pumilus, and Thricoderma sp. All of these
products are strictly used for biological control.
Figure 1 shows the percentage represented by
each biological agent, from which 96% fall into
the MI definition.

MI provide good resistance to different va-
rieties of insects and diseases, caused by either
bacteria or fungus, in apples. The most com-
mon microbial pesticide is the Granulovirus
used against codling moth (Cydia pomonella)
and Bt proven to work against many insects
(Ohlendorf, 1999). Regarding the others, Ba-
cillus subtilis and Bacillus pumilus provide
mild resistance against fireblight and some
other diseases (Peighamy-Ashnaei et al., 2008;
Sundin et al., 2009). It is important to mention
that the MI technology does not completely
eliminate the need for chemical pesticides be-
cause it is ineffective against some insects and
diseases.

Table 1 presents summary statistics for
adopters and nonadopters. Pesticide includes

% of Biological Products Used

% Bt. Kurstaki = Bacillus subtilis
= Thricoderma sp. ® Others

# Granulovirus
# Bacillus pumilus

Figure 1.
Type

Biological Control Distribution by
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insecticide and fungicide applications net of
any biological control product. Contrary to the
previous findings based on experimental data
(Cross et al., 1999; Peighami-Ashnaei et al.,
2009), the use of pesticides on plots with MIs is
25% higher than on plots without it. This pos-
itive relationship could be explained by more
intensive pest management practices of the
adopters and corroborated by the adopters’
higher sales volumes. The difference in sales
between adopters and nonadopters (38%) is
much more pronounced than the difference in
yields suggesting possible higher quality attri-
butes including visual appearance, which, for
apples, is achieved by increased chemical ap-
plication rates. The data also show that the
adopters have less experience, which fits some
of the paradigms about biological control
adoption constrained by institutional and social
barriers (Peshin and Dhawan, 2009).

Methodological Framework

To determine the impact of the adoption of the
MI technology in apple production, we estimate
a pesticide use (demand) function and a pro-
duction function. The production function esti-
mates the output enhancing effect of the MI
technology previously indicated in field trials
(Cross et al., 1999; Ballard, Ellis, and Payne,
2000; Cossentine, Jensen, and Deglow, 2003;
Peighami-Ashnaei et al., 2009). Pesticide impacts
on apple production have been measured before
(Babcock, Lichtenberg, and Zilberman, 1992;
Chambers and Lichtenberg, 1994; Lichtenberg,
1997; Hubbell and Carlson, 1998; Roosen,
2001). However, at the time of writing this ar-
ticle, we did not find references to economic
studies assessing the impact of the MI tech-
nologies using production data. At the same
time, there is voluminous empirical literature
on transgenic (GMOs) crop adoption and pro-
duction impacts. Because MI and transgenic Bt
crops have similar properties (Bt crops produce
proteins toxic to larvae of some insects species,
thus substituting for chemical insecticides), we
try to fill the gap in empirical research on the
BCA impacts using the methodology from this
literature (Huang et al., 2002; Qaim, 2003;
Pemsl, Waibel, and Gutierrez, 2005; Qaim and
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Table 1. Summary Statistics for Apple Production
() (b) ©

Using MI Not using MI All farms
Variable Mean SE Mean SE Mean SE
Experience, years 24.7 1.5 27.1 1.6 26.0 1.1
Pest pressure 14.9 0.6 14.7 0.6 14.8 0.4
Pesticide, 1bs/acre 79.9 11.7 63.8 3.2 70.6 5.3
Value of sales, $/acre 3,360.7 * 377.1 2,432.2 327.2 2,825.8 243.5
Yield, Ibs/acre 26,172.2 1,445.2 25,091.8 1,997.8 25,549.7 1,302.2
No. of observations 189 348 537
Population 7,104 9,657 16,761

* Significantly different from mean value on nonadopter plots at 10% level.

SE, standard error.

de Janvry, 2005; Shankar and Thirtle, 2005;
Shankar, Bennett, and Morse, 2008).

Pesticide Use (demand) Function

As stated before, MI does not completely
eliminate the need to spray chemical pesticides
to avoid pest damage. Thus, although con-
trolled field experiments suggest that the MI
technology substitutes chemical pesticide use,
we do not expect it necessarily to be the case
for actual production because the practices
differ in a number of respects.

To investigate the relationship between MI
adoption and pesticide use, a pesticide demand
function similar to Huang et al. (2002), Qaim
(2003), and Qaim and de Janvry (2005) is
specified®:

Pesticide = f(price, MI adoption, H, pressure,
(D state dummies)

where Pesticide is the pesticide application in
pounds per acre and MI is the adoption dummy
variable. The price of pesticides was obtained by
dividing pesticide expenditure by quantity per

3This pesticide demand function was mainly spec-
ified as an instrumental variable (IV) approach to
address the potential endogeneity of pesticides on the
production function in the second stage. As long as the
set of variables explains pesticide use but not yields,
the IV produces unbiased estimation results. The
instruments in this equation are price and pest pres-
sure. In addition, after previous research, we have
included some control variables such as experience
and location dummies used in both functions.

farm. H is a vector of farm characteristics;
pressure is an index (actually two indices: insect
pressure and disease pressure) reflecting the
level of pest infestation before spraying de-
cisions.* The state dummies proxy for different
agroclimatic conditions in different states.’

Production Function

The net yield effect is estimated using
a modified production function approach.
Following the concept proposed by Lichtenberg
and Zilberman (1986), inputs in agricultural
production can be divided into two main cate-
gories: standard factors of production (e.g., land,
labor, capital, etc.) and damage control agents
(e.g., insecticides, fungicides, biological control,
etc.). Damage control agents are different in the
sense that they enhance productivity only by
preventing output losses. This specific contribu-
tion of damage control agents is accommodated
by specifying output as a combination of two
components: potential damage-free output and
losses caused by damaging agents. The losses
can be mitigated (abated) by using damage
control inputs. Like in previous research

4Two indices, one for insects and one for diseases
(both with five subcategories), were used. These two
indices range from 5 (low pressure) to 15 (high
pressure). The variable “pest pressure” listed in the
summary statistics is a summation of both.

5Possible income effects of the MI technology
adoption are ignored as a result of the realistic assump-
tion of seasonal input borrowing and substitution between
the MI and chemical pesticides indicated by field trials.
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(Babcock, Lichtenberg, and Zilberman, 1992;
Chambers and Lichtenberg, 1994; Huang et al.,
2002; Qaim, 2003; Qaim and de Janvry, 2005),
we use the concept of a damage control func-
tion, g(Z), which is linked to the production
function in a multiplicative way:

@ Y=f(X)g(2)

where Y represents output and X includes
labor, fertilizers, other production inputs, farm-
specific factors affecting yields and location-
specific factors (state dummies). The abatement
function of damage control agents, g(Z), pos-
sesses the properties of a cumulative probability
distribution and is nondecreasing in Z. g(Z) =
one implies full damage control (no crop yield
losses resulting from pest-related problems with
a certain high level of control agent), whereas
g(Z) = zero implies complete crop destruction
by pest-related damage.

For f(X), we assume the Cobb-Douglas
functional form, whereas different functional
forms can be assumed for g(Z) and the speci-
fication can be crucial for parameter estimation
results (Babcock, Lichtenberg, and Zilberman,
1992; Carrasco-Tauber and Moffitt, 1992;
Fox and Weersink, 1995). Exponential
(equation [3]) and logistic (equation [4])
specifications are used because they generally
represent the pest abatement relationship quite
well:

3) g(Z)=1—exp(—0o — oy Pesticide —o, MI)
4 g(Z)= 1 + exp (1 — o, Pesticide —o, MI)] !

where pesticide is expressed in pounds per acre
and Ml is the binary variable. The parameter o
in equation (3) is interpreted as natural control
(for example, the activity and pest-reducing
capacity of natural enemies/competitors pres-
ent in the orchard), whereas L in equation (4)
is interpreted as fixed damage (the damage
without any pest/disease risk management).
The linear version of equation (2) is:

Log(Y) = a + Z BiLog (X) + Z Bi (H)
) + Log(g[Z]) + &

H is a vector of controls for farm and lo-
cation characteristics. In addition, a standard
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Cobb-Douglas production function treating pes-
ticide and biological control as conventional
production factors is estimated for comparison
purposes.

A potential problem in estimating crop
production functions is that pest control inputs
tend to be correlated with the error term be-
cause pesticide applications are responses to
pest pressure that vary by specific climate
conditions and other unknown or nonmeasur-
able factors captured in the disturbance. To
correct for possible endogeneity, we use two-
stage least squares for the pesticide use (equa-
tion [1]) as the first stage and the production
function (equation [2]) using fitted pesticide
use values as the structural equation.® A num-
ber of control variables such as farmer’s char-
acteristics and the state dummy variables
are included in both the yield and pesticide
use equations. This specification passes the
Ramsey RESET test for omitted variables.
The production functions are also tested for
multicollinearity using variance inflation fac-
tor and corrected for heteroscedasticity using
robust standard errors. The Chow test is per-
formed to confirm that the two groups can be
pooled together.

In addition to the Cobb-Douglas and the
integrated damage control production func-
tions, a stochastic production frontier (SPF) is
estimated. In contrast to a regular production
function, SPF allows for inefficiency because it
does not assume that all farmers are producing
on the production possibilities frontier. The
SPF can be interpreted as the technological
constraint for each farming system. The dis-
tance from the frontier indicates a farm’s rela-
tive performance or technical efficiency. The
general form for an SPF model is

6In theory, other inputs could be endogenous as
well. However, pesticides are more likely to present
this econometric issue. MI application, in particular,
has the potential to be an endogenous variable. How-
ever, MI adoption is currently associated more with the
area of commercialization of the products and more
long-term production and output quality-related con-
cerns. The EPA requires each different variation of
BCA to be registered individually in each state. Thus,
we assume away significant endogeneity.
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6) Yi = f(X;;B) exp {vi}TE;

where Yi and Xi are output and input vectors
of producer i. Deterministic production frontier
f(Xi; B) multiplied by exp{v;} capturing the
effects of statistical noise represents the sto-
chastic production frontier. TEi = exp{-u;}
is the i’s output-oriented technical efficiency
that provides a measure of the shortfall of ob-
served output from maximum feasible output
(TE; £ 1, u; 2 0). The log-linear Cobb-Douglas
specification of the model is

(7)  LogYi=PBy+ > B,LogXu +vi —u

where v; ~ iid N (0, 62), u; ~ iid N+ (0, 62),
and v; and u; are independent. The assumption
on u can be modified to u; ~ iid N+ (W, 62)
where U is the mode of the normal distribution
and is truncated below at zero. The Normal—
Truncated Normal model provides a more flex-
ible representation of the efficiency pattern in
the data (Kumbhakar and Lovell, 2000; Coelli,
Rao, and O’Donnell, 2005). Point estimates for
technical efficiency of each producer can be
obtained by means of

®) TE; = Efexp{—u; } |g]

where €= vi—u;.
The basic stochastic frontier model analysis
does not accommodate endogeneity of regressors

Table 2. Pesticide Use Function Estimation

resulting in biased estimates. However, endo-
geneity does not bias estimates of technical
efficiency with stochastic distance functions
(Kumbhakar and Lovell, 2000), validating the
use of technical efficiency estimates.

Results

Table 2 shows the results of the pesticide use
function estimation. The Cobb-Douglas model
produced a significantly better fit. Although
all the coefficients have the expected signs in
both specifications, curiously, the MI adoption
dummy has a positive and significant coeffi-
cient contradicting some previous studies on
BCAs (Huang et al., 2002; Pemsl, Waibel, and
Gutierrez, 2005; Qaim and de Janvry, 2005).
This unexpected result might fit some estab-
lished paradigms about the use of biocontrol
agents like, for example, “the more a grower is
willing to gamble, the better prospect he has of
accepting the idea of biological control” and
“prevention treatments are basically an insurance
policy” (Peshin and Dhawan, 2009). In other
words, adoption of biological control agents at
its initial stage is “insured” by increased use of
conventional damage control inputs. This is cor-
roborated by the low price elasticity of pesticide
use (—0.54). The relationship between adoption

Logarithmic Linear

Coefficient t Value Coefficient t Value
Microbial inoculant (dummy) 0.22064 kol 2.79 16.82674 * 1.92
Log price -0.53831 Hk -7.10 -20.56438 Hokw -5.10
Pest pressure insects (index) 0.53821 kol 2.95 3.67453 * 1.62
Pest pressure diseases (index) 0.00454 0.27 -2.27674 —1.38
Log farm size 0.51135 Hk 8.19 22.99091 Hokk 3.68
Experience -0.00869 H -3.35 -0.39372 —1.42
Michigan -0.29136 * -1.79 -21.45761 * -1.76
Oregon —0.18341 -1.17 -8.69145 -1.49
New York -0.40624 wE -2.12 -25.12487 * -1.75
Pennsylvania -0.37066 H -3.61 -26.73133 ok -2.07
North Carolina —0.65578 Hokok -4.96 —17.12455 * -1.69
California -0.77040 ok -3.43 —13.98782 -1.17
Constant 21.94957 Hk 4.23 1012.67112 1.52
No. of observations 525 525
Population 15,953 15,953
R? adjusted 0.5365 0.2269

*#*%p value < 0.01, ** < 0.05, * < 0.1.
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and pesticide use may also be corroborated
by the fact that, especially in areas with high
grower concentration, pesticides are usually
marketed on a continuous basis and bundled
with consulting provided by chemical sup-
pliers, which may slow down adoption and
prevent the associated reduction in pesticide
application rates.’

Farm size is positively associated with pesti-
cide use, which probably reflects the higher in-
tensity of larger operations. Insect pest pressure
is positive and significant as expected. A year of
farming experience reduces pesticide use by
0.87%, possibly indicating persistence of certain
cultural paradigms. Dummy variable coefficients
show that per-acre use of pesticide is the highest
in Washington, the biggest apple-producing
state.

Table 3 shows results of the production
function estimation. Overall, MIs have a posi-
tive impact on output, but the magnitude and
significance vary by the model.

In the Cobb-Douglas production function,
the use of MI technology increases apple
yields, ceteris paribus, by approximately 13%
per acre at the variables’ mean values, which
agrees with the summary statistics and corrob-
orates the findings by Qaim and de Janvry
(2005), Qaim (2003), and Huang et al. (2002)
who found that the use of Bt cotton increases
yields by 507 kg/ha in Argentina, by 75% in
India, and by 15% in China. Chemical pesticides
also contribute to higher yields. For a 1% in-
crease in the amount of pesticides used, the yield
increased by 0.13%. The elasticity with respect
to labor is 0.089%. The impact of nitrogen and
potash fertilizers is positive but negative for
phosphate suggesting possible overuse. Pro-
duction elasticity with respect to area (acres)
harvested is small suggesting constant returns to
scale. The only states that are more (less) pro-
ductive than Washington are Pennsylvania and
North Carolina.

Results from the integrated damage control
model are similar and provide a slightly better fit
and higher significance of the damage control

7We thank an anonymous reviewer for pointing
this out.
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inputs under the logistic specification. Both MI
and regular pesticides increase yields by im-
proving crop protection. The MI technology is
effective in helping to reduce the damage from
pest infestations and thus keeping yields
higher than they would have been without the
adoption.

Without any pest control inputs and under
the logistic damage control specification, av-
erage crop damage would have been approxi-
mately 57% of the mean yield. The marginal
physical product of pesticides, obtained by
taking a partial derivative at the mean input
values, is 0.119 and 0.138 with and without the
use of the MI, which agrees with the nature of
the technology and with previous studies on
adoption impacts (Huang et al., 2002; Qaim,
2003; Pemsl, Waibel, and Gutierrez, 2005;
Qaim and de Janvry, 2005). However, adoption
of the MI technology increases damage control
over the whole range of possible pesticide ap-
plication levels, which is illustrated by the plots
in Figure 2 constructed using the estimates and
average variable values.

The significance of the MI technology
adoption is less than expected possibly because
adoption at its initial (current) stage is influ-
enced by other factors that are not captured in
our data. These factors include the spatial
contagion effect (impact of neighbors), exten-
sion efforts (some areas are reached better), and
promotions by the supplier.

The damage control specification increases
output elasticity with respect to acres har-
vested from 0.08% to 0.16%, which confirms
Lichtenberg and Zilberman’s (1986) finding
that traditional Cobb-Douglas production func-
tions tend to underestimate the impact of direct
inputs. Irrigation expenditure is not significant
throughout, possibly as a result of the climate
and the fact that apple trees are less dependent
on rainfall.

Technical efficiency estimates as shown in
Table 4 indicate that adopters of the MI tech-
nology have 2.52% higher efficiency rates than
nonadopters whose average technical efficiency
score is 60%. Although the difference is small,
this might suggest self-selection in a promising
technology adoption, assuming more efficient
producers are the first to see the opportunity.
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Table 3. Estimates of the Production Function
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Cobb-Douglas Basic

With Exponential Damage

With Logistic Damage

Coefficient t Value Coefficient t Value Coefficient t Value
Pesticide 0.1255 * 1.77
Experience -0.0013 -0.56 —0.0003 -0.13 —0.0003 -0.12
Trees (expenditure —0.0051 —0.88 —0.0116 ** —-2.18 -0.0121 ** -2.27
on pruning)
Labor 0.0886 *** 499 0.0774 *%* 6.55 0.0786 *** 673
Irrigation —0.0058 -0.96 —0.0096 -1.33 —0.0093 -1.29
Fuel -0.0032 -0.64 —0.0038 -0.70 -0.0039 0.70
Bees (expenditure 0.0066 1.03 —0.0008 -0.13 —-0.0009 -0.13
on bee hives)
Nitrogen 0.0183 0.79 0.0263 * 1.79 0.0265 * 1.80
Potash 0.0410 * 1.89 0.0293 1.60 0.0285 * 1.65
Phosphate -0.0741 ** 228 —0.0755 *=* -2.58 -0.0747 **  -2.55
Microbial inoculant 0.1208 * 1.71
(dummy)
Acres harvested 0.0762 ***  2.64 0.1626 *** 6.88 0.1649 ***+ 701
Michigan -0.0077 -0.07 —-0.0091 -0.07 0.0111 0.09
Oregon -0.4016 —1.58 —0.4059 *** -2.62 —-0.4072 *** _2.63
New York 0.1924 1.61 0.1868 1.43 0.2058 1.58
Pennsylvania 0.3973 #*% 353 0.3693 #** 2.64 0.3904 *** 282
North Carolina —0.8564 *** _3.86 —0.8090 x** -3.10 —-0.7913 *** _3.04
California -0.1268 -0.47 —0.4398 *** -3.00 —0.4279 *** _292
Constant 10.9300 ** 2.39 9.6541 *%* 2.29 9.6114 ** 2.28
Damage control
function
Constant (otp, W) 0.5346 *** 4.02 0.2845 * 1.65
Pesticide 0.0108 =* 1.91 0.0154 ** 2.56
Microbial inoculant 0.2106 1.46 0.3787 * 1.93
(dummy)
No. of observations 510 525 525
R? adjusted 0.3654 0.3739 0.3751
Population 15,497 15,953 15,953

*#*% p value < 0.01, ** < 0.05, * <0.1.

Alternatively, this might indicate more effi-
cient pest management using MI.

Apple production is more technically efficient
in the states of Washington, Pennsylvania, Mich-
igan, and California by at least 3% compared with
New York and North Carolina. An interesting
finding is that in those states where efficiency
rates are lower than average, nonadopters have
relatively higher efficiency rates. This may be
attributed to differences in agricultural practices
or institutional and environmental factors. but the
causal relationship remains unclear.

Because the data are insufficient for speci-
fying a profit model (the ARMS data lack input

prices including MI and the spatial price vari-
ability is likely low), average impact of the MI
technology use on farmers’ returns was calcu-
lated using the data and the estimates of the MI
impact on productivity. which, using average
yields and the MI coefficient, indicate an aver-
age yield gain of approximately 3,000 Ibs/acre.
Using a season average grower apple price of
$0.288/1b for fresh apples (ERS data on pro-
cessed apples for 2007) results in extra gross
income of approximately $840. Individual pro-
ducer cost of MI products was estimated at $558
per acre using per acre application prices (ex-
penditures) for the products actually used by the
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Figure 2. Microbial Inoculant (MI), Pesticides, and Damage Control Relationship

197 adopters in the sample.® The net revenue
from applying microbial inoculants was thus
calculated at approximately $282 per acre per
growing season (assuming there is no extra labor
or machinery costs for applying the product).

Conclusions

This article analyzes the impact of applying
a specific type of biological control agent called
MIs on productivity and pesticide use in con-
ventional (nonorganic) apple production in the
United States using the ARMS survey data. The
MI technology is an IPM approach that is similar
to the insect resistant transgenic technologies
(GMOs) in agriculture but does not carry the en-
vironmental and health concerns posed by the
latter, which holds promise for its adoption in the
future. It was adopted by 36% of the U.S. apple
producers in 2007. The technology has the po-
tential of reducing pest damage and increasing
yields without the associated negative health and
environmental impacts associated with pesticide
and other chemical input use (Fravel, 2005).
Estimation of a pesticide use function shows
that adoption of the MI technology increases the

8 The products are: Granulovirus products (used for
codling moth), Bt products (used for different insects),
and Bacillus pumillus and Bacillus subtillis (used for
fireblight and powdery mildew). Per-acre price was
calculated by adjusting the price of a container of
known volume by the recommended application quan-
tities and times per season.

use of pesticide inputs, which, although contra-
dicting some previous findings, conforms to ob-
served paradigms regarding producer attitudes
toward production risk and resulting chemical use,
i.e., that BCAs are often perceived as “insurance.”
The available cross-sectional data do not allow
estimation of causal relationship between pesti-
cide use (pest pressure) and MI adoption.

Estimation of different types of production
functions with a separate damage control com-
ponent and controlling for pesticide use endoge-
neity shows that the MI technology significantly
increases yields and reduces the marginal pro-
ductivity of pesticides. Estimation of a stochas-
tic production frontier shows higher technical
efficiency of the MI adopters except for the
states with the lowest average efficiency in
which nonadopters have higher efficiency rates.
The states with the highest rates of technical
production efficiency are Washington, Pennsyl-
vania, and California. The impact of adoption
on producer income depends on the productivity
impacts, output prices, and the costs of bi-
ological control products. Our estimates using
calibration data suggest a net gain of $282 per
acre per season. According to this study, MI can
complement, rather than substitute, agricultural
chemical use easing compliance with regula-
tions and positively impacting yields.

It remains to be seen whether Mls are going
to be as successful as genetically modified
crops were 15 years ago. Our results suggest
some similarities between the two technologies
in production impacts and adoption patterns. MI
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All Farms Adopters Nonadopters Efficiency Gains
All farms 0.6085 0.6254 0.6002 0.0252
California 0.6170 0.6616 0.5986 0.0630
Michigan 0.6186 0.6287 0.6140 0.0147
New York 0.5826 0.5725 0.5862 -0.0137
North Carolina 0.5829 0.5018 0.5909 —0.0891
Oregon 0.6104 0.6843 0.5661 0.1182
Pennsylvania 0.6174 0.6204 0.6162 0.0042
Washington 0.6198 0.6236 0.6157 0.0079

increases output and its adoption seems to reduce
production risks. However, greater confidence
requires establishing causal relationships be-
tween adoption impacts and producer charac-
teristics. Analysis of panel data that includes
spatial variables will improve our understanding
of adoption dynamics and market potential of the
MI technology, which is still in its infancy stage.

[Received April 2012; Accepted March 2013.]
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