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- CARRYOVER LEVELS FOR GRAINS -

A Method for Determining Amounts that are Optimal Under
Specified Conditions .

By Roserr L. GustarsoN, Assislant Professor of Economics, University of Chicagn'*

SUMMARY

The idea that annual fluctuations in supplies of grains and other
storable agricultural conunodities can or should be evened out through
the medium of year to year storage is thousands of years old. Despite
the existence of a considerable body of literature on the subject, how-
ever, the following important questions have not been fully and
rigorously answered: (1) In any ycar—or betier, in cach year of a
contemplated period of years—exactly how much grain should be put
into or removed from storage, given the best available information on
the conditions that are relevant to making such n decision? (2)
Given the quantity of grain that is to be stored in the nation as a whole
in any year, what is the best regional distribution of that quantity of
storage, that is, where should the grain be kept and in what amounts?

For complete mathematical rigor, both the national and the regional
aspects of the storage question should be answered simultancously.
A mathematical solution for optimal multiregional rules is given. It
turns out, however, that even for the simplest case—that is, 8 2-year,
2-region modcl-—the computations would be formidable except on a
high-speed clectronic computer, The bulletin, therefore, is concerned
chiefly with methods of determining optimal storage policy at the
national level.

Decisions made by farmers and the trade with respect to quantities
to be carried over from one period to another chiefly depend on their
expectations of relative current and future prices. Decisions on the
part of governmental agencics with respect to storage policies generally
reflect other sorts of considerations. Here the goal may be to even
out supplics, to assure minimum stocks Lo meet cmergency require-
ments, or 10 maintain stable returns to producers, The examples
given n this bulletin relate chielly to obtaining a storage policy that
will result in the maximum net benefit to the general publie, when
total benefit is measured as the area under the demand eurve, although
the general approach used could be applied to several alternative goals,

This bulletin is concerned basically with procedures that can be
used to even out supplies of grain by varying the quantity earried
over from yecar lo year. In actus! practice, stabilization proposals

1 This work was started and in considerable part completed swhile the author
was & Rescarch Assistant at the University of Chicago. TRichard J. Foaote of the
Agricultural Markeling Service pave substantial assistance in preparing the
report. Helpful adviee was reveived from several people at the University and. in
the Department of Agriculture, ineluding in particolar K. A. Fox, I. Herstein,
D. G. Johnson, J. Marschak, T. W. Schultz, G, Tolley, and W. A, Wallis,
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seldom rely only on storage. Instead, in times of surplus, use is also
made of export subsidies or other export disposal programs and of
domestic diversion programs. A research program currently in prog-
ress is considering the relative costs and gains to farmers and the
general public of alternative combined programs, and of a storage
policy designed primarily to support prices of particular commodities
at desired %'eveis as contrasted with the procedures developed in this
bullatin, which are designed primarily to even out year-to-year
supplies.

Before applying the methods, we must first make some judgment
concerning the value to the general public of consuming aiternative
amounts of grain in various years. Here we are concerned essentially
with the relative value obtained by consuming & fairly stable quantity
of grain in each of several years, or of consuming the same total quan-
tity over the entire period but in varizble amounts from one year to
the next. One way of making & rough estimate of the value of con-
suming a specific amounti of grain is fo take the arca under a demand
curve. This procedure freanently has been followed by cconomists
in the past, and it is usra in most of this report. However, the
general approach used to derive the rules developed here can he ap-
plied to any method of measuring total velue so long as this value
can be expressed as some sovt of function of the quantily consumed.

Having defined the total value to the general public in each year
28 a function of the quantity consumed in that year, we note that the
quantity consumed in turn is equal to the initial supply, that is, pro-
duction plus beginning stocks, minus the carryover. We noext define
net benefit in any year as the total value less costs of storage, inciud.
ing interest on the investment. In any given year, then, for & given
level of initial supply, determination of the carryover determines each
of the following: The quantity consumed (supply minus carryover),
total value (a function of gquantity consumed), cost of storage (a func-
tion of the carryover), and the net benefit (total ralue minuos cost of
storage}. Thus, all of these variables, in particular the net benefit—
with which we are primanily concerned—depend on or are determined
by the level of initig] supply and the level of carryover. Henee, if it
is possible to specify some functional relationship between the carry-
over and the initial supply, then the relevant variables, including net
benefit, are determined by the initial supply and the specified func-
tional relationship, Such a relationship between supply and carry-
over we shall call a storage rele. It may be thought of as o table In
which, for various possible different levels of supply, the corresponding
carryover is given; or as a graph on which the same information is
specified; or 1 some cases possibly as & mathematical formula.

The first question that suggesis itself is whether it is possible to
specify, and to determine the values of, such storage rules. One of
the objects of this bulletin is to show that it is not only possible, but
indeed necessary, to speeify such relationships or rules, under the
conditions and ebjectives stipulated; and also to show how the values
of the rules can be obtrined. :

A storage policy for a period of years is defined as & set of storage
rules, one for each year. T we consistently follow a sel of storage
rules, the net benefit in any year depends on the initial supply and
the rule for that year. The supply is equal to beginning stocks plns
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production. Beginning stocks, in turn, depend on the supply and
the storage rule applied in the preceding year; hence it is necessary,
in general, in analyzing the storage problem, to think in terms of sets
of storage rules rather than ap isolated rule or level of storage for a
single year. Furthermore, levels of produstion in future years are in
general not known; we get around this difficulty by makine use of
their estimated probability distributions. Using these probability
distributions, it 1s conceptunlly possible, for a given set of storage
rules, to obtain an average, or “mathematically expected” value for
the net benefit in each: future year. Applying an appropriste discount
factor for each year to obtain the “present vslue” of the benefits,
we add together and obtain the sum of discounted expected net bene-
fits in all fubure years. An optlimal storage policy, as given In this
butlletin, is dofined as shab set of storage rules which maximizes the
sum of discounted expected net benefits in all future years {or, in
some cases, for a specified number of future years) for any given
initial supply of grain in the initial year. The resulting storage rules
state how much grain should be carried over into the following period
given the initial supply for the current year.

Material in the bulletin is concerned primarily with methods for
cbtaining such rules; institutional, adlminisi;mt.ive, or statutory
arrangements required to bring about the storage of such quantities
are considered as outside its scope. It is shown, however, that, under
certain conditions, the operstions of private firms in & competitive
market will result in the storage of quantitics called for by the optimal
rules. It should be noted that the methods for obtaining the rules
developed here in general do not, for ressons of mathematical and
computational feasibility, follow directly the procedure which might
be suggested by the preceding paragraph; the discussion there is partly
coneephual, the purpose being to cutline the nature of the criterion of
optimality; one of the objects of the bulletin is to present methods
which are mathematicaily and computationelly feasible and which
will result in storage rules that do satisiy the eriterion.

Moethods by which alternative conditions can be incorporated into
the ruies are given. For example, allowance could be made for
anticipated future varisbility in domestic demand if this could be
moeasured. Likewise, the rules can he modified to maximize expected
gains to a particular sector of the cconomy, such as farmers, if this
appears desivable.  Or they may be designed to stabilize prices rather
than quantitics utilized, as in the empirical cxamples shown. The
genersl approach outlined is general enough to be applied to many
differert conditions and criteria.  Thus, for example, the method of
solution can readily be modified or extended to allow for the effoets of
foreign trade on the relevant conditions, However, for the sake of
simplicity and beeause of some uncertainty sbout the accuracy of
available estimates of future demand and supply conditions in foreign
countries for grains (such as wheat), for which such estimates would
be important, the empirical applications presented in shis bulletin
are confined to storagcable commodities (namely, feed grains) for
which net foreign trade is small in relation to total domestic use,

Storage rules for feed grains under 12 sets of alternative conditions
are shown both in {able and chart form. The charts are designed to
show the effect on the rules of alternative assumptions sbout specified
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conditions; they show that similarities, other than level, are greater
than differences, even for the wide variety of conditions for which
rules are computed. An equilibrium [eve! for cach rule is given in the
table. Tt can be thought of as an average level around which the
yearly carryovers over a long period tend to fluctuate for a given
storsge rule. The carryover that would be reached following two
bumper c¢rops also is given. Equilibrium carryovers for the corn
equivalent of all corn, oate, and barley vary among the different rules
from an approximate minimurs workingstock level of 200 million
bushels to 578 million bushels; the corrosponding carryovers following
two bumper erops vary from 774 to 1,656 million bushels.

Some knowledge of mathematics and probability calculus is required
to derive the mathematical sohitions upon which the storage rules are
based; but, computation of the rules for particular empirical appli-
estions requires only numerical iterative procedures. In some cases,
the required computations become extensive, and a shorteut method
for approximating n rule under specified conditions is given. The
shorteut method requires the use of relatively few arithmetic opera-
tions. Lxamples are shown to illustrate that the shorteut method
results in a rule that is nearly the same as that computed by the more
exact iterative method.

The basic principles that underlie the rules and some gencral con-
clusions with respeet to storage that can be drawn from them are dis-
cussed in detail in nonmathemntical {erms; these secliong of the
Lulietin requive only a limited knowledge of mathematical symbols
and operations.  Mathematicenl solutions for the storage rules and
certain special relationships that perlain to the storage problem then
are given for the use of research workers who may have an interest in

them.
INTRODUCTION

From a standpoint of national policy, storage is important chicfly
because of fluctuations in supply and demand through periods thatb
extend up Lo several years in length. 1f neither production nor
quantitics needed for consumption vmmd a uniform amount would
be produced and consumed in each year and only minimum working
stocks would be carried over from one year to the next. We all lmow
that for grains, in particular, production changes greatly from year to
yeat, reflecting chiclly variations in yield duc to weather, In some
recent yoars, pIOdUCLIOD also has been affected to a signifieant extent
by Goverament regulation of acreage. Year-to-year “fluctuations in
demand in general are less violent. “But, at (imes, as during or imme-
diately following a major war, melerial chanpges may take place and
may sflect consumption for several years. Other factors, such as
changes in taste and technology, ave of perhaps greater importance in
bringing about long-run changes in supply and demand.

This bulletin deseribes analytlcul technigues that deal with the
question: For the nation as & whole, in any year, hovr much grain
should be put into, or removed {rom, stomge, give:n the best. available
information on conditions which are reigvant to malking such n
decision, Results of applying the method to obtain storage rules lor
total fecd grains in the United States which are optimal under specified
alternative assumptions are shown,
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The term “storage rule,” as used in this bulletin, is a stalement
or formuyla that indicates, in any given year, how much should be
carried over into the following period under specified conditions.
An optimal set of storage rules is & ses of rules that achicves spocified
desired objectives, which, because of uncertain ty about relevant
future conditions, are usually stated in terms of “expected values”
of specified variables over a period of years.

Conditions that are relevant in making decisions with respect to
storage may be divided into three categories: Those that relate to
(1) production of the grain (supply), (2) utilization of tho grain
(demand), and (3) costs of storage and the interest rate (or the rate
at which future costs and returns are discounted to geb their present
value).  An explicit solution of the storage problem also must specify
a_criterion of optimality, by which is mcant the end or objective in
view. Because of the diversity of possible ends, any solution to the
gram storage problem obtained by economic analysis alone must be
a “‘proposed’’ solution; the actual choice of a policy must depend
on the choice of objective. But with & given criterion of optimality,
the economic analyst can provide what appears to be a “best'* solution
to the storage problem and the method outlined here is sufficiently
general to be applied to many different eriteria,

OPTIMAL STORAGE RULES AT THE NATIONAL
LEVEL

A CRITERION OF OPTIMALITY

The criterion adopted here is the maximization of expected gain
(or equivalently, the minimization of cxpected loss) to the general
public arising from grain-storage operations over a period of years,
where the “gain” is defined as specified on page 17, and where
“expected” means “the mathematical expectation of? or “the mean
of the probability distribution of” This criterion is believed to be
generally acceptable, and it presumably underlies, implicitly or ex-
plicitly, most discussions of grain storage and related problems. The
criterion can be discussed from three viewpoints:

1. Use of expected values implies that probability ealeulus is relevant; that is,
that quantities whieh are not known with certainty can be treated as randem
variables, subject to probability distributions which ave known or ean be esti-
mated. In the grain stoerage problem, us troatod here, the main emphasis (at
least initially) i on the clement of uncertninty introduced by fluctuations in
future yiclds per acre.  On th  nsis of existing historieal and technologisal dafa
on yiclds, the construetion or reasonably good estimates of probability distri-
bulions of future yislds appeurs o be possible.  To the oxtent that future Anctua-
tions in other relevant variables (for example, demand, or asreage planted) can
be treated as randoin (that is, subject to o known probability distribution),
such fluctuations can be introduced explicitly into the solution.

2. The gain to be maximized is intended to be the gain to the generai publie,
rather than to some particular sector of the ceonomy, such as farmers or grain
dealers?  However, the method of solution can he readily modificd to maximize
expucted gnins for any particular scebor, if desired,

® TPor a discussion of the theory of storage and an examination of possible
alternative objectives, see Johnson (6, ¢h, 0)}* and the accompanying bibliog-
raphy.

*Throughout this bulletin, italicized numbers in parentheses refer to Literature
Cited, p. 4.

440974 —58, 2
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8. The eriterion used here is stated in terms of net gains or losses arising from
changes in quantities stored or utilized, rather than in terms of price stabilization,
Tt is clear, however, that a program that partially or fully stabilizes guaniities
utilized is equivalent to & program that partialiy or fully stabilizes prices, given
no change in the general price lavel or the level of demand, The carryover rules
determined in this bulletin ecan easily be converted into equivalent price-setting
rules.

The discussion in this bulletin pertains to the determinstion of
desirable quantities to be stored under given circumstances, with
iittle attention devoted to the institutional, administrative, or statu-
tory arrangements required to bring about the storage of such gquan-
tities. Once the optimum amount to be stored is determined, the
sctual storage of that amount could be effectuated by various means,
for exsmple, by (1) outright governmental purchase or sale of the
grain and storage by & governmental ageucy; (2) a price-sebting,
government-loan program to contro! private holdings of the grain;
or perhaps (3}, under some circumstances, simply improvement In
information and stabilify of expectations In & froe markel for grains,
Relations between “‘optimsal” storage rules and storage activity that
would tend to occur in an “‘idealized” free market are considered
on page 48.

PROPOSALS WITH RESPECT TO GRAIN STORAGE THAT
HAVE BEEN MADE PREVIOUSLY

The level-of-storage approuch.— The usual approach to the grain stor-
age problen is in terms of & “level of storage.” The analyst attempts
o determine how much grain would have to be available from storags
to offset the effects of cerlain contingencies such as a low yield or series
of yields, or & war. He then estimates the average time for which the
stocks would have to be held and the costs of holding the stocks over
this period, and weighs such costs against the estimated benefits.
Sinee the cost of holding sufficient stocks to offseb any conceivable
contingency, or even an actual unusual occurrence such as the droughts
of the mid—~1930’s, turns out to be prohibitive, some compromise with
the “ideal” of & complete offset must be made by an arbitrary method,
and a “level” is arrived at which is adequate partially to offset certain
contingencies. This approsch has been used, for example, by Shepherd
(10} and the authors of a recent Congressionsl report (12).

The suthor of this bulletin believes that such an approach is neces-
serily an inadequate solution to the storage problem. The reasons for
the madequacy may be summarized under the following points:

1. From the standpoint of an administrator who has fo make actual slorage
decisions, a policy stated in terms of levels is almost meaningless, Under such 2
poliey he knows only that he must operate in such & way thatl in the long run the
amount in storage will tend toward the stipulated level, but this provides little
guidance in determining how much te add fo or subtract from storage inany given
year, Suppose, for example, that storks at the beginning of the current crop year
are 10 percent below the recommended level, and the harvest in $he surrent year
is also 10 percent bolow normat.  Should stecks be increased to bring them toward
the recommended level (and if so, by how much), or should $hey be depleted further
in order to augment the short crop {and if so, by how much)? ~A “level of storage”
policy is of Hitle help in answering such & question. What is needed is & rule of
storege which indieates, for any specified level of stocks at the heginning of the
year (carry-in} and any harvesi, what amount should be added to or taken from
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stocks during the year or, cquivalently, what the lovel of stocks should be at the
end of the year, that is, the carry-out,

2. The economic analyst is faced with an analogous situation, but the argument
may be carried somewhat furllier.  In this situation, we are trying to analyze how
to divide an existing supply of grain between current and future use insuch a way
a5 to maximize the expected benefils to be derived from the use of the pgrain, both
present and future, less expecied costs. The answer to this question is 8 rule of
stotage, applicable this year. DBut the answer depends, in general, on how the
grain is used in those fittire yoars and, in particular, on how it is distributed among
those future years. Thus, it depends on the storage rules that are in operation in
those yerrs. We can sny, then, fhat o storage policy intended to minimize losses
or maximize benefits must be in the form of ¢ sef of starage rules.  And, as we shall
sce, a straightforward, logieal, and computational application of the eriterion of
maximizing the sum of diseounted expected gains arising from storage operations
resulis in sueh a set of rules. A storage policy stated in terms of u desiced level
of slorage, on the other hand, never can be shown to be optimal, that is, no ohjec-
tive wauy exists for showing that one level is botiar bhan another.

Three modifications or additions o the above argument should be
mentioned

1. Anyone who discusses the determinabion of proper levels of storage obviously
has in mind that the stoeks will be manipniated in accordance with some kind of
not-formalty-defined “rule,” that i, presimmably, stocks generally will tend to
build up in yvears of goad crops and be depleted In vears of poor eropa.  Butb this
rule must be formally defined and quantilied in order to make storage operaiions
oplinial,

2, Onee the storage rules are determined, In some cases we can defing and eal-
culate, from the rules, what might be termed an Yequilibriunt® siorage level, that
iz, o level toward which stoeks tend, on the averape and in the long run, when the
rules are upplicd.  1n this way, storage roles ean be refated to, or compared wibh,
whal may be au intuitively more nnderstandabio concepl of storage levels.

3. Bupposc the eriterion of maximizing expocted gain is in fael rejected, and
mstead, for military reasons ar ollierwise, 1t is cdosired to have on hand at the end
af A vertain period {say 5 years) o specified lovel of reserve stoeks,  The problem is
to determine the best wiay to build siocks o that level.  Agnin we need a set of
storage rules, and the method given hers van be direcly applied te sueh a problem,
Tut a beller way oxists-——as shown on page 57 to acdjust storage policy to provide
for the existence of mititary or other conlingoncies Lhan simply building stocks to
a predelermined tevel at the end of a period of years.

Storage rules bused on a plousible Junctional form.—Granted, then,
that the problem we face is the determination of good storage rules,
where a rule for a given year is defined as a function which states, for
each possible quantity of available supply, or larvest and carry-in,
whatl should be the carry-out, the next question Lhat arises is how to
solve that problem.  "The simplest approach might appear Lo be (1) to
assume some plausible funetional form for the rule, (2) to ealeulate
expected costs and benefits under (he rule, such expected values being
functions of the coefficients or paramelers in the rule, and (3) to find
those values of the parameters that minimize net expected losses or
maximize net expeeted gains.

Two gencral ebjeclions to this procedure are:

1. We have no way of knowing whether an assumed form is really n good one,
even though it may appear plausible. Tt is clearly preferabile o have a pros
cedure that requires no assumption as to form ; a3 we shall see, such 2 procedure is,
in fact, malhematically availablc.

2. Except in the simiplest enses, computations required to find expected costs
and gains as functions of parameters in Lhe rule and of the current level of supply
over & period longer than a fow vears may heeonte guite exlensive.
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The following forms of rules have been suggested as having consider-
able “plausibility appeal:”’

1. Let the carry-out be a fixed (determinable) proportion of the total supply, or
of the fotal supply minus the minimum possibie Earvest [zee Rosenblatt {(&)].
Serious objections to the applieation of Rosenbiatt's results in the determination
of actusl storage poliey are outlined in Appendix Note 2. The criticisms there
may be taken as illustrative of the dangers of assuming in advance a pariicular
parametric or functional form for the rule.

2. Divide stocks into two categories, one for offsetting relatively minor or
“normal’ fluctuations in yields and the other, a reserve to be used only in case of
serious drought, that is, when yields fall below some critical level. The assump-
tiot implicitly underlying such s policy is presumably that the utility- or demanrd-
function is discontinuous. Such an assumption, however, san be directly ingorpo- |
rited into the sclution outlined, Leginning on page 40, without the necessity of
setting up two categories for stocks.

Storage rules for which the amount added depends on deviations an size
of crop from normal.—Another possible form of storage rule which has
been considered is to make the amount added to storage 2 function of
the amount by which the current year’s harvest devistes from normal.
The simplest function of this kind is a constant proportion. The idea
underlying such s rule is that we face a certain variability of output
which we want to transform into a smaller variability of quantity.
utitized. Such a transformation could theoretically be made. by the
kind of rule suggested. The objections to such a rule are:

1. It is operationally and analytically unsound, in the sense that it assumes that
the decision as to how much grain should be added to storage this year can be
made ratiopelly while completely ignoring the amount already in storage.

2. Since the frst few years of operation of the rule may be years of poor orops,
in which case the rule will call for removing grain from storage, such a rule could
be put info operation only ai a time when existing stoeks slresdy are large,
whereas a rule, to be generally nseful, ought to be operational under any initial
condition of supply. Furthermore, determination of the necessary level of initial
stocks to make the rule workabie must be probabilistie, since the initial stoeks
necessary to be completely certain that the rule could he worked for an indefinitely
tong period would be indefinitely large, Moreover, no obvious criferion exists for
detérmining what should be the level of probability which one is willing to sbipulate
for the workability of the rule. {For further details, and a concrete example, see
Appendix Note 3.}

3. Under a rale of this kind, an error in the estimate of the probability dis-
tribution of yields or its equivaient, an undetected change in the conditions of
produetion, can lead to a system that “'runs away.” For example, if the estimate
nf the mean of the distribution is too low, stocks tend to build up indefinitely,
whtereas if the estimate is too high, stocks tend to decline to zero.

An approach based on an idealized free markel.—Another possible
approach to the storage problem is to construct 2 model designed fo
approximate the working of an idealized Irec market for grains, that
is, & market in which all stocks are held by private firms, operating
under perfect competition and maximizing expected profits. In a
later section we see that, under certain conditions, the aggregate
smounta stored in such a mearket can be calculated, using (Irirect.ly
the methods presented in that section. Under these conditions, the
rule becomes a description of market behavior instead of a means
for decision making. The results can be used either (1) as the basis
of an optimal rule of storage, assuming that what happens under the
conditions outlined is desirable for the generz! public, or {2) as a basis
for estimating the extent to which aggregate amounts stored under
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actual (lustorical} market conditions have deviated from the amaounis
that would have been stored under the so-calied “ideal’” conditions.

THE STORAGE PROBLEM STATED MORE PRECISELY

“Storage” throughout this discussion means yenr-lto-year earryover,
the presumption being that distribution of the product among yoars
is the serious problem, whereas distribution within a yeer, given the
total amount to be utilized during the year, is relatively trivial from
a policy viewpoint. At the beginning of a given crop year (say on
October 1 for corn, or July 1 for whent) we know the amount of
carryover from the preceding year (C,_y), and we can estimate fairly
accurately the amount of the crop in Lhat vear (X,)%* The toial
supply (S.) is the quantity available for vtilization and CRITyover.
The problem is to determine what the carryover should be st the
end of the given year (), given the relevant conditions of demand,
supply, cost of storage, and the interest rate. The quantity utidized
(Y.) 15, of course, simultancously determined, as is the amount added
to or subtracted from storage (C,—(C,_,). These relationships are
expressed by the equations:

SL:Ct—i *f‘Xz (1)
Y.=5—-C, (2)
:Ot—i“f_xt“—(‘t (3)

A “rule of storage,” as used hore, 1s simply a function (8,) which
explicitly states the way in which C: depends on Cy and X, that is:

CL: GI.(C{—-!; Xi’.) {4)

At this point we do not specify anylhing about the pature of this
functional relationship. Later we see that most, if not all, optimal
storage rules are nonlinear and that the algebraic expression of the
relationship is moderately complex, A “storage policy” for a period
of n years {t=1, . . ., n, where the current vear is designated as 1)
may be defined as a set of storage rules for those years (&, . .., &,
Our problem, then, is that of finding a “good” policy for a given num-
ber of years (n=2). Storage rules or policies which sre optimal
under stated conditions are designated by a cireumflex, thus: 8, or
(9;, R | en) . ) .

We actually may be primarily interested only in what to do in the
current yoar (él), but determination of the best @, in general depends
upon 8, .. ., 8, so they also must be determined. Under the
assumption that all relevant conditions and criteria are unchanging
through timne, sometimes referred to as an assumption of “station-

arity,” we have é;=532= -+ . ad infinitum, and the problem is to
determine the best single rule 8, to be applied each year.

* For a list of the important symbols used, see Appendix note 1. Each symbol
is defined, however, as it is introdueed,
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SOME SIMPLIFYING RESTRICTIONS

This study initielly was primarily concerned with storage as a
mesans of offsetting fluctuations in yield. To simplify the analysis,
we initially assume that the following are known with certainty:
(1) The basic demand curve for the erain, (2) the cost of storage for
various quantities stored, and_ (3) the acreage to be planted. We
need not specify that the conditions are the same in each year but
only that, if they do change, we know how they will change. Ignoring
random or unpredictable fluctuations in acreage initially can be justi-
fied in part by the fact that, prior to price support programs, the
effect on production of changes in acreage for most grains was small
relative to the effect of fluctuations in yields.* The effect on optimal
storage rules of introducing random or unpredictable fluctuations in
demand or acreage into the solution is discussed on page 51.

For purposes of facilitating hoth analysis and discussion, we fivst
consider a desirable storage policy for the country as a whole, that is,
we initially ignore the existence of interregional differences and rela-
tionships. 'To do this, we set up two forms of restrictions as o frame-
work for our analysis. The first form, designated as restriction I, can
be stated in two alternative ways; the second form, designated as re-
striction IT, can be stated in three alternative ways. These alternative
statements are not necessarily equivalent, but any one of them will
satisfy the requirement mn each case. Nor are these conditions neces-
sary, but only sufficient; one easily could think of other statements of
conditions which would satisfy the requirements.

Restriction T.—Either of the following: :

Ia: No grain of the kind {for which the storage problem is being
considered, or a substitute therefor, is imported or exported.

Tb: Imports and exports are known in advance (predictable with
certainty and independent of the amount of storage). Ibof
course, inciudes Ia as a special case. .

Restriction II.—Any one of the following:

ITa: The cost of transporting the grain within the nation Is
ZOr0,

IIb: All of the storage for the grain is loceted at a single point
in the nation, or within a single region within which transport
costs for the grain are zero. _

Ilc: All of the grain (1) is produced at & single point or within a
single zero-transport-cost region and (2) 1s consumed at the
same or a different single point or within a single zero-
transport-cost region.

Although these restrictive conditions are never completely satisfied
in the real world, they may be approximately satisfied for certain
grains. If so, application of the results given in the first section should
give o storage policy thatis a reasonably good first approximation to
The optimal—at least a better approximation than is possible, except
by chance, by the use of other existing techniques. Approximate
satisfaction of restriction I, for example, means that unpredictable

1 For further comment on this point, and some illustrative data,. see Appendix
note 4.
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fluctnstions in exports and imports are small, relative to total pro-
duction or consumption of the grain. Similarly, restriction II is
approximately satisfied if all but a small portion of the grain is stored
in one small subregion, or if the relevant cost of transport is small
relative to the sum of storage cost plus interest charges. For all feed
grains in the United States, for example, fluctuations in net imports
1 recent years typically have been between 0 and 2 percent of total
domestic production; and, though production, utilization, and storage
occur throughout the country, they tend to be concentrated in the
North Central States, where, for example, more than 80 percent of
total October 1 stocks of corn are typically held.

Furthermore, biases in the computed storage rules that are caused
by assuming that both restrictions T and IT are true, when, in fact,
they are not, are in opposite directions, so that they at least partially
offset each other. That is, the assumption of restriction I results in
rules which preseribe “too much” storage, since holding exports and
imports constant means that effective demand for the domestically-
produced grain is less elastic than it would otherwise be ; Whereas the
assumption of restriction-II results in rules that typically preseribe
“too little” storage.

With all the above considerations in mind, & direct application of
the analysis of this section to the storage problem for total feed graing
mn the United States should give a fairly close approximation to optimal
storage policy; sccordingly, tbe empirical applications are made -to
those grains. '

Finally, it should be mentioned that, while a complete solution of
the multiregional storage problem involves a formidable computations]
and empirical complexity, relaxation of restriction I can be allowed for
with only a relatively minor modification of the “model,” provided
adequate empirical information is avsilable abous foreign demand,
supply, and storage policy.

Naturalty, the approach developed here is equally applicable to &
commodity produced and consumed within a smaller self-contained
region,

CONDITIONS USED IN DEVELOPING AND APPLYING
THE RULES

As already indicatod, the conditions which are relevant and which
must be estimated prior to the derivation of storage rules are the fol-
fowing: (1} A discount factor which equals 1/(1+4r}, where r is the
interest rate.  This is the present value of one dollar due the following
year, and reflects the fact that whenever commodities are held in
storage, an amount of capital equivalent in vatue is unavailable for in-
vestment clsewhere. (2) The direct cost in dollars of carrying over the
quantity stored for one year. Naturally, this total depends on the
quantity stored, though certain fixed costs regardless of quantities also
may be involved. (3) The total vaiue, mesasured in doilars, attribut-
able to the use of the variable quantity available for consumption (Y)

5 A solution that incorporates foreign trade was obtained and applied {0 com-
pute pational ageregate storage rules for wheat in an unpublished manuscript
entitied “The Btorage of Grains to Offset Fluetuations in Yields” by R. L. Gustat-
son. The general approach is summarized in Note 12 in the Appendix,
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in that year. (4) The probability distribution of yields per acre, since
we have specified that the acreage is known.

In some cases it may be more convenient and more illuminating to
use & marginal value function instead of the total value function.
For readers unacquainted with calculus, we note that the marginal
value function, or first derivative of the total value funetion (assuming
that the derivative exists), is somewhat anslogous to, and in some
cases may be taken as identical with, a market demand curve, prop-
erly defined. (See pages 13-15.) Mathematical derivations of
optimal storage rules for each of these value functions are given, hut
our initial presentation of the solution is in terms of the total value
function, as the exposition and proofs are more straightforward in
those terms.

The meaning of each of these conditions, and problems involved in
measuring them empirically, are discussed in the following paragraphs.

The discount factor—The discount factor is simply a transformed
expression for the intercst rate; but the guestion arises, What is “the”
appropriate interest rate to use? In a free capital market, the appro-
priate value is the rate of return that the capital resources used in the
stornge program could earn in alternative uses, so the probiem is to
determine or estimate what that rate is. In a situation that involves
capital rationing, the problem may become more complex, but we
cannot here go into all the issues involved. One necessary restriction,
to make the solution feasible, is that the annual discount factor be
less than unity (thas ig, the interest rate be greater than zero). In
the section on applications, we assume a range of possible values of
the discount factor to obtain an cstimate of the effect of such variation
op the resulting optimal storage rules.

Storage costs—The cost of storage is here taken essentially to be
the amount of money it costs to store a given quantity of grain for a
year. Serious problems of cstimation are involved, however, as
costs vary considerably in different locations and in different types
of storage facilities, and & national aggregate s desired. The approach
taken is to assume a range of possible cost cstimates in order to show
the effect of variation of this sort on the storage rules.

A question may arise as to whether the moncy cost of storage is by
itself an adequate measure of the actual net cost to the economy of
having 2 certain quantity on hand at a given time. For example, a
‘‘eonvenience henefit’” may acerue from the existence of the stocks
themselves which, if it exists, should be subtracted from the mone '
cost of storage to obtain the actual net cost. The possibility of sucﬁ
o convenience benefit may be explained as follows:

It has been observed that when stocks of grain on hand are low,
farmers and processors sometimes hold gre'  for use &t a future date
cven though they know (via the futur market) that they could
obtain similar grain at the future date at . cost less than the current
value of what they hold. The resulting monetary loss, as it is Incurred
voluntarily, is presumably offset by & converience bencfit accruing
from the %olding of the grain. [Sec Working (14).} If benefits to
the general public correspond to these private convenicnce benefits
and if they could be suitably aggregated, then the resulting total
convenience benefit should be subtracted from the money cost of
storage to obtain the net cost of storage. It is possible that, by this
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adjustment, the ccat of storage, for low levels of stecks, would be
considerably altered. In the empirical applications given in this bul-
letin, we do not attempt to estimate these concepts, but rather follow
the simple expedient of taking as given a fixed level of minimum
working stocks, below which the carryover is assumed never to fall.
The computed storage rules, then, refer to quantities of CArryover
above the minimum working stocks. This procedure is equivalent
to assuming that when stocks all below a certain level the convenience
benefit of stocks on hand becomes indefinilely large, whercas for
stocks above this level, the added convenicnce benefit is negligible.

It should be noted that the “convenicnce benefit” being discussed
here 15 conceptually quite separate from and independent of the zain
to the general public concept defined on p. 17 et seq. "T'he former
accrues from the existence of the stocks themselves, whereas the
Intter arises from the year-to-year adjustment (by means of the
storage rules) of quantbilies utilized in accordance with changes in
supply and demand conditions.

The total value function—This states the value in dollars, to the
general public as a whole, of utilizing the quantity Y of the grain
in the year . The probiems invelved in the statistical determination
of a vatue (or utility) function of this sort from market data are highty
complex, and a completely rigorous solution, applicable to the real
world, probably is impossible,” Nevertheless, if any storage policy s
to be adopted, some vatue function must be decided upon before the
policy can be justified or made rational. In other words, before we
{that is, the general public) ean decide how best Lo distribute quan-
tities of the grain ulilized among years, wo must decide what is the
value to us of ulilizing allernative quantilies in cach, of the years.
Some degree of arbitrariness or statistical approximation may be in-
evitable, but a poliey which is based on even an approximate value
Tunction is certainly likely to be belter than one which ignores the
problem of evaluation. Furthermore, by making use of alternative
explicit value functions, we can defermine he cffeets on storags
poliey of making alternative choices, or of errors in the estimale, of
the walue function.

In the paragraphs following, we give what appears Lo be the most
practicable way of objectively determining, at least approximately,
a funclion which states the value in dollars, to the general public as
& whole, of ulilizing a given quantity of grain in a given year. Bub
1 should be emphasized that the method of solving (he storage prob-
fem which is discussed later does not depend on Lhis particular choice
of a value funetion, but is sufliciently general Lo permit the ncorpo-
ration of a wide variely of possible functions. Nor example, if the
Government should decide that the storage program should be oper-
ated so as to maximize the expected total revenues of grain producers,
we could, by simply sctting “tolal value equal to “lotal revenues of
grain producess” in our solulion, obtain storage decision rules which
would he “optimal” in that sensc.

We define the suggested total value [unction by first defining a
particular kind of market demand curve, or market price-quantity
relation, for the grain, as follows: The quantity of resources used in
the production of the grain are assumed given (constant), but the
quanlity of grain produced varies from year to year, owing to purely

446979°—58—3
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noneconomic forces, in particular, the weather. The grain produced,
whatever the guantity, is thrown on the market, and the maximum
price is determined at which that entire quantity can be sold and con-
sumed. That is, no year-to-year carryover is allowed. For all points
along the resulting price-quantity relation, the to tal productive capac-
ity of the economy, except for the quantity of the grain which becomes
available, is assumed given {constant); and the price level of all goods
and services other than the grain is also held constant. However,
allocations of particular cther resources and relative prices of other
goods and scrvices are not assumed to be fixed, but are allowed to
shift in response to the changes in the quantity of the grain, to the
extent that the market equilibrating forces in the economy do in fact
cause them to shift within the crop year.®

The resulting price-quantity relation is defined as the marginal
value function for the grain; it gives the per-unit value, in terms of
other goods and services, which the general publie, operating through
the market, places on the grain when the total quantity 1s Y. By
this definition, we essentially make this value not dircctly dependent
on the income redistribution effocts of the changes in the grain supply.
This appears to be the most feasible procedure, the alternative being
to adopt arbilrarily some interpersonal or intersectoral weighting,
such as would be implicd by setting total value equal to total revenue
of grain producers.

Total value then can be defined as the area under the marginal
value (or demand) curve between O and Y. However, in most cases
some quantity, which can be taken as a constant, exists below which
the quantity utilized never falls. Conceptually, this quantity may
be close to zero for items that are relatively unessential in the diet
of either human beings or animals, and considerably above zero for
dictary essentials with few substitutes. Alternatively, we may look
on the existence of this minimum quantity as simply an empirieaily
observed fact. Since we never can obtain observations regarding
the nature of the total value when the quantity is below this minimum,
wo take ihese valuee as unknown constants which ¢an be conveniently
ignored since, in the maximization process by which the optimal storage
rules are oblained, they bave no effect on the results. e may,
therefore, define the total value function as “the increase in reel national
(or regional) income which 43 allribwdable to increasing the amount
wtilized of the grain from the minimum ralue of ¥ (¥Vpg) 0 Y dtself,
when other productive capacity is given.  Thatls, total value 15 the area
under the marginal value curve between this minimum and Y. The
total value can be thought of as the value of other goods and services

s Note that the demand curve so defined differs slightly from the usual defini-
tions of the (Marshallinn) demand eurve in that we hold neither real income nor
money income and ofher prices constant along thie eurve. The demand curve
also 15 defined for a relatively “short run,” and henee fends to be less clastic
than a long-run demand curve.

7 This is readily scen by considering the effect on real income of a small change
in the quantity of the grain, say dz, from an initinl guuntity z; the resulting
change in real income is the change in guantity times the per-unit value.  Adding
up these small ehanges in real income between Yain and Y gives the total value.
In ceenomic litersture, this value frequently is referred to as “lotal social value."”
Tt should be noted that “total value,’” as used here, does not mean ““total revenue,’
or price times quantity consumed; it is, rather, the entire area under the marginal
value function.
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which society is willing to give up in order to utilize the quantity Y
rather than the minimum quantily, '

An empirical estimate of the marginal calue function for feed graing.—
We next consider the problem of empirically estimating the marginal
value function for all feed grains. e allow approximately for
efiects of changes in other productive capacity and the price level in
the usual way, namely, by including appropriate income and price
indexes in the estimation model, The main difficulty in the case of the
feed grains arises from the facts that {1} an important factor in deter-
mining within-vear demand for feed grains is the beginning-of-vear
level of livestock inventories on farms, so that to estimate the within-
year price function it is necessary to include this variabie, which
may, for this purpose, be treated as predetermined; but (2) an impor-
tant effect of a change in a given vear's supply of feed grains is to
change the following vear's livestock inventories, so that to determine
the total effects of vear-to-vear changes in the grain supply, such
effects on livestoek inventories should be taken into account.

For example, the 3-cquation model of the feed-livestock economy
developed by Hildroth and Jarrelt {6), using their limited information
estimates of the ecoofficients, indicates an clasticity of livestock
products produced with respeet to quantity of feed grains fed of 0.22.
However, if their five equations are reduced to a single one {or which
quanlity of livestock produets sold is made a funciion of cuantity of
feed grains fed, quantity of protein feeds fed, and the predefermined
variables, Lhe resulling elasticity of livesieck products sold with
respect to feed grains fod is —0.03, which doos not differ sienificantly
from zero. A similar result is obtained from the 4-cquation model
developed by Foote ¢3). The dilference belwoen 0.22 and —0.03
{or zero) presumably represents the effeet on Lhe following vear’s
Iivestock inventories of a change in a given year's quantity of feed
grains fed. The corresponding coefficients, using the Hildreth-
Jarrelt Teast squares estimales, are 0.35 and 0.14, respectively.

I we take these year-lo-yvear adjusiments in livestock mventories
into account, the price of feed grains in a given year is a function not
only of the quantity utilized in the given year but also of the quantitics
utilized in preceding years. Using again the Hildreth-Jarrott model,
and helding the predetermined variables {except livestock inventories)
constant, one can determine the net cffeet, taking into nccount the
resulting changes in the other ondogenons variables, of a change in
a given vear's quantity of feed grains fod on the following year's
price of feed graivs. Using the limited information estimates, the
resull is:

log Pi=—1.47 log Y.+ 0.43 fog Y,_, )]

where P, is the price of feed grains in vear ¢ and Y. is the quantity of
feed grains fed in year t. ‘The lag effect actually extends Lack [ov
more than one vear, of course, hut for our purposes considerniion
of the 1-vear lag is sufficient. The least squares estimates of the
cocfficients give:

log Pi=—1.51 log Y.+ 0.43 log ¥, {5.1)

These results seem to indicate that one ought to make the marginal
value o function of lagged quantity utilized as well as current guantily
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utilized. This can be done fairly readily in & formal solution to the
storage problem, but the resulting computational requirgments
becoms much greater, and the resulting storage rules more complicated.
The problem may be stated as follows: What we actually have is a
function of the form

Pe—a, Y, Y1, .2)
whereas we would like to have, if possible, a function of the form
P,=b,Y;" (6)

which, for purposes of storage policy, is equivalent, or at least approxi-
mately so, to what we actually bave. TFeortunately, an squivalont
function can be obtzined sinco, [or purposcs of storage policy, we are
concerned, with the interrciationships among P and Y in successive
years, that is, among, say, Py, Py, Yo, and Y,.2

B The bruth of this is demonstrated by cousidering the following two seis of
relations:

1t Poui=a, Y1 Yy
Py =a,Y Y
I Py =boYidi
P, =hoyi™

Take the ratio of P o P, in cach ease, giving, say, Rz and By respectively.
Then taks the elosticlby of bhis ratio with respect to Y in cach cass, giving
reapectively:

I o (1—e)-ta:

II: hyil—e)

where & is $he olasticity of Y. with respeet to Y, that is, the percent ehange in
Y, which cccurs as o resulb of decreasing the earryover in year { by one percent
of Y. It follows that the clasticity of (he ratio R with respect to Y, is the sane
in cases I and IT if

— L
bl"'n-l+——1_c

The value of e depends on the values of Yy and Yy, and on the storage rule to be
applied in yenr t-+1, bub the value of e is always vegative or 2ero. Hence,
valoes of b; which make I approximately cguivalont to I for storage policy pur-
poses are given by

g <h<ayta,
For ali feed grains in the United States, it can he shown that

Qre>—2
8¢ thet

a,+%<b.sa;+a=

Basad on the Hildreth-Jarrelt Himited information coclliciants,

162 <150
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Probability distribution of ouiput—The prebability distribution of
output is estinated from observations on the variation in yicld per
acre in past years, making due allowance for trends. Such dats are
available from the records of the Crop Reporting Board for major
crops back to 1866. Ideally, provision would be incorperaled to
allow [or the way in which year-to-vear variations in acreage planted
are determined i a free market by the interrelationship of supply
and demand factors. As litile definite information is at present
available about supply functions for grains, ihis rofinement bas not
been made.  If betier information on the cconomic determinants of
nereage planted become available, such knowledge can and should be
incprporated into the solution direetlv. In the meantine, the results
oblained may be regarded as first approximeations, the adequacy of
whicli depends on the accuracy with which acreage planted in future
years can be predieted. A further justifieation for initially empliasis-
ing the fluctuations in vield per aere and neglecling variations in
acreage planted Is thal, oxcept in vears for which acrcage allotments
are in effect, the major propoertion of the varialion in year-to-yoear
outputb is due to variations in vield. A final justification is that
acreage for many rrops can Lo controlied or predicted, whereas yiclds
canneot, and a siorage program of the sort being considered here ean
be Jooked on primarily as a policy designed o mitigate the eeonomic
effects of noncontrollable and nonprediclable fluctustions.

DEFINITION OF AN OPTIMAL STORAGE POLICY

Having defined and briefly explained the conditions used in deriving
the storage rules, we now proceed to define the criterion of optimality
which the rules are intended (o satisly. First, Lhe gain incwrred in
any given year, that is, the year t, is defined as the total value of the
grain utilized minus the cost of storage for grain to be earried into the
next year. Some readers may feel that, in the definition of gain, (he
total value of the grain that would be ulilized in the absenes of any
storage should be subtracted out. But the effeet of Lls change in
the definition is simply (o introduee a set of constants into the systom,
a condition that has no cffect on the maximization process by which
we obtain the storage rules. That ig, if the latter eoneept is thought
of a5 a “met gain,” the storage rules that maximize total gain arc iden-
tical to those (hat maximize not gain. From o mathematical stand-
point, it is easier to work with the simpler concept of total gain,

Foolnoto 3—Continued
Ising the least squares corflicients,

1.66< 1, <1.04

Covflicients like by are referred to az “flexibilitioe,”  That ts, the fexibility of
the marginal value Munclion s the absolute vahue of the elasticily of marrinal
vitlue with respect o quantily ntilized.  We siinly are eoncernod with cer
mining an “upper Hmit” astimate of the floxibility of the marginal vajus funetion
since, as mighl be expeeted, the higher the flextbility, the higher are the resulting
optimal stornge rules and storape lovels.

Vse of the teom “floxibility™ is convenient to emphasize that in this contoxt
gquantity ubilized is treated ar the independent variable and marginal valye or
price #s the dependent, rather than viee versa, That is, the flexibility of o price
funetion is the tnverse of the absolute value of the “elasticity’’ of the same Funelioy
trezled as o demaned curye. ’
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_ 'We now wish to consider the factors that determine the total gain
in any year. The quantity utilized depends on (1) the initial carryover
fromn the previous yesr, {2) production in tae current year, and (3} the
carryout in the particular year, But if we consistently follow n set of
storage rules, the carryout depends on the parlﬁcuﬁn‘ rule that is
adopted. Since, with any given marginal value function, the total
value depends on the quantity utilized, this value in tura depends on
the initial supply, which is cqual to the initial carryovor from the
preceding year plus production in the current year, and the storage
tule. Takewise, total storage cost, for any given level of interest
rates and cost per unit stored, depends on Lthe amount stored. Thus,
the total gain from storage depends on the initinl supply and our
storage rule.

In thinking about some year in the fufure, production cannet be
estimated in advance but depends on the particular yield that happens
to prevail.  In connection with variables of this sort, 2 cases where it is
felt that the variable can be treated as though subject to a probability
distribuon that is known or can be estimated, s{atislicians use a con-
cept known as an “expected value” To take an example, the expected
¥ield, in this sense, cquals the sum obtained by multiplying cach
possible yield by its probability of occurrence, and adding the result-
ng products.

Considering any given future year, then, we can think of applying
2 given storage rule o each possible folal supply i that year. The
total supply depends, of course, on the carryover from the preeeding
yvear, acreage planted, and yield. The lotal gain from slorage can
then be computed for each possible total supply, or cquivaienily,
taking acreage as given, for cach possible carryover from the preced-
ing year and cach possible yvield, Next, for cach possible earryover
{rom the preceding year, the “expected gain™ in the given year is
obtatned by mulliplying the gain corresponding Lo each possible yield
by the probability of occurrence of that yield, and adding the vesulting
products. Thus, the expeeted gain in any given future year, under
given conditions, depends on the storage rule applied in that year,
and on the carryover from the preceding year. Of course, the carry-
over from the preceding year depends on the total supply and the
storage rule applicd in that year, and so on back to the currepl year.
It shoukd also be noted that the expected gain in any given fulure year
1s not, 1n genceral, egual to the gain that would be compuled by apply-
ing the given storage rile to the expected yield (or expected supply)
in that year,

We now define o new variable: The gain in the current year plus
the sum of expeeted gaius for all relevant years in the fulure discounted
back to the current year. The size of this variable, under given
condilions, depends only on the supply in the current year and the
particular set of storage rules being applied.  Finally, we define the
optimal storage policy as that sel of storage rules that maximizes
this sum of discounted expected gains, for any given initial supply.

In the paragraphs that follow, total values that relate Lo all possible
levels of utilization ave referred {o colieclively as the total wvalue
function, and cosis of storage that relate to all possible levels of storagn
are relerred to colloctively as the cost of storage function, The term
“function’ carries the same connotation when used clsewhere. Male-
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ing use of this concept, the criterion of optimality is the following:
Given (1) the probability distribution of yields, (2) the total value
functions, and {3) the cost of storage functions for an n-year period
(n=2), the optimal storage policy for the period is defined as that
set of storage rules which maximizes the sum of discounted expected
gains over the period, where the gain for each year is the total value of
the quantity utilized minus the cost of storing the amount carried

over.
METHOD OF SOLUTION

The solution to the grain storage problem presented here is an
adaptation of a solution to an inventory problem developed by
Dvoretzky, Kiefer, and Wolfowitz (2). Some reformulatior. of the
framework and proofs was required to adapt them to the grain storage
problem. In the inventory problem, the administrator at the be-
ginning of each period is given an initial stock, & cost of ordering
function, & cost of storage function, & probability distribution of
demand (which may be based on historic data), and a penalty func-
tion which depends on the quantity of unfuifilied demand; he must
decide how much to order.  In the grain storage problem the important
random variables are future harvests, and the decision is taken with
respeet to how much of currently available supply should be currently
utilized and how much carcied over for future use.  Another diffevence,
which may be important in applications in that it leads to trouble-
some discontinuities, is that in the grain storage case, unlile what may
be possible in the inventory case, we must exclude the possible ex-
istence of negative carryovers.® Finally, it may be mentioned that
the mathematical development pertaining to use of the marginal
i«;alue function (pages 44-59 and related Appendix notes) is original

ere.

We start by introducing what is perhaps the crucial aspeet of the
proposed solution, that is, the device which permits us to avoid (1)
the necessity of assuming ju advance anything about the forms of the
storage rules and (2) the laborious computation of expected values
as functions of the paramcters of the forms adopted.  We have seen
that the determination of the optimal rule for any year depends on the
rules to be followed in succeeding venrs.  Hence the only way to avoid
making assumptions about rules in succeeding years is o starb with
the year that has no succeeding vear, namely, the lust year of the
period, and work backward., 'We do just that.

Under cortain conditions, the length of the velevant period, that is,
the “time horizon,” must be assumed in advance.  Iowever, in cases

¢ The interested reader algo should refer to Arrow, Iarcis, and Marsehalk (f);
these anthors chronologienlly preceded, and laid the concoptual groundwork for,
the work of Dvoretzky, Wicfor, and Wolfowitz (2), and in their work the concepts
of a utility (or penalty) function and of a controlled stochastic process were for
thebﬁrs{; time introduced inlo the English-language literature on the inventory
problem.

The mathematical formulation of the problem and its solution, as presented in
this bulletin, are intended o be compleie and suflicient for our purposes, Our
preseatalion is more clementary than that of Dvorelzky eb al. {2}, and the
resuits thereby lack some genorndity,  However, some of the ways in which the
solutions muy be generalized are indicated in later sections and in the Appendix,
and the reader. onee he understands Lhe basie coneepls involved, shouid be able
o provide the modifications required for any particular application,
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where the rclevant conditions, that is, the value function, the cost of
storage function, the intercst rate, and the probability distribution of
output, can be assumed to be the same in each future year, it 1s not
necessary to make any assumption about the relevant number of
years. The relevant criterion of optimality for these cases is the
maximization of the sum of discounted expected gains in ail future
years, and, as might be expected, it turns out that the optimal storage
rule is identical in esch vear. The mathematical method then itsclf
convarﬁes to this single optimal rule which is applicable every year.

To illustrate the procedure, we first consider the gencral case, that is,
the one for which the storage rules can vary from year to year. (1)
We first delermine the rule for the nth or last year in the followin
way: For all possible total supplics at the start of the year, we ﬁ.ng
that carryout that maximizes the gain. This is our storage rule for
that year. Given the rule, the maximum gain depends only on the
size of the initial supply. (2) We now make usc of the statistical
concept of an “expected” gain (sce page 18). The expected maximum
gain depends only on the size of the nitial carryin, since we multiply
all possible levels of production by their respective probabilities of
ocemrrence.  The initial enrryin for the nth year is the same as the
carryout for the year n—1. For cvery possible level of supply in the
year n—1, we find that carryout that will maximize the sum of the
gain in that year and the discounted maximized expected gain in year
n. By the same reasoning as used previously, the expected maximum
value of Lhis figure depends only on the size of the carryout in the
yoear n—2. (3) Using Lhe same procedure, we continue back to year
1, whereupon we have dotermined s set of storage rules, one for cach
year, which maximize the sum of discounted expected gains for the
entire period.

Cases where the value function, cost of storage {unction, interest
rate, and probability distribution ol cutput can be assumed to be the
same in ench future year are called cases of “stationarity.”” In such
cases, as already indieated, the optimal storage rule is also the same
in each year. This singlc optimal rule can be shown to be the unique
solution of a single equation.’® The computations required to oblgin
the solution, however, are, at least in the general case, of the iterative
type analogous Lo those used for cases of nonstationarity. The main
difference is that, in cases of stationarity, the iterations arc continued
until convergence is achieved.

Such an assumption of stationarity is not as restrictive or unrealistic
as might at first appear. For computational purposes, we assume
that the conditions are unchanging in all future years. But the
optimality of the resulting rule, as applicd to the current year only,
does not require that the condilions in fact remain unchanged in all
future years; all that is really required is that the same storage rule
applies in the neat succeeding year. Such a condition is satisfied if,
for cxample, the stovage rule for the next succeeding year is also
calculated asswuming stationarity and using the same estimates of the
conditions as are used this yoar., OF course, i it is known 1n advance
how the conditions will change in future years, such knowledge should
be incorporated direclly into the solution.

1 For mathemntical proofs, see pages 4047 and 74-80.
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Complete mathematical solutions, using both he (otal and the
marginal value functions, are given beginning on page 40.  These arc
followed by a discussion of some special mathematical relationships
of interest to the economic analyst. As these scclions require a
rather advanced knowledge of ealeulus, we first show the results of
applying these methods to obtain storage rules for feed grains, then
summarize some general conclusions with respect to storage that cap
be developed by examining the mathematical nature of the rules,
and finally show a method of obtaining approximations Lo the rules
that requires only & use of direct arithmetic operations.

APPLICATIONS TO FEED GRAINS

In this scction results of some computations of optimal storage
rules for “corn equivalents” of aggregalo feed grains for the United
States are shown. The feed grains are here taken Lo be corn, oats,
and barley. Sorghum grains woere omitied because of a lack of
adegquate information on acreage planted for grain.  Ideally, sorghum
grains used for feed should be included, bub the effect on the final
results would be negligible, as production of sorghum grains in the
United Stales averages about 3 pereent of the production of total
feed grains. Bushels of oats and barley were converted into corn
equivalents on the basis of thelr respective relative number of pounds
of digestible nutrients per bushel, as follows:

Grain Corn equivalent
of one bushel !

1. 000
. 488
. 806G

* Blightly different corn equivalents are being used eurrently by the United
States Departinent of Agriculfurc.

The total supply of corn cquivalents in each year was obtained by
eonverting the supply of each grain, in bushels, into corn equivalents,
in accordance with the above ratios, and adding, A different set of
conversion fagtors should perhiaps have been used for that part of
the geain used for purposes other than as a livestock feed.

In delermining storage rules for two or more grains simultaneously,
it would be theoretically preferable to seb up o model incorporating
explicitly bolh ceonomic substitution relations and joint probability
disiribulions of output, rather than to use fixed ratios of subsLitution
as done here. The formal solution for such a model is analogous to the
solution for the mulli-regional problem discussed on page 60, with a
comparable increase in computalional diflicultics. Another problem
15 that of empirically cstimating the substitution relations. Analyses
by Foole (8) and Meinken (7} indicate that (hr price-clasticity of
demand for corn alone, holding quantily of olher lved grains fed
constant, is nob significantly different from the price-elasticity of
demand for all feed grains.  The corn equivalence ratios used here are
roughly squal to the average price ratios between the grains in recons
years,

4400785 55—t
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All applications assume stationarity (see page 20), and independ-
ence. Since acreage planted is thus assumed constant, the data and
computations were made more manageable by taking all quantities on
o per acre basis. Thus the probability distribution of output is the
probability distribution of yield in bushels per planted scre; total
supply, quantity utilized, and carryover are in bushels per acre; and
marginal volue and marginal cost of storage are in dollars per bushel
per acre. All of these quantities can be transiated into approximate
national aggregates by multiplying by 140 million acres, the approxi-
mate average number of acres planted to corn, oats, and barley in
recent years.

The probability distribution of yields was estimated from records
of the Crop Reporting Board of the actual variability of yields in the
period 1901-1950 as follows: For each year, total production of cach
grain was converted to its corn equivalent, and the result was added
to get the corn equivalent of aggregate production of feed grains.
This figure was divided by the fotal acreage planted to corn, oats, and
barley m the given year to get the aggregate corn equivalent yield per
gcre.”) A S-year moving average of a 9-year moving average was
fitted to the resulling yields, omitting the drought years 1934 and 1936,
to obtain an estimate of the trend.  If x, is the actunl yield in year t
and T, the trend value for that year, we let

d;=3\‘t—T; (7}

2,=30+4 (%) [do4{d/T)30] (&)

wherc 30 was an estimated yield for 195+, Thus, to estimate the
variability of yields in future years, an arithmetic average of the actual
and the relative deviation from trend in past years was used. This
assumption is conservative, thal is, it probably gives a higher estimated
variability than may actually oceur, since the trend yield has in-
creased substantially over the period. The resulting z,’s were then
grouped into one-bushel intervals centered on integers, giving the
following distribution:

and

Yield pur planted acre Yield per planted aere
Relative Relative
frequency frequency
" Range AMidpoint f{x) Range Midpoint £{x)

X x

. Bushels Bushels Bushels Bushels
5 2

18.5-19. 5____ 19 . D—28.
L 520, 5_ .. _ 20 5-24. 29
L o-2L Go .. 21 . . 530 30
L0225 22 . . 5=3 1L ;
. 533 23 . 3L 5-32
3. 5-24. 24 . 32, 5-38.
4. 5—25. 25 . 33. 5-34. ¢
. 526, 26
. 5-27. e

" For 1901-1928, acres planled for each grain were esiimated by muitiplying
acregzhgarvested by the weighted average ratio of acres pianted (o acres harvested
in 1929-50.
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The mean of the distribution is 29.46 bushels per acre; the standard
deviation is 3.03 bushels per acre.  Asis typical for yields of crops, the
distribution is skewed to the lefe.

The assumplion of stationarily in computation of storage rules so
far as yields are cencerned may be looked upon es an assumplion that
average or normal vield per acre in future years will e 20,46 bushels.
The discrepancy between 28.46 and 30 is maiuly due to the omission of
the drought years 1934 and 1936 in obtaining the trend. A sharp
upward movement in the trend yield started about 1933, reflecting in
part the introduction of hybrid seed corn.  Since usc of hybrid seed
reached nimost 100 percent within the main areas of production by
1950, it seenied reasonable to assume, when this study was begun,
that the trend would level out at something slightly above the average
vield for corn equivalents of feed grains from 1949 through 1955 of
28.7 bushels, A continued upward trend in more recent Years is
believed to reflect progress in Lechniques of production and inereased
use of fertilizer, rrigation, and other inputs of this sort, In applying
the storage rules, an upward trend of this kind could be allowed for by
changing he assuméd mean yield frem time to time while relaining as
a measurement of varintion around the mean the long-term historic
patiern based on devintions {rom trend.

One way o justify an assumption ol stationarity in the comptlita-
tions is to assume that any Muture trend in supply (acreage or yicld)
will be partially in response to, and partially offset by, the irend in
demand, so that the resulting trend in the real price of the grains will
be small enough to be neglected for slorage poliey purposes. The
real price of corn over the last 80 years has followed a slight upward
trend, amounting to an average of roughly 0.6 pereent per year,
Sueb a trend, il assumed to cenlinue into Lthe future and incorporated
into_the eomputations of the storage rules, would have a relalively
siall effect on the resulis.

Tn all applications except one, the marginal value function is
assutied to be linear.  This is mainly a computational convenience,
since empirical demand studies for corn and [eed grains have gencrally
shown that a lincar relationship gives about as goad & {it to the data as
a logarithmic or constant-elasticity relationship (for example, see
Foote, Klein, and Clough (4), Hildreth and Jarrett (5), and Shepherd
(10), (11)). Computations in some representative eases that have
used the fwo alternative assumplions indieaie that the oplimal
storage rule using a logarithmie marginal value unction differs little
Ivom the optimal rule using a lincar marginal value function with, of
course, the same eslimates of Lhe other conditions and the same average
flexibility of marginal value in ench ease.

Resulls presented here are the computed optimal storage rules for
aggregate [eed grains, under alternative nssumptions about the condi-
tions, thal is, the annual discount factor, the marginal value Tunction,
the marginal cost of storage, and the distribution of yields. The
subscripts on the @'s designating the rules do not stand for years or
1terations, but for alternative optimal (stationary) rules, applicable
under the respeetive sets of conditions specified.  (See table 1.)

The application intended to approximate conditions in an idealized
frec mavket is based on a price clasticily of demand for agevegate feed
grains, gy, of —0.50. This is the elasticity at Y=Y,=30 bushcls per
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acre. This is consistent with, though slightly conservasive with re-
spect to, the upper limit cstimate of the flexibility of the marginal value
fupction, e——1/5=1.94, abtained in footnote 8 on pago 16 based
on the Hildreth-Jarrett (5) estimates of the coefficients after allowing
for an annual lag effect. It also is consistent with results reported by
Foote, Klein, and Clough (4}, where the clasticity of demand for
“total feed grains or possibly for total feed concentrates” is estimated
to be between —0.40 and —0.50, based on year-to-year changes, The
market price at the quantity consumed when Y =30 bushels per acre
was taken to be $1.50. This gives a market price function

p(¥)=51.50—$0.10(¥Y—-30)=54.50—$0.10(Y) (9)

where Y is in bushels per acre and p(Y) is o mathematical symbol
representing the marginal value function,
To determine the cficets of the possible existence of losses to the
general public attributable to fluctuations in utilization not measured
v changes in market price, computations were carried through using
warginal value funclions with flexibilitics of ee=2.5 and &=3.33 (the
vorresponding elasticitics of demand being go=—10.40 and 5= —0.30
respochbively).t®

The corresponding marginal value [unctions are

1 p(¥)=81.50—50.125(Y —30)=85.25—$0.125(Y) (10)
fng
p(Y)=81.50—80.167(Y —30)=$6.50—50.167(Y) {11)

regpectively.

Effects on the oplimal storage rule of changing the assuraptions
about the marginal cost of storage, v, and the annual discount tactor,
o, also were determined. In scetion A of figure 1, 01, b2, B, and &, are
optimal storage rules that result under different assumptions about
v and «, when 5o=—0.50, The values v'=§0.10, reflecting a masr-
cingl storage cost of 10 cents per bushel per ycar, and a=0.95,
equivalent to an interest rate of 5 pereent, are estimates of the ap-
proximate actual cost of storage and discount factor, respectively,
under conditions that cxisted in the early 1950°s. As indicated
figure 1, the alternative assumptions were -’=§0.04 and «=0.98,
with computations made for cach of the four possible combinations.
1n scction B of figure 1, clfects on the oplimal storage rule of differcnt
sssumptions about v’ and a when n=—0.30 arc shown,

Eftcets of changes in one condition in gencral are not the same for
different values of the other conditions, as the interaction effecls are
fairly complicated. Ilence the optimal storage rule usually must be
caleulnted anew for each change. The calculations, however, in some
cases arc simplified by making use of the equivalence relstions dis-
cussed beginning on page 49.

Iz Reference usually is made to the inverse-flexibililies, that js, to elasticitivs,
since to most readers a direct comparison (o the usunl concept of priee elasticity
of derasznd probably is more mewningful,



http:110=-0.30
http:110=-0.30
http:110=-0.40

CARRYOVER LEVELS FOR GRAINS 25

FEED GRAINS:* OPTIMAL CARRYOVER
RULES PER ACRE

For Specified Valves of y'and o When o= 3 Bushels per Acre, and p is liseor

CARRYOVER {BU.)-C

|
12 | SECTION AITN,:=-0.50

o
0.95
.98
.95

.98 ]

—

SECTIO

1

P
30 32 34 36 38 40 42
TOTAL SUPPLY {BU)-S

WCARH, DATS ANG BARLEY, CORN EGHHYALENT
L DEPASTMENT OF AGRICULTURE HEG, 4107~27(4) AGRICULTURAL MARKETING SERVICE

Figure 1.—As would be expected, optimal carryovers are larger when cest of

P storage and charges for interest are relatively iow. (A high value for o corre-
. gponds to & low interest rate.)
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Section A of figure 2 shows the effects on the optimal storage rule,

6, of different assumptions about the elasticity of p, n:, when the
marginal cost of storage 4" and discount factor « are held at their
approximate actual values of $C.10 paor bushel and 0.95 respectively.
Here, 5o was taken as equal to —0.56, —0.40, and —0.30. Section
B shows the resuits of similar changes when the cost of sterage and
the discount factor are taken at 4'=3$0.04 per bushel and «=0.98,

" Seetion A of figure 3 indicates the effects of changing the estimate
of the variance of the probability distribution of yields when the
other conditions {p, v* and ) are fixed a$ their approximate free-

market values (5s=—0.50, v'=3$0.10 per bushel, «=0.95). 8, is the
optimal rule under the estimated actusl probability distribution F,

with standard deviation oy=3.03 bushels per acre; &, is the optimal
rule under a probebility distribution (G, which has the same mean
and shape as F, but for which og=(5/3)sc=5.05;% and &,:is the
optimal storsge rule if there were no variability whatever in.future
yields {o=0)." Section B presents results under similar conditions
when v’ =80.04 per bushel and «=0.98, '

Figure 4 shows the effects of a linear assumption about the marginal
zocial value function p, as compared with results if we assume p to
have constent elasticity, where the assumptions about the other
borlidibions, v, e, 7o and T, correspond to their actual approximate
walues. :

In figure 5, all the computed optimal rules are shown to facilitate
inter-comparisons.
_ The optimal storage rule #(S) for each set of conditions was computed
over the range of values of total supply S, in bushels per acre, from
0 to 50 (50 being 1% of 2 normal crop), although the charts show values
of S only up to 42. The computed numerical values of all the rules are
given in table 1, along with the conditions applied in each case. .

The equilibrium level, C*, also is given in table 1 for each rule. An
exact definition of C* is given on page 56. However, it may be viewed
as the level soward which, for any given initial carryover, the expected
carryover in the next year tends. It also ean be thought of as @
sort of average level of carryover around which the yearly earryovers
over & long period tend to fluctuate under the given rule 6. It is
particularly useful to cnable the analyst to make rough compgrisons
‘between “‘aversge’’ carryover levels that result under optimal storage
rules that satisfy the criteria specified in this bulletin and catryover
‘lgvels recommended by other writers, or theat safisty other eriteria.
. “Minimum working stocks' are the aggregate quantity of grain
“which farmers, dealers, processors, and so forth keep on hand to facil-
“itate their day-to-day operations, no matter how small the total avail-
gble supply. All ecarryovers shown here are quantities in excess of
-minimum_ working stocks, and the laster should be added to the
‘amounts indicated if & tofal figure is desired. TFor corn equivalents

: 13 The factor 5/3 was chosen mainly for eomputational convenience in using tHe
-equivalence relstions discussed on p. 60, together with other computations using
-F. This avoided the necessity of actually computing G and carrying out a solu-
“tion independently with integrations over G.

* 5 This i3 essentizlly the case discussed by Williams (13).
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FEED GRAINS! OPTIMAL CARRYOVER
RULES PER ACRE

For Specified Valves of 5, When o = 3 Bushels per Acre, end p is Lineor

CARRYOVER (BU.)-C

! I
12 ———SECTION A: ' =0.10

N

28 30 34 36 38 40 42
TOTAL SUPPLY {BU.}-§

‘fORN_ OATS, AND BARLEY, CORN EGQUIVALENT.

U. 5+ DEFARTNENT OF AGRICULTURE HEG, =37 {4] AGRICULTURAL MARKETIHG SERVICE

Figure 2—When the marginal value function is extremely inslastic, as for 8, the
. optimal carryover is larger than when it is less inelastie,
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FEED GRAINS:*OPTIMAL CARRYOVER
RULES PER ACRE

Far Specified Volues of o When },=-0.50 and g is Linear

CARRYOVER (BU.)-C

127 SECTION A:y'=C.10

>

AND~=-0.98

éyé

>

s
=

/ %
A&
28 30 32 34 36 38 40 472
TOTAL SUPPLY (BU.) -5

‘CGI'IN’_ "QaTS AND BARLEY, CORM EQUIVILENT,

0

U, L DEPARTMEHT OF AGRICULTURE WEG. 410% =37 [4] AGRICULTURAL @ARKETING SERVICE

Figure 3.—As would be expectod, the greater the variability in expected produc-
tion, tha Larger iﬁ the optimal earryover. A comparisgn of ths relative distancs
between 8 and ; in seetion A and between &0 and &, in section B indicates
that the expected variability in production has a greater effeet on the optimal
ruls when storage costs and interest rates sre relativaly low, as in section B,
than when they are relatively high, as in scction A.
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FEED GRAINS: OPTIMAL CARRYOVER
RULES PER ACRE

When p is Linear or Curvifinear ond y’s 0.10=. 0.95, .- -0.50,
and & « 3 Bushels per Acre

CARRYOVER (BU.)-C

A
!

6 e
Lo

RULE 0
& Linear

812 Constant elasticity

//

0 o
28 32 34 36 38 40 42
TOTAL SUPPLY (BU.)-S

W CORN, OATS AND BARLEY. CORN EQUIVALENT.
U, §. DEPARTHMENT QP AGRICULTURE MHEG. 4110=57[4) AGRICULTURAL WARKETING S3ERVICE

Figure 4.—When the marginal value funetion is of constant alasticity, the optimal
carryover for small supply is higher and for lurge supnly is lower than undor
similar conditions when the function is linear. In wnch case, however, the
storage rule is curvilinear. .

of all feed grains, minimum working stocks in this study were taken to
be about 200 million bushels, or about t.4 bushels per acre.

This value may be 50 to 100 million bushels lower than & minimum
that would provide a reserve until quality grain is available fron the
next crop. ‘The national aggregate equilibrium level including working
stocks for each storage rule also is given in table 1. This is oblained
Ly multiplying the per acre value for C* by 140 million acres and add-
ing to the result 200 miilion bushels. 1'o convey some idea of the pos-
sible range or vartability of carrvovers under cach rule, a value C**
is given for all rules except 8 and 8y;, where C** is the level of curryover
that would he reached under the rule at the end of two “bumper-crop™
vears, that is, two successive years each with a yield of 35 bushels per
aere, storting with an initial carryover of C*, C** glso is given on s
national aggregnte basis including working stocks. The rules them-
sclves are presented in terms of bushels per acre, rather than as o
national aggregate, to make them dircctly applicable to situations
where acreage planted differs.

All computations were carried out to the closest 0.01 bushel per acre.
Some slight inaccuracy may be introduced in making the inversions
by lincor interpolation. The final results should be accurace to within
0.02 or 0.03 bushel per acre, and are nlmost certainly accirate to within
0.05 bushel per acre, ‘Ihese limits do not, of course, allow for errors
in the estimates of the given conditions ', &, p, and F,

446079 — 585




Tasue 1.—Corn, cats and barley, corn equivalent: Optimal carryover rules under specified conditions and related quantilics'l

Rule—9
Item Unit
1 2 3 4 5 6 7 8 9 10 11 12
Condition:
Elasticity—no- - < vooconz ol lo i niaol —0. 50|—0. 50{~10. 50{—0. 50! —0. .30|—0. 30;— 0. 40i—0. 50— 0. 50| —0. 50{—0. 50/ —0. 50
Cost of storage—~/ .. __.__.. Dol...... 10 L 10F o4 04 100 L04f .10 .10 010 - . 04) .04 .10
Discount rate—a. .l il i iooo.. .05 .98 .95 .98 .95 .98 .95 .95 .95 .98 .98 .95
Variability of yields—o.. ... Bu..-.... 3.03} 3.03 3.03] 3.03 3.03 3.03 3.03 505 0 5.05 0 3.03
Optimal carryover per acre when
supply per acre equals—
28 i ilecaioonilal a-dooooo 0 0 0 0 0 0 0 0 0 0 0 0
29, i lalnil T« [s S 0 0 0 0 o .07 0 0 0 - .33 0 0
80 el il ceadoooo_s 0 0 0 .33 0 .77 0 0 0 1.03 0 0
S 3 I S RSN weadoo_Lo 0O .34 .46 .99 .55 1.50; .25 .28 0 1.75 .46/ .33
% S S N [« SRR .55 - .93 1.07 1.69] 1.19; .2.25! .84 .90; .39 2.48 1.0l .87
B2 12 S IO coodoo-.od 1.18) 157 1.74) 2.41) 1.86] 3.02) 1.47| 1.53) .90 3.23] 1.70| 1.43
B34 . e liieclli_iialan PR [ s 1.74] 2.22] 2.42[ 3.15 2.57] 3. 80} 2.12 2.18 1.44 3.98 2.41f -2.00
E 1 SOOI iedoo i 2.38- 2.90] 3.12| 3.90[ 3.29 4.60] 2.80] 2.85 1.98 4.75} 3.14] 2.57
36 il liiaiiiaan woodo.._.] 3.05] 3.6l 3.85 4.67 4.02| 5.40/. 3.50] 3.55; 2 66 5. 53 3.92 3.16
R Y S S SISy U wendoLi o 3.74)  4.32 4.60] 5.45| 4.77] 6.20] .22} 4.271 3.34] 6.30] 4.64] 3.77
38 i el doo..oo 4.44) 5,05 5. 35] 6.24] 554 701 495 498 4041 7. 101 5 50 4.39
30 i idaiamii et B¢ (o TN 5.16! 580 6.12] 7.02) 6.31} 7.83} 5. 70} 5707 4731 7.00] 6.31] 5.03
40 .. o L_ailol- wacdoa oo 5.890] 6,55 6.89] 7.82 7.09 8 66 6.46] 6.43| 5.451 8. 701 7.14} 5,67
3 R S —o-doo.o. 6. 63 7.31 7.67( 863 7.88 9.50; 7.22| 7.17]" 6.18 9.50{ 7.97] 6.31
42 i e deeceedlidiman. ce-don el 7.38 807 8. 46/ 9.44| 8 68 10.34] 7.99 7.93 6.95 10.30; 8.80 6.95
R S R —ecdosiil 8. 14 8. 84{ 9.26] 10.27 9.48 11.21} 8.77| 870 7.72[ 11.12} 9.65 7.60
L T S S T U wedoo....| 889  9.62 10.06] 11,10 10.30] 12,08} 9.56] 9.47 8 50{ 11. 93} 10. 50/ 8 27
4 o ieeieeoililal aecdoaoao 0. 67} 10. 41} 10.87| 11, 94} 11. 12} 12. 95] 10. 36| 10. 23} 9.27 12. 75} 11.35 8. 93
46 e eliueioelliol —ezdo.. . 10.450 11,200 11. 69! 12,790 11, 941 13. 831 11. 16/ 11,.02f 10. 06! 13. 581 12. 22/ ~ 9. 60

0g
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11.231- 12, 00] 12. 52| 13. 64] 12. 78] 14. 72| 11. 98] 11. 78 14. 40 10. 28
12,02 12. 811 13. 35| 14. 50| 13. 62| 15. 61| 12. 80/ 12, 58 15, 25 11. 00
12. 82} 13. 63| 14. 19| 15. 35/ 14.47| 16. 51| 13. 62| 13. 37 16. 08 11.69

13.63| 14.45/ 15.03| 16.22/ 15. 32 17. 42| 14. 45| 14. 17 16: 93 12. 38
31. 04| 30.42; 30. 25/ 29. 49! 30. 11| 28.90| 30, 58/ 30. 54| 31I. 28. 53| 30. 30. 32
.3 .5 .6 1.4 ST 207 .4 .4 3.0 . 4

4.1 5.3 57 7.8 61 101 5.0, 50 10. 4 4.3

242 270| 284| 396| 298| 578 256] . 256 620, 256
7741 928  998i 1,292 1,054] 1,614] 900 000 1, 656 802

U
! The marginal value function is assumed to be Iinear for all rules except the last, 3 Obtained by multiplying the per acre value by 140 million acres, and adding 20
}&'hetrebcqnstnnt elasticity Is nssumed. See text for exact definition of symbols shown milllon bushels, the assumed minimum working stocks.
n stub. ;
2 The value of 8 (supply per acre) below which the optimal carryover (exclusive of
minimum working stocks) is zero.
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FEED GRAINS: OPTIMAL CARRYOVER
RULES PER ACRE

Undar Alternative Conditions Specified in Toble !

CARRYOVER (BU.)-C

10

v

NV

1

30 32 34 36 38 40 42
TOTAL SUPPLY (BU.)-S

WroRN, QAT AND BARLET, CORW EOUNVALENT,

U 3 DEFARTMENT OF AGAICULTURE MEG, S-St idr aLRICULTURAL waPNENING SLEVICE

Figure 5.—8imilarities, other than level, arc greater than are differences even for
ihe wide variety of conditions that apply to the 11 rules for which computations
have been made, and for which {he marginal value function is linenr.

SOME GENERAL CONCLUSIONS WITH RESPECT TO
STORAGE

From the cquations whose solution gives the optimal storage rule
under conditions of stationarity (see page 46), we may dernive the
following conclusions (see pages 48-55):

1. If the marginal value function is the same us the market price funetion, the
amounts which would be stored under an optimal governmental storage progrim

are exactly the same as the amounts thut would be stored in the aggregate by
private firtus in » socalted “idenlized™ free market. Such o market is one having
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perfect competition, in the econcmic sense, and in which private firmes seek to
maximize their expected discounted profit.ts

2. It the marginal cost of storage is a constant, so that the cost of storing each
additional bushel of grain is the same regnrdioss of whether large or small quan-
titles are stored, and other conditions are the same as in (1) above, then the ex-
peeted cost to the Government of operating an aptimal storage program is zero.
Under these circumstances, profits from the storage operations are just large
enough to offset the costs of storage.

3. If the marginal value function is licear, the computations are somewhat
simpler. However, as indicated by fgure 4, the resuiting storage rule i3 not
linear, even in this enge.

4. Ag illustrated in figure 3, the genernl shape (though not the position) of an
optimal storage rule computed under the assumption of no varinbility in future
yieids is, at least in some eases, a fairly close approximation to the rule computed
with the aetual distribution of vields uuder the same canditions of total value,
cost of storuge, and interest race.

Rules based on no variability in vields can be computed fairly easilv (see pages
33 and 521, Moreover, it ean be shown that the initial assumption in the iterative
process can be any arcbitrary storage rule and Lhe iferations still will converge to
the optimal rule.  Furthermore, the eloser the initin} assumption i to the ultimate
optimal rule, the fewer are the iterations required. These facts permit us to use
rules that have been computed under the assumpiion of zera varisbility in yields
for two purposes: {a) To rednce the nnmber of iterations required for the process
that leads to the actual optimal rule with yield variability included in the solution
by previding reasonably aceurale fiest approximations as o starting point, and (b}
to provide rough but casily obtained measures of the effects on the optimal rule
of making changes in the estimates of the other conditions.

3 When the quantity to be stored is plotted on the vertical seale and the fotal
supply is plotted on the horfzontal seale fas in figures 1 lhrough 5), the optimal
quantity te be stored inereases continually with increasing supply exeept that,
when supplies are smaller than sore specified amount, the quantity to be stored
fin excess of minhmum working stocks) is zere.  The approximate point at which
the curve cuts the supply pxis ¢can be determined rather eusilv {see pages 36, 54).

6. Tse of (4) and (BY above pives n convenient method for obtaining & first
approximation to the optimal rule wnder o specified set of cireumstances. The
following three steps are involved: (a) Compute the rule with zero varisbility
in yields: (b} compute the approximate point at which the curve cuty the supply
axis when vields vary in their normal way; and {¢) shift the curve based on no
variability in yields horizontally to the left on the graph so that it cuts the supply
axis ai the indieated peine,  This sives an epproximation to the rule when yields
vary in their normal way.  Use of Lhis approach is deseribed in detail in the next
section.

A METHOD FOR OBTAINING APPROXIMATIONS TO THE
RULES

To illustrate the procedure, approsimations to optimal rules under
two sets of conditions are obtained. The conditions are those uzed
for rules 8, and 6 as shown in table 1. As noted in the preceding
paragraph, the first step is to compute rules using the specified condi-
tions but based on an assumed vield variability in future years of
zero.  To avoid possible confusion with the accurntely-calculated
rules given in table 1, we refer o these rules as A and B, respectively,
and label the corresponding rules obtained when yvields are assumed
constant as A’ and B’, respectively.

To facilitate the computations, we show in tabic 2 the conditions
that relate to these rules. Items in the first three rows are the same
as the ecomparable items in table 1; those in the next two rows were
obtained by the method discussed on page 24 (see equations (9) and

' Por o more precise statement of the conditions under which this conclusion
is valid, see pages 48—49,
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{11)). The last item is obtained by making use of the constant term

and the slope coefficient for the marginel value function in con-

nection with ufilization of 29.46 bushels per acre, the assumed average

yuald For rule A, this computation is made in the following way: @
. $4.50—(0.10X29.46)=51.554

TasrLe 2.-—Conditions used in oblaining optimal rules A and B

Rules
Item

Marginal cost of stornge, +', dollars per bushel
Discount factor, a, /{14 inlerest rate)
Elasticity when utilization is 30 bushels per acre, g
Marginal value function: p{Y)=a—bY
Constant term, a
Slope coeflicient, —b
Marginal value when utilization ecquals 2%9.46 bushels,
po. doilars,

Estimating rules when yields are assumed constani—The computa-
tions for rules A’ and B’, respectively, are shown in table 3. Num-
bered items in the remainder of this paragraph relate to the columns
of that table. (3) The munber of the row. The symbol i is used to
indicate the row in subsequent columus. Note that i=0 for the first
row. (2) The discount factor raised to the (i-41) power. (3) The
sum from j==0to j=1 of the discount factorraised to the j* power. Any
number raised to the 0% power equals 1. Hence, for 1 equal zero,
the number in this column is 1. The item in the second row equals
14(0.95)'=1.95. The item in the third row equals 14(0.95)'4
(0.95)°=2.852. The serics can be conveniently obtained by insert-
ing & 1 in the first row and adding the item from thei—1 row of the
second column fo the cumulative total to obtain the item in the i*®
row of the third column. (4) Column (2) times the marginal value
when utilization equals 2946 bushels per acre. (5) The marginal
storage cost times column {3). (8) Column {(4) minus column_ (5).
(7} The reciprocal of the absolule value of the slope coelficient for
marginal value (1/b) times column (6). (8) The constant in the
equation for marginal value divided by the absolute value of the
slope coefficient (a,.-‘b) minus column {7). Tor rule A’, the quotient is
obtained as follows: 4.50/0.10=45.00. (9} Total suppiy ouals
carryover plus column (8). Each entry in this column 13 obtained
after the corresponding entry in eolumn (10) has been computed.
Column {10). Bal‘ryovcr equals supply in the preceding row {column
9) minus the assumed average yield of 28.46 bushels per acre.

In carrying oub these (,omputamons we first fill ip all values in
colunn (1}, all items in column (2), sud so forth through column (8).
Ttems in column (2} can be obtained by successively multlplymg the
item in the preceding row by the discount factor. We have already
described & convenient method for obtaining the items in column (3).
Items in columns {(4), (5), and (7) are obtained by multiplying the
items in & prevmusly computcd column by a constant. Items in
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columns (8) and (8) arc obtained by subtraction. The item in the
first Tow of column (10) always is zero. Given this value, we can
obtain a value for the item in the first row of column (9). From this,
we obtain the item in the second row of column (10). This permits
us to obtain a value for the item in the second row of column (8). By
repeating this process, all items in columns (10) and (9) are obtained.
The amount of clerical work involved is not great. Successive itera-
tions are continued until a sufficient range in observations for supplies
and carryovers are obtained. Thus, 5 points are computed in table 3
for rule A’ and 10 for ruie B’

TasLkE 3.—Corn, oals, and barley: Computalions involved in oblaining rules A'
and 11

Rule A’

(% ©
45 (8)4-(10
a

Ruie B

. 980
. 961
L 941
.922
. 904
. 886
- 868
. 851
. 834
. 817

000
980
941
882
204
708
o4
462
3i3
147

554 | . 040
.826 | . 079
S I
. 465 | . 155
S437 1. 192
. 408 |, 228
L300 )L 364 115
L3521 . 208 | 1. 054
.32n (. 333 . 592
L2981 . 366 . 932

. bHi9
447
. 375
3143
245
180

g il i L el
bt —— s pma vt Rt

P v b et e et et ek
- Y- PRPR PR Y3

t Bee text for computations invelved in each columu.
? Based on vaiues in the preeeding row. A zero always is used in this column
lor row 4.

Results [rom these computations are shown in figure 6, alopg with
those indicated when yields are assumed to vary 1n a normal way,
based on data for § and 8, from table 1. A’ is roughly parallel to A,
and B’ to B, indicating thab a drastic change in onc’s assumption
about the variability of yiclds does not change the slope of the ol)l:ima.l
storage rule very much, although the position of the curve does change.
The reader also should note that the difference befween A and A’ or
between B and B’ is mueh less than the difference between cither
A and B or between A’ and B’, confirming the view that assumptions

® For bhe mathemativs underiyving these computations, see poges 52-54 and
Appendix note 9.
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FEED GRAINS® OPTIMAL
CARRYOVER RULES

Boted on 140 Million Planted Acres
CARRYOVER [(MIL. TON5)-C

30
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//,

0
100 1o 120 130 140 150 160
TOTAL SUPPLY (MIL. TONS) -§

Wrops, DATS AND BAALEY, CORN EOUIVALENT.
U, %, DEPARTVENT OF AGRICULTURF MEG. 4112-57 (41 AGRICULTURAL WMARKETING SERVICE

Figure 6.—An approximate method for obtaining optimul storage rules which
requires only simple nrithmetic operations gives results that are nearly iden-
tical to these obtained by the complete muthemutical technique. The true
rules are lubeled A and B and the corresponding approximate rules, A’ and B''.
A’ and B’ were obiained as an intermediute step.

about the variability in yields have less effect on the optimal rules
than do changes in assumptions about other conditions, :

Bstimating the supply below which no grain should be slored when
yields vary.—This section describes a relatively simple method that
can be used to approximate the supply below which no grain (in excess
of minimum working stocks) should be stored when yields vary in
their normal way. This point is roferred to here by the symbol k.
To obtain this approximation to k, it is first necessary to calculate a
function L and a constant M. L is a {uncbion of k itself, the form of
the funciion depending on the probability distribution of outputs.
M is a constant, calculated from the marginal value function, average
output, the marginal cost of storage, and the discount factor.

We first obtain a table showing the values of L that are associated
with specified values of k. The values of k are taken at the lower
class hmits of the intervals for yield per planted acre shown in the
tabulation on page 22, Values of I are obtained by making use of
the data sbhown In the tabulation. They can best be obtained by
starting with the largest value of k and working backward. The
computations arc shown in table 4. Numbered items in the remainder
of this paragraph relate to the columns in that table. (1) Lower
limit of the class intervals for yields shown in the tabulation on
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page 2 starting with the last or largest yisld. This is the value
of k. (2} Cumulative frequency of the yields, starfing with the
largest yield (sce page 22). (3) Column (1) times column (2).
{4} Midpoint of the class intervel for vields (sce page 22). (5) Fre-
quency for that yield (see page 22). (6) Cumulative product of the
items in column (4) times those in column (3). (7) Column (6) minus
column (3). This is the value of L. The reader will note thag
computations for some values of k are omitted. Computations
involved for these rows are clear from those shown in the table.

TABLE 4.—Corn, vats, and barley: Compulations involved in obtaining L for specified
values of &t

@

(3 G} (5
Zigy (X @ x

(6}
[ 12X (B

0. G¢

3.

H.
10,
16

. 118 312
1. 60 18. 50

! See text for computations involved in cach column.

The next step is to obtain & value for M. This is done by use of
the following formula. The constant term and the recression coeffi
eient referred to are for the marginal value function shown in table
2. The absolute (or positive} value of the regression coefficient is
used. The discount factor and the marginal cost of storage are given
in table 2, and the average production is the mesn of the distribution
of yields shown on page 22.

M= (Discount factor) (average production)

+(l—discount factor) {constant term) , {marginal cost of storage)
[regression coeflicient| " [regression coeflicient]
(12)

For rule A, use of this formula gives the following:

(0.10)
(0.10)

(1.00—0.95)(4.50)
{0.10)

M =(0.95)(29.46) < =31.24

For rule B, M=29.88.

+

By making use of M, the discount factor, and an estimate of the
slope of the optimal rule we now obtain a second set of values that

shows a relationship between k and L. The value of & that we desire
446979°—58———¢
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is the value of k that satisfies each of these relations. The second
relation between k and L is obtained from the formula:

k=M — {discount, factor) (slope) L (18)

In the computations shown in the next two paragraphs, we use an
approximate value of 0.6 for the slope of the storage rule.

For rule A, formula (13) gives the following:‘

k=31.24—{0.95)(0.6)L
=31.24—0.570,

By comparing this formula with the values of k and L shown in
table 4, we see that the value of k that will satisfy both equations lies
between 31.5 and 30.5 bushels. For these values of k, L in table 4
las a value of 0.27 and 0.56, respectively. We use these values of
L in the formula shown above and solve for k. Resuits obtained are
31.09 and 30.92 bushels, respectively. We now make a greatly en-
larged graph with k on the vertical scale and L on the horizontal
scale. Values for k of 31.5 and 31.09 are plotted opposite a value
for L of 0.27; values for k of 30.5 and 30.92 are plotted opposite &
value for L of 0.56. The points for which k equals 31.5 and 30.5
are connected with o line, as are the points for which k equals 31.09
and 30.92. The value for k at the intersection of the two lines is the
desired k. Tor rule A, this is 31.01 bushels and for rule B, 20,14
bushels.

A modificution can be made in estimating k, namely that of using
for the slope of the optimal rule the slope obtained under similar con-
ditions when yvields are assumed to be constant.  As the function is a
curve, a decision has to be reached as to the point on the curve for
which the slope is to be computed. Two points appear relevant:

(1) The point closest to k, and (2) the point closest to the average
supply. The average supply can be obtained by adding to the con-
stant production the average earryover. For rule A this is 29.46

0.3=29.76. As this point is below 12, we can compute the slope for
only one segment of the curve, namely that shown by the first 2 rows
of table 3. The avernge slope for this segment equsls (1.77—0)/
(34.70—31.23)=0.51. When this slope is used in formula (13), a

value for [ of 31.05 bushels is given, almost the same as the true vatue
of 31.04 (sce table 1).
For rule B, the average supply equals 29.46--2.7=32.16. This is

somewhat above L. Hence, two sets of computations were made, one
for which the slope was estimated over the segment of the curve
shown in the first 2 rows of the second section of table 3 and the other
over the second, third, and fourth rows, as the average supply is just
about at the midpoint of this segment. The average slope in the first
case was 0.50, and in the second case, 0.67. When these values were
used in the formula, estimates for k of 20.33 and 28.86 bushels, re-
spectively, were given, compared with the true value of 28.00.

Results of estimating k when the estimates are hased on the several
different ways of estimating the slope of the optimum rule are tabu-
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lated in table 5. The results obtained suggest that an efficient wey
to obtain this value is to use as an estimate for the slope the slope for
the rule when yields are assumed not to vary measured at a point
close to the average supply. By using this approach and the general
method for obtaining the rule when yields are assumed not to vary
described beginning on page 34, a close approximation to the rule
can be obtained. Mathematical techniques required to develop these
computational methods and to show just what the various steps
mean are described on pages 54-55 and in Appendix Note 10.

TaBLE 5.—Corn, cals, and barley: Estimates of p by specified methods, actual and
as a difference from the true value

Estimate of &

Method of estimating slope of Actual value for | Difference from
aptimel rule ruile— true value for
rule—

B

Bushels

Arbitrary value of 0.6 0. 24

SBame slope as for rule when yields are
assumed not to vary messured at the
point closest to—

31.05 | 29.33 .01 .43
31.05 | 28 86 .01 —. 04

Final results when yields vary—The actual rules obtained by the
several methods are shown in figure 6. The notation is the same as
that given in the text, but it may be helpful to the reader to review
briefly the methods used in obtaining them. Rules labeled A and B
were obtained by use of the full mathematical procedure based on the
vield distribution shown in the tabulation on page 22 and the other
varinbles shown in table 2. Data that relate to these rules in terms

of bushels per acre are shown in table 1 under rules 8, and f}a, respec-
tively. For the chart, these were converted to million tons, assuming
that 140 msilion ncres need to be planted to the 3 feed grains to meet
utilization requirements when yieijds are ot their average level. The
supply range shown on the chart goes to a meximum somewhat above
the maximum supply of the four feed grains on record when research
on this study was completed,'”

Rules A’ and B are based on assumptions similar to those used for
rules A and B, respectively, except that yields in future years are
assumed to be constant at their average level. Computations in-
volved in obtaining these rules, in terms of bushels per planted acre,
are shown in table 3. Rules A’/ and B’ were obtained by using the

17 Namcly, a supply of 153 million tons and a earryover of 31 million tons for
the marketing year beginning October 1950, New records were st for the years
beginning in 1954, 1455, and 1956, In the last named year, supply was 174
miliion tens and the carryover, 43 million tous.




4() TECHNICAL BULLETIN 1178, U. 8. DEPT. OF AGRICULTURE

velues computed for rules A’ and B’, respectively, adjusted in such
8 way that the curves pass through the point on the supply axis

equal to the value of k shown in the last row of table 5. Methods
by which the values in table 5 were obtained are discussed on pages
36-39. As for the other rules, conversions from. bushels per acre to
million tons also were made,

It is evident that, particularly for the assumptions used in connee-
tion with rule B, the spproximations obtained by the last approach
are nearly identical with the rules obtained by applying the complete
mathematical technique,

MATHEMATICAL SOLUTIONS

Some of the symbols used in the mathematical solution have been
introduced in earlicr sections. As they were not necessarily defined in
strict mathematical terms, it now appears desirsble to repeat the defini-
tions, making use of additional rigor where required.

As indicated on page 11, the conditions which are relevant and
which must be estimated priot to the derivation of storage rules are
the following: (1) The discount factor  (equal to 1/{1-+r), where r is
the interest rate), (2) the cost of storage, (3) the conditious of utiliza-
tion {demand), and (4) the conditions of production (supply} of the
grain. The latter three sets of conditions are conveniently handled by
setting up the following functions:

v{C): the cost (in dollars) of carrying over the quantity C in the
vear §;

8:(Y): the total value to the general public {measured in dollars)
attributable to the utilization of the quantity Y in year t;

an
Fi{x): the probability distribution of output x in year &.

As an alternative to the use of the total value function 8, we may,
if 8 is differentiable, use the marginsl value function p,(Y), defined as
the derivative of 3.(Y). For many purposes, use of the marginal value
function p turns out to be more convenient and more illuminsting
than use of the total value function 5. However, our initial presenta-
tion of the solution is in terms of the § function, since the exposition
and proofs are more straightforward in those terms.

Problems relating to the dsterminstion and estimation of these
functional relationships were discussed in carlier sections, To specify
the criterion: of optimality, first, “the gain” incurred in year t, W,
is defined as the total value of the grain utilized minus the cost of

storage, that is:
W:=5t{Yt)—’Yt(Cs} (14)
=5:(Ss“—'0t)—’)’t(cz) (13)
since the quantity utilized, Y,, equals the total supply, S,, minus the
smount carried over, €,.

As indicated on page 9, & “rule of storage” is & function (8,) which
explicitly states the dependence of C, on C,_; and X, that is:

C.=6.(Cyyy X0) #)
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A “storage policy” for a period of 1 years (t=1,. . ., n, where the
cwrrent year is designated as 1) is defiped as & set of storage rules
e.l.: >+ 1 VYas . .

( If we consistently follow 2 set of storage rules, the total gain in any
year depends on the initisl supply and our storage rule. In thinking
about a year in the future, say year ¢, X, is unknown, so we make use
of its probability distribution Fy(x,). By using these probability dis-
tributions we can, for o given set of storage rules, obtain an expected
value for W, namely EW,. That is, given the probability distribu-
tions of output ¥, . . ., F,if4,. . . 4, arc ltnown, we could con-~
cepuslly, if not practically, find EW, by a (t—D—tuple integration
over Fy, . . ., Fi. Now let Vi,. be the swm of expected gains in
years 1, . . ., n discounted back to the vear 1. If the annual dis-
count factor is a constant o (0< a<(1), then the discount factor appli-
cable in year 1 to velues oceurring in year t is b

8o that

V1,3=‘W;+QEW2+QZEW3+ P +an—iEWB (16)

Forgiven Fo, . . ., F,, V,, isafunction of S, and 6, . . ., 8, since
EW,is s function of S; and 6, . . ., 4,
We now define the optimal storage policy as that set of rules 4,
- 0n which maximizes V,, for any S,.

The solution based on the total value function.—First rewrite equation
(18), to simplify the notation, as:

W.=W, (8, C {15.1)

That is, the gain in any year is o function of total supply and carry-
over.

For cvery possible value of S, in the nth year, find C, to maxi-
mize W, (8;, C,). This gives C, as o function of Sq, and that function
is G, the optimal storage rule for the n't year.®  With 4, thus deter-
mined, the maximized gain in the n® year is & function of S, alcue

and may be designated {7“,5(8.,).
Proceed back to the yeor n—1. From equation (1),

Sn=cn—l+xn (11}

where X, (from the viewpoint of year n—1) is a random variable with
probability distribution F,{x,}. ~ To get the expected value (in year

' With the cost of storage funetion and the iokal value function bolh mono-
tonienlly inercasing, C, always equals zers. This result 8 not necessary, how-
cver, to what follows. In parbicular, if it is decided that for SO0MEC reazon stocks
should be at some specified lavel, say G, ab the end of a speeified n-year period,
this volue of C, may simply be inscrved into Lhe solution, and the prosedure out-
lined then leads to the maximum-gain or least-loss program for bringing storks
to that level, Tor the ease of stationasity, whaere the ceriterivn is to mnximize
the sun of discounted expeeted gains in all Filure years, the situation is differeiny:
C, may be set at any arbitrary value {scro is usually as conveniont as any), ard
the solution, that is, the ontinial stalonary storage rule, i« independent of, or
completely unaffected by, the value so sek; in this ease, the value of n is also
unspiegiﬁm;: the compulational iterations are simply eontinuad until convergence
is achieved,
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n—1) of the gain in year n (as maximized by 8,), we integrate Von
{(Co-1-H%5) over the probability distribution F.(x,), leaving a function
of C,_, alone. That is,

EV,n(Cacr %) =Qu_s (Cay) a7)

This expression represents the expected (maximized) gain in year n
as o function of carryover in yearn—1. Ib year n—1, then, for every
possible value of §,_;, we find the value of C,_, to maximize the gain
in year n—1 plus the discounted expected gainin yearn. That is, we
maximize

‘ru_“ n(Sn—h Cnul)=\%r nl(Sn—l; Cn—l)_i'"QQn—l (Cn—l) (18)

This gives C._; as a function of S,_,, and that function is 5,._1, the
optimal storage rule for year n—1. With 6, thus_determined, the
sum of maximized expected gains in years (n—1, n) (discounted to year

r£—1) is a function of S,_, alone, and may be designated Vo, o(Spi)-
Proceed back to ycar n—2. From cquation (1},

Sn—i=Cn—‘3+Xn—l (I-

To get the expected value (in year n—2) of the sum of the grins in years
(n—1, n) {discounted to year n—1, and maximized hy .., 6), we
A

integrate Voi, n{Ch.o--xey) over the probability distribution F,_,
(%a1), giving & function of T, alone, sav Qus{Cun). In year n—2,
then, for every possible value of S,_,, we find the value of Gy, to
maximize the gain in year n—2 plus the discounted expected sum of
gains in years (n—1, n). That s, we maximize

‘rn—:’,n(sn—ﬁpc‘n—'.’) "__“Fn—".’(sn—-‘hcn—i') +3Qn-—2(cn—2) (18-1)

This gives Co_, 25 a {unction of §,.,, and that function is é,.,_g, the

optimal storage rule for yearn—2. With §,_, thus determined, the

sum of maximized expected gains in years {(n—2, n—1, n) {discounted
~

to year n—2) is a function of 8,_, alene, and may be designated Vos,n

(Sp_p).

The general procedure cow can be seen for determining the optimal
storage rule in year t, #,{1=tt<n), once the optimal rules in suc-
ceeding years &4y, . . . , 8 are determined. The sum of expected
gains in years (t+1, . . ., n) (maximized by &, - . i 8,, and
discounted to year t41) is & known function of Sy, 58y Vopr,a(Seps).
Since by equation (1}

St+1=CI.+XH—! (1.3)

where (from the viewpoint of year t) X, is 2 random variable with
the probability distribution Fyy (x4}, the expected value {in year t)
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of V.., is obtained by integrating V. 4,,{C,4-x.4.) over that proba-
bility distribution, giving a function of C; alone, say Q.(C;). Then,
for every possible value of 8, we find the value of C, which maximizes
the gain in year t plus the discounted expected sum of {discounted,
maximized) expected gains in years (t-+1, ..., n}. That is, we
maximize

Vt.n(smot) ___“rt(su Ca) ‘f‘aQ:(Cr.} (18.2)

This gives G, as a function of §,, and that {unction is 4,, the optimal
storage rule in year & It also gives the maximized sum of expected
gnins in years (4, . . ., o) (discounted to year t) us o function of S,

say Vo n(8y)-

Continuing back fo year 1 {the current year), we bave thus deter-
nmined the optimal storage rule for cach year 8y, . . ., &, and also
the maximized sum of discounted expected gains in all the years, as a

A

function of §,, ¥, .(8,).® The computational operations must be
carried out numerically, that is, by using discrete values of the various
functions corresponding to sclected discrete values of their respective
arguments, The essential reason for this is the existence of dis-
continuitics caused by the restriction of C {carrvover) Lo non-negative
values. The author, al least, has been unable to find any analytical
“rieks,” even under the most simplifyving assumptions about the
forms of the relevant functions, whieh make possible a non-numerical
computiational procedure.

We next consider modilicalions in the procedure when the conditions
are assumed to be stalionary. DBy “stationarily” is meant the condi-
tion that the ammual discount Tactor o and the three funclions, cost
of storage v, social value §, and distribulion of output ¥, are the same
in every year; by “independence’” is mdant the condition that each
of the three functions is unallected by any variable other than its
explicitly stated argument (¢, Y or x vespectively). The sclution
outlined shove assumes independence in the {unections, but not
stetionarity. If the independence condition does not hold, the general
form of the solution is the same as thal outlined, but 1t becomes
a bit more complicates?, and the computational requirements may
become muceh grester. I stationarity is assumed, as well as inde-
pondence, and i the dezsired storage policy is that seb of rules which
will maximize, in cach yeur, the sum of discounted expected gains in
all future years, then the resulting oplimal storage rules ave identical
for all years. That is, 2 single {(stationary) oplimal rule § applies in
every vear,

1 For a maore ¢oncise, morge purcly syn bolie statement of the procedure, which
may help to elarify both its pature and the specifie stops, see Appendix Note 5.
A charaeteristie of the method is that the computationnl operations are per-

formed on the suceessive gain Mnetions themselves, the resulting slorage rules
falling out more or fess incidentally.

A
It should be noted that funetions like V,uq,.(C.+x4y) are not, in gencral,
linenr, 8o that, to pel the expected value, iL i3 necessary to integrate the whole
function over tho distribution o‘fo, rather than shnply to in:icrt. the expected

valug of x.  Thatis, v geoeral, BV 4,,(Co-F xop) Baof egual 10 Vi (G Bxag).
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Such & rule can be computed by the iterative procedure just out-
ined, by taking the number of iterations successively larger. The
procedure can be summarized as follows: Deofine an operator J
operating on any function ¢ by

JB(S)= Aax [3(5-0) —7(C)+oE¢(C+x)] (19)

where E means the mathematical expeeted value with respect to x,
that is, the integral over the probability distribution F(x). Then

¥ ,u(8) =71 5(8) (20)

where ‘G’t,,, is the maximized sum of discounted expected gains in
years 1 through n, 8 is the initial year’s total supply (the subscript 1 is
omitted for convenience), and the superseript n—1 on J indicates that
the operation is performed n-1 successive limes. As n increases,

\J}l,n(S) converges to a limit, that is,

Lim J® 8(8}=8(8) (21)

where g8 (8) is the maximized sum of discounted expected gains in
all future years. This sum is a function of the initial year’s total
supply, 8%

Another way fo look at the problem is to say that we want to
find the function g{S) which satlisfics the equalion

J B(3)=(8) (22)

The uniqueness of the solution, shown in the convergence proof,
depends on & being bounded (within the range of possibie valucs of 8)
and on the annual discount factor @ being less than 1. Having
obtained 8(S), the optimal stationary storage rule & is obtained by
observing, for each value of 8, that velue of C which maximizes

(&) —y(Cy+a E 8(C+x) (19.1}

The solution based on the marginal value function.—Although the
method suggested on page 13 for determining the total value function
implies that it is differentiable, the method of solution outlined
above does not require cither differentinbility or continuity in
this function. However, if the tolal value function §(Y) 7s differen-

® A detailed discussion, and the proof of convergenee, i= given in Appendix
Note 5.

In computations for practieal applications, the ilerntions nre not, of course,
continued fo infinity, but only to the point where convergence §s achieved, That
i5, to the point where Jo 5(N)=Jr=1 5(8), for all rclevant values of 8. Onee
such convergence is obtained, further iterations in wo way change the resulis.
The aumber of iternlions required depends on the conditions of the particular
applieation, and also on the accuracy of the basic data or the nuniber of significant
digits carcied n the computations. The larger the number of signifieant digils
carried, the larger the number of iterntions required to produce complete
CONVCrEence,
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tiable, then optimal storage rules 8, . . ., 4, or, under stationarity,

the optimal storage rule 4, can be obtained using the marginal value
function p(Y), defined as the derivative of total social value, that is,

p(Y)=dfg) (23)

Each of the successive steps in the solution can he shown to be mathe-
matically equivelent to the corresponding step in the procedure using
the total value function §(Y).

As before, we start with the last year of the n—year period. The
following steps are involved:

1, For year u, seb the carrvover equal to C.. If the policy criterion is to
maximize the sum of discounted expected gains over the n-vear period, then
Ca=90. If the criterion is to have a specified leve! of stocks on hand at the end
of the period, and to maximize the sum of discounted expeeted gains during th»
period subject to that restiaing, then ses G, equal to that speeified level.

2. Yor year n-1, find for each possible value of S the value of C™>0 which
satizfies

w

o B po{C4 50— Co) =¥ 51 {C) — paai (8-C) =0 24
where E is the mathematical expectation with respect fo x, (the integral over
the probability distribution F.(x} ), « i3 the annual discount fnetor, p, is the
marginal value function in year n, +,_(C) is the marginal cost of storage in
vear n-1 (the derivative of +,—({C} }, and p,-, is the marginal value function in
year n—1. This gises C as a function of 8, and that function is the optimal storage
rule in year n-1, 6,—(8). For those values of 8§ where no value of OO0 satisfies
the above condition, ", {8)=0.

3. For year n-2, find for cach possible value of § the value of ©>0 which
satisfies

@ B poy [CH¥ami— Bas{C A Nami) ) =7 a=a{C) —pa—2{S-C) =0 (24.13

where B is the mathematical expeetation with respect to the randem variable
Xa—t; By 15 the optimal storage rule for year n—-l {determined in the preceding
step}, and the other symbols are similar to those used in equation (21, This
gives © ns a function of 8, and that function is the optimal storage rule in year
0-2, §,4(8). For values of § where no value of C>0 satisfes the condition,
GaalS) =0.

4. Io general, for venr & (t=n-1i, u-2, . . ., 1}, enee the optimal storage
rule for year t4+1, By, it determined, find for each possible value of § tho
value of G>8 which satisGes

@ E purt {Ctxer = B (CH xur) I — 7 (C) — 2dS-C) =0 (24.2)

where E is the mathematical expoclation with respeet te the random variable
Xyep, a0d the other symbols are similar to these defined in praceding steps, This
uives € as o function of ¥, and that function i= the optimal storage rule for vear
t, #.:18). Tor values of § where no value of (-0 satizfes the condition, §,(8)=0.

The optimal storage rule for cach year of the n-year period, §,

oy B, 18 thus determined ™
% Proof of the mathematical cquivalenes of this procednre to that using the
total valus funetion iz given in Appendix Note 6.
It should be pofad that Tunetions fike
pdC N - 00 O M

are not, in genmeral, Hnear in x,, rren if p, is Unear; so that, to get the expeeted
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In almost any conceivable practical application (certainly in all
those we have considered), the inverse of the storage rule function
8(8), that is, 7'(C), is umque for C>0. That is, the function 6(3)
1s monotonically increasing for all values of S such that 6(8)>0. This
means thot each step in the procedure can be considerably simplified
if, instead of finding for each possible value of S the value of C>0
which satisfies the stated condition, we find for each possible value of
C> 0 the value of 8 which satisfes the condition. The result is to
obtain 8 as a function of C, and that function is the inverse of the
optimal storage rule for the given year, say 8,7(C). To obtain the
optimal stornge rule 8,(3), we simply invert 8,-1(C).

For the case of stationarity, the procedure is essentially the same,
but the iterations are continued unlil the resulting @ converges.
That is, if §(S) is the optimal stationary storage rule, then successive
approximations 6,(S), 8,(S), ..., 0,(3), such that Lim 8,(8)=4(8),

e
arc obtained by letting 6,(S}=0 (or any positive constant or any
monotonically mereasing [unction) and (for m=1, 2, . . ) finding
8,(8) to satisly the condition

“Ep[em (S) +xX— 0 (gm (S) +X) ]_"/’[Gm (S) } _P[S'_"em (S) ] ==0 (25)

for all values of 8. Alternatively, and more simply, if #-4(C) is
unique for C> O, the condition to be satisfied can be written

allp[C - x—0n (CA-x}] =" (C) — o[t (C)—C]=0 (26)

for all values of C>0.
The optimal stationary rule #S) is, then, the function 8 which
satisfies the {ollowing equation for all values of S:

eBpl0(3)+x—6(0(S)+x)—v [0 —a[S—6(S))=0  (25.1)

Alternatively, if the oplimal stationary rule §(S) has a unique inverse,
874C), for C2> 0, then §(8) is the function 8 which satisfies the follow-
ing equation for all values of C>0.

alp[C+x—6(C+x)]—7'(C)—pl07(C)—Cj=0 (26.1)

For some purposes, it is convenient to rewrite the latter equation as:

9-1(0)=c+p~1{ «f wp[o+x—e(0+xnchx>—v’(o)} 26.2)

where o™ js the inverse funetion of p, and the expectation operator is
written out explicitly as the integral over the disiribution F(x).

valug, it js necossary to integrate the whele funetion over the disteibution of x.,
rather than simply Go insert the expected value of x,. That is, in general,

EpCHx—0.(CH Xt)]

is not equal to
alC+ Ex,—0,(C+Txy)l.




CARRYOVER LEVELS FOR GRAINS 47

It may clarify matiers to repeat, in slightly different form, the
iterative procedure for finding the solution to equation (26.1), that
is, the optimal stationary storage rule #(3S), given the annual discount
factor o and the {stationary) Functious marmnal value p, marginal
cost of storage +', and probability distribution of output F(x). The
following steps are involved:

1. Take 8,(8)=0, or, alternatively, an arbitrary function 8,(S) as the starting

point.
2. Find 8;(C) by

i HO=C+ e | TAlCH=—0(C+RF )~ (O] (26.3)

Inverk E?I(C) to g=t 6,(8).

3. In general, for m=1, 2, . .., having found 8,,—:(%), find 67'(C} by
8 (O = Crtotfa | “HOH —tan CHIKFW—Y(@) (264

Invert 63,'(C) to get 8n(S).
4, Then the optimal stationary storage rule is given by
Lim 0,{5) =(R) (27

m-bes

In computations for practical applications, the iterations are not,
of course, continued to infinity, but only to the point where con-
vergence 1s achieved; that is, fo the point where 6,(3)=8,_,(8), lor
all relewmt values of 8. Onee such conv ergence is obtained, further
iterations In no way change the results.

('omputational considerations.—The solution using the marginal
value function is, of course, less general than that using the Total
value function, sitice the total value function must be differentiable
so that the marginal value function exists. Furthermore, generaliza-
tion of the solutions to include the possibility of nenindependence
is usually casier if the total value {unction is used. However, for
the case of independence, which has been assumed in all of the
cliscussiun so far, the solution and the computations using the marginal
value function have several advantages over those using the total
value function. One advantage is that, when using the marginal
value function, the cumulative sums of discounted expected gains

(thet is, the \?1.., functions) need not be computed at cach step. Thus,
computing labor is saved in each iteration, and further, the number
of required iterations is less (in the case of stationarity), since the
storage rule functions (the 8's) tend to converge more rapidly then

A
do the corresponding V,, funclions. Additional characteristies of
the solution and computationsg using the marginal value function
are discussed in the remaining pages of this section.

The integrations over IF{x} at each step, that is, the computations
of the expected values E, still are carried out numerically, but values
of the functions p, 8 ﬂnd 67! ean conveniently be found gr uphl(‘ﬂ[lv
For the kinds of applications discussed hcn'lmung on page "1 a given
number of iterations can be cwrried out in about onc-fourth the
number of computing man-hours required when using the total value
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function, and with somewhat greater precision. This results because,
when using the marginal value function method, interpolations can
be made which cannot be used with the total value function metkod.
For the applications which have been made, the number of iterations
required to achieve convergence in 4, within the limits of accuracy
of the combined numerical-graphical procedure, varied from 7 to 15.

In cases where the number of required iterations is large, labor
can be saved by a trial-and-error method as follows: We first define
an operator = by

78(C) =aEp[CH-x—0(C+x)]—p[67'(C)—C] (28)

Then the optimal storage rule 8(8) is that function ¢ which salisfies
the equation

={C)=~"(C) (29)

Different g's are tried, and the corresponding #8(C) functions com-
puted, until a sufficiently close approximation to v'(C) is obtained.
After some practice, good approximations frequentily can be obtained
with relatively few trials. Once a fairly close approximation has been
obtained, the corresponding # can be labeled &, and then the iterative
procedure applied until complete convergence is attained, if desired.

Since numerical convergence, within the limils of computational
accuracy, is not equivalent to mathematical convergence, it is desir-
able to be able to show the existence of an “upper hound” to the
optimal stationary storage rule §, that is, a function 0g (say) such that
0a(S) = 0(S) for every 8. This can be readily done, using the marginal
value function method, All shat is required is te find a function 6y
such LE;“;,E 105(C) < (C) for every C; it follows that 85(8) >8(8) for
every 5.7

SPECIAL MATHEMATICAL RELATIONSHIPS OF INTEREST
TO THE ECONOMIC ANALYST

Reletions between frec-market and optimal governmenitul siorage-
From cquation (26.1) on page 46, the following interesting equivalence
relation can be shown: The amounts which would be stored under
an oplimal governmental storage program, that is, a program that
maximizes the sum of discounted expected net gains to the general
public, are exactly the same as the amounts which would be stored
in the ageregate by private firms in a free market, if the following
conditions are satisfied:

22 This result is intuitively acceptable: uniformly lower slorage costs imply
uniformaly higher optimal storage rules. The truth of this proposition also

can be scen by setting 0s equal te 6 in the iterative procedure, and chserving the
relation between this 6 and the resulting 8. Thus:

aEp[C+x—0:(C+x) ]~ = (C) —pl6y ™ (C) — Cl=0
and

aBpCtx—0y(C+x}]—+'(C) —plg; (G} —C]=0

Since ¥ (O <r6(C), it follows that p[ﬂfI(C}—C]<p[ﬂo_l(C}-—C], that is, since
p is monotonically decrensing, 8, (C)>65 1(C), so that, 6:(8) <6(S).
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1. The market is perfectly competitive, and all storing is done by firms sgeking
te maximize discounted expected profit ;

2. The marginal valne function o{Y} is the same as the markes price function;

2(31. The market discount factor is the same as the Government’s discount factor;
an

4. 4/(C) i3 the price at which the amount O of storage space can be rented,
that is, the “supply schedule™ of storage space, minus the "marginal convenience
benefit” of the amount C of siocks on hand,

Under these conditions, if 8(S) is interpreted to mean the ageregate
amount stored by private firms, the first term in equation (26.1) is,
for any given year, the discounted cxpected price in the following year,
the third term is the price in the given year, and the middle term is
the per-unit marginal cost of storage. Only if B(S)=4(3), that is,
only if the private firms’ aggregate storage activity is such es fo
satisfy equation (26.1), is the market in equilibrium. If #(S)<8(3)
for some 8, expected marginal returns are greater than marginal costs,
and some firms tend to increase their amounts stored or to cnter the
storing business; conversely if 8(3)>4(3) for some S,

Relations between the conditions and the optimel storage rule—Use of
equation (26.1) also shows more clearly and simply than can otherwise
be done the relationships between the conditions of the problem, that
is, the discount factor « and the functions marginal value p, marginal
cost of storage v*, and distribution of output F, and the solution to
the problem, the optimal stationary storage rule 8. It can be shown
fairly easily that certain kiads of changes in some of the conditions
are equivalent, in their effeets on the resulting optimal storage rule, to
specified changes in other conditions. Equivalence relations of this
kind, which are useful both for substantive and computational
purposes, are ilustrated in the lollowing paragraphs.

For given a and T, a change in o(Y) by a constant factor r is equiv-
alent in its effects on 8 to 2 change in +/ (C) by the constant factor 1/r.
From another viewpoint, & gencral price inflation or deflation which
does not change the ratio of p(Y) to v ({C) for any Y or G, and also
does not change the interest rate or «, has no effect on the optimal
storage rule 8. Similarly, a change in o{Y} by the addition of a
constant k is cquivalent in its cffects on & to adding the constant
{1—a)k to v/ (C). Also, for given @ and F, if p*(Y)=rp(Y)+k and
-y’*(C')=(lfr)»f‘(C)—:—(l,f‘r}(l—a)k, then the same § which is optimal
under p* v’ is optimal under p, v'*: that is, & change of p to p* is
equivalent in its effects on 7 to a change in v’ to v'* 2

Using the results of the last paragraph, it follows that if

P*(Y)=I‘fP(Y)—Po]':—Pc=1‘P(Y)+(1—I-‘)Po (30)

then a change in p to p* is equivalent in its cffects on 8 to a change in
v (C) to v/ *(C), where

7O =y (O + (Ui —a) (1 —1)P, (31)

¥ Proofs of these statements are given in Appendix Note 7.
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The flexibility of the marginal value function is defined by

e(Y)=—[dp(Y)/dY]-[Y/p(Y)] (32)

That is, flexibility is the absclute value of the elasticity of marginal
value with respect to quantity utilized. Let & be the value of the
flexability function at the point Y where p(Y)=PF,. Then changing
p(Y) to p*(Y), as defined by equation (30), implies changing ¢ to
€@*=re. Thus a chenge in the flexibility ¢ by a factor r, where the
change is accomplished by changing p as defined above, is equivalent

in its effects on & to changing v' to
¥ *=(1/0)¥ +(1/r)(1—a)(1-1)F (33}

For a pumerical illustration of the last result, suppose =2.00
and we wish to make *=2.50 by making

p*(X)=1.25[p(Y)—Fo]+ P (30.1)

where Po~=p(Ex), that is, the vaiue of the marginal value function at
Y ==the mean value of output x. Suppose also that Py;==%1.50 per
bushel, ¥ (C)=2%0.10 per bushel {constant marginal cost of storage),
and «=0.95 (equivalent to an interest rate of about 5 percent per
annum). A simple computation shows that changing p to p*(and there-
by changing e=2.00 to ¢*=2.50) is equivalent in its effects on & to
changing the marginal cost of storage from ' (C)=%0.10 per bushel
to 4" *(C)=30.065 per bushel.

We next consider what can ba said about the effects on the optimal
storage rule of changing the variance of the probability distribution
of output F(x). To be specific, let F(x) be changed to G(x) by the

relafion
elrG— )= (/) (5—p) 34)

where { is the probability density function of the distribution F,
transposed for convenience to take the origin at g, the mean of x;
g is the probability density function of the distribution G; and ris a
constant faclor greater than zero. G then has the same general form
and the same mean as I, but standard deviation so=ror. The prob-
lem is, for given v/, « and p, to find o relation between the storage
rule &g which is optimal under G and one which is optimal under F.
The solution is o first find the rule 8* which is optimal under F, o/,
e, and p*, whera p* 18 defined by

oMY —p)=p[r(Y—p)] (35)
For linear p, this is equivalent Lo making
p*(X)=r[p(Y)—p(u)]+n(n) (36)
Then the optimal rule under v/, @, G and pis ®
B (S—w)=18*[(1/r)(S—u)] (37)

2 IF p(Y) has constant flexibility, s*(Y) as defined here does not have. constant
flexibility, but if p{Y) is linenr, p*(Y) also is linear,
25 Spg Appendix Note 8.
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Methods that allow for random fluctuations i demand.—An im-
perlant feature of the method that uses the marginal value function
is that random fluctuations in the conditions of demand, as well as of
supply, can readily be incorporated into the solution. The simplest
case 1s one where the marginal value function p{Y} in each year
(inchuding the current year) is subject to the same probability dis-
tribution. One then could define R(Y)=Es(Y), where E,p{Y) is
the integral of p(Y) over the probability distribution of p. Then § is
obtained as beforve, substituting R everywhere for p. However, it
usuelly is more realistic to suppose that information about demand,
or about the marginal value function, in the current year is better or
more cxact than the correspending information for future years; that
18, to treat information about demand in the same way as information
about supply. Il the current year’s marginal value function is known
and future years’ marginal value functions are subject to known
probability distributions, then an explicit solution would in general
involve an iterative procedure similar Lo those already outlined, except
that each step requires integration over the probability distribution
of p as well as over F(x).

By making a ccrtain not unreasonable assumption sbout the way
in which the random fluctuations in marginal value occur, the solution
can he considerably simplified. The assumption is that the marginal
value function in year t is given by p (Y, +u,), where Y, is quantity
utilized, the value of u; for the currrnt year is known (designated U},
and u, in each future year t is a random variable subjeet to seme
Iknown or assumed probability distribution. If the funclion p is
thought of as plotted on a graph with Y on the horizontal axis, the
assumption is that the random fluctualions ar shifts in the curve oeeur
horizontally. This is analogous to assuming, for a demand schedule,
thel at a given price the quantily demanded is a random variable
subject to a probability distribution, and ihat the probability dis-
tributions corresponding to different prices have different means
but are otherwise identieal,

With randomly fluctualing marginal value functions of the kind
just described, the solution for the optimal storage rules § is obiained
as follows.®™  The stovage rule 8 beeomes a function not of 8 alone, but
of 84U, that is, C=8(+U} and 7'(C)=84+T. Frem equation
(26.1), the optimal storage rule 8 is the function § which satisfies the
gquation

& B up[CH-x+u—8C+x4-1)]—1 (C}—p[87(C)—C]=0 (38}

where B, means the integral over the probability distributiens of x
and u. A new random wvariable z=x4u ecan be defined, and its
distribution determined from the distributions of x and w.  Then the

equation Lo be satisfied by & can be written
aldp]Ct2z—8(CH2)]—7" (C}—pl07 (C) —C]=0 (38.1)

% Jor simplivity, the discussion is for the case of stationarity, so the time
subscripts are droppeed; the modificetions reguived for non-stalionary should be
clear to the reader,
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8 is computed by the procedure outlined earlier, keeping in mind that
the resulting optimal storage rule is a function of $4-f rather than S
alone. Thus, if in the current year U=0, the only change in # for
the current year caused by the introduction of demand variability in
future years is that due to the greater variability of z over that of x,
If p[8—0(8)], plotted against S, is concave upward, as it will be in
most practical applications, the change in # caused by introducing
random variability in demand is upwards. That is, an optimal storage
policy under conditions of random fluctuations in future demand calls
for higher levels of storage than an optimal policy under conditions of
fixed futurc demand schedules, other things being equal.

Some computational eids—We next present mathematical proofs
for the methods of obtaining approximate rules given in a preceding
section and certain other devices by which the task of computing
optimal storage rules under specified conditions, using the marginal
value function, can be somewhat lightened. Some of the relation-
ships discussed also are of interest in themselves. Most of the dis-
cussion is, for simplicity, in terms of finding the optimal storage rule
for the case of stationarity and with no random fluctuations in
marginal value or demand, but some of the idess also can be applied,
with suitable modification, to the cases of non-stationarity and random
fluctuations in demand.

If the marginal value function 5(Y) is lincar, say p(Y)=q—pY,
where q and p are constangs, then equation (26.1) (sce p. 46) reduces
to:

7 (C)=7"(C}/p+(1—a)y/p+ap+t(1+a)C—aEH{C+x) (39)

where  is Ex, the mean of the probability distribution of x. If the
marginal cost of storage '(C) is constant, designaizd ¥/, equation
(39} can be written

07(C) =K+ (1+0)C—a : HC+x)f(x)dx (40)

where K, is a_constant, 4/ /p+(1-—a)a/p-+au; k is the value of S (to
be determined, along with the rest of the storage rule) such that for
S<k, 8(8)=0; f(x) 1s the probability density of x; and EH{C+4x) is
written as the integral to emphasize that the integration is not taken
over the full range of I'(x).

Biquations (39) or (40) indicate that, even if the marginal value
function o(Y) and the marginal cost of storage function +'(C) are
linear, the optimal storage rule 8(3) cannot be linear, even over the
range 8>>k. The solution 8 is obtained by iteration as before, but the
computations become somewhat simpler, since no computation of
values of the function p (graphical or otherwise) are required. At each
step, having obtained values of the function 9.;1(0), values of §,(8)
in most applications can be obtained numerically by linear interpola-
tion. Even though #(3) is not linear, in most applications it is suffi-
ciently close to being linear so that linear interpolations over narrow
ranges give adequate accuracy.
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Equation (40) indicates that, for given « and F, any changes in
p and v’ which leave the constant K,=+'/p+ (1—a)q/p unchanged
also leave the optimal storage rule § unchanged. For all p’s which pass
through the pomt (Py, Yo), q/p=Po/p+ s, so that any changes in
and p which leave the constant Ky=+’/p+ (1—a)Po/p unchanged also
leave & unchanged. But a change in p by a factor r is syuivalent to
changing ¢ (the flexibility at the point Py, Y,) by the same factor r.
So equivalence reiations between changes in ¢ and changes in v
can be obtained directly for the linear-p case, and they are, of course,
the same as those obtained on p. 49 for the more general case.

As pointed out on p. 33, in many applications which have been

carried out to date, the optimal storage rule (), when computed for &
given seb of conditions and plotted on 2 graph with S on the horizontal
axis, is & curve approximstely “parallel” to and lying to the left of, an
optimal storage rule, say ¢°(8), which is computed using the same set of
conditions except that output variability in future years is assumed to
be zero and output in each year is taken equal to the expected value
or Ex. That is, (3) =~6°(S+d), where d is some constant.

The computation required to obtain the optimal rule #°(S) under
the assumption of zevo varisbility in future outputs is a relatively
simple one. The optimal rule, C=4°(8), may be graphed in o series of
monotonically increasing connected line segments, as in figure 7.

ESTIMATION OF OPTIMAL STORAGE RULE
BY USE OF LINE SEGMENTS

CARRYOVER (BU.}-C

!
Sy
TOTAL SUPPLY (BU.) -S

U, %, DEFARTMENT OF AGRICULTURE HEG. 4404 -57 (8] AGRICULTURAL SARKETIHG SERVICE

Ficure 7.—Coordinates for the conneeting points of the line segments in this
chirt are obtained by formulus (41} to (44). The monotonically increasing
segments suggest the general shape of the optimal storage rule under the con-
ditions speeified,
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If o(Y) is linear, the segments of 6°(S) are also linear; if p(Y) is not
linear, the segments are not linear, but may be adequately approxi-
mated for most practical purposes by linear segments. Hence all that
is required to determine the rule 6°(S) is to determine the connecting
points of the segments, which are designated in the chart as (S, Cy)
(1i=0,1,2, ...} ThesubscriptsionS and C do not here represent
ears, of course, but simply the different points slong the rule C=4§°(8).
{;et h be the harvest in each future year; if the rule is being calculated
for purposes of approximating the optimal rule with variable yields,
b=p=Ezx. As before, p(Y) is the marginal value function, « is the
discount factor, and v’ is the marginal cost of storage (here assumed
constant), R
We define a linear operator D operating on a variable Z by
DZ=uoZ—+'. Then the optimal rule §°(S), for the case of constant
harvest in future years, is determined by obtsining the segment con-
necting points (8,, C,) as follows, where M, is the value of the marginal
social value function st Y=h, that is, My=p(h):

Se=p"H{DM,) (41)
8;=8,—h-+pHD"WM,) {i=1, 2,....) (42)

Co=0 (43)

C=81~h (44}

=8,—p {DM,} {44.1)

=C—h+p DM, (1=1,2,. .. ) {44.2}

where the superseript (—1) on p indicates the inversc of the function,
and the superscript (i41) on D indicates that the operstion is to be
performed 1-5-1 times. The three expressions for €, are equivalent;
all are given to indicate the inter-velationships involved and to give

the computer a choice. S, is the S-axis intercept of 4°(S). The mean-
mg of the D operations may be clarified by noting that: :

ori=1,
DN, =DM, = ar(oM, —y' ) —" (45)
DM, =DM, =alalad],—v ) —y 1— (45.1)

Tor =2,

In generai,

i
DM, =aH M, —y' S ! (45.2)
1=

Proofs of these results are given in Appendix note 9. A numerical
illustrasion was giver on pp. 34-36.

We next consider the problem of determining an approximate value
of k, the S-axis intercept of the optimal storage rule 4(S) for the case
of uncertainty in fubure outputs, that is, when the harvest x in any
future year is a random variable subject to an estimated probability
distribution. The exact value of It is, of course, obtained from the
iterative computation procedure atong with the vest of the storage
rule. The approximation considered here is for the purpose of ob-
taining an approximate rule, by the method given starting at the bot-
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tom of page 33. The approximate value, say k,, is obtained by solving
the following equation for k:

k=M—efL(k) (13.1)

where the symbols are defined as follows:
M is & constant that cquals

p—{1—a)plu)/o () —~"[p" (u} (12.1)

where u is the mean of the probability distribution of x, p{u) is the
valug of p{Y) at Y=y, p’(x} is the value of the slope of p{Y) at Y=y,
and « and " are the annual diseount fector and the marginal cost of
storage respectively, as before.

8, 15 an advance estimate or approximation of the average slope of
the optimal storage rule 4(3). This spproximation can be obtained
from the slope of 8°(S) when the conditions other than yield vari-
ability arc the same as those of the rule now being approximated
{see p. 38).

L{) is the function defined by L(k)=fw{x—k)dF(x). The
o

values of this function for different values of k in most applications
musk be compuied numericaily. Then the value of k which comes
close to satisfying the equation k=M—efI{k) can be obtained by
linear interpolation, giving the desived approximate value k.. The
function Lk} depends oniy on the probability distribution F(x), and
once obtained for a particular T can be used for different sets of
assumptions about the other conditions. Derivations of these resulis
are given In Appendix note 10, A numecrical illustration was given
on pages 36-38.

Iiepected returns o storage—The “‘expected returns to storage”
obtained by following an spltimal storage policy for an n-year period
may be delined as the difference between the sum of discounted
expected gains when the optimal policy is followed and the sum of
discounted expected gains when the carryover iIn every year is zero.
If the storage rule is computed using the total value function, this
difference can be oblained direetly from the results of such computa-
tions, because of the fact that the maximized sum of discounted ox-
pected gains is computed al each step. Thus, for the case of noa-
stationatity, the expected returns Lo storage for the n-year period
may be written as & function of the initial year’s total supply as {ollows:

Ru(B) =V 1S —5, (so—iat-if“al(mcmn(xa (46)
put; 0

A
where V, (8} is the (maximized) sum of discounted expected gains
under the optimal storage policy and the other two Lerms are the sum
of discounted expected gains when the earryover in every yeav is zero.
Tor the case of slabionarity, the corresponding expression for n
years, dropping the subscript 1 on 8, is:

RH(S)=J—”“é(8)—6(8)—(§a‘—1>ﬁm6(x)ch(x) 47)
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and for all future years is:

R.(S)=Lim Rncsa=s<S)—a(SJ—[a/(1-a)1fa(x)chx) (47.1)

In cach case the cxpected returns are a function of the initial year’s.
total supply S. Calculation of such expected returns functions gives.
one a mensure of the economic importance of a storage policy. Ex-
pected gains and losses under alternative (non-opilimal but non-zero)
storage rules also may be computed. These aid in determining the
economic costs of adopting such non-optimal policies instead of an
optunal policy.

Calculation of the expected returns to storage is not quite so
straightforward if the optimal storage rules have been computed
using the marginal value function. However, for the case of stua-
tionarity, the problem still can be solved faniy simply. The question
is, having found the optimal stationary storage rule J using the p-
function, instead of inding the maximized sum of discounted expected
gains B(3) directly using the d-function, is it now possible to find
B(8) from #(8)7 The answer is ves, as follows: We know from the
proof of the equivalence of the two methods of solution In Appendix
pote 6 that

dB(SYAS =[S —8(3)] (48)

Therefore,

ﬁ(S)=fp[z—é(z)1dz+K (49)

where the first term to the right of the equality sign 15 a function of
S (calt it X (8}) which can be determined from @, and K is a constant.
Tl;he value of K is found as follows: From equation (22}, JR(S)=8(S),
that is,

B —1B(S)+a | B -+HxIAF () =B(S) (50
Substituting B(8)=A8)+K in this equation gives
(1—a) K= 6[S—8(S)|—1[#(S) 4o ‘ﬁ MBS} xR () —MS)  (50.1)

It can be verified easily that the expression on the right of the equality
sign is a constant. Some results of celcuiating expected returns to
storage for specific storage rules are given in Appendix note 2.

The equilibrium level of storage—The *‘equilibrium level” of carry-
over is defined in the following way. Under stationarity, if the same
st.or.a.%'e rule 8(8) is applied every year, whether € is optimai or not,
and 1f @ fulfills the following conditions: (1} 8(8)<(S for all S, (2) #is
continuous and 0 <d8(S)/dS<1, and (3) 0(xuax) >0, where xp.s 15 the
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greatest possible valuc of x, then the following statements can be
shown to be true (see Appendix note 11):

1, There exists a value C*>0, such f.haf.J; #(C*+-x)dF(xy=C*; that is, if the

carrvover in year t, Cy, equals C%, the expected carryover in year t-+1, EC.4, also
eguals C*,

2. O* is unigue.

3. For any O, not equal to C*, B, is between G, and C*,

The vatue of C* can be found readily, for & given 8, by trial and error.
Its chiel uses are

1. To enable the cconomic analyst to make quick comparisons among
the effects on “average” carryover levels of different gssumptions
about the conditions «, v, F and p {or &) and the resulting storage
rules. Thus, instead of eomparing Lwo rules in entirety by use of a
graph or a table of valucs, one can compare the two resulting equili-
brium levels.  This does not, of course, give a complete picture of the
cffective differcnces in the two rules.

2. To enable the analyst to make rough comparisons between
“average” carryover levels that result under optimal storage rules
satisfying the criterin speecilied in this handbook and carryover levels
recommended by other writers or to satisfy other criteria.

METHODS THAT ALLOW FOR CONTINGENCIES

Oplimal careyover rules can be computed in various ways for a
periad in which the nation faces the possibility of the future oceur-
rence of war or other disaster with similar conseguences if the proba-
bility of such an occurrence can be estunnted and the effects of such
an orcurrence on the relevant conditions (demand, storage cost, in-
terest rate, and oufput) also ean be estimated.

Teor oxumple, if (1Y the probability of the nation’s being ab war in
any future year is B8, so that the probability of peace is 1—8; (2) the
marginal vatue function under war conditions, py, is related to
that for peace. p, by p Y+ LU)=p{Y) where U is a known coustant;
and (3) the other conditions (v, e, and I are unaffected by war, then
the method outlinad on page 51 for the case involving this particular
kind of random varigtion in p can he used.

A suggested approach.~-It scems unrealistic to assumc that the
probabiiity that a state of war exists is independent from ene year to
the next.  An assumplion that may conform befter with experience
is to say that the probability of a war starting in any future year is 8.
We then can compule optimal carryover rules for the years of peace
tthat is, for the period of delense preparation) if we know or ean assume
the carryover rule for the first year of war (4., say}.

8, could he assumed directly or, perhaps belter, computed on the
hasis of assumptions aboul the expected duralion of the war and the
chnnges caused by the war in o, v, p and F. For example, if the war
is expecled to continue indefinitely and to cause no changes in a, v/
and [ but (o cause demand to mcrease by the smount U for any
price, then from equation (26.1) (he optimal 8, must salisfy

aBp " Fx=8,(CH )] — 7" () — £ul85(C)—C]=0 (26.5)
where po{Y)=p(Y =1},
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Having found or assumed ,, we can find the optimal storage rule
6, for the years of war-prepuredness, that is, the rule- which will
maximize the sum of discounted expected gains during those years,
by finding that 8, which satisfics

BB pe[C+x—6,(CHx)]+ (1 —BYEp[C-Fx— b, (CH-x)]—
¥ (C)—plfT (C)—Cl=0 (51)

The first term is a determinable function of C, so the method of solv-

ing for 4, is essentially the same as that outlined in pPp. 44-47 and
used in the applications to feed grains.

Onee the optimal war-preparatory é, is determined, the corre-
sponding equilibrium level Ci (say) and the equilibrium level
C* that results under the optimal rule with a probability of war
equal to zero can be found. Then, if one likes, the difference between
Cgz and C* can be considered as & “war rgserve.”  Iowever, it should
be emphasized that this is not a separate stock. "The primary effect
of introducing the war contingency is & change in the storage rule
itself; the change in cquilibriuin level of carryover is simply a con-
comitant effect.

An application.—Computations of explicit war-preparatory rules
for sets of conditions corresponding to those used for the rules given
in table 1 have not been carried out. However, an idea of the offect
of allowing for war contingencies on storage policy, under such con-
ditions, can be obtained as follows:

Assume that:

(1) The probability of & war starting in any future year is 8=0.2;

(2) During the war, the guantity demanded at any given price is
4.5 bushels per acre greater than in peacetime, that is, p,(Y)=
p(Y —4.5};

(3} In peacetime p is the same as for 4, in teble 1, that is, p(Y)=
4.50—0.16(Y), and in both peace and war, o, v* and F are the same
as for 4,(e=0.95, v'=0.10, c=3.03).

Then pe(Y)=p(Y)}+-0.45, so (utilizing the results on page 49) if the
war is assumed to go on forever, 8, under py, 7' is equivalent to the ¢
that is optimal under p, ¥'*, where v'*=0.1225. This implies that
B is slightly lower than 4, so we get o higher war-preparatory rule 8,
than is actually optimal by taking 6,=6;,. If the war is not assumed
to go on forever, 6, would be still lower. :

¥rom cquation {51), under the conditions stipulated,

EpalC+x—04(C+x)}=EalC+x—b&(C+x)}+pU (62)

=q—pC—putp [ HCHIF+pU  (52.)

where k, is the value of 8 below which "(S)=0, and U=4.5. Also,

EplC-+x—-8u(C+)l=q—pC—pu+p [ %(C+NIIF®  (53)



http:OI(a=0.95

CARRYOVER LEVELS FOR GRAINS

80 equation (51) becomes

«BpU+afp fk T-oéi (C—l—x)dF(x)——aﬁpJ’:_c@ﬁ(C—]—x)dF(x)+
oBpfCAx—85(C+x)]—v"(C)—plfs (C)—Cj=0 (54}

Finally, following the form of equation (39) (page 52), we obtain

8 (C)='[p+ (1—a)q/p+ap—aBU+ (1+a)C—
aﬁj::_cél (CHx)dTF{x)—all — ;S)J:_céd (CHxdF ) (55)

Sinee #,<8,, we again get & 8 which is higher than it should be by
substituting 6, for 8,. ‘This gives us

gz (Cy=v"fp+(1—a)q/p+au—afU+(1+a)C—a J; :_Géd(C+x)dF(x}
(56)

Equation (56) is similar to cquations (39) and (40) {(page 52) for
b, except that instead of K,=31.24 (K, is defined on page 52), we
have K;—afU=31.24—0.86=30.38. Comparing this value with
the values of K, corresponding to the conditions of 8;, 4, and & of
30.89, 30.64, and 30.54, respectively (see table 1), we find that our
“conservative” 8, is somewhat higher than &, but not as high as 8,.

If we take §; as an approximate fy, the “war reserve” is 56 million
bushels [{0.7—0.3) X 140 million]. 1f 8, is used as & doubly conserva-
tive approximation to 84, the war reserve is 154 million bushels.

SOLUTIONS THAT ALLOW FOR LAG EFFECTS IN THE
CONDITIONS

On page 15, methods are discussed by which the effect of & change in
one year’'s supply of grain on the following year’s livestock inventory
can {;e allowed for, at least approximately, by an appropriate adjust-
ment m the marginal value function. However, certain other kinds
of lag effects may be more difficult to handle. If such effects can
be quantified, the total value function for a given year t can be written
s o function of hoth the quantity utilized 1n year t and the quantity
utilized in the preceding year, t—1, that is, §,=8,(Y., Y.oy). The
optimal storage rule for & given year t then becomes a function of both
total supply S in that yesr and the quantity utilized 1n the preceding
ear, é,,(St, Y..), or, in the case of stationarity, 8(S, Y_,), where
(_; 1s_the quantity utilized in the year preceding the application of
the rule. The solution may be written out explicitly for the case of
stationarity as follows; '

Von=Max [68—C, Y_))—v(C)]=Van(S, Y1) 7
Q<<
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and 8,(S, Y_;)=the value of C that achieves the maximization.
Vara=Max [6—C, Y_)—~(O)+
0<C<8 . R
BV, o(CHx, 8—C)=V,poS, Y1) (37.1)

and @.,_1(8_. Y_\)=the valuc of C that achieves the maximization.
We continue until V, (S, Y_,) is obtained ; then

Va=Max 58—C, Y_)—v(0)+aBVso(C+x, S—O)=Y,4(S, Y.
T (57.2)

and 8,(S, Y_,)=the value of C that achieves the maximization. For
the last step, Y_,=7Y,, the quantity consumed in the year preceding
the initial year of the program.

The solution can be summarized more concisely by defining the
overator J as

I8¢5, Y_u) =01\;fél§§[5(8‘—0, Y —7(O) +aE¢(C+x, 8—C)  (38)
Then, T

A

Via=J"7(8, Y_p (57.3)

Computations required are, of course, considernably more voluminous
than in cases employing functions of onc argument. The modifications
required i the outline to allow for non-stalionurity should be clear.
Solutions that allow for lags in the other functions, that is, in the cost
of storage and the distribulions of oulput, can be obiained in an
analogous way.?

OPTIMAL MULTIREGIONAL STORAGE RULES
MATHEMATICAL SOLUTIONS

Suppose we have m regions for which the following are known:
(1) Total value functions: &,(Y3), . . ., 8u(Ya)
(2) Cost of storage functions: v(Cy), . . ., Ya(Ca)
(3) Cost of transport functions:r,(Q,)), 1,j=1, ..., m
(4) Probability distribution of outputs: F(x;, . . ., X

"The subscripts refer to regions, not years. The solution is written
only for the case of stationarity, so the year need not be indicated
explicitly. Thus, 5,(Y,) is the total valuc of quantity Y, consumed
In region i in a given year; v,(C,) is the storage cost of carrying over
the quantity C, in regiou i in a given year; and x, is the quantity
produced in region i in a given year. @, is the amount itransported
from region i Lo region j, and 74(Q,) is the ecost of that transport.

# A solution that incorporates first-order serial dependence in the distributions
of vields, applied to _compute optimal storage rales for whent, is given in an
unpublished manuseript by R. L. Custafson entitled “The Storage of Grains to
Offset Fluctuations in Yields.”




CARRYOVER LEVELS FOR GRAINS 61

Based on, the total value function.—The iotal gain in a given year,
for the nation as a whole, Is defined ns:

“Tzéai(yl)_é‘}’i(ot) ~!2]-—11(Qu) (59)

Thus the individual regional gains are nssumed to be additive to get
the gain for the entire cconomy. The problem is, given the inilal
gupplies §,, ..., 8, to find the stovage rules 6, ..., &, which
maximize the sum ol discounted oxpected gains over some n-year
period, or, in the limif, over all future years.

Lot Z2,=8,—C,, so that Y,=%,—Q,, where Qiz;n‘_‘__, Q,, is the
j=1

N i
totel amount transporied ouvt of region 1. Lot Q be the vector
Qi ..., Qu). ¥Wedefine the function X as {ellows:

A, .. Zm)=1\ffqax[i26,(2.—QJ—%‘,r.,(Q,”)] (60)

The problem of finding € to get the valus of A is exactly the same as
the maximization of “socizl pay-off” as discussed by Samuelson
(9}, provided the &'s are defined as arcas under the demand curves.
Also, as Samuelson demonstrates, this maximization problem is
equivalent to the inter-spatial equilibrium problem for a free marlket.
In other words, just as we have shown the equivalence of the conditions
for mter-temporal cquilibrium v a free market and the conditions
for the maximization of net gain to the general public (see page 48),
so Samuclson shows the equivalence of the conditions for inter-spetil
equilibrium in 8 free market and the conditions for the maximization
of net gain to the nation as a whole, where total value is talen to
be the mtegral of the market price function. Here we are concerned
with maximizing net gains both inter-spatially and inter-temporally.
We define the operstor J as follows:

3665+ S=MBRE—=Cy, ., Sa—Cd—Zn(C)+
GE¢(CI+KI, LS | Cm+xm)] (61)
where C is the vector (Cy, .. ., Ca) and l\{féxx means the maximum
with respect to C, subject to the rvestriclions OngCiSZ_S, and
C, >0 for all i. ’
Wo now write down the solution as follows:
V=MD G0, ., Sa=Cad =ZM(CI=AG, . S 62)

Vie=MaxD\(S:—Cy, . . o Su—Cu) — _
° Z(@) +aEACi+R, - - -, Catr)
(63)
=M@, ..., S (63.1)
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ﬁ.szh/gax{x(si—oz, e 8—C)—

(€ +aBINCH, . ., Catxad]
(64)
=Ja@S, ... S (64.1)

and in genergl,

Vl,z,=1\1£a.xp\(sl—cl, e Sa—Co)—
;w(Ci)JraEJ““ﬁx(C;—kx,, v v vy Catxu)l
(65)
=J"0\(S,, . . ., Sa) (65.1)

The carryover in each region, C;, or the storage rule for each region,
61, thus becomes 2 function of the supplies in all the regions &,..,

o).

To indicate the extent to which a multi-regional solution magnifies
the computational requirements, we estimate that, for cases similar
to the applications discussed on pages 21-32, going from a 1-region
to & 2-region solution increases the number of computational opera-
tions by a factor of abeut 200, and going from a I-region to & 3-region
solutioa increases the number of computational sperations by & factor
of about 40,000.

Based on the marginal value function.—We next consider the use of
marginal value (or price) functions, o. Forgiven oy, . . ., pm, the price
in any region i in any year is, under spatial equilibrium, & function of
(1) 7y, . . ., Zn), where Z,=8,—C,, and (2) the costs of transport
(1, =1, . ., m). Thatis, for given 7y, pi=y¢.(Z,, . . o Zmy. As
shown by Samuclsor (9), the functions ¢, . . ., ¥, can, with some
cffort, be determined. If we wish to maximize both mter-temporal
and inter-spatial gain, we must find regional storage rules 4, (i=1, .. .,
m} each of which is & function of Sy, . . o Sp.

Thus, for a 2-yeur period (n=2), we find for each set of values
Sy, . . ., Bu) the values of Gy, ., ., C,, such that (for i=1, ..., m)

- & Eibi(cl'i"x{, =y Om"i_xm)_'pi(sl“'oh LI Sm_om)_'}"l(cl) =0 (66) .

This gives ,(Sy, . . ., 3a), i=1, ..., m.
For n=3, we find for cach set of values (§,, . : ., Sy) the values
of C,, .. ., Cqsuch that (for i=1, ..., m)
REHI’E[Ci‘I"x!_eu(OF}‘Xl, . C,u—!-xm), .y
Cm'i"-\':n_sml(ci"l_xi; ey Cm+-\—-m)]*—
E!’x(si—cl, vy Sm——Cm}-—‘y"I(Ci)=0
(67)
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This gives 8,5, . . ., Sp), 1=1, ..., m,

The procedure may conceptually be continued until convergence is
reached, that is, until 8,,=8,,_,=#8, i=1, . . , m. The computa-
tions, however, are formidable, even for the simplest case, that is, a
2-year, 2-region model, a3 may be scen from the following example.

AN EXAMPLE FOR TWO REGIONS AND TWO YEARS

Suppose each of two regions has the same p, F and v, with the
F’s independent, and rp=vy=1 and p(Y)=q—pY. Then the price
in region 1, ¥, is given by one of the following:

(1) If C,>Yotv/p,
WY, Yo)=q—(1/2)p (Y14 Yo)— (1/2)r
(2) I Yoter/p2Y i 2Yo—1/p,
¥ilY,Yeo)=q—pY,
3 If Y, <Y—7/p,
(Y, Yo) =q—(1/2)p (Y, + Ya) +(1/2)7

A symmetrical solution holds lor .,
For region 1, the first term in equation (G6) hecomes:

aq—{1/2)ap (C1+Cot- 219+

Ca=Crdrfpdua

(1.-"‘2)&})(Cg-—Gr—T/p)fm f [ dxd(xayedxat-
va=lf 5i=Cy—Cy—rip-ra

= Ci—Citrfptas
(1}2)apf aj ’ (3 M) dx f(xa)dx

i=C—C—=rntx

and the second lerim becomes one of the following:

(1) a— (2S48 C—C)—(1/2)7, i §,—C >8—Cot-7/p

(@) q—pGE—C), U 80— Cot-7fp 25, —C 28— Co—7/p

@) g—/2)D(S+8e—Ci—Ca)+ (27, if §,— C, <8~ Camr/p
Symmetrical expressions appear for the equation applying to region

2. The solution lor n=2 consists of finding values (C,,C.) to satisfy
the two equations lor each possible set of values (5,,5.).
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APPENDIX
NOTE 1.—MAJOR SYMBOLS USED

Discount factor=1/(1--interest rate}

Constant term in the linear marginal value function

Absolute value of the slope coefficient in the linear mar-
ginal value function

Maximized sum of discounted expected gains io all
future years;

8(S)=Lim V,.(8)

A probability (see page 57)

Cost of storege Minclion, dollars

Marginal cost of storage function per bushel, dollars

Total value function (defined on pages [3-15), dollars

Margingl value, or price, function per bushel, dollars

Marginal value per bushel when utilization equels
29.46 bushels, doliars

Marginal value {unction under conditions of war,
dollars

Flexibility of marginal value function;

e(Y)=—[dp(Y)/dY] . [¥/o(Y)]

Elasticity of marginal value function; p=—1/e

Values of e and 7, respectively, at the point where
quantity utilized equals 30 bushels per acre

Mean of probability distribution

Standard deviation of probability distribution

Carryover rule

Optimal earryover rule

This has two meanings, depending oun the context:

(1) Optimal storage rule in the i*™ year;

(2) Optimal stationary storage rule under the i*® set of

conditions

The result obtained at the i* iteration, in computations

to obtain an optimal stationary storage rule

Carryover rule under war conditions

Carryover rile under conditions of war preparedness

Optimal carryover rule when harvest in esch future
year is assumed equal to a known constant

A funclion defined on page 56

A Tunction defined on page 61

The function which is inverse to the function ¢

Carryover, bushels

An operntor {see page 54)

Equilibrium level of earryover {delined on pages 56-57),
bushels
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O
E

Level that the carryover will reach after two successive
“bumper-crop”’ years {see page 29), bushels

Mathematical expectation; if x;, ..., x; are random
varipebles,

o SF ) « - . dFy(x,)

Expectation with respect to the random variable i

Probability distribution (usually of x)

Probabitity density function of F, or relative frequency

Alternative distribution of output

Probability density function of G

An operator

This has two meanings depending on the context:

(1) Value of 8 below which #(8)=0;

(2) TUsed occasionsally to designate an arbitrary

constant

A function (defined on page 55) which depends on the
probability distribution of outputs

A constant (defined on page 53) whose value depends on
the conditions of an application

Value of the marginal value function at Y=h .

{1} Number of iterations (page 47);

(2) Number of regions {page 64)

Number of years and/or number of iterations

Some specific value of the marginal value function p(Y)

Price in year t (see page 15), dollars

Parameters in the linear marginal value fuuction

p(Y)=q-pY

Ixpected returas to storage in years 1, . . ., n {defined

on page 55)

(1) Interest rate (page 11);

(2} Also used occasionally to designate an arbitrary

constant factor
Total supply in given year=carryover from preceding
year plus harvest, bushels

S:.;“Cc-l'{'-xt

Sum of discounied expected gains in years m, m-1,
R

Maximized Va. n

Gain oceurring in year ¢

Harvest or output, bushels

Quantity utilized, bushels

Y=8—C=S—6(8)

In general, Latin letters that rcpresent quantities are shown in
lower case when the quantities are assumed to be random and are
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shown as capitalized when the quantities are assumed to be given or-
determinable.

NOTE 2.—THE ROSENBLATT SOLUTION

Rosenblatt (8) addresses himself to essentially the same problem
as that discussed ou page 20, namely, finding a storage rule which,
under stationarity, maximizes the sum of expected gains in all future
years, where the gain in any year is the total velue of the erain utilized
minus the cost of storsge of the grain carried over.?® f{owever, for
mathematical convenience, he restricts himself to-

(1) A form of storage rule which makes the CAITFOVEr in any year
& constant proportion (to be determined) of the total available supply
(earryin plus harvest), and

(2) Application of the criterion of optimality only after the prob-
ability distributions of carryovers and quantities consumed (C and Y)
have completely stabilized. This restriction means that, in any
practical application of the rules, their effects during the first several
years of operation are completely ignor ..

The combined effects of these two restrictions or assumptions lead
to storage rules which are in fact highly nonoptimal under the ori terton
adopted, and which, if takon seriously as guides to publie policy,
would result in the incurring of costs to the nation as a whole possibly
running into hundreds of millions of doBars.

The objections to the Rosenblatt approach may be outlined in
greater detail as follows:

1. Tt is nof necessary to make in advanee any assumption about the form of the
storage rule. ‘The method of solution presented by Dvoretzky, Kiefer, and Wojfo-
witz (2) (as modified in this bulletin) perinits the obtaining of solutions withoyt
any such prior assumption.

2. Optimal storage rules undor the conditions and the criterion adopted here
{and the eriterion of Section 3 of Resenhlatt's paper) do not in fact turn out to
have anything like the form assumed by Resenblatt (see p. 69).

3. It can be shown that, using empirically plausible assumptions abont the
other conditions, a constant-proportion storage rule cennot be optimal, uniess the
cost of storage function is assumed to take s form whieh is empirieaily highly
implausible. ~ Consider equation (26.1) shown on page 46, With #(8) =a8, this

gives us
v (C}=aBp[(1 —a) (C+x)]—p[(1—2) C/a]

¥ (0) =alp[(t —~a)x]—p(0)
That is, the marginal cost of storage at C=0 is highly negative. TFar example,
if p is linear {corresponding to Rosenblatt's use of a quadratic weight function)
and p(Y)=q—p¥, then

¥ (0)=—({1—a)q—p(l—a)u
where g is the mean yieid.

Also,
1) =a(1—2) o' (1 —2) (C+x)]— (1 —a)p'[(1 — &) Cfalfa (78}

# Actually, Roscublatt’s criterion is stated as the minimization of the sum of
expected “losses’ in all fuiure years, where the loss in any year is the “weighting’”
attributable to the quantity of grain utilized plus the cost of storage of the grain
carried over.  But the weighbing funelion is simply the negative of our total valug
function, pius & constant; so that the two criteria nro mathematically equivalent.




68 TECHNICAL BULLETIN 1178, U, S. DEPT. OF AGRICULTURE

If p{Y)=q—pY, then p’{Y)= —p, and
¥ (C)= —a(l—a)p+{1—a)pia= (L —a) (1 ~a)p/a (73.1)

Thus for p(Yy=q—pY, +{C)=%4 when
C=2q/(1—a)p+au/(l—a) (7

We can minimize the non-optimsality of the Rosenblatt resnlts if, instead of
taking the carryover as a certain proportion of $otal supply (3), we make it a
certain proportion of total supply minus the minimum possible harvest (8 —Xaicls
This does not change any of the mathematics of the solution, but means simply
that we are “chenging the origin” in the measurements of B, Y and X, This
modification, whick minimizes the degree to which constant-proporiion rules
deviste from eptimality and hence presenis the Rosenblatt results in thelr most
favorable light, is used in the following comments where we compare consfant-
proportion rules with optimal rules.

Applying the above results to a specific case, for example, to the conditicns
applicable to & (see page 30), we find that a constant-proportion rule iz optimal
enly if the marginal cost of storage v (C) is negulive up to & carryover C of aboul
18 hushels per nere, which is more than three times the average carryover that
resulis under the Rosenbiatt solution.

4. The Rosenbistl results maximize? she sum of discounted expected gains,
starting with the current year, ealy if the eurrent initial supply, g, equals the
fong-rnn expected stable or ergodie value of 8. If the initial S is any other valug,
the gains and costs of the storage program during the first several years of applica-
tion of the rule, before stabiliby in all the probability distributions is attained, are
simply ignored. But in the sum of discounted expected gains, the first vears of
the pariod are the most impertant, and a storage policy, to be practicable, should
be applicable to any set of initial conditions. One resuit of Rosenbiati’s restrie-
tion is that nowhere in his solution does e dizcount factor or interest rate appear;
this alone would indieate that the validity of the sclution is, from an economic
viewpoint, rather implausible.

5. As & result of his assumptions, the Roscnblatt storage rules bear liftle re-
semblance to rules which are in fact optimal. They do not even result in a correct
order of magnitude of carryover levels, under alternative sets of conditions, Con-
sider the seven salternative sets of conditions underlying opfimal yules &y, ... b,
respectively, ns shown in table 1. The storage-rule proportion, a, which minimizes
expected losses, and the resulting stable expected value of carryover, EEC, under
the Rosenblatt solution, are given by:

Y et
Vpoify a1

(75

EEC=ap/(1—a) (76}

where o?=varinnea of yields, x=mean yicld, and "= (constant} marginsl cosé of
atorage. If potfuy’<{1, a=4.

Values of a and EEC for the seven scis of conditions, taking the origin for 8, ¥
and X at X, 19 bushels per acre, are shown in table 6, together with the equilib-
rium level, U%, of the corresponding optimal rule.

A §mphica.l comparison of rules that result from the Rosenblatt approach
and the opbimal rules developed in this bulletin is shown in figure 8, using the same
alternative conditions as in fabile 6.

8. An idea of the magnitude of the economic loss fo sosiety that would be in-
curred by adopting the Rosenblatt solution, instead of using optimal storage rules,
is obtainad by using the concept of expected returns Yo storage, as defined on
page 55: the difference between the sum of discounted expected gains when the
optimal policy is followed and the sum of discounted expected gains when the
carryover in every year is zero. We may readily extend this concept so as to
apply it to shy storage policy, whether optimal or nonoptimal: for any given stor-
age poliey, the cxpected return is the difference hetween the sum of giscounted

© Subject to his constant-proportion storage rule restriction.
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TaBre 6.—Corn, oals, and barley, corn eguivalent: Storage rule proporiion and re-
sulling evpecled slable carryover per acre under the Rosenblalf solulion compared
with the equilibrivm carryover level per acre under an oplimal rule

Rosenblatt resuits
Equilibrium
CATTYOVver

Storage rule | Average carry- {0k}

proportion (&) over (EEC)

Bushels Bushels

1 See table 1 for specified couditions.

expecied gains when the given policy is followed and the sum of discounted ex-
pected gains when the carryover in every yenr is zero, The expected social loss,
then, incurred by following any given noneptimal policy may be defined as the
expected return to the oplimal policy computed for the given conditions minus
the expected return to the given nonoptimal policy.

FEED GRAINS: STORAGE RULES PER ACRE
OPTIMAL RULES COMPARED WITH
CONSTANT PROPORTION RULES

Under Afternative Conditions Specified in Table 1
CARRYOQVER (BU.)-C

8

a, is the constant properiion rule

under cenditions that apply lor D;

0 LeasiiZs
19 27 3
TOTAL SUPPLY {BUW.)-S

0, QAT AND BARLEY, CORN EQINVALENT.

U. 8 DEPARTMENT DF AGRICULTURE HEG. 4111-57 [4)

AGRICULTUR AL MARKETING SERVICE

Fiaunn 8. —Storage rules developed under the eonstant-proportion assumption
used by Rosenblatt diifer greatly from the optimal roles developed in thie bul-

letin and, if taken seriously as guides to publie pelicy, would result in Iarge
costs to the nation as a whole.
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The expected returns for the optimal rule 6, (see table 1) liave been
computed for alternative values of the initial suppty S, and are given
in the following tabulation:

Per acre

Injtial supply Expected
return

Bushels Dolia rg

The Rosenblatt solution, when applied to the conditions for which 8,
1s optimal, results in zero carryover in every year (see table 6). The
expected return under this poliey would therefore he zero for any
imtial supply S. Hence the expected returns for the optimal policy
- are in ths case equal to the expected losses that would be incurred
under the Rosenblatt solution policy. When we multiply the above
figures by 140 miilion acres to convert them to national ageregates, the
expected losses range from a minimum of about $45 million to &
Ppossible maximum of $1,500 million or higher, depending on the level
. of initial supply.
As another example, consider the conditions for which & {table 1) is
optimal. The cxpected returns under 6, for alternative levels of
initial supply S, are:

Per acre

Initial supply Expeeled
retuzn

Busheis Dollars
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The Rosenblatt solution, when applied to the conditions for which
By is optimal, and taking the S-axis intercept of the storage rule at
Tom=19 bushels per acre (to minimize the non-optimality of the
selufion), results 1u a storage rule proportion a=0.314 and a long-run
expected carryover KEC=4,78 bushels per acre (see table 6). We
have not computed a complete table of expected returns under this
rule, for alternative values of initial supply S. Iowever, 2 comparison
cao be made between the two rules by taking the situation most
Saverable to the Rosenblatt rule, namely at the point where the initial
supply S=34.24 bushels per acre, the long run expected level of 8
which ecorresponds te the long run expected carryover ERC =478,
For an initial S=34.24, the expecled return under the opiimal rule is,
by interpolation in the above table, about $13.12 per acre. The
expectecd return under the constant-proportion rule (for initial S==
34.24) is obtained as follows:

(1) Net gan m current year
=(Total value under rule)— (Cost of storage)

—(Total value with zero carryover) (77
=(gp—pu}2)— (v EEC)—[34.24 q—p (34.24)%/2] (77.1)

since ¢ is the amount ulilized under the rule and 34.24 is the
amount utilized with zero carryover, Substituting q=6.50,
p==0.167 (p. 24), v'==0.04 (table 1), EEC=4.78, and u=29 .48,
gives:

Net gain in current year=—%5.92. | (77.2)

("The negntive sign, indieating o nei loss, is, of course, what we
should expect.)

Expected net gain in each future year
=% (Tofal value under rule)—T (Cost of storage)
— L {otal value with zere carryover) (78)

=EE({qY—pY?*2)—v' EEC—-E{(X—pX?¥2) (78.1)
=p(Var X—Var Y)/2—+'EEC (78.2)

where Var X is the varianee of X and Var Y is the long run
{stable) varianee of Y. (The lost step malkes use of the fact
that the long run expecied value of Y, EIEY =u) It can be
shown that Var Y={1—a)**/(1—a?), whete ¢"==Var X, so thai
Var X—Var Y=2as%(1+a), Substituting p=0.167, ¢?=9,18,
a=0.314, v =0.04, gives:

Expected net gain in cach future year=3%0.175. (73.3)

The sum of discounted expected net gains in all future years is

olstained by multiplying the resull of (2) by 35 a"=cof(1—a).

u=i
Substituting «=0.98 (table 1} gives:
-»
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Sum of discounted expecied net gains in all future years=
($0.175) (49)=88.59. (79)

(4} Adding the results of (1) and {3) gives:

Ixpected returs under the constant-proportion rule (for initial
5=34.24) equals $53.50—$5.02=§2.67. (80}

Comparing the expecled reburn of $2.67 undey the constan t-proportion
rule with the expected reburn of $13.12 under the optimal rule for the
same conditions, we have an cxpected loss to the entire nation
813.12—82.67=510.45 per acre incurred by adopting the Rosenblatt
solution imstenad of an optimal rue, even under (he assumpiion about
initial supply which is most favorable o the former. Muitiplying the
per acre loss hy 140 million scres gives n national agoregate loss of
about $1,500 milfion,

NOTE 3.—A STORAGE RULE UNDER WHICH THE ADDITION
TO CAERYOVER iS A FUNCTION OF CURRENT CROP
ONLY

A storage program might he thouglit of as an atlempt fo decrease
the variance of a probabiity distribution, that is, an a{tempt to con-
very the distribution of outpuls o a distribution of guantities
utilized with the same shape but smaller variance. The objections,
operational and analytical, to the direet application of such 2 concept
in Lhe derivatinn of storage rules were set forth on page 8. A pu-
merient example illustrating the details of liow such a divect applica-
tion would work out is given here,

Let us consider wheat nlone, and treal the Inited States as a singie,
closed markes, We assume n conslant acreage of 68 nullion acres,
approximately the average for 1919-50. Actual yields per seeded
acre for all wheat during 1819-50 are considercd as random inde-
pendent observations, We thus have a sample of 32 observations
wibth & mean of 13.05 bushels per acre and a standard deviation of
2.60, and an approximately normal distribution.® We assume, then,
that annual cubput (X) Is normnlly distributed with mean ge=13.05%
68=3887 million bushels and standard deviation ¢,=2.60X68=177
million Lushels. The probability of oulput lalling more than 20 per-
cent below average is about 186 percont.

Suppose we wish bo make the amount added to carryover a funclion
of the current crop and to alter (he variance of (he distribution so
that the prob.bilily that the quantity ol wheat utilized (Y) in any
year will {all more than 20 percent below average is reduced to 5 por-
cent, instend of 10 percent. The eriterion mus{ be kepl in torms of
probabilities, unloss we go to the extreme of eomplete stabilization, or
unless we stale the criterion in torms of the change in the variance
itself, The simplest form for such a rule is Z=0.39 (X~887), where
Z 1s the amount to be added Lo carvyover. 7 can be positive or nega-

¥ A poodness-of-fit tost for nermality gives a probability level for x* of more
than 90 pereont, &
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tive, of course. This rule would result, under the assumpbion stated,
in a normal probability distribution of Z with mean g, =0 and standard
deviation ¢,—69 and a normal probability distribution of guantity
utilized with p, =887 and ¢,=108. Here, Y=X—Z, that is, the loss
of grain in the storage operation itself is assumed neghgible.

Since we assume independence in yields between years, the total
amount added to storage after n years of operating the rule is

Z;+Zz+ PN +ZH=EZ {81)

s normally distributed variable with zero mean and standard devia-

tion ¢=+/n . 6,=060yn. Since the first years of the peoriod of
applicasion of the rule may themselves be years of low yields, it would
he necessary to start the period with grain on band. ‘Thus, for ex-
ample, in order o be 99 percent sure of having cnough grain in storage
to operate the rule for one year, the storing agency would need to
start the year with 161 million bushels on band. To be 89 percent
sure of having enough grain in storage to operate the rule for § years,
the agfglcy would have to stert the period with 483 million bushels
on hand.

The effects of sllowing for sampling error in the distribution esti-
mates also can be illustrabed. Confidence interval estimates at the
80 percent probability level for the mean and standard deviation of
vield are: 12.27<p<13.83 and 2.16<(¢<(3.30. Bascd on the national
ageregate of 68 million acres, the confidence intervals for output are:
835< 1 <941 and 147<Co,<(224. Tf we (1) ignore the possible error
in the mean ¥ but tale ecach of the confidence limits for o, and (2) use
the same criterion for stability in quantities utilized and the same
kind of storage tule a3 previously, resulbs shown in table 7 are obtained.

Tanim T—Wheai: Upper and lower tmnils for storage rules and related quanlilies
oblnined when the addilion to carryover 45 a funclion of current production only and
allowance 13 mnade for sampling error in the stendurd error of oulpul

Limit

Ttem Uit

Lower | Upper

Standard deviation:
Cutput, o.! Mil. bu. .
Slomyge rule, o
Probability of an output less than 80 pereent of
IVETAZE.

Rtorage rule ss o proportion of the deviation of
the crop from average, 4.

Inilinl stocks required to he able to operate bhe
rule with 99 percent ceriainly for— o1

273

1 Lbmits shown are based on s confidetica tnterval at tho 00 percont probeidiity fevel.

i Wrrors of this sort imply that application of the rule results in the level of
earryover Erending upward without bound, or downward bo zero.
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NOTE 4.—RELATIVE IMPORTANCE ON OUTPUT OF VARIA-.
TIONS IN ACREAGE AND YIELD -

The total variation in acreage normally is quantitatively of less
importence than the variation in yield in its effect on variability of
output, This is illustrated by the data for wheat and corn in the
United States as shown in table 8.

TABLE 8.—Wheai and corn: Relative variabilily in acreage and yield per seeded acre
as fnedicaled by specified coeficienis 1

Whent, 1919-50 Corn, 1820-50
Ttem
Acres Yield Acres Yield
\ I

Millions Bushels Afillions Rushels

Mean_ . ... 68. 2 13. 06 5.5 28.
Standard deviation___.__________._______ 7.4 2.6 8. 4 7.2
Range ... ____ T _TTTTC bosiy 10.37 286 28.0
Mindmuwny____ oo . 58,0 2.0 84 4 14, 4
Maximuem. .. BT i§.3, 113.0 42 4
Average year-lo-year echange_ ________._. : 4. 6 1.4 3.1 4.0

As a pereentage of the mean: i Percent | Percent Pereent Pereent
Standard deviation ________________ P8 1009 .8 25 4
Rawvga oo ... e mmm———— i 46.5%1 78,4 voo2g. 4 08, 9
Minknum minns the mean. _________ | —22.3 | —38.7; —11.6 —d9. 1
Maximum mineg the mean. . __..___ 24 2 40.2 18. 3 49, 8
Average change_._..___ __________ bogs 0.8t 3.3 4.1

} Pablished series on yield por seeded neee Beghn In 1918 for wheat and {1 1920 for corn.

The total variation in acreage is made up of predictable changes as
well as napredictuble.  If we were to compare the relative magmiudes
of unpredictable variations in acrcage and vicld, the former would be
of still less importance than indicated by the figuvres for total variation.

This subject is discussed in detail in a recent Senate Commillee
repori (12, pp. 17-30),

NOTE 5.—THE SOLUTION USING THE TOTAL VALUE {3)
FUNCTION

As has been indicated, this solution is adapted from that by
Drvoretzky, Kicfer, and Wolfowitz {2). Some modification was re-
quired because of the different structure of the problem. Also, the
concepls “returns lo storage” and “equilibrium level of carryover”
do not have counlerparts 1n the inventory problem considered by
these suthors.

The solution as written out here assumes, for simplicity’s sake,
dependence in probability distributions of yields between years.
Modifications required to incorporate joint probability distributions
of yields in all years are not formally serious, though they would in
general substantially increase the number of computations. AModifi-
cations required for scrial dependence of specified kinds are discussed
on p. 59,
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We first give the solution for & set of optimal storage rules for an
n-year period, with no assumption of stationarity. Using the nota-
tion in the body of the bulletin, we generalize by letting Vi, be
the sium of expected gains in yearsm, m+4-1, m+2, .”. . n, discounted
back to year m. Thatis,

Vo, =¥ m—!—aEWm_,.]—I—-aEEWm_,.g—i-. .. oPTPW, {82)

A . "
If Vo5 is the maximum Vo, for given S, we have:

A

Von= Max [6G,—C —7(Co)l=56.(So) (83.1)
0<CnZBa

1<7::—1,;:: Max l:an—z(sn—l"'on—l)“‘Yn—l(Cn-!)“i'

OLC 1< any

o f Y (Gn_1+x)dﬁ‘n(x):[
"‘_—\f/n—l(s -—!) (S{L:)")
\A?'n_:,_ .= alax |:6,,_g(S,._:-—cn—e) —Ya-2(Co2) +

OSCu2<8n2

« f e cc[,4+x>c11f‘u_1<x)] (83.3)
=y (5,0 (ay) (84.3)

and so ou, Uil we reach

Vo= Max [al(siﬁca—vl(ca)-m f G%(oﬁtx)dn(x)] (83.4)

O£ <,

=¥ (S (say) (84.4)

A . N . + + - .

Ve 18 thus a function of 8 obtained by maximizing, {or each value

of By, the expression in square brackeis. The oplimum carryover

. . A . L.
for year m, for given 5, is that value €y, which maximizes the same
expression. The oplimal storage rule 4, is the set of all such pairs
A

(Spy, Can)- _ _ )
Thus, the computalions are actually carried out on the gain

functions, with the storage rules coming out more or less as by-prod-

ucts. 'This is the complete solution for the n-year non-stationary casec.
For the stationary case, where 8, v and F arc the same in each yeor,

we note first that \}i, t+m 88 & function of S, is the same as \'}n, ntm 88

& function of 8, for any m and n. We now define the operator J,

operating on any function ¢, by

J6®)=Max | (6-0)—vO+e| $C+0dPE | 39
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Theun, emitting subscripts from 8, and C,:

Vii= Max [6(66—C) — (O] =5(3) (85.0)
00y
V.= Max [a(S—C) —v(C)+afm5(0+x)dF(x)]=J8f.S) (85.1)
=048 [}

V0= Mox. [5(8-—0} (Ot a ﬁ Js (C—i-x)dF(x)]::J?a(S) (85.2)
and in general

V= Max [5(3—0)4(0) ta f “Jn-za(c+x)dF(x)]an—la(S)
0<C<S o
(85.3)

For given n, we obtain &, the optimal rule for the first year, by noting
for each value of § the value of C that maximizes the oXpression in
square brackets.

The only remaining question js, Doos the process converge so that
&s n gets larger and larger the resulting 8, gots closer and closer to the
best stationary rule 87 In other words, if we designate by 8(S) the

sum of discounted oxpected gains to infinity when the best rule 8 is
followed cvery year, does Tim J75(8)=g8(5)7 ‘This sccems obvious,

i@
buf in any case, a formal proof of n stronger statement ean be offered,
namely, that if g(8} is any bounded function, then Lim J°g(S)=B(S).
=) i

This implies that we could reduce the number of iterntions NECCssary

to achicve a given closcness of approximation to 8, by starting with
some g(S} which is closer to 8(8) than is 8(3). 'This result was net
used in the actusl computations, however, because (1) it was not
ebvious how to find a g(8) that would bo much better to start with
than §(5) itseif; (2) it was fcit to be somewhat advantageous to
follow a procedure with as much infuitive plausibilily as possible;
(3) by starting with 8, cach iteration produces in itsell a result which
has common sense meaninglulness, that is, a storage rule which is the
optimal rule for the first year of an n-year period (in the case of the
{n—1)" iteration).

However, the proof, which like the rest of this discussion is ndapted
from Dvoretzky, Kicfer, and Wolfowitz (2), is recorded here for
possible use in [uture applications. We first break the operator J
into two parts I and G so that J=1 G where

1#(S)=, sup 18(5—-C)+4(C)] (86}

GH(C)=—(C)+ee :qS(C—j-x) dF (x) (87)
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With 8 defined as in the preceding pam%l aph, the maximized sum of
discounted expected gains in all intervals except the first, is

« f "8(C %) dF () (88)

So we can write:
8= sup BE—0)~7(C)+a | BO+x)dFE)]

=J8(8)=1GB(S) (89)
Since 3{8) 1s bounded, (8} also must be bounded and so must 8(5)—

g(3). Let
sup [B(S) —g(S) =M (90}

Then
sup [GB(S)—Gg(®) <M (91)

GHE—G3(O) = [ BE+0)—gE-+IMFE @1.1)

Sa‘l;mguzjgiﬁ(R) —g(R)dF (%) (91.2)

=a sup{f(R)—g(R)[=eM (91.3)

Also,
sup[IGA(S) —1Gg(S)| £aM (92)

To prove this, we must show that

sup |Ié(8)—I:(S)| < sup [¢:(5) —¢:(5)] (92.1)
830 520

For given S, let

38—R)+-(R)=h(R) 0 <R <E) (92.3)
and
8(8—2)+¢(L)=y(Z) (0<ZLS) (92.4)
Then
R<S
ot @@ <a®-u@ { 2,50 @29

and

mf !f':(R) o2} S (L) —y (Z) {0<7 <8 (92.6)
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We take sup with respect to Z on both sides:

inf yi(R)— inf vo(Z) < sup [Wi(Z)—¢u(2)] (92.7)
0<R<S 0<Z <8 v<ZE8
16, (8)—16.(8) < sup [&(Z) —:(Z)] (92.8)
0L <S
Now let S vary, and take sup with respect to S:
sup [14(8) —I1¢:(S)] < sup [¢,(8) —¢:(S)] (92.9)
520 820
Similarly, by switching subscripts:
sup [I6:(8) —I,(S)] < sup [¢e(S) —¢,(8)] (92,10)
820 820
Therefore,
sup 1 (S) —I(S)] < sup [44(S) —(S) ] (92.11)
8x0 Ll

S0 we have shown thai:

sup [JB(S}~—Jg(8)| <ol 92)
&x0

Repeating n times, we have

sup "8 (8) —JI"z(S)| <a~M (93}
820

and since JE(S)=(S), we conclude
Lim Jog(S)=8(S) (94)

This completes the proof.

We have, then, the result (hat J%(8) approaches a lmit as n gets
larger, and the resulting 4, converges io the best stationary rule
. The question arises, How close are we to convergence after any
given number of iterations? This cannot be answered exactly, of
course (if it could, we would be through before we started), but the
speed of convergence can be seen by taking the difference Je(8)—Jo—
3(S). In the hmit, this must be zero, and one can continue the
iterations till it is as close to zero as desired. In praclice, however,
it turns out that this difference becomes nearly a constaut, long before
it diminishes to zero. It ean essily be shown that if J° §(8)—JIm13(S)
were g constant, then the storage rule would have reached convergenge,
as further iteralions would make no further change. Hence in most
cases litte is gained by coniinuing the iterations beyond the point
where J°5(8)—J°5(S} is nearly constant,
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NOTE 6.—MATHEMATICAL EQUIVALENCE OF SOLUTION
PROCEDURES USING THE MARGINAL VALUE (o) FUNC-
TION AND THE TOTAL VALUE (5) FUNCTION

Year n.—C==0 under each procedure.
Year n—1.—Using &;
Vie1,0=8(5—C)—y{C}+oEs{C-+x)
To maximize with respect to C:
AV 1,a/dC=—p(S—C)—v" (C)FaEp(C+x)=0

This is identical to the condition used i the p—procedure.
We now check the second order condition:

&V ofd(F=p' (8= C)—v"(C) +aEp’ (C+x)} <0

since o’ <70 and 4" >0.

Year n—2.—Using §:

Viza=88—C)—7(C)+aBV,_; . (C+x)
To maximize with respect Lo C:
dVy2.afdC=—p{8—C) =7 (C) LV, (C+x)=0
Using g )
—p8—C)—v'(C) +alp[C+x—b,  (C+x)]=0

For equivalence, we must show that

\?::-I.n (S) =F LS_"én—l (S)]

for every S.
Voer.n(8Y =88~y (3)]— ¥[8a-1 (8)] +aBo[f,_, (8) +x]
Vicsn(8)=p8— by ()] - [1—Bm s (8)) =¥ [B0t (8)] - B,a (B) +
aBplbant (8) +x]-6.1(S)
= p[S— by ()] -8, (5) + { — p[S — B (S —
¥ (801 (8)] 4B plbs-1 (5)+x1}
= plS—8.-.(S).

This completes the proof of equation (97).
The second order condition 1s:

d*V,_p ofdC2=p’ (8 —C)—v"" (C) +-alig [CHx—8,_, {C+x)]-
[1—6. (C+x)] <0
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ginge 0<9' <1,

To complete the proof, we show that if equivalence holds for =,

n—1,. . ., 0—k+1, n—k, then it holds for n—k—1:
For n—k:
Vo ofdC= —p(E—C)— 7 (C) +aBV e o{CHx)=0  (99.1)
and
—P(S_C)‘“"Y;(C) +REP[C+-\‘“5n-k+1(C+K)]=G (99-2)
Hence,
, BV 2, a{CHX)=eEplC Hx— by s: (C+x)] (99.3)
ang

GEV.’:-kH, n['-an—k(s) +x}j=albp{ én—-lc S)+x— én—r.—n[é {8 +x]} (98 4)
Forn—k—1:
Using 5:
Vocaat, 02288 — C) -y (CY+ B ¥ oy o (C4-x) (100.1)
To maximize:
AVyy1.ofdC=—p(S—C)—+(C)+aEV. s (C+x)=0 (100.2)
Using p:
—p(8—C)—v"(C)+aBplCHXx—FanlCH+X)]=0  (100.3)

For equivalence, we must show that

v;—n.n(8)=9is_én-k{s)] {101)
for every 8.

Vi xa(8) =818 —8o 1 (8)]—{bor(8)]+eE Voorsn, uffe_u(8)+x] (101.1)

Vi n(8)=pIS — 8o x(S)]- [1 — 8, s —v' [Box (3] - 0n(S) +  (101.2)
GEV;—HJ. n[én-k(s) +x1- é;—k(s)
ZP[S“éﬁ—x{S)}+é;—k(S) { _P[S_én—k(s)]_

¥ [Bax(S)]H+oEV,_y g1 alfon(S)+x1} (101.3)
= p[S—8._x(S)] (101)

This completes the proof of equivalence.
The second order con lition is:

AV x1,0/dCP=p (83— C) — " (C) F B [CHx—Fo_y (C+x)]
[1—6. (CH+x)1<0 (102)
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NOTE 7.—EQUIVALENCE OF CHANGES IN o AND ' (SEE
PAGE 49)

(1) If 8 satisfies

aJ:p*{C-I-x—B(C+X)]dF(X)—p“[r?_‘(C)—C]—'Y'(O)=0 (103.1)
where p*(Y)==rp{Y), then the same § also satisfies

« L ¥ O+ x—B(C ) IAF() —rold~{C)—Cl—y (C)=0  (103.2)
that is, 1t satisfies

[ PIC+5—0(C49) 4P —olg O =CI— (/) (=0 (1022
}Ience, changing p{Y) to p*{(¥)=rp(Y) is equivalent in its cffects on
8 to changing 4 (C) to ¥ *{C)=(1/t) ¥(C). Also, if p*(Y)=rp(Y)

and " ¥C)=r+'(C), then the same 8 is optimal under cither p*,
¥ *or g, v,

(2) If 6 satisfies

o J; " o MO x—B(C O 1AF(x) —p* [0~ (C) — €1 —v' () =0 (104.1)

where p*(Y)=p(Y)+XK, then the same 8 also satisfics

« L ¥ PG x--8(C ) JAF ()oK — 81 (C) —C—
K— (=0 (104.2)
that is, it sabisfies
aj: plCHx—8{(CH+x)AF(x) —p[8~{C)—Cl—{+' (C)+ (1 —e}K}=0
(104.3)

Henee, changing o{Y) Lo p*(Y)=p(Y)+K is cquivalent {in its cffects
on @) to changing 4" (C) to

YO =" ({CY+ (I —a)K (104.4)
(3} If ¢ satisfies

ar [t x—B(CH-)JAF () —p*aH(C) —Cl—7(C) =0  (105.1)
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where o*(Y)=rp(Y)+K, then the'same # also satisfies

af " rolC+x—0(C+ DR +aK—1pls=(C)—Cl-K—v'(C)=0 @

(105.2)
that is, it satisfies

a f " G- x—6(CHIIF (9 —pf8= (C)— Cl— (1) v’ (C) - (1 —a) K] —0
(105.3)

Her}ce, changieg p(Y) to o*(Y)}=rp(Y)+XK is equivalent in its effects.
on # to changing ' (C) to

YHO =W O+ 00 —a)K (105.4)

NOTE 8.—RELATION BETWEEN OPTIMAL STORAGE RULES
UNDER DIFFERENT YIELD DISTRIBUTIONS (SEE PAGE 50)

To simplify the notation here, consider 8, Y, and x to be measured
as devigbions from u.  That is, wherever S appears in this note it
means S—p, and similerly for Y and x. Hence, in this note, u=10,
Let G and ¥ be alternative probability distributions of x such thatb if
g and f are the respective probability density functions, glrx)={1/r)
f(x). Then G has the same mean p as F, and the standard deviation
of G is r times the standard deviation of P, i. e., sg==10y.

if g is the optimal storage rule under G it satisfies

af " olCHy—do(Chy)lEm)dy—plia QO —Cl—7 Q) =0 (26.5)
Now define 8*(8):(1/1‘)éc(r8}. Then 9*“(0)2(1/1")55%1'0), since
if we set C=6*(8)=(1/r)6:(1S) and solve for 8, we have

rC=485(rS) (106)
d5'@C)=1S (106.1}

and
(1/r}651(rC) =S=0*-1(C) (108.2)
Also,
66(S)=18*(S /) (106.3}-
and
B3 H(C) =rg*—(C/r) (106.4)
Thus, #* satisfies

« f A+ Y10 (Cfr -3/ Iy )y — ol () — O] — 7" (C) =0

107y
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Now let p*(Y)=p{rY), that is, p{Y)}=p*(Y/r). Then #* satisfies

“f j o*[Cr+yfr—*(Ch+y/)ig(y)dy —p*o* 1 (C) —Cfr]—7' (C)=0
(107.1)

But-since this is irue for any value of C, then if v/ (rC)=+"t0) {for
example, if v’ is constant), % satisfies

o J‘"_ P HC 7 /r— 85 (C 7Y () Ay — o (8%~ 1(C) — O] —” (C) =0
(107 2)

Now let yfr=x, so y=rx and g{y)dy=gltx)rdx= {1 /e {E)rdx=1(x)dx.
Then * satisfies

afw 2 CHx—*(CH)IEE) dx—p*[e* (C) —C}—7'(C) =0 (107.3)

—

Hence, to find ¢, we find 6% which satisfies the last equation, and

then §5(S)=r8*(S/r) (where S, it is rcmembered, is here measured
from p).

NOTE 9.—PROOF OF THE METHCD OF OBTAINING THE
OPTIMAL STORAGE RULE 6 FOR THE CASE WHERE
FUTURE OUTPUT IS CONSTANT (SEE PAGES 53-54)

TFor simplicity, the circumflex # is omitted from 8 in this note, it
being understood that we are dealing with an optimal rule. The seg-
ments of the rule arc designated 8,, 8, 6, . . ., it being understood
that these ave segments of a single rule and not different rules for dif-
ferent years (asin the eartier notation). The initial poins for segment 8,
(thelower end of thesegment)is (Cy,S,), where Co=0. Theterminal point
for segment 8, {the upper end of the segment) is (C,3,) (i=1,2,3,. ..}
Our object 1s to determine the segmeuts of the optiznal rule, 8y, 8,, . . .,
and, in particular, to determine the values of the segment conaceting
points (C,S)) (=0, 1, 2, ...}, given the discount factor &, the (constant)
marginal cost of storage 7/, and the marginal value function »(Y).

We designate the coustsnt future harvest by h, and define the
linear operator D by DZ=at—+". Starting with the “fucdamental”
equation for optimality of the storage rule 8,

o J; " O+ x—0(CHAF(x) —¥ () —pl8~1(C) —O]=0  (26.1)

this becomes, for constant output h and constant marginal cost of
storage - *,

ap{C-+h—8(C+-hY]—v' —p[6~(C)—C]=0 (26.6)
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which may be rewritten as
871 (C)=C+p ' {ap[C+h—8(C+h)]—v'} (108)

This is the basic equation to be used in the derivation.

For C=0, 671(C)=_8, (the intercept of & on the S-axis), so, from

equation {108):
So=p"{aph—0h)]—v'} (109}

If p'<(0 and «<1 and 4’ >0, then 8(h)=0, since if #(h)>0, then
3,< b, which contradicts 8(h)>>0. Therefore,

Se=p"Hap(h) —+']=p"[Dp(h)] (41)
and we have determined the initial point (C,,S,) for the first segment
&.

"We thus have 8(3)=0 for S<S, which gives 8(C+h}=0 for
C+b<8; or C<8;—h. It follows that {from equation (108)} for
0 <C <8,—h, the inverse storage rule #7*(C) is given by

87 (C)=C+4pap(C+h)—~'] (108.1}

where 6; is the first segment of the rule, and is completely defined by
the expression given. The terminal point of this segment is:

C]ZSQ‘—“h (110.1]

8;=071"(So—h) (110.2)

=3y—h+p " [ap(So) 7] (110.3)

=5g—h+ o' [D*p(h)] (110.4)

We thus have 6(8)=6,(5) for S,<8<8,, which gives 8{C+h)=

6 (C-+h) for S, <C+h <8, or 5—h<C<S,—h. It follows (from

equation {108}) that for S;—h<C<5,—h, the inverse storage rule
¢~1(C} is given by

83 (C}=C+p"{ap[C+h—6(C+h)Y]—+'} (108.2)

where 6, is the second segment of the rule, and is completely defined
by the expression given. The terminal point of this segment is:

C,=8,~h (111.1)
S,=031(3,—h) (111.2)
=8i—h-+p"H{ap[S—8(S)]—v"} (111.3)
=8 —h+p o (5, —C))—v'] (111.4)
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=8, —h+peplp ' D% (k)] —v'} (111.5)
=8, —h~p7[aD%(h) —v'} (111.6)
=8;—h+p[D%(h)] (111.7)

Continuing the proof, by induction: If 8(8)=60,,() for
8,_: <8 <8, where the terminal point of ¢, is

Ci.i=81—h {112.1)
S11=8;_2—h+ 5D 'p(h)] (112.2)

then it follows [from equation (108)] that for S, ;—h<C<S$,_;~h,
the inverse storage rule §~'(C) is given by

0571 (C)=C4p{ap[C+ b8, (C+h)]—v"} (108.3)

where ¢, 1s the i*" segment of the rule, and is completely defined by the
expression given. The terminal point of the i*" segment is:

Ci=8,,—h (44)
8=07'(8,.,—h) (113)

=8 —h+p Hapl31— 08,1 )]—'} (113.1)

=8,1—h+p {ar(81.1—Cim) —'] (113.2)

=5, 1—h+p Heaplp'D'p(h)] —+'} (113.3)

=81 —h+ 7D p(h)] (42)

'To complete the proof, we check that the segments are connected,

thet s, that the terminal point of the (i—1)™ segment lies on the i™
segment:

07:(Ch) = Crr b {aplCrtFh— s (Co k) =7} (114)

that is,
?
Sy 1=Catp ™ epSo—04(S0)]—v'} {114.1)
The expression on the right of the equality sign reduces to
01—1+SI—1_SI—2+]1:SI—1 (115)
This completes the proof.
It is clear from the expressions for #, (i=1,2,...) that, if p is
linear, the storage rule segments ¢, also are linear. It is fairly easy

to write out explicitly the algebraic expressions for the consecutive
segments. If the marginal value function p is not linear, the storage
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rule segments are not linear, but can usually be adequately spproxi-
mated by linear segmeants connecting the end points. If thus approxi-
mation 1s felt not to be adequate, intermediate points zlong the
segments can be computed using the expressions dertved above,

NOTE 10.—METHOD OF APPROXIMATIRG THE VALUE OF
THE S-AXIS INTERCEPT K OF AN OPTIMAL STORAGE
RULE (SEE PAGES 54-55)

We wish to show thet the S-axis intercept k of an optimal storage
rule can be approximated by solving the following equation for k:
k=X —aal{k), where for simplicity wesubstitute the symbol a for the
symbol &, defined on page 55, and the other symbels are defined on

pa%ve_ss. . L ]
ith given & (by an a priori assumption about the average slope
of the optimal storage rule), the optimal rule # can he approximated

by the expression
alS—k) for 3>k
— 116
6) {0 for 8<k (116)

Then 6 4{C)=C/a+Lk.

If the marginal value function is linear, we use it directly, otherwise
. we approximaie it by a linear funetion p{Y)=q—pY, where q and p
are chosen to give, at Y=Ex, the same value of p and the same slope
as that of the actual p,

With p{(Y)=q—pY (actunl or spproximate), the basic equation
for optimality of & becomes:

o«

7O =K+ (1 +a)C—ea ) Cﬁ{C—I—x)dF(x) (40}
whera
K=~"fo+ (1 —ea)g/p+abx (40.1)
=Ex— (1 —a)p(Bx)/o" (Ex)}—+'/p (Ex) (40.2)
"The secoud expression for K is equivalent to the first, since p=—p'

(Ex) and q=p (Ex)+pEx. _
Using the gpproximation for § given by equation (118), squation

(40) becomes C/a+k-——K—i—(1+a)C—~aﬁ: ACHx—AFE)  40.3)
80 that, at C=0, we have

o Y ﬁ " AR () = K — el (k) (13.1)

"This completes the proof.

For the case where the actual p is not linear, a closer approximation
to k, but one requiring more computatioval labor, can be obtained as
follows:

We have

e-l(c>=c+p~i{a | ”p{0+x—s(0+x)1dF<x>—y'} (117)
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Using the approximation for ¢ given by equation (116), this becomes

0/a+k=c+p-l{a {5 e p0areo+
aJ:Op{(l~—a.)(C+x)]dF(x}—'Y’} (117.1)

so that, at C=0, we have:

k [--3
kzp—l{aﬁ o J; p[(l—a)x-]—ak]dF(x)—‘)”} (13.2)

"The expression on the right side of the equality sign is a function of
kk, so that the equation can be solved for k by numerical methods.
When p is linear, the above equation reduces to the simpler ene,

k=K —aal,(k) (13.1)

NOTE 11.—THE EQUILIBRIUM LEVEL (SEE PAGE 5¢6)

If 6(S) is continuous and 0<d%3)/dS<r< 1, then consider the
function

A(O)zfa(oﬂ)dh‘(x)—o (118)

AA(C)/d0—= fn "8 (O )R () — 1< T—1<C0 (119

Therefore, if A(C*)=0 for some value C*, that value is unique. But
if §{xgax) > 0, then

A(0)=J;°9(x)dF(x)—o>o (120)

and, since dA(C)/dC<(r—1, therefore C*>>0 exists. N
Also, for C.<C*, A(C)>0, that is, L 8(C,+x)AF (%) >Cy; but f

8(C,+x)AF(x) <C*, since if this were nos so, then we would have L
GG, 4-xdF ) > j; ac‘8(C"‘—l—x)dF(:-:) , which violates the coadition that
>0, Similazly, for C>C*, AC<O, that is, fo O AR <
s butﬁmﬁ(Cn—l—x)dF(X) >C*,

Hence, we have the result that EC,,, always lies between C. and C*, «
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NOTE 12.—GENERALIZATION OF THE SOLUTION TO AL-
LOW FOR EXPORTS (OR IMPORTS) AND OTHER FACTORS

The basic storage-rule solution ean be modified in various ways to
make it applicable to grains for which foreign trade is importaut.
The maodification chosen for a particular application depends ou the
circumstances of the particular case, on the amount of information
available, and on any possible modification in the criterion of optimal-
ity which may be required.

The simiplest situation is one in which a couutry is committed, as
by an international agreement, to export {or import) a specified
amount of the grain cach year. In this case, the amount to be
exported (or imported) is subtracted from (or added to) the total
supply for the year and storage rules for the resulting domestic supply
are obtained in exactly the same way ss outlined for a purely domestic
grain in the main text.

Another case 1s one in which foreign trade oeccurs in essentially free
markets. Let Q, be net exports in year £, where “net’” exports nieans
total exports minus total imports. Then the demand for net exports
may be written, for example, as

Qm=¢1 (Pt.; Zt., Ug) (121)

where ¢; is & function to be estimated empiricslly, P, is the domestic
price, Z, is a vedor of other demand-influencing variables, say Ze=
(Zt, .+ ., Zg), 2nd uq is 8 random wvariable. Z is written as a
vector to simphfy the notation. It would presurmably include among

its elements such variables as foreign incomes, defined and measured
in somo relevant way, foreign supplics of the grain, transportation
costs, and so forth. II such variables can be suitably defined and
measured, and the function ¢ obtained, it may be incorporated into
the storage-rule solution in o way outlined below. In situations
where such empirical measurementls are not feasible, the simplest
approach is to treat nel export demand in future years as fluctusting
i a random way around g price-delermined mean value, analogously
to the way random fluctuations in domestic demand were introduced
in pages 51-52.
That is, we write

Qi=¢(L, ug) (122}

where ¢+ is a function to be estimaied empirically and ug is & random
variable whose probability distributien is estimated on the hasis of
past experience, analogously to the estimation of the probability dis-
tribution of future harvests, Similarly, we have a domestic demand
function with a random component,

Y. =¢3(Py, uy) {123)

where Y, 1s domestic consumption.
Combining (adding) equations (122) and (123) gives the total
demand funetion:

Dt=-1:—L+Q'L= @4 (Pu uD) (124)
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It we accept the total public value as measured by the area under the
total demand curve, the merginal value function p 18 obtained by
solving equation (124) for P.:

Pe=pD,, up) (125)

The optimal storage rules are then obtained in the way described in
pages 40—48, noting that in any year t the identity

Dt=Yt+Qt:St_Ct~ (126)
must apply, that is,
P.=5[(8,—C)), up] (127}

Returning to the situation where equation (121) can be estimated,
we may assume that s more precise domestic demand function than
equation (123) is also estimatable, and write for domestic demand,

SRy,
Yi=4:(Py, Z¢, uz) (128)

whers the vector Z, is expanded to include variables influencing
domestic demand &s well as those influencing foreign demand.®
From equations (121) and (128), obtain the total demand function

D.=Y;+Qi=04(P:, %, up} (129)
and solve for P, to get the marginal value function p:

Pi=p(Dy, Zy, u} (130)

Pi=pl(8:—Co), Zy, v] (131}

where the subscript D in up is dropped for simpliciby.

Consider now the situation in any year t. The varisble u may be
treated as known for the currcat year, written U,, and as 8 rapdom
variable with known distribution in each future year, say u.y (>>0).
The problem now is the following:

3 This notation is adopted for convenience. All it means is that some of the
elements of % will appear with zero coefficients in eguation (121), and other
elements will appear with zero cocificients in equalion (128). We ignore here a
possible diffieulty arising frem “en dogeneity” in some of the elements of %, such
as might ocear, for example, in a country a large part of whose national income
depended on production or exports of the grain, One way around such a possible
difficulty would be to restrict the choice of variables in Z {o those which are
largely exogenous and/for lagged or ‘‘predetermined”, For exampie, rather than
tneluding prices of possible substitute commaodities (which may be partly endo-
genous) in the demand equation, it would generally be better to use their supplies,
which in any given year may, at least in many cases, be treated as largely pre-
determined. This also makes the resulbing demand fusction s better approxi-
mation to the {inverse) marginal value function, as described on pages 13-15.
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Given the storage rule 8,,, which is
a) applicable in year $4-1;
b) a function of 8.y, Zyyy, and Uy,,y; and
¢} optimal by the accepted criterion;
fo find the storage rule #, which is
a) espplicable in year t;
b) & function of 8,, Z,, and U,; and

c) optimal.

If this problem is solved, then optimal storage rules for any num-
ber of years n can be found by the backward-iterative procedure,
sterting with the n* year, and working back till the required namber
of years is covered (for a finite time horizon) or until convergence is
obtained (for the case of stationarily).

Again taking for total public value the ares vnder the total demand
curve, we obtain as the condition for optimality of 6,(S, Z., U,
given the optimality of 6.,,(S., Zupr, Ug), the following: for every
value of 3, Z, and U, the carryover C, must satisfy:

pl(8:—C), Zy, Ud=—+"(C)+aBs{[CrFxup
—O031(Cob-Xupt, Zopt, Ugs)], oy, Ue]  (132)

where ' (C,) is the marginal cost of storage and the expectation oper-
ator E 1s taken over the distributions of x4, and u..,. (As in the
earlier solutions, if the value of C, which satisfies equation (132) is
negative, the optimeal carryover is zero.)

If equation (132} is solved for C,, then C, becomes a function of
Sy, Zy, Uy, and Zy,,. The Z,,, variables must be eliminated, since
they are, in general, not observable in period t. We introduce “ex-
pectation functions’’ or “prediction equations’ as follows:

Zoppg=6Zy, . . . Ly, v1) (133.1)

Ziiix =e&(Zu, . . . , L, ¥x) (133.k)

where the functions &, . . . , & and the distributions of the random
variables vy, . . ., vy are to be empirically estimated.®
Equations (133.1)—(133.k) may be summarized in vector notation as

Zo=e(Zy, v) (133)

¥ The Z vector is pessibly again expanded to inelude some prediciion variables
in addition to those already included as demand-determining variables. Apgain
this is simply 2 matter of notational convenience, Those elements of % which
are irrelevant in any particular equation are considered to have zero coefficients
therein, It may he that in one or more of equations (133.1) —{133.5), ali of
Za, . .., Zu appear with zero coefficients. If this should happen for, say, equa-
tion (133.j), it simply means that %,.,; must, on the basis of available empirical
data, be trested as & random variable whose distribution is that of v;.
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For somewhat greater generality, we may also introduce & predic-
tion equation for output in period t4-i:

Kt-}-l—_"fx(zb; W) (134)_

where the function ¢, and the distribution of the random variable w

are estimated empirically, and Z; now includes elements, for example.

lagged prices or acreage controls, which may aid in predicting X, .3
Substituting (133} and (134) into (132) gives

P[(St_ot), Z, U ]l=—v"(Cy) +GEP{ [Cot e, w) —
8t+l(oh+€:l(zr.1 ‘V): E(Ztl V): ut-{-l)}; E(Zh V), ut—]—l} (135)

where the expectation operator E is taken as the integral over the
distributions of u..;, w, and v=(v,, . . ., vi). Solving equation (135)
for €, gives C, ns o function of 8;, Z,, and U;: the desired optimal
storage rule for period t:

Cn=9t(8u Zt; Ut) (136}

8o far we have considered only cases where

a) the criterion of optimality is determined by taking total public
value as equal to the area under the totel demand curve, and

b) exports are price-determined in a free market. ‘The methods
can afsc be modified to allow for other kinds of criteria and/or possibly
other institutional arrangements. In general, we can write total
public value as o function, in each period &, of quantity consumed
domestically and (net) quantity exported, say

&= 5L(Yt; Qt) (137)'-

where we omit, for simplicity, the possibility of random components.
and/or other determining variables; these can be reintroduced in & way
analogous to the procedures outlined in the preceding paragraphs.
For example, total public value might be defined as the area under the
domestic demand curve {a funetion of Y,) plus total revenue from ex-
ports (a function of Q). Taking into account the identity (126),
equation (137) becomes

b= 5:[(St—ct_Qt), Qt.] (137-1)

# In summary, then, the veetor Z, consists of variables which are ohservable.
in period t and which:
&) affect domestic demand in peried t;
b} affect net export demand in period t;
¢) affect output in period t+1;
d) are useful for predicting elements of Zy4; and
e) are preferably largely exogenous or predetermined.
It is clear that most of the elements of Z, will have zero coefficients in most.
of the equations in which Z, appears.
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That is, for given S,, 5, is a funetion of C, and Q.. There are now two
principal possibilities open, depending on the institutional setting:
a) If exports are price-determined in a free market, then an eddi-
tional relation between Y, and Q. is cstablished; that is, equations
(122) and (123) can be combined (eliminating the price variable) to

give, say
Qu=a¢:(Y>) (138)

(omitting the random comporents for simplicity). Combining
equations (137), {126) and (138) gives total public value as 2 function
of supply and carryout,

8=eps(S,, C1) (137.2)

which can then be used directly in the method of pages 40-44, or, if
¢ is continuous and differentiable, the method of pages 44-48.

b) Alternatively, equation (137.1) may be looked on as a funetion
with two variables which are “controliable” by a *policy maker,”
namely C, and Q,. "This would iu gencral imply a “two price’’ system,
with the neeessity of adding an additional variable for the export
price, say Pt

‘5z:3t[(sa_cr-—'Qb): Qc; Pﬂ (137-3)

P may be related to Q, by n function analogous o equations (122) or
(121), or, if the country’s exports are small relative to total world
supply, Pt may e treated as a random or partly predictable vaciable
independent of Q.. Then the solution proceeds by a generalization of

the method of pages 40-44; at cach step the expeciation operator is
taken over the distributions of both future output and future export
price; and the maximization is with respect to both C and ), thus
leading to a set of “storage rules” and “export rules,” each of which is
& function of current supply and curvent cxport price. However, in
this case the resulting solutions may not always be unique.

B 5. GOVERKMERT PRIMTFIMG QFFICET. (358







