

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

MICROCOPY RESOLUTION TEST CHART NATONAL BURCAU OF STANDARDS-1963-A
$\pi-30$
$7: 3$
1137

BONELESS BEEF:

RAW, COOKED,
AND SERVED...

Results of Analyses for Moisture, Protein,
 Fat, and Ash

By Edward W. Toepfer, Claud S. Pritchett, and Elizaberh M. Hewston Human Nutrition Research Branch Agricultural Research Service

Acknowledgments

These studies of boneless beef were made possible through the encouragement and support of Maj. Gen. Herman Feldman, The Quartormaster Gencrai, Department of the Army; and Dr. Hazel K. Stiebeling, Director of Human Nutrition and Home Economics Research, Agricultural Rescarch Sorvice, United States Department of Agriculture.

Of the many persons connected with the Department of the Army and other organizations and institutions associated with this work, the authors gratefully acknowledge participation in the planning by: Jane C. Ebbs, Robert L. Graf, Lt. Col. Harry Kieny, E. M. Kenyon, James J. Klaer, Paut C. Doss, R. P. Benchict, D. K. Tressler, Lt. Col. G. W. Baceus, and Maj. T. N. Moore, Office of The Quartermaster General, Department of the Army; Col. Russell McNellis and Lt. Col. Carl J. Koehn, Othice of Th : Aurgeon General, Department of the Army; Clive M. MeCay, Cormell University; H. E. Robinson, Swift \& Company; and LeRoy Voris, National Rescarch Comeil.

The studies at Fort Lec, Va., were made possible by the support of Maj. Gen. R. C. L. Graham, Maj. Gen. A. T. MeNamara, Brig. Gen. Everett Buseh, Col, A. T. MeGuckian, and Maj Norman Beacht. Operations at 5 feld locations wore condncted by Lt. Lloyd Platzke, Lt. Kurt Kornreich, and more than 50 members of a test team selected from Army personnel.

Participation of personnel of the Agricultural Research Service, United States Department of Agriculture, is gratefully acknowledged, with special mention of M. J. Macarthur, E. F. Dochterman, W. F. Martin, H. J. Wright, and Harold Lichtenstein.
The studies reported were conducted in part with funds from the Office of The Quartermaster Cieneral, Department of the Army, and in part with funds from the Human Nutrition Rescarch Branch, Agrieultural Researeh Service, United States Department of Agriculture.

Contents

Summary..-..-.-....................
Introduction
Part I. Careass yields and composition of cuts and forms of 4-way boneInss beef, cooked by Army procedures and standardized recipes
Cuts and forms of 4 -way boucless beef

Procedures

Results
Carcass yields of 4-way boneless beet
Cooked yiclds
Composition of raw and cooked boneless beef
Percentages of lean and of separable fat \qquad

Pagi 1
Pard II. Plate waste from oven roasts, etc.-Continued Results-Continued Composition of recoverable items, including plate waste 18 Protein and fat consumed less beef as sooked and served, and the amounts of protein, fat, and food energy in beef or beef recipe consumed
Procedures 21
Results 23
Physical data 23
Composition data 26
Protein and fat in rawbeef from eight car-casses and from fieldstudy29
Protein and fat contentand energy value ofbeef consumed'.-...-30
Page
Part II. Plate waste from oven roasts, trimmed and untrimmed
Procedures16
Results
Raw beef, cooked and served items, and plate waste

By Edward W. Toperfer, Claud S. Pritchett, and Elizabetit M. Henston human Nutrition Research Braxch, Agricultural Regearch Service

Summary

To obtain composition data and related information on boneless beef used in feeding programs of the United States Armed Services, studies were made of 4 -way boncless beef from 8 representative carcasses, raw end cooked, and including related items from preparation and cooking; of beef in plate waste in a limited number of beef roasts from general issue, cooked and served in Army messes; and of 4-way boneless beef representative of large-scale regular issue, cooked and serveci in Army messes in 5 field locations. All the beef was cut according to Army specifications, which call for the processing of the carcass to provide 7 boneless cuts for oven roasts or griddle-broiled steaks, 5 cuis for pot roasts or Swiss steaks, diced meat for stew, and ground meat for such recipes as hamburger and meat loaf.

During the cutting of the 8 carcasses, the yields by weight of the various cuts were obtained. The proximate composition of the cuts, raw and cooked, was determined by analysis; a cut from one side was used as the raw sample and the corresponding cut from the other side was cooked. On a carcass basis, food energy retention in the cooked cuts was 85 percent; protein, 94 percent; and fat, 82 percent.

At one location a stady was also made of the effect on plate waste of trimming surface fat from oven roasis before cooking. Roasts from general procurement sources of the Army were used. It was found that moderate trimming decreased fat in plate waste without apparent reduction in fat presumed eaten. Fat trimming by the meat processors would imply reduction not only of fat losses in the kitchen and during cooking but also of weight to be handled and stored in valuable freezing, space.
In the field study, the composition of boneless beef, raw, cooked, and served, and of the corresponding plate waste was determined from samples involving 52,682 pounds of raw boneless beef cooked and

[^0]scrved in 542 Army messes to 109,682 men. Plate waste increased with the amount of raw beef issited to the mess, and fat in plate waste increased with fat in the served cooked beef. The amounts of beef in plate waste were not always significantly correlated with the amounts of raw beef issued; however, the percentages of fat in the plate waste were significantly correlated with the percentages of fat in the cooked beef. It was calculated that 67 perceat of the food energy of the issued beef, 84 percent of the protein, and 51 percent of the fat were enten; 10, 6 , and 11 pereent of the issued beef food energy, protein, and fat, respectively, appeared in the plate waste. It was also calculated that 7 percent of the food energy, 9 percent of the protein, and 6 percent of the fat, in the issued beef were left as unserved edible beef at the serving table.

Introduction

The ment servings in the feeding programs of the Armed Services furnish a large part of the reguired protein and fat and hence of the total food energy provided by the diet. To an ibceasing extent, beef procurement is shifting from carcass becf toward frozen boneless beef which offers advantages in handling and transportation.

Available data on the nutritive value of the various cuts of carcass beef are not applicable to the cuts and forms of boneless beef. This study was plamed, therefore, to obtain composition data directly on 4 -way boneless beef, cut and packed according to United States Army specifications. Analyses were made on raw beef as issued and as cooked by Army personnel with Army equipment.

While the cuts made to meet Army specifications for boneless beef are not necessarily identical with those in civilian markets, the data reported here are npplicable to houschold and institutional use. Restaurants, hospitals, and other institutions feeding large numbers of people use considerable quantities of boneless beef. Furthermore, the present study provides data which permit relating the nutritive value of bondess beef to carcass beef.

The studies here reported were carried out during 1951-53. In 1951, boncless beef was obtained from eight representative carcasses of Army grade B (equivalent to U. S. Choiec). The yields of cuts and forms of boneless beef, fat trim, waste trim, and bones were obtained from these carcasses. The cuts from one side of the carcass were analyzed raw for comparison with cuts from the other side after they were cooked according to standardized procedures and recipes. The whole of the raw beef cut and of the cooked becf cut was taken for the sample to be analyzed.

Because plate waste is a problem of those responsible for the feeding of Army personnel, a special study of plate waste from oven roasts was made during the first year. This included observations of the effect of trimming surface fat to $3 / 4$ inch before cooking on the amount of fat appearing in plate wastc. Fat discarded as waste from the table has taken up valuable freezing space and otherwise added to the costs of beef handling. Since fat is an important source of food energy, plate
waste could account for much of the difference between the number of calorics planned and issued per man and the number in the food eaten.

During the second year, 1952-53, composition data were obtained on boneless beef as actually issued, cooked, and served in Army messes. The 52,682 pounds of boneless beef used from 560,000 pounds made available at the time of the stady represented actual Army supply from 6 different processors of boneless beef in different areas. The 542 company mess meals were served to 109,128 men in 5 locations. The large-scale operation involved carloads of beef and thousands of men and was planned in great detail in order to determine not only the amounts and composition of the beef served but also the amounts of protein, fat, and food energy in the portion eaten.

PART I

Carcass Yields and Composition of Cuts and Forms of 4-Way Boneless Beef, Cooked by Army Procedures and Standardized Recipes

Cuts and Forms of 4-Way Boneless Beef

Beef cut arcorsting to military specifications is known as 4 -way beef, so called because the carcass is processed to provide boneless cuts and forms for 4 different types of cooked beef-roasts or steaks cooked by dry heat, ronsts or steaks cooked by moist heat, meat for stews, and meat for such dishes as ment lonves and hamburgers. The cuts and forms comprise the following:

1. Seven cuts designated for oven ronsts or for griddle-broiled steaks, usually called "Roasts or steaks (dry heat)":
Blade roll
Inside of round
Sirloin butt
Knackle of round
Spencer roll
Loin strip
2. Five cuts designated for pot roasts or for Swiss steaks, usually called "Roasts or steaks (moist heat)":

> Chuck yoll
> Chuck tender Clod
3. Diced beef designated for stew
4. Ground beef designated for meat loaves, hamburgers, "becfburger" (see p. 21), and other similar preparations.
From standardized inspection procedures for 4-way boneless beef $(6)^{2}$ and from published information on the cuts of carcass beef more familiar to the civilian population (δ), a chart (fig. 1) has been prepared to show the comparative sources of cuts.

[^1]

Figure 1.-Carcass location of Army boneless beef cuts and of retail beef euts.

Procedures

The source of beef used in part I of the study consisted of eight careasses of grade B, selected and graded by representatives in Chicago of the Veterinary Division, Office of The Surgeon General, at the plant of a large commercial packer.
Weights of carcasses and weights and identity of all forms and cuts of boncless beef and other parts were recorded by carcass number and side during the carcass cutting. The beef was wrapped and boved for freczing and subsequeat shipping to Fort Lee, Va., where the cooking was done with equipment made available by the Army and according to procedtures and recipes given in the Army and Air Force manual on recipes ($\overline{5}$).

In order to control sampling of beef used for analysis, plans were made to take a cut from one side as the raw sample and the corresponding cut of the same carcass from the other side for the sample to be cooked. The distribution plan is given (table 1). For the cuts desiguated ronsts or steaks, 4 carcasses, selected at random, were used for roasts while the remaining 4 were used for steaks.

Thble 1.-Assignment of matched cuts and forms of t-way boneless beof by carcass number and side

Cut or fartu or beef	Cartuss matuber ntme stida ${ }^{1}$	
	Haw sample	Satupie to be caoked
Beercuts:		
Owen ronsts		55, 6R, $7 \mathrm{R}, \mathrm{8L}$,
Orkdte-brodid steak	2[., 2R, 3L, 413	1R, $2 \mathrm{l}+3 \mathrm{R}, 4 \mathrm{l}$.
Swls stenks....	11, 2R, 31, 4 R	112, 25, 3R, 42,
Dleed beet: Stow...		
Gromal beet; 14mburt		1R, $1 \mathrm{~L}, 2 \mathrm{R}, 2 \mathrm{~F}, 3 \mathrm{R}, 3 \mathrm{~L}, 4 \mathrm{R}$, iL.
Meat loas.	$5 \mathrm{R}, \mathrm{SL}, \mathrm{GR}, 6 \mathrm{~L}, \mathrm{iR}, 7 \mathrm{~L}, 8 \mathrm{R},$	$\begin{aligned} & 5 \mathrm{H}, 6 \mathrm{~L}, 0 \mathrm{R}, 0 \mathrm{~L}, 2 \mathrm{R}, 7 \mathrm{~L}, 8 \mathrm{R}, \\ & \mathrm{SL} . \end{aligned}$

i"R" man "L" signity "right" and "ieft." respectively.
To obtain comparable data on raw and cooked roasts and steaks, the usual Army cooking procedures were slightly modified. Roasts were placed in individual pans, and steaks were broiled on a griddie without added fat; stenks broiled at any one time were from the same cut. The ground beef from 4 of the 8 careasses was taken for hamburgers while the ground beef from the other 4 was used for meat loaves. The ground beef from each half carcass was divided into thits-one-third for the raw ground beef sample, one-third for the raw-recipe sample including all ingredients, and one-third for the cooked recipe. The died beef from all S carcasses was used for stew.

Recipe ingredients were analyzed separately in order that their contributions toward the total protein, fat, and food energy of the finished dish could be obtained. Recipe ingredients given (5) were used in the weight percentages summarized (table 2). Recipes were standardized as to the proportion of ingredients.

TabLe 2.-Ingredients in percentages of weight of becf recipe

Ingrediant	Pot ronst	Swiss stomk	Stew	■amburger	Mrent loaf
Jimil bonelus, frozen	Percent ${ }^{54}$.	$\begin{array}{r} \text { Percent } \\ \text { fi. } 4 \end{array}$	$\begin{array}{r} \text { Percent } \\ 32.0 \end{array}$	Percent $6 \mathrm{giz}^{2}$	Percent 72.5
				11.0	7.1
Carots, cuokel, trimed (dramed)	10.4		0.3		
Celers............	4.0				${ }^{72} \mathrm{~S}$
VRgs.					12.0
Fat........	1.3	3.0 4.5	1.8		
Finur. Mak, evajorated		4.5		00	
Onions, dehstirutei	. 7	. 9	5.9	1. I	. 7
Peas, frozel			5.8		
Tomintous, canned '	- 28.9	(2) ${ }^{2}$	7. 30.2	14.7	

I Purem before adding to revine.
2 Varsing ammats usel to make gravy.
In the roast and steak samples taken for analysis, the Ican and the fat portions were separated; these wereground and analyzed separately. In handling gravies and licuids, the procedures were adapted to the problems of sampling. If fat layers or suspended solids could be
easily re, oved from the gravies or liquid portions of the cooked recipe, they ware analyzed separately and the data recombined. In any case, the whole portion taken for analysis was ground or mixed for subsampling. From one cut, for example, all the raw lean was ground and Ω record kept of weights so that recoveries from such operations would be quantitative.

Each subsample was placed in an cnamelware tray under infrared lamps for preliminary drying (3). All dried materials were ground in a laboratory Wiley mill to pass 20 mesh. Fatty samples difficult to grind were first extracted with ethyl ether in Soxhlet extractors.
The ground samples were analyzed, as reonired, according to the following procedures:

For residual moisture, by drying the sample in a vacuum oven at $70^{\circ} \mathrm{C}$. and less than 25 mm . of mercury.
For residual moisture and fat, by extracting the sample in a Selas (or equivalent) crucible in a Bailey-Walker extractor, and then weighing the material in the cracible both before and after extraction, and also weighing the extracted fat.
For fat, by using either the Soxhlet apparatus ($1, p .359$) or the Bailey-Walker extractor:
For nitrogen, by the Kjcldahl procedure ($1, p, 12$).
For total ash, by the method described by Linnig and associates (4).
Protein was calculated on the basis of $N \times 6.25$; and total carbohydrate was obtained by calculating the difference between 100 percent and the sum of the percentages of moisture, protein, fat, and total ash contents. Physiological energy values for raw beef and for ronsts and steaks were obtained by using the factors 9.02 calories per gram of fat and 4.27 calories per gram of protein. The factors (7) used for the other cooked items depended upon the ingredients in the recipe; they are summarized in table 3.

Tarle 3.-Factors for calculating physiological energy values for beef recipes

Recipe	Proteln	Fat	'Total carbohydirate
Pot reast.			
Suiss stank.	4. 24 4.23	9.62	3.81
Staw.......	4.23 4.18	9.02	3. 97
Mamblirger	4. 48	88.00	4.02
-	4.25	8.01	4.06

Results

Carcass Yields of 4-Way Boneless Beef

The 8 carcasses ranged in weight from 605 to 727 pounds and averaged 682 pounds. The yields of cuts and forms of boneless beef amounted to 66 percent of the carcass weight. The average weights of the individual cuts and the average percentage yields with their standard deviations are given (table 4), together with fat trimmings, waste trimmings, bones, kidney, and kidney fat. Standard deviation in each case represents the variation shown by 8 items from 8 carcasses, including the percentage yields. Fat trimmings (14 percent)
and bones (15 percent) made up most of the carcass other than boneless beef.

These yields of boneless beef compared well with those reported by Graf who reported the yield of boneless beef to be 68 percent of the carcass weight based on a study made in 1949 (2) and on 1951-52 data from large-scale procurement of boneless beef (personal communication from R. L. Graf). (See table 5.)

Cooked Yields

To prepare the boncless beef for cooking, the cuts were thawed; the thaw juices yielded were not used in cooking any of this beef. These juices amounted to 4.5 percent of the raw frozen weight of the cuts assigned to oven roasts or griddle-broiled steaks, 3.8 percent of those assigned to pot ronsts or Swiss steaks, 5.0 percent of the diced meat, and 3.4 pereent of the ground meat. The average for all cuts and forms was 4.2 percent.

Table 4-Average ueights and percentage yield of cuts and forms of 4-way boneless beef and other tems from 8 beef carcasses of Army grade

Item	Welght								Yeld	
	Left side		Right side		Total carcass				Percent of total carcass	Standara deviation
	A verage	Standard deviation	A verage	Standard deviation	Aversge	Standard deviation	Aserage	Standard deviation		
dasts or steaks (dry heat)	Kilograms 32.134	Kilograms ${ }^{\text {a }}$ (917	Nilhgrams	Kllograms	Kilograms	Kilograms	Pounds	Pounds		
13ade roll. .	$\xrightarrow{1.044}$	- 2.210	31.922 1.616	3.217 .208	64.050	5.989 .392	141.29 7.19		20.72 1.05	0.93 .06
Inside of round	7. 442	. 220	7.498	-6f0	14.940	1.340	32.94	2.95	4.84	:24
Knuckle of round	4.139	. 525	4. 366	. 728	8. 505	+294	18.75	. 65	2.75	. 15
Sirloin butt	6. 691	.64	6. 152	- 761	12.843	1.364	25.31	3.01	3.116 4.16	. 31
Spencer roll	4.403	. 570	4. 709	. 555	9,200	. 972	20.25	2.14	2.97	. 13
Tenderloin--	2. 622	. 246	2.764	. 420	5. 386	. 621	11.87	1.37	1.74	- 16
Roasts or steaks (moist heat)	21,249 7.229	$\begin{array}{r}2.158 \\ \hline .648 \\ \hline .184\end{array}$	21,820 7,285	$\begin{array}{r}1.851 \\ \hline .406 \\ \hline\end{array}$	43.078 14.515	3.9088 .927	94.97 32.00	8.81 2.04 8	$\begin{array}{r}13.93 \\ 4.70 \\ \hline\end{array}$. 37
Chuck roil.	4.905	. 737	5. 174	. 523	10.079	1.230	22.22	2,72	3. 26	. 20
Chuck tonder.	1.148	. 154	1. 120	205	2.268	, 348	5. 00	. 77	. 73	. 02
Outside of rou Rump butt	5.713	. 740	5. 783	. 712	11.496	1.439	25. 34	3. 17	3.71	. 20
Dieed beef	12.757	1.079	12.488	1.861	4.720 25.245	-6.624	\$5.46	1.38 5.31	8.17	.16
Forequarter	9.908	. 261	9. 632	1.736	19.590	2.097	43. 19	4. 612	0.34	. 44
Hindquarter	2.849	. 311	2.806	. 301	5.665	. 516	12.47	1.14	1.83	. 12
Ground beef... Forequarter.	36.132 24.863	2. ${ }^{2} 111$	36. 24.71	2.910	72.103	5.320 3.712	159.16	11. 73	- 23.37	48
Hindquarter	11. 269	. 866	11.283	1.245	22.552	3.750 2.080	49.72	4.59	10.05 7.29	.30
Fat trimmings -	21.759	2.716	21.830	1.757	43.589	5.847	96. 10	12.89	14.06	1.06
Forequarter. Hindquarter.	9.866	$1 / 335$	9.625	1.097	19.491	2.415	+2.97	5.32	6.29	44
Wasto trimmings	11.893	(1.495	$\begin{array}{r}12.205 \\ 3.827 \\ \hline\end{array}$	$\begin{array}{r}2.182 \\ \hline .506 \\ \hline\end{array}$	$\begin{array}{r}24.098 \\ 7.527 \\ \hline\end{array}$	$\begin{array}{r}3.644 \\ .827 \\ \hline\end{array}$	53.13 16.59	8.03 1.82	7.77 2	. 3
Forequarter-	1. 446	-. 203	1.432	. 378	2.878	. 945	6.34	. 08	2.94	. 18
Hindquarter	2. 254	. 381	2.395	. 312	4. 649	500	10.25	1.10	1.51	17
Bones. Forequarter	${ }^{23.572}$	' i. 669	22.553	1.397	46.125	2. 992	101.69	6. 60	14.95	. 50
Hindquarter	13.891 9.681	$\begin{array}{r}1.103 \\ .630 \\ \hline\end{array}$	13.240 9.313	${ }^{1.001}$	$\begin{array}{r}27.131 \\ 18.994 \\ \hline\end{array}$	2.063 1.052	59.81 41.88	4.35 2.32 2.3	8.79 6.16	. 36
Kldney--.-.	. 439	. 041	-439	. 041	. 878	.080	1.84	-18	${ }^{8 .} 29$. 02
Kldney fat	2.901	. 098	2.155	.917	5.146 1.318	1.895	11.34	4.18	1.64	. 53
Hanging tender					1.318	. 200	2.91	. 44	. 42	. 05
Total of 10 main ltems	154.733	+----*	153. 104	\ldots	309.155	651.58		100. 02	--........

Table 5.-Percentage yields and distribution of boneless culs and forms of beef 1

Cut or \%orm ot beef	Percentugo ot carcuss	Percenttyue of beef	Cut or form of boof	Fercentage of carchss	Pertentsge of type of beef
Ronsts or steaks (dry hest)	${ }^{22.604}$	100.05	Ronsts br steaks (moist heat)--	13.592	93.97
Blade roll.........	1.082	4.91		4	32.49
Inside of rounti. ${ }^{\text {a }}$	5.741	20.03	Cruck roll-...............	${ }^{3} .621$	20.64
knutkle of round.	3.960	14.69	Chuck tenter.-.-.......-.	2.827	20.80
Sirioh butt	4.085	18. 63	Rump butt.	1. 417	14.02
Flenter rolt	2.910	13.19	Preed bect.	8.437	
T'enderloin	2.016		Ground beet.	23.015	

I From chreass-cutting data (Z), and from mpublishod 1951-52 datn on lirger-seale procuromont of boneless beef fer the Armed Sorvices (jersonal commanleation from R. L. Graf).

Yields of drained cooked beef (table 6) from the raw frozen beef were 64 percent for oven roasts, 66 percent for pot roasts, 67 percent for griddle-broiled steaks, and 77 percent for Swiss stenks. Where there were ingredients, the cooked-recipe yield from the raw recipe (beef

Tance 6.--Average weights of raw and cooked items and yields of cooked beef or beff rccipe

Trio of beef or beef reclpe	Welight before cooking				Weight ntter cooking			Yield of cooked heet	
	Frozen	Thaw juices	Drainet thawed beef	$\begin{gathered} \text { Rnw } \\ \text { rectpe } \\ \text { Within- } \\ \text { gredts } \end{gathered}$	Drippings	Scrapfngs	Drained cooked beef	$\begin{aligned} & \text { From } \\ & \text { rati } \\ & \text { recipe } \end{aligned}$	Fram beel
	K?70 arnims 30. 672	$\begin{gathered} \text { Kition } \\ \text { grams } \\ 1.310 \end{gathered}$		Filagrams	$\begin{gathered} \text { Kito- } \\ \text { aramon } \\ 1.632 \end{gathered}$	Kilo- grams 0.41	Ktio- gramas 10. 553	Per- 66.6	$\begin{aligned} & \text { Per- } \\ & \text { cerft } \end{aligned}$ 6.7
Ore blate rol	1.670	. Uficio	1.104		. 0632	. 023	1. 148	71. 0	68.7
Inside of round	7, 385	. 210	7. 168		. 321	. 132	4.568	63.7 86	61.8
Kruckle of rotid	4.186	.315	3. 771		-086	. 057	2. 4138	65.3 70.1	6
Stoln strip.	4. 6.162	-	4. 4.842		- 58.29	-000	3. 874	60.3	62.0
Spencer rol	${ }_{7}^{4.3} \mathbf{3 1 1}$. 132	4. 174		. 35.5	. 056	2. 784	66.9	64.1
Tenderinin	3.411	. 188	2. 333		+ 103	. 133	1.574	67.5	65.3
Gridule-brollecl	32.368	1. 490	30.73i		. 308	. 404	2!. 770	70.8	67.3
ulade roll.	1. 538	. 0306	1. 492	-	. 029	. 11408	1.030 +1.710 .588	71.0 68.6	63.8
Inside of rot Kruekle of	\% 2.281 4.147	. 258	2. 280		. 064	. 040	2. 558	¢fi. 3	61.7
Loins stip).	5.074	. 220	+.837		. 035	. 065	3.495	72.3	68.8
Sirloin butt	6. 14.3	. 329	9.3.301		. 072	. 1033	4.614	73.0	69.2
Spencer roll............	4. 735	090	4.611	-	. 0 Off	+057	3.381	73.3 71.1	74. 6
Pot ronasts.	21. 4 ¢69	OS9	20.472	38.328	171.417		14.097	36.8	65.7
Clad.	\%. 150	334	6. 822	12.078	13.539		5. 132	425	71.7
Chuck roll	5.086	. 237	4,823	8. 800	12.641		3.098	34.6	60.8
Chuck tende	1.07.4	. 018	1.026	2. 483	${ }^{5} 888$		- 6.31	25.4	58.8
Ontside of	5. ${ }^{\text {S. }} 370$	200 +140	5. 5.578	9. 3.880	$1{ }^{1}$		3. 510	38.8 20.1 1	64.
Swist stanks.	20.754	. 830	20.148	41.416	117.417		16.044	38.7	77.
clod	T, 202	. 218	6.984	13.336	14.818		3. 842	43.8	81.1
Chuek roill	4. 770	, 16	4.611	Stivo	13.948		3. 7.64	41.8	75.5
Chuck tender	1.1.44	. 020	1.115	3.109	11.504				75.3
Ontside of round....--	5.474 2	. 138	5. 5.338	11.659	$1 \begin{aligned} & 15.269 \\ & 11.880\end{aligned}$		4. 1.747	35.2 37.3	75.0
rump butt Slow Died beef.	2188 12.788	. 762	2. 12.02	4. 38.478	1. 1.80	. 130	1.747 232.471	37.3 184.4	\%.
1ramburger:		342	10.727	16.148	. 366	. 140	713.466	283.4	
Ateat loas: Ground	1	13f	10.688	14.968	. 503	+360	${ }^{2} 12.15$	781.3	

[^2]plus ingredients) was 84 percent for stew including the liquids and vegetables, 83 percent for hamburgers, and 81 percent for meat lonves, which included the ingredients but did not include the drippings. Pan drippings amounted to 3.6 percent and pan scrapings to 1.3 percent of the raw frozen beef designated for oven roasts and griddlebroiled steaks.

Composition of Raw and Cooked Boneless Beef

The moisture, food energy, protein, fat, total carbohydrate, and total ash of the individual raw boneless beef cuts and forms and of the cooked beef or becf recipe are given (table 7). Weighted-average values for food energy, protein, and fat are summarized (table 8). The weighting of averages was necessary so that the composition data would represent the whole group of roasts; for example, the boneless beef of inside of round would represent more than four times that of the blade roll (table 4).

Table 7.-Average composition and energy value per 100 grams of cuis and forms of 4-taay baneless beef, raw and cooked, and drippings

Item	Water	Food emergy	$\begin{aligned} & \text { Proteln } \\ & (\mathrm{N} \times 6.25) \end{aligned}$	Fat	Totas carbohydrato	Ash
Oven ronsts: Bladeral:						
Buw frozen beof...-	Grams 61.2	Calories	Grams_{18}	Grams	Grams	Grams
Cooked dmined beef	\$18.8	328	24.2	25.0		0.8 1.3
Drippinks:	31.1	499	11.0	50.1		1.5
Inside of round. Raw frozen beef.	Af, 4	217	10.7	14.7		0
Cooked dralned bedt	50.8	291	28.3	18.7		1.4
Detpplizs--1	27.3	542	7.4	56.6		2.4
Knuckle of round ${ }_{\text {Raw }}$						
Cooked dramed bel	70.8	154	19.8	7.7		1.7
Dpplrings.......-	3. 0	502	30.4 13.6	19.6 49.3		1.2
Loln strip:						
Rar frozen becl..	5.3	320	17.4	27.3		8
Cooked dramed bed	41.7	404	23.6	33.6		1.0
Sirlomb butt:	$2 \overline{7} .7$	386	5.3	62.5		1.6
Raw crozen beet-	57.3	294	17.1	24.5		
Cooked dmaned be	43.1	331	23.7	31.0		1.2
$\mathrm{S}_{\text {Li }}$ acer rolit:	18.5	CSI	4.5	73.4		1.4
Raw frozen beef	40.3	375	15.1	34.4		7
Cookod drained bee	37.1	43	22.1	38.6		8
Dripphess.	t0.4	760	2.2	84.0		. 8
Tenterion: ${ }_{\text {Rasion }}^{\text {frozen beef. }}$						
Cuoked druined beel	${ }_{4} 10.0$	3181	${ }_{23} 16.2$	27.4		. 8
Oripuings.	15.5	719	2.7	78.4		1.2
Pot rowsts:						
Enw frozen beer.	60.3					
Cooked dmaned beet	48.6	341	23.4	26.8		. 8
Vegetables and juters	80.2	132	2.4	11.3	5.0	1.0
Chale rout						
Rat frozen beet.....	65.4	213	18.7	14.8		8
Cooker druined beer.	52.4	231	28.4	17.8		1.0
vegetabies and juices Cbuck tender:	79.7	138	3.0	12.0	4.3	. 9
Raw frozon beef-	72.1	152	18.2			
Cooked druined bet.	50.4	237	31.4	1.5		1.5
Veretables and juices.	88.0	50	2.0	4.0	3.3	. 9
Outside of round:						
Ray frozen beef Cooked dramed beef	62.4	242	19.0	17.5		. 8
Cooked dramed becl	53.0	29	27.4	19.2		. 0
Vegetables and jateos.	71.4	189	3.8	17.8	5.6	1.3

Table 7.-Average composition and energy value per 100 grams of cuts and forms of 4 -way boneless beef, raw and cooked, and drippings-Continued

Item	Water	Food energy	$\underset{(\mathrm{N} \times 6.25)}{\text { Protein }}$	Fat	$\begin{gathered} \text { Totul } \\ \text { carbohy- } \\ \text { drath } \end{gathered}$ drate	Ash
Pot ronsts-Continued Rump butt:	Grams	Calories	Grams	Grams	Grams	Orams
Raw frozen beet	57..15	300	17.6	24.9		. 8
Cooked dirslued beer.	43.7	385	23.6	31.6		8
Vegetalies and julices..................-	81.1	138	1.13	13.1	3.4	. 7
Qritide-brolled steaks:						
Blade roll:	58.2	275	17.7	22.1		. 8
Crohed trained beef..................--	42.7	36	22.4	33.3		. 9
Drtppings.	65.5	234	7.3	22.5		2.2
Instde of roind:						
ling frozon brey Cooket dmitued beet.	65. 51.4 51.4	210	19.3 29.8	20.1		$\underline{1.1}$
Drimelmes-.........	8.8	41	7.8	. 0		2.7
Knueklo of round:						
Row frozen beer	\%99,8	169	19.6	13.5		1.9
Cooked dramed beur	84.4	52	8.7	1.7		3.0
Lond strip:						
Ray trozen beer	52.8 37.4	343 452 4	$\xrightarrow{16.2}$	30.4		8
Cooked drained b	16.7	735	3.0	80.1		6
Spencer ralt:						
Rnw frozen beot...	4.6	400	14.8	37.4		6
Conked dimined beet	14.2	760	1.1 .3	83.6		${ }_{4}$
Drippings-........						
Raw frozen beet.	55.4	314	15,6	27.4		9
Conked drahed beef	42.8	389	22.1	32.6		
Drippings---	35.0	$5+3$	2.5	59.0		1.0
Swiss stenks:						
Oloduw frozen beef	60.2	2h	18.0	20.8		. 8
Cooked dralied beel.	53.0	305	19.4	23.0	3.9	. 7
Vegetables and jutces.	72, 1	183	4.0	14.7	8.3	. 8
Chack rollt						
Raw frosin beet hay		245				8
Conked drained beed.	$\underline{38}$	$\underline{82}$	17.4 3.6	15.0	7.8	. 8
Ohuck tender:						
Raw frozen beed	71.6	158	19.0	10.0		1.8
	83.0	$\stackrel{215}{108}$	$2{ }_{2} 2.8$	8.1	5.4	. 8
Ray frozen beec.	62.2	244	17.5	18.8		1.0
Couked drsined beef.	54.3	2386	21.8	30.2	3.1	. 6
Vegetables and juices.	78.5	131	3.2	9.8	7.5	. 8
Rump butt:		312	13.5	27.3		7
Cax razun thed beed	$\stackrel{55.9}{19.2}$	352	18.3	29.2	2.6	7
Veretables and julees.	77.0	150	2.8	12.0	7.4	. 8
Dised beel:	59.3	273	17.1	22.2		. 8
and water)	74.2		3.1	6. 2	15.9	5
Cooked recipe, stow	75.2	155	7.5	11.2	5.6	. 6
Ground beef:						
Ras frozen beor.	58.0	291	18.4	24.5		7
Suw ricipe (totul)	$t 0.2$	259	13.0	18.6	7.3	. 8
Cooked recipe. -	54.8	2 s 0	17.9	19.5	6.8	1.0
Drippings--	1,6	Ss2		98.0		
Meat ion: Raw frozen beef.	58.2	201	16,4	24.5		7
Raw recipe (total)	59.0	205	14.5	20.0	8.7	. 8
Conked recipe.--	54.8	200	17.9	19.5	0.9	1.0
Drippings.........--	6. 6	824	1.2	D. 9		.

Table: 8. Weighted-average values for food energy, protein, and fat por 100 grams of different cuts and forms of beef or recipe, raw and cooked

Cut or form of heet	Haw			Cooked 1		
	Food energy	Proteln	Fat	Food energy	Proteje	Fat
Bexp cuts:	Catorits	Grama	Gramis	Caloriss	Orums	Grams
Owen roasts.	274		21.9	346	$\underline{35.7}$	20.2
Pot ruasts.-.	249	18.2	18.5	312	$2{ }^{26.1}$	23.4
Gradicherolded steats	988	17.1	33.3	379	22.9	31.1
Swlss steaks.	247	17.6	19.1	257	21.0	20.0
Dlerd beef: Stew (tota)	273	17.1	29.2	15.5	7.4	11.8
Groltid bets:						
] [nmulurger.	291	15.8	24.8	203	15, 3	17.7
Ment bors.	291	10.4	34.5	280	17.0	19.5

1 Dralned solkls exeept for stew.
The distribution of protein and fat among thaw juices, pan drippings, and cooked beef is shown (table 9). The pan scrapings were small in amount and often provided an insufficient sample for the analyses. The thaw juices contained no mensurable quantity of fat and relatively small amounts of protein-only 2.3 percent of the total protein in the raw beef. Over 95 percent of the protein was found in the cooked oven roasts, griddle-broiled steaks, stew, hamburgers, and meat loaves. The amount of fat in drippings was variable, depending on cooking method and recipe. Over 20 percent of the fat was found in drippings from oven ronsts, whereas the same cuts cooked as griddle-broiled steaks contributed only 4 percent of fat to the drippings. Cuts cooked as pot roasis and Swiss steaks contributed, respectively, 31 and 39 percent of their fat content to drippings; hamburger and meat loaf contributed 18 and 12 percent.

Table 9.-Distribution of protcin and fat among thaw juices, drippings, and cooked items from various cuts and forms of beef

Cut or form of betc	Protels			Fat		
	Thaw julces	$\begin{aligned} & \text { Drip- } \\ & \text { ings- } \end{aligned}$	Cooked beef or recipe	Thaw julees	$\underset{\text { dings }}{\text { Drip- }}$	Cooked beet or reclpe
Beet ents:	Percent	Percent	Percent	Percent	Percent	Percent
Oretl roasts,			${ }_{89} 95$			
Gridildtrolled steaks	3.0	3	96.8		31.2	${ }_{85} 8.8$
Swiss steaks.	1.8	14.7	83.7		39.2	60.8
Dleed beer:	3.1		00.8			100.0
Ground beel:						
Itamhurger.	2.4	. 4	97.2		18.2	81.8
Meat loar	1.4	0	98.6-.	12.6	87.4

The composition datia make it possible to calculate, on a carcass basis, the yield of food energy, protein, and fat in the cooked beef. The data in table 10 show the contributions of the beef only toward the food energy, protein, and fat in the cooked becf or cooked-beef recipe. For example, 21.9 gram of fat in 100 grams of raw frozen oven roast (table S) were calculated to contribute 16.7 grams of fat
in the corresponding 63.7 grams of cooked oven roast (table 6). For hamburgers, calculations took account of the ingredients, so that 15.8 grams of protein in 100 grams of raw frozen ground beef were calculated to contribute 15.5 grams of protein in the corresponding 122 grams of cooked hamburger recipe.

Tafle 10.-Weighted-average values for food energy, protein, and fat contributed per 100 grams of raw frozen beef to the cooked beef or cooked beef recipe

Cat or fortu of beed		Iroteilit	Fat
Beel cuts:	Contories	Grams	Grams
Oven rousts..	220	10.4	16.7
	206	17.1	1+7
Swlss staks	29	16, 2	15.0
Ground bid:			
linmburecr.	948	13.5 5	19.1
Meas lout.,	230	15.8	18.7

From the data in tablo 10, logether with data on average carcass weight and yields (table 4) and average food energy, protein, and fat content of the frozen raw beef (table 8), composition data on a carcass basis were calculated (table 11). The amount of cuts designated for ronsts and stakis was assumed to be equally divided for oven roasts and griddle-broiled steaks and for pot roasts and Swiss steaks. The ground meat was assumed to be equally divided for hamburgers and meat loaves. Food-energy yield in the cooked beef amounted to 85 percent of the food energy in the ruw boneless beef; protein, 94 percent; fat, 82 percent.

Tarele 11.-Calgulated food energy, protein, and fat in the raw boncless becf in the averaff of S carcasses (300.155 hilograms) and in the corresponding cooked drained cutls of beef or bcef recipe

Cut or form of best	Rew			Cooked		
	Food cruersy	l'rotels	Fat	Food pherey	Protelt	Fat
Beef culs:	Chlories	Grams	Grams	Culorics	Gmams	Grams
Oesmir rowsts.	57, 57	5,701	7, 014	T0. 462	5, 2582	5, 3169
Prot rosts.	53. 30.83	3,929 5,478	$\stackrel{3}{7,465}$	81,	3, 4 4.432 4	
Swlss steaks.....	$5 \mathrm{~S}, \mathrm{WOI}$	3,791	4. 14	45. ${ }^{\text {(4) }}$	3,488	3.424
Dieed beef:						
Grouma beer:	08, 919	4,317	5,604	68.419	4,168	3, 607
liambarger	105,030	5,703	8,952	85, 940	5,507	f, 897
Meat lonf.	105.030	5,020	8,844	85. 218	5,705	6,752
fotal	564, 226	34, 828	45,975	481, 748	32, 824	37,038

Percentages of Lean and of Separable Fat
Composition data obtained from the laboratory analyses of the separabic lean and fat from 12 cuts of boneless beef are shown by cut (raw and cooked) in table 12 and are summarized in table 13. As would be expected, since both fat and lean cuts were represenied, the
yields of lean beef varied with the cut. Spencer roll, for example, was a fat cut and had only 68 percent of separable lean as compared with knuckle of round which had 95 percent. Cooking of the beef resulted in moisture soss in the lean and fat loss in the scparable fat.

Tarle 12.-Average separable lean per 100 grams roasts *and stcaks and average composition of 100 grams separable lean and separable fat

Type of roust or stak	Welght or scruer able lean	Composition of separablo lean			Composition of separable tat			
		Water	Protein	Fat	Water	Proteh	Fat	
Oven ressts:								
	Grant	Grams	Grams	Grams	Grams	Gigms	Orams	
Raw frozen	80.1	${ }_{5}$	20.6	16.12	17.1	5.7	76.0	
Inste coot formil:	84.8	54.1	27.9	16.1	17.0	4.7	76.0	
Rav frozen.	S5. 2	728	22.8	3.9	17.8	4.9	77.0	
Cookethe.	93.2	720	20.3	5.1	29.4	0.0	61.2	
Raw frozen	74.8	68.6	22.0	8.5	[2.]	4.4	83.2	
Rave frozer	$\stackrel{75.4}{73.18}$	71.1	21.2	6.1	14.9	4.3	\$0. 4	
	6 i .6	\&. 3	20.9	9.2	9.8	3.0	86.9	
Cooked.	07.6	48.9		17.1	11.8	4.0	83.7	
Tenderioin:								
Raw trozen.	72.6	20.5	31.8	7.4	13.6	4.1	80.2	
Raw frozen.	80.4	71.0	20.6	7.3	17,2	5.0	77,6	
Rav froten.	80.9	70.8	± 0.2	7.8	23.2	\# 4	72.1	
Raw frozell	82.9	75.1	1s.:	4.5	32.9	10.6	56. 1	
Rnw (rozan-.	88.	76.5	21.6	5.8	10.8	6.7	73.3	
Bhate roll:								
$\xrightarrow{\text { Rnw iroze }}$	84.1	81.0	20. 2	11.2	15.4	5.0	79.2	
Rnw rrozed.-	36.3	23.1	21.2	4.4	17.5	6.8		
fay frozen.	33.8	72.6	20.4	5.9	20.0	7.7	62.9	
Raw frozen	70.0	69.2	20.3	8.0	12.8	a 6		
Cavefrozen	75.0	71.0	19.8	7.2	13.5	3.8	82, 4	
Spencer roll:								
Raw frozen.	64.1	6, 6	21.2	10.5	10.7	3.3	85.7	
Cooked.....	67.7	52.8	29.8	14.3	21.8	3.0	71.0	

See footnote at end of table.

Table 12.-Average separable lean per 100 grams roasts and steaks and average composition of 100 grams separable lean and separable fat-Continued

Type if rowst or steak	Wexhbt of seprat ablo lean	Cotnposition of sparatile ivest			Compustelon of sephatite fit			
		Wadar	Troteln	Fut	Water	Protola	Fist	
	Gritions	Crams	Crams	Combs	Crams	Orasis	Cirams	
Swles stenks: Clekl:								
C'mbed '.t	(10.9	dis 2	20.0	8.0	27, 4	4.8	64. 7	
Gmuct rotl:								
law frozell.	88.2	71, 2	19.4	8.1	30.5	0.8	71.7	
Cookul....	85.8	13.3	25. 2	10, 1	42.4	S. 8	47.7	
Clitick Lenter:								
	22. 8	51.	10, 81	4.5	30.7	10.0 7.0	62.18	
Cuokut......	80.4	61.3	20.0	7.3	40.1	7.5	58.2	
Outstig of rotand;	¢0, 7	72.3	20. 1	A. 3	18.0	6. 4	75.1	
	吹, 8	(k). 0	$4 \mathrm{~m}, 7$	7.4	41.6	fi. 4	43. 4	
Xtamp luit;								
	71.8	71. 8	10.6	7.8	18.4	8.8	7th 2	
Cookerl...	01.0	*0,0	3	10.9	33.0	6, 2	57.7	

Tanle 13.-Percentages of separable lean in roasts and steaks and composition of sepurable lean and separable fat; raw and cooked

'r'ybue of minst ar stank	Progntthen ip suphar. leana	Contimestiten of samarable L, 401			Oigmpratiton of supherable fint		
		Witter	lrotetn	Fut	Wator	Protoin	Fat
Ocell ronsts:	Percent	Percent	J'ercent	Percent	Percent	Percent	19rcent
Haw	79. ${ }^{\text {¢ }}$	71.7	21.5	12.8	16, 6	5.7	78
	TV, 5	64.1	21.5	12.6	15.3	5.7	72.7
		70. 7	21.5	(b, 1	t0. 5	5.3	7 ${ }^{3} \mathbf{0}$
Ruw ${ }_{\text {Rooket, }}$	78.0	34.5	(w). 2	13.1	20.0	6.1	72.5
130	W3, 0	71.4	20.4	7.18	18.3	6.2	74.3
C'twhtal	W1, 5	56, 6	30.3	12.5	24.5	8.6	64. 5
Swlis sleaks:	S2, 1	71, 4	', \downarrow	7.4	19.3	6.2	74.3
C'roked.	73.1	(11, 0	3t. 3	9.9	30. 6	5.7	34. 2

The average serving allowance of 6.7 ounces of raw beef for ronsts or stenks can be broken down into the food-energy contributions of the separable lean and separable fat (table 14). The food energy in tho separable lean was practically unchanged by cooking. The separable fat contributed approximately one-half of the food energy in the raw beef and somewhat less than half in the cooked beef. Thas, the sepmable fat of these cuts, on the avorage, was approximately 20 percent of the weight of the raw beef but it contributed almost one-half of the food energy in the cooked beef.

Tably 14.-Calculated weipht and food energy of separable lean and separable fat in 6.78 ounces ${ }^{1}$ of raw roasts and steaks and corresponding cuts after cooking

Typo of roast ar steak	Wexsht			Food energy	
	Total	Scparable	Separnble	Separruble	Senareble
Oren rolsts: Raw. Cooker	Grams 1908 190.5 121.3	$\begin{gathered} \text { Oramis }^{151.2} \end{gathered}$	Grams	Calorica 230	Calosies $23!$
Gridela-bronei stents:	121.3	96.4	24.9	223	$1{ }^{19} 9$
Cavk-	190.5	148.6	41.9	248	303
Pot roskts:		89.7	38.5	214	331
Raw	190.5	158.1	32.4	237	223
Swiss stenks:	123.2	102.0	23.2	234	147
R3y-.at.	100.5 147.1	158.4 108.0	34.1 30.1	$\begin{aligned} & 235 \\ & 203 \\ & 203 \end{aligned}$	238 200

The usual jer-man mownce for these cuts.

PART II

Plate Waste from Oven Roasts, Trimmed and Untrimmed

Procedures

For the study of the effect on plate waste of trimming external fat from beef, 2,076 pounds of the 7 cuts of boneless beef designated for oven roasts were used in serving 23 meals to 4,854 men in companysize messes at Fort Lee, Va. The beef was from regular procurement sources, and was prepared and served by Army mess personnel using regular equipment.

Specifications for the roasts limited external fat to $3 / 4$ inch in thickness. The 7 cuts were cooked and served without removal of any of this fat; another 5 cuts were cooked and served with the fat trimmed to approximately 4 inch. The blade roll and knuckle of round were not trimmed, since the fat layer did not exceed 3 inch.

Physical data were obtained on the following: Weights of raw frozen beef issued to the mess, thaw juices, fat trimming, cooked meat, pan drippings, pan scrapings, meat not served, and beef in plate waste; also, the number of men served. All these data were calculated to $a 100$-man basis.

In this study no representative samples of the raw meat or the cooked meat could be obtained. It was possible, however, to get samples of the fat trim, thaw juices, pan drippings, beef not served, and beef in plate waste. These were sent to the laboratories of the Human Nutrition Research Branch, Agricultural Researeh Service, United States Department of Agriculture, Beltsville, Md., where they were analyzed for moisture, nitrogen, and ether-extractable fot.

Results

Raw Beef, Cooked and Served Items, and Plate Waste

The data in table 15 show the amounts of beef issued per 100 men aud the percentages of this beef in the raw and cooked items. In making an overall comparison of the untrimmed-beef data with the
trimmed-beef data, the amount of beef in the individual cuts for roasts or steaks (dry heat) as given in table 5 were used as weighting factors. The summarized data (table 15) thus apply to roasts or steaks as a whole. Since the blade roll and the knuckle of round did not lend themselves to additional trimming, the data for these cuts were included in the summary data for both the untrimmed and the trimmed cuts.

The fat trim amounted to 6 percent of the average weight of the cuts. As a result of trimming, less fat was found in the beef not served and in plate waste than in these items from untrimmed cuts. Approximately two-thirds more beef not served appeared from the untrimmed cuts than from those trimmed (7.2 percont of the untrimmed beef as compared with 4.3 percent of the trimmed beef). The plate waste was approximately 38 percent more from the untrimmed cuts than from those trimmed (6.0 percent of the untrimmed beef as compared with 4.4 pereent of the trimmed beef). Other items appeared unaffected by trimming. In each instance the cooked yield from the raw drained weight before cooking averaged about 65 percent; the amounts of pan drippings and scrapings were similar for tintrimmed and trimmed cuts.

TAnle 15.-Percenfage distribution of raw and cooked ilems from untrimmed and trimmed oven roasts, based on weight of frozen becf issued per 100 men

Type of oven roust	Welght of niw frozen ตौe!	Before roasting			After rousting				
		Fat trint	$\begin{aligned} & \text { Thaw } \\ & \text { Hall } \end{aligned}$	Drained thawed bedf	Cooked trinined bee!	Drip pings	Scrap-	Not served	Plate waste
	Wito17xms	Petcent	Percent	Percent	Percent	Percemt	Percent	Percent	Pereent
Blado mill	19.002	0	6.7	94.0	6. 2	7.0	1.1	10.9	f. 5
[frstede of rounti									
Trimmatiol.	10.208	5.1	8.8 0.0	89.7	S6.4	10.8	. 8	7.4	4.8
Knuekle of round: Uutrimate	10.697	0	7.9	03.2	55.8	17,3	7	5.0	2.4
Colustrip:									
Trammmed...	20.802	10.6	7.4 7.4 7.4	182.3	5	+13.9	$\underline{1.2}$	18.8	9.0
Strion hatt:									
Untrimmed	19.Sed	0	50.3	105.5	63.7	14.0	. 7	5.4	4.8
Trimmend...	19,648	0.8	17.0	37.3	58.0	12.0	.3	2.8	4.7
Smetaer milit	135.112	0	2.7	85.0	'63.3	11.1	. 8	3.9	9.9
Trtmmed	15.488	6.1	5.5	88.4	63.3	12.3	. 3	9.4	7.5
Tenderiofn;									
Unthamed:	15.60	$\stackrel{0}{1.2}$	4.7	05.8 8.0	$\begin{aligned} & 60.0 \\ & 54.16 \end{aligned}$	14.0 0.1	1.7	2.7 0.4	\%.4
A verase for nbove cuts.									
Untrimmed.. -	10.37		0.0	94.6	61.6	12.0	, 8	7.2	6.0
Trimmel ${ }^{1}$.	10. 22	8.0	6.0	88.3	37.6	12.1	. 8	4.3	4.4

[^3]* Inclulimk blato roll and knackle of round.

Composition of Recoverable Items, Including Plate Waste
Data on moisture, protein, and fat content obtained from the laboratery analyses of plate waste and other recoverable items from the untrimmed and trimmed roasts are shown (table 16). Resuits summarized (table 17) show that in amounts per 100 men , trimming of fat to 3 inch did not greatly affect the protein content in drippings, in beef not served, and in plate waste. In the pan drippings, the amount of fat was almost the same for untrimmed and trimmed cuts; but in beef not served and in plate waste, it was less than half as much for trimmed cuts as for untrimmed. Altogether, the fat in drippings, in beef not served, and in plate waste was ont third less for the trimmed than for the untrimmed cuts.

Protein and Fat Consumed

The effects on amounts of protein and fat consumed, resulting from trimming fat from cuts desiguated for oven roasts, were calculated. The data (table 18) were oblained from those given in parts I and II on composition of the raw cuts, plate waste, and related items. The figures in table 18 assume that the cuts in both studies were the same. in composition and were handed and cooked under similar conditions, although it is recognized that this was not necessarily true. Protein and fat in beef presumed enten were obtained by subtracting the sum of percentages recovered in thaw juices, fat trim (if any), drippings, beef not served, and plate waste from 100 .

Table 16,-Composition per 100 grams of items resulting from the preparation, cooking, and serving of oven roasts, untrimmed and trimmed

[^4]Tanle 17.-Amount of protein and fal in fal trim, drippings, beef not served, and plate waste from oven roasts, untrimmed ard trimmed, in quantities per 100 men served

| | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Item | Ontrimmed roasts | Trimmed roasts |

Tanle 18.-Distribution of protein and fat in recoverable itens in cooking and serving sven roasts, in terms of percentages of the amounts of protein and fat in raw beef

Item	Untrimumed roasts		Trimmed roasts	
	Protein	Fat	Protein	Fat
Thanw juices..	$\begin{array}{r} \text { Percent } \\ 3.0 \end{array}$	Perceut	$\begin{aligned} & \text { Perent } \\ & 3,2 \end{aligned}$	Percent
Fut tram-			1.2	24.
Pauz drtppiliss.	3.4	25.1	3.8	18.8
Beef not served..	0.8	12.	4.7	0.4
Beel in plate wnsta....	5.9	18.2	4.6	10.4
Bed prestaued exten..	78.6	46.6	82.0	40.1

The data show that of the protein in the raw issued weight, approximately $S 0$ pereent was found in the beef presumed eaten. Any difference between 78 percent of protein in the untrimmed cuts and $\$ 2$ percont in the trimmed ents was probably nonsignificant. The percentage of fat in the raw issued weight appearing in beef presumed enten was 46 percent for the untrimmed cuts and 40 percent in the trimmed cuts. Because of the large quantity of fat reserved in fat trim from the trimmed cuts, the fat drippings from the trimmed cuts would probnoly be used entirely in making gravy. On the other hand, part of the fat in drippings from the undaimmed cuts woukd not be used in making gravy. The results would indicate therefore that trimming would not reduce the fat consumed if the gravies were included.

These findings indicate that further trimming of surface fat in the processing of beef at the packing plants woukl result in a saving in weight to be handled and stored in valuable freezing space, without any appreciable effect on the matrilive value of the beef eaten.

PART III

Composition of Boneless Beef as Cooked and Served, and the Amounts of Protein, Fat, and Food Energy in Beef or Beef Recipe Consumed

Procedures

The study of boneless beef as regularly issued, cooked, and served in Army messes was made at 5 widely separated locations in the United States: Camp Roberts, Calif.; Fort Leonard Wood, Mo.; Fort Knox, Ky.; Camp Rucker. Ala.; and Fort Jackson, S. C. Of a total of 560,000 potinds of beef made available from 6 processors, 52,682 pounds were issued to furnish 542 meals to 109,128 men.

The plan called for 28 different combinations of cut or form of beef and cooking method. The 7 cuts designated for roasts and steaks (dry heat) and the 5 desiguated for roasts and steaks (moist heat) were propared both as roasts and as steaks; the diced beef was prepared as stew; and the grotud beef was prepared as meat loaf, hamburgers, and "beefburgers."
All kinds of Army activities were represented through a statistically random selection of the companies available in each of these locations; in this way, the companics were distributed among the different cooking methods and cuts or forms of beef. Each mess was given only 1 kind of eut to be used in a mess meal. With 56 messes participating in 112 meals at each location, any given mess was used twiec, but each time for a different eat or form of bef and cooking method. With a fow exceptions, each cut or form and cooking method was replicated 4 times-twice at noon and twice in the evening. A total of 542 meals was served out of the 560 called for by the plan. The usual Army personnel cooked and served the meals. The data were recorded and the samples procured with the least possible interference with normal operations.

Cooking methods were those designated in the manual on reeipes (5) for oven roasts, griddle-broiled stenks, pot roasts, Swiss steaks, and stew, and also for 3 ground meat recipes-meat loaf, "beefburger," and hamburger. Neat loaf and "beefburger" contained added ingredients, but the hamburger consisted of ground beef with seasoning only. In table 19, the amounts of 38 recipe ingredients are shown in average amounts per 100 men . The cooks were at liberty to prepare the beef as they normally would, and deviations from the recipe manual were not uncommon. There was a tendency to cook pot roasts as oven roasts.
For raw samples to represent the cuts designated for oven roasts and gridde-broiled steaks and those designated for pot roasts and Swiss steaks, every 10 th steak was taken. Approximately 10 percent of the diced ment and 10 percent of the ground meat were also used for the raw samples. Cooked samples as served were obtained by taking every loth serving. All of the beef in plate waste was taken as the plate-waste sample. At each location samples from the messes were pooled according to cut and cooking method. For instance, 4 samples

Ingredtent	Pot roasts						Swiss steaks						$\begin{aligned} & \text { Diced } \\ & \text { meat } \\ & \text { stew } \end{aligned}$	Ground meat	
	Aver: age	Clod	$\begin{gathered} \text { Chuck } \\ \text { roll } \end{gathered}$	$\begin{gathered} \text { Outside } \\ \text { of } \\ \text { round } \end{gathered}$	Rump	Chuck tender	$\begin{aligned} & \text { A ver- } \\ & \text { age } \end{aligned}$	Clod	Chuck		Ruinp	Chuck tender		Meat loaf	"Beef-
Beel, boneless _-_................... pounds	43.8	4.8	41.6	41.1	48,0	45.4	45.0	43.8	44.3	45.7	43.4	47.6	27.1	30.4	38.4
														1.8	. 4
	1.1			5.3	-								4.6		
	. 04			.2			. 02	. 06		. 05			1,8	1.1 3.3	2.2
Eggs.......................................do							3			. 2					
							1.4	1.6	9	1.0	1.2	2.6	1.2	.3	. 03
Gravy ${ }_{\text {Gravy and onions }}$							${ }^{2}$		3.7						
Raw-........................do...-	. 02			$\cdot 1$			3.1	3.0	3.0	3.0	3.8	2.9	3.6	2.2	2.6
	. 1	-....-	-1...-	.3	--****		. 05			24			. 14		
							3.1	3.2	3.2	3.2	2.4	3.7	8.4 2.0		
Tomato: Catsup \qquad															
							1.1	1.3	1.5	1.2	1.3	1.8	1.6	. 2	
				-			. 7	. 2		+2	2.6		. 4		
							0.8	11.3	6.8	0.7	10.6	10.8	14.8	. 5	1.0
Peppers, green Miseellaneous:	.-...						. 5	9		. 6		$\cdot 9$	3.1	4.1	7.2
Misecllaneous: Bread. \qquad do.														3.0	5.8
													2.4		
Crackers							. 1	. 6						8	
															3.2
Grirlic \qquad do.														. 15	
Gravy baso NHK \qquad do.					----					-				. 45	-
Pimento \qquad do.							. 1				. 6		3.8		
							.2		18					. 5	
							.2	2	1.6 .		. 3	5			
							3			1,4					
							. 03					. 4			
Tomato juice...........................dio....							$\begin{aligned} & 1.8 \\ & 1.8 \end{aligned}$				8.8		3.7	--..---	
Tomato juice and paste..................do							1.8		9.2						

of ronst tenderloin from 4 mess meals at 1 location wore gromd 3 times and a represontative stbsample taken for the daboratory analyses. Samples were stored frozen and shipped frozen.

At each installation, the data ineluded a count of the total number of men served, of men taking beef, and of men receiving second servings. Weights were obtained of tho beef as received, tho thawed dramed beef, the recipe ingredients used, the drained cooked beef, the beef not served, and the beef or beef recipe in plate waste.

Laboratory analyses of the representative subsamples which had been ground at ench location were carried out by first drying under infrared lamps as was done previously (3) and extracting the entire subsample in a Soxthlet apparatus for fat ($1, p$. 359). The nonfat portion was then ground through 20 mosh in a Wiley mill, and amalyzed for residual moisture by drying in a vacum oven at $70^{\circ} \mathrm{C}$. and less than 25 mm . of inercury; it was also analyzed for ash (4) and for nitrogen ($1, p, 12$).

Results

Physical Data

The nmounts of raw beef issucd per 100 men, the amounts of cooked beef served and not served, and the amounts of plate wasto were averaged, usually for 20 messes for ench cut. These are given in table 20. The woights shown for raw beef and served cooked beef reprosent

Tarle 20.-Averaged amounts of beff per 100 men in ram issuc of boneless beff, in drained cooked beff or bef recipe served and not served, and in plate waste

Typu of but or bief rochse	Fsturel mT	Surved cooked :	Not. served. tooked	1'isto 썬ㄴㅇㅛ
	Pounds	Pounds	Puands	Poundx
Ovets rousts ${ }^{2}$	43.5	25.7	1.5	2.5
Tonclerloin	43, 1	24.8	1.2	2.6
t.olts strip	42.5	24.6	1.5	2.8
Smbucer roll.	40.13	22, 5	1.9	3.2
Blate roll. -	f2. ${ }^{\text {d }}$	23.9	1.7	1.3
Inside of ronat	42\%	$4{ }^{45} 3$. 8	2.0
Kmatkio of somme	46.1	25. ${ }^{3}$	2.8	2.3
Sirlobn bitt.	42.8	25.8	1.1	2.13
	46.6	24, 5	2.8	4.8
T'andertola .-.	45.8	24is 1	3.2	4.6
Comatrin	14.2	\% D	3.2	3.2
Sphneer moll.	43.8	58.2	1.7	65. 5
13tade roll...	10.17	34.0	2.3	3.2
faskle of roumb.	42.9	24. 4	. 0	4.4
Krackion foum	49.8	214.0	4.4	3.0
Sirlola hitth......	4t5. 0	25.3	4.4	5.2
f'ot sousts ${ }^{3}$.......	44.5	25.4	4.0	2.8
Clodi.---	45, 7	25.3	4.8	3.2
Chuck rail.	42.8	22.0	3.3	2.6
Gutstde of romm	$4{ }_{4} 8$	28.8	3.3	2.0
Itamip talt...	45.4	20.3	4.3	3.5
Clarck tender	47.8	22,0	1.2	2.3
Swiss sterks ${ }^{\text {2 }}$-...	45.3	48.5	\%. 1	4.3
Clad	46. 1	48.2	4, 7	5.7
Chack roll.	45.8	45.7	0.1	3.1
Outsido of soums	46.13	52.7	6.1	4.0
Rumap \%att....	44.3	48.7	1.3	4.4
Chack tenker.	48.2	4	8.4	2.3
Stew ----------	$\cdots 3$	52.1	0.2	5.1
Ment loasw.	331.4	20.1	1.0	. 8
"Beythtrger".	30. 15	17. ${ }^{2}$	4. 5	. 9
17atiburker =	\$1.8	23.1	2.5	1.1

[^5]the amounts used for the men; amounts taken for analysis have been deducted. The averages given for roasts and steaks are weighted aceording to the occurrence of the individual cuts in beef designed for roasts or steaks, cooked by dry heat or moist heat (table 5). For example, the average issue for oven roasts, 43.5 pounds per 100 men , is a weighted value for the 7 cuts as used in 125 messes. Actually, there was a considerable range in the quantity of meat issued per 100 men , as shown in tabic 21. The issued weight of beef for oven roasts, for instance, ranged from 28.3 to 81.4 pounds per 100 men , whereas the standard of issue was 42 pounds.
The amount of plate waste was found to correlate linearly with the issted weight, except for ground meat (table 21 and fig. 2). From the

Figure 2.- Plate waste from cooked beef or beef recipe as served, expressed as a function of the issue weight of raw boneless beef per 100 men.
average slope of the lines for griddle-broiled stenks, oven roasts, and hamburger (fig. 2), it can be seen that the plate waste was a certain percentage of the raw weight regardless of the amount of beef issued per 100 men. This may be interpreted to mean that the men ate beef even when the issue was excessive, and discarded as plate waste only that portion that would be plate waste on a much smaller issue.
Table 21 and figure 2 also show the expected plate waste for a standard issue. For example, an issue of 42 pounds of beef for oven roasts would have an expected plate waste of 2.35 pounds, whereas the same issue cooked as griddle-broiled steaks would have an expected plate waste of 4.42 pounds.

Table 21.-Correlations between raw weights of beef as issued per 100 men and corresponding umounts of plate waste

[^6]
Composition Data

The composition and energy value of the raw beef, of the cooked beef or beef recipe as served, and of the corresponding plate waste bave been summarized (table 22). The data show that for roasts, steaks, and stew the percentage of fat in the plate waste was considcrably higher than in the beef or beef recipe served, whereas for the ground meat recipes-meat loaf, hamburger, and "beefburger"-the percentages of fat in plate waste and in served portions were similar. This was to be expected because the fat could be cut from the servings of former items but not from the latter.

The percentages of fat in plate waste were correlated in all instances, with the percentages of fat in the served portion. Correlation coefficients, linear coefficients, and related data are given (table 23) ; data for stew are not included. As shown graphically in figure 3, results from the roasts and steaks were so nearly alike that all data could be pooled to obtain a common line. Statistically, the data were found to have correlation coefficients that were highly significant. The average served roasts or steaks contained 21.4 percent fat and the corresponding plate waste was 37.5 percent fat. The entire plate-waste data suggest that fat was trimmed from meat servings.

Figute 3,-Percentages of tat in plate waste expressed as a function of the percentages of fat in the cooked beef or beef recipe as served.

Table 22.-Summary of averaged data on composition and food energy per 100 grams of raw boneless beef, of becf cooked and served, and

Type of beef or heel rectpe	Raw						Served, cooked						Plate waste					
	Water	$\begin{aligned} & \text { Energy } \\ & \text { vaiue } \end{aligned}$	$\begin{aligned} & \text { Prov } \\ & \text { trinn } \end{aligned}$	Fat	Total cirbohydrate	Ash	Water	Energy value	$\begin{aligned} & \text { Pro- } \\ & \text { nenn } \end{aligned}$	Fat	Total carbohydrate	Ash	Water	Energy value	$\begin{aligned} & \text { Pro- } \\ & \text { celi } \end{aligned}$	Fat	Total carbohydrate	Ash
	Arimat	Calorien	Cramy	Crams	Gram	Gram	Grams	Calorics	Grams	Grams	Grams	Grams	Grams	Culorics	Grams	Gramis	Grams	Grams
Oven roasts							40.8	3304	23.6.	19.9 3.8	0.75	+1.10	40.1	43	19,0,	38.7 39.3	+1.25	1.62
Blade roll.....							+16.4	25.4	30.8	13.3	. 77	1.18	4.78	396	30.0	3.38	1.41	1.03
Krueckle of rounc							53.0	250	31.0	13.3	:02	1.20	50.9	312	24.1	22.6	1.27	3.13
Loln strin.							46.9	3332	25.0	23.1	[00	1.10	34,9	48.	18.4	4.4	1.23	1.09
Sirlotn but							49.1	314	27.9	21.4	. 610	1.00	37.5	468	17.2	+3.2	1.23	. 88
Spencer roll							4.8.	3660	25.4	38.4	${ }^{43}$	- 12	3.5 .4 34.4	48	11.7	47.08	1.13	-95
Griddle-broiled	81.5	252	17.8	19.5	0, 14	0,79	45.7	350	25.5	26.0	1.08	1.21	37.5	468	16.5	43.2	1.94	. 94
Blade roll.	62.3	246	17.7	19.0	.37	. 75	4.1 .6	362	25,7	27.5	. 05	1.23	38.3	454	18.2	41.0	1,54	. 96
Inside of round	65.9	204	10.2	13.5	. 51	. 87	49.4	304	27.5	19.8	1.6	1.31	41.0	411	19.9	35.2	2.83	. 98
Knuckile of roun	69.9	166	10.3	${ }^{9} 2$. 62	. 71	53.3 41.9	(344	28.9 3.0 24.0	14.7 30.9	1.80 2.06	1.39 1.14	53.17	5	22.8 13.5	- 21.6	2.36 1.80	1.18 .77
Loinstrip	\%7.3	293	177.5	20.9	. 25	. 71	4.48	303	${ }_{24.5}^{24.5}$	$\begin{array}{r}120 \\ 27.9 \\ \hline\end{array}$	1.68	1.20	3.1	488	14.6	46.3	2.09	. 91
Spuncer rol	53.2	3.40	15.6	30.3	. 21	. 604	38.2	437	22.4	37.4	.89	1.01	3.8	573	11.5	57.3	1.63	. 73
Tenderloin	57.1	3103	15.7	26.1	. 45	. 70	42.6	3100	23.2	31.6	1.30	1.22	- 28.9 .8	[600	12.0	56.4	1.67 1.28	1.033
Pot ronsts							51.1 51.2	2419	27.4	10.9	.54	1.17	4.4 .3	360	18.7	34.0	1.18	08
Chuck roll							50, 4	309	28.4	19.7	.70	. 95	48.2	346	21.7	27.3	1.33	05
Chnek tender							54.7	245	31.4	11.8	1.11	1.04	53.8.	271	27.0	16i. 6	1.08	1.48
Outside of roun							53.9	260	29.1	15.5.	1.32	. 10	46.5 35.2	(384	14.4	32.7 48.4	1.33	$\xrightarrow{98}$
Swlss staks ${ }^{\text {d }}$	64.2	297	18.0	16.6.	. 43	. 81	59.0	244	19.8	16.0	3.82	1.31	48.5	350	10.5	29,6	3.37	1.05
Clod.	04.0	230	18.0	17.0	. 32	. 80	61.1	233	17.1	15.8.	4.74	1.32	49.7	354	14.3	30.6	4.24	1.06
Chuck roil	6.5.4	214	18.3	15.0	+ 51	. 79	(i0. 1	233	18.9	14.8	3.73	1.47	53.5	302	18.7	${ }_{2}^{23.2}$	3.32 2 2	1. 11
Chuck tender	71.3	158	19.2	8.4 14.7	.41	8	(i0. 58.6 8.6	${ }_{239}^{212}$	24.0 2.4 2.4	10.7	3.44 3.43	1.20	6,3 48.7	355	21.0 17.9	21.6 20.7	203	1.80
Outside of rou	65.4.	${ }_{212}^{212}$	18.5 16.5	14.7 24.9	. 41	. 87	58.16 52.0	311	20.4	23.8	- 2.40	1.24	40.8	450	13.3	426	2.31	+97
Stew.	59.9	273	16.5	22.4	- 40	. 74	73, 3	152	9.1	9.7	7. 611	1.30	6.8 .7	250	9.5	20,4	6. 62	+84
"Beefburger"	55.7 56.1	315	116.0	- $\begin{array}{r}27,4 \\ 8.9 \\ \hline 2.9\end{array}$	$\stackrel{.27}{ }$. 67	57.8 5.3 5	245 280	21.0.	15.4 18.4	4.40 1.30	1.48	58.8 55.2	241 299	20.0	15.6	5.04 2.13	1.175
Meat loaf.	55.3	319	16.0	27.8	.45	.08	58.2	239	17.6	15.3	6.13	1.29	56.3	260	17.9	17.0	7.56	1.18

[^7]Table 23.-Corretation between fat in beef or beef recipe served and fat in phate raste

Tyge of buef or beetrecipe	Number of cooked sumples	A veraye [ut in surved bexel ${ }^{1}$	Arerage Corre- fat in lation paste coelfi- waste' elent		t^{2}	t.tneur treinelents		
					a	b		
		Percent	Percent					
Oven ronsts	35	95, 3	39.5 4.4	0.8174**	8.0970"0	9.8.54	1. 4.506	
Grludte-brolled stenks.	35 ;	27.1	14.4	. $9151{ }^{\text {cos }}$	13.08s**	- 4.4000	1.576	
Pot rotists,	24	18.8	42.7			-4. 5000	1. 1.4081 i.	
Swiss sterks ...	25	15. 3	37.5	.7651**	19. bl8	5. 727	1. 1.40 ks	
All rousts and stenks	119	21.33	37, 48 ;	.376i**		5.634 5.940	1. t (6)	
All gratmal melth rechues	15	16. 4	18.6	+ $\mathrm{El17}{ }^{\text {-4 }}$	2.78-5*	5. 240	. 649	

: Metan valutes froll himetr equation.
I i asturlak Indicates signifeant: 2 asterisks indicate highly siguificant.
'l'he fat loss as plate waste may not, however, be as great as the fat loss duting cooking. The data are summarized (table 24) to show the cooked yield of beef or beef recipe from the raw issue weight of beef, and the corresponding fat losses during cooking and in plate waste in terms of the percentage of fat in the raw issue of beef. Only for griddle-broiled stenks was fat loss greater in the plate waste than during cooking. Of course, the fat lost during cooking would be included, in part, as fat in drippings used for gravy and in this way made a vailable to the men. Fat losses during cooking of meat loaf and "beefturger," where the recipes called for bread crumbs or cracker crumbs, were about as great as fat losses during cooking of hamburger, which consisted of meat and seasoning without crumbs or other ingredients. The fat loss in phate waste from ground meat recipes was very little-only 1 to 2 percent. Altogether, the fat loss during cooking and in plate waste averuged about 50 percent of the amount of fat in the original cuts of beef.

Tanle 24.-Summary of cooked yields of bonetess beef and of fat loss during cooking and as plate tuasie

- Thape of teel or beef reclpe	Cooked yletu	Fat loss :	
		Durlng cooktrat:	Asplate wiste
	Percent 62	Persert 30	Percent 12
Grlude-brolled steris	64	13	24
Fol rousls.... . . .	$\stackrel{4}{91}$	+20	13
Ment loar ...	91	18 5 5	$\stackrel{2}{1}$
Beetbarger.......	80	58	2
2 mabarger .		5	2

Protein and Fat in Raw Beef From Eight Carcasses and From Field Study

A comparison of the protein and fat content of the raw beef from the 8 carcasses and from the 5 Army field installations is shown (table 25). Statistical analysis of variance of the data showed that only in the fat content of the ground meat was there a real difference between the average values. The 27.4 percent fat in the ground meat
from the field study was statistically greater than the 24.6 percent fat in the ground meat from the 8 careassus. This might be expected since the amount of fat in the ground meat of the 8 carcasses was intended to average approximately 25 percent, whereas the specifications for the ground meat at the time of the 1953 field study permitied as mueh as 30 percent fat. Exeept for the ground meat, the average composition of the raw boneless beef from the 2 studies would be considered equivalent.

Tarle 25.--Range and average percenlages of proteity and fat in boneless beef from 8 carcasses and from 5 Army field installations

'Type ant source of beef	Protein		Fat	
	Ramge	Areragu	Rurige	Averike
Ronsts or stenks (alry humb):	Percent	Percrin	Percent	Percent
	16.9-18.5	- 13.8	20. $1-20.0$	22. 1
5 fleldt fistajlations.........	12.1-18.4	- 17.8	17.5-21.7	10.7
dioasts or steaks (molst heat):				
\$ bircusses..........	15.0-18.0	17.8	1f, 8-2L 3	18.8
5 flek installations. Dleed berf:	12.3-18.6	18.0	13.0-20, !	Lfi. 6
8 carcisses	14.9-24.0	[7. 1	17.7-20.2	220
5 fudd litallations.-	15. 8-17.0	10.5	18.8-26.9	22.1
Ground beet:				
8 carcisses.	15.3-17,	16. 1	22 2 20. 9	24. 5
5 Gedd Instaliat lobs	15.0-16.9	16.0	23.2-34.7	197.1

The data from 8 carcasses are of value in showing the distribution of protein and fat in boneless beef on a carcass basis, and also the amounts of protein and fat in such items as thaw juices and pan drippings by cut, by cooking method, and on a carcass basis. The data from 5 installations are of value in being representative of large quantities of beef, and provide usable data on quantities of protein, fat, and calories in beef as served, in beef in plate waste, and in beef cousumed.

Protein and Fat Content and Energy Value of Beef Consumed

The data in table 26 show the average amounts of protein, fat, and food energy per 100 men in boncless beef as issued, in the cooked beef or beef recipe, in the portion not served, in the beef presumably eaten, and in the plate waste. The amounts consumed were obtained by subtraction. In the amounts of beef in different forms eaten per 100 men, theie was a range in protein of from 1,946 granss for stew to 4,043 grams for Swiss steak; in fat, from 1,700 grams for pot ronst to 2,964 for Swiss steak; and in food energy, from 27,794 calories for hamburger to $46, \mathrm{~S} 13$ calories for Swiss steak.

For purposes of comparison between cooking methods for boneless beef, the data in table 26 on amounts of protrin, fat, and food energy in the beef consumed and related items were calculated in terms of the percentages of the amounts issued as raw beef. Percentages over 100 in the cooked recipe show that the added ingredients contributed fair amounts. Although more fat was retained by griddle broiling than by oven roasting (79 as compared with 60 percent),
there was twice as much fat in the plate waste from the steaks as from the roasts and consequently less difference in the amounts of fat consumed- 49 and 55 percent, respectively.

Table 26.-Average amounts of protein, fat, and food-cnergy content of cooked beef served and not served, in plate waste, and in beef presumed caten, compared with that of the raw banelnss beff as issued per 100 men

Thy or berf or heef rectan and related tems	Prolein		Frat		Food energy	
Oren reaske	Crams	Percem	O_{0}	Percemt	Culnries	Percent
Ismat.	3, 524		3.828 2.313	30.4	49, 678	71.4
Served	3.311 198	04.8.8.	${ }^{2} \mathrm{H} 183$	${ }_{3}$	2.070	4.2
Not server wisto	${ }_{215}^{19}$	6.1	+40	11.5	4, 658	0.7
Prestmed chati	3. 120	S8. 7	1, 1773	48.9	30.528	6.9 .5
Orldda-brolled stenks:			3, 160		51,390	
Served	3, 3 , 17.1	8.t. 3	3 , 178	79.0	42, 135	82.8
Not served	32.5	8.0	3359	8.3	4,452	8.7
phate wiste	355	9.7	041	23.8	19. 185	19.6
Presumeth enten	2.714	74.6	2. 3 \%	55.2	31.049	02.2
Serval	3.01	St.0	2, 123	68.6	32.745	71.6
Not seryta	$5{ }_{518}$	13.9	348	10.4	3.368	11.7
Piate waste	2, 佔	fi. 7	1. $\frac{423}{269}$	58.7	- 27.9846	100.8
Presmmed diteo	2, 853	\% 2	I. 216	50.9	27, 810	0.8
Swis stemks:	3, 730		3, 420		[4, 831	
Serect.	$4,3+5$	16.7	3.540	103.5	52, (14)	114.5
Not sersed	459	12.3	${ }_{\substack{372}}^{570}$	10.9	5.641	$1 \pm .0$
	329	108. ${ }^{5}$	- ${ }_{\text {, } 2 \times 50}$	816.8	47, 813	14.6 90.6
Stew:	4, 043	108.1	2,063		7,813	\cdots
Stew: Issing!	2. 1(0)		2.388		35, 654	
Surverl...	2.148	99.4	2.308	78.5	35.208	12.6
Not served	254	11.5	273	9.3	4. 288 5.78	12.0
Plate waste	219	10.1 59.3	1, 8198	62.5	5, 78 308 308	85.4
\cdots Issted	2.204		3, 050		45,373	co.
Served.	2, 329		2,008		31.003	2.4
Not seryed Tlate waste	59	3.5	02	1.6	${ }^{+}$	2.1
fricsumatienta	2.263	100.1	1,946	40.2	30, 6.5	6.5
Sersued.	2.534	99.0	1. 897	38.6	36, 135	33.3
Not servelt	423	15.8	315	6.4	5,004	8.8
Finte waste	52	1.8	63	1.2	985	1.2 51.6
flambaryer:			5, 100		58, 519	
${ }_{\text {Sustreg }}$	2, 6×40	87.0	1,940	38.0	29.314	48.1
Notserved	${ }^{238}$	0.4	210	4.1	3.178	S. 3
Plate waste		3.0		1.7 36.3	1. 6278	40.5
l'resumed mator	2535	83.1	1,852	36.3	27,784	40.5

For the ground-meat recipes, hatf or less of the fat in the raw beef was found in the cooked-beet recipe. Although less than 2 percent of the fat appeared in the plate waste, the men consumed as groundment recipes less than half of the original fat. As shown by a comparison of "beefburgers" and hamburgers, the presence of bread erumbs and erackers in "beefburgers" did not affect the fat retention in the cooked recipe or it the amounts consumed. The 36 to 37 percent of fat consumed in the ground meat for hamburgers and "beefburgers" was exclusive of amounts in the gravies and cooking juices.

Table 27 shows the percentages of protein, fat, and food energy attributable to the beef in the raw recipe. The data were obtained
by calculating the amounts contributed by the average recipe ingredients (table 19) according to the published food-composition tables $(\$)$ and subtracting these amounts from the values obtained by analysis of the beef recipes. Since most of the protein, fat, and food energy was contributed by the becf, it was assumed that in the cooked recipe the beef-contributed protein, fat, and food energy were in the same proportion as in the raw, and with no appreciable error.

Tanle 27.-Percentages of prolein, fat, and food energy of the aucrage raw recipe comribuded by 4 -way boneless beef

Based on the carcass proportion of the ronsts or steaks (dry heat), roasts or staks (moist heat), diced beef, and ground beef, and an equat representation among the cooking methods used in this study for the types of bef, the percentages of protein, fat, and food cuergy in the beef consumed were calculated from those in the heef only, not including the recipe ingredients. These data showed that the beef or beef recipe eaten contained 84 percent of the beef protein, 51 percent of the heef fat, and 67 percent of the beef energy value. Also on this basis, 6 percent of the beef protein, 11 percent of the beef fat, and 10 pereent of the food energy were lound in the plate waste. Of these items, 7 percent of the food energy, 9 percent of the protein, and 6 perent of the fat in the issued beef were left as unserved edible beef at the serving table.

Literature Cited

(1) Assochation of Offichal Aghecumedal. Chembits.
1950. officlab methods of anabrsis. . Ed. 7, 910 pp., illug. Washington, D. C.
(2) Graff. M. Is. ${ }^{3}$
1949. Roneless beff spudr. [U. S. Quartermaster Corps], Quartermaster Food and Container Inst. for the Armed Forces, Interim Rpt. I; 1'roj. "Meats, Frozen," 7-84-06-20, [24] pp. Chicago, Itl. [Processed.]
(3) Hewston, E. M., Dawson, E. H., Alexander, L. M., and Orfnt-Keiles, E. 1948. vitamin and minfral content of certain foods as affected by home preparation. U. S. Dept. Agr. Misc. Pub. 628, 76 pp ., illus.
(4) Linnig, F. J., Milliken, L. T., and Cohen, R. I.
1951. determanation of ash in gr-s syathetic bubgers and latices. [U. S.] NatI. Bur. Standards, Jour. Res. 47: 135-138, illus.
(5) United States Departments of the Army and the Alr Force.
1950. recipes. U. S. Dept. of the Army Tech. Mantal TM 10-412, (also titled Dept. of the Air Force Manual AFM 146-3), 497 pp . Washington.

[^8](6) United States Veterinary Coris and Quahtermaster Conps Inspection Service.
1951. [INSTECHION OF] BEEF, BONELESS, FHOZEN, (A-WAY) [DNDER] MILITARY spscipicanton min-b-10017a(onic). Lं. S. Quartermaster Corps Insp. Serv., SIP (Tentative) SLBS T-21, 28 pp., illus. New York. [Processed.]
(7) Watt, B. K., and MEunill, A. L.
1050. COMIOSITION OF FOODS-lLAw, mROCESSED, PREPARED, U. S. Dept. Agr., Agr. Handb. S, 147 pp. [Processed.]
(S) Wolgamot, l. H.
1052. Bhem-Fage for consumall mol-camion. U. S. Dept. Agr., Agr. inform. Bul. S4, 21 pp., illus.

[^9]

[^0]: 'Submitted for publication July 1, 1955.

[^1]: ${ }^{2}$ Italic numbers in parentheses refer to Literature Cited, p. 32.

[^2]: I Includes liquids and vegetables.
 1 lochudes reelpe ingredfents.

[^3]: $\$$ Shagle lean.

[^4]: 1 Based on single item.

[^5]: ICorracterf for amounts taken for mandyteni smaples.
 (inble 8).

[^6]: 11 asterisk indicates significant; 2 asterisks indicate highly significant
 2 Standard error also shown

[^7]: I Figures are averuges welghted uccording to percentage of cut in type of 4 -way boneless beef.

[^8]: : Puhfication masy not be easily obtalned.

[^9]: I Sec footmotes.

