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Using a Climate Index to Measure Crop

Yield Response

Ruohong Cai, Jeffrey D. Mullen, John C. Bergstrom,

W. Donald Shurley, and Michael E. Wetzstein

Using principal component analysis, a climate index is developed to estimate the linkage
between climate and crop yields. The indices based on three climate projections are then
applied to forecast future crop yield responses. We identify spatial heterogeneity of crop
yield responses to future climate change across a number of U.S. northern and southern
states. The results indicate that future hotter/drier weather conditions will likely have signifi-
cant negative impacts on southern states, whereas only mild impacts are expected in most
northern states.
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Contemporary Global Climate Models (GCMs),

including the Australian CSIRO 3.5, Canadian

CGCM 3.1, and Japanese MIROC 3.2, all pre-

dict that average temperature will keep rising

with modest changes in precipitation for most

states in the continental United States for the

rest of the century (Coulson et al., 2010). This

is assuming that greenhouse gas emissions

follow the IPCC SRA1B scenario.1 Although

agricultural technologies continue to improve,

previous studies have indicated that tempera-

ture and precipitation variations have signifi-

cant impacts on crop yields (Lobell, Cahill, and

Field, 2007; Almaraz et al., 2008; Schlenker and

Roberts, 2009).

Environmental conditions such as soil prop-

erties are expected to result in spatially varying

climate change impacts. To date, there are a

limited number of studies that have attempted

to compare the effects of climate variations on

crop yields across regions. Tao et al. (2006)
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1 The IPCC SRA1B scenario represents a future
world of very rapid economic growth, low population
growth, and rapid introduction of new and more
efficient technology. Major underlying themes are
economic and cultural convergence and capacity build-
ing with a substantial reduction in regional differ-
ences in per capita income. In this world, people pursue
personal wealth rather than environmental quality
(IPCC, 2007).
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studied data from sample stations located in

various geographic and climatic zones in China

and found that temperature was negatively

correlated with crop yield at all stations ex-

cept Harbin in northeastern China. McCarl,

Villavicencio, and Wu (2008) found that the

effects of temperature on crop yields vary across

U.S. regions. In the appendix of Schlenker and

Roberts (2009), the United States was divided

into three regions: the northern, the interior, and

the southern to explore how the temperature–

yield relationship varies over different regions.

They found that the threshold where tempera-

ture negatively affects yield is slightly lower in

warmer areas, and the southern region has a

lower sensitivity to extreme heat. Using a crop

growth model, Butterworth et al. (2009) found

that climate change would increase the pro-

ductivity of oilseed rape in the United Kingdom

but with the greatest benefits in Scotland in

the north rather than England in the south.

Understanding how crop yield responses

vary across regions can help predict the price

and welfare impacts of climate change and aid

in planning mitigation strategies related to food

production. As an attempt to test the hypoth-

esis of spatially varying climate change impacts,

this study develops a set of climate indices to

measure crop yield response across regions. The

yield response model based on the climate in-

dices, which are mutually orthogonal, should

generate more stable coefficient estimates and

yield predictions than models using highly cor-

related climatic variables.

Literature Review

Two major methodologies have been used to

study the relationship between weather and

crop yields: crop growth models and regression

models. Crop growth modeling is a computer-

based simulation approach based on a mathe-

matical integration of biology, physics, and

chemistry (Hoogenboom, 2000; Jones et al.,

2003). It incorporates weather information—

temperature, precipitation, solar radiation, and

humidity—with other factors such as planting

and harvest dates, fertilizer and irrigation ap-

plications, and soil properties to simulate crop

yields. Although useful in examining how

weather conditions affect crop growth, crop

growth models are typically complex and re-

quire extensive, detailed information (Walker,

1989), which makes them less applicable in

studies with large spatial scales.

Compared with crop growth models, regres-

sion models have fewer data demands (Horie,

Yajima, and Nakagawa, 1992; Kandiannan et al.,

2002; Tannura, Irwin, and Good, 2008). None-

theless, developing a multiple regression model

requires determining the appropriate set of

weather factors affecting crop yields. Previous

literature has identified the importance of tem-

perature and precipitation (Lobell, Cahill, and

Field, 2007) and their nonlinear effects on crop

yields (Schlenker and Roberts, 2009). For ex-

ample, although water is necessary for plant

growth, excessive precipitation events can dra-

matically reduce crop production (Rosenzweig

et al., 2002). High temperatures reduce soil

moisture, which negatively impacts crop yields,

but these impacts may be offset by either pre-

cipitation or supplemental irrigation (Mitchell

et al., 1990). To allow for nonlinear effects of

temperature and precipitation, these variables are

often modeled as quadratic forms (Tannura,

Irwin, and Good, 2008). Additionally, extreme

weather events are likely to reduce crop yields

(Porter and Semenov, 2005), which can be

partially addressed by using differences be-

tween mean daily maximum and minimum

temperatures.

An issue of regression model specification

is the large number of possible independent

variables, which consumes degrees of freedom.

For example, using monthly data to model a

7-month growing season will result in 14 lin-

ear monthly temperature and precipitation vari-

ables in the model. This may result in unstable

estimates if the sample size is small. The issue

of having too many independent variables be-

comes more severe when quadratic and differ-

ent terms for weather variables are introduced

into the model.

Some studies reduce the number of weather

variables by using growing degree-days (GDD).

The appropriate method for calculating GDD

for a given crop, however, is still under de-

bate (Schlenker and Roberts, 2009). Ultimately,

a model based on GDD may lead to better
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estimates of yield changes, but that is not nec-

essarily the case; two of the GDD-based models

estimated by Schlenker and Roberts (2009), for

example, did not perform as well as a host of

other model specifications from a root mean

square error perspective. However, three other

model specifications grounded in the concept

of GDD performed the best among all the

models they examined.

Alternatively, statistical variable selection

methods are used to reduce the number of var-

iables (Kaufmann and Snell, 1997; Tannura,

Irwin, and Good, 2008). A disadvantage of sta-

tistical variable selection methods is that they

exclusively lean on data while ignoring the ag-

ronomic implications of different months within

a growing season; it is possible to inadvertently

drop agronomically important months. Crop

growth is a cumulative process, and weather

conditions in any growing month affect crop

yields, an argument for retaining all the grow-

ing months in the model. Furthermore, weather

variables are usually highly correlated; apply-

ing statistical variable selection methods to a

model with severe multicollinearity could gen-

erate unstable estimates.

In this article, we construct a set of cli-

mate indices using principal component analy-

sis (PCA). Each of these climate indices is a

linear combination of all the weather variables

(Jolliffe, 2002, p. 169) and thereby retains the

influence of all the growing months. Although

there is always the potential for omitted vari-

able bias in a regression model, because the

PCA model consists exclusively of weather

variables, it is unlikely to suffer this fate—any

omitted variable is unlikely to be correlated

with the climate indices. Furthermore, because

the indices generated by PCA are mutually

orthogonal, issues related to multicollinearity

are avoided (Jolliffe, 2002, p. 167). PCA ranks

climate indices according to the magnitude of

their variances. To reduce the number of in-

dices, many researchers keep the first several

indices with large variances in their models

(Baigorria et al., 2008; Gurmessa and Bardossy,

2009; Martinez, Baigorria, and Jones, 2009).

However, the indices with larger variances are

not necessarily more important than the in-

dices with smaller variances in the regression

models. Hadi and Ling (1998) demonstrated

that it is possible for the index with the

smallest variance to be the only index corre-

lated with a response variable. Therefore, re-

gardless of the ranking of the indices, we use

statistical variable selection methods to select

the climate indices (Jolliffe, 2002, p. 177).2

Here again PCA avoids one of the traps of

statistical variable selection methods; because

the PCA-generated indices are orthogonal, drop-

ping one or a set of indices will not bias the

parameter estimates of those remaining in the

model.

As the first attempt of applying PCA to a

weather-crop yield model, Cornia and Pochop

(1975) used PCA to predict Wyoming winter

wheat yields. Their model includes 31 weather-

based principal components and accounts for

54% of the variation in yield data across eight

counties. More recently, Kantanantha, Serban,

and Griffin (2010) used PCA to study the link-

age between weather and crop yields. In their

model, temperature and precipitation variables

were independently considered for climate in-

dices. We generate climate indices by using

both temperature and precipitation variables

to ensure that multicollinearity problems are

avoided. Our model is also different in that it

considers possible nonlinear relationships be-

tween crop yields and weather.

Methodology

Climate Index

For each county, a principal component re-

gression (PCR) model is developed to study the

response of crop yield to weather variations,

where climate indices constructed by PCA are

2 Jolliffe (2002) discusses several decision rules for
choosing a subset of principal components in pages
173–177. However, Jolliffe (2002) also mentions on
page 177 that ‘‘It is difficult to give any general advice
regarding the choice of a decision rule for determining
M (the number of explanatory variables). It is clearly
inadvisable to base the decision entirely on the size
of variance; conversely, inclusion of highly predictive
PCs can also be dangerous if they also have very small
variances.’’

Cai et al.: Crop Yield Response to Climate 721



used instead of original weather variables.3

Equation (1) is a conventional regression model

using original weather variables as predictors

of detrended yield, y:

(1) y 5 Xb 1 e,

where X is a matrix of p weather variables with

n observations; y is the detrended crop yield;

b is a vector of p regression coefficients; and �

is a vector of error terms. The weather variables

in the X matrix include monthly mean tem-

perature, a square term of monthly mean tem-

perature, total monthly precipitation, a square

term of total monthly precipitation, and the

difference between monthly mean maximum

and minimum temperatures for the growing

season.

Transforming Equation (1) into a PCR model

yields:

(2)

y|{z}
n�1ð Þ

5 Xb 1 e 5 XAA
0
b 1 e

5 Z|{z}
n�pð Þ

g|{z}
p�1ð Þ

1 e,

(3) Z|{z}
ðn�pÞ

5 X|{z}
ðn�pÞ

A|{z}
ðp�pÞ

5 ½Xa1, Xa2, . . . , Xap�,

where A is a matrix of eigenvectors of the

correlation matrix of X; Z is a matrix whose

columns are climate indices, which is used

instead of X for model estimation. g is the

coefficient vector for Z. Z has the same di-

mension (n� pÞ as X. Based on a stepwise

variable selection, a climate index is retained

in the model if it is significant at the 10%

level (Jolliffe, 2002, p. 177). A reduced PCR

model is:

(4) y|{z}
ðn�1Þ

5 Zk|{z}
ðn�kÞ

gk|{z}
ðk�1Þ

1 ek,

where Zk are the selected climate indices, an

ðn� kÞ matrix; gk is a coefficient vector of

k elements associated with the indices; and �k is

the error term.

Forecasting

To forecast the effects of climate change on

crop yields, three climate projections, Fi, are

appended to the historical data X to generate

three sets of combined data Ci:

(5) Ci|{z}
ððn1mÞ�pÞ

5

X|{z}
n�pð Þ
Fi|{z}
ðm�pÞ

2
664

3
775, i 5 1, 2, 3.

The Ci s are then transformed into climate

indices Zi by PCA:

(6)

Zi|{z}
n1mð Þ�pð Þ

5 Ci|{z}
n1mð Þ�pð Þ

Ai|{z}
p�pð Þ

5 Ciai1, Ciai2, . . . , Ciaip

� �

5

_Zi
n�pð Þ

€Zi
m�pð Þ

2
64

3
75, i 5 1, 2, 3.

where _Zi represents the part of climate indices

generated based on historical weather data and
€Zi represents the part of climate indices gen-

erated based on climate projections. Equation

(7) represents the final PCR model:

(7) y|{z}
ðn�1Þ

5 _Zi|{z}
ðn�pÞ

gi|{z}
ðp�1Þ

1 e, i 5 1, 2, 3.

where each climate projection has its own in-

dex matrix _Zi with dimension ðn� kiÞ. ki is the

number of indices left in the model after vari-

able selection. After the estimation, future crop

yields are projected using €Zi. It should be noted

that each county has its own PCR model.

It should be noted that the climate indices

are constructed by applying PCA to a combined

3 A pooled spatial regression framework conducted
at the state level is an alternative approach that would
explicitly account for potential spatial dependency. In
this article, each county is modeled individually, al-
lowing us to take advantage of county-level climate
projections. Although a county’s yield is likely to be
correlated with the yield of neighboring counties,
those yields do not affect each other. That is, yield
across counties is not ‘‘spatially dependent.’’ Likewise,
because our explanatory variables are unique principal
components for each county, the explanatory variables
across counties are independent of each other. As
a result, potential spatial dependence would occur
through the disturbances. If present, our parameter
estimates would no longer be efficient but would still
be unbiased and consistent (Elhorst, 2012). We recog-
nize that not using a pooled regression framework is
a potential limitation of this study.
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data set of historical and future climate (Equa-

tion [5]). Thus, although only one set of his-

torical weather data exists, the historical parts

of these three sets of principal components

are different from one another (Equation [6]).

This approach avoids applying eigenvectors

based exclusively on historical data to future

data. Table 1 compares the predictive perfor-

mance of our approach (Equation [7]) with

that of applying the eigenvectors of historical

data to future data (Equation [4]). We use the

1960–1999 observations to estimate the PCR

model and use the 2000–2009 observations to

compare the predictive performance for our

approach (Equation [7]) and the approach of

applying eigenvectors based on historical data

to future data (Equation [4]). The models based

on Equation (7) outperform those of Equation

(4) in every state for both crops based on mean

squared error. This may be the result of the fact

that Equation (7) standardizes the data using

the mean and standard deviation across all data

points. Equation (4), in contrast, standardizes

the historical data using the historical mean

and standard deviation and uses those mo-

ments to convert the future data. As a result,

the converted future data of Equation (4) are

not actually standardized, i.e., they are not re-

stricted to having a mean of zero and a standard

deviation of one. As a result, we use the model

described in Equation (7) for the analysis that

follows.

The projected crop yields from Equation (7)

are used to generate a Climate Change Impact

Index (CCII). Forty-one years (2010–2050) of

projected crop yields are compared with the

historical average. The number of years for

which future climate scenarios generate lower

crop yields as compared with the historical av-

erage is recorded for each county. The county-

level CCII is generated by dividing the number

of these particular years by the total number

Table 1. The State Average of Mean Squared Errors of Two Alternative Principal Component
Regression Approaches Based on Equations (4) and (7)

Corn Soybeans

Equation (4) Equation (7) Equation (4) Equation (7)

Northern states

Illinois 6,658 712 22,168 68

Indiana 82,497 581 12,110 54

Iowa 22,519 653 620 46

Minnesota 6,668 804 1,942 78

Nebraska 5,209 434 763 51

Southern states

Alabama 40,306 848 1,824 113

Arkansas 25,178 641 428 38

Georgia 4,700 854 408 107

Louisiana 50,418 837 733 53

Mississippi 2,977 560 2,880 60

North Carolina 9,185 884 947 56

South Carolina 15,279 762 814 48

Texas 5,338 797 10,113 116

Tennessee 2,443 623 235 84

Note: In Equation (7), the climate indices are constructed by applying principal component analysis (PCA) to a combined data

set of historical and future climate. In Equation (4), the climate indices are constructed by applying PCA only to historical

data.

The data from 1960 to 2009 were broken up into two sets: a set of ‘‘historical’’ data from 1960 to 1999 and a set of ‘‘future’’

data from 2000 to 2009. The data from 2000–2009 were used to compare the difference between observed yield and

predicted yield. The sum of squared errors between observed yield and predicted yield are reported in the table for the two

approaches.

Cai et al.: Crop Yield Response to Climate 723



of future years. Equation (8) represents the

state-level, area-weighted CCII:

(8) CCIIs 5

Xcs

i51

ui

41 * AiXcs

i51
Ai

,

where s denotes specific U.S. states; cs denotes

number of counties in specific states; u de-

notes the number of years for which a certain

climate scenario generates lower crop yields

as compared with the historical average;

and A denotes the county-level harvested

acreage. A county with higher harvested

acreage is given more weight. A CCII higher

than 0.5 indicates that future climate will

have a net negative effect on crop yields,

whereas a CCII lower than 0.5 indicates that

future climate will have a net positive effect on

crop yields.

Data

We use county-level crop yields and weather

data covering 50 growing seasons (1960–2009).

Major U.S. producing states for corn and soy-

beans are selected consisting of five northern

states. Major producing states in the south are

also selected to test the hypothesis of spatially

varying yield responses to future climatic

changes.4

The historical weather data for each grow-

ing season, including monthly mean temper-

ature, monthly mean minimum temperature,

Table 2. Leave-One-Out Cross-Validation Re-
sults by States and by Crops

Corn Soybeans

Northern states

Illinois 54.8% 48.6%

Indiana 70.2% 41.7%

Iowa 30.5% 52.5%

Minnesota 30.3% 33.3%

Nebraska 41.3% 67.6%

Southern states

Alabama 48.3% 61.5%

Arkansas 30.4% 36.4%

Georgia 38.9% 44.7%

Louisiana 45.5% 26.7%

Mississippi 52.4% 55.6%

North Carolina 53.6% 44.9%

South Carolina 81.8% 17.9%

Tennessee 64.6% 47.6%

Texas 32.0% 47.4%

Note: The county-level observed yields were regressed on

predicted yield generated by the leave-one-out method. The

numbers in the table show the proportion of counties with

significant relationships at significance level of 0.1 within

each state.

Table 3. The Average R2 Values of Principal
Component Regression Models by States and
by Crops Based on Equation (7)

Corn Soybeans

R2

Adjusted

R2 R2

Adjusted

R2

Northern states

Illinois 0.76 0.69 0.73 0.68

Indiana 0.72 0.65 0.66 0.59

Iowa 0.63 0.55 0.50 0.43

Minnesota 0.60 0.52 0.61 0.53

Nebraska 0.63 0.56 0.67 0.60

Southern states

Alabama 0.75 0.70 0.75 0.69

Arkansas 0.46 0.39 0.63 0.56

Georgia 0.69 0.63 0.76 0.73

Louisiana 0.57 0.51 0.63 0.56

Mississippi 0.55 0.48 0.69 0.62

North Carolina 0.70 0.64 0.77 0.72

South Carolina 0.71 0.65 0.69 0.63

Texas 0.67 0.60 0.62 0.55

Tennessee 0.69 0.63 0.74 0.68

4 Northern states include Illinois, Indiana, Iowa,
Minnesota, and Nebraska; southern states include
Alabama, Arkansas, Georgia, Louisiana, Mississippi,
North Carolina, South Carolina, Tennessee, and Texas.
The selection of the states is based on production
criterion for corn and soybeans. Illinois, Indiana, Iowa,
Minnesota, and Nebraska are the top five soybean-
producing states; their total production exceeds 50%
of U.S. total production for 2007–2009. Illinois,
Iowa, Minnesota, and Nebraska are the top four
corn-producing states; their total production ex-
ceeds 50% of U.S. total production for 2007–2009.
Indiana was included in the corn analysis for con-
sistency. Because we focus on a north–south yield
response comparison, we use nine contiguous corn-
and soybean-producing states across the southern
region.
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monthly mean maximum temperature, and

monthly total precipitation, were retrieved from

the NOAA National Climate Data Center

(2011). Climate projections were developed

by the USDA Forest Service as part of the

2010 Renewable Resources Planning Act as-

sessment of U.S. natural resource demand and

supply. These climate projections, covering

the period 2001–2100, were derived from

three GCMs: CGCM 3.1, CSIRO 3.5, and

MIROC 3.2, assuming the SRA1B scenario

from the Special Report on Emission Scenarios

of IPCC (IPCC, 2007; Coulson et al., 2010).

Although the climate change projection is

available up to year 2100, we limit our time

horizon to 2050, recognizing that the reliability

of forecast is often inversely related to the time

horizon.

Annual corn and soybean yield data were

retrieved from U.S. Department of Agriculture,

National Agricultural Statistical Service (2011)

from 1960 to 2009 at the county level. Corn and

soybeans were chosen because they are major

crops for many northern and southern states.

Crop yield data were detrended to a 2009

technology level. 5

Results

Model Validation

The leave-one-out cross-validation method

(Efron and Gong, 1983) is conducted to test

the validity of the proposed PCR models. For

Table 4. Climate Change Impact Index by States and by Crops

Corn Soybeans

CSIRO 3.5 MIROC 3.2 CSIRO 3.5 MIROC 3.2

Northern states

Illinois 0.569 0.659 0.584 0.587

Indiana 0.610 0.776 0.473 0.523

Iowa 0.501 0.529 0.461 0.422

Minnesota 0.430 0.468 0.466 0.365

Nebraska 0.542 0.577 0.519 0.599

North averages 0.530 0.602 0.501 0.499

Southern states

Alabama 0.517 0.801 0.703 0.832

Arkansas 0.565 0.534 0.623 0.732

Georgia 0.575 0.701 0.609 0.738

Louisiana 0.652 0.670 0.746 0.761

Mississippi 0.520 0.618 0.687 0.796

North Carolina 0.491 0.782 0.599 0.796

South Carolina 0.552 0.866 0.621 0.720

Tennessee 0.576 0.787 0.632 0.789

Texas 0.604 0.676 0.580 0.588

South averages 0.561 0.715 0.644 0.750

Note: The numbers in this table represent the proportions for which certain climate scenario generates lower crop yield as

compared with the historical average at the state level.

5 Technological change improves crop yields over
time. Previous models generally include additional pre-
dictors to proxy for technology change. Possible candi-
dates for this predictor include gross domestic product
and time trends (Choi and Helmberger, 1993; McCarl,
Villavicencio, and Wu, 2008). We study the relationship
between weather and detrended crop yields. Specifi-
cally, time-series crop yields are regressed over poly-
nomial time trends, and the fitted yield trend is adjusted
to the 2009 level.

yieldtrend 5 b0 1 tb1 1 t2b2 1 e, t 5 1, . . . . . . , 50.

yielddetrended 5 yield �byieldtrend 1 yield2009

Cai et al.: Crop Yield Response to Climate 725



Table 5. Historical and Projected Corn Yields by State

Corn 50-year Historical CSIRO 3.5 CGCM 3.1 MIROC 3.2

Illinois

N 50 41 41 41

Meana 186.19A 179.55B 177.26B 173.87B

Percentage change –3.57% –4.80% –6.62%

Standard deviation 15.08 11.93 6.30 7.17

Lower quintile 179.71 168.88 172.73 168.76

Upper quintile 196.64 188.96 181.51 179.47

Indiana

N 50 41 41 41

Meana 170.15A 161.41B 159.79BC 153.57C

Percentage change –5.14% –6.09% –9.74%

Standard deviation 13.68 12.83 7.44 9.93

Lower quintile 14.49 151.84 153.94 147.37

Upper quintile 178.92 172.28 165.35 163.21

Iowa

N 50 41 41 41

Meana 188.47A 187.18A 184.71A 185.06A

Percentage change –0.68% –2.00% –1.81%

Standard deviation 13.39 7.47 6.25 4.72

Lower quintile 183.07 183.15 182.26 183.14

Upper quintile 197.59 192.17 188.42 187.56

Minnesota

N 50 41 41 41

Meana 179.11A 185.14B 183.05AB 182.69AB

Percentage change 3.37% 2.20% 2.00%

Standard deviation 15.11 5.91 6.25 4.79

Lower quintile 175.09 181.60 179.28 179.89

Upper quintile 189.16 189.76 188.87 186.42

Nebraska

N 50 41 41 41

Meana 174.05A 171.63A 172.55A 170.72A

Percentage change –1.39% –0.86% –1.91%

Standard deviation 10.71 7.13 4.87 4.54

Lower quintile 167.69 166.45 168.78 168.13

Upper quintile 183.21 176.90 176.26 173.50

Alabama

N 50 41 41 41

Meana 99.18A 95.66AB 89.84B 77.14C

Percentage change –3.55% –9.42% –22.22%

Standard deviation 14.75 12.30 13.77 13.03

Lower quintile 90.11 88.29 77.31 69.05

Upper quintile 106.31 101.06 101.14 83.54

Arkansas

N 49 41 41 41

Meana 152.11A 151.54A 153.44A 153.01A

Percentage change 0.37% 0.87% 0.59%

Standard deviation 10.90 8.31 4.12 3.40

Lower quintile 147.22 146.45 152.04 150.88

Upper quintile 158.58 155.74 156.30 155.28
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Table 5. Continued

Corn 50-year Historical CSIRO 3.5 CGCM 3.1 MIROC 3.2

Georgia

N 50 41 41 41

Meana 132.79A 125.82AB 121.14B 114.47C

Percentage change –5.25% –8.77% –13.80%

Standard deviation 12.14 9.20 8.98 8.08

Lower quintile 126.53 121.35 114.08 108.84

Upper quintile 142.10 133.04 129.95 119.37

Louisiana

N 50 41 41 41

Meana 141.06A 134.00B 139.60A 132.99B

Percentage change –5.00% –1.04% –5.72%

Standard deviation 13.53 8.84 7.47 6.58

Lower quintile 131.72 128.26 133.88 129.16

Upper quintile 149.92 139.83 142.14 135.37

Mississippi

N 50 41 41 41

Meana 110.47A 112.18A 110.72A 105.58B

Percentage change 1.55% 0.23% –4.43%

Standard deviation 10.13 6.63 5.85 4.83

Lower quintile 104.53 108.83 107.60 101.43

Upper quintile 116.37 115.41 113.76 109.33

North Carolina

N 50 41 41 41

Meana 111.17A 105.75AB 101.09B 89.14C

Percentage change –4.88% –9.07% –19.82%

Standard deviation 14.38 14.22 8.98 9.52

Lower quintile 99.82 95.37 94.42 84.27

Upper quintile 120.84 115.39 107.31 92.57

South Carolina

N 50 41 41 41

Meana 101.73A 96.70AB 89.90B 76.84C

Percentage change –4.94% –11.63% –24.47%

Standard deviation 16.87 20.60 14.36 15.50

Lower quintile 92.30 88.64 77.62 68.03

Upper quintile 115.15 109.66 100.30 85.65

Tennessee

N 50 41 41 41

Meana 128.81A 122.21B 120.11B 110.85C

Percentage change –5.12% –6.75% –13.94%

Standard deviation 12.63 9.72 11.38 11.37

Lower quintile 121.29 114.34 110.73 104.84

Upper quintile 140.21 129.07 126.39 119.39

Texas

N 42 41 41 41

Meana 161.97A 158.70A 157.39AB 151.51B

Percentage change –2.02% –2.83% –6.46%

Standard deviation 17.59 7.43 11.42 6.49

Lower quintile 149.47 153.60 148.69 147.65

Upper quintile 175.15 163.88 165.81 154.98

a The Tukey–Kramer testing method is used here. The same letter indicates that the means are not significantly different from

each other at a significance level of 0.05.
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Table 6. Historical and Projected Soybeans Yields by State

Soybeans 50-year Historical CSIRO 3.5 CGCM 3.1 MIROC 3.2

Illinois

N 50 41 41 41

Meana 48.92A 47.16B 47.93AB 46.15C

Percentage change –3.60% –2.02% –5.66%

Standard deviation 3.52 2.23 1.57 2.03

Lower quintile 47.83 45.43 46.91 45.12

Upper quintile 51.25 48.75 49.32 47.45

Indiana

N 50 41 41 41

Meana 49.52A 49.67A 49.35A 48.97A

Percentage change 0.30% –0.34% –1.11%

Standard deviation 3.63 2.05 1.69 1.73

Lower quintile 47.08 47.75 47.83 47.86

Upper quintile 51.80 51.12 50.72 49.96

Iowa

N 50 41 41 41

Meana 51.00A 51.30A 51.59A 51.91A

Percentage change 0.59% 0.12% 1.78%

Standard deviation 3.85 1.69 1.52 1.49

Lower quintile 50.10 50.26 50.51 50.86

Upper quintile 53.36 52.26 52.72 52.86

Minnesota

N 50 41 41 41

Meana 44.95A 45.75AB 46.92BC 47.88C

Percentage change 1.78% 4.38% 6.52%

Standard deviation 4.27 1.83 1.66 1.54

Lower quintile 43.25 44.84 46.22 46.96

Upper quintile 47.42 47.19 48.05 48.53

Nebraska

N 50 41 41 41

Meana 49.68A 49.98A 49.42A 48.42A

Percentage change 0.60% –0.52% –2.54%

Standard deviation 4.23 3.39 2.87 2.46

Lower quintile 46.28 47.73 47.75 46.37

Upper quintile 52.84 52.47 51.41 50.64

Alabama

N 50 41 41 41

Meana 32.84A 27.60B 26.48B 22.81C

Percentage change –15.96% –19.37% –30.54%

Standard deviation 4.93 4.28 3.97 5.12

Lower quintile 30.12 24.24 24.34 18.61

Upper quintile 36.21 30.71 30.07 25.93

Arkansas

N 49 41 41 41

Meana 38.46A 37.45AB 36.72BC 35.40C

Percentage change –2.63% –4.52% –7.96%

Standard deviation 2.99 1.87 2.92 1.75

Lower quintile 36.81 36.45 35.10 34.06

Upper quintile 40.13 38.40 38.69 36.81
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Table 6. Continued

Soybeans 50-year Historical CSIRO 3.5 CGCM 3.1 MIROC 3.2

Georgia

N 50 41 41 41

Meana 30.75A 28.14B 26.97B 24.25C

Standard deviation 4.14 2.90 3.30 3.02

Percentage change –8.49% –12.29% –21.14%

Lower quintile 27.70 26.49 24.37 22.07

Upper quintile 34.27 30.41 30.11 26.05

Louisiana

N 50 41 41 41

Meana 38.58A 34.48B 35.67B 34.47B

Percentage change –10.63% –7.54% –10.65%

Standard deviation 3.25 3.47 1.91 2.17

Lower quintile 36.56 31.68 34.42 32.89

Upper quintile 40.91 36.33 37.26 35.48

Mississippi

N 50 41 41 41

Meana 38.95A 36.52B 35.51B 32.33C

Percentage change –6.24% –8.83% –17.00%

Standard deviation 4.04 3.38 3.80 3.35

Lower quintile 36.24 34.25 31.98 29.70

Upper quintile 41.79 38.28 38.42 34.58

North Carolina

N 50 41 41 41

Meana 30.04A 27.01B 27.97B 23.97C

Percentage change –10.09% –6.89% –20.21%

Standard deviation 2.85 3.26 1.95 2.52

Lower quintile 28.61 25.18 27.17 22.43

Upper quintile 32.22 29.60 29.42 25.61

South Carolina

N 50 41 41 41

Meana 26.14A 24.58B 24.32B 21.06C

Percentage change –5.97% –6.96% –19.43%

Standard deviation 3.28 2.68 2.42 2.20

Lower quintile 24.10 22.81 23.11 19.70

Upper quintile 28.53 26.47 25.82 22.23

Texas

N 42 41 41 41

Meana 26.29A 25.78AB 25.97A 24.32B

Percentage change –1.94% –1.22% –7.49%

Standard deviation 3.87 1.50 1.89 1.93

Lower quintile 23.24 24.67 24.85 23.21

Upper quintile 29.42 26.78 27.35 25.33

Tennessee

N 50 41 41 41

Meana 37.02A 33.56B 32.28BC 30.23C

Percentage change –9.35% –12.80% –18.34%

Standard deviation 4.71 4.19 4.75 3.88

Lower quintile 35.33 30.42 29.67 27.37

Upper quintile 39.29 36.06 34.68 33.31

a The Tukey–Kramer testing method is used here. The same letter indicates that the means are not significantly different from

each other at a significance level of 0.05.
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each county, one year is removed from the sam-

ple and the model is estimated using data from

the remaining years. Then the climate indices for

the year removed are entered into the model to

predict the crop yield for that year. This was

repeated for each historical year. For each

county, a regression of observed yields on pre-

dicted yields is conducted. Then the proportion

of counties in each state with regressions sig-

nificant at the 0.1 level was recorded. The results

of cross-validation indicate that approximately

half of the counties show significant relation-

ships between observed and predicted yields

(Table 2). This result is acceptable given that

only a part of crop yield variation is weather-

related. The percentage of counties with a sig-

nificant relationship between observed and

predicted yields varies by state and by crop (e.g.,

30% compared with 70% for corn in Minnesota

and Indiana, respectively). Two possible rea-

sons for this variation are: different states have

different levels of agricultural technology and

environmental conditions, which determine how

much weather affects crop yields; and weather

data may be collected from stations located at

a considerable distance from some of the pro-

duction area in a county and therefore could

miss accurate climate conditions.6 Besides cross-

validation, we also observe that R2 values of

the PCR models range from 0.46 to 0.77 at the

Figure 1. Histograms of Annual Average Historical and Future Corn Yields for Northern Counties

6 Preferred climate data for our model would be
average weather measured only at the farms in a county
(Data 1). Two other alternatives are the county average
of gridded weather data (Data 2) and station-level
weather data (Data 3). Both Data 2 and 3 are unbiased
estimates of Data 1, assuming both farms and weather
stations are randomly located in the county.
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state level, showing the overall goodness of fit

for the regression models (Table 3).

Forecasts

The crop yields are projected by three GCMs:

CSIRO 3.5, CGCM 3.1, and MIROC 3.2 under

the SRA1B scenario. Most states have a CCII

larger than 0.5, indicating negative effects of

future climate on crop yields (Table 4). MIROC

3.2 (the warmest scenario) generates higher

CCII than CSIRO 3.5 (the coldest scenario) in

most states. Northern states generally have a

lower CCII value than southern states, in-

dicating that global warming is potentially a

more severe problem for corn and soybean

yields in low latitude regions. This north–south

difference is larger for the warmer climate sce-

nario. We also observe that some CCII are

less than 0.5, indicating positive effects of

future climate on crop yields, generally in

northern states. In those southern states with

small CCII such as Arkansas and Mississippi,

we notice that they have soil types (Alfisols)

that are more similar to the northern states as

compared with rest of the southern states (U.S.

Department of Agriculture, Natural Resources

Conservation Service, 2012). These results sug-

gest the effects of climate change on corn and

soybean yields will be spatially heterogeneous

and that soil type may be an important indi-

cator of the magnitude of yield effects. How-

ever, it is important to note that the identification

approach pursued here prevents us from for-

mally testing the statistical significance of this

finding.

In addition to CCII in which the effects of

climate change are indicated by the proportions

Figure 2. Histograms of Annual Average Historical and Future Corn Yields for Southern Counties
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that predicted crop yields are higher or lower

than the historical average, we generate the

mean yield percentage changes between pre-

dicted crop yields and the historical average

(Tables 5 and 6; Figures 1–4). In general, warmer

scenarios induce larger yield reductions than

cooler scenarios, and southern states have larger

yield reductions than northern states. Again,

yield reductions in Arkansas and Mississippi

are similar to those in northern states, which

may be explained by similar soil types. Min-

nesota is the only state where both corn and

soybean yields increase in the climate scenarios.

Minnesota has relatively lower historical temper-

atures compared with other states; thus, future

global warming could move the temperature

toward its optimal value for crop growth. This

result is consistent with findings from Almaraz

et al. (2008). They found that the optimum

temperatures for corn yield are approximately

1°C above normal for the Montérégie region

of southwestern Quebec, Canada, which has

comparable latitude as Minnesota.7 The same

justification can be used for Iowa and Nebraska,

which have the second and third highest lati-

tudes, respectively, out of the 14 states and have

no significant changes of corn and soybeans

yields. Although Georgia and Alabama are

neighboring states located at similar latitudes,

Alabama’s crop yields are projected to experi-

ence worse losses. For example, corn (soybean)

Figure 3. Histograms of Annual Average Historical and Future Soybean Yields for Northern Counties

7 The latitude of Montérégie is approximately 45°N,
whereas the latitude of Minnesota ranges from 43° 309 N
to 49° 239 N.

Journal of Agricultural and Applied Economics, November 2013732



yield loss for Georgia is 13.80% (21.14%)

compared with a loss of 22.22% (30.54%) for

Alabama’s corn (soybean). The worse future

crop yields projection for Alabama compared

with Georgia could be explained by a better

agricultural infrastructure in Georgia such as

irrigation, which helps maintain crop yields

under unfavorable weather conditions.8 How-

ever, as with the results reported in Table 4,

we do not formally test whether the observed

differences are statistically significant.

Crop yields projected by warmer climate

projections are not always lower than cooler

climate projections, even for southern states

such as corn for Louisiana. One explanation

could be that temperatures from the warmer

projection are not always higher than the cooler

projection. For example, from 2010 to 2050 in

Louisiana, the coldest projection has a higher

temperature than the warmest projection in five

years, and it has a higher temperature than the

middle projection in 17 years (Figure 5). Similar

patterns could also be observed in other states.

Another explanation is the complexity of crop

yield response modeling resulting from the

growth process of crops; therefore, it is hard to

implement a comprehensive model that considers

all the influential factors. Our model attempts

to consider only the part of crop yield variations

Figure 4. Histograms of Annual Average Historical and Future Soybean Yields for Southern Counties

8 During the census years 1997, 2002, and 2007,
only 6.8% (1.4%) of harvested corn (soybeans) was
irrigated in Alabama, whereas 37.9% (10.7%) of har-
vested corn (soybeans) was irrigated in Georgia (Quick
Stats, USDA/NASS, accessed October 20, 2011).
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induced by weather and uses polynomial time

trends to control for technological improvements.

Are the state differences in yield variations

induced by spatially varying climate change or

a spatially varying crop yield–climate change

relationship? To answer this question, we sim-

ulate crop yields assuming that each state has

the same magnitude of climate change. We

Figure 5. Historical Temperature and Future Temperature Projections by Three Global Climate

Models (GCMs) under the SRA1B Scenario for Louisiana

Table 7. Absolute Future Temperature and Precipitation Change from the Historical Average

Temperature (Fahrenheit) Precipitation (inches)

State CGCM 3.1 CSIRO 3.5 MIROC 3.2 CGCM 3.1 CSIRO 3.5 MIROC 3.2

Northern states

Indiana 3.32 2.82 4.61 0.00 0.00 –0.26

Illinois 2.25 2.11 2.86 0.27 0.47 0.15

Iowa 3.61 2.85 5.19 0.07 0.08 –0.26

Minnesota 3.92 3.48 5.06 0.08 0.08 –0.05

Nebraska 3.11 2.42 4.93 0.04 0.20 –0.24

Southern states

Alabama 2.27 1.99 3.50 0.13 0.21 –0.59

Arkansas 2.91 2.57 4.92 0.12 0.14 –0.39

Georgia 2.45 2.10 3.81 0.09 0.16 –0.64

Louisiana 2.10 2.04 3.39 0.11 0.09 –0.63

Mississippi 2.55 2.36 3.94 0.15 0.18 –0.47

North Carolina 2.42 2.05 3.48 0.19 0.16 –0.29

South Carolina 2.46 2.12 3.78 0.19 0.27 –0.40

Tennessee 2.50 2.08 3.93 0.26 0.22 –0.16

Texas 3.46 2.92 5.05 0.08 –0.04 –0.25

Note: Historical average is based on 1960–2009. Future average is based on 2010–2050.
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assume a 3.192°F increase of temperature with

a standard deviation of 1.539 and a 0.035-inch

decrease of precipitation with a standard de-

viation of 0.615 for all the states. These values

are the average future temperature and pre-

cipitation changes obtained from three climate

scenarios for 14 states (Table 7). We observe

that the crop yield reductions are spatially vary-

ing even under the same magnitude of climate

change based on 100 simulations (Table 8). We

find that all the states but Minnesota have re-

duced corn and soybean yields. Southern states

generally have larger crop yield reductions than

northern states, whereas Arkansas, Mississippi,

and Louisiana’s yield responses tend to be

similar to the northern states. Given that actual

climate scenarios vary across the states, we

conclude that both spatially varying climate

change and a spatially varying crop yield–

climate change relationship contribute to the

state differences in crop yield reductions under

climate scenarios.

Conclusions

To forecast crop yields under future climate

scenarios, county-specific PCR models were

estimated in 14 U.S. states. Crop yields were

forecasted in response to three GCMs: CSIRO

3.5 (the coldest), CGCM 3.1, and MIROC 3.2

(the warmest). Our results indicate: 1) future

climate scenarios generally have modest ef-

fects on crop yields in the northern states

while negatively affecting crop yields in the

southern states; 2) warmer climate scenarios

generate lower crop yields; 3) the north–south

differences in climate change effects are larger

for warmer scenarios; and 4) soil type may ex-

plain why some southern states have modest

yield responses across climate scenarios.

We make some major assumptions. It is

assumed that there is no CO2 fertilization effect

for crop growth. Some actual field research

indicates a small increase in crop yields under

higher CO2 concentration (Long et al., 2006).

We exclude CO2 fertilization effect not only to

simplify the model, but also as a result of the

inability of specifying the magnitude of this

effect. Schlenker and Roberts (2009) stated that

a CO2 effect might be part of the time trend,

which is statistically entangled with technolog-

ical change. Therefore, they also do not model

a CO2 effect. We also realize that total pre-

cipitation could only partially capture the ex-

treme precipitation events. Besides the total

precipitation, the timing of precipitation is

also expected to be important. As a result of

the availability of climate variables in climate

projections we used, we did not fully capture

the effects of drought or flood in the model.

We also do not account for potential spatial

dependence across counties. Although this is

unlikely to affect the unbiasedness and con-

sistency of our estimates, if such dependence

is present, they would no longer be efficient.

This research contributes to the literature in

a number of ways. First, it is one of the first

applications of PCA to estimate the linkage

between weather and crop yields. We also im-

prove on previous PCR models by including

Table 8. Percentage Change of Corn and Soy-
beans Yields under the Same Climate Change
across States

Corn Soybeans

Northern states

Illinois –1.5% –1.3%

Indiana –1.3% –0.4%

Iowa –0.2% 0.6%

Minnesota 0.5% 0.8%

Nebraska –0.6% –0.1%

North averages –0.6% –0.1%

Southern states

Alabama –4.4% –4.8%

Arkansas –0.5% –1.9%

Georgia –3.4% –2.2%

Louisiana –1.5% –4.3%

Mississippi –1.8% –3.4%

North Carolina –3.2% –2.7%

South Carolina –7.8% –1.7%

Tennessee –3.1% –4.2%

Texas –2.8% –0.9%

South averages –3.2% –2.9%

Note: Temperature changes are random numbers from a normal

distribution with a mean of 3.192°F and a standard deviation of

1.539, and precipitation changes are random numbers from a

normal distribution with a mean of 0.035 inches and a stan-

dard deviation of 0.615 for all the states. For each state, 100

random numbers are withdrawn to simulate crop yields. The

numbers reported in the table are the average of simulated

yield percentage change.
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quadratic terms of weather variables. To the best

of our knowledge, these quadratic terms have

not been included in previous PCR models. We

also use a new method to apply PCR model in

a predictive framework, which has higher pre-

dictive performance than previous PCR models.

Most importantly, we contribute to the litera-

ture by demonstrating the potential for spa-

tially varying impacts of climate change on

crop yields in several northern and southern

U.S. states using county-specific PCR models.

These results suggest that returns to research

and extension efforts aimed at mitigating the

agricultural effects of climate change are likely

to differ across regions of the United States.

However, we stress that these findings are

merely suggestive because we do not formally

test for patterns of spatial heterogeneity.

[Received April 2012; Accepted April 2013.]
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