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Impacts of Microbial Inoculants as

Integrated Pest Management Tools

in Apple Production

Holcer Chavez, Denis Nadolnyak, and Joseph W. Kloepper

This article analyzes the impacts of microbial inoculant (MI) technology, which is a part of
integrated pest management, on the U.S. apple production using farm-level data. To test the
likely production impacts suggested by agronomic literature, we estimate a pesticide use
function and stochastic production functions with damage control input specification. The
results show that although adoption of the MI technology does not reduce the use of pesti-
cides, the technology has a significant positive impact on yields and is associated with higher
technical production efficiency rates.

Key Words: apple production, microbial inoculants, pest management, productivity analysis,
stochastic frontier

JEL Classifications: D24, Q13, Q16

Disease management in crops worldwide is

heavily dependent on application of synthetic

pesticides for pathogen and insect control.

However, excessive application of pesticides

contributes to the development of pest resistance

leading to higher chemical input use. At the same

time, strict environmental legislation such as the

Federal Insecticide, Fungicide, and Rodenticide

Act, the Food Quality Protection Act, and the

Federal Food, Drug, and Cosmetic Act can dis-

courage the use of chemical inputs (White, 1998;

EPA, 2012; FDA, 2012). Moreover, there is

a concern about increasing concentration of

international agricultural chemical input mar-

kets (Just, 2006; Fernandez-Cornejo and Just,

2007; Marcoux and Urpelainen, 2011). As a

result, producers are seeking alternative pest

and weed control technologies.

In this context, biological control products

offer an attractive alternative to synthetic pes-

ticides. Biological control agents (BCAs), by a

broad definition, are living organisms or natu-

ral products derived from them that can be used

against plant-damaging agents. Over the last

two decades, biological control of plant path-

ogens has emerged as a viable pest (insect and

disease) control strategy (Harman et al., 2010;

Singh, Pandey, and Singh, 2011). Microbial

inoculants (MIs) are a technology that can be

used as a biofertilizer and/or as a BCA. The MI

technology includes viruses, bacteria, and fungi

whose application holds a promise of reducing

the adverse effects associated with traditional

chemical input use (Berg, 2009). Because all

the MI agents used in apple production are
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registered as a BCA and not biofertilizer, for

the present purpose, MI is strictly defined as a

BCA.

Quantifying economic impacts of the MI is

necessary for the assessment of potential eco-

nomic viability of the MI as a substitute for

chemical pesticides. In agronomic research, the

impact of biological control is assessed through

cost–benefit analysis using experimental data

and farm budgets. Empirical research in ap-

plied economics uses historical farm-level data

in estimating production, cost, or profit func-

tions. In this study, a pesticide use function and

different production functions, including a sto-

chastic frontier, are estimated. The chosen crop

is apples because the technology is already

being adopted by producers and because,

according to the U.S. Department of Agricul-

ture Pesticide Data Program, apples rank as

the most contaminated fruit and vegetable pro-

duce (USDA, 2013).

The rest of the article is structured as follows.

The ‘‘Background’’ section briefly reviews MI

and pesticide use in apple production. The

‘‘Data’’ section describes the data and summa-

rizes the use of different biological control

products. Models used in empirical estimation

are described in the ‘‘Methodological Frame-

work’’ section. Results are discussed in the fol-

lowing section. The last section concludes.

Background

Apples’ major insect pest is codling moth. Ap-

ples also host over 70 infectious diseases,

fireblight, scab, and powdery mildew being the

major ones (Ohlendorf, 1999). The primary

means of controlling these insect and pathogen

threats is synthetic pesticide application. How-

ever, a holistic approach, using tools such as

biological control, may reduce pesticide appli-

cation rates allowing application of only selec-

tive chemicals.

Integrated pest management (IPM) is a holis-

tic approach that integrates several methods of

insects and diseases management. IPM is for-

mally defined as ‘‘an effective and environmen-

tally sensitive approach to pest management that

relies on a combination of common-sense prac-

tices. IPM programs use current, comprehensive

information on the life cycles of pests and their

interaction with the environment. This in-

formation, in combination with available pest

control methods, is used to manage pest damage

by the most economical means, and with the

least possible hazard to people, property, and the

environment’’ (EPA, 2013). The use of resistant

rootstocks and scions, fungicides, bactericides,

BCAs, environmental modification, and site se-

lection are some of the means used to control

apple damage factors (Grove et al., 2003).

According to the International Biocontrol

Manufacturers’ Association, BCAs can be di-

vided into three categories: macrobial (insects,

mites, nematodes, other nonmicrobial organ-

isms), microbial (virus, fungi, bacteria), and

biorational (natural products and semichemicals)

(Guillon, 2008). However, according to several

pest management researchers (Copping and

Menn, 2000; Chandler et al., 2008), genetically

modified organisms (GMOs) are recognized as

a separate BCA category in some countries such

as the United States (this association will be

useful later in the article). BCAs are used in two

types of agriculture. The first one is organic

farming where using chemical inputs is not

permitted. The second, which is the focus of this

study, is integrated crop production programs.

This type of agriculture includes IPM strategies

focusing on reduction in pesticide use and

resulting in improved environmental and food

quality. BCAs can be applied together with

chemicals, either in rotation to reduce the pos-

sible development of pathogen resistance or in an

IPM strategy with the goal of minimizing the use

of synthetic pesticides.

MIs are control agents of agricultural pests

developed from microbial natural enemies in

the bacteria, fungi, and viruses. Only a very

small fraction of the known potential MIs have

been investigated for practical use (Chandler

et al., 2008). Although widespread adoption of

the microbial control agents is still facing some

technical and ecological challenges, this tech-

nology is already an important part of the IPM.

According to Bailey, Boyetchko, and Längle

(2010), there are approximately 225 microbial

biopesticides being manufactured in the Orga-

nization for the Economic Development and

Cooperation countries. Currently, 53 microbial
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biopesticides are registered in the United States.

On the other hand, the synthetic pesticide mar-

ket has been declining slowly and continuously

after reaching a volume of $34 billion in 1995

(Guillon, 2008). In 2005, the volume of syn-

thetic pesticide sales was only $26.1 billion, in

part as a result of the increased adoption of IPM

practices (Thakore, 2006). Although there are

more than 1,000 different products available

from more than 350 manufacturers worldwide,

BCAs accounted for only approximately 2.5%

of the plant protection input market in 2005,

amounting to approximately $588 million at

end-user prices (Guillon, 2008). However, the

use of BCAs has been growing at an annual rate

of 10% reaching 4.25% of the pesticide market

in 2010 (Ongena and Jacques, 2008; Bailey,

Boyetchko, and Längle, 2010).

MIs represented 30% of the total sales of

biocontrol pesticides in 2006, of which bacteria

accounted for 75%. The total value of sales for

MI was $205 million. Most of the bacterial

strains exploited as biopesticides belong to the

genera Agrobacterium, Bacillus, and Pseudo-

monas (Fravel, 2005). Bacillus thuringiensis

(Bt), specifically devoted to insect pest control

and also used in crop genetic modifications,

accounts for more than 70% of total biocontrol

sales (Thakore, 2006; Ongena and Jacques,

2008; Bailey, Boyetchko, and Längle, 2010).

In 2006, the EPA banned the use of a pesti-

cide called Azinphos-Methyl (AZM) in apple

production since September 30, 2012. Al-

though AZM provides important pest control

benefits to apple and other crop growers, it can

also potentially harm farm workers, pesticide

applicators, and water ecosystems (Cassey,

Galinato, and Taylor, 2010). This regulation is

expected to have significant economic conse-

quences and bring changes in apple production

practices.1 In addition, in 2011, the National

Organic Standard Board voted to phase out the

antibiotics streptomycin and oxytetracycline by

2014, which are the primary tools used by

conventional and organic apple producers to

prevent fireblight (Washington State Univer-

sity, 2012).This may be the niche opportunity

for the MI technology in apple production.

Data

The USDA’s Agricultural Resource Manage-

ment Survey (ARMS) data on apple production

were used for this study. This survey contains

information on production practices, inputs and

costs, and financial performance of the U.S.

farm households. Data on most direct inputs

and farm characteristics come from the Phase II

part of the survey, whereas other variables such

as yields and area harvested come from the

Phase III part of the survey. Data from the latest

commodity survey of apple production in 2007

were used in the analysis. The ARMS data have

unique characteristics that make it well suited

for this research. First, the data set covers more

than 90% of the acreage of targeted commod-

ities. Second, it uses a stratified random sample

in which each farm represents a known number

of similar farms in the population based on

their probability of being selected (weights).

Using this statistic, the ARMS sample can be

expanded to reflect the targeted population.

Lastly, the enterprise costs-of-production data

contain sufficient detail about specific inputs to

isolate the seed and pest control costs used to

produce a given commodity.

Seven states were represented in the survey:

Michigan, Oregon, New York, Pennsylvania,

North Carolina, California, and Washington.

Washington was used as the base (benchmark)

for its continuous and successful production

history and because it is the state with the

highest total production (Economic Research

Service, U.S. Apple Statistics, ERS-USDA,

2012).

Only conventional (nonorganic) farmers are

considered in this study as the intent is to es-

timate the supplemental effect of MI on pes-

ticide use.2 The use of biological control is

1 For example, AZM has been the pesticide most
used by Washington State apple growers since the late
1960s and, in 2008, 80% of Washington apple growers
used AZM primarily to control codling moth (Cassey,
Galinato, and Taylor, 2012).

2 Pesticides refer to chemical insecticides and
fungicides. Although insecticides and fungicides have
different impacts on outputs, we pool them as MIs
because they have the potential to substitute both.
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defined as ‘‘1’’ if the farmer was using the

technology and ‘‘0’’ otherwise in the ‘‘Pest

Management Practices’’ section of Phase II of

the survey. Although we would prefer to use

a quantitative measure of the MI applications,

the small percentage of farmers using this

technology in 2007 makes a dummy variable

more appropriate. In the sample of 547 con-

ventional farms, 197 farms were using on av-

erage three MI products, from which the main

ingredient included one of the following:

Granulovirus, Bt, Bacillus subtilis, Bacillus

pumilus, and Thricoderma sp. All of these

products are strictly used for biological control.

Figure 1 shows the percentage represented by

each biological agent, from which 96% fall into

the MI definition.

MI provide good resistance to different va-

rieties of insects and diseases, caused by either

bacteria or fungus, in apples. The most com-

mon microbial pesticide is the Granulovirus

used against codling moth (Cydia pomonella)

and Bt proven to work against many insects

(Ohlendorf, 1999). Regarding the others, Ba-

cillus subtilis and Bacillus pumilus provide

mild resistance against fireblight and some

other diseases (Peighamy-Ashnaei et al., 2008;

Sundin et al., 2009). It is important to mention

that the MI technology does not completely

eliminate the need for chemical pesticides be-

cause it is ineffective against some insects and

diseases.

Table 1 presents summary statistics for

adopters and nonadopters. Pesticide includes

insecticide and fungicide applications net of

any biological control product. Contrary to the

previous findings based on experimental data

(Cross et al., 1999; Peighami-Ashnaei et al.,

2009), the use of pesticides on plots with MIs is

25% higher than on plots without it. This pos-

itive relationship could be explained by more

intensive pest management practices of the

adopters and corroborated by the adopters’

higher sales volumes. The difference in sales

between adopters and nonadopters (38%) is

much more pronounced than the difference in

yields suggesting possible higher quality attri-

butes including visual appearance, which, for

apples, is achieved by increased chemical ap-

plication rates. The data also show that the

adopters have less experience, which fits some

of the paradigms about biological control

adoption constrained by institutional and social

barriers (Peshin and Dhawan, 2009).

Methodological Framework

To determine the impact of the adoption of the

MI technology in apple production, we estimate

a pesticide use (demand) function and a pro-

duction function. The production function esti-

mates the output enhancing effect of the MI

technology previously indicated in field trials

(Cross et al., 1999; Ballard, Ellis, and Payne,

2000; Cossentine, Jensen, and Deglow, 2003;

Peighami-Ashnaei et al., 2009). Pesticide impacts

on apple production have been measured before

(Babcock, Lichtenberg, and Zilberman, 1992;

Chambers and Lichtenberg, 1994; Lichtenberg,

1997; Hubbell and Carlson, 1998; Roosen,

2001). However, at the time of writing this ar-

ticle, we did not find references to economic

studies assessing the impact of the MI tech-

nologies using production data. At the same

time, there is voluminous empirical literature

on transgenic (GMOs) crop adoption and pro-

duction impacts. Because MI and transgenic Bt

crops have similar properties (Bt crops produce

proteins toxic to larvae of some insects species,

thus substituting for chemical insecticides), we

try to fill the gap in empirical research on the

BCA impacts using the methodology from this

literature (Huang et al., 2002; Qaim, 2003;

Pemsl, Waibel, and Gutierrez, 2005; Qaim and

Figure 1. Biological Control Distribution by

Type
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de Janvry, 2005; Shankar and Thirtle, 2005;

Shankar, Bennett, and Morse, 2008).

Pesticide Use (demand) Function

As stated before, MI does not completely

eliminate the need to spray chemical pesticides

to avoid pest damage. Thus, although con-

trolled field experiments suggest that the MI

technology substitutes chemical pesticide use,

we do not expect it necessarily to be the case

for actual production because the practices

differ in a number of respects.

To investigate the relationship between MI

adoption and pesticide use, a pesticide demand

function similar to Huang et al. (2002), Qaim

(2003), and Qaim and de Janvry (2005) is

specified3:

(1)

Pesticide 5 fðprice, MI adoption, H, pressure,

state dummiesÞ

where Pesticide is the pesticide application in

pounds per acre and MI is the adoption dummy

variable. The price of pesticides was obtained by

dividing pesticide expenditure by quantity per

farm. H is a vector of farm characteristics;

pressure is an index (actually two indices: insect

pressure and disease pressure) reflecting the

level of pest infestation before spraying de-

cisions.4 The state dummies proxy for different

agroclimatic conditions in different states.5

Production Function

The net yield effect is estimated using

a modified production function approach.

Following the concept proposed by Lichtenberg

and Zilberman (1986), inputs in agricultural

production can be divided into two main cate-

gories: standard factors of production (e.g., land,

labor, capital, etc.) and damage control agents

(e.g., insecticides, fungicides, biological control,

etc.). Damage control agents are different in the

sense that they enhance productivity only by

preventing output losses. This specific contribu-

tion of damage control agents is accommodated

by specifying output as a combination of two

components: potential damage-free output and

losses caused by damaging agents. The losses

can be mitigated (abated) by using damage

control inputs. Like in previous research

Table 1. Summary Statistics for Apple Production

(a) (b) (c)

Using MI Not using MI All farms

Variable Mean SE Mean SE Mean SE

Experience, years 24.7 1.5 27.1 1.6 26.0 1.1

Pest pressure 14.9 0.6 14.7 0.6 14.8 0.4

Pesticide, lbs/acre 79.9 * 11.7 63.8 3.2 70.6 5.3

Value of sales, $/acre 3,360.7 * 377.1 2,432.2 327.2 2,825.8 243.5

Yield, lbs/acre 26,172.2 1,445.2 25,091.8 1,997.8 25,549.7 1,302.2

No. of observations 189 348 537

Population 7,104 9,657 16,761

* Significantly different from mean value on nonadopter plots at 10% level.

SE, standard error.

3 This pesticide demand function was mainly spec-
ified as an instrumental variable (IV) approach to
address the potential endogeneity of pesticides on the
production function in the second stage. As long as the
set of variables explains pesticide use but not yields,
the IV produces unbiased estimation results. The
instruments in this equation are price and pest pres-
sure. In addition, after previous research, we have
included some control variables such as experience
and location dummies used in both functions.

4 Two indices, one for insects and one for diseases
(both with five subcategories), were used. These two
indices range from 5 (low pressure) to 15 (high
pressure). The variable ‘‘pest pressure’’ listed in the
summary statistics is a summation of both.

5 Possible income effects of the MI technology
adoption are ignored as a result of the realistic assump-
tion of seasonal input borrowing and substitution between
the MI and chemical pesticides indicated by field trials.
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(Babcock, Lichtenberg, and Zilberman, 1992;

Chambers and Lichtenberg, 1994; Huang et al.,

2002; Qaim, 2003; Qaim and de Janvry, 2005),

we use the concept of a damage control func-

tion, g(Z), which is linked to the production

function in a multiplicative way:

(2) Y 5 f ðXÞ g ðZÞ

where Y represents output and X includes

labor, fertilizers, other production inputs, farm-

specific factors affecting yields and location-

specific factors (state dummies). The abatement

function of damage control agents, g(Z), pos-

sesses the properties of a cumulative probability

distribution and is nondecreasing in Z. g(Z) 5

one implies full damage control (no crop yield

losses resulting from pest-related problems with

a certain high level of control agent), whereas

g(Z) 5 zero implies complete crop destruction

by pest-related damage.

For f(X), we assume the Cobb-Douglas

functional form, whereas different functional

forms can be assumed for g(Z) and the speci-

fication can be crucial for parameter estimation

results (Babcock, Lichtenberg, and Zilberman,

1992; Carrasco-Tauber and Moffitt, 1992;

Fox and Weersink, 1995). Exponential

(equation [3]) and logistic (equation [4])

specifications are used because they generally

represent the pest abatement relationship quite

well:

(3) g ðZÞ5 1� exp ð�a0 � a1 Pesticide�a2 MIÞ

(4) g ðZÞ5 ½1 1 exp ðm�a1 Pesticide�a2 MIÞ��1

where pesticide is expressed in pounds per acre

and MI is the binary variable. The parameter a0

in equation (3) is interpreted as natural control

(for example, the activity and pest-reducing

capacity of natural enemies/competitors pres-

ent in the orchard), whereas m in equation (4)

is interpreted as fixed damage (the damage

without any pest/disease risk management).

The linear version of equation (2) is:

(5)

Log ðYÞ 5 a 1
X

bi Log ðXÞ 1
X

bi ðHÞ
1 Log ðg ½Z�Þ 1 e

H is a vector of controls for farm and lo-

cation characteristics. In addition, a standard

Cobb-Douglas production function treating pes-

ticide and biological control as conventional

production factors is estimated for comparison

purposes.

A potential problem in estimating crop

production functions is that pest control inputs

tend to be correlated with the error term be-

cause pesticide applications are responses to

pest pressure that vary by specific climate

conditions and other unknown or nonmeasur-

able factors captured in the disturbance. To

correct for possible endogeneity, we use two-

stage least squares for the pesticide use (equa-

tion [1]) as the first stage and the production

function (equation [2]) using fitted pesticide

use values as the structural equation.6 A num-

ber of control variables such as farmer’s char-

acteristics and the state dummy variables

are included in both the yield and pesticide

use equations. This specification passes the

Ramsey RESET test for omitted variables.

The production functions are also tested for

multicollinearity using variance inflation fac-

tor and corrected for heteroscedasticity using

robust standard errors. The Chow test is per-

formed to confirm that the two groups can be

pooled together.

In addition to the Cobb-Douglas and the

integrated damage control production func-

tions, a stochastic production frontier (SPF) is

estimated. In contrast to a regular production

function, SPF allows for inefficiency because it

does not assume that all farmers are producing

on the production possibilities frontier. The

SPF can be interpreted as the technological

constraint for each farming system. The dis-

tance from the frontier indicates a farm’s rela-

tive performance or technical efficiency. The

general form for an SPF model is

6 In theory, other inputs could be endogenous as
well. However, pesticides are more likely to present
this econometric issue. MI application, in particular,
has the potential to be an endogenous variable. How-
ever, MI adoption is currently associated more with the
area of commercialization of the products and more
long-term production and output quality-related con-
cerns. The EPA requires each different variation of
BCA to be registered individually in each state. Thus,
we assume away significant endogeneity.
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(6) Yi 5 f ðXi; bÞ exp fvigTEi

where Yi and Xi are output and input vectors

of producer i. Deterministic production frontier

f(Xi; b) multiplied by exp{vi} capturing the

effects of statistical noise represents the sto-

chastic production frontier. TEi 5 exp{–ui}

is the i’s output-oriented technical efficiency

that provides a measure of the shortfall of ob-

served output from maximum feasible output

(TEi £ 1, ui ³ 0). The log-linear Cobb-Douglas

specification of the model is

(7) Log Yi 5 b0 1
X

bn Log Xni 1 vi � ui

where vi ; iid N (0, s2
v), ui ; iid N1 (0, s2

u),

and vi and ui are independent. The assumption

on u can be modified to ui ; iid N1 (m, s2
u)

where m is the mode of the normal distribution

and is truncated below at zero. The Normal–

Truncated Normal model provides a more flex-

ible representation of the efficiency pattern in

the data (Kumbhakar and Lovell, 2000; Coelli,

Rao, and O’Donnell, 2005). Point estimates for

technical efficiency of each producer can be

obtained by means of

(8) TEi 5 E ½exp f�ui g jei�

where ei5 vi2ui.

The basic stochastic frontier model analysis

does not accommodate endogeneity of regressors

resulting in biased estimates. However, endo-

geneity does not bias estimates of technical

efficiency with stochastic distance functions

(Kumbhakar and Lovell, 2000), validating the

use of technical efficiency estimates.

Results

Table 2 shows the results of the pesticide use

function estimation. The Cobb-Douglas model

produced a significantly better fit. Although

all the coefficients have the expected signs in

both specifications, curiously, the MI adoption

dummy has a positive and significant coeffi-

cient contradicting some previous studies on

BCAs (Huang et al., 2002; Pemsl, Waibel, and

Gutierrez, 2005; Qaim and de Janvry, 2005).

This unexpected result might fit some estab-

lished paradigms about the use of biocontrol

agents like, for example, ‘‘the more a grower is

willing to gamble, the better prospect he has of

accepting the idea of biological control’’ and

‘‘prevention treatments are basically an insurance

policy’’ (Peshin and Dhawan, 2009). In other

words, adoption of biological control agents at

its initial stage is ‘‘insured’’ by increased use of

conventional damage control inputs. This is cor-

roborated by the low price elasticity of pesticide

use (–0.54). The relationship between adoption

Table 2. Pesticide Use Function Estimation

Logarithmic Linear

Coefficient t Value Coefficient t Value

Microbial inoculant (dummy) 0.22064 *** 2.79 16.82674 * 1.92

Log price –0.53831 *** –7.10 –20.56438 *** –5.10

Pest pressure insects (index) 0.53821 *** 2.95 3.67453 * 1.62

Pest pressure diseases (index) 0.00454 0.27 –2.27674 –1.38

Log farm size 0.51135 *** 8.19 22.99091 *** 3.68

Experience –0.00869 *** –3.35 –0.39372 –1.42

Michigan –0.29136 * –1.79 –21.45761 * –1.76

Oregon –0.18341 –1.17 –8.69145 –1.49

New York –0.40624 ** –2.12 –25.12487 * –1.75

Pennsylvania –0.37066 *** –3.61 –26.73133 ** –2.07

North Carolina –0.65578 *** –4.96 –17.12455 * –1.69

California –0.77040 *** –3.43 –13.98782 –1.17

Constant 21.94957 *** 4.23 1012.67112 1.52

No. of observations 525 525

Population 15,953 15,953

R2 adjusted 0.5365 0.2269

***p value < 0.01, ** < 0.05, * < 0.1.
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and pesticide use may also be corroborated

by the fact that, especially in areas with high

grower concentration, pesticides are usually

marketed on a continuous basis and bundled

with consulting provided by chemical sup-

pliers, which may slow down adoption and

prevent the associated reduction in pesticide

application rates.7

Farm size is positively associated with pesti-

cide use, which probably reflects the higher in-

tensity of larger operations. Insect pest pressure

is positive and significant as expected. A year of

farming experience reduces pesticide use by

0.87%, possibly indicating persistence of certain

cultural paradigms. Dummy variable coefficients

show that per-acre use of pesticide is the highest

in Washington, the biggest apple-producing

state.

Table 3 shows results of the production

function estimation. Overall, MIs have a posi-

tive impact on output, but the magnitude and

significance vary by the model.

In the Cobb-Douglas production function,

the use of MI technology increases apple

yields, ceteris paribus, by approximately 13%

per acre at the variables’ mean values, which

agrees with the summary statistics and corrob-

orates the findings by Qaim and de Janvry

(2005), Qaim (2003), and Huang et al. (2002)

who found that the use of Bt cotton increases

yields by 507 kg/ha in Argentina, by 75% in

India, and by 15% in China. Chemical pesticides

also contribute to higher yields. For a 1% in-

crease in the amount of pesticides used, the yield

increased by 0.13%. The elasticity with respect

to labor is 0.089%. The impact of nitrogen and

potash fertilizers is positive but negative for

phosphate suggesting possible overuse. Pro-

duction elasticity with respect to area (acres)

harvested is small suggesting constant returns to

scale. The only states that are more (less) pro-

ductive than Washington are Pennsylvania and

North Carolina.

Results from the integrated damage control

model are similar and provide a slightly better fit

and higher significance of the damage control

inputs under the logistic specification. Both MI

and regular pesticides increase yields by im-

proving crop protection. The MI technology is

effective in helping to reduce the damage from

pest infestations and thus keeping yields

higher than they would have been without the

adoption.

Without any pest control inputs and under

the logistic damage control specification, av-

erage crop damage would have been approxi-

mately 57% of the mean yield. The marginal

physical product of pesticides, obtained by

taking a partial derivative at the mean input

values, is 0.119 and 0.138 with and without the

use of the MI, which agrees with the nature of

the technology and with previous studies on

adoption impacts (Huang et al., 2002; Qaim,

2003; Pemsl, Waibel, and Gutierrez, 2005;

Qaim and de Janvry, 2005). However, adoption

of the MI technology increases damage control

over the whole range of possible pesticide ap-

plication levels, which is illustrated by the plots

in Figure 2 constructed using the estimates and

average variable values.

The significance of the MI technology

adoption is less than expected possibly because

adoption at its initial (current) stage is influ-

enced by other factors that are not captured in

our data. These factors include the spatial

contagion effect (impact of neighbors), exten-

sion efforts (some areas are reached better), and

promotions by the supplier.

The damage control specification increases

output elasticity with respect to acres har-

vested from 0.08% to 0.16%, which confirms

Lichtenberg and Zilberman’s (1986) finding

that traditional Cobb-Douglas production func-

tions tend to underestimate the impact of direct

inputs. Irrigation expenditure is not significant

throughout, possibly as a result of the climate

and the fact that apple trees are less dependent

on rainfall.

Technical efficiency estimates as shown in

Table 4 indicate that adopters of the MI tech-

nology have 2.52% higher efficiency rates than

nonadopters whose average technical efficiency

score is 60%. Although the difference is small,

this might suggest self-selection in a promising

technology adoption, assuming more efficient

producers are the first to see the opportunity.
7 We thank an anonymous reviewer for pointing

this out.
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Alternatively, this might indicate more effi-

cient pest management using MI.

Apple production is more technically efficient

in the states of Washington, Pennsylvania, Mich-

igan, and California by at least 3% compared with

New York and North Carolina. An interesting

finding is that in those states where efficiency

rates are lower than average, nonadopters have

relatively higher efficiency rates. This may be

attributed to differences in agricultural practices

or institutional and environmental factors. but the

causal relationship remains unclear.

Because the data are insufficient for speci-

fying a profit model (the ARMS data lack input

prices including MI and the spatial price vari-

ability is likely low), average impact of the MI

technology use on farmers’ returns was calcu-

lated using the data and the estimates of the MI

impact on productivity. which, using average

yields and the MI coefficient, indicate an aver-

age yield gain of approximately 3,000 lbs/acre.

Using a season average grower apple price of

$0.288/lb for fresh apples (ERS data on pro-

cessed apples for 2007) results in extra gross

income of approximately $840. Individual pro-

ducer cost of MI products was estimated at $558

per acre using per acre application prices (ex-

penditures) for the products actually used by the

Table 3. Estimates of the Production Function

Cobb-Douglas Basic With Exponential Damage With Logistic Damage

Coefficient t Value Coefficient t Value Coefficient t Value

Pesticide 0.1255 * 1.77

Experience –0.0013 –0.56 –0.0003 –0.13 –0.0003 –0.12

Trees (expenditure

on pruning)

–0.0051 –0.88 –0.0116 ** –2.18 –0.0121 ** –2.27

Labor 0.0886 *** 4.99 0.0774 *** 6.55 0.0786 *** 6.73

Irrigation –0.0058 –0.96 –0.0096 –1.33 –0.0093 –1.29

Fuel –0.0032 –0.64 –0.0038 –0.70 –0.0039 0.70

Bees (expenditure

on bee hives)

0.0066 1.03 –0.0008 –0.13 –0.0009 –0.13

Nitrogen 0.0183 0.79 0.0263 * 1.79 0.0265 * 1.80

Potash 0.0410 * 1.89 0.0293 1.60 0.0285 * 1.65

Phosphate –0.0741 ** –2.28 –0.0755 ** –2.58 –0.0747 ** –2.55

Microbial inoculant

(dummy)

0.1208 * 1.71

Acres harvested 0.0762 *** 2.64 0.1626 *** 6.88 0.1649 *** 7.01

Michigan –0.0077 –0.07 –0.0091 –0.07 0.0111 0.09

Oregon –0.4016 –1.58 –0.4059 *** –2.62 –0.4072 *** –2.63

New York 0.1924 1.61 0.1868 1.43 0.2058 1.58

Pennsylvania 0.3973 *** 3.53 0.3693 *** 2.64 0.3904 *** 2.82

North Carolina –0.8564 *** –3.86 –0.8090 *** –3.10 –0.7913 *** –3.04

California –0.1268 –0.47 –0.4398 *** –3.00 –0.4279 *** –2.92

Constant 10.9300 ** 2.39 9.6541 ** 2.29 9.6114 ** 2.28

Damage control

function

Constant (a0, m) 0.5346 *** 4.02 0.2845 * 1.65

Pesticide 0.0108 * 1.91 0.0154 ** 2.56

Microbial inoculant

(dummy)

0.2106 1.46 0.3787 * 1.93

No. of observations 510 525 525

R2 adjusted 0.3654 0.3739 0.3751

Population 15,497 15,953 15,953

*** p value < 0.01, ** < 0.05, * < 0.1.
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197 adopters in the sample.8 The net revenue

from applying microbial inoculants was thus

calculated at approximately $282 per acre per

growing season (assuming there is no extra labor

or machinery costs for applying the product).

Conclusions

This article analyzes the impact of applying

a specific type of biological control agent called

MIs on productivity and pesticide use in con-

ventional (nonorganic) apple production in the

United States using the ARMS survey data. The

MI technology is an IPM approach that is similar

to the insect resistant transgenic technologies

(GMOs) in agriculture but does not carry the en-

vironmental and health concerns posed by the

latter, which holds promise for its adoption in the

future. It was adopted by 36% of the U.S. apple

producers in 2007. The technology has the po-

tential of reducing pest damage and increasing

yields without the associated negative health and

environmental impacts associated with pesticide

and other chemical input use (Fravel, 2005).

Estimation of a pesticide use function shows

that adoption of the MI technology increases the

use of pesticide inputs, which, although contra-

dicting some previous findings, conforms to ob-

served paradigms regarding producer attitudes

toward production risk and resulting chemical use,

i.e., that BCAs are often perceived as ‘‘insurance.’’

The available cross-sectional data do not allow

estimation of causal relationship between pesti-

cide use (pest pressure) and MI adoption.

Estimation of different types of production

functions with a separate damage control com-

ponent and controlling for pesticide use endoge-

neity shows that the MI technology significantly

increases yields and reduces the marginal pro-

ductivity of pesticides. Estimation of a stochas-

tic production frontier shows higher technical

efficiency of the MI adopters except for the

states with the lowest average efficiency in

which nonadopters have higher efficiency rates.

The states with the highest rates of technical

production efficiency are Washington, Pennsyl-

vania, and California. The impact of adoption

on producer income depends on the productivity

impacts, output prices, and the costs of bi-

ological control products. Our estimates using

calibration data suggest a net gain of $282 per

acre per season. According to this study, MI can

complement, rather than substitute, agricultural

chemical use easing compliance with regula-

tions and positively impacting yields.

It remains to be seen whether MIs are going

to be as successful as genetically modified

crops were 15 years ago. Our results suggest

some similarities between the two technologies

in production impacts and adoption patterns. MI

Figure 2. Microbial Inoculant (MI), Pesticides, and Damage Control Relationship

8 The products are: Granulovirus products (used for
codling moth), Bt products (used for different insects),
and Bacillus pumillus and Bacillus subtillis (used for
fireblight and powdery mildew). Per-acre price was
calculated by adjusting the price of a container of
known volume by the recommended application quan-
tities and times per season.
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increases output and its adoption seems to reduce

production risks. However, greater confidence

requires establishing causal relationships be-

tween adoption impacts and producer charac-

teristics. Analysis of panel data that includes

spatial variables will improve our understanding

of adoption dynamics and market potential of the

MI technology, which is still in its infancy stage.

[Received April 2012; Accepted March 2013.]
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