

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

the

CHEMICAL COMPOSITION

OF REPRESENTATIVE GRADES

OF THE 1951 and 1952 CROPS

OF BURLEY TOBACCO
including ehemical methods
by Max Phillips
and Aubrey M. Bucot

Technical Bulletin No. 1186

Agricultural Marketing Servico
Fage
Fage
Summary iii
Introdustion 1
Cooperating Laboratories 3
Review of Litcraturc 4
Sample Selection and Preparation 5
Analytical Methods 6
Moisture 6
Total Ash 7
Sand 7
Water-Soluble and Water-Insoluble Ash 8
Alkalinity of W.ser-Soluble and Water-Insoluble Ash 8
Sodium 9
Potassium 9
Calcium 10
Phosphorus 11
Manganesc. 12
Total Nitrogen 13
Nitrate Nitrogen 1.1
Ammonia Nitrogen 11
Protein Nitrogen 15
Alpha Amino Nitrogen 16
Total Volatile Bases (as Ammonia) 17
Nicotine, Nornicotine and Total Akaloids (as Nicotine) 17
Total Alkalodids 19
Total Reducing Substances, Total Reducing Sugars, and Polyphenols 19
Pectic Substonces 21
Uronic Acids (as anhydrides) 26
Pentosans 27
Crude Fiber 29
Cellulose 30
Lignin 31
Methoxyl in Lignin 33
Tannin 35
Total Volatile Acids (as Acetic deid) 37
Formic Acid 37
Water-Soluble Acids 38
Plastid Pigments 39
Resins and Waxes 39
Petrotzum Ether Extracl 41
Waxes 41
95 Percent Ethanol Extract 42
pH 42
Moistare Equilibriam 42
Discussion of Results. 18
Total Ash 44
Page
Discussion of Results (Continued)
Water-Soluble Ash 45
Water-Insoluble Ash 46
Alkalinity of Water-Soluble Ash 47
Alkalinity of Water-Insoluble Ash. 48
Sodium 49
Potassium 50
Calcium 51
Phosphores 52
Manganese 53
Total Nitrogen 54
Nitrate Nitrogen 55
Ammonia Nitrogen 56
Protein Nitrogen 57
Alpha Amino Nitrogen 58
Total Volatile Bases (as Ammonia) - 58
Nicotine, Nornicotine, and Total Alkaloids (as Nicotion) 60
Alkaloids 01
Total Reducing Substances \{as Clucose) 62
Total Redur ug Sugars (as Glucose) 63
Polyphenols (as Giucose) 64
Protopectin (as Calcium Pectate) 65
Pectic Acid and Pectates (as Calcium Pectate) 60
Total Chiorophyll 67
Total Carotenoids 68
Uronic Acids (as Anhydrides) 69
Pentosans 70
Crude Fiber 71
Cellulos 72
Lignin 73
Methoxy! in Lignin 74
Tasnin 75
Total Yolatile Acids (as Acetic Acid) 75
Formic Acid 77
Water-Soluble Acids 78
Petroleu:.. Ether Extract 70
flesins and Waxes 80
Waxes 81
95 Percent Ethanol Extract 82
Hot. Water Exiract 83
pH 84
Sulfar 85
Chlorine 86
Moisture Equilibrium 87
Composition of Stems 88
Literature Cited 90
Brief of Burley Grades 94

Issued August 1958

SUMMARY

The investigation described in this publication was undertaken to determine the relationship between the United States standard grade classifications of tobacco and the chemical composition of the respective grades. The data apply to the 1951 and 1952 crops of Burley tobacco. The method of sampling and grading is described, and a brief description of the United States grades of this type is included for the information of those unfamiliar with the grade specifications.

At the outset there was no definite guide as to which constituents would be most useful for the purpose of determining the chemical composition of the various grades. and for this reason all components for which there was a reasonably accurate analytical method were determined. Other laboracories in the tobacco industry were invited to join in the project on a collaborative basis.

The data on all of the components determined are tabulated and the analytical method used for the determination of each component, as submitted by the laboratory which made the determination, is described. Instances in which there appears to be a significant relationship between the grades and chemical composition are pointed out by comment, as are those in which apparently no such relationship exists.

The grade data are tabulated according to group, quality, and color. The average content of each component for the two crop years, and for cach of the groups, is calculated for the purpose of comparison.

All of the various nitrogen determinations were relatively significant, with the exception of protein nitrogen and nitrate nitrogen. Alpha amino nitrogen is one of the most significant analyses in the series of constituents determined. There is a difference in the alpha amino nitrogen content in most of the grade classifications on the basis of group, quality, and color comparisons. Total volatile bases as ammonia also are closely associated with grade.

The nicotine, nornicotine, and total alkaloids (as micotine) all varied in content according to grade, which follows the pattern of growth and development of the plant.

The difference between grades in the content of tofal reducing substances (as glucose) and of total reducing sugars (as glucose) is too small in this lype of tobacco to draw finc distinctions. However, there is a gradual increase, groupwise, in the content of total reducing stgars (as glucose) in proceeding from the Flyings group to the Tip group.

There is a small but consistent decrease, groupwise, in the polyphenois contont in proceeding from the Flyings group to the Tip group.

The amounts of plastid pigments both total chlorophyll and total carotenoid, show a relationship to grade, with the content in both cases generally in inverse proportion to maturity.

Protopectin, pectic acid and pectates (as calcium pectates) are also constituents which are associated with plant maturity. As the plant matures, the protopectin content decreases and the amount of pectic acid and pectates increases. However, this relationship is evident only in a groupwise comparison.

Uronic acids (as anhydrides) and pentosans are shown to have a possibie relationship to body and to color, respectively.

The structural components crude fiber, cellulose, and lignin are elosely associated with each other in their distribution in the plant, according to grade. The analytical results of each of these constituents are proportional to the relative maturity of the different grades. The determination of methoxyl in hignin showed a consistent difference in content between the second and fourth qualties throughout the range of grades.

The content of both tannin and polyphenols was determined by empirical methods. The most obvious fact concerning these two determinations is that the maximum amount of each class of compounds as determined by these methods is ak the opposite extreme of the grade classifications; that is, the maximum tannin content is in the Tip group of grades and the maximum polyphenols content is in the Flyings group.

Total volatile acids (as acetic acid) and formic acid content followed a general trend of decreasing slightly in proceeding from the Flyings group of grades to the Tip group. The water-soluble acids content followed the opposite general trend of increasing through the same groups, and the amount of water-soluble acids was proportionately greater.

There was no apparent significant difference in the sontent of petroleum ether extractives or of waxes from the usual standpoints of comparison.

The solvent properties of 95 percent ethanol and hot water in extracting soluble material from the different grades showed a parallel trend, with the hot water dissolving the greater amount. The use of either solvent was almost equally effective in showing the difference in soluble material of the respective grades.

The pH values decreased in the order of group, as follows: Flyings, Cutter, Leaf, and Tips. The data does not appear to show significant distinctions in grade on a quality or color basis.

The content of sulphur and chlorine, like sodium, phosphorus, and manganese, was so irregularly distributed among the grades that no signiffeant grade relationship could be stated.

the CHEMICAL COMPOSITION of

REPRESENTATIVE GRADES of the 1951

 and 1952 CROPS of BURLEY TOBACCO
including chemical methods

 Marketing Scrvice. ${ }^{2}$

INTRODUCTION

This publication is one of a serics from this Division on the chemical composition of the standard grades of various American tobacco types (30, $31,32,33,34,48) \cdot{ }^{3}$ The object of these studies is to determine the chemical composition of the various grades of tobacco and to observe the relationship of the composition to grade.

The chemical composition of Burley tobacco, Type 31, has been the subject of investigation over a long period of time by many research workers in various State experiment stations in the United States Department of Agriculture, and in research laboratories of the tobacco companies.

In their selection of tobacco for chemical analysis, chemists in the past have been influenced by the subdivisions made by growers in the preparation of tobacco for market, or by manufacturers' classifications of tobacco into smoking and nonsmoking grades. As a result, it is extremely difficult, or perhaps impossible, for present-day investigatore to interpret accurately these chemical findings in terms of present-day grades of tobacco.

Official United States grades for Burley tobacco were established in 1936, and for a number of years these grades have been applied to all Burley tobacco moving to market. These grades, as well as the official standard grades for other kinds of tobacco, have been found practicable and workable. Slight modifications and additions have been made from time to time to keep pace with changes in production and curing methods. United States standard grades have been accepted by producers and manufacturers as a practical besis for classifying tobacco according to quality.

[^0]In order that our chemical findings might be expressed in terms of a common denominator, all chemical determinations in this investigation were made on tobacce graded according to the official standard grades. The purpose of this investigation was to deternine the chemical composition of Burley tobacco and relate these findings to the physical factors and the various elements of guality upon which the standard grades are based.
The grades selected to be analyzed represent the range of tobacco quality and were taken from grades sold on tobacco auction markets. After the analysis of the 1951 crop, it secmed advisable to add the additional grades $\mathrm{X} 2 \mathrm{~F}, \mathrm{C} 2 \mathrm{~F}$, and B 2 FR , in order to represent more completely the quality pattern and system of grading.
The processing of the grades for analysis is described in the section "Sample Selection and Preparation." These grades, after preparation in the mamer described in this section, represent the combined appraisal of sevoral judges and do not include any tolerance for injury or off-grade tobacco that is permissible to a stated limited extent in United States standard grades. The object of adhering to the grade specifications with the elimination of all tolerances was to find the composition as nearly characteristic of the grade as was practicable to obtain. With the composition of the various grades determined, a mixture of permissible tolerances or of blends of grades; might better be calculated. Also with the composition of the grade determined after grading according to this procedure, the variation in composition due to other factors, such as the change in weather from year to year, could be more nearly established.

Total ash and the ash constituents are generally considered to be some of the most fundamental for plant aralysis and are included in our project as probably some of the most basic and useful for this purpose. The ash content of the different grades, the related determinations of water-soluble and water-insoluble ash, and the alkalinity of the water-soluble and of the water-insoluble ash all proved to be significant in varying degrees in relation to grade. Of the five ash constituents determined, potassium and calcium proved to be more closely related to grade than sodium, phosphorus, and manganese.
In the absence of critcria as to which of the tobacco constituents were or were not significant for this purpose, we concluded that every tobacco constituent for which a reasonably satisfactory analytical method was available must be considered important, or at least potentially important.
As a means of expediting the work involved in such an undertaking, a voluntary cooperative research project was organized and designated as the "Tobacco Research Pool." Taking part in the project, in addition to the Standards Branch laboratory of the Tobacco Division, Agricultural Marketing Service, USDA, were other Federal rcsearch laboratories, State experiment station laboratorics, and rescarch laboratories of tobacco companies, 16 in all. Each laboratory selected the particular determination
which it was in a position to make. As a result of this voluntary program, we have, in a relatively short period of time, made determinations and are sharing findings which otherwise would have required quite a considerable time. The Tobacco Division is deeply grateful to each participating laboratory. A list of the collaborating laboratories and the determinations which they made follows:

COOPERATING LABORATORY

American Sumatra Tobacco Corp.

The American Tobacco Co.

Brown \& Willianson Tobacco Corp.
The Imperial Tobacco Co., Ltd.
of Great Britain and Treland

Larus \& Brother Co., Tnc.
Liggett and Myers 'labacca Co.
P. Lorillard Co.

North Caralina State College

The Pennsylvania State Universily

Philip Morris, Inc.

CONSTITUENT OR PROPERTY DETERMINED

Phosphorus
Manganese
Moisture
Moisture Equilibrium pH
Total Volatile Bases
Petroleam Ether Extract
Wuxes
Formic Acid
Tolal Volatile Acids
Hoisture
Crude Fiber
Total Nitrogen
Moistuce
Apha Amino Nitrogen
pHI
Nitratc Nitrogen
Water-Soluble Acids
Protein Nitrogen
Polyphenols
Total Keducing Suhstances
Total Reducing Surars
95 percent Ethanol Extraclives
Burn Rate
Whitencss of Asit
Plastid Pignents
Calcium
Moisture
Total Aslı
Water-Soluble and
Insoluble Asit
Alkalinity of Water-Soluble
and Insoluble Ash
Moisture Equilibrium
Sulfur
Cladorine

R. J. Reynolds Tobacco Co.
United States Department of Agriculture ARS, Enstern Utilization Research and Development Division
United Slates Department of Agricultura
ARS, Grops Research Division
Tobacco and Sugar Crops
Research Brancis Tobacco Section
Uniled States Tobacco Co. (Nashyille Branch)
University of Kentucky Agricallaral Experiment Station
Universily of Temnessee
Tobacco Laboratory
Nicotine
Nornicotine
Total Alkaloids as Nicoline
Tannins
Sodima
Potassium Soluble Extracives
Total Alkaloids
Protein Nitrogen
Oxalic, Malic, and Citric Acids
Resins and Waxes

REVIEW OF LITERATURE

Moore (22) in 1883 reported on the chemical composition of Burley tobacco from Mason County, Ky. He did not sort the tobacco into grades, or into different quality groups. The percentages of the several constituents determined were as follows: Nicotine, 3.12 ; resinous and fatty substances, 5.34 ; starch, 4.45; glucose, 0 ; albuminoids ($\mathrm{N} \times 6.25$) 15.98 ; pectic acid (anhydride) 7.49 ; citric acid (anhydride), 4.05 ; malic acid (anhydride), 9.26; oxalic acid (anhydride), 2.18; acetic acid (anhydride), 0.64 ; nitric acid (anhydride), 0 ; ammonia, 0.48 ; crude fiber, 12.18 ; sand, 0.66 ; ash (exclusive of sand and carbonic acid) , 16.06; undetermined, 18.11.

Shedd (40) determined total nitrogen, nicotine, nitrate nitrogen, and some ash constituents in good, medium, and common tobacco samples. His data showed a higher potash content for the better grades, while the proportion of the anions, including nitrate, chloride, and sulfate did not show any trend among the grades. This was considered as indicating that the quantity of potassium in organic combination was greatest in the better grades. This funding was in accord with the observations of Schlising (38) and Garner (14) who noted the beneficial effects of potassium in organic combination on the burning quality of tobacco.

Heggestad and Bowman (17) made comparisons of the chemical composition of Burley tobaccos at seven stages of maturity. Harvests were made at 6 -day intervals beginning I week after topping. The data showed that, irrespective of harvest date, the lower leaves had the physical properties and chemical composition desired for use in cigarette manufacture. In gen-
eral, the duration of burn was better in tobaccos from the early harvests than from the later ones. The potassium concentration in the leaves decreased from the first harvest to a minimum at the fourth harvest, and then increased theresfter. The values for the alkalinity of ash followed approximately the same pattern as the potassium concentration, both factors being closely associated with leaf burn. Total volatile bases were considerably lower in trash than in lugs and bright leaf at all harvest dates.

Graham and Carr (15) subjected Burley tobacco, ground to about 40 mesh (A.S.T.M.), to successive extraction with petroleum ether, ether, 98 percent ethanol, acetone, and boiling water. Results indicated a relationship between grade and order of solubility in the solvents listed above. Thus, about 40 percent of the tobacco could be dissolved, with the ethanol extract amounting to about 18 percent of the tobacco.
Moseley, Harlan, and Hanmer (23) studied the chemical composition of the 1938 and 1939 crops of Burley tobacco from several districts of this tobacco belt. In all cases, the midribs were removed and the leaf tissue was analyzed separately. The results were reported on a moisture-free basis. In addition to total nitrogen, various uitrogenous constituents and fractions were determined. Their data showed a fairly regular increase in total nitrogen over the entire stalk range, with the lowest amount in Flyings, and considerably higher percentages in the red Leaf and Tips. The ammonia content followed a similar trend. The percentage of nicotine was also found to be higher in the leaves from the upper portions of the stalk, attaining a maximum in the leafy grades and declining in the immature Tips.
Good quality Burley tobacco was found to be related to a low content of total volatile bases.

SAMPLE SELECTION AND PREPARATION COLLECTION OF SAMPLES

Samples of the 1951 and 1952 crops of Burley tobacco, Type 31, were coliected on the auction warehouse floors in eight states. An effort was made to collect, from different producing areas, a substantially equal quantity of tobacco of each grade from 100 or more different growers' lots. The samples of the 1951 crop were collected from 39 markets and those of the 1952 crop from 43 markets. In case of the smaller one-buyer markets, 20 two-hand samples were collected, whie on the larger markets, 20 fourhand samples of each grade were collected.

Special care was taken that each hand selected was reasonably uniform and typical of the grade. If one-third or more of the leaves of any hand was not typical of the grade in group, quality, and color, it was not chosen. Tobacco having unusual characteristics not commonly found on the market was not selected.

These samples were brought together in the Tobacco Division's sample room in Lexington, Ky., and were divided into lots according to the grades assigned by the head inspectors on the several markats. Supervising inspectors then checked each sample to see if it was true to grade. Four 4 -hand samples of each grade were then reviewed by representatives of several tobacco companies.
The samples were then shipped to the laboratory of the Tobacco Division in Washington, D. C., where the tie leaf of each hand was removed and discarded. Each leaf in the hand was opened and carefully examined to determine if it was properly graded. All leaves of each hand which were not truly representative of the grade were eliminated.

Representatives of the tabacco companies cooperating in l\}is investigation reviewed the semples from the standpoint of uniformity of the lots of each grade. Consequently the grade-sampies sclected for this investigaLion represented the composite judgment of USDA tobacco inspectors and leaf men of the tobacco industry. These samples are believed to have been as carefully selccted and to have been as truly representative of each respective grade as this composite judging could make possible.

The leaves of each grade were stemmed by hand, and the web portion to be used for analysis was granulated. Sand and other earthly material was removed by passing the granulated material over a rotary sieve having square mesh openings of 0.5 mm . The cleaned, coarsely granulated material of each grade was thoroughly blended, using a Jones sampler for this purpose. The biended, granulated tobacco was air-dried at $95^{\circ} \mathrm{F}$. until its weight was nearly constant, and it was then ground in a Wiley mill provided with a 1 mm . round mesh sieve. The ground material was thoroughly blended in a specially designed blender, transferred to glass containers provided with tight closures, and labeled for grade and crop identification.
The stems from three grades of leaf were similarly ground, blended, placed in glass jars, and distributed for general analysis.

ANALYTICAL METHODS

MOISTURE ${ }^{4}$

The American Tobacco Company

Weigh accurately duplicate samples of approximately 5 grams each and dry at 99° to $100^{\circ} \mathrm{C}$. for 3 hours in a forced draft oven. Cool to room temperature in a desiccator containing anhydrous calcium chloride and reweigh. Calculate the loss in weight as the percent of moisture.

[^1]
Standards Branch, Tobacco Division, AMS

Weigh accurately duplicate samples of approximately 2.5 grams each and dry at 99° to $100^{\circ} \mathrm{C}$. for 4 hours in a convection type oven. Cool to room temperature in a desiccator containing anhydrous calcium chloride and reweigh. Calculate the loss in weight as the percent of moisture.

Liggett and Myers Tolacco Company

Weigh accurately duplicate samples of approximately 2 grams each and place in a desiccator containing fresh concentrated (sp. gr. l.84) sulfuric acid, and allow to dry for 9 days at $30^{\circ} \mathrm{C}$., and reweigh. (Place no more than six samples in one desiccator.) Calculate the loss in weight as the percent of moisture.

The Pennsylvania State University

Weigh accurately in duplicate approximately 2 grams of sample and dry at $80^{\circ} \mathrm{C}$. for 3 hours in a vacuum oven maintained at a pressure of less than 50 mm . of mercury. Cool in a desiccator over anhydrous CaCl_{2} and reweigh. Calculate the loss in weight as the percent of moisture.

The Imperial Tobacco Company, Ltd.

Weigh accurately duplicate samples of approximately 6.5 grams each and dry for 16 hours at $100^{\circ} \mathrm{C}$. under standard ventilation conditions. Determine the dry weight and calculate the loss in weight as the percent of moisture.

TOTAL ASH

Standards Branch, Tobacco Division, AMS

Weigh accurately duplicate samples of approximately 2.5 grams each in a tared porcelain dish of 75 ml . capacity, and heat in the hood over a low flame of a bunsen bumer until smoking ceases, taking care that the sample does not flame. Then heat in an electric muffle furnace provided with a temperature control for a period of 2 hours after the temperature reaches $550^{\circ} \mathrm{C}$. Cool the sample to room temperature in a desiccator containing anhydrous calcium chloride and weigh. Calculate the increase in weight of the dish as percent total ash.

SAND

Standards Branch, Tobacco Division, AMS

Cover the dish containing the total ash from the preceding determination with a cover glass to prevent loss by spattering, and add 10 ml . of cencentrated hydrochloric acid slowly to minimize spattering. Boil the mixture over a small fame for about 1 minute, then evaporate on the steam bath to dryness, and finally bake on the steam bath for an additional three hours after reaching dryness. Add 5 ml . of concentrated hydrochloric
acid, cover the dish with a cover glass, and boil the mixture over a small flame for another minute. Add 30 ml . of distilled water, heat the mixture on the steam bath for 5 minutes, and decant through an ignited and tared Gooch crucible. Wash the insoluble material in the dish with hot water by decantation two or three times, decanting the washings juto the crucible. Add 15 ml . of a hot saturated sodium carbonate solution (previously filtered through an asbestos mat in a Gooch crucible) to the dish, cover with a watch glass, and heat the mixture to boiling. Remove from burner and add five drops of 10 percent sodium hydroxide solution. Allow the mixture to settle, and decant through the Gooch crucible. Add another 15 ml . portion of the sodium carbonate solution to the dish, cover, and heat the mixture to boiling, treat as in the previous step, and allow to settle. Decant the solution into the crucible, and wash the insoluble niaterial in the dish by decantation with several portions of hot water, pouring the washings into the crucible. Transfer the remaining insoluble material in the dish to the crucible using a hot water wash bottle, and wash with two small portions of dilute HCl (l volume of concentrated HCl to 4 of water), and finally with hot water until free of HCl . Dry crucible and contents in an oven at $100^{\circ} \mathrm{C}$. for one hour and then heat in the mufle furnace at $600^{\circ} \mathrm{C}$. for one-half hour or longer. Allow to cool in a desiccator over anhydrous calcium chloride to room temperature and weigh. Caleulate the increase in weight of the crucible as sand.

$$
\frac{\text { Weight of Sand } \times 100}{\text { ight of moisture-free tobacco }}=\% \text { Sand (moisture-free basis) }
$$

WATER-SOLUBLE AND WATER-INSOLUBLE ASH

Philip Morris, Inc.

Transfer the ash obtained in the determination of total ash as described above to a 250 ml . beaker, add 25 ml . of water, and heat the mixture to boiling with freguent stirring. Fiher on an ashless filter paper, wash with 25 ml . of hot water, and retain the combined filtrate and washings for the determination of the alkalinity of the water-soluble ash. Return the filter paper containing the insoluble ash to the original porcelain dish and dry in a $100^{\circ} \mathrm{C}$. oven before placing in mufle. Heat at $550^{\circ} \mathrm{C}$. for 2 hours, cool to room temperalure in a desiccator over anhydrous CaCl_{2}, weigh, and calculate the increase in weight as the percentage of insoluble ash. Obtain the percentage of water-soluble ash by subtracting the percentage of waterinsoluble ash from the percentage of total ash.

ALKALINIKY OF WATER-SOLUBLE ASH

Philip Morris, Inc.

Titrate the combined filtrate and washings containing the soluble portion of the total ash, as above-described, with $\mathrm{N} / 10 \mathrm{HCl}$ to a pH of 4.3 , using
a Fisher titrineter. Calculate the alkalinity of the soluble ash as the number of ml. of $\mathrm{N} / 10 \mathrm{HCl}$ per gram of moisture-free and sand-free tobacco.

ALKALINITY OF WATER-INSOLUBLE ASH

Philip Morris, Inc.

To the water-insoluble ash, obtained as above-described, add a measured quantity of $N / 10 \mathrm{HCl}$ in excess of that required to make the mixture definitely acid in reaction. Heat the mixture to boiling, and titrate to a pH of 4.3 with $\mathrm{N} / 10 \mathrm{NaOH}$ solution, using a Fisher titrimeter. Calculate the alkalinity of the water-insoluble ash as the number of mi. of $\mathrm{N} / 10 \mathrm{HCl}$ required to neutralize the water-insoluble ash from one gram of moisturefree and sand-free tobacco.

SODIUM

Eastern Utilization and Development Division, ARS

Place a l-gram sample of tobacco in a platinum dish, moisten with 10 ml . of 0.5 percent sulfuric acid solution, and char under an infrared lamp until fumes of SO_{8} cease to be given off. Heat at $600^{\circ} \mathrm{C}$. for 8 hours, and finally at $750^{\circ} \mathrm{C}$. for 2 hours. After cooling to room temperature, add 10 ml. of 3 N (approx.) HCl , and evaporate the mixture to dryness on the steam bath. To the residue, add 20 ml . of the 3 N HCl , and warm the mixture on the steam bath while stirring to dissolve the ash. Decant the solution through a washed filter paper into a funnel inserted in the neck of a 100 ml . volumetric flask. Repeat this operation of dissolving the ash, using a second 20 ml . portion of 3 N HCl . Transfer the insoluble material to the filter, and wash the dish and filter with water until the volume of flitrate approaches 100 ml . Cool the solution to room temperature and make to volume with water. Aspirate this solution of the ash into the flame, and read the intensity (I) of emission at 589.0 mpe on the spectrophotometer. Compare this reading with that of a standard curve prepared with pure NaCl solution (ppm. Na vs. $1589.0 \mathrm{~m} \mu$). Determine the ppm . of Na in the solution containing the sample by interpolation from the standard curve. Calculate the percent N_{2} in the sample as follows:
$\frac{\text { (ppm. Na) } \times \text { (volume of solution) } \times 100}{\text { Weight of moisture-free sample } \times 10^{6}}=\% \mathrm{Na}$ (moisture-free basis)

POTASSIUM

Eastern Utilization and Development Division, ARS

Ash a l-gram sample of tobacco, according to the same procedure described above for sodium, and dissolve the ash following also the procedure described for the determination of sodium.

Aspirate the solution of the ash into the flame, and read the intensity of emission (I) at $766.5 \mathrm{~m} \mu$ on the spectrophotometer. Prepare a standard curve (ppm. K vs. $766.5 \mathrm{~m} \mu$) using matrix solutions containing known
amounts which bracket the amount in the sample, and which contain amounts of $\mathrm{Ca}, \mathrm{Mg}, \mathrm{SO}_{4}$, and PO_{4} estimated to be present in the tobacco ash, plus 40 ml . of 3 N HCl per 100 ml . of solution. Determine K (ppm) in the sample solution by interpolation from the standard curve, and calculate the percent of potassium as follows:
$\frac{(\mathrm{ppm} . \mathrm{K}) \text {) (volume of solution) } \times 100}{\text { Weight of moisture-free sample } \times 10^{6}}=\%$ Potassium (moisture-frce basis)
In making a series of analyses, measure the llame intensity of a single standard potassium solution with approximately the same amount of K as in the sample, at regular intervals. Compare also the standard solution with the matrix solutions so that variations due to changes in atomization rate and flame intensity can be corrected, and in order that the effect of the extraneous salts on the intensity of the flame can be evaluated.

CALCIUM

The Pennsylvania State University ileagents and solutions

(1) Hydrochloric acid (one volume of concentrated hydrochloric acid plus four volumes of water) ; (2) Glacial acetic acid; (3) Aqueous ammonium oxalate solution (saturated) ; (4) Sulfuric acid solution (one volume of concentrated sulfuric acid plus four volumes of water).

DETERMINATION

Place a 4.4 -gram sample in a silica dish, and heat overnight in a muffe furnace meintained at $500^{\circ} \mathrm{C}$. Allow to cool to room temperature, and dissolve the $a \mathrm{a} h \mathrm{~h}$ in about 25 ml . of the dilute hydrochloric acid. Transfer the solution to a 100 ml . beaker, heat to boiling, filter into a 110 ml . volumetric flask, and dilute the filtrate to the mark with water. Transfer a 50 ml . aliquot to a 250 m . beaker, and add ammonium hydroxide solution until the iron and aluminum hydroxides begin to precipitate. Add 10 ml . of glacial acetic acid, heat the solution to boiling, and add 10 ml . of the ammonium oxalate solution. Continue the boiling of the solution until the precipitate is coarsely granular. Allow the solution to stand overnight. Filter the solution through a S . and S. No. 589 Blue Ribbon filter paper, and wash the precipitate with water until the filtrate is free of oxalates. Break the point of the filter paper with a pls um wire, and wash the precipitate into the beaker in which the calc. " was precipitated, using hot 1:4 sulfuric acid solution. Wash the filter paper with hot water, and add 10 ml . of the dilute sulfuric acid solution to the filtrate. Heat the solution to about $90^{\circ} \mathrm{C}$., and titrate with $\mathrm{N} / 10 \mathrm{KMnO}_{4}$ solution. Finally add the filter paper to the solution and complete the titration. Calculate the percentage of calcium as follows:
$\frac{\mathrm{ml.} \mathrm{~N} / \mathrm{lo} \mathrm{KMMO}_{4} \text { required } \times 0.2004}{\text { Weight of sample (moisture-free besis) }}=\%$ Calcium (moisture-free basis)

PHOSPHORUS

American Sumatra Tobacco Corporation

APPARATUS

Fisher Electrophotometer No. 7-106 with extra micro cells No. 7-102-65.

REAGENTS AND SOLUTIONS

Buffer solution.—Dissolve 100 grams of sodium acetate $\left(\mathrm{CH}_{3} \mathrm{COONa}\right.$ $3 \mathrm{H}_{2} \mathrm{O}$) in 500 ml . of water, add 30 ml . of 99.5 percent acetic acid, and dilute with water to 1 liter.

Standard phosphorus stock solution. (100 ppm . of P.) Dissolve 0.0439 gram of $\mathrm{KH}_{2} \mathrm{PO}_{4}$ in 100 ml . of water.

Sul/onic acid reagent.-Dissolve approximately 0.5 gram of pure, dry l-amino-2-naphthol-4 sulfonic acid (Eastman Kodak Co.) in 195 ml . of 15 percent sodium bisulfite solution in a 250 ml . volumetric flask. Add 5 ml . of 20 percent sodium sulfite solution, stopper the flask, shake, and difute to volume with water. After again shaking, allow the solution to stand overnight, filter, and store in a brown bottle.

Molybdate reagent.-Place 15 grams of ammonium molybdate in a 1 liter volımetric flask and dissolve in about 300 ml . of water. Add 800 ml . of concentrated hydrochloric acid (sp. gr. 1.18) slowly, cool to room temperature, dilute with water to 1 liter, and store in a brown glass-stoppered bottle. Prepare a fresh supply of this reagent every 3 months.

DETERMINATION

Ashing of sample.-Place a 2 -grana sample in a 150 ml . Pyrex beaker, add 20 ml . of nitric acid ($69-71 \%$), cover beaker with a watch glass, and allow the mixture to stand for one-half hour. Rotate the beaker a few times until the sample is completely wetted or nearly so. Place the beaker on a hot plate and heat gently until no visible signs of solid material, except silica, remain. Remove the beaker from the hot plate, add 5 ml . of 70 per. cent perchloric acid, and cover the beaker with a watch glass. Boil the solution gently until it is clear and fumes copiously.

Solution A.—Add about 50 ml . of water to the ash prepared as abovedescribed. Heat to boiling and filter through Whatman No. 40 filter paper into a 200 ml . volumetric flask. Wash the residue on the filter paper with hot water and collect the washings in the same volumetric flask. Cool the combined filtrate and washings to room temperature and dilute to 200 ml . with water. Designate this as "Solution A."

Solution B.-Pipette 1 ml . of "Solution A " into a test tube and add 9 ml . of the buffer solation. Designate this as "Solution B."

Standard curve.-Plot a standard curve in the range between I and 4 ppm . of P for interpreting color transmittancy of the sample from this standard curve.

Phosphorus standards.-Prepare a series of standards of $1,2,3$, and 4

12

ppm. of P , respectively, by diluting $1,2,3$, and 4 ml . of standard phosphorus stock solution to 100 ml . with buffer solution. Plot a standard curve in the range between 1 and 4 ppm . of P.

Colorimeter procedure.-Pipette 4 ml . of "Solution. B" into a test tube, add 0.3 ml . of the sulfonic acid reagent, and mix. Add 1 ml . of the molybdate reagent rapidly against the side of the test tube and mix. Allow the solution to stand for 10 minutes. Transfer this solution to an extra micro cell and read the color transmittancy in the electrophotometer at wave length $650 \mathrm{~m} \mu$. Determine the ppm. of P in "Solution A " by reference to a standard curve prepared simultaneously.

Calculate the percentage of phosphorus as follows:
$\frac{(\text { ppm. P) (ml. Solution A) (ditution of Solution A) } \times 100}{\text { Weight of sample } \times 10^{\circ}}=\%$ Phosphoras

MANGANESE

American Sumatra Tohaceo Corporation

REAGENTS AND SOLUTIONS

Slandard manganese stock solution.-(100 ppm. of Mn.) prepared as follows: Place 0.0288 gram of KMnO_{i} in a 125 ml . Erlenmeyer flask, add 10 ml . of water, 6 drops of concentrated sulfuric acid, and a few glass beads. Heat to boiling and add sodium bisulphite in sufficient quantity to discharge the color. Concentrate the solution until fumes of sulfuric acid begin to appear. Dissolve the residue in water and dilute to a volume of 100 ml .

DETERMINATION

(a) Ashing of somple.-Place a 2 -gram sample (as-is) into a 150 ml . Pyrex beaker, add 20 ml . of nitric acid ($69-71 \mathrm{ic}$), cover the beaker with a watch glass, and aliow to stand for about one half hour. During this period rotate the beaker a few times until the sample is completely welled or nearly so. Place the beaker on a hot plate and heat gently tutil no visible signs of solid material, except silica, remain. Remove the beaker from the hot plate, add 5 ml . of 70 percent perchloric acid, cover the beaker again with a watel glass, and boil gently until the solution is clear and fumes copiously. Take care not to evaporate the solution to complete dryness.

Solution A.-Add about 50 ml . of water to the ash prepared as described in paragraph (a), bring to a boil, and fiter through a Whatman No. 40 filter paper into a 200 ml . yolumetric flask. Wash the silica on the filter paper with hot water and collect the washings in the same flask. Cool the filtrate and washings to room temperature and dilute with water to 200 ml . Designate this as "Solution A."

Standard curve.-Prepare a series of standards of 1,2 , 3 , and 4 ppm., respectively, of Mn by diluting 1, 2, 3, and 4 ml . of the standard Manganese stock solution to 100 ml . with water. Plot a standard curve in the range
between 1 and 4 ppm . of standard manganese stock solution for interprehing color transmittancy of the sample from the standard.

Colorimeter procedure.-Transfer 40 ml . of "Solution A" to Niessler tubes, add 4 ml . of ortho phosphoric acid $185{ }^{\circ} \mathrm{C}$. stir, and then add about 200 mg. of potassium periodate, and stir again. Place the Nesster tubes in a wire bask st, immerse in a galvanized pot half-flled with water, and boil for I hour. Stir the contents of the Nessler tubes, a few times during this period. Allow the Nessler tubes to cool and dilute to 50 ml . with water. Transfer this solution to a rectangular absorption cell and read the color transmittancy in the electrophotometer at wave length 325 mp . Determine the ppm. of Mn in "Solution A " by reference to a standard curve. prepared in the same manner and at the same time.

Calculate the percentage of Mn as follows:
$\frac{\text { ppm. of Mn. (ml. of Solution } A) \times 100}{\text { Weight of sample (as-is) } \times 10^{6}}=\%$ Manganese (as-is basis 1
TOTAL NITROGEN (INCLUDING NITRATE NITROGEN) Liggett and Myers Tobacco Company

The method is essentially the one given in the A.O.A.C. Book of Methods (6).

DETERMINATION

Place 1.4000 grams (as-is) of tobacco in a 650 ml . Kjeldahl digestion flask. Add 35 ml . of an acid solution, consisting of 28.6 grams of salicylic acid in 1 liter of $\mathrm{H}_{2} \mathrm{SO}_{+}$isp. gr. 1.84). Shake until thoroughly mixed and allow to stand for at least one hour. Add 5 grams of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, place on digestion rack, turn on electric heaters to low heat, and digest until all danger of frothing has passed (about 30 minutes). Increase heat until acid boils briskly and continue boiling until white fumes of SO_{3} no longer escape from the lask. Add 0.7 gram of metallic mercury, 0.1 gram of $\mathrm{CuSO}_{4} \cdot$ $5 \mathrm{H}_{2} \mathrm{O}$. and 5 grams of $\mathrm{K}_{3} \mathrm{SO}_{\ddagger}$, and continue boiling for 2 hours, at which time the liquid is colorless. If the contents of the flask are likely to become solid before this point is reached, add 5 ml . of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (sp. gr. 1.84) and continue heating. Allow the flasks to cool for 20 to 30 minutes, add 250 ml . of distilled water and a few pieces of granulated zinc to prevent bumping. Pour $70-80 \mathrm{ml}$. of a sodium hydroxide-sodium thiosulfate solntion (consisting of 200 ml . of sodium thiosulfate. made by dissolving 1400 grams of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ in 1250 ml . of distilled water. mixed with 5 liters of 40_{5}° NaOH solution) down the side of the flask so that it does not mix at once with the acid solution. Connect flask to condenser by means of a Kjeldahl connection bulb, taking care that the tip of the condenser extends below the surface of an accurately measured volume of $\mathrm{N} / 10 \mathrm{H}_{2} \mathrm{SO}_{4}$ solution contained in the receiver. Mix contents by shaking- and distill until all the NH_{3} has passed over into the measured quantity of the standard acid. The first 150 ml . of distillate normally contains all the NH_{3}. Titrate the
excess acid with $\mathrm{N} / 10 \mathrm{NaOH}$ solution, alizarin red S indicator being used, and calculate the results as follows:

$$
\frac{\text { ml. of } \mathrm{N} / 10 \mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{ml} \text {. of } \mathrm{N} / 10 \mathrm{NaOH}}{\text { Weight of sample (as-is) }} \times 0.140=\% \text { Total Nitrogen }
$$

NITRATE NITROGEN

Liggett and Myers Tobaceo Company

The method is essentially that described in the A.O.A.C. Book of Methods (7).

DETERMINATION

Place 1.4000 grams (as-is) of tobacco in a 650 ml . Kjeldahl digestion flask. Add 5 grams of $\mathrm{FeSO}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 10 \mathrm{ml}$. of distilled $\mathrm{H}_{2} \mathrm{O}$, and shake flask until all particles of tobacco are thoroughly wet. Wash down the sides of the flask with 25 ml . of distilled water. Let this mixture stand for one hour, mixing it frequently by rotating flask. Add 25 ml . of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (sp. gr. 1.84), and mix thoroughly by rotation. Wash down neck and sides of flask with 15 ml . of water. After sample has been in contact with the sulfuric acid solution for one hour, place the flask on the digestion rack and heat until dense fumes of SO_{3} no longer appear. Add 0.7 gram of metallic mercury, 0.1 gram of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, and 5 grams of $\mathrm{K}_{2} \mathrm{SO}_{4}$, and continue boiling for 2 hours. If the contents of the llask are likely to become solid before this point is reached, add 5 ml . of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (sp. gr. 1.84), and continue heating. Allow the flask to cool for 20 to 30 minutes, add 250 ml . of water and a few pieces of granulated zinc to prevent bumping. Pour $70-80 \mathrm{ml}$. of a sodium hydroxide-sodium thiosulfate solution (consisting of 200 ml . of sodium thiosulfate solution, made by dissolving 1400 grams of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ $5 \mathrm{H}_{2} \mathrm{O}$ in 1250 ml . of distilled water, mixed with 5 liters of 40% MaOH solution) down the side of the flask so that it does not mix at once with the acid solution. Connect flask to condenser by means of a Kjeldahl connection bulb, taking care that the tip of the condenser extends below the surface of an accurately measured volume of $\mathrm{N} / 10 \mathrm{H}_{2} \mathrm{SO}_{4}$ solution contained in the receiver. Mix contents by shaking, and distill until all the NH_{3} has passed over into the measured quantity of the standard acid. The first 150 ml . of distillate normally contains all the NH_{3}. Titrate the excess acid with $\mathrm{N} / 10 \mathrm{NaOH}$ solution, alizarin red S indicator being used. Calculate the nonnitrate nitrogen and nitrate nitrogen as follows:
$\frac{\mathrm{ml} \text {. of } \mathrm{N} / 10 \mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{ml} \text {. of } \mathrm{N} / 10 \mathrm{NaOH}}{\text { Weight of sample (as-is) }} \times 0.140=\%$ Nonnitrate Nitrogen
$\%$ Total Nitrogen - \% Nonnitrate Nitrogen $=\%$ Mitrate Nitrogen

AMMONIA NTTROGEN

Agricultural Experiment Station, University of Kentucky APPARATUS

A Van Slyke and Cullen (44) aeration apparatus is used.

REAGENTS

Phosphate-borate buffer solution.-Prepare this solution according to the directions of Pucher, Vickery, and Leavenworth (35), as follows: Mix thoroughly 750 ml . of 0.1 M potassium dihydrogen phosphate (13.6 grams per liter) with 250 ml . of 0.05 M borax (19.1 grams per liter).

Tashiro's indicator.-Prepare by adding 0.375 gram of methyl red and 0.245 gram of methylene blue to 95 percent ethanol, and diluting to 300 ml . with 95 percent ethanol.

DETERMINATION

Transfer a finely ground sample, equivalent to 0.5 gram of moisturefree tobacco, to a $38 \times 200 \mathrm{~mm}$. test tube. Add 10 m . of the phosphateborate reagent and 10 drops of capryl alcohol. Just before the stoppers are tightened, add 5 ml of $\mathrm{N} / 2 \mathrm{NaOH}$, containing 5 grams of borax per 100 ml . Aerate the reaction mixture for 2.5 hours at a rapid rate during which time the ammonia is absorbed in 15 ml . of $\mathrm{N} / 50 \mathrm{HCl}$. At the end of the aeration period wash the aeration tubes, inside and out, with distilled water into the receiving acid. Add one drop of the indicator, and titrate the solution to a gray or slightly green color with $\mathrm{N} / 50 \mathrm{NaOH}$ solution. Make a separate blank determination with each set of samples. Calculate the percentage of ammonia nitrogen as follows:
$\frac{\text { Normality of } \mathrm{NaOH} \times(\text { Sample }- \text { Blank }) \mathrm{ml} . \mathrm{NaOH} \times 1.4}{\text { Weight of sample (grams) }}=\underset{\substack{\% \\ \text { Nitrogen }}}{\underset{\text { Amia }}{ }}$

PROTEIN NITROGEN

Liggett and Myers Tohacco Company

DETERMINATION

Place 2.000 grams (as-is) of ground tobacco in a 250 ml . Erlenmeyer flask, add 100 ml . of 0.5 percent acetic acid solution, beat the mixture to boiling, and reflux for 15 minutes. Filter with suction while hot, using a Buchner funnel, size 2A, and Whatman No. 1 filter paper, diam. 15 cm . Press filter paper into the fumel so that about 2 cm . extends up on the inside wall of the funnel. Wash the residue with hot 0.5 percent acetic acid solution until the filtrate becomes colorless, usually about 450 ml . Place the filter paper and residual tobacco in a 650 ml . Kjeldahl digestion flask, add 0.7 gram of metallic mercury, 0.1 gram of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}, 5$ grams of $\mathrm{K}_{2} \mathrm{SO}_{4}$ and 25 ml . $\mathrm{H}_{2} \mathrm{SO}_{4}$ (sp. gr. 1.84). Mix thoroughly by rotating flask, place on digestion rack, heat slowly until frothing ceases, and then increase heat until solution boils briskly. Continue digestion for 2 hours, at which time the mixture is colorless. If the contents of the flask are likely to become solid before this point is reached, add 5 ml . of $\mathrm{H}_{2} \mathrm{SO}_{4}$ ($\mathrm{sp} . \mathrm{gr} .1 .84$), and continue heating. Allow the flask to cool for 20 to 30 minutes, add 250 ml . of distilled water and a few pieces of granulated zinc to prevent bumping. Pour $70-80 \mathrm{ml}$. of a sodium hydroxide-sodium thiosulfate solution (consisting of 200 ml .
of sodium thiosulfate, made by dissolving 1400 grams of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. $5 \mathrm{H}_{2} \mathrm{O}$ in 1250 ml . of water, mixed with $5 \mathrm{lic}, \mathrm{ss}$ of $40 \% \mathrm{NaOH}$ solution) down the side of the flask so that it does not mix at once with the acid solution. Connect flask to condenser by means of a Kjeldahl connection bulb, taking care that the tip of the condenser extends below the surface of an accurately measured volume of $\mathrm{N} / \mathrm{IO}_{2} \mathrm{SO}_{4}$ solution contained in the receiver. Mix contents by shaking, and distill until all the NH_{3} has passed over into the measured quantity of the standard acid. The first 150 mL . of distillate normally contains all the NH_{3}. Titrate the excess acid with $\mathrm{N} / 10$ NaOH solution, alizarin red S indicator being used, and calculate the results as follows:
(ml . of $\mathrm{N} / 10 \mathrm{H}_{2} \mathrm{SO}_{4}-\mathrm{mL}$. of $\mathrm{N} / 10 \mathrm{NaOH}$)

$$
\text { Weight of sample (as-is) } \times 0.140=\% \text { Protein Nitrogen }
$$

Calculate the results on a moisture-free and sand-free basis. Muitiply percent protein nitrogen by 6.25 to obtain percent protein.

ALPHA AMINO NITROGEN

Liggett and Myers Tobacco Company determination

Preparation of Extract A.-Place 6.67 grams (as-is) of ground tobacco in a 250 ml . Erlenmeyer Rask, add 40 ml . of distilled water, mix until all particles of the tobacco are wet, and then add 60 ml . of distilled water, washing down the sides of the flask. Close llask with rubber stopper and let it stand for 16 hours at room temperature. Fifter mixture through a fluted filter paper and designate filtrate as "Extract A."
Alpha amino nitrogen.-Determine alpha amino nitrogen using 10 ml . aliquots of the "Extract A" by the Van Slyke Method (Methods of Analysis, A.O.A.C. 6th ed., p. 429 (1945) or 7h ed., p. 364 (1950)). Calculate the results as follows:

$$
\frac{\left(m l . N_{2}-\text { hlank }\right) \times \mathrm{F} \times 100}{\text { Weight of sample }(\mathrm{as}-\mathrm{is})}=\% \text { Alpha Amino } N \text { (as-is) }
$$

Where:

$$
\begin{aligned}
& \mathrm{F}=1 / 2\left[\frac{(\mathrm{P}-\mathrm{W})}{760}\right] \times \frac{273}{\mathrm{~T}} \times .00125 \\
& \mathrm{P}=\text { barometric pressure in mu. } \\
& \mathrm{W}=\text { vapor pressure of } \mathrm{H}_{2} \mathrm{O} \text { at } \mathrm{t}^{\circ} \mathrm{C} . \\
& \mathrm{T}=\text { absolute temperature }\left(273+t^{\circ} \mathrm{C} .\right) \\
& t^{\circ} \mathrm{C}=\text { temperature at which the volume } \\
& \text { of nitrogen obtained is measured. }
\end{aligned}
$$

Average duplicate determinations and convert the percentage from an as-is to a moisture-free basis or to a moisture and sand-free basis, using the appropriate factors.

TOTAL VOLATILE BASES (AS $\mathbf{N H}_{3}$)

The American Tobacco Company

 aPPARATUSThe apparatus required for this determination is described and illustrated in the articles by Bradford et al (8) and Moseley ot al (23).

DETERMINATION

Transfer a 5 -gram sample of tobacco to an 800 ml . Kjeldahl flask. Add 75 ml . of standard trisodium phosphate solution (consisting of 58.67 grams of anhydrous trisodium phosphate and 3.33 grams of sodium hydroxide per liter) and connect the flask to an apparatus (see References) arranged for the distillation in a current of steam. Collect the distillate in a 1000 ml . Erlemmeyer fask containing an excess of $N / 10$ hydrocholoric acid. Turn on the burner bencath the reaction flask and adjust to a medium height until the liguid within the flask begins to boil. Admit steam from a low pressure line (5 to 10 pounds) and adjust to the rate which will yied 800 ml . of distilate in 45 minutes. Adjust the flame beneath the reaction flask so that the volume within the flask remains constant throughout the distillation. Titrate the cxcess of hydrochloric acid with $\mathrm{N} / 10$ sodium hydroxide using 7 to 8 drops of methyl red-methylene bhe, an achromatic indicator. Calculate the results as follows:

$$
\frac{\mathrm{ml.} \mathrm{~N} / 10 \mathrm{HCl} \text { required }}{\text { Weight of moislure-fice sample }}=\frac{0.17032}{\text { (moisture-free basis) }}
$$

NICOTINE, NORNICOTINE AND TOTAL ALKALOIDS (AS NICOTINE)

R. J. Reynolds Tobacco Company

The method submitted is a description of a published article (12) by Cundiff and Markunas.

APPARATUS

Precision-Shell titrimeter with calomel and glass clectrodes (used for the potentiometric titrations). Wrist-action shaker, Model BB, Burrell Corporation, Pittsburgh, Pa., or equal.

REAGENTS AND SOLUTIONS

(1) Barium hydroxide, $\mathrm{Ba}(\mathrm{OH})_{2} \cdot \mathrm{SH}_{2} \mathrm{O}$, A.C.S. grade; (2) Barium hydroxide solution, a saturated aqueous solution; (3) Benzene-chloroform solution, consisting of 900 ml . of benzene and 100 ml . of chloroform; (4) Celite, Johns-Manville Corporation's analytical filter aid; (5) Acetic anhydride, A.C.S. grade; (6) Crystal violet indicator, one gram of crystal violet dissolved in 100 ml . of glacial acetic acid (A.C.S. grade); (7) 0.025 N Perchloric acid solution, 2.3 ml . of 72 percent perchloric acid (A.C.S. grade) diluted to one liter with glacial acetic acid (A.C.S. grade). Standardize the perchloric acid solution against potassium acid phthalate (primary
standard grade) according to the procedure of Seaman and Allen (Anal. Chem., 23, 592 (1951).

DETERMINATION

Accurately weigh a sample of 2.5 to 3.5 grams of the finely ground tohacco and transfer to a 250 ml . glass-stoppered Erlenmeyer flask. Add approximately one gram of granular barium hydroxide and 15 ml . of the barium hydroxide solution. Swirl the flask until the tobaceo is thoroughly wetted, adding more barium hydroxide solution if necessary. Pipette 100 ml. of benzene-chlorolorm solution into the flask, stopper tightly, and agitate vigorously for 10 minutes, using the Wrist-action shaker, or for 15 minutes if shaken by hand. Add approximately 2 grams of celite, swirl flask until the filter aid is well dispersed, allow the two liquid phases to separate, and filter the benzene-chloroform layer through Whatman No. 2 filter paper into a second flask. Pipette 25 ml . aliquots of the filtrate into each of two 125 ml. Erlenmeyer flasks. Pass a stream of air over the surface of the solution in the first flask for 5 minutes to remove any free ammonia that might be present in the filtrate. Add 0.5 ml . of acetic anhydride to the second flask. To each flask, add one drop of crystal violet indicator and titrate to a green end point with the 0.025 N perchloric acid. If the nornicotine content is found to be as high as 25 percent of the nicotine content, acetylate another portion of the filtrate and titrate potentiometrically to obtain the equivalence point. Calculate the results as follows:

$$
\begin{aligned}
& \text { \% Total Alkaloids }=\frac{V_{1} \times N \times 32.45}{\text { Weight of moisture-free sample }} \\
& \text { \% Nicotine }=\frac{2 V_{2}-V_{1} \times N \times 32.45}{\text { Weight of }} \frac{\mathrm{moisture} \text { free sample }}{} \\
& \text { \% Nornicotine }=\frac{2\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right) \times \mathrm{N} \times 29.64}{\text { Weight of moisture-frec sample }} \\
& \text { Where: }
\end{aligned}
$$

$$
\begin{aligned}
& V_{1}=\begin{array}{l}
\text { ml. of perchloric acid required } \\
\text { to neutralize nonacetylated aliquot. }
\end{array} \\
& V_{2}=-\begin{array}{l}
\text { ml. of perchloric acid required } \\
\text { Lo neutralize acetylated aliquot. }
\end{array} \\
& \mathrm{N}_{\mathrm{N}}=\begin{array}{l}
\text { normality of perchloric acid } \\
\text { solution. }
\end{array}
\end{aligned}
$$

The factors 32.45 and 29.64 in the above equations are based on the fact that nicotine and nornicotine are dibasic in the nonaqueous solvents used. Accordingly, 1 ml . of $\mathrm{N} / 1$ perchloric acid $=0.081114$ grams of nicotine or 0.0741 grams of nornicotine. Inasmuch as 25 ml , aliquots (corresponding to $1 / 4$ of the total extract) are taken for titration, above figures are multiplied by 4. To get percentages, they are multiplied further by 100.

TOTAL ALKALOIDS

Tobacco Section, Tobacco \& Sugar Crope Research Branch, Crops Research Division, ARS APPARATUS

(a) A slight modification of the Griffith and Jeffrey (16) improved steam distillation apparatus was used; (b) Beckman spectrophotometer, Model DU. DETERMINATION

Distillation-Accurately weigh a sample of about 0.3 gram (as-is) and place it in the receiver of the distillation apparatus, together with about one gram of sodium chloride and 1 ml . of 30 percent sodium hydroxide. Place 2 ml. portion of $1+4$ hydrochloric acid in the receiver and distill nearly 250 ml . in about 15 minutes. Make to a volume of 250 ml .

Spectrophotometric analysis.-Determine nicotine in the distillate by the spectrophotometric method of Willets et al (49), except that the specific extinction value of 33.4 at $259 \mathrm{~m} \mu$ obtained experimentally on the instrument in this laboratory is used in the calculation instead of the value 34.3 given in the original method.

TOTAL REDUCING SUBSTANCES, TOTAL REDUCING SUGARS, AND POLYPHENOLS

P. Lorillard Company

 REAGENTS AND SOLUTIONS(R1)—Fehling's solution A.-82.4 grams of copper sulfate pentahydrate dissolved in water to make 1 liter of solution.
(R2) --Fehling's solution B.- 346 grams of Rochelle Salt (potassium sodium tartrate) dissolved in water in a I-liter volumetric flask. Sufficient concentrated sodium bydroxide solution is added to give 130 grams of sodium hydroxide. The strength of this concentrated sodiam hydroxide is determined by titration with standard acid.
(R3)—Iodide-lodate solution.- 120 grams of potassium iodide, 10.8 grams of potassium iodate, and 5 ml . of a saturated sodium hydroxide solution, made up to $2,000 \mathrm{ml}$, with water in a volumetric flask.
(R4) - 5 N Sulfuric acid. 135 ml . of concentrated sulfuric acid (sp. gr. $1.835-1.840$) cautiously mixed with 800 ml . of water, and made up to 1 liter in a volumetric flask at room temperature.
(R5)—Potassium oxalate solution.- 330 grams of potassium oxalate dissolved in water and made to 1 liter in a volumetric hask at room temperature.
(R6)-Sodium thiosulfate solution.-95 grams of sodium thiosulfate pentahydrate dissolved in $3,000 \mathrm{ml}$. of water. One ml. of chloroform is added as a preservative. Stanctardize against $0.1250 \mathrm{~N} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution (6.1291 grams $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{5}$ per liter).
(R7)-Neutral lead acetate solution.-100 grams of neutral lead acetate trihydrate dissolved in 160 ml . of water.

PART I-TOTAI REDUCING SUBSTANCES

(a) Preparation of fllirate A---Place a 3 -gram sample (as-is) and 0.3 -gram CaCO_{3} in a 500 ml . volumetric flask, add 200 ml . of water, and reflux gently for 1 hour with occasional manual shaking. Allow flask and contents to cool to room temperature, make up to volume with water, mix, filter by gravity through a fluted circle of Whatman No. 44. filter paper, and designate as filtrate "A."
(b) Determination.-Pipetie a 20 ml . aliquot of filtrate A (equivalent to a 0.12 -gram sample), and transfer to a 500 ml . Erlenmeyer flask containing 30 ml , of water.
($b b$).-Pipette 25 ml . of each (R1) and (R2) iuto the Erlenmeyer flask, and mix by gentle manual shaking. Invert a 100 ml . beaker over the mouth of the flask, and place in a thermostatically controlled water bath at $80^{\circ} \mathrm{C}$. for 30 minutes. Remove and pipette 25 ml . of (R3) to the hot solution. Swirl and add 25 ml . of (R4). Swirl for 5 seconds, then add 20 ml . of (R5). Titrate with (R6). using 5 percent starch indicator (1 ml , added near end point). Record mI. of sodium thiosulfate used. In the same manner, yun a blank on 50 ml . of water, using the above procedure.
(c) Calculation.-Subtract ml. of thiosulfate used in blank titration from m. of thiosulfate used in sample titration.

Then,

$$
\text { Ml. } \times \text { Normality } \times 63.57=\text { Mg. Cu reduced. }
$$

From Quisumbing and Thomas Table* determinc corresponding amount of d-glucose in aliquot and convert to grams.

$$
\frac{\text { Grams d-glucose }}{\text { Grams of sample in aliquot }} \times 100=\% \text { Total Reducing Substances. }
$$

PART 2--TOTAL REDUCING SUGARS

(a) Preparation of filtrate B.-I xtract a 5 -gram sample (as-is) for 16 hours with 80 percent ethano in a Soxhlet extraction apparatus. Ise an alundum extraction thimble ($34 \times 100 \mathrm{~mm} .$. medium porosity) for the extraction. Insert a taved plug of glass wool in the thimble after weighing out the 5 -gram sample. (Save the extracted tobacco for the determination of starch.) Transfer the alcoholic extract to a 250 ml . volumetric flask and make up to volume with 80 percent ethanol. Transfer 100 ml . of the alcoholic extract (equivalent to a 2 -gram sample) to a 250 ml . beaker, and cvaporate on the steam bath until the odor of alcohol can no longer be detected. Transfer the residual aqueous solution to a 250 ml . volumetric flask, wash beaker several times with small portions of hot (about $80^{\circ} \mathrm{C}$.) water and add washings to the aqueous solution in the volumetric fask. Cool solution to room temperature and clarify with 1.5 ml. of (R7). Delead

[^2]with 0.3420 gram of solid sodium oxalate, make up to volume with water, mix, filter by gravity through Whatman No. 44 filter paper, and designate as filtrate "B." Test a 10 ml. portion of this filtrate with a few crystals of sodium oxalate to make sure that all the lead has been removed.
(b) Determination.-Pipette a 25 ml . aliquot of filtrate B (equivalent to a 0.2 -g am sample), transfer to a 500 ml . Erlenmeyer flask containing 25 ml . of water, and continue the determination as described in paragraph (bb) of Part 1.
(c) Calculation.--Subtract mi. of thiosulfate used in blank titration from ml . of thiosulfate used in sample titration.
Then,
$$
\text { M1. } \times \text { Normality } \times 63.57=\mathrm{Mg} . \mathrm{Ca} \text { reduced. }
$$

From Quisumbing and Thomas Table determine corresponding amount of d-glucose in aliquot and convert to grams.

$$
\frac{\text { Grams d-glucose }}{.200} \times 100=\widetilde{r} \text { Total Reducing Sugars }
$$

PART 3-POLYPHENOLS

Polyphenols.--Perceat total reducing substances (as d-glacose) minus \% total reducing sugars (as d-glucose) $=\%$ polyphenols (as d-glacose).
Rejerences.-(1) C. A. Browne and F. W. Zerban, "Physical and Chemical Methods of Sugar Analysis," 3d. ed., pp. 828 and 1235, John Wiley and Sons, New York (1941). (2) P. A. Shaffer and A. F. Hartman, J. Biol. Chem., 45, 349-390 (1921). (3) M. A. Joslyn, "Methods in Food Analysis," p. 149, Academic Press, New York (1950). (4) Methods of Analysis, A.O.A.C., 8th. ed., p. 549 (1955).

PECTIC SUBsTANCES

Standards Branch, Tobaeco Division, AMS apparatus

The apparatus used is essentially a Weilhe-Phillips (46) extractor arranged as illustrated in figure 1 .
It consists of a modified extraction crucible (A), designated as a "Pectin Extractor, ${ }^{5}$ the bottom of which is rimmed to fit a one-bole, No. 9, rubber stopper (E), carrying the $6 \mathrm{~mm} . \mathrm{O}$. D. glass tube (F). The pecin extractor is held in position by means of a clamp attached to a ring stand. The fritted-glass disk (D) is of "C" porosity. The 2-ititer beaker (C) serves as a water bath. The glass rod (B), having fire-polished ends, is kept in the pectin extractor throughout the successive operations, and is used for stirring the sample with the solvent. The suction flask (H): of 1 -liter capacity,

[^3]

NEC. 42日8-97(6) AMS
Figure 1.-Apparatua for extraction of pectic substances.
is connected to the vacuum line through the rubber tube (J). By manipulation of the screw clamps (G) and (I), the solvent is withdrawn from the pectin extractor through tube \mathbf{F}, into the suction flask. It is advantageous to open the screw clamps only partially and to apply a gentle suction. Otherwise, the ground tobacco packs on the fritled-glass disk and thus slows up filtration.

reagents

(1) 10 percent Hydrochloric acid solution; (2) Ethanol solution, 1 volume of distilled water to 2 volumes of 95 percent ethanol; (3) N/5 (approx.) Sodium hydroxide solution; (4) N/l (approx.) Acetic acid solution; (5) $\frac{\text { Molns }}{10}$ (approx.) aqueous calcium chloride solution; (6) 2 Molar (approx.) aqueous calcium chloride solution; (7) N/20 (approx.) Hydrochloric acid solution; (8) 0.5 percent Aqueous ammonium citrate solution; and (9) 2 percent Aqueous ammoniun cilrate solution.

determination

Part 1-Preliminary extraction with alcohol.-Dry the pectin extractor and glass rod for 1 hour or longer at $100^{\circ} \mathrm{C}$., and allow to cool to room temperature in a desiccator, and determine their combined tare weight. Assemble the apparatus, close the screw clamps, and heat the water in the beaker to $50^{\circ} \mathrm{C}$. Weigh a sample, equivalent to 2 g . of moisture-free tobacco, place in the pectin extractor, and add 50 ml . of 95 percent ethanol, previously heated to $50^{\circ} \mathrm{C}$. Stir mixture with the glass rod from time to time during a period of approximately 30 minutes. Apply gentle suction through screw clamp to draw solvent into suction flask. Close screw clamps and repeat the $50^{\circ} \mathrm{C}$. alcohol extraction, using 25 ml . of solvent for a period of approximatcly 1.5 minutes. Discard the combined alcoholic extracts.

Part 2-Pecitinic acids or "pectin".-(a) extraction with water: Siphon off the water from the beaker. Close the screw clamp and add 90 ml . of distilled water to the residual tobacco in the pectin extractor, stirring the mixture from time to time at room temperature for 30 minutes. Draw off the extract to the suction hask by gentle suction and repeat the 30 -minute extraction with water twice more. Transfer the combined aqueous extract in the suction flask to a 500 ml . volumetric flask, dilute to the mark with water and mix.
(b) rrecipitation of pectic material: Pipette a 100 ml . aliquot of the 500 ml . solution (corresponding to 0.4 g . of moisture-free tobacco) into a 400 ml . beaker, and add 5 ml . of the 10 percent hydrochloric acid, while stirring. Add, while stirring, 200 ml . of 95 percent ethanol, and allow to stand overnight. Filter the solution on a filter paper ($11 \mathrm{~cm} . \mathrm{S} \& \mathrm{~S}$ No. 597) ${ }^{\circ}$.

[^4]Wash the pectic material on the paper three times with $1: 2$ aqueous alcoholic solution, and once with 95 percent ethanol. During this operation, do not allow the gelatinous precipitate to dry on the filter paper. Dissolve the pectic precipitate on the paper completely by pouring through successive porlions of a hot aqueous ammoniacal solution (approximately $1.0-1.5 \%$). Collect the filtrate in an 800 ml . beaker on which a 200 ml . mark has been made. Wash the filter paper three more times with hot water, and collect the washings in the beaker containing the main filtrate. Dilute the combined filtrate with water to 200 ml ., add 150 ml . of the $\mathrm{N} / 5$ sodium hydroxide solution, while stirring, and allow the solution to stand overnight. Add 60 ml . of $\mathrm{N} / 1$ acetic acid solution with stirring and allow to stand for a few minutes. Add dropwise 25 ml . of $\frac{\mathrm{M}}{10} \mathrm{CaCl}_{2}$ solution while stirring (preferably with a mechanical stirrer), and follow with the addition of 25 ml . of $2 \mathrm{M} \mathrm{CaCl}_{2}$, also added dropwise, and stirred in the same manner. Heat to boiling, with occasional stirring, and boil the mixture for two minutes over a recluced flame. Filter the hot solution through a filter paper ($11 \mathrm{~cm} . S \& S N o .597$), and wash the calcium pectate precipitate thoroughly with hot water. Wash the precipitate jnto the 800 ml . beaker with at least 100 ml ., but not over 200 ml . of water, and boil the mixture for 2 minutes. Filter through a dried and weighed 30 ml . fritted glass crucible of porosity "M." During the filtration and washing in the crucible do not allow the crucible to drain completely until the very last, otherwise, the precipitate packs and the filtration is slowed considerably. Wash the precipitate in the crucible several times with hot water, then three times with 95 percent ethanol. During washing with the ethanol, the precipitate may be stirred with a small glass rod having fire-polished ends, and any precipitate adhering to the rod washed into the crucible with cthanol. Finally, wash the precipitate twice with ether. Warm the crucible on the steam bath until the odor of ether is no longer noticeable, and dry overnight at $100^{\circ} \mathrm{C}$. Cool to room temperature in a desiccator over calcium chloride and weigh.
(c) determination of impurities in calclum pectate: Place the fritted-glass crucible with its contents on its side in a 400 ml . beaker, and add 2 percent aqueous ammonium citrate solution in sufficient quantity to cover the crucible. Cover the beaker with a cover glass, and heat on the steam bath (stirring occasionally with a glass rod) until the calciun pectate is dissolved. Filter the solution, while still hot, through a tared Gooch crucible containing an asbestos mat, and transfer the undissolved material into the crucible with a stream of hot water from a wash bottle. Wash the undissolved material several times with hot water, dry at $100^{\circ} \mathrm{C}$. for 3 hours, cool in a desiccator containing calcium cliloride, and weigh.
(d) calculation of results: Calculate the percentage of water-soluble
pectinic acids (pectin), as caicium pectate, as follows:
(Weight of Calcium Pectate - Weight of Inpurities) $\times 100$
0.4
$=\%$ Pectinic Acids (pectin), as calcium pectate, in the moisture-free sample
Part 3-Protopectin.-(a) pectic fraction soluble in hot N/20 HCl solution: Close screw clamps, fill the beaker with water, and heat to $80-85^{\circ} \mathrm{C}$. Add 90 ml . of the $\mathrm{N} / 20 \mathrm{FICl}$ solution, previously heated to $80-85^{\circ} \mathrm{C}$. to the residual tobacco in the pectin extractor, and stir the mixture occasionally with stirring rod for 30 minutes. Draw off the acid extract into the suction llask under slight suction. Repeat the 30 -minute extraction with $\mathrm{N} / 20 \mathrm{HCl}$ solution four more times. Transfer the combined acid extract to a 500 ml . volumetric flask, cool to room temperature, dilute to the mark with water, and mix.
(b) precipitation of pectic material and determination of lapurities: Determine the protopectin and impurities as described in paragraphs (b) and (c) of Part 2.
(c) calculation of results: Calculate the percentage of protopection (the pectic substance soluble in hot $\mathrm{N} / 20 \mathrm{HCl}$ solution), as calcium pectate as follows:
$\frac{\text { (Weight of Calcium Pectate }- \text { Weight of Impurities) } \times 100}{0.4}$
$=\%$ Protopectin (az calcium pectate) in moisture-free sample

Part 4-Pectic acilland pectates.-(a) extraction with 0.5\% amaronium chtrate solution: Close the screw clamps and add 90 ml . of the 0.5 percent aqueous ammonium citrate solution, previously healed to $80-85^{\circ} \mathrm{C}$., to the residual tobacco in the pectin extractor. Stir the mixture from time to time with the glass rod during the extraction for 30 minutes. Draw of the extraci into suction flask as in extractions above, and repeat the 30 -minute digestion with hot 0.5 percent aqueous ammonium citrute solution four more times. Transfer the combined extract to a 500 ml . volumetric flask, cool to room temperature, dilute to the mark with water. and mix.
(b) precipitayon of pectic material and determination of impurities: Precipitate the pectic material and determine the impurities following the exact procedure described in paragraphs (b) and (c) of Part 2.
(c) calculation of results: Calculate the percentage of pectic acid and pectates, as calcium pectate, as follows:
$\frac{\text { (Weight of Calcium Pectate }- \text { Weight of Impurities) } \times 100}{0.4}$
$=\%$ Pectic Acid and Pectates, as calcium pectate, in moisture-iree sample
Part 5-Tobacco residuc.-Wash the tobacco residue and stirring rod in
the pectin extractor with three successive 5 to 10 ml . portions of water, using suction. Disconnect the pectin extractor from the rest of the apparatus, and dry the outside with a towel. Dry the extractor containing the tobacco residue and the glass rod overnight at $100^{\circ} \mathrm{C}$., cool in a desiccator containing anhydrous calcium chloride to room temperature, and weigh. Calculate the percentage of residue remaining from the original 2 -gram moisture-free sample. Retain the tobacco residue for the determination of pentosans.

TOTAL PECTIC SUBSTANCES (AS CALCIUM PECTATE)

Add the percentages of pectinic acids (if present), protopectin, and pectic acid and pectates (all as calieium pectate) to obtain the total pectic substances.

URONIC ACIDS (AS ANHYDRIDES)

Standards Branch, Cobacco Divigion, AMS APPARATUS

The apparatus described by Browning (9) was used. However, anhydrous calcium chloride was used in place of anhydrone in the long drying tube, absorption tube, and guard tube. Treat the anhydrous calcium chloride before using as follows: Place the material in a tube of suitable size and pass a slow stream of dry carbon dioxide through for 30 minutes. Then pass a stream of dry air, free of carbon dioxide, through for one hour. Preserve the anhydrous CaCl_{2}, thus threated, in a well-stoppered bottie.

Fill the trap to a depth of about 7 min., above the inlet thene, with the silver phosphate solution. Renew the solution in the trap after cach determination.

REAGENTS

(1) 12 percent Hydrochloric acid (by weight).—Add $1,000 \mathrm{ml}$. of concentrated hydrochloric acid (d. 1.19) to 2380 ml . of distilled water with stirring.
(2) Silver phosphate solution.-Add 10 grams of silver carbonate to 300 ml . of 85 percent ortho phosphoric acid. Heat the mixture on the steam bath for one hour, and at the same time pass through it a stream of air, free of carbon dioxide. Filter the solution through a frited-glass Buchner funnel of porosity "M."

DETERMINATION

Place a sample equivalent to 2 grams of moisture-free tobacco in the reaction flask, and add 60 ml . of the 12 percent hydrochloric acid solution and two boiling chips. Connect the reaction flask to the water-cooled condenser, and heat the flask in a glycerol batim at such a rate that the temperature is raised to $70^{\circ} \mathrm{C}$. in 20 minutes. During this time, as well as throughout the determination, pass dry air, free of carbon dioxide, through the apparatus at the rate of two 10 three bubbles per second. I'he heatirg at
$70^{\circ} \mathrm{C}$. is for the purpose of removing CO_{2} from carbonates that may be present (28). Disconnect the absorption tube, place in a stoppered test tube, and allow to remain near the balance for five minutes. Weigh the absorption tube and again connect it to the apparatus. Raise the temperature of the glycerol bath slowly to $137-140^{\circ} \mathrm{C}$. over a period of 30 to 45 minutes, and maintain this temperature for 5 hours. Disconnect the absorption tube from the apparatus without interrupting the flow of air (carbon dioxidefree), place in a stoppered test tube, allow to remain near the balance for 5 minutes, and weigh.
Conduct a blank determination, following exactly the procedure abovedescribed, except that no tobacco sample is added to the reaction flask. Deduct the weight of carbon dioxide obtained in the blank determination from the weight of carbon dioxide obtained in the actual determination. The difference represents the weight of carbon dioxide given off by the uronic acids.
Calculate the percentage of uronic acids (as anhydrides) as follows:
Weight of CO_{2} given off by the uronic acids $\times 400$
Weight of moisture-free sample
$=\%$ Uronic Acids (as anhydrides) (moisture- free basis)
PENTOSANS (5)

Standards Branch, Tolbaceo Division, AMS API'ARATUS

The apparatus consists of a 500 ml . distifling flask; a West type condenser having a cooling jacket 400 mm . long: and a dropping funnel of about 40 ml . capacity. The distilling flask and condenser are comected by a standard taper 19/38 ground-glass joint, and held together by two bronze springs fastened to glass hooks fused onto the condenser and onto the distilling flask. The dropping fumel is comected to the top of the distilling flask through a standard taper $24 / 40$ ground-glass joint, and similarly held fast with two bronze springs. When thus connected, the stem (6 mm . O.D.) of the dropping funnel extends about 30 mm . below the outlet tube of the distilling flask. The end of the stem is constricted to 2 to 3 mm . inside diameter, and bent so that the stream of the 12 percent hydrochloric acid could be directed against the wall of the distilling flask to wash down the plant material adhering to the wall.

REAGENTS

(1) Hydrochloric acid (12 percent by weight). -Add $1,000 \mathrm{ml}$. of concentrated hydrochloric acid (d. 1.19) to $2,380 \mathrm{ml}$. of water with stirring.
(2) Phloroglucinol solution.- Heat 300 ml . of the 12 percent hydrochloric acid solution in a beuker, and add 11 grams of phloroglucinol in small quantities at a time, stirring constantly untit it is nearly dissolved. Pour the hot solution into a sufficient quartity of 12 percent hydrochloric
acid (cold) to make a total volume of $1,500 \mathrm{ml}$. Allow the solution to stand at least overnight, but preferably for several days, to permit the diresorcin to crystallize. Filter the solution before use.

DETERMINATION

Weigh, in a weighing bottle, a sample of the tobacco residue from the determination of the pectic substances (preferably corresponding to 1.5 to 1.7 g . of the original 2 -gram moisture-free sumple), and transfer to the distillation flask. Add 100 ml . of the 12 percent hydrochloric acid solution and two boiling chips (Boileezers). Connect the apparatus, the distillation llask being supported on a wire gauze at a convenient height above a bunsen burner. Connect the dropping funel to the distillation llask, and commet the latter to the condenser. After inserting the dropping funnel, heat the distillation flask and contents, rather slowly at first and then so regulate the distillation rate that 30 ml . of distillate comes over in 10 minutes. Collect the distillate in a 50 ml . gradualed cylinder provided with a s!nall funnel and a folded filter paper ($121 / \mathrm{m}$ cm. $\mathrm{S} \& \mathrm{~S}$ No. 588). When 30 ml . distills over, add 30 ml . of the 12 percent Iydrochloric acid solution rapidly, by means of the dropping funnel, while rotating the fumm in such a manner as to wash down particles adhering to the sides of the distilling flask, and continue the distillation. At this point replace the 50 ml . graduated cylinder containing the distillate with another 50 ml. qraduated cylinder provided also with a small fumel and a folded filler paper.

Continue the distillation and collection of the distillate in 30 ml . quantities in the manner described above until the total distillate amounts to 360 ml . Add, with stiring, approximately twice the amount of phlorogiticinol reagent as is considered necessary to precipitate the amount of furfural expected, and dilute the volume of the solution to 400 ml . with 12 percent HCl solution. The solution turns progressively yellow, green, and finally atnost black. After again stiring, allow the solution to stand overnight.

Filter the amorphous black precipitate into a tured Gooch erucible having an aslestos mat, and wash with 150 ml . of distilled water in such a manner that the water is not entirely removed from the crucible until the very last. Dry the crucible and contents for four hours at $100^{\circ} \mathrm{C}$., cool in a desiccator over anhydrous calcium chloride, and weigh in a weighing bothe. The increase in weight of the Gooch crucible is considered to be furfural phloroglucide.

Calculate the weight of pentosans from the weight of plitoroglucicle. using the following formulas given by Kröber (19) :
(1) For a weight of phoroglucide, designaled by "a" in the following formulas, under 0.03 gram.

$$
\text { Pentosans }=(a+0.0052) \times 0.8949
$$

(2) For a weight of phloroglucide " a " between 0.03 and 0.3 gram then:

$$
\text { Pentosans }=(a+0.0052) \times 0.8866
$$

(3) For a weight of phlorogiucide " a " over 0.3 gram then:

$$
\text { Pentosans }=(a+0.0052 \times 0.8824
$$

Calculate the percentage of pentosans on the basis of the original unextracted moisture-free tobacco sample.

CRUDE FIBER (1)

The Imperial Tobacco Company, Led. determination

Place a 2-gram (as-is) sample into a one-liter Erlenmeyer Rask, add 50 ml . of petrolcum ether (boiling range 40° to $60^{\circ} \mathrm{C}$.), cover the flask with a watch glass, and allow to stand overnight. Pour the petroleum ether extract through a filter paper, and retain the filter paper for subsequent use. Add another 50 ml . portion of petrolcum ether to the sample, mix, and allow to stand for a few minutes. Filter through the original filter paper and allow to dry. Brush all adhering particles from the filter paper into the flask containing the tobacco. Warm the flask on the water bath until all the petroleum ether vapor has evaporated.
Bring to a boil in a beaker 200 ml . of sulfuric acid solution (12.5 g . $\mathrm{H}_{2} \mathrm{SO}_{4}$ per liter), and add this acid solution to the tobacco in the Erlenmeyer flask. Attach the flask to a reflux water-cooled condenser, bring the mixture to a boil quickly, and allow to boil gently for 30 minutes. Rotate the Erlenmeyer fask every few minutes to mix contents and to remove particles from the sides. Filter the mixture through a Buchner funnel having a Whatman No. 541 filter paper with a dise of butter muslin under it. Carry out the filtration fairly rapidly, so that the filtration of the bulk of the solution is completed within 10 minutes. Wash the residual material on the filter paper with hot water until the washings are acid-free.

Heat to boiling 200 ml . of aqueous sodium hydroxide solution (12.5 g . NaOH per liter) in a wasi bottle. Wash the entire contents in the Buchner [unnel with a stream of the hot sodium hydroxide solution from the wash bottle into the original Erlenmeyer flask, and pour the remainder of the sodium hydroxide solution into this flask. Connect the Erlenmeyer flask to the reflux condenser, bring the reaction mixture to a boil quickly, and boil gently for 30 minutes. Filter the solution through the same Buchner funnel using Whatman No. 541 filter paper (diam. 7 cm .) , and transfer the entire contents of the Erlenmeyer flask into the Buchner funnel with hot water. No muslin is used this time for the filtration. Wash the material in the funnel once with 1 percent hydrochloric acid solution and follow with hot water, washing until acid-free. Wash three times with ethanol, once with ether, and finally draw air through until the paper is dry. Detach the fiber quantitatively from the paper and place in a tared silica dish. Dry
in an electric oven at $100^{\circ} \mathrm{C}$. for one hour, allow to cool in a desiccator to room temporature, and weigh. Return the dish and contents to the oven for one-half hour and reweigh. Repeat this operation until a constant weight is obtained.

Char the dried crude fiber over a low flame, then bring to a dull red heat and maintain until the ignition is complete. Cool the dish and contents in a desiccator to room temperature, and determine the weight of the ash.

Calculate the percentage of crude fiber as follows:

$$
\left.\frac{\text { (Weight of Crude Fiber }- \text { Weight of Ash) }}{\text { Weight of sample (moisture-free basis) }} \times 1.00\right)=\underset{\substack{\text { Crude Fiber in } \\ \text { moisture-free sample }}}{\text { (}}
$$

CELLULOSE (20, 38)

Standards Branch, Tobacco Division, AMS DETERMINATION

Weigh a sample, equivalent to 2 grams of moisture-free tobacco, and transfer through a powder funnel to a 200 ml . Erlenmeyer flask provided with a standard taper ground-glass joint. Add 80 ml . of 95 percent ethanol and 20 ml . of nitric acid ($\mathrm{sp} . \mathrm{gr}$. 1.42), while rotating the flask. Connect the flask to a water-cooled reflux condenser, and heat the flask in a water bath maintained at near boiling temperature for one hour, stirring occasionally by lifting the flask and rotating. Transfer the contents of the flask to a 250 ml . beaker, using a stream of 95 percent ethanol from a wash bottle. Decant, under reduced suction, through a tared 50 ml . fritted-glass crucible of poresity "C," which has been fitted to a $1,000 \mathrm{ml}$. suction flask. (Before using the same crucille for another sample, determine its tare weight again, since the normal loss in weight of the crucible in this procedure was in the range of 2 to 6 mg .) Complete the transfer of the residual material in the beaker into the crucible with a stream of 95 percent ethanol from the wash bottle. Wash the material in the crucible by filling with 95 percent ethanol and draining three times under reduced suction. Transfer the matcrial from the crucible to the beaker and then to the original Erlenmeyer flask; using 80 ml . of 95 percent ethanol from a wash bottle for the purpose. Add 20 ml , of nitric acid as before, and repeat the abovedescribed relluxing and washing twice, or a total of three times. Transfer the cellulosic material into the crucible and wash three times with 95 percent ethanol. Finatly, wash the material with water five times in the same manner. During the washing with water, stir the material with a firepolished glass rod several times. Allow the crucible to stand in the 250 ml . beaker during the soaking and stirring period to catch the drainage.
If the successive 95 percent ethanol and water washes cannot be completed without overnight interruption, allow the material to remain in the Erlenmeyer flask antil the next day, because if left in the crucible it dries to a consistency that is difficult to disintegrate and wash effectively with water.

Dry the crucible and contents overnight at $100^{\circ} \mathrm{C}$. in an oven, and allow to cool in a desiccator over anhydrous calcium chloride for one-half to one hour. Weigh in a tared weighing bottle, and determine the weight of the "ernde cellulose." Place the crucille and contents in an electrically heated and thermostatically controlled mulle furnace, and heat for one hour after the temperature of the furnace reaches $550^{\circ} \mathrm{C}$. Place the crucible and contents on a wire gauze for 3 to 5 minutes for preliminary cooling, and then in a desiccator over anhydrous calcium chloride for one hour. Determine the weight of the ash and sublract this weight from the weight of the "crude cellulose" to obthin the weight of "ash-Iree cellulose." Calculate the percentage of "ash-Gree celluluse" as follows:

$$
\frac{\text { Ash-free Cellulose } \times 100}{\text { Weight of moisture-free sample }}=\% \text { Cellulose in moisture-free sample }
$$

LIGNIN (27)

Standards Branch, Tohareo Division, AMS REAGENTS

(1) 1% I' ydrochloric acid.-Add 111 g . of concentrated hydrochioric acid (d. 1.19) to $3,890 \mathrm{ml}$. of water.
(2) 72% Sulfuric acid.-Add 660 ml . of concentrated sulfuric acid (d. 1.84) to 41 lml . of water.

DETERMINATION

Transier a 7.5 -gram sample (moisture-frec equivalent weight) into an 80×33 mum. paper extraction thimble, insert a wad of absorbent cotton in the mouth of the thimble, extract with 95 percent ethanol for 8 hours in a Soxilet extraction apparatus. Then extract for 4 hours in the same apparatus with a 95 percent ethanol-benzene solution (1:2 by weight). Dry the thimble and contents on the stean bath until the odor of ethanol and benzene can no longer be delected. Transfer the extracted tobacco quantititively to a one-liter Eirlemmeyer flask. add 750 ml . of the 1 . percent hydroraloric acid solution and a few drops of capryl alcohol and boil the mixture under a rellux condenser for 3 hours. (Caution: When the mixture reaches the boiling point, it bas a tendency to foam and shoot up through the condenser. This may be avoided by regulating the flame under the flask, rolating the mixture. and aildiug a few more drops of eapryl alcohol.) Allow the mixture to cool to room temperature and filter through a dried (at $100^{\circ} \mathrm{C}$.) and woighed 50 ml . fritted-glass erucible of porosity "C." Wash with water until the fillrate is [rce of acid and, finally, with 95 percent ethanol. Dry the crucible and contents overnight in an oven at $100^{\circ} \mathrm{C}$., ullow to cool in a desiccator over anhydrous calcium chloride to room temperature, and weigh in a weighing botle. Calculate the percentage of loss due to the total of the three successive extractions.

Combine the extrasted tobacco of duplicate samples and griad the
material, first in a small hand-operated mill ${ }^{\text {s }}$ to reduce particle size, and then pulverize in a mortar, and dry for 2 hours at $100^{\circ} \mathrm{C}$.
Weigh accurately triplicate samples, ranging from 0.5 to 0.7 gram , from a weighing bottle, and designate as (a), (b), and (c). Calculate from the weight of each of these three samples the corresponding weight of the original, unextracted, moisture-free tobacco. Transfer each sample to a 50 ml . Erlemmeyer flask provided with a one-hole rubber stopper throughts which passes a glass rod 12 cm . long, the end of which has been flattened. For every 0.1 gram of the extracted sample add portionwise 5 ml . of 72 percent sulfuric acid, which has been previously cooled to $5^{\circ} \mathrm{C}$. Stir the mixture with the glass rod, which has been lubricated with a drop of ylycerol to facilitate moving it through the hole in the rubher stopper. Close the Erlemmeyer flask with the rubber slopper carrying the ghass rod. and allow the mixture to stand for 24 hours in a refrigerator at a temperature of approximately $5^{\circ} \mathrm{C}$., stirring occasionally with the glass rod.
Transer the mixture quantitatively to a one-liter Erlemneyer flask. and add sufficient distilled water to make an approximately 5 pereent sulfuric acid solution ladd 109.5 ml , of water for every 5 ml . of 72 percent sulfuric acid used). Insert a boiling tube ${ }^{5}$ about 18 cm . long into the Erlenmeyer flask, add a few drops of capryl alcohol to prevent foaning, and boit the mixture under a reflux condenser for 2 hours. Alow to cool to room tensperature.
Filter sample (a) into a tared Cooch crucible, which has been iguited for one hour at $600^{\circ} \mathrm{C}$. in an electric muffle furmace. Filter sample (b) into a tared Gooch crucible and sample (c) into a 30 ml . fritted-glass crucible of porosity " M ," both crucibles having been previousty dried at $100^{\circ} \mathrm{C}$. Wash the crude lignin of each sample with water until free of acid, dry overnght in an wen at $100^{\circ} \mathrm{C}$., allow to cool to room temperature in a desiccator containing anhydrous calcium chloride, and weigh in a weighing bottie.

Igaite the crucible comaining sample (a) for 2 hours at $600^{\circ} \mathrm{C}$. in an electric muffe furnace, delermine the weight of ash, and calculate the percentage of ash in the crude lignin. Uising the percentage of asb as determined for sample (a), calculate the weights of ash in samples (b) and (c). Transfer the crude lignin of sample (b) quantitatively to a Kjeldah! digestion flask, and determine the percentage of nitrogen in the crude hignin by the Kjeldall-Gumning-Arnold (3) method, using HgO as the catalyst. Calculate the percentage of crucle protein ($N \times 6.25$) in the crucle lignin. Using the percentage of crude protein determined in sample (b), calcuiate the weights of crude protcin in sample (a) and (c). Use the

[^5]crude lignin of sample (c) for the determination of the percentage of methoxy! in the lignin.

Calculate the percentage of lignin in each sample as follows:
Weight of crude lignin minus weights of ash and protein $\times 100$
Weight of original moisture-free, unextracted tobacco sample
$=\%$ Lignin in moisture-free sample

METHOXYL IN LIGNIN (27)

Standards Branch, Tobacco Division, AMS apparatus

The apparatus used is illustrated in figure 2. It consists of reaction flask D, which is immersed in glycerine bath C. D is connected through a standard taper ground-glass joint to the condenser E, which is connected by a standard taper ground-glass joint to scrubbing flask G . This flask is about one-third filled with a thin suspension of red phosphorus in 5 percent aqueous cadmium sulfate solution. G is inmersed in water bath F, the temperature of which is maintained at $50-55^{\circ} \mathrm{C}$., and is connected through a standard taper ground-glass joint to tube A, the delivery tube to absorption tubes H and I , and flask J. The methyl iodide absorption tubes H and I contain the reagent consisting of a solution of bromine and potassium acetate in glacial acclic acid. I is half-filled with water to which a few drops of the formic acid reagent has been added to absorb the vapors of bromine. H, I, and J are supported by wooden holder K attached to ring stand R. All ground-glass joints are held fast by means of bronze springs 0 . Water from Erienmeyer llask B, heated to $50-55^{\circ} \mathrm{C}$. circulates through condenser E . The water overflowing from E passes through tube N into flask M . A small wad of cotton P is inserted lightly into the mouth of flask M. A stream of carbon dioxide from a tank provided with a redueing valve is passed through a gas wash-bothe containing concentrated sulfuric acid, and into the apparatus. The apparatus is supported on ring stand 0 .

REAGENTS

(1) Hydriodic acid (sp. gr. 1.70); (2) Red phosphorus, special for micro-analysis; (3) Phenol, U.S.P. grade; (4) Potassium acetate-acetic acid reagent, (made by dissolving 20 grams of potassium acetate in sufficient glacial acetic acid to make 200 ml . of solution); (5) Bromine, free of iodine; (6) $85-90$ percent Formic acid solution; (7) Sodium acetate solution, (made by dissolving 50 grams of sodium acetate in sufficient water to make 200 ml . of solution) ; (8) Potassium iodide, free of iodate; (9) 10 percent Sulfuric acid solution; (10) 0.05 N Sodium thiosulfate solution; and (11) 0.5 percent Starch solution.

determination

Heat containers B and F with micro burners and maintain the temperatures at $50-55^{\circ} \mathrm{C}$. Add 15 drops of bromine to 10 ml . of the potassium

Froune 2.-Apparatus for detcrmination of percentage methoxyl.
acetate-acetic acid reagent, and mix. Add about 3 ml . of this solution to absorption tube I , and 7 ml , to tube H . Connect absorption assembly A, H , I , and J to the apparatus as shown in the drawing.

Weigh in a weighing bottle 50 to 100 mg . sample of the dry crude lignin from the triplicate sample of crude lignin, which is subdivision (c), as described previously in the procedure for the determination of lignin. Calculate the weight of the sample of lignin on a crude-protein-free and ash-free basis. Transfer the sample to flask D , and add 2 to 3 ml . of phenol, 5 ml . of hydriodic acid, and two boiling chips (Boileezers). Conncet flask D to condenser and inumerse in glycerine bath C heated to $135-140^{\circ} \mathrm{C}$. Mainlain the temperature at this level for one hour, while passing a stream of carbon dioxide through the apparatus at the approximate rate of one babble per second. During the last 10 minutes of the heating period, increase the rate of passage of carbon dioxide through the apparatus su as to sweep all of the methyl iodide into the absorption tubes.

Discomect tubes F and I from the apparatus and wash the contents into a 300 ml . Erlenmeyer flask containing 1.5 ml . of the sodium acetate solution. Add the formic acid reagent, dropwisc, to the solution in the Erlenmeyer flask, with stirring, until the bromine color is discharged. Blow a gentle stream of air into the Erlenmeyer flask to remove residual vapors of bromine. Add one gram of potassiun iodide and 20 ml . of the 10 percent sulfuric acid, and titrate the liberated iodine with $N / 20$ sodium thiosulfate solution using starch solution as the indicalor. Conduct a blank determination following the above-described procedure, and deduct the number of ml . of $N / 20$ sodium thiosulfate solution required for the blank from that used for the actual determination.

Calculate the percentare of methoxyl in the lignin as foilows:

$$
\begin{aligned}
& \frac{\text { ml. } \mathrm{N} / 20 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \text { required (corrected for blank) }}{\text { Weight of lignin sample }} \times 0.0002586 \times 100 \\
&==\mathrm{FClH}_{3} \text { in lignin }
\end{aligned}
$$

TANNIN (2)

Eastern Utilization and Development Division, ARS REAGENTS

(1) Kaolin.-A 1 percent suspension in water after digestion for one hour at $23^{\circ} \mathrm{C}$. should not yield more than 1 mg . of soluble solids per 100 ml . of filtrate.
(2) Hide powder.-The Oficial American Leather Chemists Association hide powder approved by the A.L.C.A. Hide Powder Commitce.

determination

Preparation of Extract A.-Extract a 40 -gram sample, as received, at a uniform rate with boiling water for seven hours in a continuous extraction apparatus. The Pyrex extractor should be steam-jacketed so that the
material being extracted is at the temperature of boiling water throughout the extraction. Collect approximately 2 liters of extract and allow it to remain overnight in a room at $23-24^{\circ} \mathrm{C}$. Dilute with water to exactly 2 liters, and designate solution as "Extract A."

Soluble extractives.-The operations described below should be conducted in an air conditioned soom maintained at a temperature of $23-24^{\circ} \mathrm{C}$.

Add 2 grams of kaolin to 225 ml . of Extract A, stir the suspension and filter through S \& S No. 610 filter paper 21.5 cm . in diameter, pleated to contaiu 32 evenly divided creases. When approximately 40 ml . have passed through the filter, return the filltate to the funnel. Continue this operation for one hour, and then siphon the solution from the paper, taking care not to disturb the kaolin film on the paper. Refill the prepared filter paper with 225 ml . of Extract A and continue the filtration. After 40 ml . of the filtrate have passed through, collect the next 125 ml . of filtrate into a clesa, dry: glass container. Pipette 100 ml . wi the clear filtrate into a weighed in:tbottomed dish. 70 mm . in diameter, then evaporate and dry for 17 hours at $100^{\circ} \mathrm{C} .\left(\pm 0.5^{\circ}\right)$ in a circulating-air type electric oven. Transfer the dish and residue to a desiccator containing Drierite, cool, and weigh.

Nontannins.-Calculate the quantity of air-dried hide powder which will be required for the number of determinations to be made, on the basis of 12.5 grams of moisture-free powder for each determination. Increase this calculated amount by 10 grams to provide a sufficient quantity for the determination of moisture in the wet, chromed, hide powder and also for a working leeway. Digest the total quantity of air-dried hide powder with 10 times its weight of water until thoroughly soaked. For each gram of airdried hide powder so digested. add 1 ml . of 3 percent chrome-alum solution, $\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$. Agitate frequently for two hours and let stand overnight. Transfer the hide powder to a colton cloth Indianheadi; and squeeze thoroughly. [sing the cloth as a bag. digest the hide powder for 15 minules in a quantity of water equal to 1.5 times the weight of the air-dried hide powder used. Then squeeze the hide powder in the bag to about 75 percent moisture. Repeat the digestion and squeezing three times and at the last pressing adjust the moisture as nearly as possible to 72.5 percent (not less than 71 percent and not more than 74 percent).

To 10 grams of the wet chromed hide powder, add 200 ml . of Extract A, shake the mixture in a shaker for exactly 10 minutes, then pour it onto a periorated porcelain plate held in a 125 ml . funnel. Add 2 grams of kaotin to the filtrate and refilter through paper. Pipette 100 ml . of the new filtrate into a weighed flat-bothomed dish, 70 mm . in diameter, then evaporate and dry for 17 hours at $100^{\circ} \mathrm{C}$. in a circulating-air type electric oven. Transfer the dish and residue to a desiccator containing Drierite, cool, and weigh. Correct the nontamin residue weight for ditution caused by water remaining in the wet hide powder and calculate the percentage of nontannins.

Tannin.-The percentage of tannin is the difference between the percentage of soluble extractives and the percentage of nontannins. ${ }^{9}$

TOTAL VOLATILE ACIDS (AS ACETIC ACID) (41) Brown and Williamson Tobacco Corporation apparatus

The apparatus consists of a 500 ml . Kjeldahl flask provided with a twohole rubber stopper. Through one hole passez a 6 mm . O. D. glass tube "A" bent at a right angle, which extends nearly to the bottom of the Kjeldahl flask. Through the other hole, pass one end of a spherical connecting bulb such as is used in the determination of nitrogen by the Kjeldahl method (Fisher Scientific Co. catalogue No. 13-177A or equal). The upper end of the connecting bulb is connected to a glass condenser by means of a rubber stopper. The Kjeldahl flask is immersed in a glycerine bath. A conventional type of steam generator is used.

DETERMINATION

Place a sample of 5 grams (moisture-free equivalent weight) in the Kjeldahl flask of the apparatus and add 100 ml . of distilled water and 2 grams of tartaric acid. Heat glycerine bath, in which the Kjeldahl fask is immersed, to $100^{\circ} \mathrm{C}$. connect tube " A " to the steam generator, pass in a current of steam, and collect distillate in a flask containing 25 ml , of $\mathrm{N} / 10$ sodium hydroxide solution. Continue the distillation until all of the volatile acids (approximately 700 ml .) are distilled over. Throughout the distillation, keep volume of mixture in the Kjeldahl flask approximately constant by heating the glycerine bath with a small flame. Determine the excess of sodium hydroxide by titration with N/10 sulfuric acid solution, phenolphthalein being used as the indicator. Calculate total volatile acids (as acetic acid) as follows:
$\frac{\mathrm{ml.} \text { of } \mathrm{N} / \mathrm{I} 0 \text { sodium hydroxide required } \times 0.0060 \times 100}{\text { Weight of moisture-free sample }}$
$=\%$ Total Volatile Acids (moisture-free basis)

FORMIC ACID

Brown and Williamson Tobacco Corporation

apparatus

The apparatus is described and illustrated in the A.O.A.C. Book of Methods, 6th ed. (1945) p. 536.

[^6]
REAGENTS

(1) Sodium acetate solution.-Dissolve 50 grams of dry sodium acetate in sufficient water to make 100 ml . of solution and filter.
(2) Mercuric chloride solution.--Dissolve 100 grams of mercuric chloride and 150 grams of sodium chloride in sufficient water to make one liter of solution and filter.

DETERMINATION

Place a sample of 10 grams (moisture-free equivalent weight) in reaction flask A and add 100 ml . of water and 2 grams of tartaric acid. Add to flask B, 2 grams of barium carbenate and 100 ml . of water. Connect apparatus and heat contents of flasks A and B to boiling, and distill with steam from generator S, vapor passing first through sample in flask A, then through the boiling suspension of barium carbonate in B, after which it is condensed and collected in $1,000 \mathrm{ml}$. volumetric flask C. Continue the distillation until one liter of distillate is collected, maintaining the volume of liquids in flasks A and B as nearly constant as possible by heating witl small Bensen flames and avoiding charring of sample in flask A. Disconnect apparatus and filter contents of flask B while hot, and wash the barium carbonate with a Iittle hot water. Filtrate and washings should measure about 150 ml ., if they do not, they should be boiled down to that volume. Add to this 10 ml . of the sodium acetate solution, 2 ml . of 10 percent hydrochioric acid, and 25 ml . of the mercuric chloride solution. Mix thoroughly and immerse container in boiling water or place on steam bath for 2 hours. Filter through a dried ($100^{\circ} \mathrm{C}$.) and weighed Gooch crucible, and wash precipitate thoroughly with cold water and finally with a little 95 percent ethanol. Dry in oven at $100^{\circ} \mathrm{C}$. for 30 minules, cool, and weigh. If weight of mercurous chloride precipitate obtained exceeds 1.5 grams, repeat the determination, using more mercuric chloride solution or a smaller quantity of sample. Conduct a blank determination on the reagents, using 150 ml . of water, one ml . of 10 percent barium chloride solution, 2 ml . of the 10 percent hydrochloric acid solution, 10 ml . of the sodium acetate solution, and 25 ml . of the mercuric chloride solution, and heating mixture in boiling water or steam bath for 2 hours. Deduct weight of mercurous chloride precipitate obtained in this blank test from that obtained in regular determination. Calculate the percentage of formic acid as follows:

Weight of mercurous chloride precipitale $\times 0.0975 \times 100$
Weight of moisture-free sample
$=\%$ Formic Acid (moisture-free basis)

WATER-SOLUBLE ACIDS

Liggett and Myers Tohacco Company DETERMINATION

Preparation of Exiract A.-Place 6.67 grams (as-is) of ground tobacco
in a 250 ml . Erlenmeyer flask, add 40 ml . of distilied water, mix until all particles of the tobacco are wet, and then add 60 m . of distilled water, washing down the sides of the flask. Close flask with rubber stopper and let it stand for 16 hours at room temperature. Filter mixture through a fiuted filter paper and designate filtrate as "Extract A."

Dilute 5 ml . aliquot of extract A to 100 ml . with distillied water and titrate to a pH of 8.1 with $\mathrm{N} / 30 \mathrm{NaOH}$, using a glass electrode and a Beckman pH meter, Model H2 or equal. Express results as ml. of $\mathrm{N} / 10 \mathrm{NaOH}$ required to neutralize the acidity in I gram of tobacco.

PLASTID PIGMENTS (47)

Tobacco Laboratories, North Carolina State College

The plastid pigments were determined by a modification of the spectrophotometric procedure described for flue-cured tobacco by Stinson (42) and by Pack (26).

determination

Weigh 2.5 grams of sample, in duplicate, and extract alternately with 95 percent ethanol and acetone in a Waring Blender. Filter the extract, dilute with water, and transfer to ether. Dry the ether extract, after scrubbing with water, by trickling through a bed of anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and dilute to 100 ml . with ether.

Determine the pigment concentrations on a Warren Spectracord, or equivalent instrument, by computation from the interpolated optical densities (D) at wave lengths of $665,649,642.5,485,474$, and $470 \mathrm{~m} \mu$.

The simplified estimating equations, when the final volume of extract is 200 ml . and read in a cell having a path-length of 0.998 cm ., follow:
Total Chlorophyll $=5566.5 \mathrm{D}_{6+9}$
Chlorophyil (a) $=1994.5 \mathrm{D}_{665}-173.4 \mathrm{D}_{6+2.5}=(\mathrm{a})$
Chiorophyll (b) $=3528.0 \mathrm{D}_{9+9.5}-607.0 \mathrm{D}_{685}=(\mathrm{b})$
Total Carotinoid $=982.1 \mathrm{D}_{\mathrm{izt}}-0.255(\mathrm{a})-0.2250(\mathrm{~b})$
"Carotene" $=2518.2 \mathrm{D}_{455}-1198.5 \mathrm{D}_{470}-0.0298(\mathrm{a})+0.3356(\mathrm{~b})$
"Xanthophyl" $=2026.1 \mathrm{D}_{470}-2288.6 \mathrm{D}_{485}+0.0036(\mathrm{a})-0.6518(\mathrm{~b})$
In this method of estimation, "carotene" is defined as a 68:32 mixture of beta-carotene and neo-beta-carotene, and "xanthophyll" as a $60: 22: 18$ mixture of lutein, neoxanthin, and violoxanthin, respectively.

Although the pigment constituents were determined separately, only the total chlorophyll and total carotenoids are reported in the table since the totals appear to show more significance to grade distinction than the individual pigments on the same basis of comparison.

RESINS AND WAXES

Tobacco Laboratory, University of Tennessee

The method used for the determination of resins and waxes is essentially that of Pyriki (36).

DETERMINATION

Weigh 3 grams of tobacco and mix with 30 grams of sand, which has been previously treated several times with hot HCl solution and ignited at $700^{\circ} \mathrm{C}$. for approximately one hour. Trausfer the mixture to a paper extraction thimble, and extract with 95 percent ethanol for 24 hours in a Soxhlet extraction apparalus. Filter the hot extract through filter paper into a 250 ml . beaker, and wash the extraction flask with hot 95 percent ethanol, pouring the washings through the filter paper into the same beaker. Evaporate the filtrate to dryness on the steam bath. and dry for one hour at $75^{\circ} \mathrm{C}$. in the oven. Add 30 to 40 ml . of water which has been previously heated to $45^{\circ} \mathrm{C}$. to the resinous material, mix with a stirring rod, and filter through filter paper into a 250 ml . beaker. Repeat the washing with hot water and filtration until the filtrate gives a negative test for nicotine with silicotungstic acid reagent. Add 5 ml . of concentrated HCl to the filtrate, designate the solution as " A," and retain for subsequent extraction with ether.

Place the filter paper used in the preceding filtration in the 250 m . beaker containing the resinous material, and add 75 ml . of 95 percent ethanol. Cover the beaker with a cover glass and heat on the steam bath until substantially all of the resinous material dissolves. Filter through filter paper into a 250 ml . beaker. Repeat the solvent treatment of the resinous material twice morc, using 50 mi . and 25 ml . porisons of hot 95 percent ethanol, and filter the solution into the same beaker. Evaporate the filtrate in a weighed 50 ml . Exlenmeyer flask on the steam bath, adding the filtrate to the flask portionwise. The time of evaporation may be reduced by evaporating the major portion of the fittrate while in the 250 ml . beaker to a small volume, transferring the solution to the 50 ml . Erlenmeyer flask, rinsing the beaker with small portions of hot 95 percent ethanol and adding the rinsings to the Erlenmeyer flask.

Extract filtrate "A" with three successive portions of ether in a separatory funnel (using a volume of ether approximately one-fourth the volume of the filtrate). Combine the ether extracts, and wash once with 25 ml . of water. Filter the washed ether solution and evaporate the filtrate on the steam bath, adding the fittrate portionwise to the 50 ml . Erlenmeyer flask used above. After evaporating to dryness on the steam bath; dry the flask and contents at $75^{\circ} \mathrm{C}$. for 45 minutes in the oven. Allow to cool to room temperature in a desiccator containing calcium chloride, and weigh. Calculate the combined weight of the dry extracts as resins and waxes, as follows:

Weight of resios and waxes $\times 100$
Weight of moisture-free sanple
$=$ Forins and Waxes in moisture-free sample

PETROLEUM ETHER EXTRACTIVES

The American Tobacco Company

DETERMINATION

Weigh a 5 -gram (as-is) sample and transfer to a $25 \times 80 \mathrm{~mm}$. Whatman extraction thimble, and insert a small plug of fat-free cotton into the top of the thimble. Extract with approximately 125 ml . of petroleum ether (boiling range $35-37^{\circ} \mathrm{C}$.) in a Soxhlet extraction apparatus equipped with a tared 250 ml . flask wilh ground-glass joint containing three glass beads. Adjust the heat so that siphoning occurs five or six times per hour, and continue the extraction for 20 hours. Evaporate the solvent on the steam bath whilc directing a small stream of air onto the surface of the extract. Rotate the flask frequently during evaporation in order to distribute the extracted matcrial on the walls of the hask, and to facilitate drying. After the odor of petrolcum cther has completely disappeared, dry the flask and contents for one hour in a convection type oven at $99-100^{\circ} \mathrm{C}$. Allow to cool to room temperature in a desiccator conaining anhydrous calcium chloride and weigh. Calculate the percent of petrolemm ether extractives, as follows:

> Weight of petroleum ether extractives $\times 100$
> Weight of moisture-free sample
> $=\%$ Petroleum Ether Extractives in moisture-free sample

WAXES

The American Tobacco Company DETERMINATION

Dissolve the petroleum ether extract in the extraction flask, obtained as described above, in 50 ml . of warm absolute ethanol. Warm the solution on the steam bath while rotating the flask to facilitate solution. Chill the flask and a wasl bottle containing absolute cthanol in an ice bath. Filter the contents of the thask through a No. 1 Whatman fitter paper, and wash with cold absolute ethanol from the wash bottle unil free of pigment.

Dissolve the waxes on the filter paper in diethyl ether, receiving the solution in a tared dish or in the origibal tared Soxhlet flask with the beads. Evaporate the cther on the steam bath, directing a small stream of air onto the surlace to aid evaporation. Rotate the hask to facilitate drying. After the odor of ether has disappeared entirely, dry for one hour at $99-100^{\circ} \mathrm{C}$. in a convection type oven. Allow to cool in a desiccator containing anhydrous calcium chloride to room temperature and weigh. Calculate the percent of waxes as follows:
> $\frac{\text { Weight of Waxes } \times 100}{\text { ight of moisture-free sample }}=$ 兄 Waxes in moisture-free sample 2

95\% ETHANOL EXTRACTIVES

P. Lorillard Company determination

Weigh a 2 .gram sample (as-is) and transfer to a Soxhlet extraction thimble. Insert a wad of cotion into the mouth of the thimbic, and extract with 95 percent ethanol for 24 hours in a Soxhlet exiraction apparatus. Adjust the boiling rate of the solvent so that siphoning takes place about cvery 5 minutes. After completion of the extraction, disitl the alcohol of until $15-20 \mathrm{ml}$. of solution remain in the Soxhlet Rask. Evaporate this concentrated alcoholic solution on the steam bath until it reaches a semisolid state. Dry the Soxhlet flask and contents in a vacuum oven for three hours at $50-53^{\circ} \mathrm{C}$., under a pressure of $5-10 \mathrm{~mm}$. of mercury, while air (dried by passing through a concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ trap) is passed through the system. Allow the Soxhlet flask and contents to cool for one hour in a desiccator over anhydrous calcium chloride. and weigh. Calculate the percent of 95 percent chanol extractives as follows:
$\frac{\text { Weight of } 95 \% \text { ethanol extractives } \times 100}{\text { Weight of sample }}=\% 95 \%$ Ehanol Extractives
Convert the result to moisture-free basis, using the appropriate factors for the sample.

pH
 The Ameriean Tobareo Company determination

From a sample, as ground and prepared for clemical analysis, prepare an aqueous solution by infusing a 2.000 gram sample for one hour in 100 ml . of water and filer. Delermine the pH of the solution using a glass electrode. Convert the duplicate pH values to moles of H ions per liler, average the values in moles of H ions per fiter, and convert this average value to a pH unit.

Liggett and Myers Tohacco Company DETERMINATION

Determine the pH of exiract "A:" prepared for the delermination of alpha-amino nitrogen, described elscwhere in this publication, using a Beckman pHineler, Model H2, and a gi ss electrode.

MOISTURE EQUILIBRIUM

The American Tobacco Company deternunation

Place a sample of 10 grams in a tared aluminum moisture dish, 9 cm . in diameter by 3.5 cm . decp. Place dish and contents in a cabinet in which the atmospheric condition is maintained at 60 percent R. H. and $80^{\circ} \mathrm{F}$. Allow sample to remain in cabinet until the moisture conient of the tobacco
has reached equilibrium, then remove sample from cabinet and determine the weight of the moist tobacco. Dry the sample for 3 hours in a forceddraft oven at 99° to $100^{\circ} \mathrm{C}$., reweigh, and calculate the percentage of moisture which the sample acquired under the specified atmospheric conditions.

Philip Morris, Inc.

determination

Place the samples of 3 grams each into tared aluminum moisture dishes, 85 mm . in diameter and 50 mm . deep. Evenly distribute the dishes containing the samples on the shelves of a forced-air-type humidity chamber in which the atmospheric conditions are controlied at $25^{\circ} \mathrm{C}$. $\left(77^{\circ} \mathrm{F}\right.$.) and 40 percent relative hamidity. Allow the samples to remain in the cabinet until the moisture content of the tobacco has reached equilibrium. Then remove the samples from the cabinet and determine the moist weight of each sample. Replace the samples in the cabinet and change the atmospheric conditions to $25^{\circ} \mathrm{C}$. and 60 percent R. H. When the moisture content of the tobacco has reached equilibrium at this condition, again remove the samples from the cabinet and weigh them. Follow the same procedure with the cabinet adjusted at $25^{\circ} \mathrm{C}$. and 70 percent and 80 percent R. H. After the moist weights of the samples have been determined following exposure under the four different atmospheric conditions, dry the samples for 3 hours in a forced-draft oven at 99° to $100^{\circ} \mathrm{C}$. and determine their dry weights. Calculate the percent of moisture in each sample after being exposed to each atmospheric condition, based upon the several moist weights and dry weight of the sample.

Note.--Ground samples as prepared for chemical analysis were used. The data listed are the results of duplicate determinations.

DISCUSSION OF RESULTS

The X -group of grades, which is composed of leaves from the lower part of the tobacco stalk, contains a greater percentage of sand in varying quantilies because of its proximity to the soil, than the grades above this group in stalk position. While the leaves above the lowest position normally contain proportionately less sand according to height, the sand content is also variable and uncertain in the upper leaves. The moisture content of all grades also varies to some extent according to circumstances. Both the sand and moisture content depend somewhat upon cultivation and harvesting practices, and subsequent handling. The amount of sand and moisture, therefore, are important factors to consider in the analysis of tobacco, and for these reasons the analytical results reported in the tables of data are on a moisture and sand-free basis.

TOTAL ASH

In most cases, the lighter colored grades of the same group and quality contained a higher percentage of ash. The grades of Flyings of the two crops averaged 22.31 percent; Cutters, 20.47 percent; Leaf, 18.12 percent; and Tips, 16.13 percent.

Table 1.-TOTAL ASH
All results calculated on a moistare-free and samdifree basis.

	UNTTEDSTATES GHIDE	(195 CROP (PECENT)	1952 CRO1 (PERCENy')	AVERAGE OF t9S! AND (PERCENT)
Flyinga . .-.-. .	X2L	23.68	22.51	23.10
	X4I,	23.92	24.90	24.41
	X2F	--	21.70	
	X4F	22.06	21.78	21.92
	X4R	20.36	18.95	19.66
	Nil.	23.11	23.32	23.22
	NiF	21.37	21.74	21.56
				Av. 22,31
Cutser-........	C2L	21.28	22.47	21.88
	C4L	21.30	22.63	21.96
	C2F	-	21.15	-
	C4F	20.20	17.89	19.04
	C4R	18.94	19.06	19.00
				Av. 20.47
Leaf.-.....-.....	B2F	18.38	19.20	18.79
	B2FR	-	17.87	-
	134F	18.39	18.48	18.44
	B4FH	18.13	17.841	17.98
	134 k	18.04	17.47	17.76
	B4D	17.41	17.87	\$7.64
				Av. 18.12
Tip.	T4F	16.29	18.09	17.19
	T4FR	15.98	15.62	15,80
	T4R	15.78	16.16	15.97
	T4D	15.83	14.76	15.30
	NLD	16.25	16.53	16.39
				Av. 16.13

WATER-SOLUBLE ASH

The average percentages of water-soluble ash of the grades of the two crops ranged from 5.40 percent in T 4 R to 9.16 percent in X2L, the average of all grades of the two crops being 7.08 percent. Flyings averaged 7.93 percent; Cutters, 7.90 percent; Leaf, 6.62 percent; and Tips, 5.89 percent.

In a comparison of the Flyings group of grades of like color and of different degrees of quality, the grades of lower quality generally contain a lower percentage of water-soluble ash.

Table 2.-WATER-SOLUBLE ASH
All results calculated on a moisture-free and sand-free basis.

-	$\underset{\text { GNATED S'CATES }}{\text { GRADE }}$	$\begin{aligned} & 1951 \text { CROP } \\ & (\text { PEACENT) } \end{aligned}$		averace of 1951 AND 1952 (PERCENT)
Flyinga--------	X2L	10.20	8.11	9.16
	X4L.	9.08	7.17	8.12
	X2F	-	7.07	-
	X4F	8.26	6.68	7.47
	X4R	8.24	6.47	7.36
	NIL	7.59	7.62	7.60
	NIF	8.56	7.20	7.83
				Av. 7.93
Cuther--.-.-.-.-	C2L	8.25	8.35	8.30
	C 4 L	7.81	8.68	8.24
	C 2 F	-	7.67	--
	C4F	7.46	9.03	8.24
	C4R	6.94	6.66	6.80
				Av, 7.90
Leaf.-...-.......-	32F	6.83	6.65	6.74
	B2FR	--	6.74	
	B4F	5.95	6.17	6.06
	BrER	6.31	6.49	6.40
	B4 4 R	6.53	7.11	6.82
	B 4 D	6.70	7.44	7.07
				Av. 6.62
Tip-.----------	T'4F		5.85	5.82
	'14FR	6.13	5.67	5.90
	T4R	5.69	5.12	5.40
	T4D	5.92	5.79	5.86
	N1D	6.66	6.28	6.47
				Av. 5.89

WATER-INSOLUBLE ASK

Flyings averaged 14.38 percent; Cutters, 12.58 percent; Leaf, 11.51 percent; and Tips, 10.24 percent. X4L contained a much larger percentage of insoluble ash than any of the other grades, while the darker T'ip grade T4D contained the smallest percentage.

A comparison of the grades of the same color and group but of different quality shows that the grade of lower quality generally contained a greater percentage of water-insoluble ash than the one of higher quality. A comparison of the grades in which the group and quality are the same but the color different, the lighter colored grades contain the higher water-insolubte ash content.

Table 3. Water-Insolublef ASH
All results calcalated on a moisture-free and sand-frec basis.

	unternstates		192 CHO (IERCENT)	APERACE OF 1951 4×1 1952 (PERCENT)
Flyinms -------	X2I, X4L X2f X 1 Xh NiL NiF	13.48 1.4 .884	$\begin{aligned} & 14.40 \\ & 17.73 \end{aligned}$	$\begin{aligned} & 13.94 \\ & 16.28 \end{aligned}$
		13.80	15.10	14.45
		12.12	12.48	12.30
		15.52	15.6)	15.60
		12.81	1.4 .54	Av. $\begin{array}{r}13.68 \\ 14.38\end{array}$
Cutter	O2,	13.03	14.12	13.58
	CHL	$\underline{13.19}$	13.95	
	CRF		13.18	13.72
	Clic	$\begin{aligned} & 12.74 \\ & 12.00 \end{aligned}$	$\begin{array}{r} 8.86 \\ 12.39 \end{array}$	10.80
	C 4 R			Av. $\begin{array}{r}12.20 \\ 19.58\end{array}$
		12.00		
Leaf.	B2 ${ }^{2}$	11.55	12.56	12.06
	B2PR		$\begin{aligned} & 11.13 \\ & 12.31 \end{aligned}$	
		12.44		12.38
	B4FR	11.82	11.35	11.58
	B4R	11.51	10.36	10.94
	B41	10.71	10.43	Av. $\begin{array}{r}10.57 \\ 11.51\end{array}$
Tip.------....---	$\begin{aligned} & \text { THF } \\ & \text { P4R } \\ & \text { T\&R } \\ & \text { T4D } \\ & \text { NHD } \end{aligned}$	$\begin{array}{r} 10.51 \\ 9.85 \\ 10.09 \\ 9.91 \\ 9.59 \end{array}$	$\begin{array}{r} 12.25 \\ 9.95 \\ 11.04 \\ 8.98 \\ 10.25 \end{array}$	11.389.9010.569.449.92Av. $\quad 10.24$

ALKALINITY OF WATER-SOLUBLE ASH

In the Flyings group of grades of like color, the alkalinity of the watersoluble ash increased with the increase in quality of the grade.

Table 4.-ALKALINITY OF WATER-SOLUBLE ASH
Alkalinity in ml. of $\mathrm{N} / 10 \mathrm{HCl}$ per gram of M . and S. F. Tobacco.

	UNITEDSTATES GRADE	$\begin{aligned} & \text { 1951 CROP } \\ & \text { (ML.) } \end{aligned}$	$\begin{aligned} & 1952 \text { Crop } \\ & \text { (aiL.) } \end{aligned}$	
Flyings-.-------	X2L	5.10	4.77	4.94
	X4L	5.32	3.83	4.58
	X2F	-	4.54	-
	X4F	4.60	3.63	4.12
	X4R	3.47	3.53	3.50
	N1L	4.77	3.77	4.27
	N1F	4.80	3.82	4.31
				Av. 4.29
Cutter----------	C2L	4.94	5.49	5.22
	C4L	4.63	5.30	4.96
	C 2 F	--	4.64	-
	C4F	5.02	9.23	7.12
	C4R	4.20	4.12	4.16
				Av. 5.36
Leaf.-	B2F'	4,33	3.94	4.64
	B2FR	-	1.70	-
	B4F	5.26	3.53	4.40
	B4FR	5.47	3.46	4.46
	B4R	5.55	4. 64	5.10
	B4-D	5.32	3.78	4.55
				Av. 4.53
Tip..............	T4F	6.01	2.37	4.19
	T4FR	5.99	3.50	4.74
	T4R	5.94	2.12	4.03
	T4D	5.96	3.06	4.51
	N1D	6.05	3.42	4.74
				Av. 4.4/4

ALKALINITY OF WATER-INSOLUBLE ASH

There was no consistent relationship between the alkalinity of waterinsoluble ash and the qualities of the grades within each group.

Table 5.-ALKALINITY OF WATER-INSOLUBLE ASH

Alkalinity in ml. of $\mathrm{N} / 10 \mathrm{HCl}$ per gram of M. and S. F. Tobacco.

	$\begin{aligned} & \text { UNITEDSTATES } \\ & \text { GRADE } \end{aligned}$	$\underset{(\mathrm{ML})}{195 \mathrm{I}_{\text {CROP }}}$	$\begin{gathered} 1952 \text { CHOP } \\ \text { (ML) } \end{gathered}$	average of 1951 AND 1952 (ML.)
Flyings-.	X2L	27.15	30.36	28.76
	X4L	30.53	34.93	32.73
	X2F	-	34.43	
	X4F	27.84	32.34	30.09
	X4R	28.51	27.52	28.02
	N1L	30.76	33.82	32.29
	NiF	29.69	31.09	30.39
				Av. 30.38
Cutter-.----.-.-	C2L	29.70	29.16	29.43
	CiL	29.79	29.15	29.47
	C2F	-	28.48	,
	C4F	29.40	27.66	28.53
	C4R	29.10	26.47	27.78
				Av. 28.80
Leaí	B2F	30.37	32.80	31.58
	B2PR	- -	35. 14	--
	B4F	29.83	37.51	33.67
	B4FR	29.44	35.17	32.30
	134R	29.40	33.35	31.38
	B4.	28.79	33.63	31.21
				Av. 32.03
Tip............	THF	30.71	24.54	27.62
	TAFR	30.60	20.84	25.72
	TAR	30.66	21.33	26.00
	T40	30.55	19.75	25.15
	N1D	30.56	22.04	26.30
				Av. 26.16

SODIUM

The percentage of sodium in all grades was extremely small, ranging from 0.015 percent for B 4 D to 0.046 percent in X4L. There was no consistent relationship between the content of sodium and the various groups of grades or between the qualities of the grades within each gratip.

Table 6.-SODIUM
All results calculated on a moisture-Free and sand-free basis.

	$\underset{\substack{\text { Unted } \\ \text { Glade }}}{ }$	1951 CROP (PERCENT)	1959 CROP (${ }^{\text {PERCENST }}$)	AVERACE OF 1951 AND 1952 (PERCENT)
Flyings	X2L	0.016	0.062	0.039
	X45.	0.017	0.075	0.046
	X2F	-	0.115	
	X4F	0.016	0.032	0.024
	X4R	0.016	0.024	0.020
	N1L	0.025	0.034	0.030
	N 1 F	0.014	0.034	0.024
				Av. 0.030
Cutter	C2L	0.014	0.031	0.021
	C4L	0.019	0.042	0.030
	C2F	-	0.028	-
	$\mathrm{C4F}$	0.016	0.038	0.027
	C4,	0.015	0.026	0.020
				Av. 0.024
Leaf.	B2F	0.012	0.032	0.022
	B2FR	--	0.026	-
	B4F	0.010	0.027	0.018
	B4FR	0.014	0.025	0.020
	B4R	0.010	0.024	0.017
	B4]	0.008	0.022	0.015
				Av. 0.018
Tip_	T4F	0.011	0.028	0.020
	T4FR	0.007	0.038	0.022
	T4R	0.006	0.025	0.016
	T4]	0.011	0.022	0.016
	NiD	0.010	0.026	0.018
				Av. 0.018

POTASSIUM

The average percentage of potassium in the grades of the two crops was 3.62 and ranged from 2.79 percent in T4R to 4.55 percent in X2L. Flyings averaged 4.00 percent; Cutters, 3.95 percent; Leaf, 3.50 percent and Tips, 3.01 percent. Generally, the better qualities and lighter colors of each group contained a larger percentage of potassium. This is in agreement with the findings of Shedd (40). Corresponding grades of Tips contained less potassium than the Leaf grades, while corresponding grades of Flyings and Cutters contained about the same percentage of potassium.

Pable 7. POTASSIUM (as Potassium)
All resthe calen]ted on a moistnre-free and sand-Iree basis.

	UNI CEDSTATES chaide	195! CROP (PERCENT)	1952 Clop (PERCEN'I)	AVERAGE OF 1951 AND 3952 (PERCENT)
Flyiugs...	N2L	4.76	4.34	4.55
	入4,	4.62	4.15	4.39
	N2F	-	3.79	-..
	X4F	3.96	3.21	3.59
	X4R	3.28	3.38	3.33
	Nis,	4.38	3.69	4.04
	NH	4.65	3.55	4.10
				Av. 4.00
Cutter -	C2L	4.45	4.30	4.38
	(.41)	4.42	4.00	4.21
	OW	-	4.00	...
	CHF	4.04	3.49	3.77
	Cin	3.71	3.20	3.46
				Av. 3.95
Lear	B2F	3.63	3.23	3.43
	B2PR	-	3.40	.
	$13+5$	3.33	4.03	3.68
	$\mathrm{B4FR}$	3.55	3.04	3.30
	31 R	3.64	3.45	3.55
	1310	3.62	3.50	3.56
				Av. 3.50
Tip	T: ${ }^{2}$	3.18	2.76	2.97
	THPR	3.35	2.81	3.08
	分 4 R	3.13	2.45	2.79
	P4D	3.37	2.60	2.99
	N1D	3.75	2.71	3.23
				Av. 3.01

CALCIUM

The average calcium content was found to be greatest (5.30%) in the Flyings (X's plus NIL and N1F), and the average for each of the other groups decreased in the following order: Cutters (C's) 4.83 percent; Leaf (B 's) 4.17 percent; and Tips (T 's + N1D) 3.64 percent. There was no significant relationship between the calcium content and the quality of the grades within each group.

Table 8.-CALCIUM (as Calcium)
All results calctulated on a moisture-free and sand-free basis.

	$\begin{aligned} & \text { UNITEDSTATES } \\ & \text { GRADE } \end{aligned}$	$\begin{aligned} & 1951 \text { CROP } \\ & \text { (PEBCENT) } \end{aligned}$	1952 CROP (PERCENT)	AVERACE OF 1951 AND 1952 (PERCENT)
Hlyings.....-.--	X2L	5.22	5.54	5.38
	X4L	5.27	6.09	5.68
	X2F	-	5.48	-
	X4F	5.22	5.67	5.45
	X4R	4.99	4.57	4.78
	N1L	5.41	5.86	5.64
	NIF	4.49	5.31	4.90
				Av. 5.30
Cutter--.-------	C2L	4.70	5.22	4.96
	C4L	4.78	5.09	4.94
	C 2 F	-	4.97	-
	C4F	4.64	4.80	4.72
	C4R	4.34	5.01	4.68
				Av. 4.83
Leaf.-..-----..--	B2F	4.34	4.64	4.49
	B2FR	-	4.11	-
	B4F	4.47	4.54	4.51
	B4FR	4.18	4.15	4.17
	34R	4.12	3.75	3.94
	B4D	3.79	3.68	3.74
				Av. 4.17
Tip-------------	T4F	3.78	4.27	4.03
	T4FR	3.52	3.83	3.68
	T4R	3.60	3.61	3.61
	T4D	3.40	3.30	3.35
	N1D	3.32	3.73	3.53
				Av. 3.64

PHOSPHORUS

The amount of phosphorus in all of the grades was very small, all of which were under 0.25 percent. There was no apparent relationship between the phosphorus content of the different groups, considered as units, or between the several grades within each group.

Table 9.-PHOSPHORUS
All results calculated on a moisture-free and sand-free basis.

	United slates GRade	$\begin{aligned} & \text { 1951 CROP } \\ & \text { (PERCENT) } \end{aligned}$	(PEACENT)	yerage of 1951 AND 1952 (PERCENT)
Flyinge	X2L	0.223	0.212	0.218
	X4L	0.214	0.213	0.214
	X2F	-	0.211	--
	X4F	0.205	0.210	0.208
	X4R	0.204	0.194	0.159
	N1L	0.223	0.206	0.214
	N1F	0.234	0.208	0.221
				Av. 0.212
Cutter	C2L	0.220	0.220	0.220
	C4L	0.219	0.227	0.223
	C2F	-	0.211	
	C4F	0.226	0.216	0.221
	C4R	0.186	0.220	0.203
				Av. 0.217
Leal.	B2F	0.209	0.213	0.211
	B2FR	-	0.201	\ldots
	B4F	0.206	0.207	0.206
	B4FR	0.202	0.211	0.206
	B4R	0.207	0.220	0.214
	B4D	0.207	0.236	0.222
				Av. 0.212
Tip.	T4F	0.242	0.243	0.242
	T4TR	0.226	0.226	0.226
	T4R	0.238	0.217	0.228
	T4D	0.235	0.236	0.236
	N1D	0.244	0.228	0.236
				Av. 0.234

MANGANESE

Th manganese content was very small in all of the grades, averaging only 0.041 percent ($\pm 0.02 \%$). There appears to be no significant relationship between the manganese content and grade, with the exception that the darker colored grades generally contained more than the lighter colored grades.

Table 10.-MANGANESE
All results calculated on a moisture-free and sand-free basis.

TOTAL NITROGEN

In total nitrogen the Flyings group of grades averaged 3.46 percent; Cutters, 3.69 percent; Leaf, 4.91 percent; and Tips; 5.01 percent. Moseley. Harlan, and Hanner (23) in their study of the chemical composition of Burley tobacco made a similar observation. They pointed out that the percentage of total nitrogen increased regularly over the entire stalk range.

In all groups, the grades of darker color generally contaned a greater percentage of total nitrogen than those of highter color. From the standpoint of quality within the diferent groups. a comparison of the grades shows that the higher the numerical designation of the grade the less the total nitrogen content.

Table 11.-TOTAL NITROGEN (as Nitrogen)
All resuls calculated on atmoisture-free aprl sand-free basis.

	UNTEDSTPATES	1951 CROP (PERCENT)	1952 CROP (PERCENT)	average of 1951 AND 1952 (PERCENT)
Flyinge-..-....	X2L	3.28	3.85	3.37
	Xif.	3.21	3.37	3.26
	X2F	--	3.89	-
	X4F	3.63	3.66	3.6 د
	NH	3.97	4.19	1.08
	NiL	3.13	3.23	3.18
	Nif	3.25 i	3.21	3.23
				A: 3.46
Cutter..........	C2L	3.36	3.63	3.50
	C4L	3.28	3.32	3.30
	Cer	-	3.83:	--
	C4F	3.53	3.86	3.70
	C ¢R	4.16	4.36	4.26
			+	Av. 3.6)
Leaf.	B2F	4.61	4.65	463
	B2FR	-	+ 4.88	$\stackrel{4.63}{\square}$
	B4F	4.26	4.31 !	4.30
	B4FR	4.42	5.0.1	4.73
	B4R	5.33	5.18 !	5.41
	B4]	5.47	5.46 !	5.47
			i	Ar. 4.91
		4.48 !	4.14	
		+. 28	4.14	4.31
	THEL	4.48	4.92	4.70
	T413	5.36	5.42	5.39
	T+1)	5.71 ;	5.7.3:	5.73
	Nid	4.89	4.94	+1.92
				Av. 5.01

NTTRATE NITROGEN

The percentages of nitrate nitrogen were relatively small, averaging only 0.36 percent in the grades of the two crops. The average percentage was greater in the Flyings group of grades (0.41%) than in the Cutters (0.34%), Leaf (0.39%), or Tips (0.27%). Moseley, Harlan and Hanmer (23) found a grealer percentage of nitrate mitrogen in the Flyings and Trash leaves, which correspond to the X-group of grades in the Federal classification system of tobacco.

Table 12.--NTTRATE NITROGEN
All results calculatyd on a moisture-free and sand-free basis.

AMMONIA NITROGEN

The average percentage of ammonia nitrogen was almost twice as great in the Cutter as in the Flyings grades. The Leaf and Tip grades contained
four times as much ammonia nitrogen as the Flyings group of grades.
The grades of the Flyings group for the two crops averaged 0.075 percent; Cutters, 0.143 percent; Leaf, 0.318 percent; and Tips, 0.310 percent.
In ail cases represented, the darker colored grades of the same group and quality contained a greater percentage of ammonia nitrogen.
There are six instanees in the table in which a comparison between grades can be made on a quality basis with the group and color constant factors. In five of these six cases the second quality contained a greater amount of ammonia nitrogen than the fourth quality.
i.loseley, Harlan, and Hamer (23) in their study of the chemical composition of Burley tobacco found a regular increase in anmonia content over the entire stalk range, with the lowest content in the Flyings and a considerably higher content in the red Leaf and Tips.

PROTEIN NITROGEN

The protein nitrogen content of the two crops ranged from 1.24 percent in C2L to 2.20 percent in T4D. The darker grades contain comparatively greater amounts of protein nitrogen than the companion grades of the same group and quality.

Table 14.-PROTEIN NITROGEN (as Nitcogen)
All results calculated on a maisture-free and sand-frec basis.

	entededipates grade	1951 CROP	${ }_{(\text {PERCENT }}$ (1952 CROF	average of 1951 AND 1952 (PERCENT)
Flyings	X2L	1.46	1.48	1.47
	X 4 L	1.51	1.36	1.44
	X 2 F	-	1.63	-
	X 4 F	1.71	1.55	1.63
	X 4 R	1.78	1.72	1.75
	NiL	1.85	1.71	1.78
	NiF	1.81	1.85	1.83
				Av. 1.65
Culter.	C2L	1.21	1.27	1.24
	C4L	1.31	1.26	1.28
	C 2 F	-	1.22	-
	C 4 F	1.38	1.44	1.41
	$\mathrm{C}+\mathrm{R}$	1.65	1.67	1.66
				Av. 1.40
Lear	B2 ${ }^{*}$	1.38	1.38	1.38
	B 2 FR	-	1.38	-
	B4F	1.47	1.44	1.46
	B4FR	1.58	1.47	1.52
	B. 4 R	1.72	1.74	1.73
	B4D	1.94	1.93	1.94
				Av. 1.61
'Tip.	T $\mathbf{4} \mathbf{F}$	1.60	1.49	1.54
	T4FR	1.73	1.73	1.73
	T4R	1.88	1.91	1.90
	T4D	2.31	2.18	2.20
	N1D	2.14	2.13	2.14
				Av. 1.90

ALPHA AMINO NITROGEN

The content of alpha amino nitrogen bears a close relationship to grade from the standpoint of group; quality, and color. Flyings averaged 0.195 percent; Cutters, 0.299 percent; Leaf, 0.679 percent; and Tips, 0.696 percent. In the grades of the same group and color the second guality was consistently higher than the fourth quality in alpha amino nitrogen content.

In the grades of the same group and quality the darker colored grades had the greater percentage of this constituent, without exception.

Table 15.-ALPHA AMLNO NITROGEN (as Nitrogen)

	UNITED STATES GHADE GRADE	1951 CROP	(1952 Chop	ayerace of $105!$ AND 1952 (PEBCEN'T)
Flyings.-.-.....	X2L	0.20 -	0.230	0.217
	X +	0.171	0.204	0.188
	X2F	---	0.238	0.6
	X 4	0.198	0.228	0.213
	X 21	0.297	0.274	0.253
	N1L	0.120	0.148	0.134
	NiF	0.172	0.158	0.165
				Av. 0.195
Cutier.	C 21.	0.283	0.309	0.290
	C4L	0.246	0.277	0.21 .2
	C2F	--	0.348	. 2.2
	CHF	0.292	0.323	0.308
	CH	0.3×8	0.407	0.378
				Av. 0.299
Lear.	32 F	0.570	0.550	
	132 FR	-	0.675	0.560
	B4F'	0.500	0.691	0.511
	B4FR	0.570	0.7.13	0.657
	BHR	0.724	0.902	0.813
	B4, ${ }^{\text {d }}$	0.787	0.921	0.854
				Av. 0.679
Tip..	Tta	0.573	0.524	0.549
	TAFR	0.639	0.744	0.692
	'T4R	0.768	0.889	0.828
	TAD	0.792	0.923	0.858
	N1D	0.578	0.526	0.552
				Av. 0.696

TOTAL VOLATILE BASES (AS AMMONIA)

The method of analysis for the determination of total volatile bases is an empirical one developed in the Research Laboratory of The American Tobacco Company (8). By means of this method various basic substances are determined which are volatile under the experimental conditions prescribed in the method. This determination has been found useful in the estimation of Buriey tobaccos from the standpoint of strength, smoking
quality, and adaptability to blending with other types. It has also been found to be closely related to what tobacco judges designate as "body" (23).
The content of total volatile bases ranged from 0.330 percent in N1L to 1.314 percent in B4D, a ratio of nearly four to one. Flyings group averaged 0.502 percent; Cutters, 0.763 percent; Leaf, 1.199 percent; and Tips. 1.105 percent. On the basis of quality comparison in the same group and color the second guality is higher than the Courth quality in total volatile bases, except in the comparison of B 2 FR with B 4 FR .

On the basis of color comparison in the same group and quality the darker colored grade is consistently higher in total volatile bases than the corresponding lighter colored grade, except in the comparison between T4R and T4D.

Table 16.-- TOTAL VOLATILE BASES (as Ammonia)
All resulas calculated on a moisture-free and sand-free hasis.

NICOTINE, NORNICOTINE, AND TOTAL ALKALOIDS (12) (AS NICOTINE)

Alkaloids as determined by the extraction and titration procedure described in (12) varied from a low of 1.19 percent for NlL to a high of 6.00 percent for B 2 F , a range of 4.81 percent. With the group and quality constant factors the darker colored grades almost invariably contained the greater alkaloid content. With the group and color constant factors the second quality contained more alkaloid than the fourth quality, with one exception (the comparison of X 2 F with X 4 F).

The average content of alkaloids, groupwise, of 2.49 percent for Fiyings, 3.90 percent for Cutter: 5.18 percent for Leaf, and 4.12 percent for Tips follows the variation in maturity pattern of some other constituents, such as Total Volatile Bases, Water-Soluble Acids, and 95 percent Ethano! Extract.

Table 17... TOTAL ALKALOIDS (as Nicotine)
All results calrulated on a moisture-free and sand-free basis.

	$\left\lvert\, \begin{aligned} & \text { LNTEDSTATES } \\ & \text { CRADE } \end{aligned}\right.$	1951 CROP (PEACENT	1052 CROP (PER(CENT)	$\begin{gathered} \text { dVERAGEOF } \\ \text { I951 } 19 \text { AND } 1952 \\ \text { (PERCENT) } \end{gathered}$
Flying -	X2L	2.27	2.91	2.59
	X4L	1.94	2.64	2.29
	X2F	-	3.41	
	$\mathrm{X}+5$	2.59	3.54	3.06
	X4R	3.66	4.39	4.02
	N1L	1.19	1.52	1.36
	N F	1.68	1.52	1.60
				Ar. 2.49
Culter . .	C2L	3.55	4.02	
	C4L	3.07	3.36	3.78 3.22
	C2F	,	4.90	
	C.4F	3.48	4.44	3.96
	C4R	4.31	5.01	4.66
				Av. 3.90
Lerf.........	B2F	5.32 ;	6.00	
	B2FR	-	6.32	5.66
	B4F	4.72	5.58	5.15
	B4FR	4.40	5.8 .4	5.12
	B4R	4.75	5.58	5.18
	B4D	4.54	5.00	4.77
				Av. 5.18
Tip. 	T4F	3.86	4.69	
	T4FR	3.57	5.09	4.28 4.33
	T4R	4.21 *	5.08	4.64
	T4D	3.97	4.70	4.34
	N1D	2.57	3.47	3.02
				Av. 4.12

ALKALOIDS (16)

Alkaloids as determined by steam distillation and spectrophotometric procedure according to the method described in (16), varied from a low of 1.18 percent for NIL to a high of 6.00 percent for B2F, a range of 4.82 percent. This range in alkaloid content is practicatly a duplication of the range as determined by the above extraction and titration procedure (12). However, the alkaloid content as determined by steam distillation followed by spectrophotometric measurement (16) is consistently higher than the content as determined by the extraction and titration procedure.

The comparison between the darker colored and lighter colored grades of the same group and quality, and between the second and fourth quality of grades in the same group and color shows the same relationship by either of these two methods uised for the determination of alkaloids.

The group averages for alkaloid content determined by this method are 2.54 percent for Flyings, 4.00 percent for Cutters, 5.27 percent for Leaf, and 4.19 percent for Tips which is a difference of 0.05 percent to 0.10 percent higher than the group averages that were determined by the extraction and titration procedure.

Table 18.-TOTAL ALKALOIDS (as Nicotine)
All results calculated on a moisture-[ree and sand-free basis.

	MATPEDSTATES	1951 chor (PLilCENT)	(1952 CROR	avellage of 1951 AND 1952 (PERCENT)
Flyinga	X2L	2.23	2.98	2.60
	X 41	1.93	2.68	$\underline{2.30}$
	X2F'		3.44	
	X 4 F	2.65	3.74	3.20
	X4R	3.71	4.51	4.14
	N1L	1.18	1.58	1.38
	NHF	1.69	1.54	Av. $\quad 1.694$
Cuther. .	C2L	3.60	4.16	3.88
	C4L	3.17	3.37	3.27
	C 2 F		4.84	
	C4,	3.62	4.61	4.12
	CAR	4.43	5.02	Av. $\begin{array}{r}4.72 \\ 4.00\end{array}$
Leuf.	B2F	5.50	6.00	5.75
	B2FR		6.53	
	B. ${ }^{\text {F }}$	4.79	5.69	5.24
	BHFR	4.52	5.90	5.21
	B4.4R	4.99	5.61	5.30
	B41)	4.68	5.03	Av. $\begin{array}{r}4.86\end{array}$
Tip.	'14F	3.93	4.79	4.36
	T4FR	3.73	4.66	4.20
	T4R	4.37	5.37	4.87
		4.08	4.73	4.40
	N1D	2.68	3.55	Ar. $\begin{array}{r}3.12 \\ 4.19\end{array}$

TOTAL REDUCING SUBSTANCES (AS GLUCOSE)

The average content of lotal reducing substances (as glucose) ranged from 1.22 percent for NIL to 2.09 percent for T4F. In the entire series of samples there was. therefore, an extreme difference of only 0.87 percent, and this difference was so distributed among the grades that there was no apparent pattern of total reducing substances content by which the grades could be distinguished.

Table 19.- TOTAL REDLCING SLBSTANCES
All resulte calculated on a moisture-free and sand-free basis.

	UNTTEDSTATES CRADE	1952 cirop (PEITCENT)	1952 (ROP (PERCENT)	AVERACE OF 1951 ANO f932 (PERCENT)
Flyingr	X2L	1.76 !	1.69	1.72
	X4L	1.27 !	1.58	1.42
	$\mathrm{N2F}$	-	2.77	
	人45	1.53	1.68	1.60
	X4R	1.26 !	1.94	1.60
	N1L	1.17 ;	1.29	1.23
	N1F	1.54	1.49	1.52
				Av. 1.52
Cutter....	Col	1.32	L. 60	1.46
	$\mathrm{CHL}^{\text {che }}$	1.36	1.71	1.54
	COF	-	1.57	I.
	C+F	1.12	1.90	1.56
	C.t	1.52 ?	2.00	1.76
		:		Av. 1.58
Leas...- ..	B2F	$1.42{ }^{\circ}$	1.80	1.61
	B2FR	--	1.67	-
	B4F	1.1 .4	1.66 ?	1.40
	B4FR	1.32	L. 62 :	1.47
	B4R	1.37	1.46 :	1.42
	B40	1.62	1.74	1.68
				Av. 1.52
'Tip.-.......	34F	2.39	1.81 !	2.10
	T4FR	1.79	1.89	1.84
	T4R	1.40 :	1.76	1.58
	T41)	1.42	1.56	1.49
	Nit	1.32	1.56	1.44
				Av. 1.69

TOTAL REDUCING SUGARS (AS GLUCOSE)

Total reducing sugars ranged from 0.78 percent in NIL to 1.94 percent in T4F. This range of 1.15 percent between the two extremes was somewhat greater than in the case of total reducing substances. The Flyings group averaged 1.08 percent; Cutters, 1.20 percent; Leaf, 1.23 percent; and Tips, 1.47 percent. Thus, the percentages of total reducing sugars increased gradually from Flyings to Tips. Aside from this gradual difference groupwise, the content of this component does not draw further distinctions among the grades.

Table 20.-.-Total reducing sugars
All results calculated on a moisture-free and sand-free basis.

	$\underset{\text { GRTMEDTATES }}{\text { GRADE }}$	1951GMOP (PERCENT)	$\begin{aligned} & 1952 \text { CROF } \\ & \text { (E'ERCENT) } \end{aligned}$	AVERAGE OF 1951 NNDD 1952 (PERCENT)
Flyings-.-.-.....	X2L	1.60	1.19	1.40
	X4L	1.10	1.00	2.05
	X2F	-	1.05	$\underline{1}$
	X 4 F	1.46	0.96	1.21
	N 4 R	0.95	1.26	1.10
	N1L	0.80	0.77	0.78
	Nif	1.03	0.98	1.00
				Av. 1.09
Cutter. -.........	C2L	1.07	1.31	1.19
	C4,	1.14	1.29	1.22
	C 2 F	-	1.32	1.2
	CiF	1.16	1.34	1.25
	C4R	0.89	1.34	1.12
				Av. 1.20
Lear-.........	B2F	1.34	1.32	L. 23
	B2FR	-	1.33	$\underline{ }$
	13+5	1.07	1.23	1.12
	3s:4\%	1.20	1.34	1.27
	B41	1.15	1.29	1.22
	B4]	1.22	1.38	1.30
				Av. 1.23
rip.e...........i	T4F'	2.24	1.64	1.94
	T4FR	1.55	1.42	1.48
	T4R	1.26	1.64	1.45
	T4D	1.25	1.16	1.20
	N1D	1.31	1.21	1.26
				Av. 1,47

POLYPHENOLS (AS GLUCOSE)

The amount of polyphenols was rather small in all cases. The average of all grades of the two crops was 0.33 percent, and it ranged from 0.13 percent in T4R to 0.65 percent in CAR. Flyings averaged 0.43 percent; Cutters, 0.39 percent; Leaf, 0.28 percent; and Tips, 0.22 percent. Thus, on a comparative basis by groups, the Flyings group of grades contained a larger percentage, while the Tip grades contained the smallest percentage. There was no consistent relationship between the content of polyphenols of t e various grades on a quality or a color basis.

Table 21.-POLYPHENOLS
All resulls calctated on a moisture-free and sand-free basis.

	Untedespates	(PUBCRNT)	(1952 CROP	1051 AND 1953 (IERCENT)
Flying	$\times 25$	0.16	0.50	0.33
	N 4	0.16	0.58	0.37
	X25	---	0.72	-
	入410	0.07	0.72	0.40
	X 4 R	0.32	0.68	0.50
	NIL	0.37	0.53	0.45
	N1F	0.51	0.5.	0.51
				Av. 0.43
Cutter.-	(5)	0.25	$0.2{ }^{\text {a }}$	0.27
	CHL	0.22	0.4 .1	0.32
	C2F	---	0.25	-
	G41	0.06	0.56	0.31
	C4R	0.63	0.66	0.64
				Av. 0.38
Leaf.	B2F	0.28	0.48	0.38
	B2Fl	--	0.33	-
	B47	0.07	0.43	0.25
	B4FR	0.12	0.28	0.20
	B4R	0.22	0.17	0.20
	B4.	0.40	0.36	0.38
				Av. 0.28
Tip.	T4 ${ }^{5}$	0.15	0.17	0.16
	T/4FR	0.24	0.45	0.34
	THR	0.14	0.12	0.13
	4 T	0.17	0.40	0.28
	NUD	0.01	0.34	0.18
				Av. 0.22

PROTOPECTIN, (AS CALCIUM PECTATE)

Protopectin, as its name indicates, is the frost pectic substance produced by the plant. In the course of growth and developinent of the plant, the protopectin is converted, through the action of enzymes produced by the plant, into water-soluble pectinic acids or pectin. As the plant matures, the pectinic acids are converted into pectic acid. Therefore, the greatest percentage of protopectin should be in the grades consisting of relatively immature tobacco, while the greatest percentage of pectic acid would be expected in the mature, overripe tobacco. The results, in the main, substantiate this assumption.

The percentage of protopectin in all grades of the two crops ranged from 3.62 percent in N1L to 7.79 percent in T4R. N1L and N1F contained much less protopectin than any of the other grades, while T4R and T4FR contained much more. Flyings averaged 4.53 percent; Cufters, 5.92 percent; Leaf, 5.68 percent; and Tips, 6.99 percent. There was no consistent relationship between the content of protopectin on either a quality or color basis. The only relationship appeared to be by group, where Flyings contained the least, and Tips contained the most frotopectin.

Table 22.--Protopectin (as Ca Pectate)
All results calculated on a moisture-free and sand-free basis.

	$\underset{\text { GRADE }}{\substack{\text { UNEDGSES }}}$	(1951 CROP	${ }_{\text {(PERCENT) }}$	$\begin{aligned} & \text { APERACE OF } \\ & \text { 995 } \\ & \text { (PERCEET) } \end{aligned}$
Flying	N2E	4.89	4.37	4.63
	Xtit	4.61	6.20	5.41
	X2F	4.6	4.26	
	X4R	5	4.42	4.514
	N\%R	5.79 3.88	4.45 3.60	5.12
	NHF	4.01	3.63	3.88
				Av. 4.53
Cutter...	C91,	6.60	4.62	5.61
	C4L	6.16	6.40	6.28
	COF		0.13	--.
	(1H	6.09	5.98	6.04
	OR	5.38	6.05	5.43
				Av. $\frac{5.92}{}$
Lear...	32F	5.12		5.09
	3 OFR	--	4.9	2.09
	34 F	5.75	5.01	
	B4FR	4.85	7.59	6.29
	BdR	4.72	6.78	3.78
	13:1)	4.01	7.26	5.9 .5
				Av. 5.68
Tip...	T4F	5.00	\%.11	
	TMFR	$7 .: 6$	7.53	
		8.79	6.79	-7.79
	THD	? 2.64	6.12	6.88
	NID	7.64	5.49	6.57
				Av. 6.99

*ote: All grades were free of pectin, or water-soluble pectinic acids.

PECTIC ACID AND PECTATES (AS CALCIUM PECTATE)

The percentage of pectic acid and pectates of all grades of the two crops ranged from 3.71 percent in T4D to 7.40 percent in N1F, which is a twofold difference. The Flyings group of grades contained the largest amount of pectic acid and pectates, averaging 5.83 percent; Cutters averaged 5.60 percent; Leaf, 4.48 percent; while the Tips contained the smallest percentage, averaging 4.17 percent. The results on pectic acid and pectates were closely associated with group, but there was no consistent relationship with grade quality within the group. Generally, the grades of lighter colors contained larger percentages than those of darker colors.

Table 23.-PECTIC ACID \& PECTATES (as Ca Pectate)
All results calculated on a moisture-free and sand-Free basis.

	$\underset{\text { Gnited states }}{\text { Glade }}$	19S1 CROP (PERCENT)	${ }_{(\text {PERCENT }}{ }^{1952 \mathrm{CROP}}$	AVERAGE OF 1951 AND 1952 (PERCENT)
Flyings.	X2L	5.16	6.54	5.85
	X4L	5.37	4.84	5.11
	X2F	-	5.97	-
	X.4F	4.74	5.38	5.06
	X4R	4.20	5.18	4.69
	NIL	6.80	6.89	6.85
	N1F	7.46	7.34	7.40
				Av. 5.83
Cutter.	C2L	5.49	6.21	5.85
	C4L	6.43	5.84	6.14
	C2F	-	5.02	-
	C4F	6.59	4.89	5.74
	C4R	4.41	4.88	4.65
				Av. 5.60
Leaf.-.	B2F	5.00	5.93	5.47
	B2PR	-	6.10	-
	B4F	4.71	5.61	5.16
	B4FR	4.64	3.36	4.00
	B4 Hf	4.16	3.72	3.944
	B4D	3.96	3.71	3.84
				Av. 4.48
Trip...-	T4F	4.82	4.57	4.70
	T4FR	4.25	3.40	3.83
	T4R	3.73	3.90	3.82
	T4D	3.70	3.72	3.71
	Nid	4.68	4.85	4.77
				Av. 4.17

TOTAL CHLOROPHYLL

There is a gradual increase in the total chlorophyll content, groupwise, in proceeding from the Flyings group through the Cutter and Leaf groups to the Tip group. On a quality comparison basis among grades of the same color, the chlorophyli content does not show a consistent difference between grades. On a color comparison basis among the grades of the same quality, the darker colored grades are higher in most cases in total chlorophyll content than the lighter colored grades.

Table 24.-TOTAL CHLOROPHYLL
All results calculated on a moisture. Frec and sand-free basis.

	UNITED states GRADE		1952 CROP $(\mathrm{MCG} . / \mathrm{GM})$	average of 1951 AND 1952 (MCG./GM.)
Flyinge---------	X2L	26	34	30
	X4L	25	26	26
	X2F	-	29	-
	X4F	37	29	33
	X4R	56	37	46
	NIL	34	16	25
	NLF	59	36	48
				Av. 35
Cutter----------	C2L	41	40	40
	C4L	26	41	38
	C2F	-	36	-
	C4F	54	30	42
	CAR	69	42	56
				Av. 44
Leaf............-	B2F	60	33	46
	B2FR	-	42	-
	134F	51	42	46
	B4FR	67	69	68
	B4R	76	52	64
	B4D	104	39	72
				Av, 59
Tip------------	T4F	61	44	52
	T4FR	84	43	64
	T4R	118	51	84
	T4D	116	54	85
	NID	100	55	78
				Av. 73

[^7]
TOTAL CAROTENOIDS

The total carolenoids content follows the same trend from one group to the next as in the case of the total chlorophyll content, except between the Leaf and Tip groups in which case the amounts were equal. The second quality is consistenty higher than the fourth quality in total carotenoids content on a comparison of grades in the same group and color. On comparisons of grades in the same group and quality, the darker colored grades are almost invariably higher in total carotenoids content than the lighter colored grades.

Table 25.-TOTAL CAROTENOIDS
All results calculated on a moisture-free and sand-free basis.

	$\left\lvert\, \begin{gathered} \text { GNITEDSTMTES } \end{gathered}\right.$	$\begin{aligned} & \text { IS51 copop } \\ & \text { (scc./CM. } \end{aligned}$	1952 CROP (MCG./GM.)	averate of 1951 AND 1952 (mcc./gM.)
--	--	\cdots	--------
1ryings -	X2L	39	25	32
	X4L	40	17	28
	X2k	-	27	
	X 4 F	49	25	37
	X4R	61	36	48
	NHL	36	12	24
	NH	62	20	41
				Av. 35
Cuter-....	C2L	88	4	66
	CHL !	74	36	55
	C 2 F	--	53	-
	CHE	91	16	68
	$\mathrm{C4R}$	101	58	80
				Av. 67
Leaf -		115	68	92
	$132 \mathrm{FR}$	-	71	-
	3 HF	111	57	84
	B.4FR	122	61	92
	B4R	128	57	92
	13:4)	111	49	80
				Av. 88
Tip	'L4F	101	52	76
	T4FR	114	63	88
	Tr\&	127	57	92
	'T+0	136	53	94
	NID	130	48	89
				Av. 88

[^8]
URONIC ACIDS (AS ANHYDRIDES)

The average content of uronic acids (as anhydrides) of the two crops ranged from 15.21 percent for T4D to 17.59 percent in N1F. Flyings averaged 17.02 percent; Cutters, 16.79 percent; Leaf, 16.30 percent; and Tips, 15.65 percent. The results showed a gradual decrease in uronic acid content in proceeding groupwise from the Flyings group to the Tip group. Phillips and Bacot (30) in an investigation of the content of uronic acids (as anhydrides) in certain grades of Type 12 tobacco (which is a flue-cured type), found that the grades that were heavier in body and had the greatest tensile strength had the lowest content of uronic acids (as anhydrides), while those which were thinner in body and had the least tensile strength had the highest content of uronic acids (as anhydrides). It appears from the data that this is equally true for Burley tobacco, which is an air-cured instead of a fluc-cured type.

Generally, the lighter colored grades in each group contained a larger percentage of uronic acids (as anhydrides), but there was no consistent relationship between the amount of uronic acids on a quality basis within the several groups.

Table 26.--URONIC ACIDS (as Anhydrides)
All results calcuiated on a moisture-free and sand-Free basis.

PENTOSANS

The content of pentosans in the two crops ranged from 2.02 percent for B4D to 2.96 percent for C4L. The Flyings group averaged 2.46 percent; Cutters, 2.55 percent; Leaf, 2.15 percent; and Tips, 2.26 percent. Thus the Cutters contained somewhat larger percentages of pentosans than any other group, while the Leaf grades contained the smallest. Generally, the lighter colors contained higher percentages of pentosans than the darker colors in the same group and quality.

Table 27.--PENTOSANS
All resulis ealctialed on a moistare-free and sand-free basis.

	UNLTEDSPATES GRADE	$\begin{aligned} & \text { (195! CROP } \\ & \text { (1ERCENT } \end{aligned}$	${ }^{1952} \mathrm{CROP}$	AVERAGE OF t951 AND (PERCETT (PERCENT)
Flying .	X2L	2.34	2.41	2.38
	X4L	2.14	2.41	2.28
	X2F	---	2.30	-
	X47	2.32	2.36	2.34
	X4R	2.05	2.33	2.19
	NiL	2.88	2.74	2.81
	NIE	2.88	2.67	2.76
				Av. 2.46
Cutter	C2L	2.40	2.47	2.44
	C4L	3.15	2.76	2.96
	C2F	--	2.39	-
	C4F	2.58	2.37	2.48
	C4R	2.44	2.21	2.33
				Av. 2.55
Leaf...	B2F	2.17	2.26	2.22
	B2FR	-	2.20	-
	B4F	2.31	2.38	2.35
	B4ER	2.16	2.09	2.13
	B4R	1.97	2.13	2.05
	B4D	2.14	1.90	2.02
				Av. 2.15
Tip...	T4F	2.44	2.20	2.32
	THFR	2.51	L. 93	2.22
	T, R	2.27	2.03	2.15
	TAD	2.36	1.97	2.17
	NDD	2.61	2.29	2.45
				Av. 2.26

CRUDE FIBER

The crude fiber determination is one of the recognized standards in the analysis of various agricultural products. Various investigators of the chemical composition of tobacco have included this determination in their analytical data. The analytical determination is an empirical method, and the product known as crude fiber is essentially a mixture of cellulose and lignin (27).

The grades of the Leaf group contained the smallest amount of crude fiber, averaging 9.08 percent, while the grades of the Flyings group contained the largest amount, averaging 11.06 percent. Cutters averaged 10.36 percent, and the Tip grades averaged 9.87 percent. Crude fiber ranged from 8.57 percent in B4R to 12.98 percent in NIL. N1L and NIF, which contained higher percentages of injury and waste, contained much greater percentages of crude fiber than any of the other grades. The grades of lighter colors contained more than those of darker colors, with the exception of B 4 D and T 4 D , which contained somewhat more crude fiber than the corresponding grades of B 4 R and T 4 R . There was a rather consistent relationship between the crude fiber content of the grades according to group and color.

Table 28.--CRUDE FIBER
All results calentated on a moisture-free and sand-free basis.

	UNJTED STATES Gltave	W51 CROP (FERCENJ)	$\begin{aligned} & 1952 \text { CROP } \\ & (\text { ('EHCEN') } \end{aligned}$	AVELAGE OF 105 : AND 1952 (PEACENT)
Wlines	N2L	10.18	10.81	30.50
	$\times 4$	11.27	11.11	11.19
	X 2 F		10.37	
	X 4 F	10.48	10.18	10.33
	X4R	8.9.4	9.39	9.17
	NJL	12.40	13.38	19.98
	NiF	11.68	12.67	12.18
				Av. 11,06
Cutter	C2L	10.50	11.01	10.76
	CHE	10.80	11.01	10.91
	C 2 F	-	10.59	-...-
	$\mathrm{C}+\mathrm{F}$	10.17	10.38	10.28
	Cus	9.18	9.82	9.50
				Av. 10.36
Leal.		9.09	9.51	9.30
	B2FR	-	9.20	- -
	B4F	9.15	9.58	9.37
	B4WR	9.18	8.98	9.08
	B4, R	8.18	33.96	8.57
	E.LD	8.75	9.13	Av $\quad \begin{array}{r}9.09 \\ 0.08\end{array}$
				Av. 9.08
Tip.	'T+F	10.10	10.32	10.21
	TuER	9.79	9.89	9.84
	T 41 l	9.08	9.23	9.16
		9.69	9.89	9.49
	N1D	10.45	10.86	$\begin{array}{r} 10.66 \\ \text { Av. } \quad 9.87 \end{array}$

CELLULOSE

The results on the amount of cellulose parallel very closely the results on crude fiber on the same basis of comparison, although the cellulose results are consistently higher than the crude fiber results.

Table 29.-CELLULOSE
All results calculated on a moisture-free and sand-free basis.

	United grates	1951 crop (PERCENTI)	(PERCENT)	AvERACE OF (PERCEN'T)
Flying9.-.......	X2L	12.47	14.66	12.07
	X4L	12.50	11.12	11.81
	X 2 F	-..	11.02	1.81
	X 4 F	$\underline{12.19}$	10.27	11.23
	$\mathrm{X}_{4} \mathrm{R}$	10.73	10.55	1.0.6.4
	NIL	13.98	12.65	13.32
	NiF'	13.4.4	12.67	13.06
				Av. 12,02
Cutter-.-......	C2L	12.27	10.79	11.33
	C4L	12.55	11.62	12.04
	Caf	--	10.82	--
	C.F	12.19	10.32	11.26
	CHR	11.16	9.58	10.37
				Av. 11.30
Leal.-	B2F	10.60	9.55	1.0 .08
	132PR	----	9.32	
	B. ${ }^{\text {a }}$	10.80	9.82	10,31
	$\mathrm{B}+\mathrm{EPR}$	10.9.1	9.19	10.07
	B+1R	10.07	9.18	9.63
	B. H)	10.60	9.27	9.9.-
				Av. 10.01
Tip....... . --	T4F		10.10	11.09
	T4PR	12.23	9.97	11.10
	THR	10.66	9.87	10.27
	T4D	11.06	9.72	10.39
	NH)	12.97	10.73	t1.85
				Av. 10.9.4

LIGNIN

The lignin content in the grades of the two crops ranged from 2.24 percent in B2F to 3.88 percent in N1F. Flyings averaged 3.25 percent; Cutters, 2.61 percent; Leaf, 2.41 percent; and Tips, 2.89 percent. Generally, the rontent of lignin was higher in the fourth quality grades of each group, but there was no consistent relationship between the lignin content and the color of the tobacco. The three Nondescript grades, N1L, NIF, and NLD, contained much higher percentages of lignin than the remaining grades.

Table 30.--ILIGNIN
All reculis calrulated on a moistire-free and sand- free basis.

METHOXYL IN LIGNIN

The content of methoxyl in kignin in all grades of the two crops ranged from 3.13 percent in N1D to 4.57 percent in X4R. Flyings group averaged 4.06; Cutter, 4.16 percent; Leaf, 3.76 percent; and Tips, 3.33 percent. Without exception, the percentages of methoxyl in lignin were higher in the second qualities of each group and color than in the fourth qualities, and, in most cases, the percentages were higher in the lighter colors than in the darker colors of each comparison of the same group and quality. Corresponding grades of Flyings and Cutters contained about the same percentage of methoxyl in lignin. Corresponding qualities of the Leaf group contained a larger percentage than the grades of the T-group. The most consistent relationship between the content of methoxyl in lignin and grade was on a quality hasis.

Table 31. --METHOXYL IN LIGNIN

	wnenswates	and crop	1952 chop Chereme	AbRAGE OF ${ }^{1951} 4$ DERCFATM
Ptyinga	-25	4.38	3.71	5.15
	人4,	4.44	3.68	4.06
	N2p	--m	4.00	\cdots
	Xfe	4.49	3.30	4.00
	X4R	5.06	4.08	4.6
	Nit,	4.33	3.30	3.82
	NiF	3.80	3.\%5	3.78
				Av. 4.06
Cutter..	C2L	4.34	4.25	4.41
	C4L	4.55	3.76	4.16
	C 2 F	-	4.03	---
	CAF	4.42	3.61	4.02
	CHR	4.50	3.57	4.03
				Av. 4.16
Leaf_	32 H	4.45	3.72	4.09
	B2F\%	- .-	3.80	--
	B4F	3.97	3.71	3.84
	B4FR	$3 . \%$	3.66	3.81
	B4.R	3.91	3.69	3.80
	B4)	3.26	3.24	3.25
				Av. 3.76
Tip.	T6F	3.65	3.33	3.49
	THFR	3.57	3.14	3.19
	Tar	3.37	3.35	3.36
	(T1)	3.14	3.20	3.17
	N1D	3.15	3.11	3.13
				Av. 3.33

TANNIN

The average tannin content of the two crops was 2.90 percent; Flyings averaged 2.82 percent; Cutters, 2.79 percent; Leaf, 2.86 percent; and Tips, 3.13 percent. Thus on a group basis, the Tip grades contained the larger average percentage. In the case of polyphenols, it was the Flyings grades which averaged the greater percentage: as compared with the other grades.

There was no significant relationship between the amount of tannin and the several grades in quality or color.

TAble 32.-TANNIN
All results calculated on a moisture-free and sand-free basis.

	CNitedstates	198 CROP	$\begin{aligned} & \text { InS2 CROP } \\ & \text { (?ERCENT } \end{aligned}$	AVERAGE OF 1951 AND 1952 (PERGENT)
Flying ${ }^{\text {F }}$ -	X2L	2.73	2.67	2.71
	N4L	2.93	2.42	2.68
	X 2 F	-	2.97	-
	X4F	2.28	3.43	2.86
	X4R	3.07	2.63	2.85
	Nil	- 2.7	2.55	2.64
	NiF	3.414	2.87	3.16
				Av. 2.82
Cutter	C2L	3.32	2.49	2.90
	C4L	2.69	2.73	2.71
	C2F	-	3.26	-
	$\mathrm{C4}$	2.67	2.42	2.54
	C4R	2.86	3.08	2.97
				Av. 2.78
Ieaí-	B2F	3.93	2.76	3.34
	B2FR	-	2.14	-
	B4F	2.93	2.24	2.58
	B4 4 FR	2.58	1.82	2.20
	B4R	2.97	2.47	2.72
	B4D	3.07	3.76	3.42
				Av. 2.85
Tip	T4F	3.66	3.42	3.54
	T4FR	3.43	2.62	3.02
	T4R	2.36	2.65	2.50
	T4D	3.04	2.73	2.88
	Nid	4.12	2.97	$\begin{array}{r}3.69 \\ \hline\end{array}$
	$!$			Ar. 3.13

TOTAL VOLATLLE ACIDS (AS ACETIC ACID)
The Flyings group of grades averaged 1.48 percent; Cutters, 2.38 percent; Leaf, 1.31 percent; and Tips, 1.24 percent. The total volatile acids content decreased progressively groupwise from the Flyings group of grades to the Tip group, but there was no significant difference between the grades on a qualily basis, or on a color basis.

Table 33.--TOTAL volatule acids
All results calcolated on a moisture-free and sand-free basis.

	unfuedstates	I951 CROP (PEREENT)	l952 CROP (TEACENT)	AVEHACE OF 1951 NNO 1952 (${ }^{\text {PERCENT' }}$)
Fiyinge	X2!	1.93	1.28	1.60
	- 45	1.24	1.33	1.28
	X2F	--	1.25	1.2
	X4F	1.19	1.38	1.28
	X 41	1.70	1.36	1.53
	NIL	1.67	1.50	1.58
	NHF	1.23	1.92	1.58
				Av. 1.48
Gutter.	C21	1.02	1.51	1.26
	Cat	1.43	1.52	3.48
	COF	---	1.52	--
	CAF	1.42	1.56	1.49
	C4t	1.34	1.21	3.28
				Av. 1.38
Leaf,	132 F	1.39	1.10	1.24
	B2FR	----	1.08	-
	B4	1.31	1. 13	1.22
	13418	1.28	1.51	1.40
	B 4 R	3.24	1.48	1.36
	Bid	1.38	1.27	I. 32
				Av. 1.31
Tip....	T4F	1.58	1.14	1.36
	TAFR	1.37	1.14	1.26
	T\&R		1.26	1.13
	TM1	1.05	1.23	1.14
	Nid	1.33	1.28	1.30
	i			Av. 1.24

FORMIC ACID

The Flyings group averaged 0.066 percent; Cutters, 0.018 percent; Leaf. 0.017 percent; and Tips, 0.020 percent. While Flyings contained a slightly greater percentage of formic acid than the other groups, there was otherwise no significant difference among the grades according to group or according to quality or color within each group.

Table 34.-- FORMIC ACID
All results calculated on a moisture-free and sand-free basis.

WATER－SOLUBLE ACIDS

The average percentage of all grades of the two crops ranged from 1.02 percent in NIL to 5.15 percent in B 4 R ，a ratio of approximately five to one． The Flyings group averaged 1.90 percent；Cutters， 3.52 percent；Leaf， 4.87 percent；and Tips， 4.43 percent．In all cases，the second quality in the grades of the same group and color contained more water－soluble acids than the corresponding fourth quality．With the exception of B4D and T4D，the grades of darker color of the same group and quality contamed more water－soluble acids than the corresponding grades of lighter color． Thus，there is evidently a significant relaLionship between the water－soluble acid content and grade according to group，quality，and color．NID，which is a very low quality grade of Tips，was much lower in water－soluble acids than the other Tip grades．NJL and N1F，wheh are very low quality grades of Flyings，also contained much less water－soluble acids than the other Flyings group of grades．

Table 35．．．．WATER－SOLUBILE ACIDS（Mi．N／10 NoOH per gram of tobacco）
All resulls calculated un a moisture－free and sand－free basis．

	$\begin{gathered} \text { GNTEDSTATES } \\ \text { GRADE } \end{gathered}$	1951 CROP （ML．．）	1952 GROP M1．）	$\begin{aligned} & \text { AVEFACE OF } \\ & \text { 1951 AND } 1952 \\ & \left(\mathrm{Mm}_{m}\right) \end{aligned}$
Ftying	느․	1．55	2.86	2.06
	\H1	1．31	2.05	1.78
	入2F		9．95	
	1 入小	2.03	2.80	2.43
	X 1 \％	2.15	3.85	3.00
	N11，	0.93	1.10	1.02
	NF	1.19	0.99	1.09
	：			Av． 1.90
Cutier	Cil	9.88 ：	3.71	3.30
	CH	2.64	3.19	2.93
	C2F		4.24	
	（\％	3.37	4.14	3.76
	cith	3.61 ；	4.55	4.10
				Av． 3.52
Lenr	129	4.36		$4.8:$
	32FR	\cdots	5.46	4.8.
	134 $\mathrm{F}^{\text {a }}$	4.23	3.45	4.66
	B4］FR	4.24	3.50	4.97
	．134R	4.62		5.15
	13：4）	4.73	4.65	4.60
				Av． 4.87
＇ip．	Tap	4.01	＋． 60	4.40
	T小PR	4.26	4.90	4.61
	＇小R	4.30	5.38	4.87
	（4i）	4.20	5.27	4.74
	（1）	3.21	3.83	Av 3.52
	－	1		Av． 4.43

PETROLEUM ETHER EXTRACT

The content of petroleum ether extract in all grades of the two crops ranged from a low of 5.06 percent in N1D to 7.98 percent in T 4 F , which is a difference of 2.91 percent. The Flyings group averaged 6.50 percent; Cutter, 7.63 percent; Leaf, 6.84 percent; and Tips, 6.36 percent. The Cutter grades are an intermediate group between Flyings and Leaf, and the content of petroleum ether extractives was higher in this than in any of the other groups. There was no difference in the content of petroleum ether extract between the second and fourth quality when the group and color were the same. However, on a color comparison basis the lighter colored grades in the Flyings and Cutter group in the same quality contained higher quantities of petroleum ether extract, and the darker colored grades in the same quality contained the higher quantities in the Leaf and Tip grades.

Table 36.-PETROLEUM ETHER EXTRACT
All resulis calculated on a moisture-free and sand-free basis.

	CNTEBSMATES	1957 CROP (PERCENT)	MER CROP	AVERAGE OF 1951 AND 1952 PERCENT)
Flying - .	NOL	6.23	6.57	6.41
	X 4.	6.14	6.50	6.32
	X2F	-	6.99	
	X4F	6.57	7.20	6.88
	X4R	6.79	7.69	7.24
	Nil	5.35	6.13	5.84
	NiF	6.33	6.27	6.30
				Ar. 6.50
Cutter -	C2L	7.70	7.45	7.58
	C¢L	7.54	7.59	7.56
	C 2 F	-	8.43	-
	Cip	8.00	7.90	7.95
	Cir	7.35	7.53	7.44
	+			Av. 7.63
Leaf......	B2F	8.22	7.66	7.94
	$13 \pm \mathrm{FR}$	T	6.88	-
	B4F	7.54	7.76	7.65
	BHER	6.97	7.14	-. 10
	131 R	6.00	6.28	6.15
	130)	4.40	6.03	5.42
	;			As. 6.85
Tp......	TF	7.3)	8.52	7.98
	TFFR	6.15	i.58	7.02
	THR	6.01	6.78	6.40
	(TH)	4.95	5.71	5.33
	(11)	4.88	5.9	5.06
				4r. 6.36

RESINS AND WAXES

In grades of the same group and color, the fourth quality is generally higher in resins and waxes content than the second cuality. In resins and waxes content, there is no apparent difference between the light and dark shades of color of the same group and quality.

Table 37.-RESINS AND WAXES
All results calculated on a moisture-free and sand-free basis.

WAXES

The average waxes content for the Flyings, Cutter, Leaf, and Tip groups of grades was 0.46 percent, 0.45 percent, 0.36 percent, and 0.41 percent, respectively. There was no consistent relationship between the amount of waxes and the quaiities or colors within each group, nor was there a significant difference between groups. In several cases, widely different grades had approximately the same amount of waxes.

Table 38.-WAXES
All results calculated on a moisture-free and sand-free basis.

	UNYTEDSTATES	$\begin{aligned} & 1951 \text { CROP } \\ & \text { (PERCENT) } \end{aligned}$	1952 CROP (DERCENT)	averace of t951 AND 1952 (PERCENT)
Flyinge.-------	X2L	0.45	0.43	0.44
	X4L	0.52	0.35	0.44
	X2F	-.	0.46	-
	X4 ${ }^{\text {a }}$	0.56	0.47	0.52
	X4R	0.50	0.45	0.48
	N1L	0.51	0.38	0.14
	NLF'	0.47	0.39	0.43
				Av. 0.46
Cutter-u----....	C2L	0.62	0.39	0.50
	C.4L	0.44	0.40	0.42
	C 2 F	-	0.24	,
	$\mathrm{C4F}$	0.51.	0.43	0.47
	C4R	0.42	0.39	0.40
				Av. 0.45
Leal.---.-.-...-	32F	0.42	0.37	0.40
	B2FR	-	0.27	-
	B4t ${ }^{\text {c }}$	0.38	0.42	0.40
	$\mathrm{B4FR}$	0.32	0.35	0.34
	$\mathrm{B4R}$	0.36	0.31	0.34
	B4D	0.8	0.28	0.30
				Av. 0.36
Tip......---...	TH'	0.49	0.47	0.48
	THFR	0.55	0.41	0.48
	T4R	0.39	0.36	0.38
	T4D	0.36	0.31	0.34
	NLD	0.39	0.35	0.37
				Av. 0.41

95\% ETHANOL EXTRACT

The amount of 95 percent ethanol extract varied from a low of 27.23 percent in NIL to a high of 35.92 percent in B2F, a range of 8.69 percent. The average content of extract for the Flyings group was 29.52 percent; Cutter, 32.61 percent; Leaf, 34.95 percent; and Tips, 33.61 percent. In most cases of comparisons between the second and fourth qualities in grades of the same group and color, the second quality contained more extractive material than the fourth quality. Differences in 95 percent ethanol extract content were almost evenly divided between the light and dark colors when group and quality were the same.

Table 39.- 95\% ETHANOL EXTRACT
All results calculated on a moisture-free and sand-free basis.

	$\begin{aligned} & \text { MnTEDSTATES } \\ & \text { GRADE } \end{aligned}$	1951 CROP (PERCENT)	1952 CROP (PERCENT)	AVERAGE OF 1951 AND 3952 (PERCENT)
Hiyings - .-.---	X2L	30.51	29.99	30.25
	X4L	29.82	28.39	29.11
	X2F	-	30.86	
	X 4 F	35.25	30.90	31.08
	X4R	32.15	32.28	31.72
	NIL	28.19	26.26	27.23
	NIF	29.50	25.91	27.71
				Av. 29.52
Cutter.	C2L	31.58	32.58	32.08
	C4I,	32.05	30.99	31.52
	C21	--	33.23	
	CA	32.88	33.20	33.04
	CH	33.96	33.66	33.81
				Av. 32.61
Leaf....	B2F	36.75	35.08	35.92
	$\mathrm{B2FL}$	\cdots	35.69	
	Bat	34.99	34.65	34.82
	BAPR	32.54	35.07	33.81
	B4]	34.80	36.61	35.71
	P4D	35.08	33.87	34.48
				Av. 34.95
Tip.-....------	T4F	34.24	35.08	34.66
	T4FR	34. 30	34.87	34.59
	T4R	34.55	36.00	35.28
	T4D	33.59	33.38	33.49
	N1D	29.85	30.18	30.02
				Av. 33.61

HOT-WATER SOLUBLE EXTRACT

The quantity of hot-water soluble substances ranged from a low of 38.59 percent in N1L to a high of 50.72 percent in B2F, a difference of 12.13 percent. Flyings averaged 42.78 percent; Cutter, 46.87 percent; Leaf, 49.06 percent; and Tips, 44.63 percent. Thus, the greatest percentage of tobacco material was removed from the heavier Leaf grades by this solvent, while the least was removed from the thinner Flyings grades. In all cases of comparison between the second and fourth qualities in the same group and color, the second quality invariably contained the greater amount of extract. In the comparisons of different colors in the same group and quality, the variations in the amount of extract did not follow a significant trend.

Table 40.-HOT.WATER SQLUBLE EXTRACT
All results calculated on a moisture-free and sand-free basis.

	Untred GRADE		1952 chop (iencent	averager of 1951 AND 1952 (PERCENT:)
Flyings	X2L	45.15	45.08	45.12
	X4L	43.84	44.46	44.15
	X2F	-	45.05	
	X4F'	44.02	44.74	44,38
	X 4 R	44.34	45.77	45,06
	NıL	39.17	38.01	38.59
	NLF'	40.70	38.07	39.39
				Av. 42.78
Cutter-..........	C2L	48.56	46.35	47.46
	C4L	46.14	46.89	46.52
	C 2 F	-	48.29	
	C4F	45.65	46.86	46.26
	C4R	46.02	48.48	47,25
				Av. 46.87
Lear----........	B2F	50.19	51.25	50.72
	B2FR	$\underline{\square}$	52.76	
	B4E	4.6.40	48.70	47.55
	[34 FR	45.75	50.42	48.09
	B4R	48.71	50.70	49.71
	B4D	48.49	4.9 .95	49.22
				Av. 49.06
Tip---..--------	T4F	44.14	45.67	44.91
	T4FR	43.07	46.67	44.87
	T412	44.33	46.72	45.53
	T4D	44.29	46.14	45,22
	N1D	41.00	44.25	42.63
				Av. 44.63

pH

Since pHI values are stated as logarithmic numbers, they were converted to grams of hydrogen ions per liter before averaging and then recalculated to the corresponding pH in obtaining the average pH value.

Flyings had the greatest pH values, and these then decreased by groups in the following order: Cutter, Leaf, and Tips. There were no significant differences in the pH values within each group on a quality basis.

Table 41.-pH

	$\begin{aligned} & \text { UNITEDSLATES } \\ & \text { GRADE } \end{aligned}$	$1951 \text { CROP }$	${ }^{195 y \text { crop }}$	$\begin{aligned} & \text { AVERAGE OF } \\ & \text { IS5) AND: } \\ & \text { (of1) } \end{aligned}$
flyings.--....--	X2L	5.90	5.85	5.87
	X4L	6.20	6.00	6.09
	X2F	--	5.80	--
	X415	6.03	5.80	5.90
	X 4 R	5.75	5.60	5.67
	NLL	7.05	6.77	6.90
	NiF	6.80	7.00	6.90
				Av. 6.02
Cuther--.--....-	C 2 L	5.85	5.65	5.74
	C4L	5.85	5.75	5.80
	C2F	-	5.60	-
	C4F	5.73	5.62	5.67
	C4R	5.68	5.52	5.59
				Av. 5.70
Leaf.-............	B2F	5.48	5.45	5.46
	B2FR	-	5.40	--
	B4 4	5.45	5.44	5.44
	B4FR	5.55	5.40	5.46
	134 R	5.43	5.40	5.41
	B4D	5.40	5.37	5.38
				Av. 5.44
Tip------...----		5.45	5.47	5.46
	T4FR	5.40	5.35	5.37
	T4R	5.35	5.32	5.33
	T4D	5.35	5.30	5.32
	N1D	5.65	5.55	5.60
				Av. 5.41

SULFUR

The sulfur content by groups for the two crop years averaged for Flyings, 0.69 percent; Cutter, 0.79 percent; Leaf, 0.78 percent; and Tips, 0.71 percent. The range between groups was 0.10 percent. The lowest content for grade was 0.58 percent for X 4 L and the highest was 0.86 percent for T 4 R , or a range of 0.28 percent. There appeared to be no grade differentiation on the basis of sulfur content from either a quality or color standpoint.

Table 42.-SULFUR
All results calculated on a moisture-free and sand-free basis.

	UNITEDSTATES ghade		$\begin{aligned} & 1952 \mathrm{CROP} \\ & (\text { PERCEN' } \end{aligned}$	AYERAGE OF (1051 AND 1952 (PERCENT)
Flyinge---------	X2L	0.76	0.77	0.76
	X4L	0.64	0.53	0.58
	X2F	-	0.66	--
	X4F	0.68	0.67	0.68
	X.4R	0.68	0.56	0.62
	NIL	0.66	1.02	0.84
	N1F	0.76	0.56	0.66
				Av. 0.89
Cutter-------.--	C2L	0.76	0.86	0.31
	C4L	0.77	0.79	0.78
	CaF	-	0.85	-
	C4F	0.79	0.86	0.82
	C4R	0.74	0.78	0.76
				riv. 0.79
Leaf.-----------	B2F	0.72	0.77	0.74
	B2FR	-	0.73	-
	B4. P^{P}	0.87	0.32	0.81
	B 4 FR	0.84	0.80	0.82
	B4R	0.78	0.66	0.72
	B4D	0.71	0.87	0.79
				Av. 0.78
Tip.-----------	T4F	0.82	0.81	0.82
	T4FR	0.88	0.82	0.85
	T4R	0.87	0.85	0.86
	T4D	0.78	0.77	0.78
	NiD	0.79	0.73	0.76
				Av. 0.81

CHLORINE

The average content of chlorine according to group was as follows: Flyings, 0.74 percent; Cutter, 0.50 percent; Leaf, 0.61 percent; and Tips, 0.51 percent. The chlorine content ranged from a low of 0.29 percent for T4FR to a high of 1.25 percent for B4D. Although the ratio of the high to the low in chlorine content was over four to onc, the amounts in the various grades were so scattered that no relationship to grade was evident from the standpoint of quality or of color.

Table 43.--CHLORINE
All results calculaled on a moisture-[ree and sand-free basis.

	unitedsipates BRADE		(1ERCENT)	AYERAES OF 1951 AND (1PRCENT')
Flyings	X21	0.99	0.64	0.82
	X4L	0.81	0.65	0.73
	X2\%	-	0.47	
	X4i'	0.54	0.49	0.52
	X4R	0.18	0.57	0.52
	NIL	0.98	0.88	0.93
	N1F	1.02	0.78	0.90
				Av. 0.74
Cutter-...-	C2L	0.68	0.40	0.54
	C4L	0.46	0.65	0.56
	C2F	-	0.43	0.5
	$\mathrm{C4F}$	0.35	0.49	0.42
	Cak	0.47	0.47	0.47
				Av. 0.50
Leaf.--.......-	B2F	0.75	0.41	0.58
	B2FR	-	0.44	-
	B4F	0.48	0.36	0.42
	B4FR	0.57	0.41	0.49
	B4. R	0.63	0.57	0.60
	1340	1.25	0.70	0.98
				A.v. 0.61
Tip------------	T4. ${ }^{\text {a }}$	0.57	0.31	0.88
	T4FR	0.54	0.29	0.42
	T4R	0.57	0.38	0.48
	T4D	0.73	0.43	0.58
	N1D	0.72	0.54	0.63
				Av. 0.60

MOISTURE EQUILIBRIUM

There are noteworthy changes in the moisture equilibrium of different grades, and groups of grades, corresponding to changes in relative humidity at $25^{\circ} \mathrm{C}$. as shown in Table 44. The increase in moisture content with the increase in relative humidity indicates the relative moisture absorption properties of the different grades, which is a significant factor in the technology of tobacco.

COMPOSITION OF STEMS

The chemical composition of the stems from three grades of tobacco is given in Table 45.

In explanation of the grade designations used here for stems, it is necessary to point out that there are no Federal grades for stems. The grade designations N1L, C2L, and B4R mean that the stems were taken from leaves graded $N 1 L, C 2 L$, and $B 4 R$, respectively.

In comparing the chemical composition of the three samples of stems among themselves, it will be noted that NIL had the smallest percentages of total nitrogen, nitrate nitrogen, and nicotine, while B4R had the greatest percentages of these components. The percentage of protopectin (as calcium pectate) was the smallest in N1L and greatest in B4R. However, in case of pectic acid and pectates (as calcium pectate) this relationship was reversed. N1L contained the greatest percentages of pentosans, crude fiber, cellulose, and lignin as compared with C2L and B4R. The methoxyl in lignin was the greatest in C2L and the smallest in N1L. The percentages of 95% ethanol extractives and the acidity values increased in the following order: N1L, C2L, and B4R.

In comparing the chemical composition of the stems with the web of the same grade, it is evident that the stems contained much greater percentages of uronic acids, crude fiber, cellulose, and methoxyl in lignin. Lignin from a more mature plant tissue generally contains a greater percentage of methoxyl.

The pH values are also greater in the case of the stems.
Because of the woody nature of stems, it was expected that they would contain a much greater percentage of lignin. However, the percentages of lignin in the stems were not much different from those of the corresponding grades of web.

Table 44.-MOISTURE EQUILIBRIUM

	UNITEDSTATESGRADE	40 PERCENT RELATIVE HUMIDITY		60 PERCENT RELATIVE HUMIDITY		70 PERCENT RECATIVE HUMIDITY		80 PERCEN'T RELATIVE MUMIDITY	
		$\begin{aligned} & 1951 \mathrm{CROP} \\ & \text { (PERCENT) } \end{aligned}$	$\begin{aligned} & 1952 \text { CROP } \\ & \text { (PERCENT) } \\ & \hline \end{aligned}$	$\begin{aligned} & 1951 \text { CROP } \\ & \text { (PERCNT) } \end{aligned}$	1952 CROP (PERCENT)	$\begin{aligned} & 1951 \text { CROP } \\ & \text { (PERCENT) } \end{aligned}$	1952 CROL (PERCENT)	$\begin{aligned} & 1951 \text { CROP } \\ & \text { (PERCENT) } \end{aligned}$	$\begin{aligned} & \text { (P52 CROP } \\ & \text { (PERCEN'l) } \end{aligned}$
Flyings .-....	X 2 L	8.10	7.35	10.15	9.30	11.85	11.65	16.60	15.60
	X4L	8.20	7.60	10.20	9.35	11.65	11.75	15.60	15.15
	X2F		$\bigcirc 7.50$		9.60		11.90		- 15.80
	X4F	7.80	7.75	9.60	9.40	11.20	11.85	15.50	- 15.40
	X4R	7.40	7.35	9.60	9.50	11.10	12.35	15.50	\% 16.35
	N1L	8.40	7.85	10.15	9.50	11.50	11.50	15.40	. 14.60
	N1F	8.40	8.45	10.30	9.75	11.80	12.10	16.00	15.45
Average--		8.05	7.69	10.00	9.48	11.51	11.87	15.77	15.48
Cutter	C2L	7.60	7.15	10.25	9.20	11.80	12.00	16.20	16.30
	C4L	7.75	7.25	10.05	9.50	11.80	12.40	16.30	17.00
	C2F	\square	7.25	\square	9.55	\square	$\therefore 12.50$	-	1695
	C4F	7.50	7.15	9.70	9.65	11.45	- 12.20	16.00	16.50
	C4R	7.75	7.40	10.00	9.70	11.70	12.60	15.80	17.00
Average--		7.65	7.24	10.00	9.52	11.68	12.34	16.08	16.75
Leaf	B2F	7.52	7.22	10.38	9.75	12.18	12.65	16.70	17.38
	B2FR	\square	- 7.35	\square	10.05	-	12.95	-	17.75
	B4F	7.50	7.05	9.95	9.45	11.80	12.30	16.70	16.70
	B4FR	7.60	- 7.00	10.05	9.70	11.80	12.50	15.90	17.20
	B4R	7.65	7.10	10.45	9.90	12.35	13.40	17.50	18.50
	B4D	7.50	7.20	10.75	9.95	13.40	12.80	19.50	17.90
Average--		7.55	7.15	10.31	9.80	12.30	12.77	17.26	17.57
Tip-	T4E	7.15	6.95	9.75	9.35	11.50	12.00	16.30	16.25
	T4FR	7.30	6.90	9.85	9.05	11.60	12.30	15.50	16.00
	T4R	7.35	7.20	10.15	10.00	12.10	12.75	16.80	16.70
	T4D	7.40	7.25	10.25	9.90	12.10	12.80	17.00	16.85
	N1D	7.70	7.60	10.15	10.00	11.90	12.75	16.70	16.75
Average --		7.38	7.18	10.03	9.66	11.84	12.52	16.45	16.51

[^9]
Table 45.-COMPOSITION OF STEMS

All results calcalated on a moisture-free and sand-free basis.

CONSTITUENT OR PROPERTY	grades		
	NiL	C2L	B4R
	Percent	Percent	Percent
Sand-free Asta	27.90	29.08	24.54
Water-Soiuble Ash.	11.76	19.70	15.19
Alkalinity of Water-Sol, Aslı ${ }^{1}$.	9.63	4.96	12.46
Total N	1.98	2.24	3.33
Nitrate N.	0.92	1.24	1.46
Protein N .	0.77	0.73	0.82
Nicotine.	0.27	0.55	1.14
Protopectin (as Ca pectatc)	2.53	2.86	4.16
Pectic Acid and Pectates (as Ca pectates)	13.98	12.48	10.26
Eironic Acids (as aubyd.).	28.08	27.45	29.80
Peatosans	4.92	4.59	4.82
Crude Fiber	26.09	22.86	20.08
Cellulose.	27.29	23.57	22.15
Ligaib.	3.45	2.07	2.17
Methoxyl in Lignin	10.40	13.08	11.60
Tannins.-	2.24	2.18	0.53
Total Volutile Acids (ns acetic acid) ,	2.17	1.49	1.22
95 CH Ethanol Extractives	26.89	28.11	30.81
pH	8.65	7.60	6.20

[^10]
LITERATURE CITED

(I) Anonymols
1932. statutoby hules and onders, no. 658 (brttish) the fertiligers and feemict stuffs aegulations, Aug. 11, 1932, pp. 27-28.
(2) Amprican Leatier Chemists Association.
1952. methods of the american lenther chemists assoclation for tife analysis of yegetable tanning matehials, section A5, A12, A13, a21, and A22. University of Cincinnati, Cincinnati, Ohio.
(3) Assoclation of Official Acmicultural Chemists.
1945. official and tentative methons of analysis. Ed. 6, 932 pp., illus., Waslington, D. C., pp. 26-27, secs. 2.24, 2.25, and 2.26.
(4) Association of Official Agricultural Chemigts.
1945. official and tentative methods of analysis. Ed. 6, 932 pp., illus., Washing1on, D. C., pp. 535-537, secs. 32.39 and 32.40 .
(5) Association of Official Acricultural Chemists.
1945. official and tentative methods of analysis. Ed. 6, 932 pp., illus., Waslington, D. C., pp. 412-413, secs. 27.38 and 27.39 .
(6) Association of Official Agacultuial Ceemists.
1945. official and temtative methods of analysis. Ed. 6, 932 pp., illus., Washington, D. C., p. 27, sec. 2.27.
(7) Association of Official Agricultural Chemists.
1945. official and tentative methods of analysis. Ed. 6, 932 pp., illus., Washington, D. C., pp. 28-29, secs. 2.32 and 2.33 .
(8) Bradford, J. A., Harlow, E. S., Hablan, W. R., and Hanmer, H. R.
1937. nature of cigabette smoke, volatile bases and acius. Indus. and Engin. Chem. 29: 45-50, illus.
(9) Browninf, J3. L.
1949. appabayus for determination of polyunonide caboxyl. Tappi 32 (3): II9-120, illus.
(10) Cabpenteh, F. B.
1895. types of tobacco and their analyses. N. C. Agr, Expl. Sta. Bul. No. $122,35 \mathrm{pp}$.
(11) Carre, M. H., and Haynes, D.
1922. the festimation of pectin as calcium pectate and tife application of this meithod to tile determinathon of the soluble pectin in apples. Biochem. Jour. 16: [60]-69.
(12) Cundiff, R. H., and Mahkunas, P. C.
1955. determination of micotine, nonnicotine, and total alkalotds in tobacco. Analyt. Chem. 27: 1650-1653.
(13) Dickson, A. D., Otterson, H., and Link, K. P.
1930. a method for the deteimination of uronic acids. Jour. Amer. Chem. Soc. 52: 775-779, illus.
(14) Gabnat, Wightman W.
1907. the relation of the composition of the lfaf to the burning qualdties of tobacco. U. S. Bur. Plant Indus. Bul. No. 105, 7-25.
(15) Graham, V., and Carr, R. H.
1924. chemical factohs determininc the ¿qality of tobacco. Jour. Amer. Chem. Soc. 46: 695-701.
(16) Ghiffith, R. B., and Jefrhey, R. N.
1948. improved steam distillation apparatus. application to deternination of micotine in green and dry tobacco. Analyt. Chem. 20: 307-311, ilius.
(17) Hecgestad, H. E., and Bowman, D. R.
1953. bumley tobacco quality, yeld, and chemical composition as affecten hy time of hafyest. Univ. Temi. Agr. Expl. Sta, Bul. No. 230, 3-25, illus.
(18) Kertfsz, Z. I.
1951. the fectic substances. 628 pp., illus. New York.
(19) Kiozer, E.
1900. untersuchungen eber dif pentosanilestimmungen mittelst der salz-saure-phloboclucinmethode nebst bingen antendungen. Jour. Landw. 48: [357]-384.
(20) Kitascinerr, K., and Hoffer A.
1931. bine, neue quantitative cellulosebestimminc. Chem.-Ztg. 55: [161]163 and 182-184.
(21) Lefeyre, K. U., and Tollens, B.
1907. inytersuchungen uber die glucuronsajre flebe quantitative bestimmung und iare farbenreaktionen. Ber Deut. Chem. Gescil. 40: 4513-4523.
(22) Moome, Gidzon E.
1883. report on the chemistiy of amerucan tobacco. Tenth Census Report on the Praduction of Agriculture, vol. 3, ch. 21, p. 269, Washington, D. C.
(23) Moseley, J. M., Hablav, W. R., and Hinmer, H. R.
1951. burley tobacco belation of the nitrocerous fractions to smoking quality. Indus. and Engin. Chem. 43: 2343-2347, illus.
(24) Nanji, D. R. and Norman, A. G.
1928. studies on pectin, if. the estimation of the individual pectic substances in nature. Bioclem. Jour. 22: [596]-604.
(25) Norman, A. G.
1935. the composition of crude fibale. Jour. Agr. Science 25: [529]-540.
(26) Pack, A. B.
1950. Ph. D. Thesis, N. C. State College, Raleigh, N. C.
(27) Phillips, M.
1932. the quaititative determination of methoxyl, ligenin, and cellelose in plant materials. Assoc. Of, Agr. Chem. Jour. 15: [118]-131, illus.
(28) Pitllips, M., Goss, M. I., and Browne, C. A.
1933. determination of pronic actos and methoxyl in certan plants and plant materials. Assoc. Off, Agr, Cleem. Jour. 16: [289]-292.
(29) Phrlilips, M.
1944. Wood Chemistry, Louis E. Wise, cditor, pp. 272-368 and 634-650, illus. New York, N. Y.
(30) Philips, M., and Bacot, A. M.
1953. the content of uronic acid in several grades of flue-cured, type 12, todacco. Assoc. Olf. Agr. Chem. Jout. 36: 123-128.
(3I) Pimllifs, M., and Bacot, A. M.
1953. the chemical composition of certan chades of type 11, american fluecured tobacgo. relationship of composition to crade characteristics. Assoc. Off. Agr. Chen. Jour. 36: 504-524.
(32) Philhps, M., Wilkinson, F. B., and Bacot, A. M.
1953. the chemical composition of certain grades of puerto bican tobacco, type 46. Assoc. Off. Agr. Chent. Jour. 36: 1157-1165.
(33) Phllips, M .
1955. the isolation of chloroeenic acid from american flue-cured tobacco, u.s. mype 12. Assoc. Of. Agr. Chen. Jour. 38: 835-837.
(34) Pillips, M., and Bacot, A. M.
1955. the isolation of i-foostol from american flue-cured tobacco. Jour, Amer. Chem. Soc. 77: 496.
(35) Pucher, G. W., Vickemy, H. B., and Leavenworthi, C. S.
1935. determination of ammonia and of amide nithucei in phant tissue. Indus. Eagin. Chen., Anslyt. Ed. 7: 152-156, ilhus.
(36) Pyriki, C.
1942. zur bestimmung der habze und wachse im tabak. Zischr. f. Untersuch. der Lebensmil. 84: 225-230.
(37) Reid, J. D., and Lyncir, J. F. J.
1937. cellulose analysis a comparison of three principal methods. Indus. and Engin. Chem., Analyt. Ed. 9: 570-573. illus.
(38) Schlosinc, T.
1861. ueber die yebobennlichikets des tabaks. Dic Landw. Vers. Sta. 3: 98-100.
(39) Seamaí, W., and Allen, E.
1951. acid-base titrations in glacial acetic acid. acid yotassium phthalate as a primary standad and behavion of cristal volet ingicator. Analyt. Chem. 23: 592-594, illus.
(40) Sis.
+.5. the relation of some chemical constituents to the grades of kentucky tobacco. Ky. Agr. Exp. Sta., Univ. of Ky., Bul. No. 258, $33-58$.
(41) Shmuk, A. A.
1938. khimha tabaka : makhorki (in hussian) pp. 403-406, jllus., Moscow. 542 pages.
(42) Stinson, F. A.
1949. Ph. D. Thesis, N. C. State College, Raleigh, N. C.
(43) Van Slyke, D. D.
1912. the quantitative determination of aliphatic amino groups h, Jour. Biol. Chem. 12: 275-280, illus.
(44) Vin Siyke, D. D., and Cullen, G. E.
1914. permanent freparation of ubease, and its use in the determination of urease. Jour. Biol. Chem. 19: 211-288, illus.
(45) Vebock, F., and Schwaprach, A.
1930. eine neue methode zur massaialytischen bestimmunc dee methoxyl und afhoxyl gheppe. Ber. Deut, Chem. Cessell. 63: 2818-2823, illus.
(46) Weme, H. D., and Philits, M.
1947. the quantimatiye hstimation of hemicelluloses by dhect isolation. Jour. Agr. Res., 74: 77-85, illus.
(47) Weybraw, 3. A.
1957. estination of the plastid piguents of tobacco. Tobacco Science 144: (1) ap. 18-22.
(48) Wilkinson, F. B., Phillips, M., and Bacot, A. M,
1954. chlorogenic and caffeic acibs in certain standard gbades of u. s. type 12 тobacco. Assoc. Off. Agr. Chem. Jour. 37: 1004-1012.
(49) Whlits, C. O., Swain, Margaret R., Connelly, J. A., and Brice, B. A.
1950. spectrophotometric determination of micotine. Analyl. Chem. 22: 430433 , ilias.

BRIEF OF BURLEY GRADES

Type 31: Buriey; produced principally in Kentucky, Tennessee, Ohio, Indiana, West Virginia, Virginia, North Carolina, and Missouri.

Key to Standard Grade Marks for Burley Tobaceo

Group	Quality	Color	Special factor
B-Leaf	I-Choice	L-Buf	V-Greenish
T-Tips	2-Fine	F-Tan	K-Variegated
C-Lugs or	3-Good	R-Red	FR-Reddish Tan
Cutters	4-Fair	D-Dull Red	GF-Light Green
X-Flyings	5-Low	M-Mixed Color	GR-Dark Green
M-Mixed Group		G-Green	
N-Nondeseript			W-Unsafe Order ${ }^{\text {2 }}$
			U-Unsound *

Summary of Standard Grades and Subgrades

17 Grades of Leaf

B1F	B1FR	B1R	
B2F	B2FR	B2R	
B3E	B3FR	B3R	
B4F	B4FR	B4R	B4D
B5F	B5FR	B5R	B5D

11 Sulvgrades of Tips			
T3F	T3FR	T3R	
T4F	T4FR	T4R	T4D
T5F	T5FR	T5R	T5D

15 Grades of Cutters or Lugs
CIL CIF
C2L C2F
C3L C3F C3R
C4L C4F C4R C4G
C5L C5F C5R C5G
15 Grades of Flyings
XIL XIF
X2L X2F
X3L X3F X3R
X4L X4F X4R
X5L X5F X5R X5G
10 Subgrades ô̂ Green
B3GF B3GR
B4GF B4GR TAGF T4GR
B5GF B5GR T5GF T5GR

7 Mixed Color Subgrades
B3M

B4M	C4M	X4M
B5M	C5M	X5M

6 Mixed Group

M3F	M3R
M4F	M4R
M5F	M5R

12 Greenish Subgrades (V's)
B3FV T3FV C3FV

B3Ry T3RV C3RV
B4FV T4FV C4FV B4RV TARV C4RV

4 Variegated Subgrades (K's) B3FK C3FK
B4FK C4FK
11. Grades of Nondeseript

N1L		Botcled
N1F	N2L	Nested
N1D	N2D	Oftype
N1C	N2G	N-Dec.

[^11]

[^0]: ${ }^{1}$ Deceased.
 ${ }^{2}$ Frank B. Wilkinson, farmer Cliticf of the Standards Branch, presently retired, initiated and planned this project, and the collathorators, listed on pages 3 and 4, contributed not only their efforts but also their wholehearted cooperation.
 ${ }^{3}$ Italic numbers in parentheses refer to Literature Cited, pages 90, 91, 92, and 93.

[^1]: "The moisture content data of all samples uscd in this investigation were determined by the method of The American Tobacco Co. For comparative purposes, the percentage of moisture was determined also by the other methods described here.

[^2]: *From the A ssoc. Off. Agr. Chem., "Methods of Analysis," (1955).

[^3]: - The pectin extractor may be purchased from the Kontes Glass Co., Vineland, N. J., under the designation and number "Pectin Extructor No. 2721-E."

[^4]: ${ }^{0}$ No water-soluble pectinic acids were found in any of the Burley samples from the 1951 and 1952 crop years. Accordingly, the remainder of Part 2 procedtre was not carried out, and the solution of the water extract of Part 2 (a) was discarded. The determinations as described in Parts 3, 4, and 5 were completed.

[^5]: ${ }^{\top} A$ small spice mill was used for this purpose.
 "This is made of Pyrex glass tubing, approximately 2 mm . internal diameter and 18 cm . long, ty sealing at one end and sealing also ahout 2 em . From the other end. The open end is fire-polished. The boiling tube is introduced open end down.

[^6]: "Since the tanin content of the tobacco samples was quite low resulting in a Jow tannin concentration in the extract, 10 grams of wet, washed bide powder were used instead of 46 grams $\frac{(12.5 \times 100)}{100-72.5}$ as are nornally used for commercial tanning materials.

[^7]: * Micrograms per gram.

[^8]: * Micrograms per gram.

[^9]: Note: Data in terms of percent moisture in equilibrium at $25^{\circ} \mathrm{C}$.

[^10]: ${ }^{\prime} \mathrm{ml} . \mathrm{N} / 10 \mathrm{HCl}$ per gram moisture and sand-free tobneco.

[^11]: ${ }^{1}$ Unsaic order-Sound hat containing excesoive noistare which in likely ita intage eniess unusual prechution la zaken.

 2 Ungound-Damaged ander 20 percent.
 Description and apecifications for Oficial Standard Grates are available upod request, Tobatco Division, Agricutural Mazketing Serviec, U. S. Department of Agriculture, Washington 25, D. C.

