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Optimal Land Allocation and Production

Timing for Fresh Vegetable Growers under

Price and Production Uncertainty

Michael Vassalos, Carl R. Dillon, and Timothy Coolong

Production timing is an essential element in fresh vegetable growers’ efforts to maximize
profitability and reduce income risks. The present study uses biophysical simulation mod-
eling coupled with a dual crop (tomatoes, sweet corn) whole-farm economic formulation to
analyze the effects of growers’ risk aversion levels and price consideration (seasonal or
annual price consideration) in expected net returns and production practices. The findings
indicate that consideration of seasonal price trends results in higher expected net returns and
greater opportunities to mitigate risk. Furthermore, risk aversion levels substantially in-
fluence production timing when seasonal price trends are considered.

Key Words: biophysical simulation, farm management, mean variance, price seasonality,
vegetable production

JEL Classifications: C61, C63, D81

Growers’ decisions (i.e., choice of inputs, land

allocation, production mix, etc.) in the uncertain

environment created by production and price var-

iability are a subject that has attracted scholars for

more than five decades. Babcock, Chalfant, and

Collender (1987) and Mapp et al. (1979) provide

a discussion and review of the early research en-

deavors in this topic. Following the work of Cha-

vas and Holt (1990), growers’ risk behavior be-

came an important element in the study of their

allocation choices (i.e., Liang et al., 2011; Nivens,

Kastens, and Dhuyvetter, 2002; Wang et al., 2001).

In addition to the production and price var-

iability, fresh vegetable growers face increased

uncertainty as a result of the special charac-

teristics of their product. For instance, the high

perishability of most fresh production results in

limited storage opportunities; thus, the vegeta-

ble supply in the short run is highly inelastic

(Cook, 2011; Sexton and Zhang, 1996). As a

result, growers are compelled to accept the price

during or close to the harvesting period. Con-

sequently, planting and harvest timing plays an

important role in the income received from

vegetable production. Furthermore, the impact

of quality on the prices of fresh vegetables

should not be understated. Specifically, if the

vegetable produced does not reach the quality

standards expected by the buyer (i.e., con-

sumers, retailers, intermediaries, etc.), then the

growers have to accept a lower price (Hueth and

Ligon, 1999).1
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Despite an abundance of research regarding

growers’ decisions under uncertainty and the

increased risk faced by vegetable growers, the

literature regarding how 1) growers’ risk aversion

levels; and 2) consideration of price seasonality2

impact the production decisions, particularly

timing of planting and harvest, is limited. A

notable exception is Simmons and Pomareda

(1975). The research presented is an effort to

fill this gap.

The objectives of this study are threefold.

First, the study seeks to develop a dual-crop

vegetable farm model with a land allocation

and production timing decision interface focus-

ing on economic optimization. Second, it ex-

amines the effect of price/production variability

and of growers’ risk preferences on their de-

cisions regarding the optimal production prac-

tices (land allocation, transplant timing). Third,

the study investigates potential alterations in

optimal production practices and in the eco-

nomic results with and without considering

seasonal price trends, a factor that may influence

growers’ production timing decisions. Mathe-

matical programming modeling in conjunction

with biophysical simulation techniques are used

to achieve these goals.

The focus area for the present article is

Fayette County, Kentucky. The following two

reasons dictated the selection of Fayette

County as the study region: 1) it is among the

top vegetable-producing counties in Kentucky

(U.S. Department of Agriculture, National Ag-

ricultural Statistics Service, 2010); and 2) the

abundance and availability of weather and soil

data. These data are essential requirements for

the biophysical simulation.

Kentucky was ranked 42 out of 50 states

within the United States based on the 2010

value of farm cash vegetable receipts. However,

the importance of vegetable crops in the overall

agricultural economy of the state is rising. Two

facts highlight the growing role of vegetable

production in Kentucky. First, in contrast to the

overall decline of farm numbers in the state,

there is an increase in the number of farms with

some type of vegetable crop from 1086 (1997)

to 2123 in 2007 (2007 Census of Agriculture).

Second, there is a steady growth in the annual

farm cash receipts from $8.7 million (1997) to

$24.7 million in 2007 (U.S. Department of

Agriculture–Economic Research Service, 2011).

The latter fact indicates an additional op-

portunity for enhanced growth, because it rep-

resents a 51% increase in cash receipts per acre

over a ten-year period, which annualizes to a

modest growth of just over 4% annually or

slightly more than the inflation rate. Looking

at the demand side, the percentage of adults

who consumed vegetables three or more times

per day in Kentucky is higher than the national

average (29.4% compared with 26%; Centers

for Disease Control and Prevention, 2010).

This increased demand is coupled with growing

interest among consumers for local prod-

ucts, attributable in part to the success of the

Kentucky Proud program. These factors high-

light a great range of opportunities for benefiting

producers.

Tomatoes and sweet corn are the crops in-

cluded in the whole-farm economic model.

These vegetables were selected because they

are among the top ten vegetables produced in

Kentucky, both in number of farms and in

acres. Specifically, sweet corn was ranked first

among vegetables in terms of acres and second

in number of farms. Tomatoes were ranked

first in terms of farm number and third in acres

planted (2007 Census of Agriculture). In ad-

dition to their overall importance in the agri-

cultural sector of Kentucky, tomatoes and sweet

corn were selected because growers can easily

rotate among them (Coolong et al., 2010).

The comparison of economic outcomes and

the estimation of optimal production timing for

vegetables, with and without consideration of

seasonal price trends, constitute the main con-

tribution of the study to the literature. Further-

more, it is among the first research endeavors

that uses the Decision Support System for

Agrotechnology Transfer3 (Hoogenboom et al.,

2004; Jones et al., 2003) to overcome data

2 Price seasonality is defined as the price patterns
occurring within a ‘‘crop marketing period.’’

3 DSSAT Version 4.0 has been used in the present
study.
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limitations for economic studies that include

multiple vegetables.

Data Collection and Yield Validation

The present section has the following three

objectives: 1) discuss the biophysical simula-

tion model used for the estimation of yield data;

2) illustrate how the biophysical simulation

model was validated; and 3) describe the sources

of data used in the study.

DSSAT Data Requirements and Data Sources

One interesting strand of the applied economic/

agricultural literature relates to efforts made by

scholars with the goal of developing the most

accurate possible model for yield forecasting.

Two of the most widely cited techniques for

yield forecasting are statistical regression equa-

tions and simulation methods (Kaufmann and

Snell, 1997; Walker, 1989). The advantages and

shortcomings of these two approaches have been

widely discussed (Jame and Cutforth, 1996;

Kaufmann and Snell, 1997; Tannura, Irwin, and

Good, 2008; Walker, 1989). Among the advan-

tages of the biophysical simulation4 are: 1) that

there is no need to specify a functional form;

2) it can provide yield data for different weather

and production practices; 3) the use of biological

principles for crop growth; and 4) the use of

shorter time periods to estimate growth. How-

ever, it is more difficult to use simulation tech-

niques for large geographical areas.

A lack of yield data for the examined veg-

etables, the need to estimate the effects of dif-

ferent production practices and soil types on

yields, the focus on a specific geographical

area, and the overall objective of using these

data for economic modeling suggest the use of

biophysical simulation as the most appropriate

yield estimation technique for the present study

(Dillon, Mjelde, and McCarl, 1991).

Biophysical simulation techniques have been

extensively applied in the literature (e.g., Archer

and Gesch, 2003; Barham et al., 2011; Deng

et al., 2008; Shockley, Dillon, and Stombaigh,

2011). Among the several biophysical models

that have been developed and used, the present

study uses the Decision Support System for

Agrotechnology Transfer (Hoogenboom et al.,

2004; Jones et al., 2003). DSSAT was selected

for the following reasons: 1) it is well docu-

mented; 2) it has been used and validated in

numerous studies over the last 15 years; and

3) it is well suited for the present study because

it incorporates modules for the two examined

vegetables (tomatoes and sweet corn).

The minimum data set required to generate

yield estimates using DSSAT includes weather

data, soil data, and production practices infor-

mation for the examined region (Fayette County,

Kentucky). Daily weather data for 38 years

(1971–2008)5 were obtained from the Uni-

versity of Kentucky, College of Agriculture–

Economic Research Service (2011). The data

set includes information regarding daily min-

imum/maximum temperature and rainfall. The

weather data collection was finalized with the

calculation of solar radiation from the DSSAT

weather module.

Soil data were gathered from the U.S. De-

partment of Agriculture–Natural Resources

Conservation Service (2011). According to the

soil maps, the most common soil type in Fayette

County is silt loams. Following Shockley (2010),

the percent slopes from the soil maps are used

as a criterion for distinguishing between deep

and shallow soils. Specifically, if the slope is

between 0% and 6%, then the soil is charac-

terized as deep. If the slope is between 6% and

20%, then the soil is characterized as shallow.

Based on these scales, 65% of the land is clas-

sified as deep silt loam and 35% as shallow.

Furthermore, the default soil types of DSSAT

were modified to better depict the characteristics

of Fayette County soil conditions. Soil color,

runoff potential, drainage, and percent soil slope

were among the parameters modified. Table 1

reports the exact specifications of the used soil

types. Lastly, the seasonal analysis option of

DSSAT is used for the yield simulation. Under

this option the soil water conditions, nutrients

4 Biophysical simulation is a special case of the
simulation models (Musser and Tew, 1984).

5 These years of weather data were available when
the biophysical model of the study was constructed.
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and organic matter are reset to initial levels

every year on January 1.

Information regarding the following produc-

tion practices: 1) irrigation levels, 2) nitrogen

requirements, 3) plant population, 4) planting

depth, 5) transplant age, 6) planting/transplanting

periods, and 7) harvesting periods for the ex-

amined crops were obtained from the Uni-

versity of Kentucky Extension Service Bulletins

(Coolong et al., 2010). One cultivar was exam-

ined for each of the two crops under consid-

eration because only one was available from

DSSAT Version 4. For the purposes of the

present study, planting/transplanting period and

harvesting dates vary in the model.

Tomatoes in the examined region are trans-

planted from early May (spring crop) through

early August (fall crop). Regarding sweet corn,

planting period extends from April 20 to July 20.

In addition, 65–80 days after transplant and

70–95 days after planting are the typical harvest

periods for tomatoes and sweet corn, respectively.

Including all the combinations of transplanting/

planting days and harvesting periods requires

modeling for 95006 treatments, the inclusion

and evaluation of such is beyond the scope of

this study. The production practices examined

here included eight biweekly transplanting

days for tomatoes (starting May 1) and nine

weekly planting days for sweet corn (starting

April 25). Four weekly harvest periods for each

crop were initially included in the model.7

Detailed information regarding the produc-

tion practices included in the simulation model

is reported in Table 2. The validation process,

discussed in the next section, explains why the

harvest periods included in Table 2 are less than

the ones initially examined.

Yield Data Simulation and Validation

The aforementioned data sets (soil, weather,

production practices) were incorporated in the

DSSAT tomato and sweet corn modules to es-

timate the yield data under the different trans-

planting/planting periods for the 38 years of

weather data. Table 3 reports summary statistics

for the simulated yields. Figures 1 and 2 provide

a graphical representation for the simulated

yields under the different transplanting/planting

periods included in the model.

A required step following yield data simula-

tion is the validation of the estimated yields. As

a result of data limitations,8 two nonstatistical

validation methods were used in this study.

First, the estimated yields were presented to

Dr. Timothy Coolong9 (2012) and he was asked

whether or not they were a reasonable repre-

sentation of expected yields in central Kentucky

for the crops evaluated based on his experience

and observations. Based on the simulated yield

results and on Dr. Coolong’s suggestions (2012),

three harvest periods (63, 70, 77 days) for to-

matoes and one (84 days) for sweet corn are kept

in the final model formulation10 instead of the

four initially included. The simulated yields

Table 1. Characteristics of Soils Included in Farm Simulation Model

Soil Color Drainage

Runoff

Potential

Slope

(%)

Runoff

Curve No. Albedo

Drainage

Rate

Deep silty loam (65%) Brown Moderately

well

Lowest 3 64 0.12 0.4

Shallow silty loam (35%) Brown Somewhat

poor

Moderately

Low

9 80 0.12 0.2

Source: Shockley, 2010.

6 (120 transplanting days * 15 harvesting days for
tomatoes) 1 (120 planting days for sweet corn * 25
harvesting days) * 2 for the two soil types examined.

7 63, 70, 77, and 84 days after transplant for tomatoes
and 70, 77, 84, and 91 days after planting for sweet corn.

8 The historical yield data available was too limited
to do a validation through regression.

9 Associate Professor, University of Georgia, De-
partment of Horticulture, Tifton campus.

10 Eighty-four days harvest period for tomatoes and
70, 77, and 91 days for sweet corn are excluded from
the final formulation because the simulated yields, for
these periods, are not achievable in the examined area.
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were considered higher than what an average

vegetable grower can achieve but not un-

reasonable for the best producers.

Second, the simulated yields were compared

with findings from previous studies. Specifi-

cally, for tomatoes, consistent with past re-

search (i.e., Hossain et al., 2004; Huevelink,

1999; Schweers and Grimes, 1976), the sim-

ulated yields are substantially influenced by

transplant period. Furthermore, consistent with

the aforementioned studies, simulated yields had

approximately a bell-shaped form (Figure 1).

Similarly, in agreement with previous research

(Williams, 2008; Williams and Lindquist, 2007),

our findings illustrate that sweet corn planting

date plays an important role in production with

yield decreasing substantially during the later

planting periods after May (Figure 2). There is

no comparison of absolute values between the

simulated yields and yields in the previous

studies as a result of the differences in soil and

weather conditions.

Finally, the simulated yields were compared

with four experimental trials for tomatoes

(Coolong et al., 2009; Rowell et al., 2005, 2006;

Rowell, Satanek, and Snyder, 2004) and one for

synergistic sweet corn (Jones and Ferguson

Sears, 2005) conducted in Fayette County and

eastern Kentucky, respectively. Regarding to-

matoes, the biophysical simulation results com-

pare favorably to the highest yielding cultivars.

For sweet corn, the average simulated yields are

slightly lower than the best yellow cultivar of

the experimental trial.

Economic and Resource Data Estimation

In addition to the data requirements for the bio-

physical simulation model, the following sup-

plementary data were needed to achieve the

objectives of the present study: 1) price data

for the examined vegetables; 2) suitable field

hours per day; 3) land availability; and 4) in-

put requirements and input prices.

Weekly price data for 13 years (1998–2010)

were obtained from the USDA Agricultural

Marketing Service (AMS). Specifically, the

Atlanta terminal market prices are used. AMS

Table 2. Summary of Production Practices Used in the Biophysical Simulation Model

1) Tomato Production Practices

Transplanting date May 1, May 15, May 29, June 12, June 26, July 10,

July 24, August 7

Harvesting period 63, 70, 77 days after transplant

Cultivar BHN 66

Actual N/week (lbs/acre) 10

Irrigation Drip irrigation, one inch water/week

Plant population (plants/acre) 5000

Transplant age 42 days

Planting depth 2.5 inches

Assumptions Dry matter 5 6%, cull ratio 5 20%

2) Sweet Corn Production Practices

Planting Date April 25, May 2, May 9, May 16, May 23, May 30, June 7,

June 14, June21, June 28

Harvesting period 84 days after planting

Cultivar Sweet corn cultivar of DSSAT Version 4

Actual N/week Two applications of ammonium nitrate; one preplant

(90 lb. actual N/acre) and a second four weeks after planting

(50 lb. actual N/acre)

Irrigation Drip irrigation, one inch water/week

Plant population (plants/acre) 20,000

Planting depth Two inches

Assumptions Dry matter 5 24%, cull ratio 5 3%, ear weight 5 0.661 pounds
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terminal market reports are created using price

data on vegetables traded at the local wholesale

markets for 15 major cities. The price informa-

tion is received by wholesalers for vegetables

that are of ‘‘good merchantable quality’’ (U.S.

Department of Agriculture, 2012). The tomato

data set used in the study includes information

for different variety (mature greens, immature

greens, vine-ripe), crop size (medium, large,

extra large), and package size (20- and 25-

pound boxes). However, DSSAT Version 4.0.2

does not differentiate yield based on product

variety and tomato size. To overcome this diffi-

culty, following Dr. Coolong’s recommendations,

two assumptions are made: 1) 90% of yield is

assumed to be mature green (the remaining

10% is immature greens or vine-ripes); and

2) the simulated yield is divided into three sizes

based on the following distribution: 15% me-

dium, 60% large, and 25% extra large. The

prices were transformed in a $/pound base.

Considering that the price data set provides

limited information regarding quality and the

same is true for the biophysical simulation

model, no specific quality assumptions are

made. Thus, the whole harvest (after a 20% re-

duction for cull tomatoes) was considered of

good merchantable quality. The hypothetical

Table 3. Summary Statistics of Simulated Yields and Detrended Atlanta AMS Prices for Tomatoes
and Sweet Corn by Sizea

Tomato Yields by Size (simulated)

Average (pounds/acre)

Medium Large Extralarge

6,580 26,321 10,967

Standard deviation 1,976.92 7,907.67 3,294.86

Coefficient of variation 30.00 30.00 30.00

Maximum yield 10,425 41,700 17,375

Minimum yield 0 0 0

Tomato Prices by Size

Medium Large Extralarge

Average ($/25 pound boxes) $15.04 $15.56 $16.31

Standard deviation 3.12 3.48 3.84

Coefficient of variation 20.74 22.36 23.54

Maximum price ($/25 pound box) 29.55 30.58 30.70

Minimum price ($/25 pound box) 8.99 9.77 9.68

Sweet Corn Yield (simulated, one size)

Average (ears/acre) 22,687

Standard deviation 6,140

Coefficient of variation 27.00

Maximum yield 28,579

Minimum yield 903

Sweet Corn Price

Average ($/crate) $13.04

Standard deviation 3.94

Coefficient of variation 30.21

Maximum price ($/crate) 33.78

Minimum price ($/crate) 6.56

a The maximum and minimum yields reported on the table refer to different production practices; thus, one is not expected to add

the minimum yield of medium, large, and extralarge to obtain maximum yield per acre.

Source: DSSAT model yield results, Atlanta Agricultural Market Station prices.
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grower of the study is assumed to discard the

cull tomatoes. For sweet corn, prices are trans-

formed to a $/dozen basis. The price set used is

for yellow sweet corn.

Because there was a yearly trend detected in

the price data set, to avoid overestimating the

price variance, the Hodrick and Prescott filter is

used to remove the trend movements. Following

Ravn and Uhlig (2002), a smoothing parameter

(l) of 6.25 is used. Table 3 reports summary

statistics for the price data set. The combination

of 13 years of price data with 38 years of sim-

ulated yield generates 494 (13*38) different

states of nature. This approach for determining

the underlying revenue distribution assumes a

perfectly competitive environment wherein the

producer does not impact prices received. Fur-

thermore, it is consistent with low correlation

between prices and yield calculated for the data

used.

Field conditions dictate whether a given

time is suitable or not for fieldwork. Following

Shockley, Dillon, and Stombaigh (2011), the

probability of not raining more than 0.15 inches

per day over weekly periods for the 38 years of

weather data available is first calculated. This

probability was multiplied with the days worked

in a week and the hours worked in a day to

determine expected suitable field hours per

week to estimate labor availability regarding

field conditions. It was assumed that any quan-

tity of labor up to this amount could be hired.

The information regarding the cost of labor has

been obtained from the University of Kentucky

Extension Service Vegetable Budgets (Woods,

2012). The land constrained was set at five acres

based on average acre of operation obtained in

the 2010 Kentucky Produce Planting and Mar-

keting Intentions Grower Survey and Outlook

(Woods, 2010).

The Mississippi State Budget Generator

(MSBG) is used to estimate weekly labor re-

quirements and input cost per acre for tomatoes

and sweet corn. MSBG (Laughlin and Spurlock,

2007) is a software tool developed by Mis-

sissippi State University that uses machinery

costs, input prices (i.e., fertilizer, fuel, etc.),

and labor cost to calculate a per-acre cost for

a field operation (Ibendahl and Halich, 2010).

For the present study, the 2012 vegetable budget

files of MSBG were modified to depict the

Fayette County specifications. In detail, input

requirements and prices were modified follow-

ing the suggestions of Dr. Coolong and the 2008

vegetable budget developed by the University of

Kentucky extension service publications.11 A

detailed representation of the included costs is

reported in Table 4.

Theoretical Framework

This section provides the theoretical background

for the economic model that will be imple-

mented in the study. Whole-farm economic

Figure 2. Simulated Sweet Corn Yields (Source:

Biophysical Simulation Results)

Figure 1. Simulated Tomato Yields (Note: The

graph depicts average tomato simulated yields

across years and soil types. Source: Biophysical

simulation results)

11 Available at: www.uky.edu/Ag/CDBREC/
vegbudgets08.html.
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analysis has been used by scholars to answer

important questions such as: What is the optimal

crop mix? Should I invest in new technologies?

What is the best rotation strategy? A review of

related work is presented by Lowe and Preckel

(2004).

An interesting modeling aspect of the whole

farm analysis is associated with the efforts made

to incorporate risk in the objective function.

Among the most frequently implemented tech-

niques to cope with this issue is the mean vari-

ance (E-V) formulation originally developed by

Markowitz (1952). One of the following condi-

tions must be satisfied for the results of E-V

analysis to be equivalent to expected utility

theory: 1) the utility function of the decision

maker is quadratic; 2) normal distribution of

outcomes (net returns); and 3) Meyer’s location-

scale (L-S) condition (Dillon, 1992). The first

two conditions are overly restrictive and have

well-documented theoretical deficiencies. For

instance, quadratic utility functions have the

unrealistic characteristics of wealth satiation

and increasing absolute risk aversion (Bigelow,

1993).

Considering the previously mentioned lim-

itations, the more general L-S condition is

adopted for the present study. Because yields

and price for sweet corn and tomatoes are the

stochastic elements of net returns, it is sufficient

to illustrate that they satisfy the L-S condition.

Following Dillon (1992), a sufficient condition

to meet the L-S requirements is for the ranked

yields to be linear function of one another. The

minimum correlation for the ranked yields was

97% and for ranked prices 87%. Thus, the use of

mean variance analysis is considered legitimate

for this study. Quadratic programming is com-

monly used to produce efficient E-V frontiers.

The present study uses a formulation consistent

with Freund (1956).

Empirical Framework

This section discusses in detail the formulation

of the economic model that is used in this article.

Specifically, an E-V formulation is implemented

to depict the economic environment of a hypo-

thetical fresh vegetable farm in Fayette County,

Kentucky. In line with Dillon (1999), the pro-

posed model incorporates accounting variables

as well as endogenous calculation of net re-

turns variance instead of a variance–covariance

matrix.

The objective of the grower is the maximi-

zation of net returns above selected variable

costs less the absolute risk aversion coefficient

multiplied by the variance of net returns. The

hypothetical farm is assumed to have five acres

of cropland available and grow tomatoes and

sweet corn in rotation with 50% of acres in any

year devoted to each crop. This represents a two-

year crop rotation, which is commonly followed

by growers in the examined region (Coolong

et al., 2010). This will lead to a maximum of 2.5

acres with tomatoes, which is close to the

average acres cultivated with tomatoes in

Kentucky reported from an unpublished sur-

vey of wholesale tomato growers (Vassalos,

2013). Rotation is required to prevent pathogen

Table 4. Production Costs per Acre

Tomato Expenses Sweet Corn Expenses

Type of Expense $ Cost Type of Expense $ Cost

Fertilizer 319.67 Fertilizer 194.16

Herbicide 2.33 Herbicide 21.16

Insecticide 97.47 Insecticide 208.10

Seed and planting supplies 1575.08 Seed and planting supplies 126.00

Labor 3688.26 Labor 116.58

Machinery expenses 139.69 Machinery expenses 66.76

Other expenses (i.e., boxes) 1600.00 Other expenses (i.e., crates) 580.00

Interest on capital 76.00 Interest on capital 10.58

Irrigation supplies 627.00 Irrigation supplies 410.00
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build-up in the soil and control certain insects

such as corn rootworms (Coolong et al., 2010).

In addition to land limitation and rotation,

the model includes the following constraints:

1) ratio of soil type; 2) marketing balance;

3) input purchases by input; and 4) weekly

labor resource limitation. Specifically, the first

constraint guarantees that 65% of the number

of acres, selected as optimal from the model,

is classified as deep silty loam and 35% as

shallow silty loam. The second constraint en-

sures that the hypothetical grower cannot sell

more pounds of tomatoes and/or ears of sweet

corn than the amount produced. The third

constraint guarantees that the hypothetical

grower will purchase the amount of inputs re-

quired for the production of each crop. Lastly,

the amount of weekly hours for agricultural

activities is limited by the estimated suitable

field days per week (weekly labor resource

limitation constraint).

The model is estimated for the following

two scenarios: 1) the grower considers seasonal

price trends; and 2) the grower considers only

annual average prices. The aforementioned

scenarios do not necessarily reflect growers

with different price information knowledge.

They examine the conscious decision of a grower

to adjust, or not, the production timing de-

cisions based on the historical price trends.

More precisely, the seasonal price trend sce-

nario incorporates an interaction of seasonal

price movement with yield differences associ-

ated with the alternative production practices

examined.

The reason for examining these two sce-

narios vis-à-vis lies on the importance of pro-

duction timing discussed earlier. Presumably,

one of the factors that can drive optimal timing

decisions is whether the growers consider his-

torical price trend information. This is espe-

cially true for fresh vegetable marketing, which

is characterized by substantial price seasonality

(Figure 3).

The 13 years of weekly price data for to-

matoes and sweet corn from AMS are used for

the estimation of the first scenario (seasonal

price trends). A two-step experimentation pro-

cess is adopted for the latter scenario (annual

average price). First, the optimal management

decisions are identified when only considering

the average weekly price for each AMS year.

Second, these optimal decisions are imposed

in the optimization model with the complete

weekly historical price information to ascertain

actual economic outcome. It is important to

mention that the model in the present study is

a steady-state equilibrium model and that the

decision variables do not alter by state of nature

under both scenarios.

In addition to the risk-neutral case, the two

specifications of the model were estimated for

nine different risk aversion coefficients. These

coefficients were calculated using the McCarl

and Bessler (1989) approach. Based on this ap-

proach, a grower is said to maximize the lower

limit from a confidence interval of normally

distributed net returns (Dillon, 1999). Specifi-

cally, the formula used to estimate the risk

aversion coefficient (F) for each case is:

Figure 3. Fresh Tomatoes Monthly Producer Price Index (1982 5 100; Source: USDA, ERS

Fresh Tomato Monthly Producer Price Index, U.S. Tomato Statistics)
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(1) F 5 2Za
�

Sy

12

where Za is the standardized normal Z value for

a level of significance and Sy is the standard

deviation of expected net returns for the risk-

neutral case. Each one of the nine examined

risk aversion levels in this study corresponds to

a 5% increment from the previous significance

level, starting from 50% (risk neutral) and end-

ing with 95%. The mathematical specification of

the model follows.

The grower’s objective is to maximize net

returns above selected variable costs less the

risk aversion coefficient multiplied by the vari-

ance of net returns and is given by:

(2) �Y �Fs2
y

subject to land availability constraint, given by:

(3)
X

C

X

D

X

H

XC,D,H.S £ ACRESs8S

weekly labor resource limitation, given by:

(4)

X

C

X

D

X

H

X

S

LABC,D,H,WKXC,D,H,S

£ FLDDAYwk8WK

marketing balance:

(5)

X

D

X

H

X

S

YLDC,D,H,TS,SXC,D,H,S

� SALESC,YR,WK,TS 5 08C,TS,WK,YR

input purchases by input:

(6)

X

C

X

D

X

H

X

S

REQI,CXC,D,H,S � PURCHI,C

5 0 8I

soil depth ratio constraint:

(7)

CSOILRATIO‘‘shallow’’XC,D,H,‘‘deep’’

� CSOILRATIO‘‘deep’’XC,D,H,‘‘shallow’’

5 08C,D,H

and crop rotation constraint:

(8)

X

C

X

D

X

H

X

S

ROTATECXC,D,H,S

£ 0:5 ACRESS 8S

Net returns by year are given by:

(9)

X

I

IPIPURCHI,C

�
X

WK

X

C

X

TS

PC,WK,TSSALESC,YR,WK,TS

1 YYR 5 08YR

Expected profit balance is given by:

(10)
X

YR

1

N
YYR � �Y 5 0

The optimization model is solved with the use

of General Algebraic Modeling System (GAMS).

The solver option adopted is MINOS (GAMS,

2013). Table 5 provides the description of the

activities, indices, and coefficients included in

the whole farm economic model formulation.

Results and Discussion

The results obtained from the mean variance

quadratic formulation, in conjunction with a

discussion about them, are presented in this

section. Tables 6 and 7 report results for three

of those nine risk levels: low (65% significance

level), medium (75% significance level), and

high (85% significance level) risk aversion as

well as the risk-neutral case. The selection of the

mentioned risk aversion attitudes was made to

better depict the changes that take place in

the optimal decisions (i.e., transplant/plant and

harvest timing) and the economic outcomes as

the risk aversion level increases.

Optimal Production Management Results

To achieve the best possible economic outcome,

and reduce their risk exposure (if they are risk-

averse), growers need to take into consideration

production timing. This is especially true for

fresh vegetable production where even the most

basic decisions such as when to plant can lead to

significant improvement or decline of economic

results as a result of: 1) the price variability;

and 2) the seasonal and perishable attributes of

fresh produce. Table 6 reports the model results

12 Based on this formula, the nine risk aversion levels
used in the study are: 1) 0.00001203; 2) 0,00002417;
3) 0.00003677; 4) 0.00005005; 5) 0.00006447; 6)
0.00008042; 7) 0.00009905; 8) 0.00012245; and 9)
0.00015712.
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regarding three possible production strategies:

1) land allocation/production mix; 2) planting

schedule; and 3) harvesting schedule.

As far as land allocation choice is concerned,

as a result of the rotation constraint, 50% of the

available acres are devoted to tomato production

and 50% to sweet corn for all risk aversion levels

and for both scenarios examined. Furthermore,

all the available acres (five) are used by the

hypothetical farm.

Regarding the optimal transplant/plant and

harvest timing, two strategies are observed from

Table 6 depending on risk aversion levels. Under

the seasonal price trend scenario, a risk-neutral

grower who seeks to maximize expected net

returns should focus on a combination of late

tomato transplanting (July 10, July 24) and late

sweet corn planting (June 21) as well as late to-

mato harvest (77 days after transplant). Under

this plan the grower can receive higher prices,

on average, for tomato and sweet corn. How-

ever, these production periods are associated

with lower yields (Figures 1 and 2).

As risk aversion levels increase and growers

are willing to accept lower but more certain net

returns, two risk-mitigating strategies are sug-

gested from the findings. First, risk-averse growers

should focus on an earlier tomato transplant-

ing period compared with risk-neutral farmers

(June 12 instead of July 24). Specifically, the

higher the risk aversion level, the greater the

transition to earlier transplant in terms of acres

cultivated with tomatoes (Table 6). This transi-

tion indicates a movement from a focus on

higher prices to focus on higher yields and

more stable prices. Specifically, the price

coefficient of variation drops from 19% (July

24, 77 days harvest) to 10% (June 12, 77 days

harvest) and the weighted average price declines

from approximately $16.30 per 25-pound box to

$13.40.

A similar strategy (transition to earlier

planting period for a risk-averse grower com-

pared with risk-neutral) is observed for sweet

corn (Table 6). In antithesis to tomato pro-

duction, the land allocation for sweet corn does

not change further with higher risk aversion

levels. Besides reducing the price variation, an

additional benefit of earlier planting for sweet

corn is the reduced ear worm pressure.

Regarding the optimal production practices

under the second model formulation (annual

average price scenario), three main observations

are elicited from Table 6. First, irrespective of

Table 5. Description of the Activities, Indices, and Coefficients Included in the Whole-Farm
Economic Model Formulation

Activities Indices Coefficients

�Y : Expected net returns above

selected variable cost

C: Crop F: Risk aversion Coefficient

S: Soil depth

XC,D,H,S : Production of crop C,

under transplanting/planting

period D, harvesting period H,

and soil depth S

TS: Tomato Size (medium,

large, extralarge); there is

only one size for sweet corn

PC,WK,TS : Weekly price for

different tomato sizes in

$/pound and for sweet corn

in $ per ear

PURCHI,C : Purchases of input I H: Harvesting period

(1 for sweet corn)

YLDC,D,H,TS,S : Expected yield

of tomatoes by size in pounds

and of sweet corn by earsYYR : Net returns above selected

variable cost by year

YR: Year

SALESC,YR,WK,TS : Tomato sales by

size (medium, large, extralarge

in pounds and sweet corn sales

in dozens of ears by week

and year, respectively

D: Transplant date for tomatoes,

planting date for sweet corn

WK: Week

I: Input

FLDDAYWK : Available field

days per week

ROTATEC : Rotation matrix

by crop C

PC,WK,TS : Weekly price in

$/pounds per tomato size

and in $/ear for sweet corn

N: State of nature (13 * 38) CSOILRATIO‘‘S’’ : Ratio of total

acres allocated to depth S
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risk aversion level, the selected combination of

tomato transplanting dates is earlier in the

growing season compared with the seasonal

price trend scenario. Specifically, June 12 and

June 26 is the preferred transplanting date

combination for risk-neutral, low- and medium-

risk aversion levels instead of seasonal price

trends scenario’s later a combination of July 10

and July 24 (risk-neutral) or June 12 and July 10

(low and medium risk aversion). For the high-

risk aversion level, in line with the seasonal

price trend scenario, the optimal transplanting

periods increase from two to three. However, as

can be seen from Table 6, there is a transition

toward earlier transplanting periods with the

combination of June 12, June 26, and July 10

being preferred to June 12, July 10, and July

24. Second, only minor changes in the selected

tomato production practices occur as risk aver-

sion levels increase. Third, risk aversion levels

do not influence the optimal planting period for

sweet corn.

Justification for these findings lies in the

estimation process adopted in the second sce-

nario. In detail, the use of annual average prices

to obtain the optimal production practices (first

step in the second scenario) disregards seasonal

price fluctuations. Thus, the optimal solution

emphasizes the production periods with higher

yields (Figures 1 and 2). Furthermore, greater

Table 6. Summary of Optimal Production Practices by Risk Attitude

Model 1: Seasonal Price Trend

Risk Levels

Tomatoesa Sweet Corn

Transplanting

Date

Acres (% of total)

Planting Day

Acres (% of total)

DSLb SSLc DSL SSL

Risk-neutral July 10 27.0% 14.7% June 21 32.5% 17.5%

July 24 5.2% 2.8%

Low risk aversion June 12 5.4% 3.0% May 23 32.5% 17.5%

July 10 27.0% 14.6%

Medium risk aversion June 12 16.6% 9.0% May 23 32.5% 17.5%

July 10 16.0% 8.6%

High risk aversion June 12 23.0% 12.4% May 23 32.5% 17.5%

July 10 8.4% 4.4%

July 24 1.2% 0.6%

Model 2: Annual Average Prices

Risk Levels

Tomatoes Sweet Corn

Transplanting

Date

Acres (% of total)

Planting Day

Acres (% of total)

DSL SSL DSL SSL

Risk-neutral June 12 26.8% 14.4% May 30 32.5% 17.5%

June 26 5.7% 3.0%

Low risk aversion June 12 15.0% 8.2% May 30 32.5% 17.5%

June 26 17.4% 9.4%

Medium risk aversion June 12 14.4% 7.8% May 30 32.5% 17.5%

June 26 18.0% 9.8%

High risk aversion June 12 14.2% 7.6% May 30 32.5% 17.5%

June 26 16.8% 9.0%

July 10 1.4% 0.8%

Source: Economic Model Results.
a Optimal harvesting period for tomatoes, for all the risk aversion levels and for both models, is 77 days after transplanting.
b DSL, deep silty loam.
c SSL, shallow silty loam.
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focus on the yield variability component of net

return risk leads to little reason to alter much

from these high-yielding but stable production

practices.

Regarding tomato harvesting, the model al-

ways recommends as the optimal schedule har-

vesting 77 days after transplant (Table 6). The

higher yields and prices associated with these

periods (in contrast with 63 and 70 days after

transplant) explain this choice (Figures 1 and 2).

Economic Results

The economic results associated with the pre-

viously mentioned production strategies are

reported in this section. As can be seen from

Table 7, the average net returns above selected

variable costs, the coefficient of variation, and

the minimum possible net returns vary sub-

stantially between the different risk aversion

levels and among the two model formulations.

Specifically, a risk-neutral grower under the

seasonal price trend consideration scenario has

an average net return above selected variable

costs of $84,573 combined with a coefficient of

variation (CV) of 24.7%. As the level of risk

aversion increases, in line with the underlying

theory, a decline in both average net returns

and CV is noticed. For instance, the mean net

returns for a highly risk averse grower corre-

spond to 88% of the risk-neutral case, whereas

those for the low-risk aversion scenario corre-

sponded to 96%. However, the risk-neutral case

is associated with higher levels of standard de-

viations and CV (almost 7% greater than the

highly risk-averse case).

The importance and impact of a farm man-

ager’s conscious consideration of price season-

ality is investigated as a primary objective of this

study. This is accomplished by calculating the

economic outcomes that would result from a

suboptimal solution ignoring the weekly fluc-

tuation in prices. This depicts a more naı̈ve

production strategy that disregards within-season

market timing. Under this scenario, three sub-

stantial differences are identified regarding the

economic outcomes (Table 7).

First, a grower who schedules production

with consideration of seasonal price variation

enjoys 3–15% higher expected net returns, de-

pending on risk aversion level, compared with

one who disregards the ability to exploit pro-

duction timing based on price information. Fur-

thermore, minimum net returns are also higher

under the first scenario (Table 7). These findings

validate the hypothesis that the consideration of

Table 7. Net Returns by Risk Attitude

Model 1: Seasonal Price Trend

Economic

Results Risk Neutral Low Risk Aversion

Medium Risk

Aversion High Risk Aversion

Mean ($) 84,573 81,492 77,192 74,391

Min ($) 42,064 48,676 48,216 46,497

Standard deviation ($) 20,939 16,914 14,120 12,816

Coefficient of variation 24.76 20.76 18.29 17.13

Certainty equivalent 84,573 70,972 64,338 58,122

Model 2: Annual Average Prices

Economic

Results Risk Neutral Low Risk Aversion

Medium Risk

Aversion High Risk Aversion

Mean ($) 71,827 71,429 71,407 71,994

Minimum ($) 41,807 40,282 40,202 40,970

Standard deviation ($) 12,453 12,562 12,582 12,783

Coefficient of variation 17.34 17.59 17.62 17.76

Certainty equivalent 71,827 65,626 61,200 55,808

Source: Economic Model Results.
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seasonal price trends has the potential to increase

net returns.

Regarding income risk levels, with the ex-

ception of a highly risk-averse grower, the CV

is larger under the seasonal price trend scenario

(Table 7). This result indicates that consider-

ation of seasonal price trends can increase the

net returns but it will also increase income

variability. This is observed on both an absolute

(standard deviation) as well as relative (CV)

basis at all risk aversions and under risk neu-

trality. However, this counterintuitive result

does not imply that risk efficiency under the

annual average price scenario is superior. To

compare the tradeoffs between risk and returns

among the two strategies appropriately, one can

compare the certainty equivalent (CE) at each

risk aversion level. The CE, which depicts the

certain amount that the decision-maker would

be indifferent in accepting in lieu of the sto-

chastic returns, may be calculated under the

mean variance formulation as mean net returns

less the product of the risk aversion coefficient

and variance of net returns. The greater level of

CE for every risk attitude under the seasonal

price trend strategy (Table 7) demonstrates its

superior economic performance over the an-

nual average price scenario. Furthermore, it is

worth noting that the high-risk aversion results

for seasonal price trend consideration enjoy

mean net returns that are nearly $2400 greater

than any annual average price results coupled

with a CV that is lower than any annual average

price result.

An important aspect for every decision-

maker is the risk management ability. For the

purposes of the present study, risk management

is defined as the potential to reduce income risk

under the two scenarios. Based on this defi-

nition, a greater opportunity to manage risk is

permitted under the seasonal price trend sce-

nario. Specifically, the CV for this scenario

ranges from 17.13% to 24.76%. On the other

hand, under the annual average price scenario,

CV has a substantially lower span from 17.34%

to 17.76%. A counterintuitive result is that in-

come variability increases as risk aversion in-

creases under the second scenario and that

expected net returns are greater for a highly risk-

averse grower. This result is attributed to the

two-step estimation process used in the second

model formulation13 coupled with the observa-

tion that the more stable yielding planting date

of July 10 enters the solution and is accompa-

nied by the highest weekly prices. This empha-

sizes the economic advantage of timing planting

date to extract the best selling price of the

season.

Finally, a comparison of the estimated net

returns above selected variable costs with a 2008

vegetable budget (Woods, 2012) resulted in

some thought-provoking observations. Specifi-

cally, the estimated net returns (on a per-acre

basis) are from one and a half (highly risk-

averse) to two times (risk-neutral) greater than

the ones reported on the 2008 vegetable enter-

prise budget. This difference can be attributed to

the combination of the conservative price/yield

estimations of the extension service in contrast

to the higher prices (obtained from the Atlanta

AMS) and yields (from the biophysical simula-

tion) used in the study. Furthermore, these

higher price levels might have a large influence

on the optimal decisions and the economic re-

sults. However, our findings are closer to the

estimations of Rowell et al. (2006) who indicate

that for the best tomato cultivars that season, it is

possible to achieve close to $16,000 per acre.

The aforementioned discrepancy may be re-

duced if annual inflation rates are considered

because the study results are in 2010 dollars.

Conclusions

The present study combines biophysical simu-

lation and mathematical programming modeling

to develop an economic model that will provide

some guidelines regarding the optimal produc-

tion mix and planting decisions for vegetable

production. The area of study was Fayette

County, Kentucky, and the enterprises of toma-

toes and sweet corn were evaluated.

Considering the importance of production

timing, as a result of the perishability of

13 As a reminder, under this formulation, the opti-
mal production practices are estimated using annual
average prices and the economic outcomes are calcu-
lated based on the complete weekly historical price
information.

Journal of Agricultural and Applied Economics, November 2013696



vegetable production, and the role that seasonal

price trends consideration may play in optimal

transplant/planting and harvesting schedules,

two distinct scenarios are examined. Under the

first scenario, the hypothetical grower plans

production timing considering seasonal price

variation, whereas under the second one, the

grower chooses a simpler but less complete

focus of annual average prices only. Three risk

aversion levels are examined for each scenario.

The findings indicate that vegetable producers

have the potential to improve their economic

results if they follow a structured farm man-

agement plan. Specifically, under the first for-

mulation (seasonal price trend), growers can

achieve average net returns that are from 3%

to 15% higher than the ones from the second

formulation (annual average prices scenario).

Furthermore, they have greater opportunity to

manage risk as depicted by the range of CV

values.

Limitations of this study are primarily as-

sociated with the nature of the biophysical

simulation model used. Specifically, yield es-

timations were made only for one variety and

there are no calibrations for locally grown cul-

tivars. Examination of different varieties may

lead to different results considering the different

performance each variety has under different

weather patterns and soil conditions. In addition

to including more vegetables in the model, fu-

ture work can investigate how the results are

affected when multiple markets are examined

simultaneously.

[Received May 2012; Accepted June 2013.]
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